Skip to content

Latest commit

 

History

History
44 lines (33 loc) · 1.24 KB

File metadata and controls

44 lines (33 loc) · 1.24 KB

Named Entity Recognition Using Bert

input

A SENTENCE.

output

Whether the word is a named entity.

Label Detail
O Outside of a named entity B-MIS
B-MIS Beginning of a miscellaneous entity right after another miscellaneous entity
I-MIS Miscellaneous entity
B-PER Beginning of a person’s name right after another person’s name
I-PER Person’s name
B-ORG Beginning of an organisation right after another organisation
I-ORG Organisation
B-LOC eginning of a location right after another location
I-LOC Location

Usage

Set the SENTENCE as an argument.

$ python3 bert_ner.py -i "My name is bert"
...
Input :  My name is bert
Output :  [{'word': 'be', 'score': 0.9467903971672058, 'entity': 'I-PER', 'index': 4}, {'word': '##rt', 'score': 0.8386904001235962, 'entity': 'I-PER', 'index': 5}]

Reference

transformers

onnx-transformers

Framework

PyTorch 1.6.0

Model Format

ONNX opset = 11

Netron