Skip to content

Latest commit

 

History

History
 
 

efficientnet

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

EfficientNet

Input

Input

Ailia input shape : (1,3,224,224)
Range : [-1.0, 1.0]

Output

+ idx=0
  category=409 [ analog clock ]
  prob=9.720746994018555
+ idx=1
  category=892 [ wall clock ]
  prob=6.404201030731201
+ idx=2
  category=426 [ barometer ]
  prob=4.357946395874023

usage

Automatically downloads the onnx and prototxt files on the first run. It is necessary to be connected to the Internet while downloading.

For the sample image,

$ python3 efficientnet.py

If you want to specify the model, put b0 or b7 after the --model option. you can select efficientnet-b0 or efficientnet-b7. efficientnet-b0 is faster than efficientnet-b7 but lower precision.

$ python3 efficientnet.py --model b0
or
$ python3 efficientnet.py --model b7

If you want to specify the input image, put the image path after the --input option.

$ python3 efficientnet.py --input IMAGE_PATH

By adding the --video option, you can input the video. If you pass 0 as an argument to VIDEO_PATH, you can use the webcam input instead of the video file.

$ python3 efficientnet.py --video VIDEO_PATH

Reference

A PyTorch implementation of EfficientNet

Model Format

ONNX opset = 10

Framework

Pytorch 1.1.0

Netron

efficientnet-b0.onnx.prototxt

efficientnet-b7.onnx.prototxt