forked from PaulStoffregen/Audio
-
Notifications
You must be signed in to change notification settings - Fork 3
/
effect_delay_ext.cpp
291 lines (267 loc) · 8.91 KB
/
effect_delay_ext.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
/* Audio Library for Teensy 3.X
* Copyright (c) 2014, Paul Stoffregen, [email protected]
*
* Development of this audio library was funded by PJRC.COM, LLC by sales of
* Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop
* open source software by purchasing Teensy or other PJRC products.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice, development funding notice, and this permission
* notice shall be included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <Arduino.h>
#include "effect_delay_ext.h"
//#define INTERNAL_TEST
// While 20 MHz (Teensy actually uses 16 MHz in most cases) and even 24 MHz
// have worked well in testing at room temperature with 3.3V power, to fully
// meet all the worst case timing specs, the SPI clock low time would need
// to be 40ns (12.5 MHz clock) for the single chip case and 51ns (9.8 MHz
// clock) for the 6-chip memoryboard with 74LCX126 buffers.
//
// Timing analysis and info is here:
// https://forum.pjrc.com/threads/29276-Limits-of-delay-effect-in-audio-library?p=97506&viewfull=1#post97506
#define SPISETTING SPISettings(20000000, MSBFIRST, SPI_MODE0)
// Use these with the audio adaptor board (should be adjustable by the user...)
#define SPIRAM_MOSI_PIN 7
#define SPIRAM_MISO_PIN 12
#define SPIRAM_SCK_PIN 14
#define SPIRAM_CS_PIN 6
#define MEMBOARD_CS0_PIN 2
#define MEMBOARD_CS1_PIN 3
#define MEMBOARD_CS2_PIN 4
void AudioEffectDelayExternal::update(void)
{
audio_block_t *block;
uint32_t n, channel, read_offset;
// grab incoming data and put it into the memory
block = receiveReadOnly();
if (memory_type >= AUDIO_MEMORY_UNDEFINED) {
// ignore input and do nothing if undefined memory type
release(block);
return;
}
if (block) {
if (head_offset + AUDIO_BLOCK_SAMPLES <= memory_length) {
// a single write is enough
write(head_offset, AUDIO_BLOCK_SAMPLES, block->data);
head_offset += AUDIO_BLOCK_SAMPLES;
} else {
// write wraps across end-of-memory
n = memory_length - head_offset;
write(head_offset, n, block->data);
head_offset = AUDIO_BLOCK_SAMPLES - n;
write(0, head_offset, block->data + n);
}
release(block);
} else {
// if no input, store zeros, so later playback will
// not be random garbage previously stored in memory
if (head_offset + AUDIO_BLOCK_SAMPLES <= memory_length) {
zero(head_offset, AUDIO_BLOCK_SAMPLES);
head_offset += AUDIO_BLOCK_SAMPLES;
} else {
n = memory_length - head_offset;
zero(head_offset, n);
head_offset = AUDIO_BLOCK_SAMPLES - n;
zero(0, head_offset);
}
}
// transmit the delayed outputs
for (channel = 0; channel < 8; channel++) {
if (!(activemask & (1<<channel))) continue;
block = allocate();
if (!block) continue;
// compute the delayed location where we read
if (delay_length[channel] <= head_offset) {
read_offset = head_offset - delay_length[channel];
} else {
read_offset = memory_length + head_offset - delay_length[channel];
}
if (read_offset + AUDIO_BLOCK_SAMPLES <= memory_length) {
// a single read will do it
read(read_offset, AUDIO_BLOCK_SAMPLES, block->data);
} else {
// read wraps across end-of-memory
n = memory_length - read_offset;
read(read_offset, n, block->data);
read(0, AUDIO_BLOCK_SAMPLES - n, block->data + n);
}
transmit(block, channel);
release(block);
}
}
uint32_t AudioEffectDelayExternal::allocated[2] = {0, 0};
void AudioEffectDelayExternal::initialize(AudioEffectDelayMemoryType_t type, uint32_t samples)
{
uint32_t memsize, avail;
activemask = 0;
head_offset = 0;
memory_type = type;
SPI.setMOSI(SPIRAM_MOSI_PIN);
SPI.setMISO(SPIRAM_MISO_PIN);
SPI.setSCK(SPIRAM_SCK_PIN);
SPI.begin();
if (type == AUDIO_MEMORY_23LC1024) {
#ifdef INTERNAL_TEST
memsize = 8000;
#else
memsize = 65536;
#endif
pinMode(SPIRAM_CS_PIN, OUTPUT);
digitalWriteFast(SPIRAM_CS_PIN, HIGH);
} else if (type == AUDIO_MEMORY_MEMORYBOARD) {
memsize = 393216;
pinMode(MEMBOARD_CS0_PIN, OUTPUT);
pinMode(MEMBOARD_CS1_PIN, OUTPUT);
pinMode(MEMBOARD_CS2_PIN, OUTPUT);
digitalWriteFast(MEMBOARD_CS0_PIN, LOW);
digitalWriteFast(MEMBOARD_CS1_PIN, LOW);
digitalWriteFast(MEMBOARD_CS2_PIN, LOW);
} else if (type == AUDIO_MEMORY_CY15B104) {
#ifdef INTERNAL_TEST
memsize = 8000;
#else
memsize = 262144;
#endif
pinMode(SPIRAM_CS_PIN, OUTPUT);
digitalWriteFast(SPIRAM_CS_PIN, HIGH);
} else {
return;
}
avail = memsize - allocated[type];
if (avail < AUDIO_BLOCK_SAMPLES*2+1) {
memory_type = AUDIO_MEMORY_UNDEFINED;
return;
}
if (samples > avail) samples = avail;
memory_begin = allocated[type];
allocated[type] += samples;
memory_length = samples;
zero(0, memory_length);
}
#ifdef INTERNAL_TEST
static int16_t testmem[8000]; // testing only
#endif
void AudioEffectDelayExternal::read(uint32_t offset, uint32_t count, int16_t *data)
{
uint32_t addr = memory_begin + offset;
#ifdef INTERNAL_TEST
while (count) { *data++ = testmem[addr++]; count--; } // testing only
#else
if (memory_type == AUDIO_MEMORY_23LC1024 ||
memory_type == AUDIO_MEMORY_CY15B104) {
addr *= 2;
SPI.beginTransaction(SPISETTING);
digitalWriteFast(SPIRAM_CS_PIN, LOW);
SPI.transfer16((0x03 << 8) | (addr >> 16));
SPI.transfer16(addr & 0xFFFF);
while (count) {
*data++ = (int16_t)(SPI.transfer16(0));
count--;
}
digitalWriteFast(SPIRAM_CS_PIN, HIGH);
SPI.endTransaction();
} else if (memory_type == AUDIO_MEMORY_MEMORYBOARD) {
SPI.beginTransaction(SPISETTING);
while (count) {
uint32_t chip = (addr >> 16) + 1;
digitalWriteFast(MEMBOARD_CS0_PIN, chip & 1);
digitalWriteFast(MEMBOARD_CS1_PIN, chip & 2);
digitalWriteFast(MEMBOARD_CS2_PIN, chip & 4);
uint32_t chipaddr = (addr & 0xFFFF) << 1;
SPI.transfer16((0x03 << 8) | (chipaddr >> 16));
SPI.transfer16(chipaddr & 0xFFFF);
uint32_t num = 0x10000 - (addr & 0xFFFF);
if (num > count) num = count;
count -= num;
addr += num;
do {
*data++ = (int16_t)(SPI.transfer16(0));
} while (--num > 0);
}
digitalWriteFast(MEMBOARD_CS0_PIN, LOW);
digitalWriteFast(MEMBOARD_CS1_PIN, LOW);
digitalWriteFast(MEMBOARD_CS2_PIN, LOW);
SPI.endTransaction();
}
#endif
}
void AudioEffectDelayExternal::write(uint32_t offset, uint32_t count, const int16_t *data)
{
uint32_t addr = memory_begin + offset;
#ifdef INTERNAL_TEST
while (count) { testmem[addr++] = *data++; count--; } // testing only
#else
if (memory_type == AUDIO_MEMORY_23LC1024) {
addr *= 2;
SPI.beginTransaction(SPISETTING);
digitalWriteFast(SPIRAM_CS_PIN, LOW);
SPI.transfer16((0x02 << 8) | (addr >> 16));
SPI.transfer16(addr & 0xFFFF);
while (count) {
int16_t w = 0;
if (data) w = *data++;
SPI.transfer16(w);
count--;
}
digitalWriteFast(SPIRAM_CS_PIN, HIGH);
SPI.endTransaction();
} else if (memory_type == AUDIO_MEMORY_CY15B104) {
addr *= 2;
SPI.beginTransaction(SPISETTING);
digitalWriteFast(SPIRAM_CS_PIN, LOW);
SPI.transfer(0x06); //write-enable before every write
digitalWriteFast(SPIRAM_CS_PIN, HIGH);
asm volatile ("NOP\n NOP\n NOP\n NOP\n NOP\n NOP\n");
digitalWriteFast(SPIRAM_CS_PIN, LOW);
SPI.transfer16((0x02 << 8) | (addr >> 16));
SPI.transfer16(addr & 0xFFFF);
while (count) {
int16_t w = 0;
if (data) w = *data++;
SPI.transfer16(w);
count--;
}
digitalWriteFast(SPIRAM_CS_PIN, HIGH);
SPI.endTransaction();
} else if (memory_type == AUDIO_MEMORY_MEMORYBOARD) {
SPI.beginTransaction(SPISETTING);
while (count) {
uint32_t chip = (addr >> 16) + 1;
digitalWriteFast(MEMBOARD_CS0_PIN, chip & 1);
digitalWriteFast(MEMBOARD_CS1_PIN, chip & 2);
digitalWriteFast(MEMBOARD_CS2_PIN, chip & 4);
uint32_t chipaddr = (addr & 0xFFFF) << 1;
SPI.transfer16((0x02 << 8) | (chipaddr >> 16));
SPI.transfer16(chipaddr & 0xFFFF);
uint32_t num = 0x10000 - (addr & 0xFFFF);
if (num > count) num = count;
count -= num;
addr += num;
do {
int16_t w = 0;
if (data) w = *data++;
SPI.transfer16(w);
} while (--num > 0);
}
digitalWriteFast(MEMBOARD_CS0_PIN, LOW);
digitalWriteFast(MEMBOARD_CS1_PIN, LOW);
digitalWriteFast(MEMBOARD_CS2_PIN, LOW);
SPI.endTransaction();
}
#endif
}