
CSCI 6907.11!
!

Adv. Net. Sys. Prog.

Week 7  
Software Defined Networks

!
Tim Wood!
CS@GWU!

2015

Some content / ideas from Nick Feamster’s Coursera SDN class and Kurose & Ross’s book

Tim Wood - The George Washington University

Today
• GENI Competition Plans
• Issues Round 2
• Control and Data Planes
• SDNs on GENI
• Open vSwitch: software data plane
• Pox: control plane

Tim Wood - The George Washington University

SDN Setup
• Use jFed to request these resources from InstaGENI

- 6 Xen VMs
- Client, POX, node1-3 all use “Ubuntu 14.04” disk image
- OVS uses “Ubuntu 12.04 with OVS (Niky)” disk image

Tim Wood - The George Washington University

Issue Sharing
• Show the code for the issue(s) you solved to your
table neighbors
!

• Code review!
- Check for style, readability, comments
- Check for correctness! Are there test cases?

Tim Wood - The George Washington University

Control & Data
• Networks send data and commands
• Telephone

- Data? Control?

!

!

• Internet?
- Data? Control?

Tim Wood - The George Washington University

Central vs Distributed
• AT&T Network Control Plane

- Centralized management point for voice network
- Can directly observe network status
- Easily deploy new services (800 numbers)
- Pros and cons?
!

• Internet routing
- Routers communicate with adjacent routers to advertise routes
- Distributed shortest path algorithm used to decide best route
- Pros and cons?

Tim Wood - The George Washington University

Software Defined Networking
• Separate control and data

- Control: SDN Controller
- Data plane: switches and routers

• (Logically) Centralized controller
- Makes decisions about how packets are routed
- Sends rules to data plane elements

• Data plane
- High performance but dumb
- Just follows the rules told to it by the controller

Tim Wood - The George Washington University

SDN Setup
• We will use OVS and POX to control how data is
forwarded between node1-3

POX
Python-based SDN

Controller
simple and easy

Open VSwitch
software based switch

popular for bridging
VMs

ethX ethY ethZ

Tim Wood - The George Washington University

Setup nodes
• Set them all to have IPs in the same subnet
!

!

!

!

• What happens if you try to ping from one node to the
other? Why?

// ssh into each node and set the IP!
// don’t edit client, POX, or OVS hosts yet!
timwoo01@node1:~$ sudo ifconfig eth1 192.168.10.1!
timwoo01@node2:~$ sudo ifconfig eth1 192.168.10.2!
timwoo01@node3:~$ sudo ifconfig eth1 192.168.10.3

Don’t accidentally mess up eth0!!!!!

Tim Wood - The George Washington University

Setup on OVS VM
• Disable existing interfaces

- Don’t shutdown eth0!!!!!!!
• Check that OVS is working
!

!
!

• Create a new bridge and assign interfaces to it

sudo ovs-vsctl show!
725406ec-3e20-46fe-85cf-8d5030bcfa4a!
 ovs_version: "1.9.3"

sudo ifconfig ethX 0!
sudo ifconfig ethY 0!
sudo ifconfig ethZ 0

sudo ovs-vsctl add-br br0!
sudo ovs-vsctl add-port br0 ethX!
sudo ovs-vsctl add-port br0 ethY!
sudo ovs-vsctl add-port br0 ethZ

Now can
you ping?

Tim Wood - The George Washington University

OVS
• Open vSwitch is acting as an ethernet switch,
forwarding packets between the hosts on its bridge

SW
ethX ethY ethZ

Tim Wood - The George Washington University

Layer 2 Switch
• Switches work at Layer 2

- Ethernet
• Forwards packets based on MAC

- Address hard coded into NIC hardware
- Or assigned to a VM at bootup

application
!

transport
!

network
!

link
!

physical

wikipedia

ethernet

IP

TCP/UDP

HTTP

Tim Wood - The George Washington University

Software Defined Networking
• Separate the network’s control and data plane
• Data plane: forwards packets between switches
• Control plane: determines routes for packets

!
• Controller matches flows:

- a stream of packets from a source to a destination

!

• Controller provides actions for each flow:
- drop
- forward out a port
- modify headers

Match: Fields in Lookup (v. 1.0)

!  12-tuple
(also, VLAN priority
and ToS)

!  Support for wildcard
matching

6

OpenFlow?
Controller?

?
?
OpenFlow5enabled?
Layer52?Switch?

OpenFlow?
Protocol?

SSL?

Flow?table?

Switch?
Port?

MAC?
src?

MAC?
dst?

Eth?
type?

VLAN?
ID?

IP?
Src?

IP?
Dst?

IP?
Prot?

TCP?
sport?

TCP?
dport?

Matches(subsets(of(packet(header(fields(

Tim Wood - The George Washington University

Open Flow
• Open Flow is a protocol used in SDN

- Defines the messages between a switch and the controller
- Originally designed for simple hardware switches
- Is slowly evolving to support more advanced software switches

• Defines events
- Switch boots up
- New packet arrives

• Defines match/action rules
- How to define a flow
- What actions can be performed on a flow
!

• Not all hardware switches support OpenFlow!

Tim Wood - The George Washington University

SDN Controllers
• Lots of options…Summary

!  Choice of controller depends on needs, language, etc.
!  So far: Southbound API implementations

Later: “Northbound” APIs
17

NOX$ POX$ Ryu$ Floodlight$ ODL$

Language. C++. Python. Python. Java. Java.

Performance. Fast. Slow. Slow. Fast. Fast.

Distributed. No. No. Yes. Yes. Yes.

OpenFlow. 1.0.

(CPqD:.1.1,.1.2,.

1.3).

1.0. 1.0,.1.1,.1.3,.

1.4.

1.0. 1.0,.1.3.

Mul[3tenant.

Clouds.

No. No. Yes. Yes. Yes.

Learning.

Curve.

Moderate. Easy. Moderate. Steep. Steep.

Tim Wood - The George Washington University

POX
• Simple, low performance, python SDN controller

- Popular for prototyping and research projects
• POX core engine handles communication with switch

- Uses Openflow 1.0
• You write handlers to respond to certain events

- A new packet arriving that doesn’t match a rule
- A new switch coming online
- etc

• Your python code can do anything
- Has the POX libraries available to send open flow messages

Tim Wood - The George Washington University

Setting up POX
• Check out our repo to get POX

- Be sure to update your fork first!
!

!
!

!

• Run a pox program
!

!

• This just prints out info about any packets it gets

// on POX host!
git clone https://github.com/YOURFORK/adv-net-samples.git

cd adv-net-samples/sdn/pox!
./pox.py --verbose SuperSimple

Tim Wood - The George Washington University

Setting up POX
• Need to tell OVS where the controller is

- Also tell it to only use rules explicitly sent to it by the controller
!
!
!
!

!

• How well do your pings work now? Why?

// on OVS host!
sudo ovs-vsctl set-controller br0 tcp:<controller_ip>:6633!
sudo ovs-vsctl set-fail-mode br0 secure

Tim Wood - The George Washington University

Arrrrrp???
• What is this ARP thing?
• Sockets work with IP addresses (or host names)
• Switches and ethernet frames work with MACs…
• Address Resolution Protocol

- Translates from Link Layer (L2 ethernet) to Network Layer (L3 IP)
• Sending a message to IP 14.164.13.123:

- Check ARP cache to see if it has 14.164.13.123
- If yes, send to the MAC stored for it
- If not, broadcast an ARP request to MAC ff:ff:ff:ff:ff:ff
- Wait for a reply which will indicate the MAC for that IP

Tim Wood - The George Washington University

ARP Message Format

Src MAC!
!

Src IP
Dest MAC!

!

Dest IP

Tim Wood - The George Washington University

Arp
• Use the arp command to view a host’s arp table:
!

!

!

!

!

!

• Can manually add/remove entries in cache

timwoo01@node2:~$ arp!
Address HWtype HWaddress Flags Iface!
172.17.253.254 ether fe:ff:ff:ff:ff:ff C eth0!
172.16.0.1 ether fe:ff:ff:ff:ff:ff C eth0!
192.168.10.3 ether 02:80:f8:10:25:68 C eth1!
172.16.0.3 ether fe:ff:ff:ff:ff:ff C eth0!

Tim Wood - The George Washington University

How to Switch?
• What does a simple switch actually do?

host 2

host 1

host 4

host 3
Switch1

2 4

3

Tim Wood - The George Washington University

How to Switch?
• Learns which MACs are attached to which ports
• Broadcasts to unknown MACs and learns replies

host 2
mac: ab2

host 1
mac: ab1

host 4
mac: cd4

host 3
mac: cd3Switch

!
ab1->1
ab2->2
cd3->3
cd4->4

1

2 4

3

Tim Wood - The George Washington University

POX Switch
• Let’s make a hard coded switch table

!
• Find the MAC address for each of your nodes

- it’s listed in ifconfig
• Find what port each node is connected to

- an OVS command? output from SuperSimple Pox?
• Write rules in _handle_PacketIn based on dest mac

- ff:ff:ff:ff:ff:ff -> broadcast to all
- a node’s MAC -> send out the appropriate port

msg = of.ofp_packet_out()!
msg.actions.append(of.ofp_action_output(port = of.OFPP_FLOOD))!
msg.data = event.ofp!
msg.in_port = event.port!
self.connection.send(msg)

Tim Wood - The George Washington University

Pox Issues
• Let’s learn python and POX!
!

• Lots of new Issues have been posted… try one out!
!

• Put your code in a separate branch in your fork!

