Adyv. Net. Sys. Prog.

Lecture 12 - Network
Programming Paradigms

Today
Warmup: Sockets and Data
Multi-threading
Non-blocking /0O
—vent-driven programming

Tim Wood - The George Washington University

Socket Data

Get today’s code:
- Make a fork of gwAdvNet2015/lec-12-code and clone it
- run: git checkout simple-messager

Take a look at the code in messager/
- Nothing should be too surprising
- Note that messy socket stuff has been moved to a header file
- Always try to keep your code looking clean!

Socket Data

Write an “America Converter” server
- Clients send a temperature and a length
- Server converts temperature from F to C
- Server converts length from feet and inches to meters
- Client should use scanf () to read in data to be sent
- Server prints to screen and sends back converted values
- Use messager as a base

1 foot = 12 Inches

1 meter = 39.370 Inches
C=(F-32) " 5/9

If you finish earlier, check the Bug in this repo’s Issues

Application Layer Protocols

This Is why we need protocols like HT TP
- Specify exactly what data to expect and in what order

Most application protocols don't follow a standard
- Just be sure your code or documentation explains the steps!

Sometimes an application supports multiple protocols
- Why"

Tim Wood - The George Washington University

Memcached K-V Store

u
B I n a ry I rOto c o I https://code.google.com/p/memcached/wiki/MemcacheBinaryProtocol

Request header:

Byte/) | 1 | 2 | 3 |
/ | | | |

Byte/) | 1 l 2 | 3 |\I01234567|01234567|01234567|01234567|
/ | l | | frmmmmmeeee————- frmmmmmmmmeee———— $rmmmmmmmeee———— frmmmmmmeeee———— +
0123456710123 45671012345671012345¢6 7| ©/ HEADER /
frmmmmmm———————— frmmmmm————————— $rmmmmmm———————— Frmmmmmmm——————— + / /
0| Magic | Opcode | Key length | / /
fommmmm e ————— fommmmmemee————a $ommmmmm e e + / /
4| Extras length | Data type | Reserved | T T T R A o
e P e e - 4/ CO&MAND—SPECIFK EXTRAS (as needed) . /
81 Total body length | +/ (note length in the extras length header field) /
frmmmmmecee e e frmmmmmmee e e ——— $rmmmmmcccceee—— $rmmmmmeeee e e +

e e B B * m/ Key (as needed) /
12| Opaque | +/ (note length in key length header field) /
- o - e —————— + o o e o e e e fememme———————— femcmceceee—-———— femmeecceee—————- .
161 CAS | n/ Value (as needed) /
l | +/ (note length is total body length header field, minus /
ol e e e o o e o o e e e e o e + +/ sum of the extras and key length body fields) /
Total 24 bytes fommm=- sk e e -=

Total 24 bytes

ASCII PrOtOCOI https://github.com/memcached/memcached/blob/master/doc/protocol.txt

- <command name> <key> <flags> <exptime> <bytes> [noreply]\r\n

- GET somekey

Tim Wood - The George Washington University

https://github.com/memcached/memcached/blob/master/doc/protocol.txt
https://code.google.com/p/memcached/wiki/MemcacheBinaryProtocol

Network Apps Multi-Task

What happens when you call...?
- recv() or read()
- send() or writel()
- listen()
- accept()
- bind()

Most servers must do multiple things at once:
- Handle many incoming requests simultaneously

How do we do this?

Tim Wood - The George Washington University

Threads + Blocking I/O

f a call is blocking, we can run it within a thread so
that other threads can still do useful work!

thread |ID

int pthread create(pthread t *thread,
const pthread_attr_t *attr, thread attributes
void *(*start routine) (void *), often NULL

void *arg)

function to run In

argument to thread
function

See a sample: https://github.com/gwAdvNet2015/adv-net-samples/blob/master/threads/server-tcp.c

Tim Wood - The George Washington University

https://github.com/gwAdvNet2015/adv-net-samples/blob/master/threads/server-tcp.c

man pthreads

Other important functions:

int pthread_ join(pthread t thread, void **value ptr)
Wait for the termination of the specified thread, then clear its state.

int pthread_detach(pthread t thread)
Marks a thread for deletion when its function ends.

pthread t pthread self(void)
Returns the thread ID of the calling thread.

int pthread mutex init(pthread mutex t *mutex, const pthread mutexattr t *attr)
Initialize a mutex with specified attributes.

int pthread mutex lock(pthread mutex t *mutex)
Lock a mutex and block until it becomes available.

int pthread mutex trylock(pthread mutex t *mutex)
Try to lock a mutex, but don't block if the mutex is locked by another
thread, including the current thread.

int pthread mutex unlock(pthread mutex t *mutex)
Unlock a mutex.

Tim Wood - The George Washington University

Multi-Threaded Converter

What happens when two clients try to connect to
yYOur CONVersion server?

How can we make it support multiple clients®?
- When do we start threads”? What do they do”

Need help”? Take a look at:

https://github.com/gwAdvNet2015/adv-net-samples/blob/master/threads/server-tcp.c

If you finish earlier, check the Bug in this repo’s Issues

https://github.com/gwAdvNet2015/adv-net-samples/blob/master/threads/server-tcp.c

Multi-Threaded Chat

Let’s look at messager/threaded-server-msg.c

Tim Wood - The George Washington University

Multi-Threaded Chat

Let’s look at messager/threaded-server-msg.c

What if we wanted the server to send all messages it
recelves back to all connected clients”

Tim Wood - The George Washington University

Shared State

The source of all life’s [performance] problems

—Nnsuring consistency is hard and slow
- Locks, condition variables, test and set, compare and swap

What if we could have a single thread do all the work,
but not block all the time?

Tim Wood - The George Washington University

Non-Blocking I/0O

Don't want to wait”? Easy, use non-blocking sockets

#include <fcntl.h>

sockfd = socket (PF_INET, SOCK_STREAM, 0);
fcntl (sockfd, F_SETFL, O NONBLOCK) ;

Once configured, any calls that normally would block

will instead return -1
- accept, recy, read

Now It IS your job to repeatedly check the socket until
it has data ready!

Tim Wood - The George Washington University

Polling

Polling Is the act of repeatedly checking something to
see If It Is ready

/* Set socket to be NON-Blocking */
fcntl (clientfd, F_SETFL, O _NONBLOCK) ;

while (1) {
bytes read = read(clientfd, message, sizeof message);
if (bytes _read > 0) {
/* The socket has data ready */
}
else if(bytes read == 0) {
/* Client closed socket */

break;
}
else {
/* No data is waiting on socket... */
usleep(10000); /* Sleep for 10 millisec */
}

Tim Wood - The George Washington University

Polling Chat Server

LoOK at nonb/nonb-server-msg.c ON master Dranch

Does this use threads or polling? Does it use
blocking or non-blocking 1/O?

IS this efficient”?
Why might you use this”

Polling

What if we don™
able 1o check tr

1s kind of terrible

- want to poll, but we do want to be
e status of several different sockets

f

'om a single thread”

We need a way to ask the OS to tell us when one of
several different sockets has data

- We will block...

- but we will be notified by several different events!

Tim Wood - The George Washington University

Select

The select function is used for Event-driven |/0O
- The benetfits of non-blocking 1/O, but more efficient

int select(int numfds, fd set *readfds, fd set *writefds,
fd set *exceptfds, struct timeval *timeout);

Works with sets of file descriptors

- Sockets, files, stdin, etc
FD SET(int fd, fd _set *set);

Handles events: Add fd to the set.
) reaCL\NTHe’ FD CLR(int fd, fd set *set);
exception Remove fd from the set.

FD ISSET(int fd, fd set *set);
Return true 1if fd is in the set.

FD ZERO(fd set *set);
Clear all entries from the set.

Tim Wood - The George Washington University

Select-Based Chat

Look at nonb/select-server-msg.c Ol master branch
How does it use select?”

How could this be improved”?
- Do it

How does this kind of programming compare to
writing multi-threaded programs®?

Event Driven Programming

Select is used in event-driven programming
- Can be much more efficient than multi-threaded programs.
- Why"?

Multi-threaded programs
- Pros? Cons?

—vent-driven programs
- Pros? Cons?

Tim Wood - The George Washington University

Issue Triage

What will you complete before next class”
- What should we remove”? What should we add?

Project proposals due Sunday 4/5

If you didn’t submit to GENI come up with something!
- POX, Sockets, multi-threading, complex data structures, etc

f you did submit to GENI, congrats!
- You should try to fix the parts that don’t work

Tim Wood - The George Washington University

