
CSCI 6907.11!
!

Adv. Net. Sys. Prog.

Lecture 12 - Network
Programming Paradigms

!
Tim Wood!
CS@GWU!

2015

Tim Wood - The George Washington University

Today
• Warmup: Sockets and Data
• Multi-threading
• Non-blocking I/O
• Event-driven programming

Tim Wood - The George Washington University

Socket Data
• Get today’s code:

- Make a fork of gwAdvNet2015/lec-12-code and clone it
- run: git checkout simple-messager

• Take a look at the code in messager/
- Nothing should be too surprising
- Note that messy socket stuff has been moved to a header file
- Always try to keep your code looking clean!

Tim Wood - The George Washington University

Socket Data
• Write an “America Converter” server

- Clients send a temperature and a length
- Server converts temperature from F to C
- Server converts length from feet and inches to meters
- Client should use scanf() to read in data to be sent
- Server prints to screen and sends back converted values
- Use messager as a base

1 foot = 12 inches
1 meter = 39.370 inches

C = (F-32) * 5/9

If you finish earlier, check the Bug in this repo’s Issues

Tim Wood - The George Washington University

Application Layer Protocols
• This is why we need protocols like HTTP

- Specify exactly what data to expect and in what order
!

• Most application protocols don’t follow a standard
- Just be sure your code or documentation explains the steps!
!

• Sometimes an application supports multiple protocols
- Why?

Tim Wood - The George Washington University

Memcached K-V Store
• Binary Protocol
!

!

!

!

!

• ASCII Protocol
- <command name> <key> <flags> <exptime> <bytes> [noreply]\r\n!

- GET somekey

https://github.com/memcached/memcached/blob/master/doc/protocol.txt

https://code.google.com/p/memcached/wiki/MemcacheBinaryProtocol

https://github.com/memcached/memcached/blob/master/doc/protocol.txt
https://code.google.com/p/memcached/wiki/MemcacheBinaryProtocol

Tim Wood - The George Washington University

Network Apps Multi-Task
• What happens when you call…?

- recv() or read()
- send() or write()
- listen()
- accept()
- bind()
!

• Most servers must do multiple things at once:
- Handle many incoming requests simultaneously

How do we do this?

Tim Wood - The George Washington University

Threads + Blocking I/O
• If a call is blocking, we can run it within a thread so
that other threads can still do useful work!

int pthread_create(pthread_t *thread, !

 const pthread_attr_t *attr, !

 void *(*start_routine)(void *), !

 void *arg)

thread ID

thread attributes
often NULL

function to run in
threadargument to

function

See a sample: https://github.com/gwAdvNet2015/adv-net-samples/blob/master/threads/server-tcp.c

https://github.com/gwAdvNet2015/adv-net-samples/blob/master/threads/server-tcp.c

Tim Wood - The George Washington University

man pthreads
• Other important functions:
int pthread_join(pthread_t thread, void **value_ptr)!
 Wait for the termination of the specified thread, then clear its state.!
!
int pthread_detach(pthread_t thread)!
 Marks a thread for deletion when its function ends.!
!
pthread_t pthread_self(void)!
 Returns the thread ID of the calling thread.!
!
int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)!
 Initialize a mutex with specified attributes.!
!
int pthread_mutex_lock(pthread_mutex_t *mutex)!
 Lock a mutex and block until it becomes available.!
!
int pthread_mutex_trylock(pthread_mutex_t *mutex)!
 Try to lock a mutex, but don't block if the mutex is locked by another !
 thread, including the current thread.!
!
int pthread_mutex_unlock(pthread_mutex_t *mutex)!
 Unlock a mutex.

Tim Wood - The George Washington University

Multi-Threaded Converter
• What happens when two clients try to connect to
your conversion server?
!

• How can we make it support multiple clients?
- When do we start threads? What do they do?
!

• Need help? Take a look at:
https://github.com/gwAdvNet2015/adv-net-samples/blob/master/threads/server-tcp.c

If you finish earlier, check the Bug in this repo’s Issues

https://github.com/gwAdvNet2015/adv-net-samples/blob/master/threads/server-tcp.c

Tim Wood - The George Washington University

Multi-Threaded Chat
• Let’s look at messager/threaded-server-msg.c

Tim Wood - The George Washington University

Multi-Threaded Chat
• Let’s look at messager/threaded-server-msg.c
!

!

• What if we wanted the server to send all messages it
receives back to all connected clients?

Tim Wood - The George Washington University

Shared State
• The source of all life’s [performance] problems
!

• Ensuring consistency is hard and slow
- Locks, condition variables, test and set, compare and swap
!

• What if we could have a single thread do all the work,
but not block all the time?

Tim Wood - The George Washington University

Non-Blocking I/O
• Don’t want to wait? Easy, use non-blocking sockets
!

!

!
!

• Once configured, any calls that normally would block
will instead return -1

- accept, recv, read
• Now it is your job to repeatedly check the socket until
it has data ready!

#include <fcntl.h>!
.!
.!
.!
sockfd = socket(PF_INET, SOCK_STREAM, 0);!
fcntl(sockfd, F_SETFL, O_NONBLOCK);

Tim Wood - The George Washington University

Polling
• Polling is the act of repeatedly checking something to
see if it is ready

/* Set socket to be NON-Blocking */!
fcntl(clientfd, F_SETFL, O_NONBLOCK);!
!
while(1) {!
 bytes_read = read(clientfd, message, sizeof message);!
 if(bytes_read > 0) {!
 /* The socket has data ready */!
 }!
 else if(bytes_read == 0) {!
 /* Client closed socket */!
 break;!
 }!
 else {!
 /* No data is waiting on socket... */!
 usleep(10000); /* Sleep for 10 millisec */!
 }!
}

Tim Wood - The George Washington University

Polling Chat Server
• Look at nonb/nonb-server-msg.c on master branch
•  
Does this use threads or polling? Does it use
blocking or non-blocking I/O?
!

• Is this efficient?
• Why might you use this?

Tim Wood - The George Washington University

Polling is kind of terrible
!

• What if we don’t want to poll, but we do want to be
able to check the status of several different sockets

from a single thread?
!

• We need a way to ask the OS to tell us when one of
several different sockets has data

- We will block…
- but we will be notified by several different events!

Tim Wood - The George Washington University

Select
• The select function is used for Event-driven I/O

- The benefits of non-blocking I/O, but more efficient
!
!

• Works with sets of file descriptors
- Sockets, files, stdin, etc

• Handles events:
- read, write,  

exception

FD_SET(int fd, fd_set *set);!
 Add fd to the set.!
!
FD_CLR(int fd, fd_set *set);!
 Remove fd from the set.!
!
FD_ISSET(int fd, fd_set *set);!
 Return true if fd is in the set.!
!
FD_ZERO(fd_set *set);!
 Clear all entries from the set.

int select(int numfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout);

Tim Wood - The George Washington University

Select-Based Chat
• Look at nonb/select-server-msg.c on master branch
!

• How does it use select?
!

• How could this be improved?
- Do it!
!

• How does this kind of programming compare to
writing multi-threaded programs?

Tim Wood - The George Washington University

Event Driven Programming
• Select is used in event-driven programming

- Can be much more efficient than multi-threaded programs.
- Why?
!

• Multi-threaded programs
- Pros? Cons?
!

• Event-driven programs
- Pros? Cons?
!

• (of course you can also have multi-threaded
programs that are event-driven)

Tim Wood - The George Washington University

Issue Triage
• What will you complete before next class?

- What should we remove? What should we add?

!

• Project proposals due Sunday 4/5
• If you didn’t submit to GENI come up with something!

- POX, Sockets, multi-threading, complex data structures, etc
• If you did submit to GENI, congrats!

- You should try to fix the parts that don’t work

