
CSCI 6907.11!
!

Adv. Net. Sys. Prog.

Lecture 10 - Network Layers
!

Tim Wood!
CS@GWU!

2015

Some content from Kurose and Ross

Tim Wood - The George Washington University

How was using GENI?

Tim Wood - The George Washington University

Class projects?

Tim Wood - The George Washington University

Today
• Layers

- Protocols
- Packets
- Operating Systems
- Sockets
- Applications

Speak up!

Tim Wood - The George Washington University Introduction

Internet protocol stack
❖ application: supporting network

applications
▪ FTP, SMTP, HTTP

❖ transport: process-process data
transfer
▪ TCP, UDP

❖ network: routing of datagrams from
source to destination
▪ IP, routing protocols

❖ link: data transfer between neighboring
network elements
▪ Ethernet, 802.111 (WiFi), PPP

❖ physical: bits “on the wire”
1-60

application

transport

network

link

physical

What do these layers do?
 

Why do we have them?

Tim Wood - The George Washington University Introduction

Internet protocol stack
❖ application: supporting network

applications
▪ FTP, SMTP, HTTP

❖ transport: process-process data
transfer
▪ TCP, UDP

❖ network: routing of datagrams from
source to destination
▪ IP, routing protocols

❖ link: data transfer between neighboring
network elements
▪ Ethernet, 802.111 (WiFi), PPP

❖ physical: bits “on the wire”
1-60

application

transport

network

link

physical

Tim Wood - The George Washington University

Ethernet Frame
• Preamble
• Src/Dest MAC
• Length
• Payload
• CRC
• Interpacket gap

32 bits

Payload…
(46-1500 bytes)

10101010

MAC Dest (6 bytes)

10101010 10101010 10101010

10101010 10101010 10101010 10101011

MAC Src (6 bytes)

Ethertype/Length

Frame CRC

What’s with the preamble?

Tim Wood - The George Washington University Network Layer4-34

ver length

32 bits

data
(variable length,
typically a TCP

or UDP segment)

16-bit identifier

header
 checksum

time to
live

32 bit source IP address

head.
len

type of
service

flgs
fragment
 offset

protocol

32 bit destination IP address

options (if any)

IP datagram format
• Network layer

- Determines routing through
the network

• Source and destination
- IP address

• Protocol field specifies the
next type of header

Why do we use IPs? Why not
just use MAC addresses?

Tim Wood - The George Washington University

TCP and UDP
source port # dest port #

application
data
(variable length)

sequence number
acknowledgement number

receive window

Urg data pointerchecksum
FSRPAUhead

len
not
used

options (variable length)

source port # dest port #

application
data
(payload)

UDP format

length checksum

TCP format

Why have both UDP and
TCP?

Tim Wood - The George Washington University

What’s it all look like
together?

Tim Wood - The George Washington University

Packet Path

application

transport

network

link

physical

Awesome  
OS 
Stuff

App sockets

Recv Send

HW

Tim Wood - The George Washington University

Linux Network Stack

Tim Wood - The George Washington University

Receiving a Packet
• NIC registers an interrupt handler
with the OS

- Handler is called when packet arrives
- Packet is copied into kernel memory

• Handler uses an sk_buff to refer
to the packet

• Calls ip_recv()
- processes IP header
- Determines if packet is local or to be

forwarded

Tim Wood - The George Washington University

Receiving a Packet
• Determine packet’s transport
protocol

- UDP, TCP, etc
• Match the UDP/TCP packet to
the correct socket

- Use destination port number
• Hold onto the packet

- until sometime later…
• User app calls recv()

- Kernel calls copy_to_user()
• Data is available to application

Tim Wood - The George Washington University

How do we send a packet
from a socket?

Tim Wood - The George Washington University

Send a packet
• Open a socket

- ARP lookup for IP
• Send library call

- write system call
- copy to buffer in kernel

• Transport layer:
- Fill in TCP/UDP header

• Network layer:
- Route lookup, fill in IP

• Link layer:
- MAC lookup

• Packet prep and DMA

navigating through buffer chains often exceeds that of
linearizing their content, even when producers do indeed
generate fragmented packets (e.g. TCP when prepending
headers to data from the socket buffers).

Raw packet I/O: The standard APIs to read/write raw
packets for user programs require at least one memory
copy to move data and metadata between kernel and user
space, and one system call per packet (or, in the best
cases, per batch of packets). Typical approaches involve
opening a socket or a Berkeley Packet Filter [14] device,
and doing I/O through it using send()/recv() or spe-
cialized ioctl() functions.

2.3 Case study: FreeBSD sendto()

To evaluate how time is spent in the processing of a
packet, we have instrumented the sendto() system call
in FreeBSD2 so that we can force an early return from
the system call at different depths, and estimate the time
spent in the various layers of the network stack. Figure 2
shows the results when a test program loops around a
sendto() on a bound UDP socket. In the table, “time”
is the average time per packet when the return point is at
the beginning of the function listed on the row; “delta” is
the difference between adjacent rows, and indicates the
time spent at each stage of the processing chain. As an
example, the userspace code takes 8 ns per iteration, en-
tering the kernel consumes an extra 96 ns, and so on.

As we can see, we find several functions at all levels
in the stack consuming a significant share of the total ex-
ecution time. Any network I/O (be it through a TCP or
raw socket, or a BPF writer) has to go through several
expensive layers. Of course we cannot avoid the system
call; the initial mbuf construction/data copy is expensive,
and so are the route and header setup, and (surprisingly)
the MAC header setup. Finally, it takes a long time to
translate mbufs and metadata into the NIC format. Lo-
cal optimizations (e.g. caching routes and headers in-
stead of rebuilding them every time) can give modest im-
provements, but we need radical changes at all layers to
gain the tenfold speedup necessary to work at line rate
on 10 Gbit/s interfaces.

What we show in this paper is how fast can we become
if we take such a radical approach, while still enforcing
safety checks on user supplied data through a system call,
and providing a libpcap-compatible API.

3 Related (and unrelated) work

It is useful at this point to present some techniques pro-
posed in the literature, or used in commercial systems, to

2We expect similar numbers on Linux and Windows.

File Function/description time delta

ns ns

user program sendto 8 96

system call

uipc syscalls.c sys sendto 104

uipc syscalls.c sendit 111

uipc syscalls.c kern sendit 118

uipc socket.c sosend —

uipc socket.c sosend dgram 146 137

sockbuf locking, mbuf

allocation, copyin

udp usrreq.c udp send 273

udp usrreq.c udp output 273 57

ip output.c ip output 330 198

route lookup, ip header

setup

if ethersubr.c ether output 528 162

MAC header lookup and

copy, loopback

if ethersubr.c ether output frame 690

ixgbe.c ixgbe mq start 698

ixgbe.c ixgbe mq start locked 720

ixgbe.c ixgbe xmit 730 220

mbuf mangling, device

programming

– on wire 950

Figure 2: The path and execution times for sendto() on
a recent FreeBSD HEAD 64-bit, i7-870 at 2.93 GHz +
Turboboost, Intel 10 Gbit NIC and ixgbe driver. Mea-
surements done with a single process issuing sendto()
calls. Values have a 5% tolerance and are averaged over
multiple 5s tests.

improve packet processing speeds. This will be instru-
mental in understanding their advantages and limitations,
and to show how our framework can use them.

Socket APIs: The Berkeley Packet Filter, or BPF [14],
is one of the most popular systems for direct access to
raw packet data. BPF taps into the data path of a net-
work device driver, and dispatches a copy of each sent or
received packet to a file descriptor, from which userspace
processes can read or write. Linux has a similar mech-
anism through the AF PACKET socket family. BPF can
coexist with regular traffic from/to the system, although
usually BPF clients put the card in promiscuous mode,
causing large amounts of traffic to be delivered to the
host stack (and immediately dropped).

Packet filter hooks: Netgraph (FreeBSD), Netfil-
ter (Linux), and Ndis Miniport drivers (Windows) are
in-kernel mechanisms used when packet duplication is
not necessary, and instead the application (e.g. a fire-
wall) must be interposed in the packet processing chain.
These hooks intercept traffic from/to the driver and pass

3

source: netmap @ Usenix ATC 12

Tim Wood - The George Washington University

What happens once it
reaches the socket and

beyond?

Consider a web server, for example…

Tim Wood - The George Washington University

Layering…

application

transport

network

link

physical

Tim Wood - The George Washington University

More layering!
application

logic	

request
parser	

socket

transport

network

link

physical

Tim Wood - The George Washington University

Back to work!
• We have lots of issues

- Bugs on prior assignments
- POX SDN examples

• Check for bugs on your prior work
• Pick at least one SDN issue to solve

!

• Use good git habits!
- Branch per issue
- Clean push requests
- Follow formatting guides!

