
CSCI 6907.11!
!

Adv. Net. Sys. Prog.

Lecture 1
!

Tim Wood!
CS@GWU!

2015

Tim Wood - The George Washington University

What is this course about?

Cat videos.com

???

this

Tim Wood - The George Washington University

Software Based Networks
• SDN: Centralized network
control plane

- Software rules make
decisions for how messages
are routed

• NFV: Software data plane
- Software replaces hardware

switches/routers
- Can perform complex

processing on individual
network flows

Cat videos.com

Cache

transcoder

Tim Wood - The George Washington University

Course Overview
• Professor: Tim Wood
• Class Time: Mondays 1-3:30PM SEH 1450

!

• More of a “lab” than a “lecture”
!

• Come prepared to code!
!

• Prerequisites:
- Advanced OS course for grads
- Gabe’s OS course for undergrads

Tim Wood - The George Washington University

Ground Rules
• No laptops during lecture segments

- I promise they won’t be too long (except maybe today)
• Be respectful and responsible

- Some students have to come late, leave early—do it quietly!
- It is your responsibility to find out what you miss

• Team coding is fine for team projects
- But not for individual assignments (rare and clearly marked)

• Be active in class
- If you aren’t asking at least three questions per class you are

wasting your own time

Tim Wood - The George Washington University

Today
• What are networks?
!

• What are the key network abstractions?
!

• What are protocols?

Tim Wood - The George Washington University

March 9th
• GW is running a competition to build network service
apps on top of GENI
!

• $10,000 in prize money given out to top 3 projects!
!

• Monday Jan 26th we will have GENI tutorial
!

• Win!

Tim Wood - The George Washington University

How the Web Works

Browser

Packet

I want google.com/index.html

Router

Router

Router

IP Network

P

P

PP

Router

Packet

Web Server
I want google.com/index.html

http://google.com/index.html
http://google.com/index.html

Tim Wood - The George Washington University

How the Web Works

Browser

Display page

Router

Router

Router

IP Network

P

P

PP

Router

P

Web Server
Send index.html

P P
P P P

Tim Wood - The George Washington University

Traveling the Interwebs
• Writes to a socket are split into packets

- Fixed size chunk of data (about 1KB)
- Some messages fit in one packet, others require many

!
• Packets use routers to traverse the network

- Packet contains header information including the IP address and
port it is destined for

- Router directs the packet to the next "hop"
!

• All of this is magically taken care of for you by the
operating system / network drivers

- Your code doesn't need to deal with low level networking
- (Unless you are in this course)

How?

Introduction1-1

A note…

Computer
Networking: A Top
Down Approach  
6th edition  
Jim Kurose, Keith Ross 
Addison-Wesley 
March 2012

Slides that look like this come from:

!
 This material copyright 1996-2012
 J.F Kurose and K.W. Ross, All Rights Reserved

Introduction

What’s the Internet: “nuts and bolts” view

❖ millions of connected computing
devices:
▪ hosts = end systems
▪ running network apps

❖ communication links
▪ fiber, copper, radio, satellite
▪ transmission rate: bandwidth

❖ Packet switches: forward packets (chunks
of data)
▪ routers and switches

wired
links

wireless
links

router

mobile network

global ISP

regional ISP

home
network

institutional
 network

smartphone

PC

server

wireless
laptop

1-4

What’s the Internet: a service view

❖ Infrastructure that provides
services to applications:
▪ Web, VoIP, email, games, e-

commerce, social nets, …
❖ provides programming

interface to apps
▪ hooks that allow sending and

receiving app programs to
“connect” to Internet

▪ provides service options,
analogous to postal service

mobile network

global ISP

regional ISP

home
network

institutional
 network

Introduction1-7

Internet structure: network of networks

Question: given millions of access ISPs, how to connect them
together?

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
netaccess

net

access
net

…

…
……

…

…

Internet structure: network of networks

Option: connect each access ISP to every other access ISP?

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
netaccess

net

access
net

…

…
……

…

…

…

…

…
…

…

connecting each access ISP to each other
directly doesn’t scale: O(N2) connections.

Internet structure: network of networks

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
netaccess

net

access
net

…

…
……

…

…

Option: connect each access ISP to a global transit ISP? Customer and provider ISPs have economic
agreement.

global  
ISP

Internet structure: network of networks

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
netaccess

net

access
net

…

…
……

…

…

But if one global ISP is viable business, there will be competitors ….

ISP B

ISP A

ISP C

Internet structure: network of networks

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
netaccess

net

access
net

…

…
……

…

…

But if one global ISP is viable business, there will be competitors …. which must be
interconnected

ISP B

ISP A

ISP C

IXP

IXP

peering link

Internet exchange point

Internet structure: network of networks

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
netaccess

net

access
net

…

…
……

…

…

… and regional networks may arise to connect access nets to ISPS

ISP B

ISP A

ISP C

IXP

IXP

regional net

Internet structure: network of networks

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
netaccess

net

access
net

…

…
……

…

…

… and content provider networks (e.g., Google, Microsoft, Akamai) may run their own
network, to bring services, content close to end users

ISP B

ISP A

ISP B

IXP

IXP

regional net

Content provider network

Introduction

Internet structure: network of networks

❖ at center: small # of well-connected large networks
▪ “tier-1” commercial ISPs (e.g., Level 3, Sprint, AT&T, NTT), national &

international coverage
▪ content provider network (e.g, Google): private network that connects it

data centers to Internet, often bypassing tier-1, regional ISPs
1-40

access
ISP

access
ISP

access
ISP

access
ISP

access
ISP

access
ISP

access
ISP

access
ISP

Regional ISP Regional ISP

IXP IXP

Tier 1 ISP Tier 1 ISP Google

IXP

Tim Wood - The George Washington University

Networks of Networks
• This is looking really complicated.
!

!

!

!

!

!

• How do we deal with complexity  
in computer science?

We use an abstraction
layer!

!

Or better yet, 5-7 layers!

Introduction

Internet protocol stack

❖ application: supporting network
applications
▪ FTP, SMTP, HTTP

❖ transport: process-process data
transfer
▪ TCP, UDP

❖ network: routing of datagrams from
source to destination
▪ IP, routing protocols

❖ link: data transfer between
neighboring network elements
▪ Ethernet, 802.111 (WiFi), PPP

❖ physical: bits “on the wire”

application
!

transport
!

network
!

link
!

physical

1-60(Full OSI model has 7 layers, 2 don’t matter)

Tim Wood - The George Washington University

Application Layer
• Let’s try to reverse engineer HTTP!

- Hypertext Transfer Protocol (that means web sites if you weren’t
alive in the 90s)

!
- man will open the manual for anything
- tcpdump is a packet monitoring tool
- ping can give you the IP for a domain name
- wget will download a single html file (no JS, images, etc)

• Try to cleanly intercept an HTTP request and
response for a simple website like

• http://faculty.cs.gwu.edu/~timwood/simple.html

Or you could read: http://www.w3.org/Protocols/HTTP/1.0/spec.html

http://faculty.cs.gwu.edu/~timwood/simple.html
http://www.w3.org/Protocols/HTTP/1.0/spec.html

Tim Wood - The George Washington University

HTTP Basics
• HTTP is the protocol used for web sites

- Text based, request-response scheme
!

• When a web browser opens a page it sends:
!
!
!
!
!

• Sent as a plain text string
- Browser can add optional information about who is making the

request before the blank line

GET /somedir/somepage.html HTTP/1.0!
<empty>

Blank line indicates
end of request

Tim Wood - The George Washington University

HTTP Reply
• The server responds to a GET request with:

!
!
!
!
!
!
!
!
!
!

• Usually works even if  
you leave out the header info

HTTP/1.0 200 OK!
Date: Fri, 31 Dec 1999 23:59:59 GMT!
Content-Type: text/html!
Content-Length: 1354!
!
<html><body>!
... content of page ...!
</body></html>

Header information
followed by an

empty line, then
the requested

content

Tim Wood - The George Washington University

Web Protocol
Browser Web Server

GET / HTTP/1.0!
<blank>

HTTP/1.0 200 OK!
<blank>!

<page content>

Server closes socket!
Browser closes socket

Ti
m

e

Open socket connection

Ti
m

e

Tim Wood - The George Washington University

Simple Web Server
• A web server supports several types of requests
• GET /path/file.html HTTP/1.0

- Return the specified file
!

• HEAD /path/file.html HTTP/1.0
- Return header data about the file: modified date, file size, etc
!

• POST /path/file.html HTTP/1.0
- The client also sends form data before the blank line
- The server uses the data for some kind of processing, then

returns a result page

actually, most use
HTTP/1.1 which

is similar

Tim Wood - The George Washington University

The Simplest Browser
!

• Who needs Firefox/Chrome/Safari/
Netscape/Opera/Mosiac/Internet

Explorer?!
• You’ve got telnet!

telnet www.cs.gwu.edu 80 !
GET / HTTP/1.0!
<empty>

Application Layer2-10

Sockets
❖ process sends/receives messages to/from its socket
❖ socket analogous to door
▪ sending process shoves message out door
▪ sending process relies on transport infrastructure on other

side of door to deliver message to socket at receiving
process

Internet

controlled
by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

processsocket

Transport Layer3-6

Internet transport-layer protocols
❖ reliable, in-order delivery

(TCP)
▪ congestion control
▪ flow control
▪ connection setup

❖ unreliable, unordered
delivery: UDP
▪ no-frills extension of

“best-effort” IP
❖ services not available:
▪ delay guarantees
▪ bandwidth guarantees

application
transport
network
data link
physical

application
transport
network
data link
physical

!
network
data link
physical !

network
data link
physical

!
network
data link
physical

!
network
data link
physical !

network
data link
physical!

network
data link
physical !

network
data link
physical

logical end-end transport

Transport Layer3-16

UDP: User Datagram Protocol [RFC 768]

❖ “no frills,” “bare bones”
Internet transport protocol

❖ “best effort” service, UDP
segments may be:
▪ lost
▪ delivered out-of-order to

app
❖ connectionless:
▪ no handshaking between

UDP sender, receiver
▪ each UDP segment

handled independently of
others

❖ UDP use:
▪ streaming multimedia apps

(loss tolerant, rate
sensitive)

▪ DNS
▪ SNMP

❖ reliable transfer over
UDP:
▪ add reliability at

application layer
▪ application-specific error

recovery!

Transport Layer3-17

UDP: segment header

source port # dest port #

32 bits

application
data
(payload)

UDP segment format

length checksum

length, in bytes of UDP
segment, including header

❖ no connection
establishment (which can
add delay)

❖ simple: no connection state
at sender, receiver

❖ small header size
❖ no congestion control:

UDP can blast away as fast
as desired

why is there a UDP?

Transport Layer3-57

TCP: Overview RFCs: 793,1122,1323, 2018, 2581

❖ full duplex data:
▪ bi-directional data flow in

same connection
▪ MSS: maximum segment

size
❖ connection-oriented:
▪ handshaking (exchange of

control msgs) inits sender,
receiver state before data
exchange

❖ flow controlled:
▪ sender will not

overwhelm receiver

❖ point-to-point:
▪ one sender, one receiver

❖ reliable, in-order byte
steam:
▪ no “message boundaries”

❖ pipelined:
▪ TCP congestion and flow

control set window size

Transport Layer3-58

TCP segment structure

source port # dest port #

32 bits

application
data
(variable length)

sequence number
acknowledgement number

receive window

Urg data pointerchecksum
FSRPAUhead

len
not
used

options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

Tim Wood - The George Washington University

TCP vs UDP
source port # dest port #

application
data
(variable length)

sequence number
acknowledgement number

receive window

Urg data pointerchecksum
FSRPAUhead

len
not
used

options (variable length)

source port # dest port #

application
data
(payload)

UDP format

length checksum

TCP format

Tim Wood - The George Washington University

Network Programming
• Server

- Creates a socket
- Binds socket
- Listens for new

connections
- Loop forever:

- Accepts client as new
temp socket

- Receives client
requests

- Sends response
- …
- Closes temp socket

• Client
- Creates a socket
- Connects to server
- Sends request
- Receives response
- …
- Closes socket

Socket is created as UDP or TCP
— hides all those details from

application!
(UDP could skip connect steps)

Tim Wood - The George Washington University

Checkout the code!
• Let’s look at (and write) some real code
!

• Go to: https://github.com/gwAdvNet2015/
- go to the adv-net-samples repository

• Fork the repository to your account (top right button)
• Clone your fork onto your laptop or koding.com

- git clone https://github.com/USER/adv-net-samples.git
• Setup upstream repository

- git remote add upstream https://github.com/gwAdvNet2015/adv-net-
samples.git

https://github.com/gwAdvNet2015/
https://github.com/gwAdvNet2015/adv-net-samples.git

