-
Notifications
You must be signed in to change notification settings - Fork 3.9k
/
TextRNN.py
82 lines (64 loc) · 2.86 KB
/
TextRNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# %%
# code by Tae Hwan Jung @graykode
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
def make_batch():
input_batch = []
target_batch = []
for sen in sentences:
word = sen.split() # space tokenizer
input = [word_dict[n] for n in word[:-1]] # create (1~n-1) as input
target = word_dict[word[-1]] # create (n) as target, We usually call this 'casual language model'
input_batch.append(np.eye(n_class)[input])
target_batch.append(target)
return input_batch, target_batch
class TextRNN(nn.Module):
def __init__(self):
super(TextRNN, self).__init__()
self.rnn = nn.RNN(input_size=n_class, hidden_size=n_hidden)
self.W = nn.Linear(n_hidden, n_class, bias=False)
self.b = nn.Parameter(torch.ones([n_class]))
def forward(self, hidden, X):
X = X.transpose(0, 1) # X : [n_step, batch_size, n_class]
outputs, hidden = self.rnn(X, hidden)
# outputs : [n_step, batch_size, num_directions(=1) * n_hidden]
# hidden : [num_layers(=1) * num_directions(=1), batch_size, n_hidden]
outputs = outputs[-1] # [batch_size, num_directions(=1) * n_hidden]
model = self.W(outputs) + self.b # model : [batch_size, n_class]
return model
if __name__ == '__main__':
n_step = 2 # number of cells(= number of Step)
n_hidden = 5 # number of hidden units in one cell
sentences = ["i like dog", "i love coffee", "i hate milk"]
word_list = " ".join(sentences).split()
word_list = list(set(word_list))
word_dict = {w: i for i, w in enumerate(word_list)}
number_dict = {i: w for i, w in enumerate(word_list)}
n_class = len(word_dict)
batch_size = len(sentences)
model = TextRNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
input_batch, target_batch = make_batch()
input_batch = torch.FloatTensor(input_batch)
target_batch = torch.LongTensor(target_batch)
# Training
for epoch in range(5000):
optimizer.zero_grad()
# hidden : [num_layers * num_directions, batch, hidden_size]
hidden = torch.zeros(1, batch_size, n_hidden)
# input_batch : [batch_size, n_step, n_class]
output = model(hidden, input_batch)
# output : [batch_size, n_class], target_batch : [batch_size] (LongTensor, not one-hot)
loss = criterion(output, target_batch)
if (epoch + 1) % 1000 == 0:
print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))
loss.backward()
optimizer.step()
input = [sen.split()[:2] for sen in sentences]
# Predict
hidden = torch.zeros(1, batch_size, n_hidden)
predict = model(hidden, input_batch).data.max(1, keepdim=True)[1]
print([sen.split()[:2] for sen in sentences], '->', [number_dict[n.item()] for n in predict.squeeze()])