Releases: gradsflow/gradsflow-automl
Releases Β· gradsflow/gradsflow-automl
Gradsflow + Ray Tune integration
- migrate to ray_tune π. Read more here. PR #36 by @aniketmaurya.
- render jupyter notebooks in documentation. PR #38 by @aniketmaurya.
$ pip install -U gradsflow==0.0.3a2
π Read more on documentation
0.0.3a1
0.0.3a1
- add optuna visualizations π¨ . PR #27 by @aniketmaurya.
- add max_steps for HPO. PR #25 by @aniketmaurya.
- π update docs & license. PR #23 by @aniketmaurya.
- fetch best trial model. PR #21 by @aniketmaurya.
0.0.2
- fetch best trial model. PR #21 by @aniketmaurya.
First stable Release ππβ¨
Release Notes
0.0.1
- This changed: π update example and documentation. Done by aniketmaurya. Check the Pull Request 20 with the changes and stuff. now back to code. π€\n
- This changed: πβ¨ First Release - v0.0.1 - Refactor API & tested Python 3.7+. Done by aniketmaurya. Check the Pull Request 18 with the changes and stuff. now back to code. π€
- This changed: Adding example notebook for AutoSummarization. Done by the GitHub user gagan3012. Check the Pull Request 19 with the changes and stuff. now back to code. π€
- This changed: Adding text summarisation. Done by the GitHub user gagan3012. Check the Pull Request 14 with the changes and stuff. now back to code. π€
- This changed: add codecov CI. Done by the GitHub user aniketmaurya. Check the Pull Request 15 with the changes and stuff. now back to code. π€
- This changed: π update documentation - added citation, acknowledgments, docstrings automation. Done by the GitHub user aniketmaurya. Check the Pull Request 13 with the changes and stuff. now back to code. π€
- Refactor API Design, CI & Docs PR #10 by @aniketmaurya.
- auto docstring. PR #7 by @aniketmaurya.
- Add AutoImageClassifier. PR #1 by @aniketmaurya.
What is Gradsflow?
Gradsflow is based on Optuna and PyTorch Lightning β‘οΈ. It leverages PyTorch Lightning Flash so that you don't have to write any PyTorch or Optuna code for model building or hyperparameter tuning π
Although you might want to train a custom model and search hyperparameters, You can easily integrate any PyTorch/Lightning Flash Model with Gradsflow AutoModel β¨
gradsflow.core
: Core defines the building blocks of AutoML tasks.
gradsflow.taskauto
: AutoTasks defines different ML/DL tasks which is provided by Gradsflow AutoML API.
Image classification example
from flash.core.data.utils import download_data
from flash.image import ImageClassificationData
from gradsflow import AutoImageClassifier
# 1. Create the DataModule
download_data("https://pl-flash-data.s3.amazonaws.com/hymenoptera_data.zip", "./data")
datamodule = ImageClassificationData.from_folders(
train_folder="data/hymenoptera_data/train/",
val_folder="data/hymenoptera_data/val/",
)
suggested_conf = dict(
optimizers=["adam", "sgd"],
lr=(5e-4, 1e-3),
)
model = AutoImageClassifier(datamodule,
suggested_conf=suggested_conf,
max_epochs=10,
optimization_metric="val_accuracy",
timeout=300)
model.hp_tune()
An AutoML Library made with Optuna and PyTorch Lightning
Refactoring and bug fixes
π AutoClassification
- Added AutoImageClassification
- Added AutoTextClassification
Example
model = AutoImageClassifier(datamodule,
suggested_backbones=['ssl_resnet18'],
suggested_conf=suggested_conf,
max_epochs=1,
optimization_metric="val_accuracy",
timeout=30)
print("AutoImageClassifier initialised!")
model.hp_tune()