Skip to content

Releases: gradsflow/gradsflow-automl

Gradsflow + Ray Tune integration

29 Aug 11:23
cd520d1
Compare
Choose a tag to compare
Pre-release

$ pip install -U gradsflow==0.0.3a2

πŸ“ Read more on documentation

0.0.3a1

26 Aug 17:37
Compare
Choose a tag to compare
0.0.3a1 Pre-release
Pre-release

0.0.3a1

0.0.2

26 Aug 04:52
Compare
Choose a tag to compare

First stable Release πŸŽ‰πŸš€βœ¨

25 Aug 18:40
Compare
Choose a tag to compare

Release Notes

0.0.1

What is Gradsflow?

Gradsflow is based on Optuna and PyTorch Lightning ⚑️. It leverages PyTorch Lightning Flash so that you don't have to write any PyTorch or Optuna code for model building or hyperparameter tuning πŸš€

Although you might want to train a custom model and search hyperparameters, You can easily integrate any PyTorch/Lightning Flash Model with Gradsflow AutoModel ✨

gradsflow.core: Core defines the building blocks of AutoML tasks.

gradsflow.taskauto: AutoTasks defines different ML/DL tasks which is provided by Gradsflow AutoML API.

Image classification example

    from flash.core.data.utils import download_data
    from flash.image import ImageClassificationData

    from gradsflow import AutoImageClassifier

    # 1. Create the DataModule
    download_data("https://pl-flash-data.s3.amazonaws.com/hymenoptera_data.zip", "./data")

    datamodule = ImageClassificationData.from_folders(
        train_folder="data/hymenoptera_data/train/",
        val_folder="data/hymenoptera_data/val/",
    )

    suggested_conf = dict(
        optimizers=["adam", "sgd"],
        lr=(5e-4, 1e-3),
    )
    model = AutoImageClassifier(datamodule,
                                suggested_conf=suggested_conf,
                                max_epochs=10,
                                optimization_metric="val_accuracy",
                                timeout=300)
    model.hp_tune()

An AutoML Library made with Optuna and PyTorch Lightning

24 Aug 14:44
Compare
Choose a tag to compare

Refactoring and bug fixes

πŸŽ‰ AutoClassification

22 Aug 14:07
Compare
Choose a tag to compare
Pre-release
  • Added AutoImageClassification
  • Added AutoTextClassification

Example

model = AutoImageClassifier(datamodule,
                            suggested_backbones=['ssl_resnet18'],
                            suggested_conf=suggested_conf,
                            max_epochs=1,
                            optimization_metric="val_accuracy",
                            timeout=30)

print("AutoImageClassifier initialised!")
model.hp_tune()