Skip to content

Latest commit

 

History

History
53 lines (31 loc) · 1.39 KB

README.md

File metadata and controls

53 lines (31 loc) · 1.39 KB

adaptive_agent

This repository implements stable_baselines training on the environment gym_novel_gridworlds

Installation

Conda environment

conda create --name <env> --file requirements.txt

conda activate <env>

RL-agent

Train & Evaluate

Base script

python train.py -E <name-of-env> -N <novelty-name> -D <novelty-difficulty> -N1 <novelty-arg1> -N2 <novelty-arg2> -I <timestep-to-inject-novelty> -T <number-of-tests> -M <number-of-models-to-save>

Breakincrease novelty

python train.py -N breakincrease -N1 stick

Remap action novelty

python train.py -N remapaction

firewall novelty

python train.py -N firewall

Plot

python plot_results.py


Planning agent

PDDLS

PDDL files for all the environments are found here

CSVs

CSV files from the planning architecture used for evaluations in the paper are found here