-
Notifications
You must be signed in to change notification settings - Fork 24
/
main.py
212 lines (193 loc) · 9.34 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
from rdkit import Chem
from copy import deepcopy
import numpy as np
from private import *
from grammar_generation import *
from agent import Agent
import torch.optim as optim
import torch.multiprocessing as mp
import logging
import torch
import math
import os
import time
import pprint
import pickle
import argparse
import fcntl
from retro_star_listener import lock
def evaluate(grammar, args, metrics=['diversity', 'syn']):
# Metric evalution for the given gramamr
div = InternalDiversity()
eval_metrics = {}
generated_samples = []
generated_samples_canonical_sml = []
iter_num_list = []
idx = 0
no_newly_generated_iter = 0
print("Start grammar evaluation...")
while(True):
print("Generating sample {}/{}".format(idx, args.num_generated_samples))
mol, iter_num = random_produce(grammar)
if mol is None:
no_newly_generated_iter += 1
continue
can_sml_mol = Chem.CanonSmiles(Chem.MolToSmiles(mol))
if can_sml_mol not in generated_samples_canonical_sml:
generated_samples.append(mol)
generated_samples_canonical_sml.append(can_sml_mol)
iter_num_list.append(iter_num)
idx += 1
no_newly_generated_iter = 0
else:
no_newly_generated_iter += 1
if idx >= args.num_generated_samples or no_newly_generated_iter > 10:
break
for _metric in metrics:
assert _metric in ['diversity', 'num_rules', 'num_samples', 'syn']
if _metric == 'diversity':
diversity = div.get_diversity(generated_samples)
eval_metrics[_metric] = diversity
elif _metric == 'num_rules':
eval_metrics[_metric] = grammar.num_prod_rule
elif _metric == 'num_samples':
eval_metrics[_metric] = idx
elif _metric == 'syn':
eval_metrics[_metric] = retro_sender(generated_samples, args)
else:
raise NotImplementedError
return eval_metrics
def retro_sender(generated_samples, args):
# File communication to obtain retro-synthesis rate
with open(args.receiver_file, 'w') as fw:
fw.write('')
while(True):
with open(args.sender_file, 'r') as fr:
editable = lock(fr)
if editable:
with open(args.sender_file, 'w') as fw:
for sample in generated_samples:
fw.write('{}\n'.format(Chem.MolToSmiles(sample)))
break
fcntl.flock(fr, fcntl.LOCK_UN)
num_samples = len(generated_samples)
print("Waiting for retro_star evaluation...")
while(True):
with open(args.receiver_file, 'r') as fr:
editable = lock(fr)
if editable:
syn_status = []
lines = fr.readlines()
if len(lines) == num_samples:
for idx, line in enumerate(lines):
splitted_line = line.strip().split()
syn_status.append((idx, splitted_line[2]))
break
fcntl.flock(fr, fcntl.LOCK_UN)
time.sleep(1)
assert len(generated_samples) == len(syn_status)
return np.mean([int(eval(s[1])) for s in syn_status])
def learn(smiles_list, args):
# Create logger
save_log_path = 'log-num_generated_samples{}-{}'.format(args.num_generated_samples, time.strftime("%Y%m%d-%H%M%S"))
create_exp_dir(save_log_path, scripts_to_save=[f for f in os.listdir('./') if f.endswith('.py')])
logger = create_logger('global_logger', save_log_path + '/log.txt')
logger.info('args:{}'.format(pprint.pformat(args)))
logger = logging.getLogger('global_logger')
# Initialize dataset & potential function (agent) & optimizer
subgraph_set_init, input_graphs_dict_init = data_processing(smiles_list, args.GNN_model_path, args.motif)
agent = Agent(feat_dim=300, hidden_size=args.hidden_size)
if args.resume:
assert os.path.exists(args.resume_path), "Please provide valid path for resuming."
ckpt = torch.load(args.resume_path)
agent.load_state_dict(ckpt)
optimizer = optim.Adam(agent.parameters(), lr=args.learning_rate)
# Start training
logger.info('starting\n')
curr_max_R = 0
for train_epoch in range(args.max_epoches):
returns = []
log_returns = []
logger.info("<<<<< Epoch {}/{} >>>>>>".format(train_epoch, args.max_epoches))
# MCMC sampling
for num in range(args.MCMC_size):
grammar_init = ProductionRuleCorpus()
l_input_graphs_dict = deepcopy(input_graphs_dict_init)
l_subgraph_set = deepcopy(subgraph_set_init)
l_grammar = deepcopy(grammar_init)
iter_num, l_grammar, l_input_graphs_dict = MCMC_sampling(agent, l_input_graphs_dict, l_subgraph_set, l_grammar, num, args)
# Grammar evaluation
eval_metric = evaluate(l_grammar, args, metrics=['diversity', 'syn'])
logger.info("eval_metrics: {}".format(eval_metric))
# Record metrics
R = eval_metric['diversity'] + 2 * eval_metric['syn']
R_ind = R.copy()
returns.append(R)
log_returns.append(eval_metric)
logger.info("======Sample {} returns {}=======:".format(num, R_ind))
# Save ckpt
if R_ind > curr_max_R:
torch.save(agent.state_dict(), os.path.join(save_log_path, 'epoch_agent_{}_{}.pkl'.format(train_epoch, R_ind)))
with open('{}/epoch_grammar_{}_{}.pkl'.format(save_log_path, train_epoch, R_ind), 'wb') as outp:
pickle.dump(l_grammar, outp, pickle.HIGHEST_PROTOCOL)
with open('{}/epoch_input_graphs_{}_{}.pkl'.format(save_log_path, train_epoch, R_ind), 'wb') as outp:
pickle.dump(l_input_graphs_dict, outp, pickle.HIGHEST_PROTOCOL)
curr_max_R = R_ind
# Calculate loss
returns = torch.tensor(returns)
returns = (returns - returns.mean()) # / (returns.std() + eps)
assert len(returns) == len(list(agent.saved_log_probs.keys()))
policy_loss = torch.tensor([0.])
for sample_number in agent.saved_log_probs.keys():
max_iter_num = max(list(agent.saved_log_probs[sample_number].keys()))
for iter_num_key in agent.saved_log_probs[sample_number].keys():
log_probs = agent.saved_log_probs[sample_number][iter_num_key]
for log_prob in log_probs:
policy_loss += (-log_prob * args.gammar ** (max_iter_num - iter_num_key) * returns[sample_number]).sum()
# Back Propogation and update
optimizer.zero_grad()
policy_loss.backward()
optimizer.step()
agent.saved_log_probs.clear()
# Log
logger.info("Loss: {}".format(policy_loss.clone().item()))
eval_metrics = {}
for r in log_returns:
for _key in r.keys():
if _key not in eval_metrics:
eval_metrics[_key] = []
eval_metrics[_key].append(r[_key])
mean_evaluation_metrics = ["{}: {}".format(_key, np.mean(eval_metrics[_key])) for _key in eval_metrics]
logger.info("Mean evaluation metrics: {}".format(', '.join(mean_evaluation_metrics)))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='MCMC training')
parser.add_argument('--training_data', type=str, default="./datasets/isocyanates.txt", help="file name of the training data")
parser.add_argument('--GNN_model_path', type=str, default="./GCN/model_gin/supervised_contextpred.pth", help="file name of the pretrained GNN model")
parser.add_argument('--hidden_size', type=int, default=128, help="hidden size of the potential function")
parser.add_argument('--max_epoches', type=int, default=50, help="maximal training epoches")
parser.add_argument('--num_generated_samples', type=int, default=100, help="number of generated samples to evaluate grammar")
parser.add_argument('--MCMC_size', type=int, default=5, help="sample number of each step of MCMC")
parser.add_argument('--learning_rate', type=int, default=1e-2, help="learning rate")
parser.add_argument('--gammar', type=float, default=0.99, help="discount factor")
parser.add_argument('--motif', action="store_true", default=False, help="use motif as the basic building block for polymer dataset")
parser.add_argument('--sender_file', type=str, default="generated_samples.txt", help="file name of the generated samples")
parser.add_argument('--receiver_file', type=str, default="output_syn.txt", help="file name of the output file of Retro*")
parser.add_argument('--resume', action="store_true", default=False, help="resume model")
parser.add_argument('--resume_path', type=str, default='', help="resume path")
args = parser.parse_args()
# Get raw training data
assert os.path.exists(args.training_data), "Please provide valid path of training data."
# Remove duplicated molecules
with open(args.training_data, 'r') as fr:
lines = fr.readlines()
mol_sml = []
for line in lines:
if not (line.strip() in mol_sml):
mol_sml.append(line.strip())
# Clear the communication files for Retro*
with open(args.sender_file, 'w') as fw:
fw.write('')
with open(args.receiver_file, 'w') as fw:
fw.write('')
# Grammar learning
learn(mol_sml, args)