-
Notifications
You must be signed in to change notification settings - Fork 3
/
bitext_ensemble.py
258 lines (209 loc) · 11.3 KB
/
bitext_ensemble.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import os
import torch
import random
import numpy as np
import argparse
import json
import cohere
from openai import OpenAI
from sklearn.metrics.pairwise import euclidean_distances
from sentence_transformers import SentenceTransformer
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score
from tqdm import tqdm
from utils import NusaXDataset, NusaTranslationDataset, TatoebaDataset, BUCCDataset, LinceMTDataset, PhincDataset, NollySentiDataset
OPENAI_TOKEN = ""
COHERE_TOKEN = ""
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
def get_openai_embedding(model, texts, checkpoint="text-embedding-3-large"):
data = model.embeddings.create(input = texts, model=checkpoint).data
embeddings = []
for obj in data:
embeddings.append(obj.embedding)
return embeddings
def get_cohere_embedding(model, texts, model_checkpoint):
response = model.embed(texts=texts, model=model_checkpoint, input_type="search_query")
return response.embeddings
def evaluate_bitext_mining(source_embeddings_all_models, target_embeddings_all_models, k, weights):
hyps = []
golds = []
all_dists_models = []
for model_id in range(len(source_embeddings_all_models)):
source_embeddings = source_embeddings_all_models[model_id]
target_embeddings = target_embeddings_all_models[model_id]
all_dists_samples = []
for source_id in tqdm(range(len(source_embeddings))):
dists = []
batch_size = 128
if len(target_embeddings) < batch_size:
batch_size = len(target_embeddings) // 2
num_of_batches = len(target_embeddings) // batch_size
if (len(target_embeddings) % batch_size) > 0:
num_of_batches += 1
for i in range(num_of_batches):
target_embedding = torch.FloatTensor(target_embeddings[i*batch_size:(i+1)*batch_size]).unsqueeze(1).cuda()
source_embedding = torch.FloatTensor(source_embeddings[source_id]).unsqueeze(0)
source_embedding = source_embedding.expand(len(target_embedding), -1).unsqueeze(1).cuda()
dist = torch.cdist(source_embedding, target_embedding, p=2, compute_mode='use_mm_for_euclid_dist_if_necessary').squeeze().tolist()
if isinstance(dist, float):
dist = [dist]
for j in range(len(dist)):
dists.append([dist[j]* weights[model_id], i*batch_size + j])
all_dists_samples.append(dists)
all_dists_models.append(all_dists_samples)
all_final_dists = []
for sample_id in range(len(all_dists_models[0])):
temp_dists = []
for model_id in range(len(all_dists_models)):
dists = all_dists_models[model_id][sample_id]
if len(temp_dists) == 0:
temp_dists = dists
else:
for obj_id in range(len(dists)):
temp_dists[obj_id][0] += dists[obj_id][0]
all_final_dists.append(temp_dists)
for sample_id in range(len(all_final_dists)):
dists = all_final_dists[sample_id]
sorted_dists = sorted(dists,key=lambda l:l[0], reverse=False)[:k]
all_indices = [obj[1] for obj in sorted_dists]
if sample_id in all_indices:
hyps.append(sample_id)
else:
hyps.append(all_indices[0])
golds.append(sample_id)
return hyps, golds
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--model_checkpoints', type=str, nargs='+', help='a list of model checkpoints')
parser.add_argument('--weights', type=float, nargs='+', required=True, help='a list of weights')
parser.add_argument("--src_lang", type=str, default="eng", help="source language")
parser.add_argument("--dataset", type=str, default="mtop", help="snips or mtop or multi-nlu")
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
parser.add_argument("--cuda", action="store_true", help="Avoid using CUDA when available")
parser.add_argument("--verbose", action="store_true")
parser.add_argument("--fp16", action="store_true")
args = parser.parse_args()
# Make sure cuda is deterministic
torch.backends.cudnn.deterministic = True
print("###########################")
print("src_lang:", args.src_lang)
print("dataset:", args.dataset)
print("model_checkpoints:", args.model_checkpoints)
print("weights:", args.weights)
print("seed:", args.seed)
print("cuda:", args.cuda)
print("verbose:", args.verbose)
print("fp16:", args.fp16)
print("###########################")
set_seed(args.seed)
output_dir = "outputs/save_bitext"
model_save_dir = ""
for model_checkpoint in args.model_checkpoints:
if model_save_dir != "":
model_save_dir += "_"
model_save_dir += model_checkpoint.split("/")[-1] + "_"
model_save_dir += "_weights" + "_".join([str(w) for w in args.weights])
models = []
for model_checkpoint in args.model_checkpoints:
if "embed-multilingual" in model_checkpoint:
models.append(cohere.Client(COHERE_TOKEN))
batch_size = 64
elif "text-embedding-3-large" in model_checkpoint:
models.append(OpenAI(api_key=OPENAI_TOKEN))
batch_size = 64
else:
models.append(SentenceTransformer(model_checkpoint).cuda())
batch_size = 128
if args.dataset == "nusax":
dataset = NusaXDataset(task="bitext")
if args.dataset == "nusatranslation":
dataset = NusaTranslationDataset(src_lang=args.src_lang)
if args.dataset == "tatoeba":
dataset = TatoebaDataset(src_lang=args.src_lang)
if args.dataset == "bucc":
dataset = BUCCDataset(src_lang=args.src_lang)
if args.dataset == "lince_mt":
dataset = LinceMTDataset(src_lang=args.src_lang)
if args.dataset == "phinc":
dataset = PhincDataset(src_lang=args.src_lang)
if args.dataset == "nollysenti":
dataset = NollySentiDataset(src_lang=args.src_lang)
print(">", dataset.LANGS)
target_embeddings_all_models = {}
for target_lang in dataset.LANGS:
for model_id in range(len(args.model_checkpoints)):
model_checkpoint = args.model_checkpoints[model_id]
model = models[model_id]
source_embeddings = []
target_embeddings = {}
# get embeddings
key = args.src_lang + "_" + target_lang
if target_lang != args.src_lang:
target_embeddings = {"source":[], "target":[]}
else:
continue
if len(dataset.train_data[key]["target"]) < batch_size:
batch_size = len(dataset.train_data[key]["target"]) // 2
num_of_batches = len(dataset.train_data[key]["target"]) // batch_size
if (len(dataset.train_data[key]) % batch_size) > 0:
num_of_batches += 1
print(key, target_lang, num_of_batches)
for i in tqdm(range(num_of_batches)):
source_batch_data = dataset.train_data[key]["source"][i*batch_size:(i+1)*batch_size]
target_batch_data = dataset.train_data[key]["target"][i*batch_size:(i+1)*batch_size]
if "intfloat/multilingual-e5" in model_checkpoint:
for data_id in range(len(source_batch_data)):
source_batch_data[data_id] = "query: " + source_batch_data[data_id]
for data_id in range(len(target_batch_data)):
target_batch_data[data_id] = "query: " + target_batch_data[data_id]
if "embed-multilingual" in model_checkpoint:
source_batch_embeddings = get_cohere_embedding(model, source_batch_data, model_checkpoint)
target_batch_embeddings = get_cohere_embedding(model, target_batch_data, model_checkpoint)
elif "text-embedding-3-large" in model_checkpoint:
source_batch_embeddings = get_openai_embedding(model, source_batch_data, model_checkpoint)
target_batch_embeddings = get_openai_embedding(model, target_batch_data, model_checkpoint)
else:
source_batch_embeddings = model.encode(source_batch_data, normalize_embeddings=False)
target_batch_embeddings = model.encode(target_batch_data, normalize_embeddings=False)
if len(target_embeddings["source"]) == 0:
target_embeddings["source"] = source_batch_embeddings
else:
for emb in source_batch_embeddings:
target_embeddings["source"] = np.concatenate((target_embeddings["source"], np.expand_dims(emb, axis=0)), axis=0)
if len(target_embeddings["target"]) == 0:
target_embeddings["target"] = target_batch_embeddings
else:
for emb in target_batch_embeddings:
target_embeddings["target"] = np.concatenate((target_embeddings["target"], np.expand_dims(emb, axis=0)), axis=0)
if key not in target_embeddings_all_models:
target_embeddings_all_models[key] = []
target_embeddings_all_models[key].append(target_embeddings)
if not os.path.exists(f"{output_dir}/{args.dataset}/{model_save_dir}/seed_{args.seed}/"):
os.makedirs(f"{output_dir}/{args.dataset}/{model_save_dir}/seed_{args.seed}/")
for k in [1,5,10]:
print(">>>>>>>>>>", target_embeddings_all_models.keys())
for key in target_embeddings_all_models:
print(">", key)
source_emb_all_models = []
target_emb_all_models = []
for model_checkpoint_id in range(len(target_embeddings_all_models[key])):
# print(">>>", target_embeddings_all_models[key][model_checkpoint_id].keys())
source_emb = target_embeddings_all_models[key][model_checkpoint_id]["source"]
target_emb = target_embeddings_all_models[key][model_checkpoint_id]["target"]
source_emb_all_models.append(source_emb)
target_emb_all_models.append(target_emb)
print(k, len(source_emb_all_models), len(target_emb_all_models))
hyps, golds = evaluate_bitext_mining(source_emb_all_models, target_emb_all_models, k=k, weights=args.weights)
obj = {}
obj[f'acc'] = accuracy_score(golds, hyps)
obj[f'prec'] = precision_score(golds, hyps, zero_division=0.0, average="weighted")
obj[f'rec'] = recall_score(golds, hyps, zero_division=0.0, average="weighted")
obj[f'f1'] = f1_score(golds, hyps, zero_division=0.0, average="weighted")
print(obj)
file_path = output_dir + "/" + args.dataset + f"/{model_save_dir}/" + "/seed_" + str(args.seed) + "/eval_" + key + "_" + str(k) + ".json"
print("writing results to file_path:", file_path)
with open(file_path, "w") as outfile:
json.dump(obj, outfile, indent=4)