From d4a2bc225e9025f7afe49a1f1227a6ee6cc8886d Mon Sep 17 00:00:00 2001
From: spicysama <122108331+AnyaCoder@users.noreply.github.com>
Date: Thu, 30 Nov 2023 20:08:51 +0800
Subject: [PATCH] delete 4 files not required (#208)
* Create all_process.py
* Create asr_transcript.py
* Update config.py
* Create extract_list.py
* Create clean_list.py
* Create custom.css
* Create compress_model.py
* Update all_process.py
* Update resample.py
* Update resample.py
* configs/config.json copy utils
* mirror: openi + token
bert models optimize
* text/__init__.py platform compatibility
compress_model.py output
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* default_config.yml fix 'config_path'
all_process.py fix 'config_path'
* default_config.yml fix 'config_path'
all_process.py fix 'config_path'
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* 'config_path': config.json
* Delete all_process.py
* Delete asr_transcript.py
* Delete clean_list.py
* Delete extract_list.py
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
---
all_process.py | 1381 ---------------------------------------------
asr_transcript.py | 102 ----
clean_list.py | 48 --
extract_list.py | 53 --
4 files changed, 1584 deletions(-)
delete mode 100644 all_process.py
delete mode 100644 asr_transcript.py
delete mode 100644 clean_list.py
delete mode 100644 extract_list.py
diff --git a/all_process.py b/all_process.py
deleted file mode 100644
index 4559e2801..000000000
--- a/all_process.py
+++ /dev/null
@@ -1,1381 +0,0 @@
-import json
-import os
-import platform
-import shutil
-import signal
-import subprocess
-import webbrowser
-
-import GPUtil
-import gradio as gr
-import psutil
-import torch
-import yaml
-
-from config import yml_config
-from tools.log import logger
-
-bert_model_paths = [
- "./bert/chinese-roberta-wwm-ext-large/pytorch_model.bin",
- "./bert/deberta-v2-large-japanese-char-wwm/pytorch_model.bin",
- "./bert/deberta-v3-large/pytorch_model.bin",
- "./bert/deberta-v3-large/spm.model",
-]
-
-emo_model_paths = [
- "./emotional/wav2vec2-large-robust-12-ft-emotion-msp-dim/pytorch_model.bin"
-]
-
-train_base_model_paths = ["D_0.pth", "G_0.pth", "DUR_0.pth"]
-default_yaml_path = "default_config.yml"
-default_config_path = "configs/config.json"
-
-
-def load_yaml_data_in_raw(yml_path=yml_config):
- with open(yml_path, "r", encoding="utf-8") as file:
- # data = yaml.safe_load(file)
- data = file.read()
- return str(data)
-
-
-def load_json_data_in_raw(json_path):
- with open(json_path, "r", encoding="utf-8") as file:
- json_data = json.load(file)
- formatted_json_data = json.dumps(json_data, ensure_ascii=False, indent=2)
- return formatted_json_data
-
-
-def load_json_data_in_fact(json_path):
- with open(json_path, "r", encoding="utf-8") as file:
- json_data = json.load(file)
- return json_data
-
-
-def load_yaml_data_in_fact(yml_path=yml_config):
- with open(yml_path, "r", encoding="utf-8") as file:
- yml = yaml.safe_load(file)
- # data = file.read()
- return yml
-
-
-def fill_openi_token(token: str):
- yml = load_yaml_data_in_fact()
- yml["mirror"] = "openi"
- yml["openi_token"] = token
- write_yaml_data_in_fact(yml)
- msg = "openi 令牌已填写完成"
- logger.info(msg)
- return gr.Textbox(value=msg), gr.Code(value=load_yaml_data_in_raw())
-
-
-def load_train_param(cfg_path):
- yml = load_yaml_data_in_fact()
- data_path = yml["dataset_path"]
- train_json_path = os.path.join(data_path, cfg_path).replace("\\", "/")
- json_data = load_json_data_in_fact(train_json_path)
- bs = json_data["train"]["batch_size"]
- nc = json_data["train"].get("keep_ckpts", 5)
- li = json_data["train"]["log_interval"]
- ei = json_data["train"]["eval_interval"]
- ep = json_data["train"]["epochs"]
- lr = json_data["train"]["learning_rate"]
- ver = json_data["version"]
- msg = f"加载训练配置文件: {train_json_path}"
- logger.info(msg)
- return (
- gr.Textbox(value=msg),
- gr.Code(label=train_json_path, value=load_yaml_data_in_raw(train_json_path)),
- gr.Slider(value=bs),
- gr.Slider(value=nc),
- gr.Slider(value=li),
- gr.Slider(value=ei),
- gr.Slider(value=ep),
- gr.Slider(value=lr),
- gr.Dropdown(value=ver),
- )
-
-
-def write_yaml_data_in_fact(yml, yml_path=yml_config):
- with open(yml_path, "w", encoding="utf-8") as file:
- yaml.safe_dump(yml, file, allow_unicode=True)
- # data = file.read()
- return yml
-
-
-def write_json_data_in_fact(json_path, json_data):
- with open(json_path, "w", encoding="utf-8") as file:
- json.dump(json_data, file, ensure_ascii=False, indent=2)
-
-
-def check_if_exists_model(paths: list[str]):
- check_results = {
- path: os.path.exists(path) and os.path.isfile(path) for path in paths
- }
- val = [path for path, exists in check_results.items() if exists]
- return val
-
-
-def check_bert_models():
- return gr.CheckboxGroup(value=check_if_exists_model(bert_model_paths))
-
-
-def check_emo_models():
- return gr.CheckboxGroup(value=check_if_exists_model(emo_model_paths))
-
-
-def check_base_models():
- yml = load_yaml_data_in_fact()
- data_path = yml["dataset_path"]
- models_dir = yml["train_ms"]["model"]
- model_paths = [
- os.path.join(data_path, models_dir, p).replace("\\", "/")
- for p in train_base_model_paths
- ]
- return gr.CheckboxGroup(
- label="检测底模状态",
- info="最好去下载底模进行训练",
- choices=model_paths,
- value=check_if_exists_model(model_paths),
- interactive=False,
- )
-
-
-def modify_data_path(data_path):
- yml = load_yaml_data_in_fact()
- yml["dataset_path"] = data_path
- write_yaml_data_in_fact(yml)
- txt_box = gr.Textbox(value=data_path)
- return (
- gr.Dropdown(value=data_path),
- txt_box,
- txt_box,
- txt_box,
- gr.Code(value=load_yaml_data_in_raw()),
- check_base_models(),
- )
-
-
-def modify_preprocess_param(trans_path, cfg_path, val_per_spk, max_val_total):
- yml = load_yaml_data_in_fact()
- data_path = yml["dataset_path"]
- yml["preprocess_text"]["transcription_path"] = trans_path
- yml["preprocess_text"]["config_path"] = cfg_path
- yml["preprocess_text"]["val_per_spk"] = val_per_spk
- yml["preprocess_text"]["max_val_total"] = max_val_total
- write_yaml_data_in_fact(yml)
- whole_path = os.path.join(data_path, cfg_path).replace("\\", "/")
- logger.info("预处理配置: ", whole_path)
- if not os.path.exists(whole_path):
- os.makedirs(os.path.dirname(whole_path), exist_ok=True)
- shutil.copy(default_config_path, os.path.dirname(whole_path))
- return gr.Dropdown(value=trans_path), gr.Code(value=load_yaml_data_in_raw())
-
-
-def modify_resample_path(in_dir, out_dir, sr):
- yml = load_yaml_data_in_fact()
- yml["resample"]["in_dir"] = in_dir
- yml["resample"]["out_dir"] = out_dir
- yml["resample"]["sampling_rate"] = int(sr)
- write_yaml_data_in_fact(yml)
- msg = f"重采样参数已更改: [{in_dir}, {out_dir}, {sr}]\n"
- logger.info(msg)
- return (
- gr.Textbox(value=in_dir),
- gr.Textbox(value=out_dir),
- gr.Textbox(value=msg),
- gr.Dropdown(value=sr),
- gr.Code(value=load_yaml_data_in_raw()),
- )
-
-
-def modify_bert_config(cfg_path, nps, dev, multi):
- yml = load_yaml_data_in_fact()
- data_path = yml["dataset_path"]
- yml["bert_gen"]["config_path"] = cfg_path
- yml["bert_gen"]["num_processes"] = int(nps)
- yml["bert_gen"]["device"] = dev
- yml["bert_gen"]["use_multi_device"] = multi
- write_yaml_data_in_fact(yml)
- whole_path = os.path.join(data_path, cfg_path).replace("\\", "/")
- logger.info("bert配置路径: ", whole_path)
- if not os.path.exists(whole_path):
- os.makedirs(os.path.dirname(whole_path), exist_ok=True)
- shutil.copy(default_config_path, os.path.dirname(whole_path))
- return (
- gr.Textbox(value=cfg_path),
- gr.Slider(value=int(nps)),
- gr.Dropdown(value=dev),
- gr.Radio(value=multi),
- gr.Code(value=load_yaml_data_in_raw()),
- )
-
-
-def modify_train_path(model, cfg_path):
- yml = load_yaml_data_in_fact()
- yml["train_ms"]["config_path"] = cfg_path
- yml["train_ms"]["model"] = model
- write_yaml_data_in_fact(yml)
- logger.info(f"训练配置文件路径: {cfg_path}\n")
- logger.info(f"训练模型文件夹路径: {model}")
- return (
- gr.Textbox(value=model),
- gr.Textbox(value=cfg_path),
- gr.Code(value=load_yaml_data_in_raw()),
- check_base_models(),
- )
-
-
-def modify_train_param(bs, nc, li, ei, ep, lr, ver):
- yml = load_yaml_data_in_fact()
- data_path = yml["dataset_path"]
- cfg_path = yml["train_ms"]["config_path"]
- ok = False
- whole_path = os.path.join(data_path, cfg_path).replace("\\", "/")
- logger.info("config_path: ", whole_path)
- if not os.path.exists(whole_path):
- os.makedirs(os.path.dirname(whole_path), exist_ok=True)
- shutil.copy(default_config_path, os.path.dirname(whole_path))
- if os.path.exists(whole_path) and os.path.isfile(whole_path):
- ok = True
- with open(whole_path, "r", encoding="utf-8") as file:
- json_data = json.load(file)
- json_data["train"]["batch_size"] = bs
- json_data["train"]["keep_ckpts"] = nc
- json_data["train"]["log_interval"] = li
- json_data["train"]["eval_interval"] = ei
- json_data["train"]["epochs"] = ep
- json_data["train"]["learning_rate"] = lr
- json_data["version"] = ver
- with open(whole_path, "w", encoding="utf-8") as file:
- json.dump(json_data, file, ensure_ascii=False, indent=2)
- msg = f"成功更改训练参数! [{bs},{nc},{li},{ei},{ep},{lr}]"
- logger.info(msg)
- else:
- msg = f"打开训练配置文件时出现错误: {whole_path}\n" f"该文件不存在或损坏,现在打开默认配置文件"
- logger.error(msg)
- return gr.Textbox(value=msg), gr.Code(
- label=whole_path if ok else default_config_path,
- value=load_json_data_in_raw(whole_path)
- if ok
- else load_json_data_in_raw(default_config_path),
- )
-
-
-def modify_infer_param(model_path, config_path, port, share, debug, ver):
- yml = load_yaml_data_in_fact()
- data_path = yml["dataset_path"]
- yml["webui"]["model"] = os.path.relpath(model_path, start=data_path)
- yml["webui"]["config_path"] = os.path.relpath(config_path, start=data_path)
- port = int(port)
- port = port if 0 <= port <= 65535 else 10086
- yml["webui"]["port"] = port
- yml["webui"]["share"] = share
- yml["webui"]["debug"] = debug
- write_yaml_data_in_fact(yml)
- json_data = load_json_data_in_fact(config_path)
- json_data["version"] = ver
- write_json_data_in_fact(config_path, json_data)
- msg = f"修改推理配置文件成功: [{model_path}, {config_path}, {port}, {ver}]"
- logger.info(msg)
- return (
- gr.Textbox(value=msg),
- gr.Code(value=load_yaml_data_in_raw()),
- gr.Code(
- label=config_path,
- value=load_json_data_in_raw(config_path)
- if os.path.exists(config_path)
- else load_json_data_in_raw(default_config_path),
- ),
- )
-
-
-def get_status():
- """获取电脑运行状态"""
- cpu_percent = psutil.cpu_percent(interval=1)
- memory_info = psutil.virtual_memory()
- memory_total = memory_info.total
- memory_available = memory_info.available
- memory_used = memory_info.used
- memory_percent = memory_info.percent
- gpuInfo = []
- devices = ["cpu"]
- for i in range(torch.cuda.device_count()):
- devices.append(f"cuda:{i}")
- if torch.cuda.device_count() > 0:
- gpus = GPUtil.getGPUs()
- for gpu in gpus:
- gpuInfo.append(
- {
- "GPU编号": gpu.id,
- "GPU负载": f"{gpu.load} %",
- "专用GPU内存": {
- "总内存": f"{gpu.memoryTotal} MB",
- "已使用": f"{gpu.memoryUsed} MB",
- "空闲": f"{gpu.memoryFree} MB",
- },
- }
- )
- status_data = {
- "devices": devices,
- "CPU占用率": f"{cpu_percent} %",
- "总内存": f"{memory_total // (1024 * 1024)} MB",
- "可用内存": f"{memory_available // (1024 * 1024)} MB",
- "已使用内存": f"{memory_used // (1024 * 1024)} MB",
- "百分数": f"{memory_percent} %",
- "gpu信息": gpuInfo,
- }
- formatted_json_data = json.dumps(status_data, ensure_ascii=False, indent=2)
- logger.info(formatted_json_data)
- return str(formatted_json_data)
-
-
-def get_gpu_status():
- return gr.Code(value=get_status())
-
-
-def list_infer_models():
- yml = load_yaml_data_in_fact()
- data_path = yml["dataset_path"]
- inf_models, json_files = [], []
- for root, dirs, files in os.walk(data_path):
- for file in files:
- filepath = os.path.join(root, file).replace("\\", "/")
- if file.startswith("G_") and file.lower().endswith(".pth"):
- inf_models.append(filepath)
- elif file.lower().endswith(".json"):
- json_files.append(filepath)
- logger.info("找到推理模型文件: " + str(inf_models))
- logger.info("找到推理配置文件: " + str(json_files))
- return gr.Dropdown(choices=inf_models), gr.Dropdown(choices=json_files)
-
-
-def do_resample(nps):
- yml = load_yaml_data_in_fact()
- data_path = yml["dataset_path"]
- in_dir = yml["resample"]["in_dir"]
- comp_in_dir = os.path.join(os.path.abspath(data_path), in_dir).replace("\\", "/")
- logger.info(f"\n重采样路径: {comp_in_dir}")
- cmd = f"python resample.py --processes {nps}"
- logger.info(cmd)
- subprocess.run(cmd, shell=True)
- return gr.Textbox(value="重采样完成!")
-
-
-def do_transcript(lang, workers):
- yml = load_yaml_data_in_fact()
- data_path = yml["dataset_path"]
- in_dir = yml["resample"]["in_dir"]
- comp_in_dir = os.path.join(os.path.abspath(data_path), in_dir).replace("\\", "/")
- logger.info(f"\n转写文件夹路径: {comp_in_dir}")
- cmd = f'python asr_transcript.py -f "{comp_in_dir}" -l {lang} -w {workers}'
- logger.info(cmd)
- subprocess.run(cmd, shell=True)
- return gr.Textbox(value=f"\n转写文件夹路径: {comp_in_dir}\n转写到.lab完成!")
-
-
-def do_extract(raw_path, lang, unclean, char_name):
- yml = load_yaml_data_in_fact()
- data_path = yml["dataset_path"]
- lab_path = os.path.join(os.path.abspath(data_path), raw_path).replace("\\", "/")
- unclean_path = os.path.join(
- data_path, os.path.splitext(unclean)[0] + ".txt"
- ).replace("\\", "/")
- logger.info(f"\n提取转写文本路径: {lab_path}")
- lab_ok = False
- for root, _, files in os.walk(lab_path):
- for f_name in files:
- if str(f_name).lower().endswith(".lab"):
- lab_ok = True
- break
- if lab_ok:
- break
-
- if os.path.exists(lab_path) and os.path.isdir(lab_path):
- if lab_ok:
- cmd = f'python extract_list.py -f "{lab_path}" -l {lang} -n "{char_name}" -o "{unclean_path}"'
- logger.info(cmd)
- subprocess.run(cmd, shell=True)
- msg = f"提取完成!生成如下文件: {unclean_path}"
- logger.info(msg)
- else:
- msg = "未找到提取转写文本路径下的.lab文件!"
- logger.warning(msg)
- else:
- msg = "路径未选择正确!"
- logger.error(msg)
- return gr.Textbox(value=msg)
-
-
-def do_clean_list(ban_chars, unclean, clean):
- yml = load_yaml_data_in_fact()
- data_path = yml["dataset_path"]
- unclean_path = os.path.join(data_path, unclean)
- clean_path = os.path.join(data_path, clean)
- if os.path.exists(unclean_path) and os.path.isfile(unclean_path):
- cmd = f'python clean_list.py -c "{ban_chars}" -i "{unclean_path}" -o "{clean_path}"'
- logger.info(cmd)
- subprocess.run(cmd, shell=True)
- msg = "清洗标注文本完成!"
- logger.info(msg)
- else:
- msg = "未找到可清洗标注文本,请到2.2节重新生成!"
- logger.warning(msg)
- return gr.Textbox(value=msg)
-
-
-def do_preprocess_text():
- yml = load_yaml_data_in_fact()
- data_path = yml["dataset_path"]
- trans_path = yml["preprocess_text"]["transcription_path"]
- comp_trans_path = os.path.join(os.path.abspath(data_path), trans_path).replace(
- "\\", "/"
- )
- logger.info(f"\n清洗后标注文本文件路径: {comp_trans_path}")
- if os.path.exists(comp_trans_path) and os.path.isfile(comp_trans_path):
- cmd = "python preprocess_text.py"
- logger.info(cmd)
- subprocess.run(cmd, shell=True)
- msg = "文本预处理完成!"
- else:
- msg = "\n清洗后标注文本文件不存在或失效!"
- logger.info(msg)
- return gr.Textbox(value=msg)
-
-
-def do_bert_gen():
- yml = load_yaml_data_in_fact()
- data_path = yml["dataset_path"]
- train_list_path = yml["preprocess_text"]["train_path"]
- val_list_path = yml["preprocess_text"]["val_path"]
- comp_t_path = os.path.join(os.path.abspath(data_path), train_list_path).replace(
- "\\", "/"
- )
- comp_v_path = os.path.join(os.path.abspath(data_path), val_list_path).replace(
- "\\", "/"
- )
- if os.path.exists(comp_t_path) and os.path.isfile(comp_t_path):
- subprocess.run("python bert_gen.py", shell=True)
- msg = "bert文件生成完成!"
- logger.info(msg)
- else:
- msg = f"未找到训练集和验证集文本!\ntrain: {comp_t_path}\nval:{comp_v_path}"
- logger.error(msg)
- return gr.Textbox(value=msg)
-
-
-def modify_emo_gen(emo_cfg, emo_nps, emo_device):
- yml = load_yaml_data_in_fact()
- data_path = yml["dataset_path"]
- yml["emo_gen"]["config_path"] = emo_cfg
- yml["emo_gen"]["num_processes"] = emo_nps
- yml["emo_gen"]["device"] = emo_device
- write_yaml_data_in_fact(yml)
- comp_emo_cfg = os.path.join(os.path.abspath(data_path), emo_cfg).replace("\\", "/")
- if not os.path.exists(comp_emo_cfg):
- os.makedirs(os.path.dirname(comp_emo_cfg), exist_ok=True)
- shutil.copy(default_config_path, os.path.dirname(comp_emo_cfg))
- msg = f"修改emo配置参数: [配置路径:{comp_emo_cfg}, 处理数:{emo_nps}, 设备:{emo_device}]"
- logger.info(msg)
- return gr.Textbox(value=msg), gr.Code(value=load_yaml_data_in_raw())
-
-
-def do_emo_gen():
- yml = load_yaml_data_in_fact()
- data_path = yml["dataset_path"]
- emo_config_path = yml["emo_gen"]["config_path"]
- comp_emo_path = os.path.join(os.path.abspath(data_path), emo_config_path).replace(
- "\\", "/"
- )
- if os.path.exists(comp_emo_path) and os.path.isfile(comp_emo_path):
- subprocess.run("python emo_gen.py", shell=True)
- msg = "emo.npy文件生成完成!"
- logger.info(msg)
- else:
- msg = f"选定路径下未找到配置文件!\n需要的config路径 : {comp_emo_path}"
- logger.error(msg)
-
- return gr.Textbox(value=msg)
-
-
-def do_my_train():
- yml = load_yaml_data_in_fact()
- n_gpus = torch.cuda.device_count()
- # subprocess.run(f'python train_ms.py', shell=True)
- if os.path.exists(r"..\vits\python.exe") and os.path.isfile(r"..\vits\python.exe"):
- cmd = (
- r"..\vits\python ..\vits\Scripts\torchrun.exe "
- f"--nproc_per_node={n_gpus} train_ms.py"
- )
- else:
- cmd = f"torchrun --nproc_per_node={n_gpus} train_ms.py"
-
- subprocess.Popen(cmd, shell=True)
- train_port = yml["train_ms"]["env"]["MASTER_PORT"]
- train_addr = yml["train_ms"]["env"]["MASTER_ADDR"]
- url = f"env://{train_addr}:{train_port}"
- msg = f"训练开始!\nMASTER_URL: {url}\n使用gpu数:{n_gpus}\n推荐按下终止训练按钮来结束!"
- logger.info(msg)
- return gr.Textbox(value=msg)
-
-
-def do_tensorboard():
- yml = load_yaml_data_in_fact()
- data_path = yml["dataset_path"]
- train_model_dir = yml["train_ms"]["model"]
- whole_dir = os.path.join(data_path, train_model_dir).replace("\\", "/")
- if os.path.exists(r"..\vits\python.exe") and os.path.isfile(r"..\vits\python.exe"):
- first_cmd = r"..\vits\python ..\vits\Scripts\tensorboard.exe "
- else:
- first_cmd = "tensorboard "
- tb_cmd = (
- first_cmd + f"--logdir={whole_dir} "
- f"--port={11451} "
- f'--window_title="训练情况一览" '
- f"--reload_interval={120}"
- )
- subprocess.Popen(tb_cmd, shell=True)
- url = f"http://localhost:{11451}"
- webbrowser.open(url=url)
- msg = tb_cmd + "\n" + url
- logger.info(msg)
- return gr.Textbox(value=msg)
-
-
-def do_webui_infer():
- yml = load_yaml_data_in_fact()
- data_path = yml["dataset_path"]
- model_path = yml["webui"]["model"]
- config_path = yml["webui"]["config_path"]
- comp_m_path = os.path.join(os.path.abspath(data_path), model_path)
- comp_c_path = os.path.join(os.path.abspath(data_path), config_path)
- if os.path.exists(comp_c_path) and os.path.exists(comp_m_path):
- webui_port = yml["webui"]["port"]
- subprocess.Popen("python webui.py", shell=True)
- url = f"http://localhost:{webui_port} | http://127.0.0.1:{webui_port}"
- msg = f"推理端已开启, 到控制台中复制网址打开页面\n{url}\n选择的模型:{model_path}"
- logger.info(msg)
- else:
- msg = f"未找到有效的模型或配置文件!\n模型路径:{comp_m_path}\n配置路径:{comp_c_path}"
- logger.error(msg)
- return gr.Textbox(value=msg)
-
-
-def compress_model(cfg_path, in_path, out_path):
- subprocess.Popen(
- "python compress_model.py" f" -c {cfg_path}" f" -i {in_path}", shell=True
- )
- msg = "到控制台中查看压缩结果"
- logger.info(msg)
- return gr.Textbox(value=msg)
-
-
-def kill_specific_process_linux(cmd):
- try:
- output = subprocess.check_output(["pgrep", "-f", cmd], text=True)
- pids = output.strip().split("\n")
-
- for pid in pids:
- if pid:
- logger.critical(f"终止进程: {pid}")
- os.kill(int(pid), signal.SIGTERM)
- # os.kill(int(pid), signal.SIGKILL)
- except subprocess.CalledProcessError:
- logger.error("没有找到匹配的进程。")
- except Exception as e:
- logger.error(f"发生错误: {e}")
-
-
-def kill_specific_process_windows(cmd):
- try:
- # 使用tasklist和findstr来找到匹配特定命令行模式的进程
- output = subprocess.check_output(
- f'tasklist /FO CSV /V | findstr /C:"{cmd}"', shell=True, text=True
- )
- lines = output.strip().split("\n")
-
- for line in lines:
- if line:
- pid = line.split(",")[1].strip('"')
- logger.critical(f"终止进程: {pid}")
- subprocess.run(["taskkill", "/PID", pid, "/F"], shell=True) # 强制终止
- except subprocess.CalledProcessError:
- logger.error(f"没有找到匹配的{cmd}进程。")
- except Exception as e:
- logger.error(f"发生错误: {e}")
-
-
-def stop_train_ms():
- yml = load_yaml_data_in_fact()
- train_port = yml["train_ms"]["env"]["MASTER_PORT"]
- train_addr = yml["train_ms"]["env"]["MASTER_ADDR"]
- if platform.system() == "Windows":
- kill_specific_process_windows("torchrun")
- else:
- kill_specific_process_linux("torchrun")
- url = f"env://{train_addr}:{train_port}"
- msg = f"训练结束!\nMASTER_URL: {url}"
- logger.critical(msg)
- return gr.Textbox(value=msg)
-
-
-def stop_tensorboard():
- if platform.system() == "Windows":
- kill_specific_process_windows("tensorboard")
- else:
- kill_specific_process_linux("tensorboard")
- msg = "关闭tensorboard!\n"
- logger.critical(msg)
- return gr.Textbox(value=msg)
-
-
-def stop_webui_infer():
- yml = load_yaml_data_in_fact()
- webui_port = yml["webui"]["port"]
- if platform.system() == "Linux":
- kill_specific_process_linux("python webui.py")
- else:
- kill_specific_process_windows("python webui.py")
- msg = f"尝试终止推理进程,请到控制台查看情况\nport={webui_port}"
- logger.critical(msg)
- return gr.Textbox(value=msg)
-
-
-if __name__ == "__main__":
- init_yml = load_yaml_data_in_fact()
- with gr.Blocks(
- title="Bert-VITS-2-v2.0-管理器",
- theme=gr.themes.Soft(),
- css=os.path.abspath("./css/custom.css"),
- ) as app:
- with gr.Row():
- with gr.Tabs():
- with gr.TabItem("首页"):
- gr.Markdown(
- """
- ## Bert-VITS2-v2.0 可视化界面
- #### Copyright/Powered by 怕吃辣滴辣子酱
- #### 许可: [AGPL 3.0 Licence](https://github.com/AnyaCoder/Bert-VITS2/blob/master/LICENSE)
- #### 请订阅我的频道:
- 1. Bilibili: [spicysama](https://space.bilibili.com/47278440)
- 2. github: [AnyaCoder](https://github.com/AnyaCoder)
-
- ### 严禁将此项目用于一切违反《中华人民共和国宪法》,《中华人民共和国刑法》,《中华人民共和国治安管理处罚法》和《中华人民共和国民法典》之用途。
- ### 严禁用于任何政治相关用途。
- ## References
- + [anyvoiceai/MassTTS](https://github.com/anyvoiceai/MassTTS)
- + [jaywalnut310/vits](https://github.com/jaywalnut310/vits)
- + [p0p4k/vits2_pytorch](https://github.com/p0p4k/vits2_pytorch)
- + [svc-develop-team/so-vits-svc](https://github.com/svc-develop-team/so-vits-svc)
- + [PaddlePaddle/PaddleSpeech](https://github.com/PaddlePaddle/PaddleSpeech)
- ## 感谢所有贡献者作出的努力
-
-
-
-
- Made with [contrib.rocks](https://contrib.rocks).
-
- """
- )
- with gr.TabItem("填入openi token"):
- with gr.Row():
- gr.Markdown(
- """
- ### 去openi官网注册并登录后:
- ### [点击此处跳转到openi官网](https://openi.pcl.ac.cn/)
- ### , 点击右上角`个人头像`-> `设置` -> `应用`, 生成令牌(token)
- """
- )
- with gr.Row():
- openi_token_box = gr.Textbox(
- label="填入openi token", value=init_yml["openi_token"]
- )
- with gr.Row():
- openi_token_btn = gr.Button(value="确认填写", variant="primary")
- with gr.Row():
- openi_token_status = gr.Textbox(label="状态信息")
-
- with gr.TabItem("模型检测"):
- CheckboxGroup_bert_models = gr.CheckboxGroup(
- label="检测bert模型状态",
- info="对应文件夹下必须有对应的模型文件(填入openi token后,则后续步骤中会自动下载)",
- choices=bert_model_paths,
- value=check_if_exists_model(bert_model_paths),
- interactive=False,
- )
- check_pth_btn1 = gr.Button(value="检查bert模型状态")
- CheckboxGroup_emo_models = gr.CheckboxGroup(
- label="检测emo模型状态",
- info="对应文件夹下必须有对应的模型文件",
- choices=emo_model_paths,
- value=check_if_exists_model(emo_model_paths),
- interactive=False,
- )
- check_pth_btn2 = gr.Button(value="检查emo模型状态")
- with gr.TabItem("数据处理"):
- with gr.Row():
- dropdown_data_path = gr.Dropdown(
- label="选择数据集存放路径 (右侧的dataset_path)",
- info="详细说明可见右侧带注释的yaml文件",
- interactive=True,
- allow_custom_value=True,
- choices=[init_yml["dataset_path"]],
- value=init_yml["dataset_path"],
- )
- with gr.Row():
- data_path_btn = gr.Button(value="确认更改存放路径", variant="primary")
- with gr.Tabs():
- with gr.TabItem("1. 音频重采样"):
- with gr.Row():
- resample_in_box = gr.Textbox(
- label="输入音频文件夹in_dir",
- value=init_yml["resample"]["in_dir"],
- lines=1,
- interactive=True,
- )
- resample_out_box = gr.Textbox(
- label="输出音频文件夹out_dir",
- lines=1,
- value=init_yml["resample"]["out_dir"],
- interactive=True,
- )
- with gr.Row():
- dropdown_resample_sr = gr.Dropdown(
- label="输出采样率(Hz)",
- choices=["16000", "22050", "44100", "48000"],
- value="44100",
- )
- slider_resample_nps = gr.Slider(
- label="采样用的CPU核心数",
- minimum=1,
- maximum=64,
- step=1,
- value=2,
- )
- with gr.Row():
- resample_config_btn = gr.Button(
- value="确认重采样配置",
- variant="secondary",
- )
- resample_btn = gr.Button(
- value="1. 音频重采样",
- variant="primary",
- )
- with gr.Row():
- resample_status = gr.Textbox(
- label="重采样结果",
- placeholder="执行重采样后可查看",
- lines=3,
- interactive=False,
- )
- with gr.TabItem("2. 转写文本生成"):
- with gr.Row():
- dropdown_lang = gr.Dropdown(
- label="选择语言",
- info="ZH中文,JP日语,EN英语",
- choices=["ZH", "JP", "EN"],
- value="ZH",
- )
- slider_transcribe = gr.Slider(
- label="转写进程数",
- info="目的路径与前一节一致\n 重采样的输入路径",
- minimum=1,
- maximum=10,
- step=1,
- value=1,
- interactive=True,
- )
- clean_txt_box = gr.Textbox(
- label="非法字符集",
- info="在此文本框内出现的字符都会被整行删除",
- lines=1,
- value="{}<>",
- interactive=True,
- )
- with gr.Row():
- unclean_box = gr.Textbox(
- label="未清洗的文本",
- info="仅将.lab提取到这个文件里, 请保持txt格式",
- lines=1,
- value=os.path.splitext(
- init_yml["preprocess_text"][
- "transcription_path"
- ]
- )[0]
- + ".txt",
- interactive=True,
- )
- clean_box = gr.Textbox(
- label="已清洗的文本",
- info="将未清洗的文本做去除非法字符集处理后的文本",
- lines=1,
- value=init_yml["preprocess_text"][
- "transcription_path"
- ],
- interactive=True,
- )
- char_name_box = gr.Textbox(
- label="输入角色名",
- info="区分说话人用",
- lines=1,
- placeholder="填入一个名称",
- interactive=True,
- )
- with gr.Row():
- transcribe_btn = gr.Button(
- value="2.1 转写文本", interactive=True
- )
- extract_list_btn = gr.Button(
- value="2.2 合成filelist",
- )
- clean_trans_btn = gr.Button(value="2.3 清洗标注")
- with gr.Row():
- preprocess_status_box = gr.Textbox(label="标注状态")
- with gr.TabItem("3. 文本预处理"):
- with gr.Row():
- slider_val_per_spk = gr.Slider(
- label="每个speaker的验证集条数",
- info="TensorBoard里的eval音频展示条目",
- minimum=1,
- maximum=20,
- step=1,
- value=init_yml["preprocess_text"]["val_per_spk"],
- )
- slider_max_val_total = gr.Slider(
- label="验证集最大条数",
- info="多于此项的会被截断并放到训练集中",
- minimum=8,
- maximum=160,
- step=8,
- value=init_yml["preprocess_text"]["max_val_total"],
- )
- with gr.Row():
- dropdown_filelist_path = gr.Dropdown(
- interactive=True,
- label="输入filelist路径",
- allow_custom_value=True,
- choices=[
- init_yml["preprocess_text"][
- "transcription_path"
- ]
- ],
- value=init_yml["preprocess_text"][
- "transcription_path"
- ],
- )
- preprocess_config_box = gr.Textbox(
- label="预处理配置文件路径",
- value=init_yml["preprocess_text"]["config_path"],
- )
- with gr.Row():
- preprocess_config_btn = gr.Button(value="更新预处理配置文件")
- preprocess_text_btn = gr.Button(
- value="标注文本预处理", variant="primary"
- )
- with gr.Row():
- label_status = gr.Textbox(label="转写状态")
- with gr.TabItem("4. bert_gen"):
- with gr.Row():
- bert_dataset_box = gr.Textbox(
- label="数据集存放路径",
- text_align="right",
- value=str(init_yml["dataset_path"]).rstrip("/"),
- lines=1,
- interactive=False,
- scale=10,
- )
- gr.Markdown(
- """
-
- ## +
- """
- )
- bert_config_box = gr.Textbox(
- label="bert_gen配置文件路径",
- text_align="left",
- value=init_yml["bert_gen"]["config_path"],
- lines=1,
- interactive=True,
- scale=10,
- )
- with gr.Row():
- slider_bert_nps = gr.Slider(
- label="bert_gen并行处理数",
- minimum=1,
- maximum=12,
- step=1,
- value=init_yml["bert_gen"]["num_processes"],
- )
- dropdown_bert_dev = gr.Dropdown(
- label="bert_gen处理设备",
- choices=["cuda", "cpu"],
- value=init_yml["bert_gen"]["device"],
- )
- radio_bert_multi = gr.Radio(
- label="使用多卡推理", choices=[True, False], value=False
- )
- with gr.Row():
- bert_config_btn = gr.Button(value="确认更改bert配置项")
- bert_gen_btn = gr.Button(
- value="Go! Bert Gen!", variant="primary"
- )
- with gr.Row():
- bert_status = gr.Textbox(label="状态信息")
- with gr.TabItem("5. emo_gen"):
- with gr.Row():
- emo_config_box = gr.Textbox(
- label="emo_gen配置文件路径",
- info="找一找你的config.json路径,相对于数据集路径",
- value=init_yml["emo_gen"]["config_path"],
- lines=1,
- interactive=True,
- scale=10,
- )
- with gr.Row():
- slider_emo_nps = gr.Slider(
- label="emo_gen并行处理数",
- info="最好预留2个以上的核数空闲,防卡死",
- minimum=1,
- maximum=32,
- step=1,
- value=init_yml["emo_gen"]["num_processes"],
- )
- dropdown_emo_device = gr.Dropdown(
- label="emo_gen使用设备",
- info="可选cpu或cuda",
- choices=["cpu", "cuda"],
- value="cuda",
- )
- with gr.Row():
- emo_config_btn = gr.Button(value="更新emo配置")
- emo_gen_btn = gr.Button(
- value="Emo Gen!", variant="primary"
- )
- with gr.Row():
- emo_status = gr.Textbox(label="状态信息")
-
- with gr.TabItem("训练界面"):
- with gr.Tabs():
- with gr.TabItem("训练配置文件路径"):
- with gr.Row():
- train_dataset_box_1 = gr.Textbox(
- label="数据集存放路径",
- text_align="right",
- value=str(init_yml["dataset_path"]).rstrip("/"),
- lines=1,
- interactive=False,
- scale=20,
- )
- gr.Markdown(
- """
-
- ## +
- """
- )
- train_config_box = gr.Textbox(
- label="train_ms配置文件路径",
- text_align="left",
- value=init_yml["train_ms"]["config_path"],
- lines=1,
- interactive=True,
- scale=20,
- )
- with gr.Row():
- train_dataset_box_2 = gr.Textbox(
- label="数据集存放路径",
- text_align="right",
- value=str(init_yml["dataset_path"]).rstrip("/"),
- lines=1,
- interactive=False,
- scale=20,
- )
- gr.Markdown(
- """
-
- ## +
- """
- )
- train_model_box = gr.Textbox(
- label="train_ms模型文件夹路径",
- value=init_yml["train_ms"]["model"],
- lines=1,
- interactive=True,
- scale=20,
- )
- with gr.Row():
- train_ms_path_btn = gr.Button(value="更改训练路径配置")
- CheckboxGroup_train_models = check_base_models()
- check_pth_btn3 = gr.Button(value="检查训练底模状态")
- with gr.TabItem("训练参数设置"):
- with gr.Row():
- slider_batch_size = gr.Slider(
- minimum=1,
- maximum=40,
- value=4,
- step=1,
- label="batch_size 批处理大小",
- )
- slider_keep_ckpts = gr.Slider(
- minimum=1,
- maximum=20,
- value=5,
- step=1,
- label="最多保存n个最新模型,超过则删除最早的",
- )
- with gr.Row():
- slider_log_interval = gr.Slider(
- minimum=50,
- maximum=3000,
- value=200,
- step=50,
- label="log_interval 打印日志步数间隔",
- )
- slider_eval_interval = gr.Slider(
- minimum=100,
- maximum=5000,
- value=1000,
- step=50,
- label="eval_interval 保存模型步数间隔",
- )
- with gr.Row():
- slider_epochs = gr.Slider(
- minimum=50,
- maximum=2000,
- value=100,
- step=50,
- label="epochs 训练轮数",
- )
- slider_lr = gr.Slider(
- minimum=0.0001,
- maximum=0.0010,
- value=0.0003,
- step=0.0001,
- label="learning_rate 初始学习率",
- )
- with gr.Row():
- dropdown_version = gr.Dropdown(
- label="模型版本选择",
- info="推荐使用最新版底模和版本训练",
- choices=["2.0", "1.1.1", "1.1.0", "1.0.1"],
- value="2.0",
- )
- with gr.Row():
- train_ms_load_btn = gr.Button(
- value="加载训练参数配置", variant="primary"
- )
- train_ms_param_btn = gr.Button(
- value="更改训练参数配置", variant="primary"
- )
- with gr.Row():
- train_btn = gr.Button(
- value="3.1 点击开始训练", variant="primary"
- )
- train_btn_2 = gr.Button(
- value="3.2 继续训练", variant="primary"
- )
- stop_train_btn = gr.Button(
- value="终止训练", variant="secondary"
- )
- with gr.Row():
- train_output_box = gr.Textbox(
- label="状态信息", lines=1, autoscroll=True
- )
- with gr.TabItem("TensorBoard"):
- with gr.Row():
- gr.Markdown(
- """
- ### Tensorboard的logdir 默认为训练的models路径
- ### 请在前一节 `训练配置文件路径` 查看
- """
- )
- with gr.Row():
- open_tb_btn = gr.Button("开启Tensorboard")
- stop_tb_btn = gr.Button("关闭Tensorboard")
- with gr.Row():
- tb_output_box = gr.Textbox(
- label="状态信息", lines=1, autoscroll=True
- )
- with gr.TabItem("推理界面"):
- with gr.Tabs():
- with gr.TabItem("模型选择"):
- with gr.Row():
- dropdown_infer_model = gr.Dropdown(
- label="选择推理模型",
- info="默认选择预处理阶段配置的文件夹内容; 也可以自己输入路径。",
- interactive=True,
- allow_custom_value=True,
- )
- dropdown_infer_config = gr.Dropdown(
- label="选择配置文件",
- info="默认选择预处理阶段配置的文件夹内容; 也可以自己输入路径。",
- interactive=True,
- allow_custom_value=True,
- )
- with gr.Row():
- dropdown_model_fresh_btn = gr.Button(value="刷新推理模型列表")
- with gr.Row():
- webui_port_box = gr.Textbox(
- label="WebUI推理的端口号",
- placeholder="范围:[0, 65535]",
- max_lines=1,
- lines=1,
- value=init_yml["webui"]["port"],
- interactive=True,
- )
- infer_ver_box = gr.Dropdown(
- label="更改推理版本",
- info="已经实现兼容推理,请选择合适的版本",
- choices=["2.0", "1.1.1", "1.1.0", "1.0.1"],
- value="2.0",
- )
- with gr.Row():
- radio_webui_share = gr.Radio(
- label="公开",
- info="是否公开部署,对外网开放",
- choices=[True, False],
- value=init_yml["webui"]["share"],
- )
- radio_webui_debug = gr.Radio(
- label="调试模式",
- info="是否开启debug模式",
- choices=[True, False],
- value=init_yml["webui"]["debug"],
- )
- with gr.Row():
- infer_config_btn = gr.Button(value="更新推理配置文件")
- stop_infer_btn = gr.Button(value="结束WebUI推理")
- with gr.Row():
- infer_webui_btn = gr.Button(
- value="开启WebUI推理", variant="primary"
- )
- with gr.Row():
- infer_webui_box = gr.Textbox(
- label="提示信息", interactive=False
- )
-
- with gr.TabItem("模型压缩"):
- with gr.Row():
- compress_config = gr.Textbox(
- label="压缩配置文件", info="模型对应的config.json"
- )
- with gr.Row():
- compress_input_path = gr.Textbox(
- label="待压缩模型路径", info="所谓的模型是:G_{步数}.pth"
- )
- with gr.Row():
- compress_output_path = gr.Textbox(
- label="输出模型路径",
- info="输出为:G_{步数}_release.pth",
- value="在待压缩模型路径的同一文件夹下",
- interactive=False,
- )
- with gr.Row():
- compress_btn = gr.Button(
- value="压缩模型", variant="primary"
- )
- with gr.Row():
- compress_status = gr.Textbox(label="状态信息")
- with gr.Tabs():
- with gr.TabItem("yaml配置文件状态"):
- code_config_yml = gr.Code(
- interactive=False,
- label=yml_config,
- value=load_yaml_data_in_raw(),
- language="yaml",
- elem_id="yml_code",
- )
- with gr.TabItem("带注释的yaml配置文件"):
- code_default_yml = gr.Code(
- interactive=False,
- label=default_yaml_path,
- value=load_yaml_data_in_raw(default_yaml_path),
- language="yaml",
- elem_id="yml_code",
- )
- with gr.TabItem("训练的json配置文件"):
- code_train_config_json = gr.Code(
- interactive=False,
- label=default_config_path,
- value=load_json_data_in_raw(default_config_path),
- language="json",
- elem_id="json_code",
- )
- with gr.TabItem("推理的json配置文件"):
- code_infer_config_json = gr.Code(
- interactive=False,
- label=default_config_path,
- value=load_json_data_in_raw(default_config_path),
- language="json",
- elem_id="json_code",
- )
- with gr.TabItem("其他状态"):
- code_gpu_json = gr.Code(
- label="本机资源使用情况",
- interactive=False,
- value=get_status(),
- language="json",
- elem_id="gpu_code",
- )
- gpu_json_btn = gr.Button(value="刷新本机状态")
-
- openi_token_btn.click(
- fn=fill_openi_token,
- inputs=[openi_token_box],
- outputs=[openi_token_status, code_config_yml],
- )
- check_pth_btn1.click(
- fn=check_bert_models, inputs=[], outputs=[CheckboxGroup_bert_models]
- )
- check_pth_btn2.click(
- fn=check_emo_models, inputs=[], outputs=[CheckboxGroup_emo_models]
- )
- check_pth_btn3.click(
- fn=check_base_models, inputs=[], outputs=[CheckboxGroup_train_models]
- )
- data_path_btn.click(
- fn=modify_data_path,
- inputs=[dropdown_data_path],
- outputs=[
- dropdown_data_path,
- bert_dataset_box,
- train_dataset_box_1,
- train_dataset_box_2,
- code_config_yml,
- CheckboxGroup_train_models,
- ],
- )
- preprocess_config_btn.click(
- fn=modify_preprocess_param,
- inputs=[
- dropdown_filelist_path,
- preprocess_config_box,
- slider_val_per_spk,
- slider_max_val_total,
- ],
- outputs=[dropdown_filelist_path, code_config_yml],
- )
- preprocess_text_btn.click(
- fn=do_preprocess_text, inputs=[], outputs=[label_status]
- )
- resample_config_btn.click(
- fn=modify_resample_path,
- inputs=[resample_in_box, resample_out_box, dropdown_resample_sr],
- outputs=[
- resample_in_box,
- resample_out_box,
- resample_status,
- dropdown_resample_sr,
- code_config_yml,
- ],
- )
- resample_btn.click(
- fn=do_resample, inputs=[slider_resample_nps], outputs=[resample_status]
- )
- transcribe_btn.click(
- fn=do_transcript,
- inputs=[dropdown_lang, slider_transcribe],
- outputs=[preprocess_status_box],
- )
- extract_list_btn.click(
- fn=do_extract,
- inputs=[resample_in_box, dropdown_lang, unclean_box, char_name_box],
- outputs=[preprocess_status_box],
- )
- clean_trans_btn.click(
- fn=do_clean_list,
- inputs=[clean_txt_box, unclean_box, clean_box],
- outputs=[preprocess_status_box],
- )
- bert_config_btn.click(
- fn=modify_bert_config,
- inputs=[
- bert_config_box,
- slider_bert_nps,
- dropdown_bert_dev,
- radio_bert_multi,
- ],
- outputs=[
- bert_config_box,
- slider_bert_nps,
- dropdown_bert_dev,
- radio_bert_multi,
- code_config_yml,
- ],
- )
- bert_gen_btn.click(fn=do_bert_gen, inputs=[], outputs=[bert_status])
- emo_config_btn.click(
- fn=modify_emo_gen,
- inputs=[emo_config_box, slider_emo_nps, dropdown_emo_device],
- outputs=[emo_status, code_config_yml],
- )
- emo_gen_btn.click(fn=do_emo_gen, inputs=[], outputs=[emo_status])
- train_ms_load_btn.click(
- fn=load_train_param,
- inputs=[train_config_box],
- outputs=[
- train_output_box,
- code_train_config_json,
- slider_batch_size,
- slider_keep_ckpts,
- slider_log_interval,
- slider_eval_interval,
- slider_epochs,
- slider_lr,
- dropdown_version,
- ],
- )
- train_ms_path_btn.click(
- fn=modify_train_path,
- inputs=[train_model_box, train_config_box],
- outputs=[
- train_model_box,
- train_config_box,
- code_config_yml,
- CheckboxGroup_train_models,
- ],
- )
- train_ms_param_btn.click(
- fn=modify_train_param,
- inputs=[
- slider_batch_size,
- slider_keep_ckpts,
- slider_log_interval,
- slider_eval_interval,
- slider_epochs,
- slider_lr,
- dropdown_version,
- ],
- outputs=[train_output_box, code_train_config_json],
- )
- train_btn.click(fn=do_my_train, inputs=[], outputs=[train_output_box])
- train_btn_2.click(fn=do_my_train, inputs=[], outputs=[train_output_box])
- stop_train_btn.click(fn=stop_train_ms, inputs=[], outputs=[train_output_box])
- open_tb_btn.click(fn=do_tensorboard, inputs=[], outputs=[tb_output_box])
- stop_tb_btn.click(fn=stop_tensorboard, inputs=[], outputs=[tb_output_box])
- dropdown_model_fresh_btn.click(
- fn=list_infer_models,
- inputs=[],
- outputs=[dropdown_infer_model, dropdown_infer_config],
- )
- infer_config_btn.click(
- fn=modify_infer_param,
- inputs=[
- dropdown_infer_model,
- dropdown_infer_config,
- webui_port_box,
- radio_webui_share,
- radio_webui_debug,
- infer_ver_box,
- ],
- outputs=[infer_webui_box, code_config_yml, code_infer_config_json],
- )
- infer_webui_btn.click(fn=do_webui_infer, inputs=[], outputs=[infer_webui_box])
- compress_btn.click(
- fn=compress_model,
- inputs=[compress_config, compress_input_path, compress_output_path],
- outputs=[compress_status],
- )
- stop_infer_btn.click(fn=stop_webui_infer, inputs=[], outputs=[infer_webui_box])
- gpu_json_btn.click(fn=get_gpu_status, inputs=[], outputs=[code_gpu_json])
- os.environ["no_proxy"] = "localhost,127.0.0.1,0.0.0.0"
- webbrowser.open("http://127.0.0.1:6006")
- app.launch(share=False, server_port=6006)
diff --git a/asr_transcript.py b/asr_transcript.py
deleted file mode 100644
index a237b746f..000000000
--- a/asr_transcript.py
+++ /dev/null
@@ -1,102 +0,0 @@
-import argparse
-import concurrent.futures
-import os
-
-from loguru import logger
-from modelscope.pipelines import pipeline
-from modelscope.utils.constant import Tasks
-from tqdm import tqdm
-
-os.environ["MODELSCOPE_CACHE"] = "./"
-
-
-def transcribe_worker(file_path: str, inference_pipeline, language):
- """
- Worker function for transcribing a segment of an audio file.
- """
- rec_result = inference_pipeline(audio_in=file_path)
- text = str(rec_result.get("text", "")).strip()
- text_without_spaces = text.replace(" ", "")
- logger.info(file_path)
- if language != "EN":
- logger.info("text: " + text_without_spaces)
- return text_without_spaces
- else:
- logger.info("text: " + text)
- return text
-
-
-def transcribe_folder_parallel(folder_path, language, max_workers=4):
- """
- Transcribe all .wav files in the given folder using ThreadPoolExecutor.
- """
- logger.critical(f"parallel transcribe: {folder_path}|{language}|{max_workers}")
- if language == "JP":
- workers = [
- pipeline(
- task=Tasks.auto_speech_recognition,
- model="damo/speech_UniASR_asr_2pass-ja-16k-common-vocab93-tensorflow1-offline",
- )
- for _ in range(max_workers)
- ]
-
- elif language == "ZH":
- workers = [
- pipeline(
- task=Tasks.auto_speech_recognition,
- model="damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch",
- model_revision="v1.2.4",
- )
- for _ in range(max_workers)
- ]
- else:
- workers = [
- pipeline(
- task=Tasks.auto_speech_recognition,
- model="damo/speech_UniASR_asr_2pass-en-16k-common-vocab1080-tensorflow1-offline",
- )
- for _ in range(max_workers)
- ]
-
- file_paths = []
- langs = []
- for root, _, files in os.walk(folder_path):
- for file in files:
- if file.lower().endswith(".wav"):
- file_path = os.path.join(root, file)
- lab_file_path = os.path.splitext(file_path)[0] + ".lab"
- file_paths.append(file_path)
- langs.append(language)
-
- all_workers = (
- workers * (len(file_paths) // max_workers)
- + workers[: len(file_paths) % max_workers]
- )
-
- with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
- for i in tqdm(range(0, len(file_paths), max_workers), desc="转写进度: "):
- l, r = i, min(i + max_workers, len(file_paths))
- transcriptions = list(
- executor.map(
- transcribe_worker, file_paths[l:r], all_workers[l:r], langs[l:r]
- )
- )
- for file_path, transcription in zip(file_paths[l:r], transcriptions):
- if transcription:
- lab_file_path = os.path.splitext(file_path)[0] + ".lab"
- with open(lab_file_path, "w", encoding="utf-8") as lab_file:
- lab_file.write(transcription)
- logger.critical("已经将wav文件转写为同名的.lab文件")
-
-
-if __name__ == "__main__":
- parser = argparse.ArgumentParser()
- parser.add_argument(
- "-f", "--filepath", default="./raw/lzy_zh", help="path of your model"
- )
- parser.add_argument("-l", "--language", default="ZH", help="language")
- parser.add_argument("-w", "--workers", default="1", help="trans workers")
- args = parser.parse_args()
-
- transcribe_folder_parallel(args.filepath, args.language, int(args.workers))
- print("转写结束!")
diff --git a/clean_list.py b/clean_list.py
deleted file mode 100644
index 5bead9989..000000000
--- a/clean_list.py
+++ /dev/null
@@ -1,48 +0,0 @@
-import argparse
-import shutil
-from tempfile import NamedTemporaryFile
-
-from loguru import logger
-
-
-def remove_chars_from_file(chars_to_remove, input_file, output_file):
- rm_cnt = 0
- with open(input_file, "r", encoding="utf-8") as f_in, NamedTemporaryFile(
- "w", delete=False, encoding="utf-8"
- ) as f_tmp:
- for line in f_in:
- if any(char in line for char in chars_to_remove):
- logger.info(f"删除了这一行:\n {line.strip()}")
- rm_cnt += 1
- else:
- f_tmp.write(line)
-
- shutil.move(f_tmp.name, output_file)
- logger.critical(f"总计移除了: {rm_cnt} 行")
-
-
-if __name__ == "__main__":
- parser = argparse.ArgumentParser(
- description="Remove lines from a file containing specified characters."
- )
-
- parser.add_argument(
- "-c",
- "--chars",
- type=str,
- required=True,
- help="String of characters. If a line contains any of these characters, it will be removed.",
- )
- parser.add_argument(
- "-i", "--input", type=str, required=True, help="Path to the input file."
- )
- parser.add_argument(
- "-o", "--output", type=str, required=True, help="Path to the output file."
- )
-
- args = parser.parse_args()
-
- # Setting up basic logging configuration for loguru
- logger.add("removed_lines.log", rotation="1 MB")
-
- remove_chars_from_file(args.chars, args.input, args.output)
diff --git a/extract_list.py b/extract_list.py
deleted file mode 100644
index 1fdc6bf57..000000000
--- a/extract_list.py
+++ /dev/null
@@ -1,53 +0,0 @@
-import argparse
-import os
-from loguru import logger
-
-
-def extract_list(folder_path, language, name, transcript_txt_file):
- logger.info(f"extracting list: {folder_path}|{name}|{language}")
- current_dir = os.getcwd()
- relative_path = os.path.relpath(folder_path, current_dir)
- print(relative_path)
- os.makedirs(os.path.dirname(transcript_txt_file), exist_ok=True)
- with open(transcript_txt_file, "w", encoding="utf-8") as f:
- # 遍历 raw 文件夹下的所有子文件夹
- for root, _, files in os.walk(relative_path):
- for file in files:
- if file.endswith(".lab"):
- lab_file_path = os.path.join(root, file)
- # 读取转写文本
- with open(lab_file_path, "r", encoding="utf-8") as lab_file:
- transcription = lab_file.read().strip()
- if len(transcription) == 0:
- continue
- # 获取对应的 WAV 文件路径
- # ./Data/宵宫/audios/raw
- # ./Data/宵宫/audios/wavs
- wav_file_path = os.path.splitext(lab_file_path)[0] + ".wav"
- if os.path.isfile(wav_file_path):
- wav_file_path = wav_file_path.replace("\\", "/").replace(
- "/raw", "/wavs"
- )
- # 写入数据到总的转写文本文件
- line = f"{wav_file_path}|{name}|{language}|{transcription}\n"
- f.write(line)
- else:
- print("not exists!")
- return f"转写文本 {transcript_txt_file} 生成完成"
-
-
-if __name__ == "__main__":
- parser = argparse.ArgumentParser()
- parser.add_argument(
- "-f",
- "--filepath",
- required=True,
- help="path of your rawaudios, e.g. ./Data/xxx/audios/raw",
- )
- parser.add_argument("-l", "--language", default="ZH", help="language")
- parser.add_argument("-n", "--name", required=True, help="name of the character")
- parser.add_argument("-o", "--outfile", required=True, help="outfile")
- args = parser.parse_args()
-
- status_str = extract_list(args.filepath, args.language, args.name, args.outfile)
- logger.critical(status_str)