-
Notifications
You must be signed in to change notification settings - Fork 5
/
init_parameter.py
92 lines (62 loc) · 3.8 KB
/
init_parameter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
"""
modified from
https://github.com/thuiar/DeepAligned-Clustering/blob/main/init_parameter.py
"""
from argparse import ArgumentParser
def init_model():
parser = ArgumentParser()
parser.add_argument("--data_dir", default='data', type=str,
help="The input data dir. Should contain the .csv files (or other data files) for the task.")
parser.add_argument("--save_results_path", type=str, default='outputs',
help="The path to save results.")
parser.add_argument("--bert_model", default="bert-base-uncased", type=str,
help="The path or name for the pre-trained bert model.")
parser.add_argument("--tokenizer", default="bert-base-uncased", type=str,
help="The path or name for the tokenizer")
parser.add_argument("--feat_dim", default=768, type=int,
help="Bert feature dimension.")
parser.add_argument("--warmup_proportion", default=0.1, type=float,
help="Warmup proportion for optimizer.")
parser.add_argument("--save_model_path", default=None, type=str,
help="Path to save model checkpoints. Set to None if not save.")
parser.add_argument("--dataset", default=None, type=str, required=True,
help="Name of dataset.")
parser.add_argument("--known_cls_ratio", default=0.75, type=float, required=True,
help="The ratio of known classes.")
parser.add_argument('--seed', type=int, default=0,
help="Random seed.")
parser.add_argument("--method", type=str, default='CLNN',
help="The name of method.")
parser.add_argument("--labeled_ratio", default=0.1, type=float,
help="The ratio of labeled samples.")
parser.add_argument("--rtr_prob", default=0.25, type=float,
help="Probability for random token replacement")
parser.add_argument("--pretrain_batch_size", default=64, type=int,
help="Batch size for pre-training")
parser.add_argument("--train_batch_size", default=128, type=int,
help="Batch size for training.")
parser.add_argument("--eval_batch_size", default=64, type=int,
help="Batch size for evaluation.")
parser.add_argument("--wait_patient", default=20, type=int,
help="Patient steps for Early Stop in pretraining.")
parser.add_argument("--num_pretrain_epochs", default=100, type=float,
help="The pre-training epochs.")
parser.add_argument("--num_train_epochs", default=34, type=float,
help="The training epochs.")
parser.add_argument("--lr_pre", default=5e-5, type=float,
help="The learning rate for pre-training.")
parser.add_argument("--lr", default=1e-5, type=float,
help="The learning rate for training.")
parser.add_argument("--temp", default=0.07, type=float,
help="Temperature for contrastive loss")
parser.add_argument("--view_strategy", default="rtr", type=str,
help="Choose from rtr|shuffle|none")
parser.add_argument("--update_per_epoch", default=5, type=int,
help="Update pseudo labels after certain amount of epochs")
parser.add_argument("--report_pretrain", action="store_true",
help="Enable reporting performance right after pretrain")
parser.add_argument("--topk", default=50, type=int,
help="Select topk nearest neighbors")
parser.add_argument("--grad_clip", default=1, type=float,
help="Value for gradient clipping.")
return parser