forked from pytorch/opacus
-
Notifications
You must be signed in to change notification settings - Fork 0
/
conftest.py
76 lines (60 loc) · 2.28 KB
/
conftest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
import torch
from opacus import PrivacyEngine
from torch import nn
from torch.utils.data import DataLoader, TensorDataset
class MyCustomModel(nn.Module):
"""Demo module to use in doctests"""
def __init__(self):
super().__init__()
self.f = nn.Linear(5, 2)
def forward(self, x):
x = self.f(x)
return x
def create_demo_dataloader():
dataset = TensorDataset(torch.randn(64, 5), torch.randint(0, 2, (64,)))
dataloader = DataLoader(dataset, batch_size=8)
return dataloader
def _init_private_training():
model = MyCustomModel()
optimizer = torch.optim.SGD(model.parameters(), lr=0.05)
data_loader = create_demo_dataloader()
privacy_engine = PrivacyEngine()
model, optimizer, data_loader = privacy_engine.make_private(
module=model,
optimizer=optimizer,
data_loader=data_loader,
noise_multiplier=1.0,
max_grad_norm=1.0,
)
return model, optimizer, data_loader
@pytest.fixture(autouse=True)
def create_namespace(doctest_namespace):
"""
Initialize namespace for doctest.
Everything added to `doctest_namespace` will be available in the doctest.
"""
from typing import Any, Dict, List, Set, Tuple, Union # noqa
import numpy as np # noqa
import opacus # noqa
import torch # noqa
from torch import nn # noqa
# Adding all imports in the doctest namespace
doctest_namespace.update(**locals())
doctest_namespace["MyCustomModel"] = MyCustomModel
doctest_namespace["TensorDataset"] = TensorDataset
doctest_namespace["demo_dataloader"] = create_demo_dataloader()
doctest_namespace["_init_private_training"] = _init_private_training