forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_cpp_extensions_jit.py
1011 lines (853 loc) · 36.2 KB
/
test_cpp_extensions_jit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Owner(s): ["module: cpp-extensions"]
import glob
import os
import re
import shutil
import subprocess
import sys
import tempfile
import unittest
import warnings
import torch
import torch.backends.cudnn
import torch.multiprocessing as mp
import torch.testing._internal.common_utils as common
import torch.utils.cpp_extension
from torch.testing._internal.common_cuda import TEST_CUDA, TEST_CUDNN
from torch.testing._internal.common_utils import gradcheck
from torch.utils.cpp_extension import (
_TORCH_PATH,
check_compiler_is_gcc,
CUDA_HOME,
get_cxx_compiler,
remove_extension_h_precompiler_headers,
ROCM_HOME,
)
# define TEST_ROCM before changing TEST_CUDA
TEST_ROCM = TEST_CUDA and torch.version.hip is not None and ROCM_HOME is not None
TEST_CUDA = TEST_CUDA and CUDA_HOME is not None
TEST_MPS = torch.backends.mps.is_available()
IS_WINDOWS = sys.platform == "win32"
IS_LINUX = sys.platform.startswith("linux")
def remove_build_path():
default_build_root = torch.utils.cpp_extension.get_default_build_root()
if os.path.exists(default_build_root):
if IS_WINDOWS:
# rmtree returns permission error: [WinError 5] Access is denied
# on Windows, this is a word-around
subprocess.run(["rm", "-rf", default_build_root], stdout=subprocess.PIPE)
else:
shutil.rmtree(default_build_root)
# There's only one test that runs gracheck, run slow mode manually
@torch.testing._internal.common_utils.markDynamoStrictTest
class TestCppExtensionJIT(common.TestCase):
"""Tests just-in-time cpp extensions.
Don't confuse this with the PyTorch JIT (aka TorchScript).
"""
def setUp(self):
super().setUp()
# cpp extensions use relative paths. Those paths are relative to
# this file, so we'll change the working directory temporarily
self.old_working_dir = os.getcwd()
os.chdir(os.path.dirname(os.path.abspath(__file__)))
def tearDown(self):
super().tearDown()
# return the working directory (see setUp)
os.chdir(self.old_working_dir)
@classmethod
def setUpClass(cls):
remove_build_path()
@classmethod
def tearDownClass(cls):
remove_build_path()
def test_jit_compile_extension(self):
module = torch.utils.cpp_extension.load(
name="jit_extension",
sources=[
"cpp_extensions/jit_extension.cpp",
"cpp_extensions/jit_extension2.cpp",
],
extra_include_paths=[
"cpp_extensions",
"path / with spaces in it",
"path with quote'",
],
extra_cflags=["-g"],
verbose=True,
)
x = torch.randn(4, 4)
y = torch.randn(4, 4)
z = module.tanh_add(x, y)
self.assertEqual(z, x.tanh() + y.tanh())
# Checking we can call a method defined not in the main C++ file.
z = module.exp_add(x, y)
self.assertEqual(z, x.exp() + y.exp())
# Checking we can use this JIT-compiled class.
doubler = module.Doubler(2, 2)
self.assertIsNone(doubler.get().grad)
self.assertEqual(doubler.get().sum(), 4)
self.assertEqual(doubler.forward().sum(), 8)
@unittest.skipIf(not (TEST_CUDA or TEST_ROCM), "CUDA not found")
def test_jit_cuda_extension(self):
# NOTE: The name of the extension must equal the name of the module.
module = torch.utils.cpp_extension.load(
name="torch_test_cuda_extension",
sources=[
"cpp_extensions/cuda_extension.cpp",
"cpp_extensions/cuda_extension.cu",
],
extra_cuda_cflags=["-O2"],
verbose=True,
keep_intermediates=False,
)
x = torch.zeros(100, device="cuda", dtype=torch.float32)
y = torch.zeros(100, device="cuda", dtype=torch.float32)
z = module.sigmoid_add(x, y).cpu()
# 2 * sigmoid(0) = 2 * 0.5 = 1
self.assertEqual(z, torch.ones_like(z))
@unittest.skipIf(not TEST_MPS, "MPS not found")
def test_mps_extension(self):
module = torch.utils.cpp_extension.load(
name="torch_test_mps_extension",
sources=[
"cpp_extensions/mps_extension.mm",
],
verbose=True,
keep_intermediates=False,
)
tensor_length = 100000
x = torch.randn(tensor_length, device="cpu", dtype=torch.float32)
y = torch.randn(tensor_length, device="cpu", dtype=torch.float32)
cpu_output = module.get_cpu_add_output(x, y)
mps_output = module.get_mps_add_output(x.to("mps"), y.to("mps"))
self.assertEqual(cpu_output, mps_output.to("cpu"))
def _run_jit_cuda_archflags(self, flags, expected):
# Compile an extension with given `flags`
def _check_cuobjdump_output(expected_values, is_ptx=False):
elf_or_ptx = "--list-ptx" if is_ptx else "--list-elf"
lib_ext = ".pyd" if IS_WINDOWS else ".so"
# Note, .extension name may include _v1, _v2, so first find exact name
ext_filename = glob.glob(
os.path.join(temp_dir, "cudaext_archflag*" + lib_ext)
)[0]
command = ["cuobjdump", elf_or_ptx, ext_filename]
p = subprocess.Popen(
command, stdout=subprocess.PIPE, stderr=subprocess.PIPE
)
output, err = p.communicate()
output = output.decode("ascii")
err = err.decode("ascii")
if not p.returncode == 0 or not err == "":
raise AssertionError(
f"Flags: {flags}\nReturncode: {p.returncode}\nStderr: {err}\n"
f"Output: {output} "
)
actual_arches = sorted(re.findall(r"sm_\d\d", output))
expected_arches = sorted(["sm_" + xx for xx in expected_values])
self.assertEqual(
actual_arches,
expected_arches,
msg=f"Flags: {flags}, Actual: {actual_arches}, Expected: {expected_arches}\n"
f"Stderr: {err}\nOutput: {output}",
)
temp_dir = tempfile.mkdtemp()
old_envvar = os.environ.get("TORCH_CUDA_ARCH_LIST", None)
try:
os.environ["TORCH_CUDA_ARCH_LIST"] = flags
params = {
"name": "cudaext_archflags",
"sources": [
"cpp_extensions/cuda_extension.cpp",
"cpp_extensions/cuda_extension.cu",
],
"extra_cuda_cflags": ["-O2"],
"verbose": True,
"build_directory": temp_dir,
}
if IS_WINDOWS:
p = mp.Process(target=torch.utils.cpp_extension.load, kwargs=params)
# Compile and load the test CUDA arch in a different Python process to avoid
# polluting the current one and causes test_jit_cuda_extension to fail on
# Windows. There is no clear way to unload a module after it has been imported
# and torch.utils.cpp_extension.load builds and loads the module in one go.
# See https://github.com/pytorch/pytorch/issues/61655 for more details
p.start()
p.join()
else:
torch.utils.cpp_extension.load(**params)
# Expected output for --list-elf:
# ELF file 1: cudaext_archflags.1.sm_61.cubin
# ELF file 2: cudaext_archflags.2.sm_52.cubin
_check_cuobjdump_output(expected[0])
if expected[1] is not None:
# Expected output for --list-ptx:
# PTX file 1: cudaext_archflags.1.sm_61.ptx
_check_cuobjdump_output(expected[1], is_ptx=True)
finally:
if IS_WINDOWS:
# rmtree returns permission error: [WinError 5] Access is denied
# on Windows, this is a word-around
subprocess.run(["rm", "-rf", temp_dir], stdout=subprocess.PIPE)
else:
shutil.rmtree(temp_dir)
if old_envvar is None:
os.environ.pop("TORCH_CUDA_ARCH_LIST")
else:
os.environ["TORCH_CUDA_ARCH_LIST"] = old_envvar
@unittest.skipIf(not TEST_CUDA, "CUDA not found")
@unittest.skipIf(TEST_ROCM, "disabled on rocm")
def test_jit_cuda_archflags(self):
# Test a number of combinations:
# - the default for the machine we're testing on
# - Separators, can be ';' (most common) or ' '
# - Architecture names
# - With/without '+PTX'
n = torch.cuda.device_count()
capabilities = {torch.cuda.get_device_capability(i) for i in range(n)}
# expected values is length-2 tuple: (list of ELF, list of PTX)
# note: there should not be more than one PTX value
archflags = {
"": (
[f"{capability[0]}{capability[1]}" for capability in capabilities],
None,
),
"Maxwell+Tegra;6.1": (["53", "61"], None),
"Volta": (["70"], ["70"]),
}
archflags["7.5+PTX"] = (["75"], ["75"])
archflags["5.0;6.0+PTX;7.0;7.5"] = (["50", "60", "70", "75"], ["60"])
if int(torch.version.cuda.split(".")[0]) < 12:
# CUDA 12 drops compute capability < 5.0
archflags["Pascal 3.5"] = (["35", "60", "61"], None)
for flags, expected in archflags.items():
try:
self._run_jit_cuda_archflags(flags, expected)
except RuntimeError as e:
# Using the device default (empty flags) may fail if the device is newer than the CUDA compiler
# This raises a RuntimeError with a specific message which we explicitly ignore here
if not flags and "Error building" in str(e):
pass
else:
raise
try:
torch.cuda.synchronize()
except RuntimeError:
# Ignore any error, e.g. unsupported PTX code on current device
# to avoid errors from here leaking into other tests
pass
@unittest.skipIf(not TEST_CUDNN, "CuDNN not found")
@unittest.skipIf(TEST_ROCM, "Not supported on ROCm")
def test_jit_cudnn_extension(self):
# implementation of CuDNN ReLU
if IS_WINDOWS:
extra_ldflags = ["cudnn.lib"]
else:
extra_ldflags = ["-lcudnn"]
module = torch.utils.cpp_extension.load(
name="torch_test_cudnn_extension",
sources=["cpp_extensions/cudnn_extension.cpp"],
extra_ldflags=extra_ldflags,
verbose=True,
with_cuda=True,
)
x = torch.randn(100, device="cuda", dtype=torch.float32)
y = torch.zeros(100, device="cuda", dtype=torch.float32)
module.cudnn_relu(x, y) # y=relu(x)
self.assertEqual(torch.nn.functional.relu(x), y)
with self.assertRaisesRegex(RuntimeError, "same size"):
y_incorrect = torch.zeros(20, device="cuda", dtype=torch.float32)
module.cudnn_relu(x, y_incorrect)
def test_inline_jit_compile_extension_with_functions_as_list(self):
cpp_source = """
torch::Tensor tanh_add(torch::Tensor x, torch::Tensor y) {
return x.tanh() + y.tanh();
}
"""
module = torch.utils.cpp_extension.load_inline(
name="inline_jit_extension_with_functions_list",
cpp_sources=cpp_source,
functions="tanh_add",
verbose=True,
)
self.assertEqual(module.tanh_add.__doc__.split("\n")[2], "tanh_add")
x = torch.randn(4, 4)
y = torch.randn(4, 4)
z = module.tanh_add(x, y)
self.assertEqual(z, x.tanh() + y.tanh())
def test_inline_jit_compile_extension_with_functions_as_dict(self):
cpp_source = """
torch::Tensor tanh_add(torch::Tensor x, torch::Tensor y) {
return x.tanh() + y.tanh();
}
"""
module = torch.utils.cpp_extension.load_inline(
name="inline_jit_extension_with_functions_dict",
cpp_sources=cpp_source,
functions={"tanh_add": "Tanh and then sum :D"},
verbose=True,
)
self.assertEqual(module.tanh_add.__doc__.split("\n")[2], "Tanh and then sum :D")
def test_inline_jit_compile_extension_multiple_sources_and_no_functions(self):
cpp_source1 = """
torch::Tensor sin_add(torch::Tensor x, torch::Tensor y) {
return x.sin() + y.sin();
}
"""
cpp_source2 = """
#include <torch/extension.h>
torch::Tensor sin_add(torch::Tensor x, torch::Tensor y);
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("sin_add", &sin_add, "sin(x) + sin(y)");
}
"""
module = torch.utils.cpp_extension.load_inline(
name="inline_jit_extension",
cpp_sources=[cpp_source1, cpp_source2],
verbose=True,
)
x = torch.randn(4, 4)
y = torch.randn(4, 4)
z = module.sin_add(x, y)
self.assertEqual(z, x.sin() + y.sin())
@unittest.skip("Temporarily disabled")
@unittest.skipIf(not (TEST_CUDA or TEST_ROCM), "CUDA not found")
def test_inline_jit_compile_extension_cuda(self):
cuda_source = """
__global__ void cos_add_kernel(
const float* __restrict__ x,
const float* __restrict__ y,
float* __restrict__ output,
const int size) {
const auto index = blockIdx.x * blockDim.x + threadIdx.x;
if (index < size) {
output[index] = __cosf(x[index]) + __cosf(y[index]);
}
}
torch::Tensor cos_add(torch::Tensor x, torch::Tensor y) {
auto output = torch::zeros_like(x);
const int threads = 1024;
const int blocks = (output.numel() + threads - 1) / threads;
cos_add_kernel<<<blocks, threads>>>(x.data<float>(), y.data<float>(), output.data<float>(), output.numel());
return output;
}
"""
# Here, the C++ source need only declare the function signature.
cpp_source = "torch::Tensor cos_add(torch::Tensor x, torch::Tensor y);"
module = torch.utils.cpp_extension.load_inline(
name="inline_jit_extension_cuda",
cpp_sources=cpp_source,
cuda_sources=cuda_source,
functions=["cos_add"],
verbose=True,
)
self.assertEqual(module.cos_add.__doc__.split("\n")[2], "cos_add")
x = torch.randn(4, 4, device="cuda", dtype=torch.float32)
y = torch.randn(4, 4, device="cuda", dtype=torch.float32)
z = module.cos_add(x, y)
self.assertEqual(z, x.cos() + y.cos())
@unittest.skip("Temporarily disabled")
@unittest.skipIf(not (TEST_CUDA or TEST_ROCM), "CUDA not found")
def test_inline_jit_compile_custom_op_cuda(self):
cuda_source = """
__global__ void cos_add_kernel(
const float* __restrict__ x,
const float* __restrict__ y,
float* __restrict__ output,
const int size) {
const auto index = blockIdx.x * blockDim.x + threadIdx.x;
if (index < size) {
output[index] = __cosf(x[index]) + __cosf(y[index]);
}
}
torch::Tensor cos_add(torch::Tensor x, torch::Tensor y) {
auto output = torch::zeros_like(x);
const int threads = 1024;
const int blocks = (output.numel() + threads - 1) / threads;
cos_add_kernel<<<blocks, threads>>>(x.data_ptr<float>(), y.data_ptr<float>(), output.data_ptr<float>(), output.numel());
return output;
}
"""
# Here, the C++ source need only declare the function signature.
cpp_source = """
#include <torch/library.h>
torch::Tensor cos_add(torch::Tensor x, torch::Tensor y);
TORCH_LIBRARY(inline_jit_extension_custom_op_cuda, m) {
m.def("cos_add", cos_add);
}
"""
torch.utils.cpp_extension.load_inline(
name="inline_jit_extension_custom_op_cuda",
cpp_sources=cpp_source,
cuda_sources=cuda_source,
verbose=True,
is_python_module=False,
)
x = torch.randn(4, 4, device="cuda", dtype=torch.float32)
y = torch.randn(4, 4, device="cuda", dtype=torch.float32)
z = torch.ops.inline_jit_extension_custom_op_cuda.cos_add(x, y)
self.assertEqual(z, x.cos() + y.cos())
def test_inline_jit_compile_extension_throws_when_functions_is_bad(self):
with self.assertRaises(ValueError):
torch.utils.cpp_extension.load_inline(
name="invalid_jit_extension", cpp_sources="", functions=5
)
def test_lenient_flag_handling_in_jit_extensions(self):
cpp_source = """
torch::Tensor tanh_add(torch::Tensor x, torch::Tensor y) {
return x.tanh() + y.tanh();
}
"""
module = torch.utils.cpp_extension.load_inline(
name="lenient_flag_handling_extension",
cpp_sources=cpp_source,
functions="tanh_add",
extra_cflags=["-g\n\n", "-O0 -Wall"],
extra_include_paths=[" cpp_extensions\n"],
verbose=True,
)
x = torch.zeros(100, dtype=torch.float32)
y = torch.zeros(100, dtype=torch.float32)
z = module.tanh_add(x, y).cpu()
self.assertEqual(z, x.tanh() + y.tanh())
@unittest.skip("Temporarily disabled")
@unittest.skipIf(not (TEST_CUDA or TEST_ROCM), "CUDA not found")
def test_half_support(self):
"""
Checks for an issue with operator< ambiguity for half when certain
THC headers are included.
See https://github.com/pytorch/pytorch/pull/10301#issuecomment-416773333
for the corresponding issue.
"""
cuda_source = """
template<typename T, typename U>
__global__ void half_test_kernel(const T* input, U* output) {
if (input[0] < input[1] || input[0] >= input[1]) {
output[0] = 123;
}
}
torch::Tensor half_test(torch::Tensor input) {
auto output = torch::empty(1, input.options().dtype(torch::kFloat));
AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.scalar_type(), "half_test", [&] {
half_test_kernel<scalar_t><<<1, 1>>>(
input.data<scalar_t>(),
output.data<float>());
});
return output;
}
"""
module = torch.utils.cpp_extension.load_inline(
name="half_test_extension",
cpp_sources="torch::Tensor half_test(torch::Tensor input);",
cuda_sources=cuda_source,
functions=["half_test"],
verbose=True,
)
x = torch.randn(3, device="cuda", dtype=torch.half)
result = module.half_test(x)
self.assertEqual(result[0], 123)
def test_reload_jit_extension(self):
def compile(code):
return torch.utils.cpp_extension.load_inline(
name="reloaded_jit_extension",
cpp_sources=code,
functions="f",
verbose=True,
)
module = compile("int f() { return 123; }")
self.assertEqual(module.f(), 123)
module = compile("int f() { return 456; }")
self.assertEqual(module.f(), 456)
module = compile("int f() { return 456; }")
self.assertEqual(module.f(), 456)
module = compile("int f() { return 789; }")
self.assertEqual(module.f(), 789)
def test_cpp_frontend_module_has_same_output_as_python(self, dtype=torch.double):
extension = torch.utils.cpp_extension.load(
name="cpp_frontend_extension",
sources="cpp_extensions/cpp_frontend_extension.cpp",
verbose=True,
)
input = torch.randn(2, 5, dtype=dtype)
cpp_linear = extension.Net(5, 2)
cpp_linear.to(dtype)
python_linear = torch.nn.Linear(5, 2).to(dtype)
# First make sure they have the same parameters
cpp_parameters = dict(cpp_linear.named_parameters())
with torch.no_grad():
python_linear.weight.copy_(cpp_parameters["fc.weight"])
python_linear.bias.copy_(cpp_parameters["fc.bias"])
cpp_output = cpp_linear.forward(input)
python_output = python_linear(input)
self.assertEqual(cpp_output, python_output)
cpp_output.sum().backward()
python_output.sum().backward()
for p in cpp_linear.parameters():
self.assertFalse(p.grad is None)
self.assertEqual(cpp_parameters["fc.weight"].grad, python_linear.weight.grad)
self.assertEqual(cpp_parameters["fc.bias"].grad, python_linear.bias.grad)
def test_cpp_frontend_module_python_inter_op(self):
extension = torch.utils.cpp_extension.load(
name="cpp_frontend_extension",
sources="cpp_extensions/cpp_frontend_extension.cpp",
verbose=True,
)
# Create a torch.nn.Module which uses the C++ module as a submodule.
class M(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.x = torch.nn.Parameter(torch.tensor(1.0))
self.net = extension.Net(3, 5)
def forward(self, input):
return self.net.forward(input) + self.x
net = extension.Net(5, 2)
net.double()
net.to(torch.get_default_dtype())
self.assertEqual(str(net), "Net")
# Further embed the torch.nn.Module into a Sequential, and also add the
# C++ module as an element of the Sequential.
sequential = torch.nn.Sequential(M(), torch.nn.Tanh(), net, torch.nn.Sigmoid())
input = torch.randn(2, 3)
# Try calling the module!
output = sequential.forward(input)
# The call operator is bound to forward too.
self.assertEqual(output, sequential(input))
self.assertEqual(list(output.shape), [2, 2])
# Do changes on the module hierarchy.
old_dtype = torch.get_default_dtype()
sequential.to(torch.float64)
sequential.to(torch.float32)
sequential.to(old_dtype)
self.assertEqual(sequential[2].parameters()[0].dtype, old_dtype)
# Make sure we can access these methods recursively.
self.assertEqual(
len(list(sequential.parameters())), len(net.parameters()) * 2 + 1
)
self.assertEqual(
len(list(sequential.named_parameters())),
len(net.named_parameters()) * 2 + 1,
)
self.assertEqual(len(list(sequential.buffers())), len(net.buffers()) * 2)
self.assertEqual(len(list(sequential.modules())), 8)
# Test clone()
net2 = net.clone()
self.assertEqual(len(net.parameters()), len(net2.parameters()))
self.assertEqual(len(net.buffers()), len(net2.buffers()))
self.assertEqual(len(net.modules()), len(net2.modules()))
# Try differentiating through the whole module.
for parameter in net.parameters():
self.assertIsNone(parameter.grad)
output.sum().backward()
for parameter in net.parameters():
self.assertFalse(parameter.grad is None)
self.assertGreater(parameter.grad.sum(), 0)
# Try calling zero_grad()
net.zero_grad()
for p in net.parameters():
assert p.grad is None, "zero_grad defaults to setting grads to None"
# Test train(), eval(), training (a property)
self.assertTrue(net.training)
net.eval()
self.assertFalse(net.training)
net.train()
self.assertTrue(net.training)
net.eval()
# Try calling the additional methods we registered.
biased_input = torch.randn(4, 5)
output_before = net.forward(biased_input)
bias = net.get_bias().clone()
self.assertEqual(list(bias.shape), [2])
net.set_bias(bias + 1)
self.assertEqual(net.get_bias(), bias + 1)
output_after = net.forward(biased_input)
self.assertNotEqual(output_before, output_after)
# Try accessing parameters
self.assertEqual(len(net.parameters()), 2)
np = net.named_parameters()
self.assertEqual(len(np), 2)
self.assertIn("fc.weight", np)
self.assertIn("fc.bias", np)
self.assertEqual(len(net.buffers()), 1)
nb = net.named_buffers()
self.assertEqual(len(nb), 1)
self.assertIn("buf", nb)
self.assertEqual(nb[0][1], torch.eye(5))
def test_cpp_frontend_module_has_up_to_date_attributes(self):
extension = torch.utils.cpp_extension.load(
name="cpp_frontend_extension",
sources="cpp_extensions/cpp_frontend_extension.cpp",
verbose=True,
)
net = extension.Net(5, 2)
self.assertEqual(len(net._parameters), 0)
net.add_new_parameter("foo", torch.eye(5))
self.assertEqual(len(net._parameters), 1)
self.assertEqual(len(net._buffers), 1)
net.add_new_buffer("bar", torch.eye(5))
self.assertEqual(len(net._buffers), 2)
self.assertEqual(len(net._modules), 1)
net.add_new_submodule("fc2")
self.assertEqual(len(net._modules), 2)
@unittest.skipIf(not (TEST_CUDA or TEST_ROCM), "CUDA not found")
def test_cpp_frontend_module_python_inter_op_with_cuda(self):
extension = torch.utils.cpp_extension.load(
name="cpp_frontend_extension",
sources="cpp_extensions/cpp_frontend_extension.cpp",
verbose=True,
)
net = extension.Net(5, 2)
for p in net.parameters():
self.assertTrue(p.device.type == "cpu")
cpu_parameters = [p.clone() for p in net.parameters()]
device = torch.device("cuda", 0)
net.to(device)
for i, p in enumerate(net.parameters()):
self.assertTrue(p.device.type == "cuda")
self.assertTrue(p.device.index == 0)
self.assertEqual(cpu_parameters[i], p)
net.cpu()
net.add_new_parameter("a", torch.eye(5))
net.add_new_parameter("b", torch.eye(5))
net.add_new_buffer("c", torch.eye(5))
net.add_new_buffer("d", torch.eye(5))
net.add_new_submodule("fc2")
net.add_new_submodule("fc3")
for p in net.parameters():
self.assertTrue(p.device.type == "cpu")
net.cuda()
for p in net.parameters():
self.assertTrue(p.device.type == "cuda")
def test_returns_shared_library_path_when_is_python_module_is_true(self):
source = """
#include <torch/script.h>
torch::Tensor func(torch::Tensor x) { return x; }
static torch::RegisterOperators r("test::func", &func);
"""
torch.utils.cpp_extension.load_inline(
name="is_python_module",
cpp_sources=source,
functions="func",
verbose=True,
is_python_module=False,
)
self.assertEqual(torch.ops.test.func(torch.eye(5)), torch.eye(5))
def test_set_default_type_also_changes_aten_default_type(self):
module = torch.utils.cpp_extension.load_inline(
name="test_set_default_type",
cpp_sources="torch::Tensor get() { return torch::empty({}); }",
functions="get",
verbose=True,
)
initial_default = torch.get_default_dtype()
try:
self.assertEqual(module.get().dtype, initial_default)
torch.set_default_dtype(torch.float64)
self.assertEqual(module.get().dtype, torch.float64)
torch.set_default_dtype(torch.float32)
self.assertEqual(module.get().dtype, torch.float32)
torch.set_default_dtype(torch.float16)
self.assertEqual(module.get().dtype, torch.float16)
finally:
torch.set_default_dtype(initial_default)
def test_compilation_error_formatting(self):
# Test that the missing-semicolon error message has linebreaks in it.
# This'll fail if the message has been munged into a single line.
# It's hard to write anything more specific as every compiler has it's own
# error formatting.
with self.assertRaises(RuntimeError) as e:
torch.utils.cpp_extension.load_inline(
name="test_compilation_error_formatting",
cpp_sources="int main() { return 0 }",
)
pattern = r".*(\\n|\\r).*"
self.assertNotRegex(str(e), pattern)
def test_warning(self):
# Note: the module created from this source will include the py::key_error
# symbol. But because of visibility and the fact that it lives in a
# different compilation unit than pybind, this trips up ubsan even though
# it is fine. "ubsan.supp" thus needs to contain "vptr:warn_mod.so".
source = """
// error_type:
// 0: no error
// 1: torch::TypeError
// 2: python_error()
// 3: py::error_already_set
at::Tensor foo(at::Tensor x, int error_type) {
std::ostringstream err_stream;
err_stream << "Error with " << x.type();
TORCH_WARN(err_stream.str());
if(error_type == 1) {
throw torch::TypeError(err_stream.str().c_str());
}
if(error_type == 2) {
PyObject* obj = PyTuple_New(-1);
TORCH_CHECK(!obj);
// Pretend it was caught in a different thread and restored here
auto e = python_error();
e.persist();
e.restore();
throw e;
}
if(error_type == 3) {
throw py::key_error(err_stream.str());
}
return x.cos();
}
"""
# Ensure double type for hard-coded c name below
t = torch.rand(2).double()
cpp_tensor_name = r"CPUDoubleType"
# Without error handling, the warnings cannot be catched
warn_mod = torch.utils.cpp_extension.load_inline(
name="warn_mod",
cpp_sources=[source],
functions=["foo"],
with_pytorch_error_handling=False,
)
with warnings.catch_warnings(record=True) as w:
warn_mod.foo(t, 0)
self.assertEqual(len(w), 0)
with self.assertRaisesRegex(TypeError, t.type()):
warn_mod.foo(t, 1)
self.assertEqual(len(w), 0)
with self.assertRaisesRegex(
SystemError, "bad argument to internal function"
):
warn_mod.foo(t, 2)
self.assertEqual(len(w), 0)
with self.assertRaisesRegex(KeyError, cpp_tensor_name):
warn_mod.foo(t, 3)
self.assertEqual(len(w), 0)
warn_mod = torch.utils.cpp_extension.load_inline(
name="warn_mod",
cpp_sources=[source],
functions=["foo"],
with_pytorch_error_handling=True,
)
with warnings.catch_warnings(record=True) as w:
# Catched with no error should be detected
warn_mod.foo(t, 0)
self.assertEqual(len(w), 1)
# Catched with cpp error should also be detected
with self.assertRaisesRegex(TypeError, t.type()):
warn_mod.foo(t, 1)
self.assertEqual(len(w), 2)
# Catched with python error should also be detected
with self.assertRaisesRegex(
SystemError, "bad argument to internal function"
):
warn_mod.foo(t, 2)
self.assertEqual(len(w), 3)
# Catched with pybind error should also be detected
# Note that there is no type name translation for pybind errors
with self.assertRaisesRegex(KeyError, cpp_tensor_name):
warn_mod.foo(t, 3)
self.assertEqual(len(w), 4)
# Make sure raising warnings are handled properly
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("error")
# No error, the warning should raise
with self.assertRaisesRegex(UserWarning, t.type()):
warn_mod.foo(t, 0)
self.assertEqual(len(w), 0)
# Another error happened, the warning is ignored
with self.assertRaisesRegex(TypeError, t.type()):
warn_mod.foo(t, 1)
self.assertEqual(len(w), 0)
def test_autograd_from_cpp(self):
source = """
void run_back(at::Tensor x) {
x.backward({});
}
void run_back_no_gil(at::Tensor x) {
pybind11::gil_scoped_release no_gil;
x.backward({});
}
"""
class MyFn(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
return x.clone()
@staticmethod
def backward(ctx, gx):
return gx
test_backward_deadlock = torch.utils.cpp_extension.load_inline(
name="test_backward_deadlock",
cpp_sources=[source],
functions=["run_back", "run_back_no_gil"],
)
# This used to deadlock
inp = torch.rand(20, requires_grad=True)
loss = MyFn.apply(inp).sum()
with self.assertRaisesRegex(
RuntimeError, "The autograd engine was called while holding the GIL."
):
test_backward_deadlock.run_back(loss)
inp = torch.rand(20, requires_grad=True)
loss = MyFn.apply(inp).sum()
test_backward_deadlock.run_back_no_gil(loss)
def test_custom_compound_op_autograd(self):
# Test that a custom compound op (i.e. a custom op that just calls other aten ops)
# correctly returns gradients of those other ops
source = """
#include <torch/library.h>
torch::Tensor my_add(torch::Tensor x, torch::Tensor y) {
return x + y;
}
TORCH_LIBRARY(my, m) {
m.def("add", &my_add);
}
"""
torch.utils.cpp_extension.load_inline(
name="is_python_module",
cpp_sources=source,
verbose=True,
is_python_module=False,
)
a = torch.randn(5, 5, requires_grad=True)
b = torch.randn(5, 5, requires_grad=True)
for fast_mode in (True, False):
gradcheck(torch.ops.my.add, [a, b], eps=1e-2, fast_mode=fast_mode)
def test_custom_functorch_error(self):
# Test that a custom C++ Function raises an error under functorch transforms
identity_m = torch.utils.cpp_extension.load(
name="identity",
sources=["cpp_extensions/identity.cpp"],
)
t = torch.randn(3, requires_grad=True)
msg = r"cannot use C\+\+ torch::autograd::Function with functorch"
with self.assertRaisesRegex(RuntimeError, msg):
torch.func.vmap(identity_m.identity)(t)
with self.assertRaisesRegex(RuntimeError, msg):
torch.func.grad(identity_m.identity)(t)
def test_gen_extension_h_pch(self):
if not IS_LINUX:
return
source = """
at::Tensor sin_add(at::Tensor x, at::Tensor y) {
return x.sin() + y.sin();
}
"""
head_file_pch = os.path.join(_TORCH_PATH, "include", "torch", "extension.h.gch")
head_file_signature = os.path.join(
_TORCH_PATH, "include", "torch", "extension.h.sign"
)
remove_extension_h_precompiler_headers()
pch_exist = os.path.exists(head_file_pch)
signature_exist = os.path.exists(head_file_signature)
self.assertEqual(pch_exist, False)
self.assertEqual(signature_exist, False)
torch.utils.cpp_extension.load_inline(
name="inline_extension_with_pch",
cpp_sources=[source],
functions=["sin_add"],
verbose=True,
use_pch=True,
)