forked from apigott/GridLearn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
executable file
·51 lines (43 loc) · 2.26 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# Run this again after editing submodules so Colab uses the updated versions
from citylearn import CityLearn
from pathlib import Path
from agent import Agent
import numpy as np
import torch
# Load environment
climate_zone = 5
params = {'data_path':Path("data/Climate_Zone_"+str(climate_zone)),
'building_attributes':'building_attributes.json',
'weather_file':'weather_data.csv',
'solar_profile':'solar_generation_1kW.csv',
'carbon_intensity':'carbon_intensity.csv',
'building_ids':["Building_"+str(i) for i in [1,2,3,4,5,6,7,8,9]],
'buildings_states_actions':'buildings_state_action_space.json',
'simulation_period': (0, 8760*4-1),
'cost_function': ['ramping','1-load_factor','average_daily_peak','peak_demand','net_electricity_consumption','carbon_emissions'],
'central_agent': False,
'save_memory': False }
# Contain the lower and upper bounds of the states and actions, to be provided to the agent to normalize the variables between 0 and 1.
env = CityLearn(**params)
observations_spaces, actions_spaces = env.get_state_action_spaces()
# Provides information on Building type, Climate Zone, Annual DHW demand, Annual Cooling Demand, Annual Electricity Demand, Solar Capacity, and correllations among buildings
building_info = env.get_building_information()
params_agent = {'building_ids':["Building_"+str(i) for i in [1,2,3,4,5,6,7,8,9]],
'buildings_states_actions':'buildings_state_action_space.json',
'building_info':building_info,
'observation_spaces':observations_spaces,
'action_spaces':actions_spaces
}
# Instantiating the control agent(s)
agents = Agent(**params_agent)
state = env.reset()
done = False
action, coordination_vars = agents.select_action(state)
while not done:
next_state, reward, done, _ = env.step(action)
action_next, coordination_vars_next = agents.select_action(next_state)
agents.add_to_buffer(state, action, reward, next_state, done, coordination_vars, coordination_vars_next)
coordination_vars = coordination_vars_next
state = next_state
action = action_next
env.cost()