Unsupervised Graph Embeddings for Session-based Recommendation with Item Features.
Use pipenv
to create virtual environment.
Diginetica & Tmall datasets can be found under: https://drive.google.com/drive/folders/1ritDnO_Zc6DFEU6UND9C8VCisT0ETVp5
Copy raw datasets to data
folder.
Tmall dataset as example:
-
Preprocessing: in
dataset
folder, run:python tmall.py
-
Generate GNN embeddings: in
gnn
folder, run:python bgrl.py --config ./config/tmall/bgrl.yaml
-
Run sequential model training: in
seq_rec
folder, run:python run.py --config config/tmall/gru4recgnn.yaml
Change config paths for different datasets and models.
See Pipfile
.
@inproceedings{peintner:cars:2022,
author = {Andreas Peintner, Marta Moscati, Emilia Parada-Cabaleiro, Markus Schedl, Eva Zangerle},
booktitle = {CARS: Workshop on Context-Aware Recommender Systems (RecSys ’22)},
title = {Unsupervised Graph Embeddings for Session-based Recommendation with Item Features},
year = {2022}
}