forked from shadowpa0327/Palu
-
Notifications
You must be signed in to change notification settings - Fork 0
/
compress.py
127 lines (107 loc) · 3.3 KB
/
compress.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import argparse
import torch
import sys
from loguru import logger
from utils import set_seed, dump_to_huggingface_repos, load_model_and_tokenizer
from palu.rank_search import rank_search
from tqdm import tqdm
from palu.decomposition import compress_model_whiten
import os
def compress(args):
# set seed
set_seed(args.seed)
# load model and tokenizer
logger.info("Loading model and tokenizer...")
model, tokenizer = load_model_and_tokenizer(args.model_id)
model.to(torch.device(args.device))
# Step 1: Perform rank selection to get layer-wise compression rate
search_results, rank_sum, total_rank = rank_search(model, tokenizer, args)
# Step 2: Compress models
compress_model_whiten(model, tokenizer, args, torch.device("cuda"), search_results)
if args.dump_huggingface_model:
save_folder = f"{args.model_id.split('/')[-1]}_ratio-{args.param_ratio_target}_gs-{args.head_group_size}-{args.search_method}"
dump_to_huggingface_repos(model, tokenizer, save_folder, args)
logger.info(f"Huggingface model is saved to {save_folder}", fg="green")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_id",
type=str,
default="meta-llama/Llama-2-7b-hf",
help="Pretrained model ID"
)
parser.add_argument(
"--seed",
type=int,
default=42,
help="Random Seed"
)
parser.add_argument(
"--dump_huggingface_model",
action="store_true",
help="Whether to dump huggingface model or not."
)
parser.add_argument(
"--use_cache",
action="store_true",
help="Whether to use cached calibration results or not.",
)
parser.add_argument(
"--device",
type=str,
default="cuda"
)
parser.add_argument(
"--n_fisher_calib_samples",
type=int,
default=32,
help="Number of samples used for calibration.",
)
parser.add_argument(
"--n_whiten_calib_samples",
type=int,
default=256,
help="Number of samples used for calibration.",
)
parser.add_argument(
"--calib_dataset",
type=str,
default="wikitext2",
choices=["wikitext2", "c4", "ptb"],
help="Calibration dataset",
)
parser.add_argument(
"--calib_seqlen",
type=int,
default=1024,
help="Sequence length of the calibration dataset."
)
parser.add_argument(
"--head_group_size",
type=int,
default=4,
help="Group size for group-wise decomposition."
)
# Rank Search hyper-paramters
parser.add_argument(
"--param_ratio_target",
type=float,
default=-1,
help="Target param ratio"
)
parser.add_argument(
"--verbose",
action="store_true",
help="Whether to print verbose information or not."
)
parser.add_argument(
"--search_method",
type=str,
default="STRS",
choices=["fisher", "fisher_uniform", "uniform"],
help="Search method",
)
args = parser.parse_args()
logger.remove()
logger.add(lambda msg: tqdm.write(msg, end=""), colorize=True, level="INFO" if not args.verbose else "DEBUG")
compress(args)