-
Notifications
You must be signed in to change notification settings - Fork 42
/
pose.py
161 lines (121 loc) · 3.79 KB
/
pose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import numpy as np
from numpy import sin, cos
from math import pi as π
from my3d import camera_pose
from my.config import BaseConf
def get_K(H, W, FoV_x):
FoV_x = FoV_x / 180 * π # to rad
f = 1 / np.tan(FoV_x / 2) * (W / 2)
K = np.array([
[f, 0, -(W/2 - 0.5)],
[0, -f, -(H/2 - 0.5)],
[0, 0, -1]
])
return K
SIDEVIEW_PROMPTS = [
"front view of", "side view of", "backside view of", "side view of"
]
TOPVIEW_PROMPT = "overhead view of"
def train_eye_with_prompts(r, n):
hs = np.random.rand(n) * 360
vs = np.random.rand(n) * np.deg2rad(100)
vs = np.clip(vs, 1e-2, π-1e-2)
prompts = []
v_thresh = np.deg2rad(30)
for i in range(n):
_p = ""
if vs[i] < v_thresh:
_p = TOPVIEW_PROMPT
else:
_a = hs[i]
_a = (_a + 45) % 360
_quad = int(_a // 90)
_p = SIDEVIEW_PROMPTS[_quad]
prompts.append(_p)
θ = np.deg2rad(hs)
# φ = v
φ = np.arccos(1 - 2 * (vs / π))
horz = hs
elev = np.rad2deg(π / 2 - φ)
eyes = np.zeros((n, 3))
eyes[:, 0] = r * sin(φ) * cos(π-θ) # x
eyes[:, 2] = r * sin(φ) * sin(π-θ) # z
eyes[:, 1] = r * cos(φ) # y
return eyes, prompts, horz, elev
def spiral_poses(
radius, height,
num_steps=20, num_rounds=1,
center=np.array([0, 0, 0]), up=np.array([0, 1, 0]),
):
eyes = []
for i in range(num_steps):
ratio = (i + 1) / num_steps
Δz = height * (1 - ratio)
θ = ratio * (360 * num_rounds)
θ = θ / 180 * π
# _r = max(radius * ratio, 0.5)
_r = max(radius * sin(ratio * π / 2), 0.5)
Δx, Δy = _r * np.array([np.cos(θ), np.sin(θ)])
eyes.append(center + [Δx, Δz, Δy])
poses = [
camera_pose(e, center - e, up) for e in eyes
]
return poses
def circular_poses(
radius, height,
num_steps=36, num_rounds=1,
center=np.array([0, 0, 0]), up=np.array([0, 1, 0]),
):
eyes = []
horz = []
for i in range(num_steps):
ratio = (i + 1) / num_steps
Δz = radius * (np.cos(np.deg2rad(60)))
θ = ratio * (360 * num_rounds)
θ = θ / 180 * π
# _r = max(radius * ratio, 0.5)
_r = max(radius * sin(ratio * π / 2), 0.5)
Δx, Δy = radius * np.array([np.sin(np.deg2rad(60))*np.cos(θ), np.sin(np.deg2rad(60))*np.sin(θ)])
eyes.append(center + [Δx, Δz, Δy])
horz.append(np.rad2deg(θ))
poses = [
camera_pose(e, center - e, up) for e in eyes
]
horz=np.array(horz)
return poses
class PoseConfig(BaseConf):
rend_hw: int = 64
FoV: float = 60.0
R: float = 1.5
def make(self):
cfgs = self.dict()
hw = cfgs.pop("rend_hw")
cfgs["H"] = hw
cfgs["W"] = hw
return Poser(**cfgs)
class Poser():
def __init__(self, H, W, FoV, R):
self.H, self.W = H, W
self.R = R
self.K = get_K(H, W, FoV)
self.FoV = FoV
def sample_train(self, n, device):
eyes, prompts, horz, elev = train_eye_with_prompts(r=self.R, n=n)
up = np.array([0, 1, 0])
poses = [
camera_pose(e, -e, up) for e in eyes
]
poses = np.stack(poses, 0)
FoV = np.random.rand(n) * 30 + 40
random_Ks = [
get_K(self.H, self.W, FoV[i])
for i in range(len(poses))
]
angles_list = []
for horizontal, elevation, fov in zip(horz, elev, FoV):
angles_list.append([horizontal, elevation, fov])
return random_Ks, poses, prompts, angles_list
def sample_test(self, n):
poses = circular_poses(self.R, self.R, n, num_rounds=3)
poses = np.stack(poses, axis=0)
return self.K, poses