-
Notifications
You must be signed in to change notification settings - Fork 14
/
utils.py
323 lines (283 loc) · 11.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import os
import io
import json
import trimesh
import random
import matplotlib.pyplot as plt
import numpy as np
import cv2
import torch
def load_bop_meshes(model_path):
# load meshes
meshFiles = [f for f in os.listdir(model_path) if f.endswith('.ply')]
meshFiles.sort()
meshes = []
objID_2_clsID = {}
for i in range(len(meshFiles)):
mFile = meshFiles[i]
objId = int(os.path.splitext(mFile)[0][4:])
objID_2_clsID[str(objId)] = i
meshes.append(trimesh.load(model_path + mFile))
# print('mesh from "%s" is loaded' % (model_path + mFile))
#
return meshes, objID_2_clsID
def load_bbox_3d(jsonFile):
with open(jsonFile, 'r') as f:
bbox_3d = json.load(f)
return bbox_3d
def collect_mesh_bbox(meshpath, outjson, oriented=False):
meshes, _ = load_bop_meshes(meshpath)
allv = []
for ms in meshes:
if oriented:
bbox = ms.bounding_box_oriented.vertices
else:
bbox = ms.bounding_box.vertices
allv.append(bbox.tolist())
with open(outjson, 'w') as outfile:
json.dump(allv, outfile, indent=4)
def generate_shiftscalerotate_matrix(shift_limit, scale_limit, rotate_limit, width, height):
dw = int(width * shift_limit)
dh = int(height * shift_limit)
pleft = random.randint(-dw, dw)
ptop = random.randint(-dh, dh)
shiftM = np.array([[1.0, 0.0, -pleft], [0.0, 1.0, -ptop], [0.0, 0.0, 1.0]]) # translation
# random rotation and scaling
cx = width / 2 # fix the rotation center to the image center
cy = height / 2
ang = random.uniform(-rotate_limit, rotate_limit)
sfactor = random.uniform(-scale_limit, +scale_limit) + 1
tmp = cv2.getRotationMatrix2D((cx, cy), ang, sfactor) # rotation with scaling
rsM = np.concatenate((tmp, [[0, 0, 1]]), axis=0)
# combination
M = np.matmul(rsM, shiftM)
return M.astype(np.float32)
def draw_bounding_box(cvImg, R, T, bbox, intrinsics, color, thickness):
rep = np.matmul(intrinsics, np.matmul(R, bbox.T) + T)
x = np.int32(rep[0]/rep[2] + 0.5)
y = np.int32(rep[1]/rep[2] + 0.5)
bbox_lines = [0, 1, 0, 2, 0, 4, 5, 1, 5, 4, 6, 2, 6, 4, 3, 2, 3, 1, 7, 3, 7, 5, 7, 6]
for i in range(12):
id1 = bbox_lines[2*i]
id2 = bbox_lines[2*i+1]
cvImg = cv2.line(cvImg, (x[id1],y[id1]), (x[id2],y[id2]), color, thickness=thickness, lineType=cv2.LINE_AA)
return cvImg
def draw_pose_axis(cvImg, R, T, bbox, intrinsics, thickness):
radius = np.linalg.norm(bbox, axis=1).mean()
aPts = np.array([[0,0,0],[0,0,radius],[0,radius,0],[radius,0,0]])
rep = np.matmul(intrinsics, np.matmul(R, aPts.T) + T)
x = np.int32(rep[0]/rep[2] + 0.5)
y = np.int32(rep[1]/rep[2] + 0.5)
cvImg = cv2.line(cvImg, (x[0],y[0]), (x[1],y[1]), (0,0,255), thickness=thickness, lineType=cv2.LINE_AA)
cvImg = cv2.line(cvImg, (x[0],y[0]), (x[2],y[2]), (0,255,0), thickness=thickness, lineType=cv2.LINE_AA)
cvImg = cv2.line(cvImg, (x[0],y[0]), (x[3],y[3]), (255,0,0), thickness=thickness, lineType=cv2.LINE_AA)
return cvImg
def get_single_bop_annotation(img_path, objID_2_clsID):
# add attributes to function, for fast loading
if not hasattr(get_single_bop_annotation, "dir_annots"):
get_single_bop_annotation.dir_annots = {}
#
img_path = img_path.strip()
cvImg = cv2.imread(img_path)
height, width, _ = cvImg.shape
#
gt_dir, tmp, imgName = img_path.rsplit('/', 2)
assert(tmp == 'rgb')
imgBaseName, _ = os.path.splitext(imgName)
im_id = int(imgBaseName)
#
camera_file = gt_dir + '/scene_camera.json'
gt_file = gt_dir + "/scene_gt.json"
# gt_info_file = gt_dir + "/scene_gt_info.json"
gt_mask_visib = gt_dir + "/mask_visib/"
if gt_dir in get_single_bop_annotation.dir_annots:
gt_json, cam_json = get_single_bop_annotation.dir_annots[gt_dir]
else:
gt_json = json.load(open(gt_file))
# gt_info_json = json.load(open(gt_info_file))
cam_json = json.load(open(camera_file))
#
get_single_bop_annotation.dir_annots[gt_dir] = [gt_json, cam_json]
if str(im_id) in cam_json:
annot_camera = cam_json[str(im_id)]
else:
annot_camera = cam_json[("%06d" % im_id)]
if str(im_id) in gt_json:
annot_poses = gt_json[str(im_id)]
else:
annot_poses = gt_json[("%06d" % im_id)]
# annot_infos = gt_info_json[str(im_id)]
objCnt = len(annot_poses)
K = np.array(annot_camera['cam_K']).reshape(3,3)
class_ids = []
# bbox_objs = []
rotations = []
translations = []
merged_mask = np.zeros((height, width), np.uint8) # segmenation masks
instance_idx = 1
for i in range(objCnt):
mask_vis_file = gt_mask_visib + ("%06d_%06d.png" %(im_id, i))
mask_vis = cv2.imread(mask_vis_file, cv2.IMREAD_UNCHANGED)
#
# bbox = annot_infos[i]['bbox_visib']
# bbox = annot_infos[i]['bbox_obj']
# contourImg = cv2.rectangle(contourImg, (bbox[0], bbox[1]), (bbox[0]+bbox[2], bbox[1]+bbox[3]), (0,0,255))
# cv2.imshow(str(i), mask_vis)
#
R = np.array(annot_poses[i]['cam_R_m2c']).reshape(3,3)
T = np.array(annot_poses[i]['cam_t_m2c']).reshape(3,1)
obj_id = str(annot_poses[i]['obj_id'])
if not obj_id in objID_2_clsID:
continue
cls_id = objID_2_clsID[obj_id]
#
# bbox_objs.append(bbox)
class_ids.append(cls_id)
rotations.append(R)
translations.append(T)
# compose segmentation labels
merged_mask[mask_vis==255] = instance_idx
instance_idx += 1
return K, merged_mask, class_ids, rotations, translations
def visualize_pred(img, gt, pred, mean, std, meshes):
cvImg = img.to('cpu').numpy().transpose(1,2,0)
# de-normalize
cvImg = cvImg * (np.array(std).reshape(1,1,3) * 255)
cvImg = cvImg + (np.array(mean).reshape(1,1,3) * 255)
#
cvImg = cv2.cvtColor(cvImg.astype(np.uint8), cv2.COLOR_RGB2BGR)
# cvImg[:] = 255
cvRawImg = cvImg.copy()
#
gtPoses = gt.to('cpu').to_numpy()
gtVisual = gtPoses.visualize(cvImg)
# show predicted poses
for score, cls_id, R, T in pred:
pt3d = np.array(gtPoses.keypoints_3d[cls_id])
try:
cvImg = draw_pose_axis(cvImg, R, T, pt3d, gtPoses.K, 2)
except:
pass
return cvRawImg, cvImg, gtVisual
def remap_pose(srcK, srcR, srcT, pt3d, dstK, transM):
ptCnt = len(pt3d)
pts = np.matmul(transM, np.matmul(srcK, np.matmul(srcR, pt3d.transpose()) + srcT))
xs = pts[0] / (pts[2] + 1e-8)
ys = pts[1] / (pts[2] + 1e-8)
xy2d = np.concatenate((xs.reshape(-1,1),ys.reshape(-1,1)), axis=1)
retval, rot, trans = cv2.solvePnP(pt3d.reshape(ptCnt,1,3), xy2d.reshape(ptCnt,1,2), dstK, None, flags=cv2.SOLVEPNP_EPNP)
if retval:
newR = cv2.Rodrigues(rot)[0] # convert to rotation matrix
newT = trans.reshape(-1, 1)
newPts = np.matmul(dstK, np.matmul(newR, pt3d.transpose()) + newT)
newXs = newPts[0] / (newPts[2] + 1e-8)
newYs = newPts[1] / (newPts[2] + 1e-8)
newXy2d = np.concatenate((newXs.reshape(-1,1),newYs.reshape(-1,1)), axis=1)
diff_in_pix = np.linalg.norm(xy2d - newXy2d, axis=1).mean()
return newR, newT, diff_in_pix
else:
print('Error in pose remapping!')
return srcR, srcT, -1
# define a function which returns an image as numpy array from figure
def get_img_from_matplotlib_fig(fig, dpi=300):
buf = io.BytesIO()
fig.savefig(buf, format="png", dpi=dpi)
buf.seek(0)
img_arr = np.frombuffer(buf.getvalue(), dtype=np.uint8)
buf.close()
img = cv2.imdecode(img_arr, 1)
return img
def visualize_accuracy_per_depth(
accuracy_adi_per_class,
accuracy_rep_per_class,
accuracy_adi_per_depth,
accuracy_rep_per_depth,
depth_range):
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(8, 4))
rep_keys = accuracy_rep_per_class[0].keys()
adi_keys = accuracy_adi_per_class[0].keys()
depth_bins = len(accuracy_rep_per_depth)
assert(len(accuracy_adi_per_depth) == len(accuracy_rep_per_depth))
ax1.set_title('Statistics of 2D error')
ax1.set_xlabel('Depth')
ax1.set_ylabel('Success Rate (%)')
ax2.set_title('Statistics of 3D error')
ax2.set_xlabel('Depth')
# ax2.set_ylabel('Success Rate (%)')
# ax2.yaxis.tick_right()
for k in rep_keys:
xs = np.arange(depth_range[0], depth_range[1], (depth_range[1]-depth_range[0])/depth_bins)
ys = []
for i in range(depth_bins):
if k in accuracy_rep_per_depth[i]:
ys.append(accuracy_rep_per_depth[i][k])
else:
ys.append(0)
ys = np.array(ys)
#
# xnew = np.linspace(depth_range[0], depth_range[1], 300) / 1000
# ynew = UnivariateSpline(xs, ys, k=2, s=100)(xnew)
# ax1.plot(xnew, ynew, label=k)
ax1.plot(xs, ys, marker='o', label=k)
for k in adi_keys:
xs = np.arange(depth_range[0], depth_range[1], (depth_range[1]-depth_range[0])/depth_bins)
ys = []
for i in range(depth_bins):
if k in accuracy_adi_per_depth[i]:
ys.append(accuracy_adi_per_depth[i][k])
else:
ys.append(0)
ys = np.array(ys)
#
# xnew = np.linspace(depth_range[0], depth_range[1], 300) / 1000
# ynew = UnivariateSpline(xs, ys, k=2, s=100)(xnew)
# ax2.plot(xnew, ynew, label=k)
ax2.plot(xs, ys, marker='o', label=k)
ax1.legend(loc='lower right')
ax2.legend(loc='upper right')
ax1.grid()
ax2.grid()
matFig = get_img_from_matplotlib_fig(fig)
# cv2.imshow("xx", matFig)
# cv2.waitKey(0)
return matFig
def print_accuracy_per_class(accuracy_adi_per_class, accuracy_rep_per_class):
assert(len(accuracy_adi_per_class) == len(accuracy_rep_per_class))
classNum = len(accuracy_adi_per_class)
firstMeet = True
for clsIdx in range(classNum):
if len(accuracy_adi_per_class[clsIdx]) == 0:
continue
if firstMeet:
adi_keys = accuracy_adi_per_class[clsIdx].keys()
rep_keys = accuracy_rep_per_class[clsIdx].keys()
titleLine = "\t"
for k in adi_keys:
titleLine += (k + ' ')
titleLine += '\t'
for k in rep_keys:
titleLine += (k + ' ')
print(titleLine)
firstMeet = False
line_per_class = ("cls_%02d" % clsIdx)
for k in adi_keys:
line_per_class += ('\t%.2f' % accuracy_adi_per_class[clsIdx][k])
line_per_class += '\t'
for k in rep_keys:
line_per_class += ('\t%.2f' % accuracy_rep_per_class[clsIdx][k])
print(line_per_class)
def compute_pose_diff(mesh3ds, K, gtR, gtT, predR, predT):
ptCnt = len(mesh3ds)
pred_3d1 = (np.matmul(gtR, mesh3ds.T) + gtT).T
pred_3d2 = (np.matmul(predR, mesh3ds.T) + predT).T
p = np.matmul(K, pred_3d1.T)
p[0] = p[0] / (p[2] + 1e-8)
p[1] = p[1] / (p[2] + 1e-8)
pred_2d1 = p[:2].T
p = np.matmul(K, pred_3d2.T)
p[0] = p[0] / (p[2] + 1e-8)
p[1] = p[1] / (p[2] + 1e-8)
pred_2d2 = p[:2].T
error_3d = np.linalg.norm(pred_3d1 - pred_3d2, axis=1).mean()
error_2d = np.linalg.norm(pred_2d1 - pred_2d2, axis=1).mean()
return error_3d, error_2d