-
Notifications
You must be signed in to change notification settings - Fork 2
/
metric.py
233 lines (196 loc) · 8.14 KB
/
metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#Original source code from:
#https://github.com/1zb/pytorch-image-comp-rnn.git
## some function borrowed from
## https://github.com/tensorflow/models/blob/master/compression/image_encoder/msssim.py
"""Python implementation of MS-SSIM.
Usage:
python msssim.py --original_image=original.png --compared_image=distorted.png
"""
import argparse
import numpy as np
from scipy import signal
from scipy.ndimage.filters import convolve
from PIL import Image
def _FSpecialGauss(size, sigma):
"""Function to mimic the 'fspecial' gaussian MATLAB function."""
radius = size // 2
offset = 0.0
start, stop = -radius, radius + 1
if size % 2 == 0:
offset = 0.5
stop -= 1
x, y = np.mgrid[offset + start:stop, offset + start:stop]
assert len(x) == size
g = np.exp(-((x**2 + y**2) / (2.0 * sigma**2)))
return g / g.sum()
def _SSIMForMultiScale(img1,
img2,
max_val=255,
filter_size=11,
filter_sigma=1.5,
k1=0.01,
k2=0.03):
"""Return the Structural Similarity Map between `img1` and `img2`.
This function attempts to match the functionality of ssim_index_new.m by
Zhou Wang: http://www.cns.nyu.edu/~lcv/ssim/msssim.zip
Arguments:
img1: Numpy array holding the first RGB image batch.
img2: Numpy array holding the second RGB image batch.
max_val: the dynamic range of the images (i.e., the difference between the
maximum the and minimum allowed values).
filter_size: Size of blur kernel to use (will be reduced for small images).
filter_sigma: Standard deviation for Gaussian blur kernel (will be reduced
for small images).
k1: Constant used to maintain stability in the SSIM calculation (0.01 in
the original paper).
k2: Constant used to maintain stability in the SSIM calculation (0.03 in
the original paper).
Returns:
Pair containing the mean SSIM and contrast sensitivity between `img1` and
`img2`.
Raises:
RuntimeError: If input images don't have the same shape or don't have four
dimensions: [batch_size, height, width, depth].
"""
if img1.shape != img2.shape:
raise RuntimeError(
'Input images must have the same shape (%s vs. %s).', img1.shape,
img2.shape)
if img1.ndim != 4:
raise RuntimeError('Input images must have four dimensions, not %d',
img1.ndim)
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
_, height, width, _ = img1.shape
# Filter size can't be larger than height or width of images.
size = min(filter_size, height, width)
# Scale down sigma if a smaller filter size is used.
sigma = size * filter_sigma / filter_size if filter_size else 0
if filter_size:
window = np.reshape(_FSpecialGauss(size, sigma), (1, size, size, 1))
mu1 = signal.fftconvolve(img1, window, mode='valid')
mu2 = signal.fftconvolve(img2, window, mode='valid')
sigma11 = signal.fftconvolve(img1 * img1, window, mode='valid')
sigma22 = signal.fftconvolve(img2 * img2, window, mode='valid')
sigma12 = signal.fftconvolve(img1 * img2, window, mode='valid')
else:
# Empty blur kernel so no need to convolve.
mu1, mu2 = img1, img2
sigma11 = img1 * img1
sigma22 = img2 * img2
sigma12 = img1 * img2
mu11 = mu1 * mu1
mu22 = mu2 * mu2
mu12 = mu1 * mu2
sigma11 -= mu11
sigma22 -= mu22
sigma12 -= mu12
# Calculate intermediate values used by both ssim and cs_map.
c1 = (k1 * max_val)**2
c2 = (k2 * max_val)**2
v1 = 2.0 * sigma12 + c2
v2 = sigma11 + sigma22 + c2
ssim = np.mean((((2.0 * mu12 + c1) * v1) / ((mu11 + mu22 + c1) * v2)))
cs = np.mean(v1 / v2)
return ssim, cs
def MultiScaleSSIM(img1,
img2,
max_val=255,
filter_size=11,
filter_sigma=1.5,
k1=0.01,
k2=0.03,
weights=None):
"""Return the MS-SSIM score between `img1` and `img2`.
This function implements Multi-Scale Structural Similarity (MS-SSIM) Image
Quality Assessment according to Zhou Wang's paper, "Multi-scale structural
similarity for image quality assessment" (2003).
Link: https://ece.uwaterloo.ca/~z70wang/publications/msssim.pdf
Author's MATLAB implementation:
http://www.cns.nyu.edu/~lcv/ssim/msssim.zip
Arguments:
img1: Numpy array holding the first RGB image batch.
img2: Numpy array holding the second RGB image batch.
max_val: the dynamic range of the images (i.e., the difference between the
maximum the and minimum allowed values).
filter_size: Size of blur kernel to use (will be reduced for small images).
filter_sigma: Standard deviation for Gaussian blur kernel (will be reduced
for small images).
k1: Constant used to maintain stability in the SSIM calculation (0.01 in
the original paper).
k2: Constant used to maintain stability in the SSIM calculation (0.03 in
the original paper).
weights: List of weights for each level; if none, use five levels and the
weights from the original paper.
Returns:
MS-SSIM score between `img1` and `img2`.
Raises:
RuntimeError: If input images don't have the same shape or don't have four
dimensions: [batch_size, height, width, depth].
"""
if img1.shape != img2.shape:
raise RuntimeError(
'Input images must have the same shape (%s vs. %s).', img1.shape,
img2.shape)
if img1.ndim != 4:
raise RuntimeError('Input images must have four dimensions, not %d',
img1.ndim)
# Note: default weights don't sum to 1.0 but do match the paper / matlab code.
weights = np.array(weights if weights else
[0.0448, 0.2856, 0.3001, 0.2363, 0.1333])
levels = weights.size
downsample_filter = np.ones((1, 2, 2, 1)) / 4.0
im1, im2 = [x.astype(np.float64) for x in [img1, img2]]
mssim = np.array([])
mcs = np.array([])
for _ in range(levels):
ssim, cs = _SSIMForMultiScale(
im1,
im2,
max_val=max_val,
filter_size=filter_size,
filter_sigma=filter_sigma,
k1=k1,
k2=k2)
mssim = np.append(mssim, ssim)
mcs = np.append(mcs, cs)
filtered = [
convolve(im, downsample_filter, mode='reflect')
for im in [im1, im2]
]
im1, im2 = [x[:, ::2, ::2, :] for x in filtered]
return (np.prod(mcs[0:levels - 1]**weights[0:levels - 1]) *
(mssim[levels - 1]**weights[levels - 1]))
def metric_ssim(original, compared):
if isinstance(original, str):
original = np.array(Image.open(original).convert('RGB'), dtype=np.float32)
if isinstance(compared, str):
compared = np.array(Image.open(compared).convert('RGB'), dtype=np.float32)
original = original[None, ...] if original.ndim == 3 else original
compared = compared[None, ...] if compared.ndim == 3 else compared
return MultiScaleSSIM(original, compared, max_val=255)
def metric_psnr(original, compared):
if isinstance(original, str):
original = np.array(Image.open(original).convert('RGB'), dtype=np.float32)
if isinstance(compared, str):
compared = np.array(Image.open(compared).convert('RGB'), dtype=np.float32)
mse = np.mean(np.square(original - compared))
psnr = np.clip(
np.multiply(np.log10(255. * 255. / mse[mse > 0.]), 10.), 0., 99.99)[0]
return psnr
'''
parser = argparse.ArgumentParser()
parser.add_argument('--metric', '-m', type=str, default='all', help='metric')
parser.add_argument(
'--original-image', '-o', type=str, required=True, help='original image')
parser.add_argument(
'--compared-image', '-c', type=str, required=True, help='compared image')
args = parser.parse_args()
def main():
if args.metric != 'psnr':
print(msssim(args.original_image, args.compared_image), end='')
if args.metric != 'ssim':
print(psnr(args.original_image, args.compared_image), end='')
if __name__ == '__main__':
main()
'''