-
Notifications
You must be signed in to change notification settings - Fork 260
/
process_kitti.py
executable file
·100 lines (83 loc) · 3.95 KB
/
process_kitti.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
'''
Code for downloading and processing KITTI data (Geiger et al. 2013, http://www.cvlibs.net/datasets/kitti/)
'''
import os
import requests
from bs4 import BeautifulSoup
import urllib.request
import numpy as np
from imageio import imread
from scipy.misc import imresize
import hickle as hkl
from kitti_settings import *
desired_im_sz = (128, 160)
categories = ['city', 'residential', 'road']
# Recordings used for validation and testing.
# Were initially chosen randomly such that one of the city recordings was used for validation and one of each category was used for testing.
val_recordings = [('city', '2011_09_26_drive_0005_sync')]
test_recordings = [('city', '2011_09_26_drive_0104_sync'), ('residential', '2011_09_26_drive_0079_sync'), ('road', '2011_09_26_drive_0070_sync')]
if not os.path.exists(DATA_DIR): os.mkdir(DATA_DIR)
# Download raw zip files by scraping KITTI website
def download_data():
base_dir = os.path.join(DATA_DIR, 'raw/')
if not os.path.exists(base_dir): os.mkdir(base_dir)
for c in categories:
url = "http://www.cvlibs.net/datasets/kitti/raw_data.php?type=" + c
r = requests.get(url)
soup = BeautifulSoup(r.content)
drive_list = soup.find_all("h3")
drive_list = [d.text[:d.text.find(' ')] for d in drive_list]
print( "Downloading set: " + c)
c_dir = base_dir + c + '/'
if not os.path.exists(c_dir): os.mkdir(c_dir)
for i, d in enumerate(drive_list):
print( str(i+1) + '/' + str(len(drive_list)) + ": " + d)
url = "https://s3.eu-central-1.amazonaws.com/avg-kitti/raw_data/" + d + "/" + d + "_sync.zip"
urllib.request.urlretrieve(url, filename=c_dir + d + "_sync.zip")
# unzip images
def extract_data():
for c in categories:
c_dir = os.path.join(DATA_DIR, 'raw/', c + '/')
zip_files = list(os.walk(c_dir, topdown=False))[-1][-1]#.next()
for f in zip_files:
print( 'unpacking: ' + f)
spec_folder = f[:10] + '/' + f[:-4] + '/image_03/data*'
command = 'unzip -qq ' + c_dir + f + ' ' + spec_folder + ' -d ' + c_dir + f[:-4]
os.system(command)
# Create image datasets.
# Processes images and saves them in train, val, test splits.
def process_data():
splits = {s: [] for s in ['train', 'test', 'val']}
splits['val'] = val_recordings
splits['test'] = test_recordings
not_train = splits['val'] + splits['test']
for c in categories: # Randomly assign recordings to training and testing. Cross-validation done across entire recordings.
c_dir = os.path.join(DATA_DIR, 'raw', c + '/')
folders= list(os.walk(c_dir, topdown=False))[-1][-2]
splits['train'] += [(c, f) for f in folders if (c, f) not in not_train]
for split in splits:
im_list = []
source_list = [] # corresponds to recording that image came from
for category, folder in splits[split]:
im_dir = os.path.join(DATA_DIR, 'raw/', category, folder, folder[:10], folder, 'image_03/data/')
files = list(os.walk(im_dir, topdown=False))[-1][-1]
im_list += [im_dir + f for f in sorted(files)]
source_list += [category + '-' + folder] * len(files)
print( 'Creating ' + split + ' data: ' + str(len(im_list)) + ' images')
X = np.zeros((len(im_list),) + desired_im_sz + (3,), np.uint8)
for i, im_file in enumerate(im_list):
im = imread(im_file)
X[i] = process_im(im, desired_im_sz)
hkl.dump(X, os.path.join(DATA_DIR, 'X_' + split + '.hkl'))
hkl.dump(source_list, os.path.join(DATA_DIR, 'sources_' + split + '.hkl'))
# resize and crop image
def process_im(im, desired_sz):
target_ds = float(desired_sz[0])/im.shape[0]
im = imresize(im, (desired_sz[0], int(np.round(target_ds * im.shape[1]))))
d = int((im.shape[1] - desired_sz[1]) / 2)
im = im[:, d:d+desired_sz[1]]
return im
if __name__ == '__main__':
download_data()
extract_data()
process_data()