forked from SCLBD/BackdoorBench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ft.py
executable file
·300 lines (252 loc) · 12.3 KB
/
ft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
'''
This file implements the defense method called finetuning (ft), which is a standard fine-tuning that uses clean data to finetune the model.
basic sturcture for defense method:
1. basic setting: args
2. attack result(model, train data, test data)
3. ft defense:
a. get some clean data
b. retrain the backdoor model
4. test the result and get ASR, ACC, RC
'''
import argparse
import os,sys
import numpy as np
import torch
import torch.nn as nn
sys.path.append('../')
sys.path.append(os.getcwd())
from pprint import pformat
import yaml
import logging
import time
from defense.base import defense
from utils.aggregate_block.train_settings_generate import argparser_criterion, argparser_opt_scheduler
from utils.trainer_cls import PureCleanModelTrainer
from utils.choose_index import choose_index
from utils.aggregate_block.fix_random import fix_random
from utils.aggregate_block.model_trainer_generate import generate_cls_model
from utils.log_assist import get_git_info
from utils.aggregate_block.dataset_and_transform_generate import get_input_shape, get_num_classes, get_transform
from utils.save_load_attack import load_attack_result, save_defense_result
from utils.bd_dataset_v2 import prepro_cls_DatasetBD_v2
class ft(defense):
r"""Basic class for ft defense method.
basic structure:
1. config args, save_path, fix random seed
2. load the backdoor attack data and backdoor test data
3. load the backdoor model
4. ft defense:
a. get some clean data
b. retrain the backdoor model
5. test the result and get ASR, ACC, RC
.. code-block:: python
parser = argparse.ArgumentParser(description=sys.argv[0])
ft.add_arguments(parser)
args = parser.parse_args()
ft_method = ft(args)
if "result_file" not in args.__dict__:
args.result_file = 'one_epochs_debug_badnet_attack'
elif args.result_file is None:
args.result_file = 'one_epochs_debug_badnet_attack'
result = ft_method.defense(args.result_file)
.. Note::
Args:
baisc args: in the base class
ratio (float): the ratio of clean data loader
index (str): index of clean data
"""
def __init__(self,args):
with open(args.yaml_path, 'r') as f:
defaults = yaml.safe_load(f)
defaults.update({k:v for k,v in args.__dict__.items() if v is not None})
args.__dict__ = defaults
args.terminal_info = sys.argv
args.num_classes = get_num_classes(args.dataset)
args.input_height, args.input_width, args.input_channel = get_input_shape(args.dataset)
args.img_size = (args.input_height, args.input_width, args.input_channel)
args.dataset_path = f"{args.dataset_path}/{args.dataset}"
self.args = args
if 'result_file' in args.__dict__ :
if args.result_file is not None:
self.set_result(args.result_file)
def add_arguments(parser):
parser.add_argument('--device', type=str, help='cuda, cpu')
parser.add_argument("-pm","--pin_memory", type=lambda x: str(x) in ['True', 'true', '1'], help = "dataloader pin_memory")
parser.add_argument("-nb","--non_blocking", type=lambda x: str(x) in ['True', 'true', '1'], help = ".to(), set the non_blocking = ?")
parser.add_argument("-pf", '--prefetch', type=lambda x: str(x) in ['True', 'true', '1'], help='use prefetch')
parser.add_argument('--amp', type=lambda x: str(x) in ['True','true','1'])
parser.add_argument('--checkpoint_load', type=str, help='the location of load model')
parser.add_argument('--checkpoint_save', type=str, help='the location of checkpoint where model is saved')
parser.add_argument('--log', type=str, help='the location of log')
parser.add_argument("--dataset_path", type=str, help='the location of data')
parser.add_argument('--dataset', type=str, help='mnist, cifar10, cifar100, gtrsb, tiny')
parser.add_argument('--result_file', type=str, help='the location of result')
parser.add_argument('--epochs', type=int)
parser.add_argument('--batch_size', type=int)
parser.add_argument("--num_workers", type=float)
parser.add_argument('--lr', type=float)
parser.add_argument('--lr_scheduler', type=str, help='the scheduler of lr')
parser.add_argument('--steplr_stepsize', type=int)
parser.add_argument('--steplr_gamma', type=float)
parser.add_argument('--steplr_milestones', type=list)
parser.add_argument('--model', type=str, help='resnet18')
parser.add_argument('--client_optimizer', type=int)
parser.add_argument('--sgd_momentum', type=float)
parser.add_argument('--wd', type=float, help='weight decay of sgd')
parser.add_argument('--frequency_save', type=int,
help=' frequency_save, 0 is never')
parser.add_argument('--random_seed', type=int, help='random seed')
parser.add_argument('--yaml_path', type=str, default="./config/defense/ft/config.yaml", help='the path of yaml')
#set the parameter for the ft defense
parser.add_argument('--ratio', type=float, help='the ratio of clean data loader')
parser.add_argument('--index', type=str, help='index of clean data')
def set_result(self, result_file):
attack_file = 'record/' + result_file
save_path = 'record/' + result_file + '/defense/ft/'
if not (os.path.exists(save_path)):
os.makedirs(save_path)
# assert(os.path.exists(save_path))
self.args.save_path = save_path
if self.args.checkpoint_save is None:
self.args.checkpoint_save = save_path + 'checkpoint/'
if not (os.path.exists(self.args.checkpoint_save)):
os.makedirs(self.args.checkpoint_save)
if self.args.log is None:
self.args.log = save_path + 'log/'
if not (os.path.exists(self.args.log)):
os.makedirs(self.args.log)
self.result = load_attack_result(attack_file + '/attack_result.pt')
def set_trainer(self, model):
self.trainer = PureCleanModelTrainer(
model,
)
def set_logger(self):
args = self.args
logFormatter = logging.Formatter(
fmt='%(asctime)s [%(levelname)-8s] [%(filename)s:%(lineno)d] %(message)s',
datefmt='%Y-%m-%d:%H:%M:%S',
)
logger = logging.getLogger()
fileHandler = logging.FileHandler(args.log + '/' + time.strftime("%Y_%m_%d_%H_%M_%S", time.localtime()) + '.log')
fileHandler.setFormatter(logFormatter)
logger.addHandler(fileHandler)
consoleHandler = logging.StreamHandler()
consoleHandler.setFormatter(logFormatter)
logger.addHandler(consoleHandler)
logger.setLevel(logging.INFO)
logging.info(pformat(args.__dict__))
try:
logging.info(pformat(get_git_info()))
except:
logging.info('Getting git info fails.')
def set_devices(self):
# self.device = torch.device(
# (
# f"cuda:{[int(i) for i in self.args.device[5:].split(',')][0]}" if "," in self.args.device else self.args.device
# # since DataParallel only allow .to("cuda")
# ) if torch.cuda.is_available() else "cpu"
# )
self.device = self.args.device
def mitigation(self):
self.set_devices()
fix_random(self.args.random_seed)
# Prepare model, optimizer, scheduler
model = generate_cls_model(self.args.model,self.args.num_classes)
model.load_state_dict(self.result['model'])
if "," in self.device:
model = torch.nn.DataParallel(
model,
device_ids=[int(i) for i in self.args.device[5:].split(",")] # eg. "cuda:2,3,7" -> [2,3,7]
)
self.args.device = f'cuda:{model.device_ids[0]}'
model.to(self.args.device)
else:
model.to(self.args.device)
optimizer, scheduler = argparser_opt_scheduler(model, self.args)
# criterion = nn.CrossEntropyLoss()
self.set_trainer(model)
criterion = argparser_criterion(args)
train_tran = get_transform(self.args.dataset, *([self.args.input_height,self.args.input_width]) , train = True)
clean_dataset = prepro_cls_DatasetBD_v2(self.result['clean_train'].wrapped_dataset)
data_all_length = len(clean_dataset)
ran_idx = choose_index(self.args, data_all_length)
log_index = self.args.log + 'index.txt'
np.savetxt(log_index, ran_idx, fmt='%d')
clean_dataset.subset(ran_idx)
data_set_without_tran = clean_dataset
data_set_o = self.result['clean_train']
data_set_o.wrapped_dataset = data_set_without_tran
data_set_o.wrap_img_transform = train_tran
# data_set_o = prepro_cls_DatasetBD_v2(
# full_dataset_without_transform=data_set,
# poison_idx=np.zeros(len(data_set)), # one-hot to determine which image may take bd_transform
# bd_image_pre_transform=None,
# bd_label_pre_transform=None,
# ori_image_transform_in_loading=train_tran,
# ori_label_transform_in_loading=None,
# add_details_in_preprocess=False,
# )
data_loader = torch.utils.data.DataLoader(data_set_o, batch_size=self.args.batch_size, num_workers=self.args.num_workers, shuffle=True, pin_memory=args.pin_memory)
trainloader = data_loader
test_tran = get_transform(self.args.dataset, *([self.args.input_height,self.args.input_width]) , train = False)
data_bd_testset = self.result['bd_test']
data_bd_testset.wrap_img_transform = test_tran
data_bd_loader = torch.utils.data.DataLoader(data_bd_testset, batch_size=self.args.batch_size, num_workers=self.args.num_workers,drop_last=False, shuffle=True,pin_memory=args.pin_memory)
data_clean_testset = self.result['clean_test']
data_clean_testset.wrap_img_transform = test_tran
data_clean_loader = torch.utils.data.DataLoader(data_clean_testset, batch_size=self.args.batch_size, num_workers=self.args.num_workers,drop_last=False, shuffle=True,pin_memory=args.pin_memory)
# self.trainer.train_with_test_each_epoch(
# train_data = trainloader,
# test_data = data_clean_loader,
# adv_test_data = data_bd_loader,
# end_epoch_num = self.args.epochs,
# criterion = criterion,
# optimizer = optimizer,
# scheduler = scheduler,
# device = self.args.device,
# frequency_save = self.args.frequency_save,
# save_folder_path = self.args.checkpoint_save,
# save_prefix = 'defense',
# continue_training_path = None,
# )
self.trainer.train_with_test_each_epoch_on_mix(
trainloader,
data_clean_loader,
data_bd_loader,
args.epochs,
criterion=criterion,
optimizer=optimizer,
scheduler=scheduler,
device=self.args.device,
frequency_save=args.frequency_save,
save_folder_path=args.save_path,
save_prefix='ft',
amp=args.amp,
prefetch=args.prefetch,
prefetch_transform_attr_name="ori_image_transform_in_loading", # since we use the preprocess_bd_dataset
non_blocking=args.non_blocking,
)
result = {}
result['model'] = model
save_defense_result(
model_name=args.model,
num_classes=args.num_classes,
model=model.cpu().state_dict(),
save_path=args.save_path,
)
return result
def defense(self,result_file):
self.set_result(result_file)
self.set_logger()
result = self.mitigation()
return result
if __name__ == '__main__':
parser = argparse.ArgumentParser(description=sys.argv[0])
ft.add_arguments(parser)
args = parser.parse_args()
ft_method = ft(args)
if "result_file" not in args.__dict__:
args.result_file = 'defense_test_badnet'
elif args.result_file is None:
args.result_file = 'defense_test_badnet'
result = ft_method.defense(args.result_file)