forked from SCLBD/BackdoorBench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
visual_na.py
executable file
·206 lines (172 loc) · 6.65 KB
/
visual_na.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import sys
import os
sys.path.append("../")
sys.path.append(os.getcwd())
from visual_utils import *
from utils.aggregate_block.dataset_and_transform_generate import (
get_transform,
get_dataset_denormalization,
)
from utils.aggregate_block.fix_random import fix_random
from utils.aggregate_block.model_trainer_generate import generate_cls_model
from utils.save_load_attack import load_attack_result
from utils.defense_utils.dbd.model.utils import (
get_network_dbd,
load_state,
get_criterion,
get_optimizer,
get_scheduler,
)
from utils.defense_utils.dbd.model.model import SelfModel, LinearModel
import yaml
import torch
import numpy as np
import torchvision.transforms as transforms
# Basic setting: args
args = get_args()
with open(args.yaml_path, "r") as stream:
config = yaml.safe_load(stream)
config.update({k: v for k, v in args.__dict__.items() if v is not None})
args.__dict__ = config
args = preprocess_args(args)
fix_random(int(args.random_seed))
save_path_attack = "./record/" + args.result_file_attack
visual_save_path = save_path_attack + "/visual"
# Load result
if args.prototype:
result_attack = load_prototype_result(args, save_path_attack)
else:
result_attack = load_attack_result(save_path_attack + "/attack_result.pt")
selected_classes = np.arange(args.num_classes)
# Select classes to visualize
if args.num_classes > args.c_sub:
selected_classes = np.delete(selected_classes, args.target_class)
selected_classes = np.random.choice(
selected_classes, args.c_sub-1, replace=False)
selected_classes = np.append(selected_classes, args.target_class)
# keep the same transforms for train and test dataset for better visualization
result_attack["clean_train"].wrap_img_transform = result_attack["clean_test"].wrap_img_transform
result_attack["bd_train"].wrap_img_transform = result_attack["bd_test"].wrap_img_transform
# Create dataset. Only support BD_TEST and BD_TRAIN
if args.visual_dataset == 'bd_train':
bd_train_with_trans = result_attack["bd_train"]
visual_dataset = generate_bd_dataset(
bd_train_with_trans, args.target_class, selected_classes, max_num_samples=args.n_sub, bd_only=True)
elif args.visual_dataset == 'bd_test':
bd_test_with_trans = result_attack["bd_test"]
visual_dataset = generate_bd_dataset(
bd_test_with_trans, args.target_class, selected_classes, max_num_samples=args.n_sub, bd_only=True)
else:
assert False, "Illegal vis_class"
print(
f'Create visualization dataset with \n \t Dataset: {args.visual_dataset} \n \t Number of samples: {len(visual_dataset)} \n \t Selected classes: {selected_classes}')
# Create data loader
data_loader = torch.utils.data.DataLoader(
visual_dataset, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=False
)
# Create denormalization function
for trans_t in data_loader.dataset.wrap_img_transform.transforms:
if isinstance(trans_t, transforms.Normalize):
denormalizer = get_dataset_denormalization(trans_t)
# Load model
model_visual = generate_cls_model(args.model, args.num_classes)
if args.result_file_defense != "None":
save_path_defense = "./record/" + args.result_file_defense
visual_save_path = save_path_defense + "/visual"
result_defense = load_attack_result(
save_path_defense + "/defense_result.pt")
defense_method = args.result_file_defense.split('/')[-1]
if defense_method == 'fp':
model_visual.layer4[1].conv2 = torch.nn.Conv2d(
512, 512 - result_defense['index'], (3, 3), stride=1, padding=1, bias=False)
model_visual.linear = torch.nn.Linear(
(512 - result_defense['index'])*1, args.num_classes)
if defense_method == 'dbd':
backbone = get_network_dbd(args)
model_visual = LinearModel(
backbone, backbone.feature_dim, args.num_classes)
model_visual.load_state_dict(result_defense["model"])
print(f"Load model {args.model} from {args.result_file_defense}")
else:
model_visual.load_state_dict(result_attack["model"])
print(f"Load model {args.model} from {args.result_file_attack}")
model_visual.to(args.device)
# !!! Important to set eval mode !!!
model_visual.eval()
# make visual_save_path if not exist
os.mkdir(visual_save_path) if not os.path.exists(visual_save_path) else None
############## Neuron Activation ##################
print("Plotting Neuron Activation")
# Choose layer for feature extraction
module_dict = dict(model_visual.named_modules())
target_layer = module_dict[args.target_layer_name]
print(f'Choose layer {args.target_layer_name} from model {args.model}')
# Get BD features
features_bd, labels_bd, other_info = get_features(
args, model_visual, target_layer, data_loader)
features_bd_avg = np.mean(features_bd, axis=0)
# Get Corresponding Clean features
visual_dataset.wrapped_dataset.poison_indicator = np.zeros_like(
visual_dataset.wrapped_dataset.poison_indicator)
features_clean, labels_clean, other_info = get_features(
args, model_visual, target_layer, data_loader)
features_clean_avg = np.mean(features_clean, axis=0)
sort_bar = np.argsort(features_clean_avg)[::-1]
features_bd_avg = features_bd_avg[sort_bar]
features_clean_avg = features_clean_avg[sort_bar]
plt.figure(figsize=(10, 10))
plt.bar(
np.arange(features_clean_avg.shape[0]),
features_clean_avg,
label="Clean",
alpha=0.7,
color="#2196F3",
)
plt.xlabel("Neuron")
plt.ylabel("Average Activation Value")
plt.title(
f"{get_dataname(args.dataset)}, {get_pratio(args.pratio)}% Poisoned Samples")
plt.xlim(0, features_clean_avg.shape[0])
plt.legend()
plt.tight_layout()
plt.savefig(visual_save_path + "/NA_clean.png")
plt.figure(figsize=(10, 10))
plt.bar(
np.arange(features_bd_avg.shape[0]),
features_bd_avg,
label="Poisoned",
alpha=0.7,
color="#4CAF50",
)
plt.xlabel("Neuron")
plt.ylabel("Average Activation Value")
plt.title(
f"{get_dataname(args.dataset)}, {get_pratio(args.pratio)}% Poisoned Samples")
plt.xlim(0, features_bd_avg.shape[0])
plt.legend()
plt.tight_layout()
plt.savefig(visual_save_path + "/NA_BD.png")
plt.figure(figsize=(10, 10))
plt.bar(
np.arange(features_clean_avg.shape[0]),
features_clean_avg,
label="Clean",
alpha=0.7,
color="#2196F3",
)
plt.bar(
np.arange(features_bd_avg.shape[0]),
features_bd_avg,
label="Poisoned",
alpha=0.7,
color="#4CAF50",
)
plt.xlabel("Neuron")
plt.ylabel("Average Activation Value")
plt.title(
f"{get_dataname(args.dataset)}, {get_pratio(args.pratio)}% Poisoned Samples")
plt.xlim(0, features_clean_avg.shape[0])
plt.legend()
plt.tight_layout()
plt.savefig(visual_save_path + f"/NA_compare_{args.visual_dataset}.png")
print(f'Save to {visual_save_path + f"/NA_compare_{args.visual_dataset}"}.png')