-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
44 lines (39 loc) · 1.04 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from flask import Flask, render_template,request
from scipy.misc import imsave, imread, imresize
import numpy as np
import keras.models
import re
import sys
import os
sys.path.append(os.path.abspath("./model"))
from load import *
app = Flask(__name__)
global model, graph
model, graph = init()
def convertImage(imgData1):
imgstr = re.search(r'base64,(.*)',imgData1).group(1)
with open('output.png','wb') as output:
output.write(imgstr.decode('base64'))
@app.route('/')
def index():
return render_template("index.html")
@app.route('/predict/',methods=['GET','POST'])
def predict():
imgData = request.get_data()
convertImage(imgData)
print("debug")
x = imread('output.png',mode='L')
x = np.invert(x)
x = imresize(x,(28,28))
x = x.reshape(1,28,28,1)
print "debug2"
with graph.as_default():
out = model.predict(x)
print(out)
print(np.argmax(out,axis=1))
print("debug3")
response = np.array_str(np.argmax(out,axis=1))
return response
if __name__ == "__main__":
port = int(os.environ.get('PORT', 5000))
app.run(host='0.0.0.0', port=port)