forked from CPJKU/madmom
-
Notifications
You must be signed in to change notification settings - Fork 0
/
CNNOnsetDetector
executable file
·102 lines (77 loc) · 3.18 KB
/
CNNOnsetDetector
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
#!/usr/bin/env python
# encoding: utf-8
"""
CNNOnsetDetector onset detection algorithm.
"""
from __future__ import absolute_import, division, print_function
import argparse
from madmom.audio import SignalProcessor
from madmom.features import (ActivationsProcessor, CNNOnsetProcessor,
OnsetPeakPickingProcessor)
from madmom.io import write_onsets
from madmom.processors import IOProcessor, io_arguments
def main():
"""CNNOnsetDetector"""
# define parser
p = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter, description='''
The CNNOnsetDetector program detects all onsets in an audio file with a
convolutional neural network as described in:
"Musical Onset Detection with Convolutional Neural Networks"
Jan Schlüter and Sebastian Böck.
Proceedings of the 6th International Workshop on Machine Learning and
Music, 2013.
The implementation follows as closely as possible the original one, but
part of the signal pre-processing differs in minor aspects, so results can
differ slightly, too.
This program can be run in 'single' file mode to process a single audio
file and write the detected onsets to STDOUT or the given output file.
$ CNNOnsetDetector single INFILE [-o OUTFILE]
If multiple audio files should be processed, the program can also be run
in 'batch' mode to save the detected onsets to files with the given suffix.
$ CNNOnsetDetector batch [-o OUTPUT_DIR] [-s OUTPUT_SUFFIX] FILES
If no output directory is given, the program writes the files with the
detected onsets to the same location as the audio files.
The 'pickle' mode can be used to store the used parameters to be able to
exactly reproduce experiments.
''')
# version
p.add_argument('--version', action='version',
version='CNNOnsetDetector.2016')
# input/output options
io_arguments(p, output_suffix='.onsets.txt')
ActivationsProcessor.add_arguments(p)
# signal processing arguments
SignalProcessor.add_arguments(p, norm=False, gain=0)
# peak picking arguments
OnsetPeakPickingProcessor.add_arguments(p, threshold=0.54, smooth=0.05)
# parse arguments
args = p.parse_args()
# set immutable defaults
args.fps = 100
args.pre_max = 1. / args.fps
args.post_max = 1. / args.fps
# print arguments
if args.verbose:
print(args)
# input processor
if args.load:
# load the activations from file
in_processor = ActivationsProcessor(mode='r', **vars(args))
else:
# use a CNN to predict the onsets
in_processor = CNNOnsetProcessor(**vars(args))
# output processor
if args.save:
# save the RNN onset activations to file
out_processor = ActivationsProcessor(mode='w', **vars(args))
else:
# detect the onsets and output them
peak_picking = OnsetPeakPickingProcessor(**vars(args))
out_processor = [peak_picking, write_onsets]
# create an IOProcessor
processor = IOProcessor(in_processor, out_processor)
# and call the processing function
args.func(processor, **vars(args))
if __name__ == '__main__':
main()