diff --git a/README.md b/README.md index 391ea4d5..5a839bb2 100644 --- a/README.md +++ b/README.md @@ -11,9 +11,8 @@ It provides users with: - A rich collection of neural network architectures - Multi-Backend Support: [PyTorch](https://github.com/pytorch/pytorch), [TensorFlow](https://github.com/tensorflow/tensorflow), [JAX](https://github.com/google/jax), and [NumPy](https://github.com/numpy/numpy) -BayesFlow is designed to be a flexible and efficient tool, enabling rapid statistical inference after a -potentially longer simulation-based training phase. - +BayesFlow is designed to be a flexible and efficient tool that enables rapid statistical inference +fueled by continuous progress in generative AI and Bayesian inference. ## Install @@ -66,26 +65,17 @@ git checkout dev conda env create --file environment.yaml --name bayesflow ``` - ## Getting Started Check out some of our walk-through notebooks: -1. [Quickstart amortized posterior estimation](examples/Intro_Amortized_Posterior_Estimation.ipynb) -2. [Tackling strange bimodal distributions](examples/TwoMoons_Bimodal_Posterior.ipynb) -3. [Detecting model misspecification in posterior inference](examples/Model_Misspecification.ipynb) -4. [Principled Bayesian workflow for cognitive models](examples/LCA_Model_Posterior_Estimation.ipynb) -5. [Posterior estimation for ODEs](examples/Linear_ODE_system.ipynb) -6. [Posterior estimation for SIR-like models](examples/Covid19_Initial_Posterior_Estimation.ipynb) -7. [Model comparison for cognitive models](examples/Model_Comparison_MPT.ipynb) -8. [Hierarchical model comparison for cognitive models](examples/Hierarchical_Model_Comparison_MPT.ipynb) - +1. [Two moons toy example with flow matching](examples/TwoMoons_FlowMatching.ipynb) +2. ...Under construction ## Documentation \& Help Documentation is available at https://bayesflow.org. Please use the [BayesFlow Forums](https://discuss.bayesflow.org/) for any BayesFlow-related questions and discussions, and [GitHub Issues](https://github.com/stefanradev93/BayesFlow/issues) for bug reports and feature requests. - ## Conceptual Overview A cornerstone idea of amortized Bayesian inference is to employ generative @@ -96,7 +86,6 @@ overview of neurally bootstrapped Bayesian inference. - ### References and Further Reading - Radev S. T., D’Alessandro M., Mertens U. K., Voss A., Köthe U., & Bürkner P.