diff --git a/docs/notebooks/mister_p.ipynb b/docs/notebooks/mister_p.ipynb index 35b866896..3f8ca6579 100644 --- a/docs/notebooks/mister_p.ipynb +++ b/docs/notebooks/mister_p.ipynb @@ -16,7 +16,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -46,7 +46,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -266,7 +266,7 @@ "19 Dionysus 1 1 0 1" ] }, - "execution_count": 2, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -317,7 +317,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -368,7 +368,7 @@ "1 0.538462" ] }, - "execution_count": 3, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -388,7 +388,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -414,7 +414,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -469,7 +469,7 @@ "1 12 0.6" ] }, - "execution_count": 5, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -490,7 +490,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -545,7 +545,7 @@ "1 0.25 0.666667" ] }, - "execution_count": 6, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -571,7 +571,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -634,7 +634,7 @@ "1 0.25 0.666667 0.4*0.25 + 0.6*0.66 0.5" ] }, - "execution_count": 7, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -657,7 +657,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -696,7 +696,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -705,11 +705,54 @@ "text": [ "Auto-assigning NUTS sampler...\n", "Initializing NUTS using jitter+adapt_diag...\n", - "Initializing NUTS using jitter+adapt_diag...\n", "Multiprocess sampling (4 chains in 4 jobs)\n", "NUTS: [Outcome_sigma, Intercept, Treatment]\n" ] }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " 100.00% [8000/8000 00:00<00:00 Sampling 4 chains, 0 divergences]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, { "name": "stderr", "output_type": "stream", @@ -721,6 +764,50 @@ "NUTS: [Outcome_sigma, Intercept, Treatment, Risk_Strata, Treatment_x_Risk_Strata]\n" ] }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " 100.00% [8000/8000 00:01<00:00 Sampling 4 chains, 0 divergences]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, { "name": "stderr", "output_type": "stream", @@ -747,7 +834,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -785,38 +872,38 @@ " \n", " \n", " Intercept\n", - " 0.428\n", - " 0.203\n", - " 0.060\n", - " 0.823\n", + " 0.433\n", + " 0.208\n", + " 0.052\n", + " 0.829\n", " 0.003\n", " 0.002\n", - " 4840.0\n", - " 2982.0\n", + " 4351.0\n", + " 2913.0\n", " 1.0\n", " \n", " \n", " Treatment\n", - " 0.108\n", - " 0.252\n", - " -0.357\n", + " 0.107\n", + " 0.261\n", + " -0.399\n", " 0.584\n", " 0.004\n", " 0.004\n", - " 4258.0\n", - " 2731.0\n", + " 4766.0\n", + " 2830.0\n", " 1.0\n", " \n", " \n", " Outcome_sigma\n", - " 0.542\n", - " 0.092\n", + " 0.545\n", + " 0.094\n", " 0.388\n", - " 0.713\n", + " 0.726\n", " 0.001\n", " 0.001\n", - " 4073.0\n", - " 2488.0\n", + " 4253.0\n", + " 3314.0\n", " 1.0\n", " \n", " \n", @@ -825,17 +912,17 @@ ], "text/plain": [ " mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk \\\n", - "Intercept 0.428 0.203 0.060 0.823 0.003 0.002 4840.0 \n", - "Treatment 0.108 0.252 -0.357 0.584 0.004 0.004 4258.0 \n", - "Outcome_sigma 0.542 0.092 0.388 0.713 0.001 0.001 4073.0 \n", + "Intercept 0.433 0.208 0.052 0.829 0.003 0.002 4351.0 \n", + "Treatment 0.107 0.261 -0.399 0.584 0.004 0.004 4766.0 \n", + "Outcome_sigma 0.545 0.094 0.388 0.726 0.001 0.001 4253.0 \n", "\n", " ess_tail r_hat \n", - "Intercept 2982.0 1.0 \n", - "Treatment 2731.0 1.0 \n", - "Outcome_sigma 2488.0 1.0 " + "Intercept 2913.0 1.0 \n", + "Treatment 2830.0 1.0 \n", + "Outcome_sigma 3314.0 1.0 " ] }, - "execution_count": 10, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -846,7 +933,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -884,62 +971,62 @@ " \n", " \n", " Intercept\n", - " 0.254\n", - " 0.261\n", - " -0.233\n", - " 0.743\n", - " 0.005\n", + " 0.246\n", + " 0.271\n", + " -0.250\n", + " 0.761\n", + " 0.006\n", " 0.004\n", - " 2710.0\n", - " 2648.0\n", + " 2234.0\n", + " 2512.0\n", " 1.0\n", " \n", " \n", " Treatment\n", " -0.001\n", - " 0.367\n", - " -0.653\n", - " 0.730\n", - " 0.008\n", + " 0.378\n", + " -0.701\n", + " 0.716\n", + " 0.009\n", " 0.006\n", - " 2312.0\n", - " 2648.0\n", + " 1922.0\n", + " 2064.0\n", " 1.0\n", " \n", " \n", " Risk_Strata\n", - " 0.405\n", - " 0.395\n", - " -0.349\n", - " 1.119\n", - " 0.008\n", - " 0.006\n", - " 2274.0\n", - " 2503.0\n", + " 0.416\n", + " 0.403\n", + " -0.326\n", + " 1.177\n", + " 0.009\n", + " 0.007\n", + " 2122.0\n", + " 2462.0\n", " 1.0\n", " \n", " \n", " Treatment_x_Risk_Strata\n", - " 0.010\n", - " 0.496\n", - " -0.947\n", - " 0.939\n", - " 0.011\n", + " 0.002\n", + " 0.504\n", + " -0.931\n", + " 0.959\n", + " 0.012\n", " 0.009\n", - " 1986.0\n", - " 2113.0\n", + " 1792.0\n", + " 2128.0\n", " 1.0\n", " \n", " \n", " Outcome_sigma\n", - " 0.531\n", - " 0.098\n", - " 0.367\n", - " 0.714\n", + " 0.533\n", + " 0.100\n", + " 0.368\n", + " 0.727\n", " 0.002\n", " 0.001\n", - " 2389.0\n", - " 2533.0\n", + " 2274.0\n", + " 1786.0\n", " 1.0\n", " \n", " \n", @@ -948,21 +1035,21 @@ ], "text/plain": [ " mean sd hdi_3% hdi_97% mcse_mean mcse_sd \\\n", - "Intercept 0.254 0.261 -0.233 0.743 0.005 0.004 \n", - "Treatment -0.001 0.367 -0.653 0.730 0.008 0.006 \n", - "Risk_Strata 0.405 0.395 -0.349 1.119 0.008 0.006 \n", - "Treatment_x_Risk_Strata 0.010 0.496 -0.947 0.939 0.011 0.009 \n", - "Outcome_sigma 0.531 0.098 0.367 0.714 0.002 0.001 \n", + "Intercept 0.246 0.271 -0.250 0.761 0.006 0.004 \n", + "Treatment -0.001 0.378 -0.701 0.716 0.009 0.006 \n", + "Risk_Strata 0.416 0.403 -0.326 1.177 0.009 0.007 \n", + "Treatment_x_Risk_Strata 0.002 0.504 -0.931 0.959 0.012 0.009 \n", + "Outcome_sigma 0.533 0.100 0.368 0.727 0.002 0.001 \n", "\n", " ess_bulk ess_tail r_hat \n", - "Intercept 2710.0 2648.0 1.0 \n", - "Treatment 2312.0 2648.0 1.0 \n", - "Risk_Strata 2274.0 2503.0 1.0 \n", - "Treatment_x_Risk_Strata 1986.0 2113.0 1.0 \n", - "Outcome_sigma 2389.0 2533.0 1.0 " + "Intercept 2234.0 2512.0 1.0 \n", + "Treatment 1922.0 2064.0 1.0 \n", + "Risk_Strata 2122.0 2462.0 1.0 \n", + "Treatment_x_Risk_Strata 1792.0 2128.0 1.0 \n", + "Outcome_sigma 2274.0 1786.0 1.0 " ] }, - "execution_count": 11, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -973,12 +1060,12 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2sAAAIOCAYAAAAm+5XNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACYWElEQVR4nOzdd3xUVf7G8c9Meu89kARCQkvovSM1NAUEAQERLNgVFV0Lrm2XVVddde1l7Y3iCoqKAoJUpfcWCIFU0nsyc39/sORngCAgMJPkeb8cSe7c3PudmTuTPPece47JMAwDERERERERsStmWxcgIiIiIiIip1NYExERERERsUMKayIiIiIiInZIYU1ERERERMQOKayJiIiIiIjYIYU1ERERERERO6SwJiIiIiIiYocU1kREREREROyQwpqIiIiIiIgdUlgTqYdMJtM53ZYvX35Z6vn444954YUXLsu+/qySkhIee+yxc35uDh06dNbn+LHHHqux/sMPP0zjxo1xdHTE19cXgIqKCm6++WbCwsJwcHCgbdu2F/UxAXzzzTen1VKXnOm5vFSOHz/Ogw8+SMuWLfHw8MDHx4fmzZszefJktm7dWr3e6tWreeyxx8jLy7skdZztfXOm5+PHH3+kY8eOeHh4YDKZWLhwIe+99x4mk4lDhw5dkhp37tzJY489dsbtX3fddURHR1+S/Z5J+/btufPOO6v3bTKZaNWqFRaL5bR1TSYTt91222Wr7Xxd6s/Mp59+moULF562fPny5Wf83fDSSy8RGxuLs7MzJpOJvLy8S/76nu0zKzo6muuuu+6S7VvErhgiUu+sWbOmxi0pKclwc3M7bXl+fv5lqWfYsGFGVFTUZdnXn5WVlWUAxpw5c85p/eTkZAMwbr/99tOe3zVr1hhHjhypXnfhwoUGYDz00EPGqlWrjA0bNhiGYRgvvPCCARgvvfSSsXr1amPr1q0X/XHdeuutRl3+yD+f1+TPKCwsNGJjY43Q0FDjueeeM5YuXWp8/fXXxnPPPWf06NHD+M9//lO97jPPPGMARnJy8iWp5Wzvm1OPLavVavj7+xtdu3Y1li5daqxZs8bIyckxMjMzjTVr1hhlZWWXpMYvvvjCAIxly5addt/+/fuNjRs3XpL9nurgwYMGYKxYscIwDMOYOnWqARiA8dZbb522PmDceuutl6W2C3GpPzM9PDyMqVOnnrY8Pz//tN8NmzZtMgBjxowZxsqVK401a9YYVVVVl/z1Pdtn1saNG439+/dfsn2L2BNHWwREEbm0unbtWuP7oKAgzGbzactPVVJSgru7+6Usrd5q3LjxHz6/27dvB+COO+4gODi4xnI3Nze7PtNfn1RWVmIymXB0PP1X4BdffMH+/fv56aef6NevX4377rnnHqxW6wXvt7S0FDc3twv++d879Vg7duwYOTk5XHXVVVxxxRU17gsKCroo+zxfTZs2vWz7+vLLLwkODqZnz57Vyzw8PGjfvj1z5sxh4sSJF+25tzcWi4WqqipcXFz+9La8vb1PO7Z27NgBwA033EDnzp2rl1/O1/dU7dq1s9m+RS47W6dFEbn0pk6danh4eNRY1qdPH6NVq1bGihUrjG7duhlubm7G+PHjDcM4cXZ11qxZRnR0tOHk5GSEh4cbd955p1FUVFRjGy+//LLRq1cvIygoyHB3dzdat25tzJ0716ioqKixH/53hvv3N8P4/1apf/zjH8bf//53IyoqynB1dTX69Olj7Nmzx6ioqDBmz55thIWFGd7e3saVV15pZGRknPb4Pv30U6Nr166Gu7u74eHhYQwaNOi0M74nn4N9+/YZQ4cONTw8PIzIyEjjnnvuqW51OFnPqbcznYE+6eTPPPPMM2d9DaKiok7b7pw5c864v3fffdcwjBOtJa+88orRpk0bw9XV1fD19TXGjBljHDhw4LTtf/vtt0b//v0Nb29vw83NzWjevLnx9NNPVz/2M+3nZIvQ559/bnTu3Ln6Z2NiYoxp06ad9fGcfNwna/29k4/tpJOPc/v27cY111xjeHt7G8HBwca0adOMvLy8Gj+bn59vzJgxw/D39zc8PDyMwYMHG3v27Dljy9revXuNCRMmGEFBQYazs7PRvHlz4+WXX66xzrJlywzAeP/994177rnHCA8PN0wmk7Fr164zPq6TrWW13X/qYzr1drKFKSoqyhg2bJgxb948o23btoaLi4sxe/ZswzD+/Pvm1Of4TLWcbJV59913z9j6d7bjxTAMY8OGDcb48eOr35NRUVHGNddcYxw6dKh6nZPbru34nTp16mmtQ6WlpcYDDzxQ47PllltuMXJzc2usd/L5+/bbb4127doZrq6uRnx8vPH222+f8fXo0qWLcdNNN1V/f/L9vnr1agMw/va3v9VYnzO0rB0+fNiYNGlSjePp2WefNSwWS/U6v3+/P/fcc0Z0dLTh4eFhdO3a1VizZs0ZaztVZmamccMNNxiRkZGGs7OzERgYaHTv3t344YcfDMM4t8/MuXPnGk888YQRHR1tODg4GN9++61RWlpq3HPPPUabNm0Mb29vw8/Pz+jatauxcOHC0x77qbc+ffoYhvH/75eTx/GZajn5eXim19disRj/+te/qj+zfHx8jC5duhhfffVV9TqffvqpMXDgQCM0NNRwdXU1mjdvbsyePbvG75c/+syKioo67XP5cr1+IpebWtZEGrC0tDSuvfZa7r//fp5++mnMZjMlJSX06dOH1NRU/vKXv5CYmMiOHTt49NFH2bZtG0uXLsVkMgFw4MABJk6cSExMDM7OzmzZsoWnnnqK3bt388477wDw73//mxtvvJEDBw6wYMGCM9bxyiuvkJiYyCuvvEJeXh6zZs1ixIgRdOnSBScnJ9555x0OHz7Mvffey4wZM/jvf/9b/bNPP/00Dz/8MNOmTePhhx+moqKCZ555hl69erF+/XpatmxZvW5lZSUjR45k+vTpzJo1i59//pknnngCHx8fHn30UcLCwliyZAlDhgxh+vTpzJgxAzi3lgmr1UpVVdVpy0+23ixYsIBXXnmFt99+myVLluDj40NkZCRDhgzhiSeeYNmyZfz000/A/5+xvummm3jvvfe44447mDt3Ljk5OTz++ON0796dLVu2EBISAsDbb7/NDTfcQJ8+fXjttdcIDg5m79691S15jzzyCMXFxXz55ZesWbOmurawsDDWrFnD+PHjGT9+PI899hiurq4cPny4upaLacyYMYwfP57p06ezbds2HnzwQYDqY8UwDK688kpWr17No48+SqdOnfjll18YOnToadvauXMn3bt3p3Hjxjz33HOEhoby3Xffcccdd5Cdnc2cOXNqrP/ggw/SrVs3XnvtNcxmc42Wzd/r1q0bAFOmTOEvf/kLvXr1IiAg4LT1ZsyYQU5ODi+99BLz588nLCwMoMbxtnHjRnbt2sXDDz9MTEwMHh4ewMV73/y+ljZt2jB69Ghuv/12Jk6ceNZWlj86XuDEtZjx8fFcc801+Pv7k5aWxquvvkqnTp3YuXMngYGBDBs2jKeffpq//OUvvPLKK7Rv3x6ovcXl5Ov7448/8uCDD9KrVy+2bt3KnDlzWLNmDWvWrKlR95YtW5g1axYPPPAAISEhvPXWW0yfPp3Y2Fh69+5dvV5qairr16/niSeeOG2f3bp146qrrmLu3LnceOON+Pv7n7G2rKwsunfvTkVFBU888QTR0dEsWrSIe++9lwMHDvDvf/+7xvqvvPIKzZs3r76u7JFHHiEpKYnk5GR8fHxqfe4BJk+ezMaNG3nqqaeIi4sjLy+PjRs3cvz4ceDcXvt//etfxMXF8eyzz+Lt7U2zZs0oLy8nJyeHe++9l4iICCoqKli6dCmjR4/m3XffZcqUKQCsWbOG/v37069fPx555BHgRIvamfz73//mk08+4cknn+Tdd9+lefPmZ/08vO666/jwww+ZPn06jz/+OM7OzmzcuLHGNY379u0jKSmJu+66Cw8PD3bv3s3cuXNZv3599efO2T6zzuRyvn4il52t06KIXHq1tawBxo8//lhj+d/+9jfDbDZXX0910pdffmkAxjfffHPGfVgsFqOystJ4//33DQcHByMnJ6f6vtquvzh5lrNNmzY1zn6evIZr5MiRNda/6667DKD6eoqUlBTD0dHRuP3222usV1hYaISGhhrjxo2r8RwAxueff15j3aSkJCM+Pr76+wu9Zq2228qVK6vXPdkCkpWVVWMbZ3p91qxZYwDGc889V2P5kSNHDDc3N+P++++vfqze3t5Gz549DavVWmudtV3/8eyzzxrAaS1c5/q4z6dl7R//+EeN9W655RbD1dW1uu5vv/3WAIwXX3yxxnpPPfXUadscPHiwERkZedp1l7fddpvh6upaffydbCno3bv3OT+2xx9/3HB2dq5+DWNiYoybb77Z2LJlS431znbNWlRUlOHg4GDs2bPnrPu6kPeNYZz+HNfWwntqy9q5Hi+nqqqqMoqKigwPD48ar8/Zrlk7teVlyZIlZzwOPvvsMwMw3njjjeplJ1v0Dh8+XL2stLTU8Pf3r9GCZhgnPi/8/PyMysrKGvs++Z7avXu34eDgYMyaNav6fk5pWXvggQcMwFi3bl2Nbc+cOdMwmUzVr+PJ5zkhIcGoqqqqXm/9+vUGYHzyySenP3mn8PT0NO66666zrvNHn5lNmzat0RJ7JlVVVUZlZaUxffp0o127djXuq+2atVNb1gzj/4+hU38nnPr6/vzzzwacuCb3XFmtVqOystJYsWKFAdR4j53tmrVTW9Yu5+sncrlpNEiRBszPz4/+/fvXWLZo0SJat25N27Ztqaqqqr4NHjz4tFHCNm3axMiRIwkICMDBwQEnJyemTJmCxWJh796951xHUlISZvP/fxy1aNECgGHDhtVY7+TylJQUAL777juqqqqYMmVKjVpdXV3p06fPaSOamUwmRowYUWNZYmIihw8fPudaa3PnnXeyYcOG024XOrLjokWLMJlMXHvttTUeW2hoKG3atKl+bKtXr6agoIBbbrmlusXzfHTq1AmAcePG8fnnn3P06NELqvdcjBw5ssb3iYmJlJWVkZmZCcCyZcsAmDRpUo31Jk6cWOP7srIyfvzxR6666irc3d1rPD9JSUmUlZWxdu3aGj8zZsyYc67zkUceISUlhXfeeYebbroJT09PXnvtNTp06MAnn3xyzttJTEwkLi7utOUX631zIc71eCkqKmL27NnExsbi6OiIo6Mjnp6eFBcXs2vXrgva98lWk1NH8bv66qvx8PDgxx9/rLG8bdu2NG7cuPp7V1dX4uLiTnu/zps3j1GjRp3xGkSA+Ph4pk+fzssvv1z92XGm2lq2bFnjmqyTtRqGcVpL87Bhw3BwcKj+PjExEaC6NsMwahyXv29179y5M++99x5PPvkka9eupbKy8ow1nc3IkSNxcnI6bfkXX3xBjx498PT0xNHREScnJ95+++0Lfs3Ox7fffgvArbfeetb1Dh48yMSJEwkNDa0+/vv06QPwp46ti/n6idgThTWRBuxMXUoyMjLYunUrTk5ONW5eXl4YhkF2djZwIjD16tWLo0eP8uKLL7Jy5Uo2bNjAK6+8ApwYTOFcndo1ydnZ+azLy8rKqmuFE4Hj1Ho/++yz6lpPcnd3x9XVtcYyFxeX6u39GZGRkXTs2PG0m6en5wVtLyMjA8MwCAkJOe2xrV27tvqxZWVlVe//QvTu3ZuFCxdWh97IyEhat259XqHkXJ3anfBkl7eTx8rx48dxdHQ8bb3Q0NAa3x8/fpyqqipeeuml056bpKQkgNNe+9q6T9UmJCSEadOm8dprr7F161ZWrFiBs7Nz9dDw5+JM+7yY75sLca7Hy8SJE3n55ZeZMWMG3333HevXr2fDhg0EBQVdcI0nX99Tu9GZTCZCQ0OruwGedKbupy4uLjX2n56ezi+//PKHYfyxxx7DwcGhutvfmWo70+sVHh5eff/Zajv1WF6xYsVpx+bJroCfffYZU6dO5a233qJbt274+/szZcoU0tPTz/oYfu9Mtc6fP59x48YRERHBhx9+yJo1a9iwYQPXX3/9RfmM+yNZWVk4ODic9n79vaKiInr16sW6det48sknWb58ORs2bGD+/PnAhR//F/v1E7EnumZNpAE705n1wMBA3Nzcqq+dOdP9AAsXLqS4uJj58+cTFRVVff/mzZsvSa1nq+XLL7+sUUN9EBgYiMlkYuXKlWe8/ujkspN/+Kampl7wvkaNGsWoUaMoLy9n7dq1/O1vf2PixIlER0dXX8N1qpOht7y8vMbyU/8oOh8BAQFUVVVx/PjxGn9MnfpHrJ+fHw4ODkyePLnWs/gxMTE1vr+QVsff6927N4MGDWLhwoVkZmbWes3bH+3T1u+bczle8vPzWbRoEXPmzOGBBx6oXn7ymqgLdfL1zcrKqhHYDMMgPT29upX3fCxYsAAPDw8GDhx41vXCwsK46667+Pvf/86sWbPOWFtaWtppy48dOwb8/2fNuerQoQMbNmyosexkcAgMDOSFF17ghRdeICUlhf/+97888MADZGZmsmTJknPa/pmOrQ8//JCYmBg+++yzGvef+h69VIKCgrBYLKSnp9d6cuSnn37i2LFjLF++vLo1DfjTcxVe7NdPxJ6oZU1Eahg+fDgHDhwgICDgjC1FJydBPfnHwO+DhGEYvPnmm6dt89Sz4RfL4MGDcXR05MCBA2estWPHjue9TXs5wzp8+HAMw+Do0aNnfFwJCQkAdO/eHR8fH1577TUMw6h1e+fyuFxcXOjTpw9z584FTnTXq01ISAiurq41JokG+Oqrr875MZ7q5FD5H330UY3lH3/8cY3v3d3d6devH5s2bSIxMfGMz8+ZWmXORUZGxhmH57dYLOzbtw93d/fqycwv5Fix9fvmXI4Xk8mEYRinnSR46623Tptg+nyeg5NTCnz44Yc1ls+bN4/i4uLTphw4F/PmzWP48OHnNGz97Nmz8ff3rxFAf1/bzp072bhxY43l77//PiaT6bRpHP6Il5fXacfkyZ4Bv9e4cWNuu+02Bg4cWGPfF/Lam0ym6kmrT0pPTz/je/JSHFsnBwJ69dVXz1rjyf3/3uuvv37auud7bF3M10/EnqhlTURquOuuu5g3bx69e/fm7rvvJjExEavVSkpKCt9//z2zZs2iS5cuDBw4EGdnZyZMmMD9999PWVkZr776Krm5uadtMyEhgfnz5/Pqq6/SoUMHzGbzBQWpU0VHR/P444/z0EMPcfDgQYYMGYKfnx8ZGRmsX78eDw8P/vrXv57XNr28vIiKiuKrr77iiiuuwN/fn8DAwOqQWpuUlJTTrpOCE2ebL2Q+oh49enDjjTcybdo0fv31V3r37o2HhwdpaWmsWrWKhIQEZs6ciaenJ8899xwzZsxgwIAB3HDDDYSEhLB//362bNnCyy+/DFAd7ubOncvQoUNxcHAgMTGRJ598ktTUVK644goiIyPJy8vjxRdfrHEdyZmcvJ7unXfeoWnTprRp04b169efFqzOx6BBg+jduzf3338/xcXFdOzYkV9++YUPPvjgtHVffPFFevbsSa9evZg5cybR0dEUFhayf/9+vv766wsezfKDDz7g9ddfZ+LEiXTq1AkfHx9SU1N56623qkdFPflH98nn9MUXX2Tq1Kk4OTkRHx+Pl5dXrdu39fvmXI4Xb29vevfuzTPPPFN97K9YsYK33367Oqie1Lp1awDeeOMNvLy8cHV1JSYm5oxheeDAgQwePJjZs2dTUFBAjx49qkeDbNeuHZMnTz6vx3L8+HFWrFjBp59+ek7re3t789BDD3H33Xefdt/dd9/N+++/z7Bhw3j88ceJiopi8eLF/Pvf/2bmzJlnvPbwQuTn59OvXz8mTpxI8+bN8fLyYsOGDSxZsoTRo0dXr3chr/3w4cOZP38+t9xyC2PHjuXIkSM88cQThIWFsW/fvhrrJiQksHz5cr7++mvCwsLw8vIiPj7+Tz22Xr16MXnyZJ588kkyMjKqQ/SmTZtwd3fn9ttvp3v37vj5+XHzzTczZ84cnJyc+Oijj9iyZctp26vtM+tMofdyvX4iNmGbcU1E5HI62zxrZ1JUVGQ8/PDDRnx8vOHs7Gz4+PgYCQkJxt13322kp6dXr/f1119Xz6cTERFh3HfffdUj+v1+NLGcnBxj7Nixhq+vr2EymU6bM+jUEexOjkj2xRdf1Fhe26hkCxcuNPr162d4e3sbLi4uRlRUlDF27Fhj6dKlZ30ODOP/Ryr8vaVLlxrt2rUzXFxcaswrdCZ/NBrkpEmTTtvXuYwGedI777xjdOnSxfDw8DDc3NyMpk2bGlOmTDF+/fXXGut98803Rp8+fQwPDw/D3d3daNmypTF37tzq+8vLy40ZM2YYQUFB1a9BcnKysWjRImPo0KFGRESE4ezsbAQHBxtJSUk1RrGszck50UJCQgwPDw9jxIgRxqFDh2odDfLUx32mOcDy8vKM66+/3vD19TXc3d2NgQMHGrt37z7jCJ3JycnG9ddfb0RERBhOTk5GUFCQ0b17d+PJJ5+sXqe2Y6k2O3fuNGbNmmV07NjRCAoKMhwdHQ0/Pz+jT58+xgcffHDa+g8++KARHh5umM3mM86zdiZ/9n1jGBc+GuRJf3S8pKamGmPGjDH8/PwMLy8vY8iQIcb27dvPOL/VCy+8YMTExBgODg7nNM/a7NmzjaioKMPJyckICwszZs6cWes8a6fq06dP9Zxgb731luHu7m4UFxeftl5t76ny8nIjJiam1nnWJk6caAQEBBhOTk5GfHy88cwzz9Q6T9epznSMnqqsrMy4+eabjcTExOo57uLj4405c+bUeBzn+5l50t///ncjOjracHFxMVq0aGG8+eabZ/yM27x5s9GjRw/D3d39rPOsGca5jwZpGCdGN33++eeN1q1bV//u6Natm/H1119Xr7N69WqjW7duhru7uxEUFGTMmDHD2Lhx42mjy9b2mWUYtc+zdqlfPxFbMBnGWfrNiIiIiNihpKQk3NzcmDdvnq1LERG5ZBTWRERERERE7JAGGBEREREREbFDCmsiIiIiIiJ2SGFNRERERETEDimsiYiIiIiI2CGFNRERERERETukSbEvE8MwKCwstHUZIiIiIiJiJ7y8vDCZTLXer7B2mRQWFuLj42PrMkRERERExE7k5+fj7e1d6/2aZ+0yUcuaiEjdU1lZybvvvgvAtGnTcHJysnFFIiJSn/xRy5rCmoiISC2Ki4vx9PQEoKioCA8PDxtXJCIiDYkGGBEREREREbFDCmsiIiIiIiJ2SGFNRERERETEDmk0SBERERGplywWC5WVlbYuQxogJycnHBwc/vR2FNZEREREpF4xDIP09HTy8vJsXYo0YL6+voSGhp51tMc/orAmIiIiIvXKyaAWHByMu7v7n/pjWeR8GYZBSUkJmZmZAISFhV3wthTWREREauHi4sKiRYuqvxYR+2exWKqDWkBAgK3LkQbKzc0NgMzMTIKDgy+4S6TCmoiISC0cHR0ZNmyYrcsQkfNw8ho1d3d3G1ciDd3JY7CysvKCw5pGgxQRERGRekddH8XWLsYxqJY1ERGRWlRWVvLRRx8BMGnSJJycnGxckYiINCRqWRMREalFRUUF06ZNY9q0aVRUVNi6HBGRS2b58uWYTKYaI2guXLiQ2NhYHBwcuOuuu3jvvffw9fX90/symUwsXLjwT2/nYjp06BAmk4nNmzef88/07duXu+6665LVBGpZExERERGxa9dddx15eXkXLeD07duXtm3b8sILL1Qv6969O2lpafj4+FQvu+mmm5g2bRp33HEHXl5eODo6kpSUdFFqkHOjsCYiIiIiUg9UVlZecHdtZ2dnQkNDq78vKioiMzOTwYMHEx4eXr385CiHcnmoG6SIiIiIiB348ssvSUhIwM3NjYCAAAYMGMB9993Hf/7zH7766itMJhMmk4nly5dXd9v7/PPP6du3L66urnz44YccP36cCRMmEBkZibu7OwkJCXzyySfV+7juuutYsWIFL774YvX2Dh06VKMb5PLly/Hy8gKgf//+1fs8UzfIr7/+mg4dOuDq6kqTJk3461//SlVVVfX9+/bto3fv3ri6utKyZUt++OGHc34+fv8Ye/XqhZubG506dWLv3r1s2LCBjh074unpyZAhQ8jKyqr+OavVyuOPP05kZCQuLi60bduWJUuW1Nj2+vXradeuHa6urnTs2JFNmzadtv+dO3eSlJSEp6cnISEhTJ48mezs7HOu/2JQWBMRERGR+sswoKLYNjfDOOcy09LSmDBhAtdffz27du1i+fLljB49mjlz5jBu3DiGDBlCWloaaWlpdO/evfrnZs+ezR133MGuXbsYPHgwZWVldOjQgUWLFrF9+3ZuvPFGJk+ezLp16wB48cUX6datGzfccEP19ho1alSjlu7du7Nnzx4A5s2bd9o+T/ruu++49tprueOOO9i5cyevv/467733Hk899RRwIjSNHj0aBwcH1q5dy2uvvcbs2bPP+yWcM2cODz/8MBs3bsTR0ZEJEyZw//338+KLL7Jy5UoOHDjAo48+Wr3+iy++yHPPPcezzz7L1q1bGTx4MCNHjmTfvn0AFBcXM3z4cOLj4/ntt9947LHHuPfee097Pfr06UPbtm359ddfWbJkCRkZGYwbN+686/8z1A1SREREROqvyhJ4OvyP17sU/nIMnD3OadW0tDSqqqoYPXo0UVFRACQkJAAnuh6Wl5fX6KZ40l133cXo0aNrLPt98Lj99ttZsmQJX3zxBV26dMHHxwdnZ2fc3d3PuD040SUyODgYAH9//1rXe+qpp3jggQeYOnUqAE2aNOGJJ57g/vvvZ86cOSxdupRdu3Zx6NAhIiMjAXj66acZOnToOT0nv388gwcPBuDOO+9kwoQJ/Pjjj/To0QOA6dOn895771Wv/+yzzzJ79myuueYaAObOncuyZct44YUXeOWVV/joo4+wWCy88847uLu706pVK1JTU5k5c2b1Nl599VXat2/P008/Xb3snXfeoVGjRuzdu5e4uLjzegwXSmFNRERERMTG2rRpwxVXXEFCQgKDBw9m0KBBjB07Fj8/v7P+XMeOHWt8b7FY+Pvf/85nn33G0aNHKS8vp7y8HA+PcwuN5+O3335jw4YN1S1pJ/dfVlZGSUkJu3btonHjxtVBDaBbt27nvZ/ExMTqr0NCQoD/D7Inl2VmZgJQUFDAsWPHqoPcST169GDLli0A7Nq1izZt2tSYOP3Uun777TeWLVuGp6fnafUcOHBAYU1ERMTWXFxc+Pzzz6u/FpE6yMn9RAuXrfZ9jhwcHPjhhx9YvXo133//PS+99BIPPfRQdffF2pwawp577jmef/55XnjhBRISEvDw8OCuu+66JNOPWK1W/vrXv57Wsgfg6uqKcYZuoBcyUfTvB005+fOnLrNarWfdj2EY1cvOVNeprFYrI0aMYO7cuafdFxYWdu7F/0kKayIiIrVwdHTk6quvtnUZIvJnmEzn3BXR1kwmEz169KBHjx48+uijREVFsWDBApydnbFYLOe0jZUrVzJq1CiuvfZa4ETo2LdvHy1atKhe53y2dzbt27dnz549xMbGnvH+li1bkpKSwrFjx6pHlFyzZs2f3u/ZeHt7Ex4ezqpVq+jdu3f18tWrV9O5c+fquj744ANKS0urR7dcu3Ztje20b9+eefPmER0djaOj7SKTBhgREREREbGxdevW8fTTT/Prr7+SkpLC/PnzycrKokWLFkRHR7N161b27NlDdnY2lZWVtW4nNja2uoVu165d3HTTTaSnp9dYJzo6mnXr1nHo0CGys7NPa5U6V48++ijvv/8+jz32GDt27GDXrl189tlnPPzwwwAMGDCA+Ph4pkyZwpYtW1i5ciUPPfTQBe3rfNx3333MnTuXzz77jD179vDAAw+wefNm7rzzTgAmTpyI2Wxm+vTp7Ny5k2+++YZnn322xjZuvfVWcnJymDBhAuvXr+fgwYN8//33XH/99Rcl6J4rhTUREZFaVFVV8cUXX/DFF1/UGIpaRORi8/b25ueffyYpKYm4uDgefvhhnnvuOYYOHcoNN9xAfHw8HTt2JCgoiF9++aXW7TzyyCO0b9+ewYMH07dvX0JDQ7nyyitrrHPvvffi4OBAy5YtCQoKIiUl5YJqHjx4MIsWLeKHH36gU6dOdO3alX/+85/VA6SYzWYWLFhAeXk5nTt3ZsaMGTWub7tU7rjjDmbNmsWsWbNISEhgyZIl/Pe//6VZs2YAeHp68vXXX7Nz507atWvHQw89dFp3x/DwcH755RcsFguDBw+mdevW3Hnnnfj4+GA2X74IZTLOpdOmiIhIA1RcXFx9cXlRUdEluUBfRC6usrIykpOTiYmJwdXV1dblSAN2MY5FtayJiIiIiIjYIYU1ERERERG57J5++mk8PT3PeDvfudjqK40GKSIiIiIil93NN9/MuHHjznjfyVEaGzqFNRERERERuez8/f3x9/e3dRl2Td0gRURERERE7JDCmoiIiIiIiB1SN0gREZFaODs78+6771Z/LSIicjkprImIiNTCycmJ6667ztZliIhIA6VukCIiIiIiInZIYU1ERKQWVVVVLF68mMWLF1NVVWXrckREzuq9997D19fX1mVcEn379uWuu+465/Xry3OhbpAiIiK1KC8vZ/jw4QAUFRXh6KhfmyJiv8aPH09SUpKty5CLSL91RERERETqATc3N00mXc+oG6SIiIiIiB3o27cvd9xxB/fffz/+/v6Ehoby2GOPVd//z3/+k4SEBDw8PGjUqBG33HILRUVF1ff/vuvfnj17MJlM7N69u8Y+/vnPfxIdHY1hGADs3LmTpKQkPD09CQkJYfLkyWRnZ59zvbfffjt33XUXfn5+hISE8MYbb1BcXMy0adPw8vKiadOmfPvttzV+bsWKFXTu3BkXFxfCwsJ44IEHanQ1Ly4uZsqUKXh6ehIWFsZzzz132r4rKiq4//77iYiIwMPDgy5durB8+fJzqrsuUVgTERERkXrLMAxKKqpscjsZiM7Hf/7zHzw8PFi3bh3/+Mc/ePzxx/nhhx8AMJvN/Otf/2L79u385z//4aeffuL+++8/43bi4+Pp0KEDH330UY3lH3/8MRMnTsRkMpGWlkafPn1o27Ytv/76K0uWLCEjI4Nx48adV72BgYGsX7+e22+/nZkzZ3L11VfTvXt3Nm7cyODBg5k8eTIlJSUAHD16lKSkJDp16sSWLVt49dVXefvtt3nyySert3nfffexbNkyFixYwPfff8/y5cv57bffaux32rRp/PLLL3z66ads3bqVq6++miFDhrBv375zrr0uMBkXchSJiIg0AMXFxXh6egInrlnz8PCwcUUi8kfKyspITk4mJiYGV1dXSiqqaPnodzapZefjg3F3Pverjvr27YvFYmHlypXVyzp37kz//v35+9//ftr6X3zxBTNnzqxuCXvvvfe46667yMvLA+D555/n5Zdf5sCBAwDs3buX+Ph4duzYQcuWLXn00UdZt24d3333/89PamoqjRo1Ys+ePcTFxZ1XvRaLBR8fH0aPHs37778PQHp6OmFhYaxZs4auXbvy0EMPMW/ePHbt2oXJZALg3//+N7NnzyY/P5+SkhICAgJ4//33GT9+PAA5OTlERkZy44038sILL3DgwAGaNWtGamoq4eHh1fUMGDCAzp078/TTT5/2XNjCqcfihdA1ayIiIiIidiIxMbHG92FhYWRmZgKwbNkynn76aXbu3ElBQQFVVVWUlZVRXFx8xpNJ11xzDffddx9r166la9eufPTRR7Rt25aWLVsC8Ntvv7Fs2bLqk1K/d+DAgT8Ma6fW6+DgQEBAAAkJCdXLQkJCAKofw65du+jWrVt1UAPo0aMHRUVFpKamkpubS0VFBd26dau+39/fn/j4+OrvN27ciGEYp9VXXl5OQEDAH9ZclyisiYiIiEi95ebkwM7HB9ts3+fLycmpxvcmkwmr1crhw4dJSkri5ptv5oknnsDf359Vq1Yxffp0Kisrz7itsLAw+vXrx8cff0zXrl355JNPuOmmm6rvt1qtjBgxgrlz557xZy+03t8vOxnKrFYrcKJb6u+D2sllJ9c9l05/VqsVBwcHfvvtNxwcaj7HZwqedZnCmoiISC2cnZ15+eWXq78WkbrHZDKdV1dEe/Xrr79SVVXFc889h9l8YtiJzz///A9/btKkScyePZsJEyZw4MABrrnmmur72rdvz7x584iOjr5sU5O0bNmSefPm1Qhtq1evxsvLi4iICPz8/HBycmLt2rU0btwYgNzcXPbu3UufPn0AaNeuHRaLhczMTHr16nVZ6rYVDTAiIiJSCycnJ2699VZuvfXW084ei4hcTk2bNqWqqoqXXnqJgwcP8sEHH/Daa6/94c+NHj2agoICZs6cSb9+/YiIiKi+79ZbbyUnJ4cJEyawfv16Dh48yPfff8/111+PxWK5JI/jlltu4ciRI9x+++3s3r2br776ijlz5nDPPfdgNpvx9PRk+vTp3Hffffz4449s376d6667rjqgAsTFxTFp0iSmTJnC/PnzSU5OZsOGDcydO5dvvvnmktRtKwprIiIiIiJ2rm3btvzzn/9k7ty5tG7dmo8++oi//e1vf/hz3t7ejBgxgi1btjBp0qQa94WHh/PLL79gsVgYPHgwrVu35s4778THx6dGOLqYIiIi+Oabb1i/fj1t2rTh5ptvZvr06Tz88MPV6zzzzDP07t2bkSNHMmDAAHr27EmHDh1qbOfdd99lypQpzJo1i/j4eEaOHMm6deto1KjRJanbVjQapIiISC1+P8pZr169Trs2QkTsz8UYgU/kYtBokCIiIpdQWVkZ/fr1AzR0v4iIXH7qBikiIiIiIjWkpKTg6elZ6y0lJcXWJTYIalkTEREREZEawsPD2bx581nvl0tPYU1ERERERGpwdHQkNjbW1mU0eOoGKSIiIiIiYocU1kRERESk3tGA52JrF+MYVFgTERERkXrj5AT2JSUlNq5EGrqTx+DJY/JC6Jo1ERGRWjg5OfGPf/yj+msRsX8ODg74+vqSmZkJgLu7OyaTycZVSUNiGAYlJSVkZmbi6+v7p+bo1KTYIiIiIlKvGIZBeno6eXl5ti5FGjBfX19CQ0P/1MkChTURERERqZcsFguVlZW2LkMaICcnpz/VonaSwpqIiEgtLBYLGzduBKB9+/YX5ReviIjIuVJYExERqUVxcTGenp4AFBUV4eHhYeOKRESkIdFokCIiIiIiInZIYU1ERERERMQOKayJiIiIiIjYIYU1ERERERERO6SwJiIiIiIiYocU1kREREREROyQo60LEBERsVdOTk7MmTOn+msREZHLSfOsiYiIiIiI2CF1gxQREREREbFD6gYpIiJSC6vVyq5duwBo0aIFZrPOcYqIyOWjbpAiIiK1KC4uxtPTE4CioiI8PDxsXJGIiDQkOkUoIiIiIiJihxTWRERERERE7JDCmoiIiIiIiB1SWBMREREREbFDCmsiIiIiIiJ2SGFNRERERETEDmmeNRERkVo4OTlx7733Vn8tIiJyOWmeNRERERERETukbpAiIiIiIiJ2SN0gRUREamG1WklJSQGgcePGmM06xykiIpePukGKiIjUori4GE9PTwCKiorw8PCwcUUiItKQ6BShiIiIiIiIHVJYExERERERsUMKayIiIiIiInZIYU1ERERERMQOKayJiIiIiIjYIYU1ERERERERO6R51kRERGrh6OjILbfcUv21iIjI5aR51kREREREROyQukGKiIiIiIjYIfXpEBERqYVhGGRnZwMQGBiIyWSycUUiItKQqBukiIhILYqLi/H09ASgqKgIDw8PG1ckIiINibpBioiIiIiI2CGFNRERERERETuksCYiIiIiImKHFNZERERERETskMKaiIiIiIiIHVJYExERERERsUOaZ01ERKQWjo6OTJ06tfprERGRy0nzrImIiIiIiNghdYMUERERERGxQ+rTISIiUgvDMCgpKQHA3d0dk8lk44pERKQhUcuaiIhILUpKSvD09MTT07M6tImIiFwuCmsiIiIiIiJ2SGFNRERERETEDimsiYiIiIiI2CGFNRERERERETuksCYiIiIiImKHFNZERERERETskOZZExERqYWDgwNjx46t/lpERORyMhmGYdi6CBEREREREalJ3SBFRERERETskMKaiIiIiIiIHVJYExERqUVxcTEmkwmTyURxcbGtyxERkQZGYU1ERERERMQOKayJiIiIiIjYIYU1ERERERERO6SwJiIiIiIiYocU1kREREREROyQwpqIiIiIiIgdcrR1ASIiIvbKwcGBpKSk6q9FREQuJ5NhGIatixAREREREZGa1A1SRERERETEDimsiYiIiIiI2CGFNRERkVoUFxfj4eGBh4cHxcXFti5HREQaGA0wIiIichYlJSW2LkFERBootayJiIiIiIjYIYU1ERERERERO6SwJiIiIiIiYocU1kREREREROyQwpqIiIiIiIgd0miQIiIitTCbzfTp06f6axERkcvJZBiGYesiREREREREpCadJhQREREREbFDCmsiIiIiIiJ2SGFNRESkFsXFxQQFBREUFERxcbGtyxERkQZGA4yIiIicRXZ2tq1LEBGRBkotayIiIiIiInZIYU1ERERERMQOKayJiIiIiIjYIYU1ERERERERO6SwJiIiIiIiYoc0GqSIiEgtzGYzHTt2rP5aRETkcjIZhmHYuggRERERERGpSacJRURERERE7JDCmoiIiIiIiB1SWBMREalFSUkJ0dHRREdHU1JSYutyRESkgdEAIyIiIrUwDIPDhw9Xfy0iInI5qWVNRERERETEDimsiYiIiIiI2CGFNRERERERETuksCYiIiIiImKHNMCIiIiInbFarRQUFFBaWkpZWRllZWVUVVXh6OiIg4MDjo6OeHh44OPjg4uLCyaTydYli4jIJaCwJiIiUguTyUTLli2rv76YsrOz2bx5M3v27GHPnj3s3buXY8eOkZmVxfG8QqyYMTk4goMjJlPNjjCGYQXDimG14Gg24evlQWhQIBHhYYSHhxMREUF4eDhRUVE0bdqUqKgonJ2dL2r9IiJy6ZkMjUUsIiJyySUnJ/PNN9+wZs0a1q5dy8Ejx3Bw88bs5oXZxQOzu8+Jm5PriZBmdsBsdsTR2QVHR0dMZjOG1YrVsGK1WKmsrMCwWsBqBasFw1qFUVmOtbwIa2kR1ooSjIpSrBWlUFVBRLA/MY0jiG3alCZNmhAbG0t8fDyxsbG4u7vb+ukREZEzUFgTERG5BAzD4LfffmP+/Pl8/fXX7Nh7AEfvIBw8A3H0D8PBzQf/4DD8AgPx8/Ul0M8Xf18ffLw8/nfzxMXZGbPJhNkEnGzYM8AALFYLpWXlFJeUUVhcQl5+Pnn5ReQVFlFQVEJRUREFhQXk5+VRUX4isFkry7GW5GEpzsdaXoxRXoy1vITwID/imkYTHxdHXFwc8fHxxMXFERUVhYODgw2fRRGRhk1hTURE5CI6cuQIH374Ie+//z57k4/g6BeGo38kzv4RRDZpRmSjRkRFhNIsqhGBvl44OVzasb6qrFZycvNJy8wmIzuH7Nx8cvILyMvLIzcnl7KSQoyqyt8FuVysZUVYy4txtFYQExlGfGyTGiEuLi6OoKAgXSsnInKJKayJiIjUoqSkhE6dOgGwYcOGWrsLGobBsmXLeP7551m85HscfcNwCorGNTiK2BatiW3ahLbNmxEa4IOD2X4CjtUwyM0v5GhaBmnZx8nIziEnt4Dc3Dzy8nKpLC+p7lppKcrDWlpwoptlWTHebk60iI2mVcuWtGrVqvoWGhqqECcicpEorImIiNSiuLgYT09PAIqKivDw8Khxf1VVFR9//DHPPfcc2/cm4xQUjXNYM6KaJ9KyRQu6tG1JsK8X5joYXiqrLGRkH+doehbpWcfJyskjJy+PvNw8CvJzsVaWY1SWYSn+XWtcWRHero40b9KY1q1a0rp1azp27Ejbtm1xc3Oz9UMSEalzFNZERERqUVtYs1qtzJs3j0ceeYT9qZk4hcbi2agFLdt1pkendsRHhV/y7o22VFJWxpFjGaSmZ5KWmU3m8TxycnLIy8vFWlGKUVmOpSgHS9FxLCUFmCtLaB4TSecO7ejUqROdOnWiVatWODk52fqhiIjYNYU1ERGRWpwprP3000/cd999bN61H5fw5vg0SaR915706dyO8ECfOtmKdrGUlVeQciyN1LRMjmVmk56VQ0ZmBiUF+VgrSrEW51JVkImlJB9nSxmd27Skf7++9O3bl86dO2t6ARGRUyisiYiI1OL3YW337t088sgjfLnwa1zC4vFq0pb23XszsGdnQv28dJ1WLQwM0jOPsy85hUPH0jmWnkVmZiZlxQVYy4upykvHUpCFU1UJXdu0YNDAAYwcOZL4+Hg9pyLS4CmsiYiI1OL3Yc3N3R2LVxiuUW1o16M/g/p2p3Gwf4NuSbtQVquFQ6lp7NyXzIGUo6QePUZJYR6WsiKqjqdSVZBJVKA3o4aeCG7du3fH0dHR1mWLiFx2CmsiIiK1WLNmDd27dwfAvUVvYjr0ZfCA/rSJi8LRXH+vSbvcDAwOHznKtj0H2X3gEEdSj1JVWkhVXjqVOan4OFRx9cghTJk8mc6dO6vFTUQaDIU1ERGRU1RUVPC3v/2NJ576GxarFbOTC1c+9BpD+3TD3VktPJdaSWkJG7ftYuvuAxw8fISSghwsBVlUZB0myt+NyeOu4tprryUmJsbWpYqIXFIKayIiIr+zb98+rrnmGrbsPYRrTAdadBvAqCEDiAkLUIuODVgsVWzasZt1m3aw7+AhKorzqco9RkXmIXq3i+eeO29nyJAhmNXSKSL1kMKaiIjI/3z88cfcdNPNVHiF4d+qJ/0GD2NA17a4Oqk1zR6UlpayduMWNmzbTUpKKpbiXCrS99HI25G7br6eqVOnnjYXnohIXaawJiIiDV5JSQl33HEH73zwMa4x7WnaZSBjRg2jWXiQWtPsVEZWFt+vWMOmnXspK8ihIusQbqVZzJhwFffdey+BgYG2LlFE5E9TWBMRkQYtOTmZq666iu3Jabg360L3wVdy1cDeeLk5U1FWxhMzrwbgkVe/wNnV1cbVyqlKS0tZtnodv/y2jbzj2VTmpOKYd4Tbpo7j3ln34Ovra+sSRUQumMKaiIg0WEuXLmX8+PEUOQcQmNiHpFFj6NWuefVIj2WlJUzv1wKAt5ftwtXN3ZblyllYrVZ+3byVb1esITMjk8rjR3ApPMo9MyZx5513VE/BICJSlyisiYhIg2MYBs8//zz3zX4Q58aJRHceyLgxVxHfKKTGegprdY9hWFn/22YWL1/D8exsKo+n4FGcxpxZt3LTTTfi4OBg6xJFRM6ZwpqIiDQolZWVzJw5k3c+/BT32M606TeS8SOHEOh9ehBTWKu7rFYrq9dvYMnP68k5nkVFxgFivQxeee5v9OrVy9bliYicE4U1ERFpMPLz8xk7dizL1m7Eo3lP+g4fx8gruuFWy2iPCmt1n9Vq4ftlK/nhl98ozc+m/MgOruzdhn/981mCgoJsXZ6IyFlpUhIREWkQDh8+TI8ePVi+cTe+7QZz5bUzGDOoR61BTeoHs9mBIVf0Zc7dN9ChfXvc4rqyeHcerboP4KOPPkbnrEXEnqllTURE6r3ffvuN4cOHk2PyJqhtf8ZcPZ5OLWIw/8Gw/GpZq38OJifz/vxvyMrKojxtL32ah/LWKy8SERFh69JERE6jljUREanXFi1aRO8+fchzCSGq55XMuP56urRs8odB7SQvX3+8fP0vcZVyuTSJieHhu25iQM/OuEclsjrdRELvYbz55ltqZRMRu6OWNRERqbc+/fRTJk+dhlPjNsT3GsG1V48izN/b1mWJnUg9msp7n/+X9MxsytL20ic+mA/ffp2AgABblyYiAiisiYhIPfXWW29x0y234dK0M236X8nkMSPw9XCxdVliZ6xWK98u/ZHvV22kPC8dn+IjfPr68/To0cPWpYmIKKyJiEj988ILL3DP7L/g3qwb7QdcyeTRQ/FwcbZ1WWLHDqek8NYn88nJyaEidQcPXj+GvzxwP2azrhgREdtRWBMRkXrDMAyefPJJHntqLm7Ne9Jl0JVMHDnogkd8rCgr4x93TwXg/uf/g7Or68UsV+xMWVkZ//n0C7btT6EiI5kujdz55N03CA4OtnVpItJAKayJiEi9YBgGs2fP5rlX3sA9vic9kkYzfmg/XBwdLnibGg2y4TEwWLlqNfN/WEV5XiaehYf46j+v0rFjR1uXJiINkNr2RUSkzrNardxyyy3889W38WjZl36jrmFiUv8/FdSkYTJhonfPHtx347UERTSmOKgVV0y8hU8++9zWpYlIA6SwJiIidVpVVRVTp07lzY/n4dGyH4OvmsDVg3rh6KBfcXLhIiIi+MsdN9IsqhEOjdsy/bGX+cujf8Vqtdq6NBFpQPSbTERE6qzy8nLGjRvHp4uW4tW6P8Ovnsio/l1xMJ/bHGoiZ+Pq6sadN0+nZ7sWuEa25KX/rmH0xKkUFxfbujQRaSAU1kREpE4qLi5mxIgRfL18Hd6t+3Pl+EkM7dnhnCe7FjkXZrOZa8aOYfzQPrgEx/BTcgndB43k6NGjti5NRBoAhTUREalz8vPzGTJkCMs27sI3cQBjJ05mQOdEBTW5ZHr16MFtU8biGRjOYULoOnQsO3bssHVZIlLPKayJiEidkp2dzRVXXMG63UfwbzuI8ZMm06d9S0yXKKi5uLrh4up2SbYtdUtcs2Y8eOs0AoJDKPSPp/fY6SxbvtzWZYlIPaah+0VEpM5IS0tjwIAB7MsuI7DtFVwzYSIdWzSxdVnSwBQXF/OvN97laFYOVUd38tpjdzLxmvG2LktE6iGFNRERqRMOHTrEgAEDOFJsJrj9QCZOnEib2Ea2LksaqMrKCl5/90N2H06j7OguHp1+JbNn3X3JWnhFpGFSWBMREbu3Z88eBgwYQKbVg7COg5k8aQItosJtXZY0cFarlU++mMeabfuoyDjA1P6JvPTPZzCbdZWJiFwcCmsiImLXtmzZwqBBg8h3CiSiy1CmTrqG2Ijgy7LvivIyXnzwZgDu/NtrOLu4Xpb9St1hYLDk+6UsXrGByuMpDGkVwkfvvI6zs7OtSxORekCnfkRExG6tXbuWvn37ku8STFSPEUyfOumyBTU40XKyefUyNq9epsmQ5YxMmBg6aCCTRl6BS1AU3+3JYehV11BUVGTr0kSkHlBYExERu7Rs2TIGDBhImU8UTXtfyfQpE4kOCbB1WSJn1K1LF264ZgSuAZFsyDbRJ+kqsrKybF2WiNRxCmsiImJ3Fi5cyJChSViC44nrO5rp115DZKCvrcsSOauEVq2547qr8QwMZ3+lP92HXMWhQ4dsXZaI1GEKayIiYlfeffddxlw9DodGbWg14GqmTxpHqJ+XrcsSOSdNYppw743X4hsUSpZbFD2Srmbr1q22LktE6iiFNRERsRvPPfcc199wEy5NO9N+6DVMnzCaQG93W5clcl5CQ8OYfev1BIWEURzYgn5jr2PlypW2LktE6iCFNRERsTnDMHjwwQe578GHcI/vQfeRk5kydgQ+7i62Lk3kgvj6+jH7tuk0iozAGp5I0tTbWbBgoa3LEpE6RmFNRERsymKxcOONNzL3+Zdwb96bfmOnMXHkIDxdnGxdmsif4u7uwb23TCeuSTRO0R2YNOsJ3njzLVuXJSJ1iOZZExERmykvL2fSpEks+OYHPFr0YuCYyYzo0wVnR51LlPrDarXwzkefs2nXfsoPb+Uv00bx0F8exGQy2bo0EbFzCmsiImITeXl5jBkzhhXrt+DVqg9J46YwqGsbnBwU1KT+MTD4YsEifv51K2WpO5g2qCMvvfBPzGYd7yJSO4U1ERG57A4dOsSwYcPYm5aHb+s+jBw/mb7tW+JgVkuD1G9Llv7EouVrKT+2h6TECD58721cXHRtpoicmcKaiIhcVuvXr2fEiBHkmbwIajeAMeMm0KlFNGY77BJWUV7Gq3+9G4CZc57H2cXVxhVJffDLug18tvhHytL20zncma+++AQvL01PISKnU9u7iIhcNvPnz6dPn77kuwQT3XsM118/nS4tY+wyqAFYrVbW//QN63/6BqvVautypJ7o0aUTM8aPwCMijg2Z0GfwcDIzM21dlojYIYU1ERG55AzD4Nlnn2Xs+GswRSTQcuAEZlw3meaNQ2xdmohNJLZqxe1Tr8Y7vCn7LQH0GDSC5ORkW5clInZGYU1ERC6p0tJSrrvuOu5/aA7u8T3pPHIKN1w7logAb1uXJmJTTWJiuOeGSfiHRZPpHk2PoWPYsmWLrcsSETuisCYiIpdMSkoKvXr14qMFi/FKHMAVV09n8uih+Ljr2i8RgLDQUO6bOZWQiMaUBLei39XXs3z5cluXJSJ2QmFNREQuieXLl9OhQwe2puQQ1HkEV0+byZhBPXBzcrR1aSJ2xc/Xj/tvnU7jRpEYEW0ZMeN+Xn/jTVuXJSJ2QGFNREQuKsMwePHFFxkwaDBFHhHE9BvHtBtupl/7FjhqTimRM3J3c2fWzOm0ahaFU3Q77n7+A26+7U4qKyttXZqI2JB+a4qIyEVTWFjIpEmTuPv+v+DSrDtth03hpuun0Do6DJOdjvgoYi+cnJyZOX0qg3p0wDWyJR+u2sOAYVeSnZ1t69JExEY0z5qIiFwUW7ZsYdy4cRzMyMc9rht9h41lRP9uuDvX3W6PhmFQXlYKgIurmwKnXDa/bdrCh199R2lOGgGlqfz3o7dISEiwdVkicpkprImIyJ9iGAZvvPEGd951NwREEZzYl6RRo+me2EzdHkX+hNSjR/n3+1+QdzwL0nbwyuP3MWniBFuXJSKXkcKaiIhcsIKCAm688UY+X/BfXGPa07xnEmNHJhEd4m/r0kTqheLiIv797sccPpZB2ZEdTOzXlpdeeA43NzdblyYil4HCmoiIXJC1a9cyefJkDmUX4R7bmV5JYxnZvxuers62Lu2iqawo5+2//wWA6Q88jZOzi40rkobIarWyYNE3LF+/lYrsFKKdCvnyg7eIj4+3dWkicompf4qIiJyXiooKHnroIXr06s2RclfCeoxm4g23M25Ir3oV1AAsFgsrv/mSld98icVisXU50kCZzWbGjBzOjROuxDsyjhSnSLoMvZoPP/rY1qWJyCWmljURETln27ZtY8qUKWzdm4xbk44k9EniyiFX0CjIz9alXRJlpSVM79cCgLeX7cLVzd3GFUlDl5eXx+sffM6RY2mUpe5idI8WvPTPZ/Hzq5/vQZGGTi1rIiLyhywWC8888wwdO3ZiZ1ohwV2vZNR1t3HDNVfV26AmYo98fX2579YZ9OvWCbeoRL7amkXrbv1YvHixrUsTkUtALWsiInJWBw8eZOrUqfyyfiOuMe1o0XMow4cOpllEEOZ6PpS9WtbEnu3dt5/3F3xLTlYm5Ue2MbZPW/71/HNqZROpR9SyJiIiZ2QYBm+++SaJiYms251CQKcRJE29gxunXEN8ZHC9D2oi9i6uWSxz7r6Jnl074hbbmYVbM2ndtR+LFi2ydWkicpGoZU1ERE6TlpbGjBkz+PaHn3BtnEjTroNIShpG65gwHMwNJ6SpZU3qir37f9fKlrqTwe2a8PILzxEZGWnr0kTkT1DLmoiI1PD555/TunVrvl+7FZ/2SVxx7W3cfP0U2jQNb1BBTaQuiYuNZc5dN9Gra0fcm3bip5QKWvUYyHPP/ZOqqipblyciF0gtayIiAkBOTg633XYbn34xH5fGCUR16M+QYcNpH9cIR3PDPLdnGAaFeTkAePn6Y1LXT6kDDh85wkcLvuXosTTK0/fR1LOK1198lu7du9u6NBE5TwprIiLCd999x/XXX09mKbg37UjXASMZdkVPAr3cbF2aiFwAw7CybNUaFi9fS0luJuUp27j6is78429PERYWZuvyROQcKayJiDRgxcXF3Hfffbz25tu4RLYivE0fhgwbTudWTXFyaJitaSL1SWFhIZ9+9Q1bdh2gMicVh+z9PHDLNO6++y5cXFxsXZ6I/AGFNRGRBmrt2rVMnjyZ5MwC3Jp0oEP/4Ywc1JdQX09bl2Y3KivK+fDFJwC49s5HcHLWH7dSN+07cJBPv/6B9PQ0KtL3E+ZYzPNPP8bw4cPVvVfEjimsiYg0MFVVVTz55JM8+be/4xgaT3DrngxKGk6vdi3UmnYKjQYp9YlhWPl59XoWL19DUW4W5ak76dE8ghef/TutWrWydXkicgYKayIiDcj+/fu59tpr+XXnflxjOtK65yCuShpAo0BfW5dmlxTWpD4qKytjwbc/sHbTDsrzM6lK3cm0qwbwxF8fw9/f39blicjv6BSqiEgDYBgGb731Fm3btWdzagEBnUYy4tobuGniVQpqIg2Mq6srE64awV9uu54WrdviGt+T91ftJ65jb1566WUN9S9iR9SyJiJSz2VlZXHDDTfw9ffLcGvSgSYd+nLViKHERQbrWpU/oJY1aQi27drFl9/8RHZWFhUZB2nsWs6Lf/8rgwYNsnVpIg2ewpqISD327bffMm3aNHIMdzxjO9Nj4DBG9e+Ou4uTrUurExTWpKGwWi38uGIV3636lZL845Qf3UW/hGheeOZvxMXF2bo8kQZL3SBFROqhkpISbrvtNoaNGk2BdwyNe4/luhtmMn5IbwU1ETmN2ezAwH59eHzWzXTr3AmP2M78kmGm3cDR3D3rXvLy8mxdokiDpJY1EZF6ZuPGjUyaNIn9abm4NulIx/7DGDOkH/5eahU6X2pZk4bqWFoan361hINHjlGZcxT3wiP8ddYt3HDDDBwcHGxdnkiDobAmIlJPGIbByy+/zKx778McHEtg614MHj6SPu1a4Kgh+S+I1WrlePpRAAJCIzCb9TxKw7J56zbmfbecnOPHKU/fT1NPC68+P5eePXvaujSRBkFhTUSkHigoKGDGjBnM+/pb3Jp0okXPwYwePpioYA3DLSJ/jsVi4btlK/hx9UZK87MpS9nOhEFdeXbu3wgICLB1eSL1msKaiEgdt23bNsaOHcvB7BI847rSZ+iVDO/XDXdnR1uXJiL1SGFhIZ//91s27dpPZc4xXPMP8Y+H7uG666ZqZFmRS0RhTUSkDvvPf/7DzFtvwwhoSlBCT0aOupIurZvhYNYfThdDVWUFn7/2DADjbr4PRydnG1ckYnt79u3j46++Izs7m/K0fbSP8ODNl5+nRYsWti5NpN5RWBMRqYNKS0u54447eOfDT3Fr2onYzldwzVXDaRzsZ+vS6hUNMCJyZhaLhW+X/sTSNZsoz8+i6uhO7pg0ikce/gvu7nqfiFwsCmsiInXMgQMHGDt2LNsPZ+Ie24Xug0YwZpCG5L8UFNZEzi77eDYffrmI/SmpVGQdJpRc3nvlnxqAROQi0bBWIiJ1yIIFC2jfoSO7jlcR1HkE46+7kYnD+iuoiYhNBAYEcudNU5k6Zhh+0S3J9o5n4LW3c8fdsygpKbF1eSJ1nsKaiEgdUFlZyaxZsxhzzbVUhbehae/RzLxxBn07tNT1aSJiUyZMdGrfjjl330T7Ngm4xXbm3eW7Sezen1WrVtm6PJE6Td0gRUTs3NGjRxk/fjzrtu/HrVkXOvZLYnzSFXi5abCLS03dIEXO3+at2/jk6x8ozMuh4uhOpo/sw9ynntC1bCIXQC1rIiJ2bOnSpbRr154Nydn4dUjiqonXc91VgxXURMRutU1MYM49N9M+sRWuTTry3oo9JHa/Qq1sIhdAYU1ExA5ZrVYef/xxBicNp8i3CdE9R3PDjTcwuHs7HM366BYR++bu5s6MyRO4YdwIfCNjyfaOY9CUO3Utm8h5UjdIERE7k52dzbXXXssPK9fh1qwLbfskcc2IQfh7qQvR5Wa1Wjl2aD8A4dGxmBWURc5bSWkJH3/5FZv3JFOZnUIYOXz85st07NjR1qWJ2D2FNRERO7JmzRrGjRtHRpkDXs27M2D4VQzt2QlnR4UEEanbtmzbxsdf/0BhTjaVqTt4YMY4/vLA/Tg4ONi6NBG7pbAmImIHDMPgX//6F/fePxvHsBaEt+/HlVdeRbu4xphNGu1RROqH4uJi3vv0S3YdTKUiM5mEABMfv/MaMTExti5NxC4prImI2FhBQQHXX389CxYtwS22My17JTF+5BDC/L1tXVqDV1VZwVfvvQLAqOtuxdFJA7uI/FkGBr+sXse8H36mLP845ozdPP/I3UydMhmTTk6J1KCwJiJiQ5s3b2bcuHEkZxXh2bw7fZJGM6JfV9ycHG1dmqCh+0UupezsLN786EuOZmRTdmwPQ9o04q1/v4S/v7+tSxOxG7oIQkTEBgzD4PXXX6drt+6klDgR1uMqJl0/kzEDeiioiUiDEBgYxOzbb2JQr864N2rN0oMlJPQcxNKlS21dmojdUFgTEbnMCgsLmTRpEjPvuBtzdEdaDrmWmTfeQPfEZjiY1QVIRBoOs9nMyKGDuXv6eIIim1Ac3JoRNz7AnffcS1lZma3LE7E5dYMUEbmMtm7dytVXX82B9Dw84rrSO2kMI/p3x9NV10LZI3WDFLl8yivK+WTeV/y6Yz+VWYdo7FTEx2+9Qps2bWxdmojNqGVNROQyMAyDt956iy5dunK42ExYj6uYMOM2rh7SW0FNRARwcXbhugnjmH71CHwaN+eoSxQ9Rk1m7j+ewWKx2Lo8EZtQy5qIyCVWWFjIzJkz+fiL+bjGtCe++xDGjBpOk1BdRG/v1LImYhsFhQW8+8l89h5KpSJ9H+1CnfnonTeIioqydWkil5Va1kRELqH169fTrl07Plu0FK/EgfQbdwM3T71GQU1E5Cy8vby548apjB3aD8+o1mwt9qJd32G8//4HqJ1BGhK1rImIXAIWi4VnnnmGRx6dg0NIM4IT+zB05Ch6JMbhaNZ5srrCarGQvGc7ADHxrTE7ONi4IpGGJzMrk7c+WcDRY2mUp+5gaPumvPnqyxriXxoEhTURkYvs6NGjTJ48mRVrNuDapCOteg1l9LDBNA72s3VpIiJ1ktVq4atvl7Js3UbKs4/iXZzCey89w8CBA21dmsglpbAmInIRLVy4kOnTp1No8sC7eXf6DR/N4B4dcXfW3GkiIn/WweRk3vliETlZ6ZSnbOf6kb15du7fcXNzs3VpIpeEwpqIyEVQUlLCPffcw+tvvYNrowSiOg9g+IiRtGkaqbnT6rCqygqWfPYOAEPGX4+jk0buFLG1iooKPp7/Nb9u201F9mEizfl8/NYrtG/f3taliVx0CmsiIn/Sli1bmDBhAnuPZOLatCNdB13FiEF9CPLSyIF1nUaDFLFfW7Zt4+P/LqUwJ5PK1G3ce91YHvrLAzg766SK1B+6yl1E5AIZhsGLL75I5y5dOZBvENp9NONn3Mm1owYrqImIXGJtEhJ49K4baNGiOS6xXXlu3s+079GPX3/91daliVw0CmsiIhfg2LFjDBs2jHseeBjHJl1onTSFm2bOpH/Hljg76qNVRORy8PDw5LYZU5g0ajA+Ua044tyYXldN5b7ZsyktLbV1eSJ/mrpBioicB8Mw+OSTT7jtttsocvDGM64LvYeOYlifLng4O9m6PLnI1A1SpO4oKCzgwy+/Zue+ZCoyDxJuzuedV56nZ8+eti5N5ILp9K+IyDnKysri6quv5trrplMWEEfTKyYw7abbGHNFDwU1EREb8/by5pZpk5h69Qj8miSQ6RXHwIkzueX2OygqKrJ1eSIXRC1rIiLnYMGCBdx0003kVjnhEduZbgNHMLx/T/w8XW1dmlxCalkTqZuKS4r5eP5ituzaR2V2Cn7lGbz09zmMGjXK1qWJnBeFNRGRs8jNzeWOO+7go08/x6VRAo3a92VI0nA6tojG0azOCfWdwppI3bZ1xw4+/XopecezKD+6i/6tG/Hvfz1PVFSUrUsTOScKayIitViyZAnTp08ns9iCW9OOdB04imFX9CTI28PWpcllYrVY2L15PQDN23bG7OBg44pE5HxVVFSwYPH3/LJpOxW5aZCxh4duuY577rkbJyd1YRf7prAmInKKwsJCZs2axZvvvIdrZCvC2/Zh8LARdGnVFCcHtaaJiNRFqUeP8sH8bzh67BjlGQdp7FLKC3/7K4MHD7Z1aSK1UlgTEfmdZcuWcf3115OaW4prTHs6XTGC4QP6EOrnaevSRETkTzIw+PmXNSxatobi3GzKj+ygb0IUzz87l+bNm9u6PJHTKKyJiAAlJSU8+OCD/OuVV3GNaElIYi8GJY2gR5s4taY1MFaLhcrKCqoqKigtKeLnxV9gqaqiQ+9BODg6nvFnHBwccXZxxcnFBWcXV5xdXHF0csZkMl3m6kXkXBQXFzH/m6Ws37aLytx0KlN3MH3sUP4651ECAgJsXZ5INYU1EWnwfv75Z6ZPn05yZgFuTTrQru9QRg7sR3iAt61Lk4ugrLSEvKwMcrLSyc3OIC87g9ysDIoK8iguyKe48MSttCiPyuICjMoynBxMOJrBbDJI/9+I31E+4GA2cTJ+mUwmDMPAAAwDrP+7WQyosp64mZ3dcHLzxMndG1dPX9y9vPHw9Mbdyxt3T288/vevp48fvgFB+AYE4+MfhLOrRhkVuRyOpaXz2aLvOZB8mIqsw7jkp/DI3Tdzyy234OzsbOvyRBTWRKThKioq4sEHH+TlV1/DNaIVQa27M3DocHq1a4mzo1rT6gpLVRXHM4+RmZpCeuohMo8eJiP1MJlHU8jNOIqpogBPZxMeTiY8nMHN0YS7E3g4m/ByBi9nEx7OJpwdwNEMDiZwMIPZdCJ4PbqsAoBnh/ri6mSCE/8BYPzvf1arlSpLFVVVVVitYDGME8HNWjO8lVYZlFQalFRAcSWUVBqUVUFZ1Yl/S6sMSivB5OKFk3cg7r7B+AQE4RsQhE9AEAHBYQSGRRIYFolfQLAGPBG5SLbu2Mm8JSvIykyjIn0/kc5lPP3oA4wZM0Yt5GJTCmsi0iD99NNPzJgxg5TjRbjFtKdtnyRGDOpHZKCPrUuTWlgtFjKOHib14F5SD+7laPI+Ug/uJTv1IJ4OlXi7gI+rCW8XEwFuJoI8TPi5mnBxAA9XJ3y8PHB1c8fFzR0XV3ccXdwwO7thdnHFwdkdJxd3HFzccXB2w+zogsnJkbIKgz7T/grA8veewM3NGYOaf7iZMKpTmwkDa1Ul1qoKrFUVWCrLqCovxVJegqW8lKqKMiwVZRiVpVgqyrBWlVNRUUFleRkVZaWUlJRSVmmh0mJQYYEyC+SXGeSWGuSVGxRXQHGlQVGFQanVERffUDyCIgkMjSQwrBGBoREE/S/M+QeF1tptU0ROZ7Va+fHnX/h+1a8U52VRfnQ3LUPcmPvEHAYMGGDr8qSBUlgTkQalsLCQ+++/n9fefBvXiJYEJ/RgwJDh9GrXQq1pdiQ3O4NDe7aTsm/XiXCWvI+c1AN4OVTg53YihAW4m4jwMuHvZsLDxZEAXy88vbxw9/DC2dMHZy9/XLwDcPbyx8HFG4vZCUzn9xqXlpXTb8pDACx7/yncXF0uxcOtZrJaqCoroqI4j8rifCpKCrCUFmIpL6KqtIjS4mLKSoooLi6mtNJCeRWUVkFuqZWsEsgrMygoNyisgKIqE07eofiExRAe1ZSwqCaER8USFtUE/+AwtRaI1KK0tISvf1jO6o3bKc/Lojx1B91bNGLuU4/TqVMnW5cnDYzCmog0GN9//z033HADR/PKcGvSgfZ9kxg+sC8RujbNZgzDIDv9KIf2bK++Hd6zDaM4mwA3EwHuZoLcTTTyNhHobsLLzZFAf188ffzw8PbDxTcYd/9wnL2DsDq6YpgubrfAyx3Wzpm1kvKCHMoKsigvzKGyMBdLST5lJYUnwlxRMSUVVZRVQVGFQWaxQUaxQX6ZQV4ZlJpccQuKJrBxLGGNmxIRHUvj2OaENopR10qR/8kvyGfBkp/YuH0PFXkZlKfuYFj3Njz9xF81cqRcNgprIlLv5efnM2vWLN75zwe4RLQkJKEnA5OG0yMxXq1pl5HVaiUz9TDJvwtmKXu34VxZQKD7iTAW5mmisY8ZH1cTwQF++Pn54eHjh4tPCG4B4Tj7hmB1cIPL1Cpkt2Htj1irqCjMoSw/k/L8LMrzs6koyqWoIJ/iogKKyy2UVEJOqcHRQoPsEoPcMoMiizPu4XGEN21JVLMWNG7WkqhmLXHz0NQV0nBlZmUx/9uf2L53P1V56VQc3c34wT147NFHiImJsXV5Us8prIlIvfbVV19xyy23kFkKrtHt6NAviREDehPmr9a0S8lSVUVaysEawSx13w48jOLqYBbhbSLSy4yPq5nQIH+8/fzx8AvCLSAS96BG4OKNYbbtNVd1NqydhdVSSVluGqU5GZTnZVBVdJziglwK83MpLK2kuALSiqwcKTgR4nJKwTEwhoj4tjRpkUiTFm1o3KwFzi4asVIalpTUVOZ9u4z9yYepyj2GJWMv1464gkce+guNGjWydXlSTymsiUi9lJ6ezu233868r77GpVECoQk9GDw0iW4JmjftYquqquRo8j6Sd28jefc2Du3ZztH9u/ByKCfof8GskY+JRt5mfNwcCQn0x9svAHe/YNwDInALaoTV2eu8rye7HKosFtZt2QNAlzbxONbjLoKGtYrSnDRKso5QlptGeX4WRXk55BUWV3elPJRnJbPY4HiZA67h8US36khcYkfi2nQkIDjM1g9B5LLYd+AgC79fweEjqVTmHMOauY9pY4by0IMPEBam94FcXAprIlKvGIbBu+++y6xZsyhy8MS9SUc6909ieP+eBPl42Lq8Oq9GMNu1leTd2zl6cBfeDhX/H8y8TUR6m/HzdCY0KABvP3/cfENwC4zELSACq5PnZevGKH9eRWE2hemHKMs+QlluOvm52eQXlVFYbpCSb+Vw/onr4So9Qglt3pH4xE60aN+ViJhmGsRE6rWde/by36UrSU09SmVOKmQf5KYJo5h9//0EBQXZujypJxTWRKTeOHDgADfeeCPLVq3FNSqRxu36MHjIUDrER+Go1rTzVlVVSerBvRz6X4tZ8u7tHPtfMAs8LZi5EBbsj49/IO6+IbgGNcLVLxyLo7uCWX1jGJTlZVCYdpCSrMOUHE8jLzeH/DIrmSUG+49bOVZkUOTgR0jLrrTs0J2WHboR1riJwpvUOwYG23bs4usfV5GWlkZF9hEccg9z25SruffeWfj5+dm6RKnjFNZEpM6rqqri+eefZ86cx6jyCsUrthPdBwxjaJ8u+Hrouppz8ftgdnDXNpL3bCP94G68HWu2mEV4m/HzdCUkyB9f/wDc/EJwD2yESz0NZlVVFpas2gjAkJ7tcXSsv90g/wxLeSn5x/ZRkpFMaXYqudkZ5JVUkVVisPe4ldQCgxKXQCISetK2ez8SOvfG08fX1mWLXDQGBpu2bGfRstVkpKdTmX0Y54Kj3DV9InfddSfe3rpOWi6MwpqI1GmbNm1ixowZbN59ANeotsR26sfQIYNoFR2Og7l+BYeLpaqqktQDe6pby5L3bCMjefeJroweJ4JZY28T4V7/H8y8/QNw9wvFPagRzn7hl3VERluqjwOMXA6WqgoKju2n6Nh+SjMPk3s8i9ySKtKLDHYft3K0CFwj29C8S3/adu9HVFwrtbpJvWBgsP63zXyzfA3ZWZlUZqfgWpzGfTdN5bbbbsXDQ93x5fworIlInZSfn88jjzzCK6++jlNIU3zju9BrwFAG9uiAp4uTrcuzG1arlWOH9rN/xyYO7txK8p5tpB3YhY9TJUHuJoI8TET5mAjzNOPv6UpIsD9efoG4+4XgHtQYZ7+wBhPMzkRh7eKwVJaTn7qHwtQ9FGUcJjc3l9wyg33HrRzItVLgGEB427606daPhM69cPdUK4TUbYZh5Zd1v7Fk5Tpyj2dTmXUYz7JMZt86nZkzb8bVVb0+5NworIlInWIYBp988gn33HMPx8vAJbotrboNYNigfjQJC8TcQEPFSQW5x9m/YzP7t2/kwI7NJO/agru1iGCPE8Gs8f+6Mvp7uhIa7I+3XyCufqF4BDc+0ZXR7NJgg9mZKKxdGiV5WeQd2k5x2j7yMo+RV1JBWpHBjkwrR4vMeDbtRLs+SXTsOxjfgGBblytywaxWCyvXrue7lb+Sn5NNRdYh/Cy5/OWOm5gxYzrOzs62LlHsnMKaiNQZu3bt4tZbb2X5L2txiWxFeEJP+g0cRI+2zXFpgNcSWS0WUvbvYs+WDezfvon9OzZRlp1CiIeZIA8TEV4mon3NBHg6ERYciE9AIB7+YbgHnujKaHFwVTD7Awprl56lqpK8I7spPLKLwoxD5Obmk11isCPLysE8A6fINiT2HkbHPoMJCtdcVlI3WSwWlv2yhqW//EpBXg6VmckEUcij997GlClTcHS07ZySYr8U1kTE7hUXF/Pkk0/y3D+fx+QXiWfTDnTpP5QhvbsS6O1u6/IuG6vFwuF9O9m1cS27Nq5lz5b1eFgLCfU0EeZpoqm/mSB3E+FBfvgHBuEVcKIro1tgYywaLv+CKKxdfsXH08g9uInCo3vJyc4ip9RgZ5aV/TlWrEHNadVrGJ36DiE8OtbWpYqct6qqSpau+IVl6zZRmJdDRcYBwp3LeOz+u5gwYQIO9XguR7kwCmsiYrcMw+Crr77izjvv5GhuKa5RiTTvegUDr+hHy6iwej+AiKWqikN7d7B701p2blzL/q2/4mkUEu5lorG3+UQ483KmUXgwPgEhuAVE4hEajck9AMOss7QXg8KabZUWHOf4/o0Upe4hNyudnFIre7Kt7DlupcwnhsR+V9F98CiCwxvbulSR81JZWcH3y1ayfP0WivOPU5F+gCgPC088dB+jR4/GbNZ0M3KCwpqI2KWdO3cya9YsvvtpBS4RLQlp2ZXeAwbTp0Nr3Jzr75nH3KwMtqxdzubVy9i54Rc8jEIivEw08jHTzN9MqLcL4eEh+AWH4RHSBPfgaLWaXUIKa/ajrDif4/s2UXR0F3mZx8gutrA728rubCum8Da0HzCaLlcMw9svwNalipyz8vIyvvnxZ1b9uo3SguOUp+2lmZ8jTz7yACNGjNAoqaKwJiL2JSsrizlz5vDGW2/jEBCFe0xbOvYeyNB+PQj19bR1eRedpaqKfds3smXNiYB2/NBOGvmYaextonmgmQh/NyLDQvALDsUzpAluITFYHD0Uzi6TKouFFeu3A9Cnc2sc1UXJLlSUFXN830YKDm0lN+sYWcUG2zOt7M814RHXnY4DR9Oh9yBc3RpON2mp20pKSli8dAVrNu2gLD+b8mO7aRXmyVNzHmLQoEEKbQ2YwpqI2IWysjL+9a9/8dRTT1Hi4IlL4wRadunPFX170bKezZmWfzyLzWuWsWXNcravW4k3hTT2MRPrb6KJnwMxEUEEhUXiHdEU99BYLI5qOROpTWlhLlm7N1B4ZDt5OcfJLDbYmmHhULELQYkD6DJ4NAmde+GgARykDigqKuTrH5azbssuyvOzqTi6m3bR/jz910fp27evrcsTG1BYExGbMgyDL7/8ktmzZ5OSlY9zZCui2nSnd9/+dG3dDBen+tGSkXk0hQ3Ll/Driu9I2fkbjbxPzG/WMshMI383GjeOwC+sMd6RLTF5hWKY68fjFrmcCrPTyNqznqLUXeTlF3Ks0MrmDCtpVT5EdR1OjyGjadqqrVopxO4VFOSz8Lvl/LZ9NxV5mZQf3UW35hE89dc5dO/e3dblyWWksCYiNmEYBj/99BMPP/ww6zdtwzmiBQHxHenR5wr6dWmDt1vdvjbIMAyOHNhTHdByDu8kxtdMrL+Z+AAzTSODCA2PxDsiFvewZuraaKfUDbLuyjm6n5x9v1J0bB/HC0pJzrWyJcNKkWcM7QZfQ8+ho/HxD7R1mSJnlZOby8LvlrF5554ToS11B/3aNuOpxx+jQ4cOti5PLgOFNRG57FasWMGjjz7KyjXrcQ6NxSumDR179mdAry6E+XnZurw/JTV5L2uXLmLt0kWUpB8gxu9EOGse6ECTxmGEREbhE9UaB99IrGYnW5crf0ADjNR9VquF48nbyT+wkdy0ZLIKq9iZZWV3jgnPFn3pMXwCbbr2UTdJsWuZ2dks/G4Z23btozI/g/IjOxjSLYEnHptDYmKircuTS0hhTUQum9WrV/Poo4/y04pVOIc0wSM6kcQufejXozNNwgMx19GWpfQjh1i79GvWLl1EQepumviZaR5opkWwM7HR4QRGxOATlQBeIRgmtczUJQpr9UtFWQlZu9eTn7yZ3ONZHCs02JRmId3wp2mfsfQZPo6wxk1sXaZIrY5lZPDVd8vZuWc/FblpVBzdycg+nXj8sUdp0aKFrcuTS0BhTUQuuXXr1jFnzhy+/3E5TsExuEcl0KZrb3p360KzyOA6OXhI1rEjrP1xMWuXfs3x5O009TfTItBM8yAnYqMjCG7cFO/oRAz3IDBpvpy6SmGt/srPTCV79xoKj+zmeGEpB3OtbEq3YoS3p9PQa+jSPwlXdw9blylyRkeOHmPh98vZve8gVXnpVB7bxdiBPfjrnEdo2rSprcuTi0hhTUQuCcMw+OGHH5g7dy7LVv6Cc3AMbo1a07pzL/r06EJcoxAc69ikn4X5uaxbuohVSxaQuus3mvidCGitgh2IjY4gpFETfGLaYngGK6DVEwpr9Z/VYiFz3yZyD/xGQeYRMousbEm3sr/IhbCOw+gzagKxrdppUBKxS8kpR/jq++XsO3iYqrx0rrsikZf+8aSty5KLSGFNRC6qqqoqvvzyS/7xj3+wecee/4W0VrTs0I2+PbsS3zi0ToW0yopyNv/yE6uWLGD7mp9o5GkhPsBMYqiZuKhwwqKa4BPdBrzDFNDqIYW1hqW0MJeMnWsoOLyN3LwCDuVZ2ZhmpcirKZ2GT6bHkCtx9/S2dZkip9mfnMzXy9fz95ljuaJNjK3LkYtIYU1ELgrDMHj99dd55plnOJR+HOegGDyjW9O6Y3d6delYp7o7GobB3i2/smrJfNb9uAh/UyFxAWbahJhp3jiIRjFN8WvSBpNPJIZZgxLUZwprDdfxI3vI2bOOvKP7ySysYluGlT35ToR1GkG/0ZNp0kKDOoh92ZdZyPDEMDpE+du6FLmI9FeGiFwUJpOJxYsXc7TSg+Ae/WnbqTu9u7SjUbBfnRk4JD0lmVVL5rNqyQKMvFSa+ZuZEm8mLsyPpk2a4B+TgHNIM6wOzgDoTJdI/RXQKJ6ARvFUlBaTvnMNjZM30T0nj5T0BSx+ZB7FvvF0Hj6ZbgNH4ubhaetyRaSeUsuaiFw069ev592fthMY34HmYb514hqPwvxc1vzwX1Z9u4D0vZuI9TeTEGKmZYgrzZpEERjTAs9GrbE46Y+xhqiqysKSVRsBGNKzPY6OGs2zITt+ZC/Hd62mIO0gmYVVbM2wsrfQhfAuo+h35SSi41vbukRpwNSyVj8prInIRTV/Yyp70guJCrDfUdSqqirZumYFPy/+gq2rf6SRp4UWgWbahDoQHxNBWHQzvGPaYXUL0ETVInKa8pIi0nespiB5Mzl5+RzKs/JbmpXygFZ0HnEtXQeMwNXN3dZlSgOjsFY/KayJyEVlz2EtZd8ufl78Bb98txCPyhziAsy0DzPTonEQjWOa4tu0LSbvSAyzWk9E5NxkH97N8d2ryU9LJrPIwuY0K/uL3WnSeyxXjJ5CaGMN9iCXh8Ja/aRr1kSkXivMy+GX775i5eIvOH5oB3EBZsZGm2kZ5kOz2CYExCTiHNoMq8OJgSN09kp+r8piYd2WPQB0aROPo4OCvNQUGNWcwKjmlBUXkLF9NY0PbeZ4XiH79rzPB3e8h1OTHvS+6jradu+HWcePiJwntayJyEVlDy1rVVWVbF69jJWLv2T7mp+I8rLQMshMYqgTzZs2IiSmOV7RbbA4+9isRqkbNBqknC/DMMg6uI2c3WvITU8hrdDgtzQL6aYQEoZMoe/I8Xj5quVDLj61rNVPalkTkXrj0N4drFz8Jau/X4hXVS5xAWZu7eBA88ZhNG4Si2/T9hheJ+ZDs9i6WBGpl0wmE8FNEwlumkhRbhbB234mJmUH2YXZ7Pz5Wf694AX82yfRf8x1NG3ZxtblioidU1gTkTotPyeb1d9/xc+LvyQvZSdxAWaujjbTItyXuNgm+J/s5mh2VhdHEbmsPP2C8Ow9BkvlCNJ2byBs33o65GSTkvU13z76FSUBLeg6chpdBwzH2cXV1uWKiB1SWBOROqeqsoJNv/zEym/msWPNT0T7WOkYaCaxuxvNmzYmJKY5nlFtsTh7AWC1cb0i0rA5ODkTmdCDyIQe5Bw9SNCOlcQFHSCjcC+bPp3NP959gth+13DFVdcSFN7I1uWKiB1RWBOROsEwDA7v3cHPi7/kl+8W4GPNP9HNsaMDLaJCadQkFt8m7TG8QtXNUUTsln9EE/wjmlBaXEDA9l+ITN7M8bwi9m17i/d+eBPXuD70GTON1p16YjabbV2uiNiYwpqI2LX841n88t1CVn4zj/wju4gLMHNNkxPdHJvFNiGgaRucgpthNTupm6OI1BluHt7EdBmK0WkwGfs3E7ZnLQkhRzlWsIq1/1zBIudI2g2bSu9hY/Hw0mBIIg2VwpqI2J2qygo2rfqRnxd/yc71y4jxNugcZKZ1dzeaN436XzfHNurmKCJ1nslsJjSuPaFx7Sk8nkbwtp9pEribzII0tn/3NC9+9gyhnUdxxdipRDVraetyReQyU1gTEbtgGAaH9mzn50VfsOaHr/Ax8mkeYOb2jg40jwohMiYWv6btsXqGqJujXDZOjo7ce/1V1V+LXEpeAWF49R1PVXk5abvWErF/A11yczl4dB7zZ3+OJbQdPa66jk59h+Do5GzrckXkMtA8ayJyUZ3vPGt5xzP5ZclCfv7mSwpT9xAXYKZdqAMtIrxo2rQJAU3a4hTcFKvZ6RJXLiJif7JT9nB85y/kpSWTXmjh12MWjlT50WLARPpfOQn/4FBblyh2QvOs1U86TSgil11lRTkbVy3l58Vfsmv9CmJ8DLoGmUno7k7z2CiCT3ZzdPIE1M1RRBquwMbxBDaOp7Qwl5BtK4k+vI2svAJ2bfg3ry/+N16tB9B/9HW0aN8Vk8lk63JF5CJTy5qIXFRna1lL2beL5V9/xi9L5uNjFBAfYKZdmAOtYkKIjGmGb9N2WD1OdHMUsQcWq5XNuw4C0LZFExw0Op/YmNVqIWPPb+TtXUdOVjqH86xsOGYlzyOGriOvo8eQq3Dz8LR1mWIDalmrnxTWROSiOjWslRQXsvaHr1n230/J2r/lf90czbSM9KZZbFP8myTiFBSrbo5il0rLyuk35SEAlr3/FG6uLjauSOT/5WccIWvHSvKO7CGjsJJNaVb2FroS03M0A8ZOJTw61tYlymWksFY/qRukiFx0hmGwZ/MGln/9Gb/+tIhwt3JaB5lp192NFrGNCYlpgWd0GyxOGs1RRORC+YQ0widkIhVlJWTsWE3UwY1k5eSz78DHfHTXh5gbd6H36Oto33MADhogR6RO0jtXRC6ajIwMFr7/Gt/O+xjj+CGaB5qZkWCmRaMgomPj8I/tgOEdrtEcRUQuImdXdxp1GEBk+yvITt5BxO7VJIakcKzgNza8tp5vXw2izdDJ9B15DT7+gbYuV0TOg8KaiPwpFouF7777jrfffptvF/2XaG8r/YPNJDZ3o0WzJgQ2ScA9sjUWBxdNWi0icgmZTCaCmrQmqElrivOyCdm+kiaHt5OZn8P2n5/n5QX/IrDtYPqPvY7Y1u01IIlIHaCwJiIXJDU1lbfffpu33nqLityjtAg0M7O9mdZNIghs1JTQ5l2wugeCyaRWNBGRy8zDN5CYnldh6TKMjL0biNyzgU7Hszic8y3fPraYYp84ul15HV0HjsTVzd3W5YpILRTWROScnWxFe/311/nh20U09YPewWbaJXjTuU1zmrfpzFHHCNKLrFg9NGGriIitOTg5E96qB+GtepB3LJmwnStpHrSf9KIDbP7iIf7x7lNE9byKAaMnExHTzNblisgpFNZE5A8dO3aMd955hzfffJOKnCO0CDRza0dHOrVoRGJCAk3bdsfJIwBMJlJTcoFyW5csIiKn8A2PwTc8hvKSQoK3/0Lj5M1k5xayf99HfHTXBxDZkV5XTqFT38E4OumEm4g90ND9InJGVquVH374gddff53vFv+Xpr4G7ULNJEZ4nGhFa9eVoKgW4FDzF/rGlFwyCsrxV8ua1AOVVVV89s1KAMYn9cJJI+pJPWIYBtnJ28jds5actBSOFVjZcMzCkUpfWg64hv6jJhAU3sjWZco50tD99ZPCmojUkJGRUd2KVpZ1iJZBZjqEOdAhPoJWCYk0a9sDZ6/aRxNTWBMRqXtKC46TsWMV+Ye2k5lXzM4sK1syDNzje9H3qim06doXs4ODrcuUs1BYq58U1kQEq9XKsmXLeO211/j264U08bHSLtRMQrg7ndo0p0W7rgRHtwKH2ieuNoCKigq2pOaTWViBn4cmuRYRqWusVVVk799M/oFfyclM40i+lV/TrKSbQmgz+Bp6Jo3V8P92an9mMVd1aEzHaIW1+kRhTaQBy8rK4r333uONN96gMO0ALYPMdAx3oH2zcFonJtKsXU9cztKK9nvlFRXcfvvtOIfH4+jpj7Wk4BJXL3LpWQ2DrLxSAIJ83TBrqHNpQBytpQQZuXhaC8kpsbA908rWLCuHLUGY/Rtj9vDT8P92xDGgMV+/8hg9m4fbuhS5iNT5XqSBMQyDFStW8Prrr/P1wvlEe1XROcRMm56edE6Mp3m7roQ2SThrK9rZdwAmRxccPHVmT+o+a5WFz7/eAsCt4/rg4KhuYNJwGEAmEWQaVXi5ZtDTO4MukaWk5Ofw67Fs9uR4UhrQHOewZpid3Wxdrpj1+VQfqWVNpIE4fvw4//nPf3jjjTfIObKXFkFmOoaZ6RAXRkJCInHte51oRbvAs6Qnu0EeL66gqKzq4hYvYiMlZeW0G/cgAJs+/xvuri42rkjEtrKPHeLo1lVkp+wlvaCCbZlWdh03E95+IEljJ9G+a0/MZrOty2ywWjUKINDL1dZlyEWksCZSjxmGwapVq3j99ddZMO9LGnlU0ibETLtIVzonxNG8XVfCYxNPG9FRRE4oLi3Hs/dMAIp+fhUPN4U1EYDS0hK2rV/BgS3rOJqeQUq+lV+PWSlxj2Ds5BuYNm0aERERti5TpM5TWBOph3Jzc3n//fd54403SDu4kxZBDnQMM9MpLpTEhNbEte+Fq0/IBbeiiTQUCmsifyz18H52rF1G8t4dpOeXsSPTyo5sg7gug7n+hptISkrCUdNeiFwQhTWResIwDNauXcvrr7/OF59/RrhbBQnBZjpGutAlMY4WbTsR1qwtJkd1jxA5VwprIueuvLyMnb+tYv/mNaSkHuNooZXf0qzkOgQx4prrmT59Ok2aNLF1mSJ1isKaSB2Xk5PDhx9+yBtvvMGR/TtoEehAx3AznWJDaNumNXHteuDmFwYmXUMgcr4U1kQuTPrRFLavW0by7i2k55Ww97iVLelWwlr3YtLU6xkzZgweHh62LlPE7imsidRBJ69Fe+ONN/jyiy8Ic6sgIcSBjhHOdG0TR8s2HQmPa4fJSaNzifwZCmsif05VVRU7N61l36ZVHEk5TFqhwaZ0C0dK3eg2eAxTr5tGr169NCiJSC0U1kTqkOzsbN5//33efPNNjh7cTYsgB9qHmukcF0qHNi1p1rY7bv4RakUTuUgqKqt4+t1FAPxl2nCcnXTdjciFOp6dyfZ1yzi8axNHs/I5lGdlc4aVMo9IRk+cxpQpU4iJibF1mSJ2RWFNxM4ZhsHy5ct54403WLhgPuHulbQOdqBTI1e6tomnVWI7QmPbYHJWdxIREbF/BpC8Zzt7flvJoQO7Sc8rZ2eWlR1ZViJa92DS1OsZO3Ysnp6eti5VxOYU1kTsVEZGBv/5z3948803yU7dT/NAB9qHmekaH0bbxNbEtemKi2+YJsEUEZE6q7y8jF0bV3Nw2zoOHU4hrdBgc7qFlBIXug0ew5Sp19G3b191k5QGS2FNxI5UVFSwePFi3n33XX5Y8g1R3gYJwWbaRbrRrU0czRM7EBabCE7uti5VpEGwWq3sSk4DoEVMmP5gFLmEcrIz2blhBck7N3E0K5eUfCub060UuQQz+KpJTJw4kbZt22LStDPSgCisidiBzZs389577/HRRx/hUHqc5oFm2oeZ6RQfQULr1jRr2x0Xn2BdiyZymWmAEZHLzwAO7d3Bno2rOLRvF5kFZezLsbIj04opMJYrx13LhAkTiI2NtXWpIpecwpqIjWRlZfHxxx/z3nvvsW/HZuICzCSGmGnb2JtOifHEJXYiqHELcNQfhyK2orAmYluVlRXs2bKB5O3rOXzoAJmFVezKsrIr24p/0/aMueZaxo8fT2hoqK1LFbkkFNZELqPy8nK++eYbPvjgA75dvIhITwstAs20j3Cic6umtGjVmsYtO+Hg5gvq5iFicwprIvajtKSY3ZtWc2jHbxxOSSGr2Mq2TCv7cw2i2vTmyrHjGT16NEFBQbYuVeSiUVgTucSsViurVq3io48+4vPPP8OtqoC4ADPtQs10aBZGQqsWNGvTBfeARhosRMTOKKyJ2KeC/Bx2/baKQ7s2kXo0ncxig62ZFg7kQnTbXoz+X3ALDg62dakif4rCmsglsmPHDj766CM++ugjCjJTaOZvpk2ImYRGPrRv1YxmCR0JiWkJjq62LlVEaqGwJmL/sjLS2LPpF1L3bSM1LZP0IoOtGRaS8yG6TS+uGnM1o0ePVldJqZMU1kQuomPHjvHJJ5/w4YcfsnfHZpr6mWkVZCYx3I1OrWNp1jKBRs3bYXb1sXWpInIOFNZE6pasjGPs2/QLKfu2c+RYJulFJ7pKHswziErsyeix4xgzZoyCm9QZCmsif1JaWhrz5s3j888/Z8OaVUT7mogPMNMm1IkOLaOJb96CmNadcPYK0miOInWMwppI3XU88xh7Nq3hyL7tHDmWTkaRwbZMC8l5Bo1ad2fk6KsZNWoUUVFRti5VpFYKayIXID09vTqgrf1lJVE+JuICzLQONtO2WQQtm8fTNLELHgERYHa0dbkicoEqKqt46N/zAXjqltE4O+n9LFIXHc9KY8/G1RzZt53UYyeucduZZWV/rhXfqNYMHn4Vo0aN0jxuYncU1kTOUXp6OvPnz+fzzz9nzaqfaexjItbfREKwA22bhdM8LpamrTrgExoDDs62LldERETO4HhWBns3r+bo/h2kHj1GVrGV3dkngpvFM4J+Q0dx5ZVX0rt3b5ycnGxdrjRwCmsiZ3Ho0CEWLlzIwoULWbd6JY28INbfROtgB9rEhtMiLpYmLdvhG9ZE86GJiIjUMYX5uezbtoHUfVs5cjiFrKIKDuaeCG+5hhed+yUxatSVDBkyBG9vb1uXKw2QwprI7xiGwfbt21mwYAELFy5k97ZNRPuaTwwUEmwmsWk48XGxNFVAE2kQrFYrKek5ADQO9cds1nWnIvVVRXkZ+3f8xpE9W0hJPkBGXjGpBSe6S6aVONCsQ1+GjxzFsGHDdJ2bXDYKa9LgWa1W1qxZw8KFC1mwYAGZRw4Q7Wummb+ZlsEOJMRG0iy2KTEt2p4IaOriKNJgaIARkYbJarWQsn8HyTs2kpq8l2NZuWQVG+zMOjFAiUdYHP2HjCApKYkePXqou6RcMgpr0iAVFhaydOlSFi1axOLFi7EUZlYPEtI82Jm2cY1p0jSW6Jbt8AyIBAd9CIs0RAprIgKQcfQw+7etJy15D6lHj3G81Mq+41b251jJMzxp32sQSUnDGDp0KCEhIbYuV+oRhTVpMA4cOFAdzn5esZxg1yqifM20CDTRLNidxPhoopvGEd28LS4+IWB2sHXJImJjCmsicqriogIObP+NYwe2k3I4mcy8EtKKTnSXPJJvJTSuPQOGDGfYsGF06NBB3aflT1FYk3qrsrKSVatWsXjxYhYtWkTKgT009jET7WuiZZCZ+Ah/WsRG06hpHI3i2uDo7qt50ESkBoU1ETkbq9XCkf27OLxnM8eS95GansnxEoN9OVYO5lopdQ6gU5/BDB48hIEDBxIcHGzrkqWOUViTeiUrK4tvv/2WRYsW8d133+FqKaSxj4mmfmbiAx1pHRtJ05hoGse1JiAiFpOzu61LFhE7prAmIucjLyeLgzt+49iBHRxJSSG7qJxjBQa7sq2kFlgJbJJI3wFDGDRoED169MDFRZ8pcnYKa1KnVVRUsGbNGr7//nu+++47dmzZSIQXNPYx0zLITNNgT1rFRREV3YTG8W1w8w0DB01qKyLnRmFNRC5UVVUlh/Zs48i+baSnHOBoeha5pSda3ZLzrORUutKiUx8GDT4R3uLj4zUht5zmnMPaHx08U6dO5b333rsYNdXw2GOPsXDhQjZv3nzRt30hli9fTr9+/cjNzcXX19fW5TQ4hmGwb98+vv/+e77//nuWLVuGm7WYRj4mmviaTwwQEhVCbJMoGsW2JLxJS8wuXqAPv/9r786jo6rv/4+/ZrIQyDIsSYBMkknCFsCwr4ILqCBi8bgUrTQiiLW/1h9F2yItItDS76l4sLRW9FcPy/kdrfCToq2igmWJqCiL4IayZiEkIfs22ZPP74/IaDRREknmknk+zplzbj5z5/KevBkOr/u59zMA2oCwBuBSKS0uUOqxI8pO/VyZGWnKLXYr1230RX6DzpYa2cKcmjhluqZNm6apU6eqV69e3i4ZFnDRUwzZ2dme7S1btuixxx7T8ePHPWNdu3Ztsn9tbS3LmOKSKC4u1q5duzwB7XxmmqLD7Ipx2HTvYLviI7trSP9Yxca6FD0gSWGRMSyvD+CS8Pez6xd3TPFsA0BbhXXvpeFXXq/hV14vY4yyM04p/YuPlJ1+UpnnzqnQfV6ZhzfpqZ0b9btyo15xV2jSNddp6tSpuvrqq/lSbh/VpssgN23apEWLFqm4uFiSlJaWpvj4eG3ZskXr1q3T+++/r2eeeUbz5s3Txo0btXr1aqWmpiouLk4LFy7UL37xC8+xHnnkEb388svKzMxUnz59NGfOHD322GMKCAjQpk2bNG/evCZ/9saNG3XvvffKZrPp2Wef1auvvqrdu3fL5XJpw4YNioiI0IIFC3Tw4EENGzZMzz//vPr16+d5/auvvqoVK1bos88+U1RUlObOnaulS5fK378xt9psNj333HPavn27duzYIafTqTVr1mjWrFme9/l17TWj6Mvq6up08OBB7dixQzt37tShAx8osptRdJhdCT1sGhgRoKEJTsW7YhWdMEiRsQNlDwplcRAAAHBZqq6qVPqJC5dMnlF2XqGKKo3OFDUotdgop8Im56BRuvraqZo6daomTZqkbt24794XXNKwFhcXpzVr1mjkyJHq0qWLtm/fruXLl+vvf/+7Ro4cqSNHjuj+++/Xk08+qblz50qSVq1apalTpyoqKkqffPKJ7r//fj388MNavHixKisrtWzZMr355pv673//K0lyOBzq2rWrbDabnE6nnnzySY0YMUKPPPKIjh49qoSEBC1evFixsbGaP3++unfvrjfeeEOStGPHDs2ePVt/+9vfdNVVV+n06dP62c9+pnvvvVfLly9v/IXYbIqOjtbq1as1duxYPfXUU9qwYYPS09PlcDj073//W7fffruOHz+usLAwde3aVQ6H41L0wqelpaV57jvbtWuX/GpKFR1mU2yYXYPC7RoUE66B8TGKccXLOeAKdQmN4LvPAABAp1RanK+0Lz7W+bQvlJWZoZz8EhV+eb9bRkmD8qr8lJA0QddOvU5TpkzR+PHjWaykk7qkYW3t2rX61a9+5dkvNjZWjz/+uH7yk594xlatWqXXX39d7733XrPHfuKJJ7RlyxYdOnRIUsv3rNlsNj366KP64x//KEl6//33NXHiRK1fv17z58+XJG3evFnz5s1TZWWlJOnqq6/WjBkz9Lvf/c5znOeff16LFy9WVlZWs8d1u90KDQ3V66+/rhtvvJF71i6R8vJy7dmzx3NpY2bqCTlD7YoOs2lQL7sSIrppaP8YxbpiFd1vqLr3jpUCg71dNgAfY4xRfnGZJCm8eyg3/wPwiqK8bKUf/1jn00/oXOZZnS8sU8GX4S2ztEHFdV0UN3Scrpx8lSZPnqyJEydy2WQncUmXxRszZoxnOy8vT2fPntV9992n+++/3zNeV1fXZCZq69atWrt2rU6dOqXy8nLV1dVd9F+uYcOGebYvfFt8UlJSk7GqqiqVlpYqLCxMhw8f1sGDB/WnP/3Js099fb2qqqpUUVHhmU7++nGDg4MVGhqq3Nzci/01oBk1NTU6cOCAdu3apd27d+vgB/sV3qVO0WF2je9p00+u7KLB8VGKd8XKGT9QfRMSZQ9ycGkjAK+qqKpR5LRFklhgBID39Ijoqx4RfaXJ0xtPImVnKOPkp1+Gt0zllbhVVLVfn219V29uaNB5t029E67QhEmN4W3SpEmKjo729ttAG1zSsBYc/NXMR0NDgyTpueee0/jx45vs5+fnJ6lxNuyuu+7SypUrNX36dDkcDm3evFlr1qy5qD/v6wuYXDjb2dzYhVoaGhq0cuVK3Xbbbd86VlBQULPHvXCcC8fAxamvr9dHH33kCWfv7NunYFXIGWaTy2HX/x5tV0LfSA1MiJHTlaCYAUnq6ojk0kYAAIDvYLPZFBHlUkSUS9JMGWOUk5mqrDOfKy/zjLKzzim3oETFVZ8rdc9nWvvKM/pdeYMCe8ZozMTG8DZ58mQNGTJEdjsnxa2u3b5wqnfv3nI6nTpz5ozmzJnT7D7vvvuuXC6Xli5d6hlLT09vsk9gYKDq6+svSU2jRo3S8ePH1b9//zYfIzCwcZXBS1VTZ2GM0fHjx7V7927t2rVLe/bsliqL5QyzKybMpgVX2BUb3l2JCdFyRsfK2W+wekXFSwFdv//gAAAAaJbNZlPfmAT1jUnwjJUU5OjsqWPKzTil89mZysrJU3F1jrI+26L/9+5mPfWYUZVfqAYMG6ex48Zr/PjGR0REhBffCZrTrt8OvGLFCi1cuFBhYWGaMWOGqqurdejQIRUVFenhhx9W//79lZGRoc2bN2vs2LHavn27Xn755SbHiIuLU2pqqo4eParo6GiFhoa2+QbKxx57TDfffLNiYmL04x//WHa7XR9//LE++eQTrVq16qKO4XK5ZLPZ9Nprr+mmm25S165dFRIS0qZ6LncZGRmecLZ7926V5WcpKtQuZ5hNd/Wzy9UzVIkJTsXExMgZP0gRMf35zjMAAIB25ujVR45efaTxUyVJVRWlOnvqc53POKHcc2eVlZ2j4opKFZbu1acv7dGODQ3KdRt1i3Bp2OivwtvIkSO/9fVc6FjtGtYWLFigbt266YknntDixYsVHByspKQkLVq0SJJ0yy236KGHHtKDDz6o6upqzZw5U8uWLdOKFSs8x7j99tu1bds2TZkyRcXFxZ6l+9ti+vTpeu211/SHP/xBq1evVkBAgBITE7VgwYKLPobT6dTKlSu1ZMkSzZs3T/fcc4/PLN2fl5enPXv2eAJaVvopRYXaFRVq04zeNrkSu2lwfJRiY6PldA1Qn/hB8gtySHY/b5cOAADgs4K6hWnAsPEaMKzx1qS62hplZ5xWTvpJFWanK/d8tnLyilRWk6XsE//S9gNbtelxo6JqP/VJGKqkEaM0alTjY9iwYU1ufUL7atNqkPANeXl5evvtt5WSkqKUlBSdOPaxokJtigq1q18Pm+K6+2lQXF+5YqLldPVT34TBCgzpKdnb9RwAAHQYd2W1Qq7+X5JYYARA51ZRVqystOPKPXtaBTnnlHM+R/nFFSqvMTpX1qCMEqO8CqPCKpvCYwYoacRojRw5UqNGjdLIkSNZJb2dENbgcf78eU8wS0lJ0akvPlPfL8NZQneb4rrb1T86QvGuaEXFxMvZfyiLggDo1AhrAHyVMUZFeVnKTjupgpyzKsrN0vm8PBUUu1VeY5RV1qCzpUb5FY2P0N4uDR0+WqNGjdLw4cOVlJSkmJgYvvLkByKs+bCsrKwm4Szt1BfqE2JT3xC74nvYFOewq390uOJjnOoT7ZKz/xCF9oqS/AK9XToAdIjqmlo98D//V5L0f35/j7oEcnIKgA8zDSopOK+cs2dUkJ2uwtxs5eXlKrewVOU1Rvluo4xSozx3gworjWoDQhU74ApdkTRMSUlJngezcBePsOZj0tPTtWrVKu3du1fZ6acaw1moXfHdbXJ1t6t/dKTiYqLUN9qlqITBCunZV/LnTDIAAACaYYzcZYXKyTijvHNpKsrNUkF+nvIKilRWXa/SaulcaYOyy40KKxsfXXtGacCQpgFu0KBBTb5KC40Iaz4mJydH/WP76o4h/nJ199OAmEjFRjvVN8YlZ8Jgdevem3AGAACAH6Suplq5WWnKz0pXUe45FRfkqSA/X3lFZXLXGhVVGWVeuA+u0qikxqYefePVb9AQDRnS+Bg8eLASExN9duV1ibDmk/72P0s1o2eaol391bUnlzUCQEuMMaqoqpEkdQsK5N4LAPghjFFFebFyM9NUkJOh4rxsFRbkKz8/X8Xl1aqoNSqoNDpXapRfaVRU2RjqwiJjlDDwqxB3Icj5wuWUhDVfVJYjvf+MFNKbL6UGgO/AAiMA0P6MaVBpQa7ysjNUnJupkvzzKioqUEFBkQpLK1RxYSbuywVNiqsafw5y9Fb8oKEaPHhwkxAXERHRaU6uscY6AAAAAK+x2exyhPeRI7yPpHFfPWEaVFZcoPzsDBXlnlNpfo4KCwtUVFiovOJyVdQWqqTsbWXtStEnr34V4uzdesgZP0iDEhsvo7zwiI+Pl7//5RV/Lq9qAQAAAPgGm12hPSIU2iNC8UNGfzVuGlTpLlXeuXQV5p5TSV62SoryVVhYpPyiErlryuWuPazzhw7qrb1GL1UZFVdJ7no/JT/wK/358Se8955aibAGAAAA4PJhs6trSHfFDuqu2EHDmzxVXVmu/JyzKjx/TiX5OSorylNhYZEKC4tUWlmr2JBSLxXdNoQ1AAAAAJ1Cl64hcsYPljN+cJPxhvo6laceUn3/aV6qrG0IawAAAAA6Nbufv8LCHNJltoKk3dsFAAAAAAC+jZk1AABa4Ge3647rxni2AQDoSIQ1AABaENQlQC/9+RfeLgMA4KM4TQgAAAAAFkRYAwAAAAALIqwBANACd2W1bGPnyzZ2vtyV1d4uBwDgYwhrAAAAAGBBhDUAAAAAsCDCGgAAAABYEGENAAAAACyIsAYAAAAAFkRYAwAAAAAL8vd2AehYxhhVVlTIv7ZWpqZGMn7eLgkALKuurk43TrzCs11dY/NyRQCAtrLV1SlA0uX0L7nNGGO8XQQ6jtvtVv8+oVo4LlBlNUbVdbQfAAAAnV9CD7vuW/0vBV0x09ulXDRm1nxQbb1UXGUU2kXqFnA5nVsAAAAA2qaoysj4BXi7jFZhZs3HGGNUUVEhVZdJDXXeLgcAAADoMN169JbtMgpshDUAAFrgdrsVGRkpScrNzVVwcLCXKwIA+BIugwQA4DtUVFR4uwQAgI9i6X4AAAAAsCDCGgAAAABYEGENAAAAACyIsAYAAAAAFkRYAwAAAAALYjVIAABaYLfbdc0113i2AQDoSHzPGgAAAABYEKcJAQAAAMCCCGsAAAAAYEGENQAAWuB2uxUREaGIiAi53W5vlwMA8DEsMAIAwHfIz8/3dgkAAB/FzBoAAAAAWBBhDQAAAAAsiLAGAAAAABZEWAMAAAAACyKsAQAAAIAFsRokAAAtsNvtGjNmjGcbAICOZDPGGG8XAQAAAABoitOEAAAAAGBBhDUAAAAAsCDCGgAALaioqFBcXJzi4uJUUVHh7XIAAD6GBUYAAGiBMUbp6emebQAAOhIzawAAAABgQYQ1AAAAALAgwhoAAAAAWBBhDQAAAAAsiLAGAAAAABbEapAAALTAZrNpyJAhnm0AADqSzbAWMQAAAABYDpdBAgAAAIAFEdYAAAAAwIIIawAAtKCiokJDhw7V0KFDVVFR4e1yAAA+hgVGAABogTFGx44d82wDANCRmFkDAAAAAAsirAEAAACABRHWAAAAAMCCCGsAAAAAYEGENQAAAACwIFaDBACgBTabTS6Xy7MNAEBHshnWIgYAAAAAy+EySAAAAACwIMIaAAAAAFgQYQ0AgBZUVlZq7NixGjt2rCorK71dDgDAx3DPGgAALXC73QoJCZEklZeXKzg42MsVAQB8CTNrAAAAAGBBhDUAAAAAsCDCGgAAAABYEGENAAAAACyIsAYAAAAAFuTv7QIAALCy8PBwb5cAAPBRLN0PAAAAABbEZZAAAAAAYEGENQAAAACwIMIaAAAtqKys1LXXXqtrr71WlZWV3i4HAOBjuGcNAIAWuN1uhYSESJLKy8sVHBzs5YoAAL6EmTUAAAAAsCDCGgAAAABYEGENAAAAACyIsAYAAAAAFkRYAwAAAAAL8vd2AQAAWFm3bt28XQIAwEexdD8AAAAAWBCXQQIAAACABRHWAAAAAMCCCGsAALSgqqpKM2fO1MyZM1VVVeXtcgAAPoZ71gAAaIHb7VZISIgkqby8XMHBwV6uCADgS5hZAwAAAAALIqwBAAAAgAUR1gAAAADAgghrAAAAAGBBhDUAAAAAsCB/bxfgK4wxKisr83YZAIBWcLvdnu3S0lLV19d7sRoAQGcTGhoqm83W4vMs3d9BSktL5XA4vF0GAAAAAIsoKSlRWFhYi88T1jqIL86slZaWKiYmRmfPnv3Ov4ToePTGmuiLNdEXa6Iv1kVvrIm+WNP3zaxxGWQHsdlsPvvBCAsL89n3bnX0xproizXRF2uiL9ZFb6yJvlxeWGAEAAAAACyIsAYAAAAAFkRYQ7vp0qWLli9fri5duni7FHwDvbEm+mJN9MWa6It10Rtroi+XJxYYAQAAAAALYmYNAAAAACyIsAYAAAAAFkRYAwAAAAALIqwBAAAAgAUR1nBJFRUVKTk5WQ6HQw6HQ8nJySouLv7e133++eeaNWuWHA6HQkNDNWHCBGVkZLR/wT6irX254IEHHpDNZtPatWvbrUZf1dre1NbW6pFHHlFSUpKCg4MVFRWle+65R1lZWR1XdCe0bt06xcfHKygoSKNHj9a+ffu+c/+UlBSNHj1aQUFBSkhI0LPPPttBlfqW1vRl27ZtuuGGGxQREaGwsDBNnDhRO3bs6MBqfUdrPy8XvPvuu/L399eIESPat0Af1treVFdXa+nSpXK5XOrSpYv69eunDRs2dFC1uBiENVxSd999t44ePao333xTb775po4ePark5OTvfM3p06c1efJkJSYmau/evfroo4+0bNkyBQUFdVDVnV9b+nLBK6+8og8++EBRUVHtXKVvam1vKioq9OGHH2rZsmX68MMPtW3bNp04cUKzZs3qwKo7ly1btmjRokVaunSpjhw5oquuukozZsxo8YRRamqqbrrpJl111VU6cuSIfv/732vhwoX617/+1cGVd26t7cvbb7+tG264Qa+//roOHz6sKVOm6Ec/+pGOHDnSwZV3bq3tywUlJSW65557dN1113VQpb6nLb2ZPXu2du3apfXr1+v48eN68cUXlZiY2IFV43sZ4BI5duyYkWTef/99z9j+/fuNJPPFF1+0+Lo777zT/PSnP+2IEn1SW/tijDGZmZnG6XSaTz/91LhcLvOXv/ylnav1LT+kN1934MABI8mkp6e3R5md3rhx48zPf/7zJmOJiYlmyZIlze6/ePFik5iY2GTsgQceMBMmTGi3Gn1Ra/vSnCFDhpiVK1de6tJ8Wlv7cuedd5pHH33ULF++3AwfPrwdK/Rdre3NG2+8YRwOhykoKOiI8tBGzKzhktm/f78cDofGjx/vGZswYYIcDofee++9Zl/T0NCg7du3a+DAgZo+fboiIyM1fvx4vfLKKx1UdefXlr5Ijb1JTk7Wb3/7Ww0dOrQjSvU5be3NN5WUlMhms6l79+7tUGXnVlNTo8OHD2vatGlNxqdNm9ZiD/bv3/+t/adPn65Dhw6ptra23Wr1JW3pyzc1NDSorKxMPXv2bI8SfVJb+7Jx40adPn1ay5cvb+8SfVZbevOf//xHY8aM0erVq+V0OjVw4ED95je/UWVlZUeUjItEWMMlk5OTo8jIyG+NR0ZGKicnp9nX5Obmqry8XH/+85914403aufOnbr11lt12223KSUlpb1L9glt6YskPf744/L399fChQvbszyf1tbefF1VVZWWLFmiu+++W2FhYZe6xE4vPz9f9fX16t27d5Px3r17t9iDnJycZvevq6tTfn5+u9XqS9rSl29as2aN3G63Zs+e3R4l+qS29OXkyZNasmSJXnjhBfn7+3dEmT6pLb05c+aM3nnnHX366ad6+eWXtXbtWm3dulW//OUvO6JkXCTCGr7XihUrZLPZvvNx6NAhSZLNZvvW640xzY5LjWc+JemWW27RQw89pBEjRmjJkiW6+eabuWH/e7RnXw4fPqy//vWv2rRpU4v7oGXt2Zuvq62t1V133aWGhgatW7fukr8PX/LN3/f39aC5/Zsbxw/T2r5c8OKLL2rFihXasmVLsydE8MNcbF/q6+t19913a+XKlRo4cGBHlefTWvOZaWhokM1m0wsvvKBx48bppptu0pNPPqlNmzYxu2YhnOLA93rwwQd11113fec+cXFx+vjjj3X+/PlvPZeXl/etMz0XhIeHy9/fX0OGDGkyPnjwYL3zzjttL9oHtGdf9u3bp9zcXMXGxnrG6uvr9etf/1pr165VWlraD6q9s2vP3lxQW1ur2bNnKzU1Vbt372ZWrY3Cw8Pl5+f3rTPPubm5LfagT58+ze7v7++vXr16tVutvqQtfblgy5Ytuu+++/TSSy/p+uuvb88yfU5r+1JWVqZDhw7pyJEjevDBByU1BgRjjPz9/bVz505NnTq1Q2rv7Nrymenbt6+cTqccDodnbPDgwTLGKDMzUwMGDGjXmnFxCGv4XuHh4QoPD//e/SZOnKiSkhIdOHBA48aNkyR98MEHKikp0ZVXXtnsawIDAzV27FgdP368yfiJEyfkcrl+ePGdWHv2JTk5+Vv/yZk+fbqSk5M1b968H158J9eevZG+CmonT57Unj17CAg/QGBgoEaPHq233npLt956q2f8rbfe0i233NLsayZOnKhXX321ydjOnTs1ZswYBQQEtGu9vqItfZEaZ9Tmz5+vF198UTNnzuyIUn1Ka/sSFhamTz75pMnYunXrtHv3bm3dulXx8fHtXrOvaMtnZtKkSXrppZdUXl6ukJAQSY3//7Lb7YqOju6QunERvLWyCTqnG2+80QwbNszs37/f7N+/3yQlJZmbb765yT6DBg0y27Zt8/y8bds2ExAQYP7xj3+YkydPmqeeesr4+fmZffv2dXT5nVZb+vJNrAbZPlrbm9raWjNr1iwTHR1tjh49arKzsz2P6upqb7yFy97mzZtNQECAWb9+vTl27JhZtGiRCQ4ONmlpacYYY5YsWWKSk5M9+585c8Z069bNPPTQQ+bYsWNm/fr1JiAgwGzdutVbb6FTam1f/vnPfxp/f3/z9NNPN/lcFBcXe+stdEqt7cs3sRpk+2ltb8rKykx0dLS54447zGeffWZSUlLMgAEDzIIFC7z1FtAMwhouqYKCAjNnzhwTGhpqQkNDzZw5c0xRUVGTfSSZjRs3Nhlbv3696d+/vwkKCjLDhw83r7zySscV7QPa2pevI6y1j9b2JjU11Uhq9rFnz54Or7+zePrpp43L5TKBgYFm1KhRJiUlxfPc3LlzzTXXXNNk/71795qRI0eawMBAExcXZ5555pkOrtg3tKYv11xzTbOfi7lz53Z84Z1caz8vX0dYa1+t7c3nn39urr/+etO1a1cTHR1tHn74YVNRUdHBVeO72Iz58q5oAAAAAIBlsBokAAAAAFgQYQ0AAAAALIiwBgAAAAAWRFgDAAAAAAsirAEAAACABRHWAAAAAMCCCGsAAAAAYEGENQAAAACwIMIaAAAAAFgQYQ0AAAAALIiwBgAAAAAWRFgDAAAAAAv6/6k9pHxSL52xAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2sAAAIOCAYAAAAm+5XNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACZ1ElEQVR4nOzdd3hUZd7G8e9Meu+9k5BAIKF3aQqCQVBBEFAQBAu6KivW14KrrrvY1q7rShF7QcEKWACR3ov03tJDep857x8sWUOTFmaS3J/rmovkzJlzfmfmzJB7nuc8j8kwDAMRERERERGxK2ZbFyAiIiIiIiInU1gTERERERGxQwprIiIiIiIidkhhTURERERExA4prImIiIiIiNghhTURERERERE7pLAmIiIiIiJihxTWRERERERE7JDCmoiIiIiIiB1SWBNpgEwm01ndFi5ceEnq+eijj3j55Zcvyb4uVGlpKU8++eRZPzf79u0743P85JNP1lr/scceIzo6GkdHR3x9fQGorKzkjjvuICwsDAcHB1q3bn1Rjwng+++/P6mW+uRUz2Vdyc3N5ZFHHiE5ORkPDw98fHxo1qwZo0aNYuPGjTXrLV26lCeffJL8/Pw6qeNM75tTPR8///wz7du3x8PDA5PJxOzZs5kxYwYmk4l9+/bVSY1btmzhySefPOX2x4wZQ2xsbJ3s91Tatm3LvffeW7Nvk8lEixYtsFgsJ61rMpn4y1/+cslqO1d1/Zn57LPPMnv27JOWL1y48JT/N7z22mskJCTg7OyMyWQiPz+/zl/fM31mxcbGMmbMmDrbt4hdMUSkwVm2bFmtW1pamuHm5nbS8oKCgktSz4ABA4yYmJhLsq8LlZ2dbQDG5MmTz2r9vXv3GoBx9913n/T8Llu2zDh48GDNurNnzzYA49FHHzV+++03Y9WqVYZhGMbLL79sAMZrr71mLF261Ni4ceNFP6677rrLqM8f+efymlyIoqIiIyEhwQgNDTVefPFF46effjK++eYb48UXXzS6detmvPfeezXrPv/88wZg7N27t05qOdP75sRzy2q1Gv7+/kbnzp2Nn376yVi2bJmRl5dnZGVlGcuWLTPKy8vrpMbPP//cAIwFCxacdN+uXbuMtWvX1sl+T7Rnzx4DMBYtWmQYhmHcfPPNBmAAxrvvvnvS+oBx1113XZLazkddf2Z6eHgYN99880nLCwoKTvq/Yd26dQZgjB8/3li8eLGxbNkyo7q6us5f3zN9Zq1du9bYtWtXne1bxJ442iIgikjd6ty5c63fg4KCMJvNJy0/UWlpKe7u7nVZWoMVHR39p8/v5s2bAbjnnnsIDg6utdzNzc2uv+lvSKqqqjCZTDg6nvxf4Oeff86uXbv45Zdf6N27d6377rvvPqxW63nvt6ysDDc3t/N+/B+deK4dOXKEvLw8rrvuOq644opa9wUFBV2UfZ6r+Pj4S7avL774guDgYC677LKaZR4eHrRt25bJkyczcuTIi/bc2xuLxUJ1dTUuLi4XvC1vb++Tzq3ff/8dgFtvvZWOHTvWLL+Ur++J2rRpY7N9i1xytk6LIlL3br75ZsPDw6PWsp49exotWrQwFi1aZHTp0sVwc3MzbrjhBsMwjn27OmnSJCM2NtZwcnIywsPDjXvvvdcoLi6utY3XX3/d6N69uxEUFGS4u7sbLVu2NKZMmWJUVlbW2g///Yb7jzfD+F+r1HPPPWf885//NGJiYgxXV1ejZ8+exvbt243KykrjoYceMsLCwgxvb2/j2muvNTIzM086vk8++cTo3Lmz4e7ubnh4eBhXXnnlSd/4Hn8Odu7caVx11VWGh4eHERkZadx33301rQ7H6znxdqpvoI87/pjnn3/+jK9BTEzMSdudPHnyKfc3ffp0wzCOtZa88cYbRqtWrQxXV1fD19fXGDJkiLF79+6Ttv/DDz8Yl19+ueHt7W24ubkZzZo1M5599tmaYz/Vfo63CH322WdGx44dax4bFxdnjB079ozHc/y4j9f6R8eP7bjjx7l582Zj+PDhhre3txEcHGyMHTvWyM/Pr/XYgoICY/z48Ya/v7/h4eFh9OvXz9i+ffspW9Z27NhhjBgxwggKCjKcnZ2NZs2aGa+//nqtdRYsWGAAxsyZM4377rvPCA8PN0wmk7F169ZTHtfx1rLT3X/iMZ14O97CFBMTYwwYMMCYNWuW0bp1a8PFxcV46KGHDMO48PfNic/xqWo53iozffr0U7b+nel8MQzDWLVqlXHDDTfUvCdjYmKM4cOHG/v27atZ5/i2T3f+3nzzzSe1DpWVlRkPP/xwrc+WO++80zh69Git9Y4/fz/88IPRpk0bw9XV1UhKSjKmTp16ytejU6dOxu23317z+/H3+9KlSw3A+Mc//lFrfU7RsrZ//37jxhtvrHU+vfDCC4bFYqlZ54/v9xdffNGIjY01PDw8jM6dOxvLli07ZW0nysrKMm699VYjMjLScHZ2NgIDA42uXbsaP/74o2EYZ/eZOWXKFOPpp582YmNjDQcHB+OHH34wysrKjPvuu89o1aqV4e3tbfj5+RmdO3c2Zs+efdKxn3jr2bOnYRj/e78cP49PVcvxz8NTvb4Wi8V49dVXaz6zfHx8jE6dOhlz5sypWeeTTz4x+vbta4SGhhqurq5Gs2bNjIceeqjW/y9/9pkVExNz0ufypXr9RC41tayJNGLp6encdNNNPPjggzz77LOYzWZKS0vp2bMnhw4d4v/+7/9ITU3l999/54knnmDTpk389NNPmEwmAHbv3s3IkSOJi4vD2dmZDRs28Pe//51t27Yxbdo0AN58801uu+02du/ezVdffXXKOt544w1SU1N54403yM/PZ9KkSQwcOJBOnTrh5OTEtGnT2L9/P/fffz/jx4/n66+/rnnss88+y2OPPcbYsWN57LHHqKys5Pnnn6d79+6sXLmS5OTkmnWrqqoYNGgQ48aNY9KkSfz66688/fTT+Pj48MQTTxAWFsbcuXPp378/48aNY/z48cDZtUxYrVaqq6tPWn689earr77ijTfeYOrUqcydOxcfHx8iIyPp378/Tz/9NAsWLOCXX34B/veN9e23386MGTO45557mDJlCnl5eTz11FN07dqVDRs2EBISAsDUqVO59dZb6dmzJ2+//TbBwcHs2LGjpiXv8ccfp6SkhC+++IJly5bV1BYWFsayZcu44YYbuOGGG3jyySdxdXVl//79NbVcTEOGDOGGG25g3LhxbNq0iUceeQSg5lwxDINrr72WpUuX8sQTT9ChQweWLFnCVVddddK2tmzZQteuXYmOjubFF18kNDSUefPmcc8995CTk8PkyZNrrf/II4/QpUsX3n77bcxmc62WzT/q0qULAKNHj+b//u//6N69OwEBASetN378ePLy8njttdf48ssvCQsLA6h1vq1du5atW7fy2GOPERcXh4eHB3Dx3jd/rKVVq1YMHjyYu+++m5EjR56xleXPzhc4di1mUlISw4cPx9/fn/T0dN566y06dOjAli1bCAwMZMCAATz77LP83//9H2+88QZt27YFTt/icvz1/fnnn3nkkUfo3r07GzduZPLkySxbtoxly5bVqnvDhg1MmjSJhx9+mJCQEN59913GjRtHQkICPXr0qFnv0KFDrFy5kqeffvqkfXbp0oXrrruOKVOmcNttt+Hv73/K2rKzs+natSuVlZU8/fTTxMbG8u2333L//feze/du3nzzzVrrv/HGGzRr1qzmurLHH3+ctLQ09u7di4+Pz2mfe4BRo0axdu1a/v73v5OYmEh+fj5r164lNzcXOLvX/tVXXyUxMZEXXngBb29vmjZtSkVFBXl5edx///1ERERQWVnJTz/9xODBg5k+fTqjR48GYNmyZVx++eX07t2bxx9/HDjWonYqb775Jh9//DHPPPMM06dPp1mzZmf8PBwzZgwffPAB48aN46mnnsLZ2Zm1a9fWuqZx586dpKWlMXHiRDw8PNi2bRtTpkxh5cqVNZ87Z/rMOpVL+fqJXHK2TosiUvdO17IGGD///HOt5f/4xz8Ms9lccz3VcV988YUBGN9///0p92GxWIyqqipj5syZhoODg5GXl1dz3+muvzj+LWerVq1qfft5/BquQYMG1Vp/4sSJBlBzPcWBAwcMR0dH4+677661XlFRkREaGmoMGzas1nMAGJ999lmtddPS0oykpKSa38/3mrXT3RYvXlyz7vEWkOzs7FrbONXrs2zZMgMwXnzxxVrLDx48aLi5uRkPPvhgzbF6e3sbl112mWG1Wk9b5+mu/3jhhRcM4KQWrrM97nNpWXvuuedqrXfnnXcarq6uNXX/8MMPBmC88sortdb7+9//ftI2+/XrZ0RGRp503eVf/vIXw9XVteb8O95S0KNHj7M+tqeeespwdnaueQ3j4uKMO+64w9iwYUOt9c50zVpMTIzh4OBgbN++/Yz7Op/3jWGc/ByfroX3xJa1sz1fTlRdXW0UFxcbHh4etV6fM12zdmLLy9y5c095Hnz66acGYLzzzjs1y4636O3fv79mWVlZmeHv71+rBc0wjn1e+Pn5GVVVVbX2ffw9tW3bNsPBwcGYNGlSzf2c0LL28MMPG4CxYsWKWtueMGGCYTKZal7H489zSkqKUV1dXbPeypUrDcD4+OOPT37yTuDp6WlMnDjxjOv82WdmfHx8rZbYU6murjaqqqqMcePGGW3atKl13+muWTuxZc0w/ncOnfh/womv76+//mrAsWtyz5bVajWqqqqMRYsWGUCt99iZrlk7sWXtUr5+IpeaRoMUacT8/Py4/PLLay379ttvadmyJa1bt6a6urrm1q9fv5NGCVu3bh2DBg0iICAABwcHnJycGD16NBaLhR07dpx1HWlpaZjN//s4at68OQADBgyotd7x5QcOHABg3rx5VFdXM3r06Fq1urq60rNnz5NGNDOZTAwcOLDWstTUVPbv33/WtZ7Ovffey6pVq066ne/Ijt9++y0mk4mbbrqp1rGFhobSqlWrmmNbunQphYWF3HnnnTUtnueiQ4cOAAwbNozPPvuMw4cPn1e9Z2PQoEG1fk9NTaW8vJysrCwAFixYAMCNN95Ya72RI0fW+r28vJyff/6Z6667Dnd391rPT1paGuXl5SxfvrzWY4YMGXLWdT7++OMcOHCAadOmcfvtt+Pp6cnbb79Nu3bt+Pjjj896O6mpqSQmJp60/GK9b87H2Z4vxcXFPPTQQyQkJODo6IijoyOenp6UlJSwdevW89r38VaTE0fxGzp0KB4eHvz888+1lrdu3Zro6Oia311dXUlMTDzp/Tpr1iyuueaaU16DCJCUlMS4ceN4/fXXaz47TlVbcnJyrWuyjtdqGMZJLc0DBgzAwcGh5vfU1FSAmtoMw6h1Xv6x1b1jx47MmDGDZ555huXLl1NVVXXKms5k0KBBODk5nbT8888/p1u3bnh6euLo6IiTkxNTp04979fsXPzwww8A3HXXXWdcb8+ePYwcOZLQ0NCa879nz54AF3RuXczXT8SeKKyJNGKn6lKSmZnJxo0bcXJyqnXz8vLCMAxycnKAY4Gpe/fuHD58mFdeeYXFixezatUq3njjDeDYYApn68SuSc7OzmdcXl5eXlMrHAscJ9b76aef1tR6nLu7O66urrWWubi41GzvQkRGRtK+ffuTbp6enue1vczMTAzDICQk5KRjW758ec2xZWdn1+z/fPTo0YPZs2fXhN7IyEhatmx5TqHkbJ3YnfB4l7fj50pubi6Ojo4nrRcaGlrr99zcXKqrq3nttddOem7S0tIATnrtT9d96nRCQkIYO3Ysb7/9Nhs3bmTRokU4OzvXDA1/Nk61z4v5vjkfZ3u+jBw5ktdff53x48czb948Vq5cyapVqwgKCjrvGo+/vid2ozOZTISGhtZ0AzzuVN1PXVxcau0/IyODJUuW/GkYf/LJJ3FwcKjp9neq2k71eoWHh9fcf6baTjyXFy1adNK5ebwr4KeffsrNN9/Mu+++S5cuXfD392f06NFkZGSc8Rj+6FS1fvnllwwbNoyIiAg++OADli1bxqpVq7jlllsuymfcn8nOzsbBweGk9+sfFRcX0717d1asWMEzzzzDwoULWbVqFV9++SVw/uf/xX79ROyJrlkTacRO9c16YGAgbm5uNdfOnOp+gNmzZ1NSUsKXX35JTExMzf3r16+vk1rPVMsXX3xRq4aGIDAwEJPJxOLFi095/dHxZcf/8D106NB57+uaa67hmmuuoaKiguXLl/OPf/yDkSNHEhsbW3MN14mOh96Kiopay0/8o+hcBAQEUF1dTW5ubq0/pk78I9bPzw8HBwdGjRp12m/x4+Liav1+Pq2Of9SjRw+uvPJKZs+eTVZW1mmvefuzfdr6fXM250tBQQHffvstkydP5uGHH65ZfvyaqPN1/PXNzs6uFdgMwyAjI6OmlfdcfPXVV3h4eNC3b98zrhcWFsbEiRP55z//yaRJk05ZW3p6+knLjxw5Avzvs+ZstWvXjlWrVtVadjw4BAYG8vLLL/Pyyy9z4MABvv76ax5++GGysrKYO3fuWW3/VOfWBx98QFxcHJ9++mmt+098j9aVoKAgLBYLGRkZp/1y5JdffuHIkSMsXLiwpjUNuOC5Ci/26ydiT9SyJiK1XH311ezevZuAgIBTthQdnwT1+B8DfwwShmHwn//856Rtnvht+MXSr18/HB0d2b179ylrbd++/Tlv016+Yb366qsxDIPDhw+f8rhSUlIA6Nq1Kz4+Prz99tsYhnHa7Z3Ncbm4uNCzZ0+mTJkCHOuudzohISG4urrWmiQaYM6cOWd9jCc6PlT+hx9+WGv5Rx99VOt3d3d3evfuzbp160hNTT3l83OqVpmzkZmZecrh+S0WCzt37sTd3b1mMvPzOVds/b45m/PFZDJhGMZJXxK8++67J00wfS7PwfEpBT744INay2fNmkVJSclJUw6cjVmzZnH11Vef1bD1Dz30EP7+/rUC6B9r27JlC2vXrq21fObMmZhMppOmcfgzXl5eJ52Tx3sG/FF0dDR/+ctf6Nu3b619n89rbzKZaiatPi4jI+OU78m6OLeODwT01ltvnbHG4/v/o3//+98nrXuu59bFfP1E7Ila1kSklokTJzJr1ix69OjBX//6V1JTU7FarRw4cID58+czadIkOnXqRN++fXF2dmbEiBE8+OCDlJeX89Zbb3H06NGTtpmSksKXX37JW2+9Rbt27TCbzecVpE4UGxvLU089xaOPPsqePXvo378/fn5+ZGZmsnLlSjw8PPjb3/52Ttv08vIiJiaGOXPmcMUVV+Dv709gYGBNSD2dAwcOnHSdFBz7tvl85iPq1q0bt912G2PHjmX16tX06NEDDw8P0tPT+e2330hJSWHChAl4enry4osvMn78ePr06cOtt95KSEgIu3btYsOGDbz++usANeFuypQpXHXVVTg4OJCamsozzzzDoUOHuOKKK4iMjCQ/P59XXnml1nUkp3L8erpp06YRHx9Pq1atWLly5UnB6lxceeWV9OjRgwcffJCSkhLat2/PkiVLeP/9909a95VXXuGyyy6je/fuTJgwgdjYWIqKiti1axfffPPNeY9m+f777/Pvf/+bkSNH0qFDB3x8fDh06BDvvvtuzaiox//oPv6cvvLKK9x88804OTmRlJSEl5fXabdv6/fN2Zwv3t7e9OjRg+eff77m3F+0aBFTp06tCarHtWzZEoB33nkHLy8vXF1diYuLO2VY7tu3L/369eOhhx6isLCQbt261YwG2aZNG0aNGnVOx5Kbm8uiRYv45JNPzmp9b29vHn30Uf7617+edN9f//pXZs6cyYABA3jqqaeIiYnhu+++480332TChAmnvPbwfBQUFNC7d29GjhxJs2bN8PLyYtWqVcydO5fBgwfXrHc+r/3VV1/Nl19+yZ133sn111/PwYMHefrppwkLC2Pnzp211k1JSWHhwoV88803hIWF4eXlRVJS0gUdW/fu3Rk1ahTPPPMMmZmZNSF63bp1uLu7c/fdd9O1a1f8/Py44447mDx5Mk5OTnz44Yds2LDhpO2d7jPrVKH3Ur1+IjZhm3FNRORSOtM8a6dSXFxsPPbYY0ZSUpLh7Oxs+Pj4GCkpKcZf//pXIyMjo2a9b775pmY+nYiICOOBBx6oGdHvj6OJ5eXlGddff73h6+trmEymk+YMOnEEu+Mjkn3++ee1lp9uVLLZs2cbvXv3Nry9vQ0XFxcjJibGuP76642ffvrpjM+BYfxvpMI/+umnn4w2bdoYLi4uteYVOpU/Gw3yxhtvPGlfZzMa5HHTpk0zOnXqZHh4eBhubm5GfHy8MXr0aGP16tW11vv++++Nnj17Gh4eHoa7u7uRnJxsTJkypeb+iooKY/z48UZQUFDNa7B3717j22+/Na666iojIiLCcHZ2NoKDg420tLRao1iezvE50UJCQgwPDw9j4MCBxr59+047GuSJx32qOcDy8/ONW265xfD19TXc3d2Nvn37Gtu2bTvlCJ179+41brnlFiMiIsJwcnIygoKCjK5duxrPPPNMzTqnO5dOZ8uWLcakSZOM9u3bG0FBQYajo6Ph5+dn9OzZ03j//fdPWv+RRx4xwsPDDbPZfMp51k7lQt83hnH+o0Ee92fny6FDh4whQ4YYfn5+hpeXl9G/f39j8+bNp5zf6uWXXzbi4uIMBweHs5pn7aGHHjJiYmIMJycnIywszJgwYcJp51k7Uc+ePWvmBHv33XcNd3d3o6Sk5KT1TveeqqioMOLi4k47z9rIkSONgIAAw8nJyUhKSjKef/75087TdaJTnaMnKi8vN+644w4jNTW1Zo67pKQkY/LkybWO41w/M4/75z//acTGxhouLi5G8+bNjf/85z+n/Ixbv3690a1bN8Pd3f2M86wZxtmPBmkYx0Y3/de//mW0bNmy5v+OLl26GN98803NOkuXLjW6dOliuLu7G0FBQcb48eONtWvXnjS67Ok+swzj9POs1fXrJ2ILJsM4Q78ZERERETuUlpaGm5sbs2bNsnUpIiJ1RmFNRERERETEDmmAERERERERETuksCYiIiIiImKHFNZERERERETskMKaiIiIiIiIHVJYExERERERsUOaFPsSMQyDoqIiW5chIiIiIiJ2wsvLC5PJdNr7FdYukaKiInx8fGxdhoiIiIiI2ImCggK8vb1Pe7/mWbtE1LImItK4VFVVMX36dADGjh2Lk5OTjSsSERF782ctawprIiIidaCkpARPT08AiouL8fDwsHFFIiJS32iAERERERERETuksCYiIiIiImKHFNZERERERETskEaDFBEREZEGyWKxUFVVZesypBFycnLCwcHhgrejsCYiIiIiDYphGGRkZJCfn2/rUqQR8/X1JTQ09IyjPf4ZhTURERERaVCOB7Xg4GDc3d0v6I9lkXNlGAalpaVkZWUBEBYWdt7bUlgTERGpAy4uLnz77bc1P4vIpWGxWGqCWkBAgK3LkUbKzc0NgKysLIKDg8+7S6TCmoiISB1wdHRkwIABti5DpNE5fo2au7u7jSuRxu74OVhVVXXeYU2jQYqIiIhIg6Ouj2JrF+McVMuaiIhIHaiqquLDDz8E4MYbb8TJycnGFYmISH2jljUREZE6UFlZydixYxk7diyVlZW2LkdE5IwWLlyIyWSqNYLm7NmzSUhIwMHBgYkTJzJjxgx8fX0veF8mk4nZs2df8HYupn379mEymVi/fv1ZP6ZXr15MnDixzmoCtayJiIiIiNi1MWPGkJ+ff9ECTq9evWjdujUvv/xyzbKuXbuSnp6Oj49PzbLbb7+dsWPHcs899+Dl5YWjoyNpaWkXpQY5OwprIiIiIiINQFVV1Xl3uXZ2diY0NLTm9+LiYrKysujXrx/h4eE1y4+PciiXhrpBioiIiIjYgS+++IKUlBTc3NwICAigT58+PPDAA7z33nvMmTMHk8mEyWRi4cKFNd32PvvsM3r16oWrqysffPABubm5jBgxgsjISNzd3UlJSeHjjz+u2ceYMWNYtGgRr7zySs329u3bV6sb5MKFC/Hy8gLg8ssvr9nnqbpBfvPNN7Rr1w5XV1eaNGnC3/72N6qrq2vu37lzJz169MDV1ZXk5GR+/PHHs34+/niM3bt3x83NjQ4dOrBjxw5WrVpF+/bt8fT0pH///mRnZ9c8zmq18tRTTxEZGYmLiwutW7dm7ty5tba9cuVK2rRpg6urK+3bt2fdunUn7X/Lli2kpaXh6elJSEgIo0aNIicn56zrvxgU1kRERESk4TIMqCyxzc0wzrrM9PR0RowYwS233MLWrVtZuHAhgwcPZvLkyQwbNoz+/fuTnp5Oeno6Xbt2rXncQw89xD333MPWrVvp168f5eXltGvXjm+//ZbNmzdz2223MWrUKFasWAHAK6+8QpcuXbj11ltrthcVFVWrlq5du7J9+3YAZs2addI+j5s3bx433XQT99xzD1u2bOHf//43M2bM4O9//ztwLDQNHjwYBwcHli9fzttvv81DDz10zi/h5MmTeeyxx1i7di2Ojo6MGDGCBx98kFdeeYXFixeze/dunnjiiZr1X3nlFV588UVeeOEFNm7cSL9+/Rg0aBA7d+4EoKSkhKuvvpqkpCTWrFnDk08+yf3333/S69GzZ09at27N6tWrmTt3LpmZmQwbNuyc678Q6gYpIiIiIg1XVSk8G/7n69WF/zsCzh5ntWp6ejrV1dUMHjyYmJgYAFJSUoBjXQ8rKipqdVM8buLEiQwePLjWsj8Gj7vvvpu5c+fy+eef06lTJ3x8fHB2dsbd3f2U24NjXSKDg4MB8Pf3P+16f//733n44Ye5+eabAWjSpAlPP/00Dz74IJMnT+ann35i69at7Nu3j8jISACeffZZrrrqqrN6Tv54PP369QPg3nvvZcSIEfz8889069YNgHHjxjFjxoya9V944QUeeughhg8fDsCUKVNYsGABL7/8Mm+88QYffvghFouFadOm4e7uTosWLTh06BATJkyo2cZbb71F27ZtefbZZ2uWTZs2jaioKHbs2EFiYuI5HcP5UlgTEREREbGxVq1accUVV5CSkkK/fv248soruf766/Hz8zvj49q3b1/rd4vFwj//+U8+/fRTDh8+TEVFBRUVFXh4nF1oPBdr1qxh1apVNS1px/dfXl5OaWkpW7duJTo6uiaoAXTp0uWc95Oamlrzc0hICPC/IHt8WVZWFgCFhYUcOXKkJsgd161bNzZs2ADA1q1badWqVa2J00+sa82aNSxYsABPT8+T6tm9e7fCmoiISH3m4uLCZ599VvOziNiIk/uxFi5b7fssOTg48OOPP7J06VLmz5/Pa6+9xqOPPlrTffF0TgxhL774Iv/61794+eWXSUlJwcPDg4kTJ9bJFCJWq5W//e1vJ7XsAbi6umKcohvo+UwU/cdBU44//sRlVqv1jPsxDKNm2anqOpHVamXgwIFMmTLlpPvCwsLOvvgLpLAmIiJSBxwdHRk6dKityxARk+msuyLamslkolu3bnTr1o0nnniCmJgYvvrqK5ydnbFYLGe1jcWLF3PNNddw0003AcdCx86dO2nevHnNOueyvTNp27Yt27dvJyEh4ZT3Jycnc+DAAY4cOVIzouSyZcsueL9n4u3tTXh4OL/99hs9evSoWb506VI6duxYU9f7779PWVlZzeiWy5cvr7Wdtm3bMmvWLGJjY3F0tF1k0gAjIiIiIiI2tmLFCp599llWr17NgQMH+PLLL8nOzqZ58+bExsayceNGtm/fTk5ODlVVVafdTkJCQk0L3datW7n99tvJyMiotU5sbCwrVqxg37595OTknNQqdbaeeOIJZs6cyZNPPsnvv//O1q1b+fTTT3nssccA6NOnD0lJSYwePZoNGzawePFiHn300fPa17l44IEHmDJlCp9++inbt2/n4YcfZv369dx7770AjBw5ErPZzLhx49iyZQvff/89L7zwQq1t3HXXXeTl5TFixAhWrlzJnj17mD9/PrfccstFCbpnS2FNRESkDlRXV/P555/z+eef1xrGWkTkVLy9vfn1119JS0sjMTGRxx57jBdffJGrrrqKW2+9laSkJNq3b09QUBBLliw57XYef/xx2rZtS79+/ejVqxehoaFce+21tda5//77cXBwIDk5maCgIA4cOHBeNffr149vv/2WH3/8kQ4dOtC5c2deeumlmgFSzGYzX331FRUVFXTs2JHx48fXur6trtxzzz1MmjSJSZMmkZKSwty5c/n6669p2rQpAJ6ennzzzTds2bKFNm3a8Oijj57U3TE8PJwlS5ZgsVjo168fLVu25N5778XHxwez+dJFKJNxNp02RURE5JyUlJTUXJheXFxcJxf3i8jJysvL2bt3L3Fxcbi6utq6HGnELsa5qJY1ERERERERO6SwJiIiIiIil9yzzz6Lp6fnKW/nOhdbQ6XRIEVERERE5JK74447GDZs2CnvOz5KY2OnsCYiIiIiIpecv78//v7+ti7DrqkbpIiIiIiIiB1SWBMREREREbFD6gYpIiJSB5ydnZk+fXrNzyIiIudKYU1ERKQOODk5MWbMGFuXISIi9Zi6QYqIiIiIiNghhTUREZE6UF1dzXfffcd3331HdXW1rcsRkUZgxowZ+Pr62rqMOtGrVy8mTpx41us3lOdC3SBFRETqQEVFBVdffTUAxcXFODrqv1wRqVs33HADaWlpti5DLiL9zyEiIiIi0gC4ublpMukGRt0gRURERETsQK9evbjnnnt48MEH8ff3JzQ0lCeffLLm/pdeeomUlBQ8PDyIiorizjvvpLi4uOb+P3b92759OyaTiW3bttXax0svvURsbCyGYQCwZcsW0tLS8PT0JCQkhFGjRpGTk3PW9d59991MnDgRPz8/QkJCeOeddygpKWHs2LF4eXkRHx/PDz/8UOtxixYtomPHjri4uBAWFsbDDz9cq7t4SUkJo0ePxtPTk7CwMF588cWT9l1ZWcmDDz5IREQEHh4edOrUiYULF55V3fWJwpqIiIiINFiGYVBaWW2T2/FAdC7ee+89PDw8WLFiBc899xxPPfUUP/74IwBms5lXX32VzZs389577/HLL7/w4IMPnnI7SUlJtGvXjg8//LDW8o8++oiRI0diMplIT0+nZ8+etG7dmtWrVzN37lwyMzMZNmzYOdUbGBjIypUrufvuu5kwYQJDhw6la9eurF27ln79+jFq1ChKS0sBOHz4MGlpaXTo0IENGzbw1ltvMXXqVJ555pmabT7wwAMsWLCAr776ivnz57Nw4ULWrFlTa79jx45lyZIlfPLJJ2zcuJGhQ4fSv39/du7ceda11wcm43zOIhERETmjkpISPD09gWPXrHl4eNi4IpHGoby8nL179xIXF4erqyulldUkPzHPJrVseaof7s5nf9VRr169sFgsLF68uGZZx44dufzyy/nnP/950vqff/45EyZMqGkJmzFjBhMnTiQ/Px+Af/3rX7z++uvs3r0bgB07dpCUlMTvv/9OcnIyTzzxBCtWrGDevP89P4cOHSIqKort27eTmJh4TvVaLBZ8fHwYPHgwM2fOBCAjI4OwsDCWLVtG586defTRR5k1axZbt27FZDIB8Oabb/LQQw9RUFBAaWkpAQEBzJw5kxtuuAGAvLw8IiMjue2223j55ZfZvXs3TZs25dChQ4SHh9fU06dPHzp27Mizzz570nNhCyeei+dD16yJiIiIiNiJ1NTUWr+HhYWRlZUFwIIFC3j22WfZsmULhYWFVFdXU15eTklJySm/EBo+fDgPPPAAy5cvp3Pnznz44Ye0bt2a5ORkANasWcOCBQtqvlj6o927d/9pWDuxXgcHBwICAkhJSalZFhISAlBzDFu3bqVLly41QQ2gW7duFBcXc+jQIY4ePUplZSVdunSpud/f35+kpKSa39euXYthGCfVV1FRQUBAwJ/WXJ8orImIiIhIg+Xm5MCWp/rZbN/nysnJqdbvJpMJq9XK/v37SUtL44477uDpp5/G39+f3377jXHjxlFVVXXKbYWFhdG7d28++ugjOnfuzMcff8ztt99ec7/VamXgwIFMmTLllI8933r/uOx4KLNarcCxbql/DGrHlx1f92w6/VmtVhwcHFizZg0ODrWf41MFz/pMYU1ERKQOODs78/rrr9f8LCK2YTKZzqkror1avXo11dXVvPjii5jNx4ad+Oyzz/70cTfeeCMPPfQQI0aMYPfu3QwfPrzmvrZt2zJr1ixiY2Mv2fQiycnJzJo1q1ZoW7p0KV5eXkRERODn54eTkxPLly8nOjoagKNHj7Jjxw569uwJQJs2bbBYLGRlZdG9e/dLUretaIARERGROuDk5MRdd93FXXfdddI3zyIi5yo+Pp7q6mpee+019uzZw/vvv8/bb7/9p48bPHgwhYWFTJgwgd69exMREVFz31133UVeXh4jRoxg5cqV7Nmzh/nz53PLLbdgsVjq5DjuvPNODh48yN133822bduYM2cOkydP5r777sNsNuPp6cm4ceN44IEH+Pnnn9m8eTNjxoypCagAiYmJ3HjjjYwePZovv/ySvXv3smrVKqZMmcL3339fJ3XbisKaiIiIiIida926NS+99BJTpkyhZcuWfPjhh/zjH//408d5e3szcOBANmzYwI033ljrvvDwcJYsWYLFYqFfv360bNmSe++9Fx8fn1rh6GKKiIjg+++/Z+XKlbRq1Yo77riDcePG8dhjj9Ws8/zzz9OjRw8GDRpEnz59uOyyy2jXrl2t7UyfPp3Ro0czadIkkpKSGDRoECtWrCAqKqpO6rYVjQYpIiJSB/44Qlr37t1Puq5CROrGxRiBT+Ri0GiQIiIidqq8vJzevXsDGrpfRETOj7pBioiIiIhILQcOHMDT0/O0twMHDti6xEZBLWsiIiIiIlJLeHg469evP+P9UvcU1kREREREpBZHR0cSEhJsXUajp26QIiIiIiIidkhhTUREREQaHA14LrZ2Mc5BhTURERERaTCOT0JfWlpq40qksTt+Dh4/J8+HrlkTERGpA05OTjz33HM1P4vIpeHg4ICvry9ZWVkAuLu7YzKZbFyVNCaGYVBaWkpWVha+vr4XNM+mJsUWERERkQbFMAwyMjLIz8+3dSnSiPn6+hIaGnpBXxYorImIiIhIg2SxWKiqqrJ1GdIIOTk5XVCL2nEKayIiInXAYrGwdu1aANq2bXtR/tMWEZHGRWFNRESkDpSUlODp6QlAcXExHh4eNq5IRETqG40GKSIiIiIiYocU1kREREREROyQwpqIiIiIiIgdUlgTERERERGxQwprIiIiIiIidkhhTURERERExA452roAERGRhsjJyYnJkyfX/CwiInKuNM+aiIiIiIiIHVI3SBERERERETukbpAiIiJ1wGq1snXrVgCaN2+O2azvR0VE5NyoG6SIiEgdKCkpwdPTE4Di4mI8PDxsXJGIiNQ3+ppPRERERETEDimsiYiIiIiI2CGFNRERERERETuksCYiIiIiImKHFNZERERERETskMKaiIiIiIiIHdI8ayIiInXAycmJ+++/v+ZnERGRc6V51kREREREROyQukGKiIiIiIjYIXWDFBERqQNWq5UDBw4AEB0djdms70dFROTcqBukiIhIHSgpKcHT0xOA4uJiPDw8bFyRiIjUN/qaT0RERERExA4prImIiIiIiNghhTURERERERE7pLAmIiIiIiJihxTWRERERERE7JDCmoiIiIiIiB3SPGsiIiJ1wNHRkTvvvLPmZxERkXOledZERERERETskLpBioiIiIiI2CH1yxAREakDhmGQk5MDQGBgICaTycYViYhIfaNukCIiInWgpKQET09PAIqLi/Hw8LBxRSIiUt+oG6SIiIiIiIgdUlgTERERERGxQwprIiIiIiIidkhhTURERERExA4prImIiIiIiNghhTURERERERE7pHnWRERE6oCjoyM333xzzc8iIiLnSvOsiYiIiIiI2CF1gxQREREREbFD6pchIiJSBwzDoLS0FAB3d3dMJpONKxIRkfpGLWsiIiJ1oLS0FE9PTzw9PWtCm4iIyLlQWBMREREREbFDCmsiIiIiIiJ2SGFNRERERETEDimsiYiIiIiI2CGFNRERERERETuksCYiIiIiImKHNM+aiIhIHXBwcOD666+v+VlERORcmQzDMGxdhIiIiIiIiNSmbpAiIiIiIiJ2SGFNRERERETEDimsiYiI1IGSkhJMJhMmk4mSkhJblyMiIvWQwpqIiIiIiIgdUlgTERERERGxQwprIiIiIiIidkhhTURERERExA4prImIiIiIiNghhTURERERERE75GjrAkRERBoiBwcH0tLSan4WERE5VybDMAxbFyEiIiIiIiK1qRukiIiIiIiIHVJYExERERERsUMKayIiInWgpKQEDw8PPDw8KCkpsXU5IiJSD2mAERERkTpSWlpq6xJERKQeU8uaiIiIiIiIHVJYExERERERsUMKayIiIiIiInZIYU1ERERERMQOKayJiIiIiIjYIY0GKSIiUgfMZjM9e/as+VlERORcmQzDMGxdhIiIiIiIiNSmr/pERERERETskMKaiIiIiIiIHVJYExERqQMlJSUEBQURFBRESUmJrcsREZF6SAOMiIiI1JGcnBxblyAiIvWYWtZERERERETskMKaiIiIiIiIHVJYExERERERsUMKayIiIiIiInZIYU1ERERERMQOaTRIERGROmA2m2nfvn3NzyIiIufKZBiGYesiREREREREpDZ91SciIiIiImKHFNZERERERETskMKaiIhIHSgtLSU2NpbY2FhKS0ttXY6IiNRDGmBERESkDhiGwf79+2t+FhEROVdqWRMREREREbFDCmsiIiIiIiJ2SGFNRERERETEDimsiYiIiIiI2CENMCIiIiKNXlFRERkZGVRWVmIYBp6envj7++Pt7W3r0kSkEVNYExERqQMmk4nk5OSan8U+WK1Wtm3bxpIlS1i+fDmbN29m67ZtFFdYMDu5gNkRk8l0bARPSxU+nu4kxcfQqWNHunfvzhVXXIGPj4+tD0NEGgmTofGERUREpAHLzs7m66+/5uuvv+a335aQX16Ng4cfDu4+OHgF4uDhh8nJBWdXNxydXDCZTFRUVFBdXQmWaqyV5ViKc7AUZGOuKKRXx1bcMnYM11xzDU5OTrY+PBFpwBTWREREGgir1cqRI0fYtWsXhw4dIjs7m+zsbLKysigpKcFqtWK1WjEMA2dnZ3x9ffH19cXPz4/AwEAiIyOJiIggIiICb2/vet0iePDgQb766iu++uorFi9djskzEEefYJwConDx8ic0KoawsHDCQ4KICAkiJNAPT3c3HMwmTCYwDCgtKyM9M4eDGZnsO3iE/YcOczQnG0vJUaqy9hLgWMl9d47njjvuwN3d3daHLCINkMKaiIhIPXT06FHWrFlTc9u6dSu79+6nwmrC7OKOydkNs5MLJsf/3pxcwcEBk8kMGDXd/IyqSozqCozqKozqCqzVFRiVZfh4uNE8IY4Wyc1p0aIFKSkptGnTBl9fX1sf+mnt2rWLWbNmMWvWLFav24ijbyiOfuE4BUQSGptAQnxTkuJjSIiNxNvNBfN5hNH9Bw/x2+qNbNiyneL8HCqz9+NTlcvfHryXcePG4eDgUAdHJiKNlcKaiIhIHSgtLaVDhw4ArFq16oJbXjIzM1m4cCELFixg4cKF7NizDwd3X8zuPpjdfXD0DsLs6omDsxs+/oF4efvg7u6Gm5s7Hu6uODs5/bfVyAQmE5ZqC+UVFZSVV1BeUUFpWRklRcUUlxRTXlKMYanCqKrAWlZAdWEu1vJCrGVFRIcG0C61BW3btqVdu3a0bduWgICAi/GUnZetW7cya9YsvvjiCzb+vg1H3xAc/SJwDoomMr4Z8fHxtGmRRFx4ME4OF28Q7KqqShYtW8Uvy9aQn5tNZeZuknzN/Of1l2jfvv1F24+ING4KayIiInWgpKQET09PAIqLi/Hw8DinxxuGwYYNG5g9ezazZ89m4+/bcPAKwMEzAEe/UBw8A/APCiM4LIzg4GAiQgIJCwokJNAfd1cnHM3nF0yshkFxWTlH0rM4nJFJenYu2blHyc7JpeBoHkZVOZbyIiwFmVhK8rGU5BMd4keHNq3o0KED7du3p127dnh5eZ3X/v9MUVERixYt4qeffmLevHls37MfR+9gHP3CcA6KJTYxmYSmTWnbIonIID8cL2JAO5VqSzXzFizm56VrKMvPpurw70y86VqefOIxnJ2d63TfItLwKayJiIjUgfMJa8cD2gcffMCsWbM4kJGDo08Ijn7hOPqFExIZS2RUNHExkTRrEkuQnzfOjpduytT8wiJ27TvIvsPpHM7MISs7m/zcHKyVZVhLjlKdn4GltBCjvJD4qFA6tmtLamoqiYmJJCYm0qRJk3MKMJWVlfz++++sW7eOdevWsWbNGlatWYvh4vnf0BqGi3/kfwNaAm1bJBIe4FvnAe1UCgsL+GDWN2zZtY/KrH0k+xl8+eF0IiMjL3ktItJwKKyJiIjUgXMJawcPHuTDDz/kgw8+YOuufTj6heEUEI1rUBSxTZuTEN+EVslNCQ/wvahd+S6G/MIiduz9b4DLODaYScHRHIzKMiwlR7EU5mAtL8JaXozJUkmQrxdBAX6EBAcTFBSEi4tLzaAnFouF3Nxc0tPTOXLkCDlHC8HZ9Vj3TldvHLyODRLiHxpJVFwTYqOjSEmKJ8TP67xbEi+25atW89kPCyjLz8Ht6G4+fmMKvXv3tnVZIlJPKayJiIjUgT8LaxaLhR9++IF///vffD9vPg4+YTgGRuMWEkt8sxSSmyXSJjmRAG/38xoIw1YMwyDnaEFNC1x2bj5HC/I5mptLZVkJhqUKqquwVpZirSrHqCoHq/XYg82OmBwcMDu7YXJ2w+TkipuHF8HhkQQFBRMaHEhCbBTRocG4OdvvQB5ZWVm89d4nZOUeperw7zx+61AevP++ej26pojYhsKaiIhIHThdWDt69Chvv/02b7/9NodyC3EOiMYpNIGYZqkkN29Ox9RkQvy96lVAOxtVFgu5RwvIOVpAYVExhSWlFJWUUm0xOHaoxwY/cXd1wdvLEx8vL/x9vQnw88LNybHePR+VlZW899GnbNh1kMqMXQxqF8t7/3lL87KJyDlRWBMREakDJ4a1o0eP8vLLL/Pvd/5DuZM3ziFN8I5MonmrtnRum0pSTLjddXGUC2Ng8POCRcz5ZRmVeYfpHO7C7I9nnPNgMyLSeCmsiYiI1IHS0lKSk5Opqqri8ssv57NZs8E3HOfQpoQmtKBdu/Z0bZtCgJebusc1cBs2bmL6F99RUZBNU7di5n7+PoGBgbYuS0TqAYU1ERGROrBkyRKmTJnCdz8uwCk4DpewJKKTWtK5Q3s6t26Om5OjrUuUS2j37l28+cEsygqOElx5hJ9mzSQ6OtrWZYmInVNYExERuUisVivffvstU6ZMYcXGbTiFxOMSmkBCi9b06NyeNs3icTCrFa2xSs9I55X/fEBhQT6+JftY+OX7xMbG2rosEbFjCmsiIiIXqLKykg8//JDnnn+eXUfycApLxC20Ccmpbbm8aweaxoTXuwEypG4cPXqUF9+aRl5+Pj6Fe1n45XvExcXZuiwRsVMKayIiIuepsLCQd955h3+9/DJZZeASloRHeAKt2rajR7uWTJ88AYDH3/ocZ1dXG1cr9iI//ygvvjmV3IJCvAv2snDWdJo0aWLrskTEDimsiYiInKOMjAxeeeUV3vr3O5Q6euMcnoRvVCLt2rbnim7tCfTxpLyslHG9mwMwdcFWXN3cbVy12JP8gnxefONd8goK8czfzcJZM4iPj7d1WSJiZxTWREREztLOnTt54YUXeO+DjzC8Q3EOb05wXDM6tG9H705t8HL/X+uZwpr8mYKCAl588z/k5BfiW7iX377+kMjISFuXJSJ2RGFNRETkT6xcuZLnnnuOr775HqegGJzDmxGZmELnDu24rF1LXE8x0bHCmpyNwsICnnvtHfIKCgmpOMzirz8iODjY1mWJiJ1QWBMRETkFwzCYN28eU6ZMYdHSlTgHx+Ec0YyElu3p1qkd7Vok4OzgcNrHK6zJ2crNy+X519+lsKiQKCObxd98gq+vr63LEhE7oLAmIiLyB1VVVXz22Wc899xzbN65D+fgONwik2nWpgM9OrWnRXz0WQ2/r7Am5yIzM5MX3ppGSXERTZ0LWDDnYzw9PW1dlojYmMKaiIgIUFJSwtSpU3nppZc4lFuEU0g8nlHJpLTvTM/O7YiPCD6n4fcV1uRcHTp8iJfemUlZUQGtfCuZP+tDXDWKqEijprAmIiKNWk5ODq+99hqvv/46hRYnnEKb4hvbgtYdOtOzU1siAn3Oa4608rJSJl7XDYCXv1qisCZnZc+ePbw64xMqCvPoFuHEnI9n4HSKayJFpHFQWBMRkUZp7969vPjii0ybPoMqVz9cwhIJSkilbYdO9OzYikBvD1uXKI3Utm3beOuDL6kozKZ/kh+fzHgHs9ls67JExAYU1kREpFHZsmULzz77LJ989gVmv3BcwhKJaN6WDh060K1tCt5uzrYuUYQNGzcx9fNvqMg7wrCOsbz7xiuYzqOFV0TqN4U1ERFpFNavX88zzzzDV19/i2NgDM5hSSS06kjHDu3pmJKIm5OjrUsUqWXlqlXMnPMjVTkHGdc3lX9NeVaBTaSRUVgTEZEGbcWKFTzzzDN8N++n/w6/35yk1p3o1qUDrZvG4exYN93LKsvLee6vNwPw4L/ew1kDRch5+PW33/hs7q9UZu7h/mG9efKxR2xdkohcQvoaUUREGqRff/2Vp59+mp9/XYJzcBO82w2kWZvO9OjagZZNonB0qNtrgKyGla3rltf8LHI+elx2GeXl5Xy9EF745Ee8vTy57967bV2WiFwiCmsiItKgrFixgkceeYSFS5bjHNwEn/YDSW7XlZ5dOtI8Nvys5kgTsSdX9ulDaXkFPy2Hx97+HG8vT8bfMtbWZYnIJaCwJiIiDcLvv//OY489xpzvfsA5JAHfDtfQskM3enXpQNOoUIU0qdeuuTqN8vJyfjPg3uem4uXlxQ1Dr7d1WSJSxxTWRESkXsvMzOTRRx9l2nszcQqKw7vt1bToeBl9uncjITJYIU0aBBMmbrh+MOXln7Aag/GPvYSnhzsD0tJsXZqI1CGFNRERqZcqKip49dVXefrpZyh38cMj5UqadehB7x5dadkkEkfNSyUNjAkTo0feQPn0mWwyDEbe9zSz3d3p3auXrUsTkTqi0SBFRKTemTt3LnfffTd7M4/iGpVKVGoXevfuTccWCXU2uuO5Ki8rZVzv5gBMXbAVVzd3G1ckDYXFYuH1/0xn54F0OPI7c997mY4dO9q6LBGpA/bxP5qIiMhZyMjIYPjw4aQNuo5DFm9Cu11P2qgJ3DdhLJe1SrSboHaci6sbLq5uti5DGhgHBwfuHHczsWEBEJbM1bf8lY0bN9q6LBGpA2pZExERu2e1Wnn33Xd56KGHKXH2xS22Ne16XEla78sID/C2dXkiNlFRUc6Lb7zD4ayjOGdv4+dP/k3Lli1tXZaIXEQKayIiYtf279/PmDFj+HXFWlxiWhHd+jL6X3kl7ZrFafAQafRKy0p56Y3/kJ5zFOesrfz86X8U2EQaEIU1ERGxS4ZhMGPGDO69dyIV7kF4JXaka580BvTohJebi63LE7EbpaUlvPTmVNKz83DOVmATaUgU1kRExO5kZWVx66238s28n3GNa0tcu14MuvoqWsSGYzbVj9a0yopyXnnkDgDu/cfbOLu42rgiaciOBbZ3/xDY3lVgE2kAFNZERMSuLFy4kJEjR5JT5YRH005063s1A3t3xcvN2dalnRONBimXmgKbSMNjX8NmiYhIo2WxWHjqqae44sr+HHUNJ6bnMMbc/hdu6N+z3gU1EVtwd/fgvjvHExbkT2VQMlfccCsbNmywdVkicgEU1kRExOYyMzPp168ff5vyL9ya9aDd1aO469Zb6NAsVoOIiJyD44EtNNCXyuDm9BlxBytWrLB1WSJynhTWRETEplavXk379u35dcMu/NpdxYAbb2PcDYMI9vWwdWki9ZK7uweT7rqViOAAqkOS6T/6HhYtWmTrskTkPCisiYiIzXzwwQd079GTbLM/Ud0HM+bWCQzs2QEXRwdblyZSrx1rYbuVmLAgTBEpDLrtIX6YO9fWZYnIOVJYExGRS666upr777+f0beMxxTTjhZ9b+COcWNpmxhTb0Z7FLF3rq6u/PXO8cRHheEQmcKwe57kiy+/snVZInIOHG1dgIiINC5FRUUMHz6cuQuX4JHcmy79h3D9Vb3wdNUgIiIXm5OTM3ffPpZ3pr/PFpOJMY88T0lJCTePusnWpYnIWdDQ/SIicskcPnyYAQMG8Pv+LLyTe9B/8HCu7NIaJwd19BCpS1arhWnvf8T6HQeoOPw7z941gnv/cpetyxKRP6GwJiIil8SGDRsYMGAA2dWuBLa6nOuG3kDnlgnq9ihyiRiGlQ8++YIVm3dSkb6Du6/tzj+e+RsmvQdF7JbCmoiI1Ln58+czZMj1VPnFENmhH8OHDSU5NszWZYk0OgYGX3/7PT8u30hl5m6u79SEd996HUdHXRkjYo8U1kREpE598cUXjLxpFA6RKSRedjU3Dr2WyEBfW5dV5yorynnrb38FYMLkf+Hs4mrjikT+Z8Gvv/Llj0uozD5AjzhPPv9gOu7u7rYuS0ROoLAmIiJ1Ztq0adw24S6cm3SgZa9BjB46EH8PN1uXdUmUl5UyrndzAKYu2Iqrm/4QFvuyZu06Zs6eR0XeEZI9y/l+1kf4+/vbuiwR+QNd0S0iInXipZdeYvyEv+Ca2I12/YYyfvi1jSaoidQH7dq24a5RQ3APimRrmRfd+l/HwYMHbV2WiPyBwpqIiFxUhmHwxBNP8MCjT+LRvCedrxrG2OsHaGh+ETuU2LQpk8aPxDsonHTnSLoOGMaWLVtsXZaI/JfCmoiIXDRWq5V7772Xv7/0Gu7JvegxaDg3XdsXVycNXiBiryIiInnozrEEBAVT5JdIzyFj+e2332xdloigsCYiIhdJdXU1Y8aM4c0Zn+DRojd9rxvO8Kt64ezgYOvSRORP+Pv78/DdtxIZFkp1WEsGjLufWV9+ZeuyRBo9hTUREblg5eXlDB06lI+/no9ny95cPeRGBvfphoNZ8zeJ1BceHp7cf9etJMVG4BCZyuhHXuDVN960dVkijZrCmoiIXJDi4mKuvvpqvl20Eu+UK7juhptI69Fek12L1EPOzs785daxtE9OwCWqJf/35hc88MjjaPBwEdvQ0P0iInLe8vLySEtLY+3uDHxTenHd0BH0aNMMk4IahmFQUV4GgIurm54TqVdqJs9etoGqnH0MbB3Fe/95EycnJ1uXJtKoKKyJiMh5SU9P58orr2RHdhn+qZdzw/DhdGyRYOuyROQi+vW3JXw+71eq8jNoH2xmzscz8PLysnVZIo2GwpqIiJyzffv20adPHw6WORLU+gpuHDGcVk1jbF2WiNSBjZs2Me3zb6koyiPWMZ95n71HaGiorcsSaRQU1kRE5Jxs2bKFvn37kmvyJbT9lYwacQPNY8NtXZbdqaqsYOo//w+AcQ8/i5Ozi40rEjl/e/fu5Y2Zn1JaVIhv6UHmf/wfEhMTbV2WSIOnAUZEROSsrV69mh49epLrGEhk5wGMu/kmBbXTsFgsLP7+CxZ//wUWi8XW5YhckLi4OB688xb8/Hwp8I6n+5BxLF22zNZliTR4CmsiInJWFi1axOWXX0GJZyRxXQdy25gbiQ8PsnVZInKJBAcF8/A9dxAW4EtVcDPSxj3A7Dnf2LoskQZNYU1ERP7Ud999R/+r0qgKSiSh57XcOno4kUF+ti5LRC4xLy9vHrjnDhIigjCHJ3PTIy/wxtv/sXVZIg2WwpqIiJzRxx9/zLWDh2CKSCH58iHcetMwQv29bV2WiNiIi4srd99xK+2SYnGOaM5Db37OI088pbnYROqAwpqIiJzW22+/zY2jb8Yprj2pVw5j3IghBHp72LosEbExBwcHxoy+kT4dU3AOacLr365k1K13UVVVZevSRBoUhTURETmJYRj8/e9/5867J+LWtCvtrxrOLcMG4euhEQ1F5BgTJq4dNJChV16Gc0AkX2/KJG3oKEpKSmxdmkiDobAmIiK1WK1WJk2axON/ewb3ZpfR7ZqbGD04DU9XZ1uXJiJ2qGePHtxy/QBcfAJZmWXQfcBQsrKybF2WSIOgedZERKRGdXU148ePZ+YnX+Ce1I3LB4/iuiu64eLkYOvS6h3DMCjKzwPAy9cfk8lk44pE6tbuPbt5873PKSspJKD8MPM+/g8JCQm2LkukXlNYExERAMrLyxk+fDjfzF+AZ/Me9B92M1dd1h5nR3XCEJGzk5mZwSvvzKSguBiX3F3MmfoSnTp2tHVZIvWWwpqIiFBYWMg111zD4tUb8W7RiwHDb6Zvx1QcHRTUROTcFBYW8PLb08g6WoQ1fQsfvvgYA9LSbF2WSL2ksCYi0shlZ2dz1VVXsWHXIfxSr2DQiNH0bN0MB7O67V2IqsoKPnjlaQBuuvdxnJw1OIs0HuXl5bz57nT2HMml8vDvvPzgeMbfMtbWZYnUOwprIiKN2IEDB7jyyivZnVNCYOu+DBkxis4tmmDW9VUXrLyslHG9mwMwdcFWXN3cbVyRyKVVbalm+vsfsWHXQSoOb+f+4X148vFHdf2myDlQ/xYRkUZqw4YNdOnShb351YR1GshNY8bRRUFNRC4SRwdHxo8ZRa92LXGJaM6LX/zK7X+ZiMVisXVpIvWGwpqISCP0888/0717D3LNfkR3u5YxY8bQpmmUvvEWkYvKhInrr7uGa6/ojHNIEz5euoshI2+moqLC1qWJ1AsKayIijcxHH33EVWkDqApMoGnv6xk/dhTNokNtXZaINGB9evdm1LVX4hIUzS97irnymmEUFhbauiwRu6ewJiLSSBiGwfPPP8+No2/GMbYdqf2Gc+uo4UQF+dm6NBFpBDq1b88dI6/BLSCCdflOdL/qOjIzM21dlohdU1gTEWkELBYLEydO5KHHJuOR1J3OA2/iluHXEeitQS9E5NJJbp7MvbfcgGdAKPsIpmv/wezZs8fWZYnYLYU1EZEGrqSkhCFDhvD6f2bgkdyLy4eN5aZr++Pl6mzr0kSkEYqNieWB20fjFxhMrmcclw0cyfr1621dlohd0tD9IiIN2OHDhxk0aBAbdh3CO7kH/YeMpF/XNjhpsus6Z7Vayc04DEBAaARms55zkT8qKCjg5XfeIzMnB3P6Fma9PYXevXvbuiwRu6KwJiLSQK1bt46BAweSVelEYOvLufb6EXRJaarJrkXEbpSVlfHqOzM4kJGF5eAmpv3zYa4fMtjWZYnYDYU1EZEG6JtvvmHEiJFU+0YR2bE/Q4cNo2VsmIbmFxG7U1VVxb+nv8/WfUeoPLiRFybdwoTbb7N1WSJ2QWFNRKQBMQyDV155hfvufwCXmNYk9RjE8CHXEB3ka+vSGp3qqko+e/t5AIbd8QCOTrpGUOR0rFYr7338KWu27KH88FYeGHElTz7+qL5gkkZPYU1EpIGorq7mnnvu4e13p+GW0Il2V17PsIH98Pd0tXVpjVJ5WSnjejcHYOqCrbi6aeRNkTMxMPhyzrcsWLWJyvQd3NQrhTdeeQkHBwdblyZiM462LkBERC5cQUEBw4YN46ffVuCR3Jte193IoMu74OHsZOvSRETOigkTQ64ZiLeXF3N+gQ8Wbyf7pjF8NONdXFxcbF2eiE1oaCoRkXpu3759dO3alV9WbsSvTX+uG3Mn1/e9TEFNROqlvpf34qZBfXENbcL87Ufpd81QioqKbF2WiE0orImI1GNLly6lU6dO7MqrJKTzNYwYewdXdk7V0PwiUq917tiB24YPwj0klrV5DnTvfw1ZWVm2LkvkktP/5iIi9dTUqVPp1ftyCt3Cie0xhHHjxtGlZRPMuiBfRBqAlsnJ3DNmKJ7BUey1BtG137Xs3bvX1mWJXFIKayIi9UxVVRX33HMPt064C8e4DqRcNZLbbxlNUlSIrUsTEbmo4mLjeOC2m/ALDifHI45uA4axYcMGW5clcskorImI1CO5ubn079+fN6bOxCO5Fz2vv4XxIwYT6utp69JEROpESEgoD941luDQMEoDk+k99BYWLlxo67JELgkN3S8iUk9s2rSJa665hoP5Ffi27En/wcO5okMqzo763s0eWa1WjuzbBUB4bAJms14nkQtRWlbKq/95j4NHMrEc3Mj05x5lyODrbF2WSJ1SWBMRqQe++uorRo0aTZVPBOFt+3Lt9UNplxSj69NEpFGpqqrk7ekfsH3fYSoObOSlB8Zz+2232roskTqjsCYiYsesVivPPPMMk596GtfYNiRedjXDrhtEXKi/rUsTEbEJq9XCjI8+Y+3W3ZQf2sKDN17F5Mf+D5O+vJIGSGFNRMROFRcXM2bMGL78di7uTTvTod8QhqZdga+Hq61Lk7NQXVXJnBlvAHDNmLtwdHK2cUUiDYeBwazZ37Bw9WYq03cyqncKb7zykrobS4OjsCYiYof27dvHNddcw+970/Fqfhl9rhvOVZd1wNXJwdalyVkqLytlXO/mAExdsBVXN3cbVyTS8Pz4ywLmLFhGVfYBrmwexEfT38HFxcXWZYlcNPr6QUTEzixcuJD27duzNb2IkM6DuOGWOxnUs5OCmojICfpe3pubBvbFJSiGH3fmc8XAIRw9etTWZYlcNAprIiJ2wjAM3nzzTfpe2Y9ijwjiLx/G2PG3071VUxzMuhZDRORUOnfswO0jrsEtMJJNhW50ufIa9u/fb+uyRC4KhTURETtQWVnJHXfcwV8m3odTkw60uXo0t40dTXJMiC6aFxH5Ey2Sk7lv/Ei8g8LJcImiS9pQ1q5da+uyRC6YwpqIiI1lZWXRp08f3v3wMzxbXs7lN9zG2BuuJUQTXYuInLWoyCgevusWgkNCKQ1K5vIbbuX777+3dVkiF0RhTUTEhtatW0eHDh1YvmUfAe0HcN2YuxjarweeLk62Lk1EpN7x8/Pjobtvo0lUBOaoNgy950n+/c5/bF2WyHlTWBMRsZHPPvuMbt0uI9PqRdRlQxg9bgJ9O7bEyUEfzSIi58vNzY2JE8bRqlk8LrFt+OtL7/HIY0+gAdClPtLQ/SIil1h1dTWPPvooz7/0Cq5N2pF0WRrDrxtIVJCvrUuTi8hqsbB3+2YA4pJaYnbQaJ4il5KBwVdff8cvKzdSmbmbQW2imfGft3B21pyHUn8orImIXELZ2dkMHz6chcvX4Na0M52vHMz1aZfj7aY/HkRE6sKixb8xa/5iKnIO0jbIxNeffYCPj4+tyxI5KwprIiKXyKpVqxgyZAjpJQa+Lbpz5TXD6Nu5Nc6O6vYoIlKXNm7ezPQvvqcsL50ocpj7xQdERUXZuiyRP6WwJiJyCbz77rvc9Ze7MQXFE9GuD9dcN4S2SdGYNSx/g1VdVcncT6cB0P+GW3B0UuupiC3tP7CfN2d+TlFeDh4Fu/n+w3do1aqVrcsSOSOFNRGROlReXs7dd9/N1Pc+wLVJO5J7XM3QQQOIClIXnIauvKyUcb2bAzB1wVZc3dxtXJGI5OXl8cq7M8nOzcN05HdmvvQkA68eYOuyRE5LfW9EROrIwYMH6dGjB9M/+RLPllfQa+h4brvxegU1EREb8ff356G7byMuIgxTVCuG//VpXnjpXxopUuyWwpqISB2YP38+bdu2Zf3+XAI7DeL6W+7ihqt64emqrnAiIrbk7ubOX++6lbbJCbjEtGLy1K8Zd/tdVFVV2bo0kZMorImIXEQWi4UnnniC/gOuptg7lrheQxl36+1c0T5Z86eJiNgJRwdHxt40ggG9OuMS3ozPV+3jigHXkZeXZ+vSRGpxtHUBIiINRUZGBiNHjmTR8jW4N+tBmz7XcH1aX4K8da2SiIi9MWHiqr5XEBocxMyv5rI+L51OV1zNd5/OIDEx0dbliQBqWRMRuSgWLFhA69at+W3jLvzbpTFw9J3cMuRqBTURETvXplUqfx0/Ar/QKLI9m9B14Ah+/vlnW5clAmg0SBGRC2KxWPjHP/7B5L89jXNEc6La9WHQtdfRummkhuVvYKwWC8WF+RTm51J0NI+SogIqykopLyut9a/FUo1hGFRXVfLTrPcBuPzaEbi4uuPo7IKTkzOOzs44OTnj7OqGu6cXbh6euHt44+bhiZunF16+/ho9UuQSKyws5PWp73M4M5uqg5t47v7x3HnH7bYuSxo5hTURkfN04MABRo8ezeKV63CL70Cr3gMZktaXUD9PW5cm58hqsZCTcZjs9IPkZqaTm3mYnIwj5GWlk5eVTnF+DtUl+bg6GLg6gqujCVdHcDKDs4MJRzO1bmaTCQeTQV7Zsf9iA9xMWDFRbTUwgGorWKzH/q2yQpXFoNIClRaosBhUVAPO7rh4B+DiHYiPfxC+AUF4+wfh4x+Ib2AwgSHhBISE4+njh0lfDIhcFFVVVUz94GM27zpAxZHtDO/egjdf/RcuLi62Lk0aKYU1EZHz8Omnn3L77bdT6uSLT/Ou9E4bTP/L2uHq5GDr0uQMyktLOLhnO4f37CD9wF4yDu7lyP7dFGQcwN1chbcLeDqb8HIx4eVswt/tWNDycDbh7HAsnLm7ueLh5oqLizNmRyccHZ1wcHTE0dERBwdHTGYzhun4VQYmTCYThgGG1QJWC9Y/3CzVFqqrq6iurKSqqorqqkrKKiqorLJSbTWotEJlNRRXGhRUGOSXQ1GlQWmVQUkllFQZVJlccPEPxzMgnIDQcAKCj/0bFBZJUHgUAcHhODjqEnWRs2Vg8M3385i/dB1VuQdp5lnOVx/NIDIy0talSSOksCYicg4KCwu5++67ef+jT3GJSSWuY18GXj2AlCYR6vZoR6xWK1mHD3Bw11YO7NrGgV1bObh7KyVZB/BzNeHnZsLP1USQu4lwLxPeLiY8XB3x8/HCw90DVw8PXN08cPLwwdHdF0c3L5w9vHF08wJHF6wmRzDVwWXfhhWTYaG6ooSq4kIqywqpKi2kuqwYS3kRlvISqirKqSgroby0hKKSspqWuJIqg9xSg+zSY4GuqMKgqNKguNqMk3co3iFRBIdHERQeRVDYf2/hUfgGBmM26xJ2kRNt3LSJ976aS2leJm55u/j0nX/Rs2dPW5cljYzCmojIWVq2bBk33ngjB/NKcYtvT5crr2Ngn+74e7raurRGzTAMMg/uY/eW9ezesoE9WzdwePc2PCgjwN1EgJuJUE8Tkd4mfF1N+Ht74O/vi6eXDy5efjh7B+LqG4KLdyBWBzcM88VpHa2utjD7p+UAXNunM46OF7nV1TAwqsupKMyloiiHyqJ8qkvyqS4rpLy0mPLSYoqKiimtqKa8GgorDLJLj92KKo79XlhhUIEzLv7hBIRFExgWSfB/Q1xQ+LFwp26W0phlZ2fx5nufkZmVSdWBjTxz7xgm3nuP3hNyySisiYj8ibKyMp544gleevlVnMKSCG3Vg35XX0PXlKaaO80GCnKz2b1lQ00427dtPa5VRQR5HGspi/Q2EeltxsfdkZAAP7x9/fDwCcDVLxS3wEgcPAKwOtT95ORl5RX0Hv0oAAtm/h03Vxtc82Kpoqooj/LCLCqKcqkuOkpVaQGlJcWUFRdTUFxMWaWVCgscLTPIKjHIKz/WKldYcayFrsrBHbfACILDomtC3PEulkHhUbh7eF364xK5hCorK5n24ads3rmf8iPbGNgujunvvIW7uwYBkrqnsCYicga//vor48aNY2/mUVzj2pHavT/XXtWHyEAfW5fWKBiGwZF9u9i+YTU7Nq5i+4ZVlGYfIMTDRLCHmUhvE7G+ZvzcHQkPCcDXPxB3/1DcA6Nw8QvD4uRRN90Vz4JdhLUzMQyoLjvWKleQeyzMFedTWVpIaUkRJcXFFBSVUmExKK2CvDIr2aVQUG78t5vlsTCHizfuQVEEhP23m2VYFMER0QRHRBMYGoGTs50dt8h5MDCY99MCvlu0ksqcA8Q5FzH7o+k0adLE1qVJA6ewJiJyCkVFRTz88MO8+fY7uEQ0I6hlN67odzU927fA5WJ3Z5MaVZUV7Nu+me0bVrF9w2p2bVqFa1UBoZ4mQj1MNPEzE+JpJizYj8CAQDz9g3ELjMYtOBqrk6fNgtmp2H1Y+zOGFSpLKC/MoaIgh6qiPKpK8qkoLaK0pIjS4mIKS8qpsBiUVUNeqZWcUjj63zBXXAnFleDkE4JHUDRBEdEEhUcTHP7fMBcejbd/oLqTSb2yddt2pn3+LcVHs3DM2sbbzz7K0KHX27osacAU1kRETjB37lxuv/12DueX4xrXhjY90xjQtzfRQWpNu9jKy0rZsWEV29atYPvG1ezfth5/x0rCvExEepmJ9zcT6OlIRGgwfkEheARG4REWB24BGGb7HuGw3oe1P2NYsZYXUV6QTUVhLpVFuVSXFFBRWkhp8bEwV1xeVRPmckutZJccC3OFFcdGt6zAFdfgWEKiEwiLaUJ4TDzhMfGERjfRPHNit/Ly8nh75icczsym4uDvjLy8La/+6wV1i5Q6obAmIvJf+/btY9KkSXz1zXe4RLQgpGVX+l41gG6tmuHsaD8tNvVZVWUFuzav4/c1S9myein7t64nyLWacC8z0T7/bTnzdSMsNASfgFDcQ2JwD4nD6uQF9awFpsGHtT9jWKksOUp5fhYVBTlUFuVRXXqU8pIiyoqLKC4uobTaoKwK8soM0ouPzUuXX25QUG5g9g7FKzyeiNimRDdtTkzTZCLimuLsogF9xPYsFguzvv6OxWs2U5lzgEhzPp/N+DcpKSm2Lk0aGIU1EWn0SktLmTJlCs899zwWrxDc4trQrseVXN2nO6G+GjzhQliqq9m7bVNNONu1aRUBTpWEe5mI8TGT4G8mLMCL8LBQfILCcA9pgktgNBaH+v8HeaMPa3/CWlVORX4WZUczqSjMpKowl7KiAkqKCigqLae06lgLXHrR/4Lc0UozLoFxhMa3IDapJQkt2xCb2BJn1/p/vkj9tHnLFt7/ah5FuZlYDm/inw9M4M47J6h7r1w0Cmsi0mgZhsEXX3zBpEmTOJJfimtUKvHte9Lnit60ahqNo+aeOmeGYXB47042rVzM76uWsG3dCnzMJTXhrKm/mVA/DyIiQvENDsczLBFn/0gsDg0vyCisnSfDoKo0n9LcI1TkZx4LdIU5FB3No6i0guJKg8wSKwcKjo1emVvugHtEM6KatyGhRRuSWnckKEyTF8ulU1hUyLsffsGeA4cpP7Kdy5uFMO3fbxAcHGzr0qQBUFgTkUZpxYoVPPzwwyxauhKXiOYEJ3ei++V96dk+BQ8XJ1uXV68UHs1l86rf2LRiMZtW/gpFmUR6m4nyMZMUYCLM142oiFD8gsPxCIvHNSgWi4Obrcuuc9UWCys2bAegU6skHB00MM0FMQzKC7MpyTpAee5hKvIzKMjNpqC4jMIKg0OFVvYXGGQUG1i8w4ls2Y3kdl1IbtcVv6AQW1cvDZyBwdyfFjD315VUHE3H9ege3p4ymcGDB9u6NKnnFNZEpFHZuHEjjz/+ON98PxfnkCZ4xLamQ8++XNm9M6F+nrYur16oqqxgx6Y1x8LZil/J3L2ZCO9jw+gnBZiJ8nMiJiKUgOAwPMPicQtpgsXRo95dcyb1gGFQlp9JUfoeynMOUpqXztHcHPLLrWQWG+zMs3KkyMDqF/OH8NYFb78AW1cuDdSBgweY9tk3ZGdlUn5oC9d1TebNV1/G19fX1qVJPaWwJiKNws6dO5k8eTKffPYFToHRuEankNK5F727dyExMgQHs4LEmaQf2MOGZQvZtOJXdqxbjp9jOZHeZuL9TTTxNRMdFkhIWBheIXF4RTTF4upnV8PoS+NRXVFKwcHtFKfvpDTnMPl5OeSXGxwpsrIj1+BwkYFzZArJnfvQptvlxCS20PVFclFVV1fx5Tc/sHjt71TmHsar+CCv/v1RhgwZonNNzpnCmog0aDt37mTKlCnMmPk+Zr8IXCKSSe7Ukx7dutKySQRODgoUp1JVWcG2dStZv/QX1i35hfLsfUT5mInxMdMs0EyEvweRkWH4hkbhHdEMk3cohlndR/+outrC3N/WAtD/srY4an4+m6gqLyb/wHZKM3ZRkn2IvLw88sqOtbrtPmqlwDGI6LaX065HX1p2uEyTeMtFs3PXLt6b9T15udlUHNpCrxYRvPXqy8TGxtq6NKlHFNZEpEFatWoVU6ZM4cvZX+MYEIVLRHOatulKj8u60joxVkPxn8LR7EzWL/2F9UsXsG3NbwQ4lNZcdxbj60RcVAgBoZF4hTfFNaRJo7ju7EJogBH7VF6QS97eTZSm7yA/6zB5JVUcLLSyJdsgs9KN4JRetOt1Fa269MLNQ12j5cJUVVUx54f5/Lp6E5VH0yFjG4/95Rb++teJODnpCy75cwprItJgGIbBjz/+yJQpU1jw6284BcXiHJZEYtsudO7YgfbJ8biodaOG1WJh99YNrF/yC+uX/ELe/t+J9jET62OmeZCZyAAPIiIj8A2LwzsqGat7gLo2ngOFNftnqaok/8BWig5uoSB9D3mFpWQUW9mcZeVgiSM+SZfRse81tO3eV5N0ywU5dOQI78/6nkOHD1OZsZM4j2reefUFunbtauvSxM4prIlIvVdaWsrHH3/Ma6+9xsZtu3AOisUtsjnN23Wla8f2tIyPUkvaf5UUFbBx+a+sX/oLG5ctwNOST/R/W8/ifB2IjggiOCwKr4hE3EKbYnXU/FXnS2GtfjEMg4LDu8nft4GiI7vIyy8ko9jKpkwrB0udCW7Vh079riOlUw8cHdUiIufOwGDhkuV8+8tSSo9mUXFgE4Mua8WUZ58hLi7O1uWJnVJYE5F6a/fu3bz55ptMnz6dwmozTkFxeEY1p2X7LlzWsR1NI4Nx1DVpHNm/mzW//sj6pb+w7/fVRHhYifE10zLITKS/G9GR4fiFx+AV1QKzd6hazy4ShbX6rTDzIEf3rKXw4Fby8otIL7KyPtPKkSovojqm0eXKa0lq1QGz5mOUc1RYVMinc35gw7bdVB09gjV9OxNGDuKxRx/VqJFyEoU1EalXqqurmTdvHm+++SY/zP8RR99wnEPiCYpvSUqb9nRtl0pkkC/mRjziltVqZe+2TaxeNI/Vi+ZRnL6LGB8z8X7HBgeJDfMnLCIS7/AEPCKSsDp72brkBklhreE4eng3R3euofDwDvKKyjhQYGVDppUccxDNeg2mR9oQwmMTbF2m1DP7Dhzgs+9+4sCBQ1TmHMC18CD33Taae+65G09PXS8pxyisiUi9sGvXLqZPn86MGTPIyC/BKSAal7CmxLdsS+vWremYkoi3W+P9Y7i6uopta1ewatFc1vw6H6fSLGJ9j3VvjA9wIj46jKDwaLyjmuPoH4XV7Gzrkhs8hbWGxzCs5O7bQv7uteSn7yWvqIKdeVY2ZVmxhqTQvv8NdO5zNR5ePrYuVeoJA4N1GzYz58dfycnOojJrL57lmTz0l1uZMGECbm4ayKmxU1gTEbtVWlrKrFmzmDp1Kot+W4KTXzhOQXH4RCXSLLUtndu1IjEqrNFej1ZeWsLG5YtY/et8Niz9GV+KiPM10yLITGyAC3ExkfiHx+Ed0xLDI0jdGy8xhbWGzVJVSc7u9RTsWcfRjENkl1rYmGllV4Ej/ql96JY2jJYdLsPsoEGN5M9ZrVZ+W7GK+YtXkZeTSWXWXrwrc5l46ygmTJiAj4++AGisFNZExK4YhsGaNWuYOnUqH330ESVWJ5z8I3AJa0qTFm1o0bIlHVOb4e/h2ignFy08msva335izaL5bF2zmFCXSmJ9zaSGmIkJ9CAmJgq/yAQ8o1pgdfaBRvgc2Ytqi4VFKzcD0LNjSxz1R3uDVV6cT+bWFRTt30T+0aMcLrKyNt1KFgEk9BxCj7Tr1U1SzorVamHBbyv4edlq8nOzqcrai3NROrffdD0TJ95LaGiorUuUS0xhTUTsQm5uLh988AHTpk1j07adx1rRgpsQGNuM5NQ2dGjdkibhQY1yEuuCvBxWLZzLyl++Y9eG5UR7QZyviZQQB+JCfIiMjsY3KhH3iGZYHT1sXa5Io5afvo+c7cspOrSD3KJydh+1sj7DiuW/3SS79B2Iu6e3rcsUO2exWFi8fDW/LF9DblYGVbmHsGbvYVDvztz9l7vo2rVro/zCsjFSWBMRm7Farfz0009MnTqV2XO+xuruj1NAFG5hTUlMaUNqy2TaNI9vlNei/TGg7d6wnGhvaOp/rItjQlQQEZFReEc3xzU4AYtD43t+ROydxVJN9s71FOxZQ37mIbKKLWzIsLKzwJGQdlfRY+BwmrXppD+45YwMw8rKdZv4ackq0o8cpqogm8qMHTQL9WHCrWO54YYb8PPzs3WZUocU1kTkkjt06BDTp0/n3Xff5VB2Pk7+kTiFxBPRtCXJLVPo1DqZ8ABfHMyN64+YwqO5rFo4lxU/f8vuDcuJ9flfQGsaFUR4dBw+sS1w9I/FatY8T/ZO3SDluPLifLK2LqNw3yZyjxZwoOBYN8l8lwhS+t5A97Tr8Q9W9zY5s9379vPTb6vYsnMXlUVHqczcjbkwk6sv78rYMTfTp08fHB0dbV2mXGQKayJySVRXV/PDDz/wzjvv8P28H3HwCcUpKBavyKY0a9mGdq1a0CI+GlenxvUH7f8C2nfs3rCMGG9IDPhfC1p4VCy+cSk4+scooNUzGmBETiXv0E7ytq+g8PAusooq2ZZjZXMOuCdeRte04bS57AocnTRaq5xeUVExC5atZM3mHeRkZVBdmE1V5h68zRUMTuvD0KFD6dmzp4JbA6GwJiJ1at++fUydOpVp06aRWViBU0AkTqEJxCSlkNKyJZ1btyDAy61RdQUqKjjKqgU/sOLn79i1YRnRXgaJ/mZaBv8voPnEpuAYEIth1n+29ZXCmpxJdUUFWTtWUrBnHXnZmWQWG6xNt3C42oe47oPpOfAGIuMSbV2m2DEDg117DrB41Xq27NhNaWEu1fmZVOXsx9tcyXVpfRk6dCi9evXCyUlf9tVXCmsictFVVVXxzTff8M477/DjL4tw8AvHOaQJ3uHxNE9tQ+c2KSTGhDeqwULKy0pZ99tPLJk7m60rFxHpZaWpv4mUYAcSo4IIj47FNzYFh4AYDLWgNQgKa3K2inLTydmyjIKDW8grLGPPUQvrM61UB6fQ/qoRdO4zEDcPTZIsp1ddXc36LdtZs2kbO/fuozQ/l+qCLKpyD+JhlHFlzy4MGjiQ4cOHYzY3nv97GwKFNRG5aHbt2sW7777LjBkzyCm14BQQjXNoPHHNUkhNOdaK5uvhausyLxlLdTWbVi5m6fw5rPt1HiHOZST4m0kNcSApKpDImDh8Y1viGKBr0BoihTU5V4bVSubujeTvXEVB5gFySixsyrSys9CJ4LZpdB84gsRW7RtVTwQ5d1XV1WzcsoPVm7ezc88eSguOYik5SqC5lD0rf9L5U88orInIBamsrOSrr77inXfeYcGvS3D0j8A5pAm+kYk0T21N5zYpNI0OxbGRfJNnGAa7Nq9l6bw5rPj5Gzyrj5Lgb6Z1qJmEMF9im8ThF5uCc1A8Vgddl9KQKazJhSgvLiBzyzIK9m2koKCAw4VW1mZYyXeNIvmK4VyWNhi/wBBblyl2zmKxsHXXXlZv2UWQhyMfPn6LrUuSc6SwJiIXpLCwkLCwMKyBTXEOTyS+RWtSW7akU6vm+Lg3nj9OD+/dyZJ5s1k6fw7mgkP/bUEzkxDiTpO4OPxjk3GPSMbi0HhaFhs7hTW5WHIP7SJn23KKj+wir6SSXXlWNmWbcGt6GR0HjKR11944Oqp1Xk4vo7AcDxcHbu8Rb+tS5BzpynURuSDe3t785Z6JbDdH0zylNc1jQhpNK1peVgbLfpzDknmzKTiwhQR/M1cHm0ls4UFCk2gCYprhFZ2KxfnYtSYWG9crIvVTQGQCAZEJVFWUk7F9NWG719ImL5Ps0iVs+M9iFrzlS1TX6+gxcDjhsQm2LldELiK1rInIBauotvDvRbsxm8z4ezTsrn0lhQWsXPA9S+bN5uDmFcT7mUgOMtMsyJHE2CgCYxLwadIGq4sf6LqARq262sLc39YC0P+ytjg6Nq5pKaRuFeSkk7VlGUUHt1BcUsbBQivrMqxUBbcktd+NdL7ialzdPWxdptgJtazVXwprInLBGnpYqywvZ93Sn1k6bw5bViwg2rOaZgH/HWo/OozQmHh8m7QBrxAwNY5WRRGxD1arhYxdm8nbsZKynP0cLbWyPdfK9gJn/FtfRZerR9I0pZ0GlWjkFNbqL4U1EblgDTGsWS0WtqxZxpJ5s1m7aC7BTsUkBphJDXYgISKAiNgm+Ma1wjEgBsOkFhMRsb3SogLSt6ygcO96ykoKyCo22JBpIdclioTew7nsquvxCQiydZliAwpr9ZfCmohcsIYS1gzDYM/WjSydP4flP87BvTKXpjUjOXoTE9sE37gUXEKaai40+VPVFgsrNmwHoFOrJBwdFOrl0sk6uJucrcspTd9BcUU1+/OtbMwy4dy0O237j6RVl144OGrogsZCYa3+UlgTkQtW38NaxoG9NSM5Vubso6m/mVYhZpoGu5EQH4tfbAvcI1pgddRIjnL2NBqk2IPKynIOb11Dwe41VORnkldm8HuWlQNVPkR0GUK3gSMIi25i6zKljims1V/6SkVEGqX83CyW/fgNS+fPIXPnBhL8zVweZKZ5ohtJTWIIiEnCKyYVq4s3AFYb1ysicj6cnV2Ja9UNWnUjPzuD9N+XEuSzhfLyYg7vnM43D0ylOrQVLfqOpNMVA3B1c7d1ySLyBwprItJolJYUsWrBXJbOn8POdUuI9YbUQDMpXV1IjI0gNDYBn9g2WN0DwWRSQBORBsU3KBTfXoOxWq7hyM5NeO9cRZzffgrKN7P964d56/0n8W+TRterR5DQoo0GJRGxAwprItKgVVVWsGHZQpbMm83GJT8T5lZJU38zaR0cSYoNITKmCT5NWmPyDscwOSigiUiDZ3ZwILJZayKbtaa0sIDDW5YRuG8D7UoKSc+azW9/n8U3bjE06zOCbv0H4+MfaOuSRRothTURaXCOj+S4dP5sVi2ch6+piKb+Zm5vbSYxIpjYJk3wi0vFMSAW638HCtHFuyLSGLl7+9C0c3/o3J+s/bvw2b6MaL9dFJQdYseiKfzn8+dwb9abrgNHkNKxhwYlEbnE9I4TkQbBMAx2bV7L0vlfs+Ln73AqzyHB38xNiWaahfsRHx+Lf2xLXEMTsTgcGyhErWgiIv8THJNAcEwClRXlHNm6iuA9a2gVmk1G0UJWvfoz3xJEylWjufyaEXj5+tu6XJFGQWFNROq1A7u2sezHr1n249dU5B4kwd/MNZFmksO9SYyPISA6CffIFlicPAGw2LheERF75+ziSmzr7tC6O/lZhwjeuowmQdvIKsxj6+KXeGP2qwS1G8AVQ28hNqmlrcsVadAU1kSk3sk6fICl8+ew7MevyTu4g3g/M70CzaQ096BZfAzBMU3xjG5JtbMvmEwKaGITTo6O3H/LdTU/i9RHvsGR+AYPxVJVScb2VYTvWEG7vFwOZH3NN4/OpjKkFd2uG0f7Xv1wdNT8kyIXm+ZZE5ELdinmWTuak8mKn79j6fyvObhtHXG+ZpICzbQKdaJ5QhSh0fF4xaRgcQsEk7lOahAREcg9tJuc33+l4MgesootrE63sL8qgJb9R3PF4Jvw8vGzdYlyAs2zVn8prInIBaursFZSWMCqhT+wdP4cdqxfTrSXQWKAmdRQR5LjwgmPjcc3NgWrRyiG2eGi7VdERP5cWVE+6Zt+pWDfRnIKStmSbWVTnhORXYfSb+StBIdH27pE+S+FtfpLYU1ELtjFDGvlZaWs++0nls7/mk3LFxLuXk2Cv5lWIWaax4URHROLX1wK+ETWjOQoYo8sVivrt+4BoHXzJjiY1eIrDZPFUk3GtpXkb1tOXl4uO3OtrMow8GzRj343TiCuWYqtS2z0FNbqL4U1EblgFxrWqqsq2bhiMcvmz2Ht4h8JcCwj3t9M6xAzzaIDiY2Lwy+2BQ7+sVgdXOrgCEQuvrLyCnqPfhSABTP/jpurzl1p+LL3bSF70yIKsg5xoMDK8kNWqiPac/mIu0jp1EMTbduIwlr9pSueRcQmrBYL29avZOn8Oaxa8D2e1kLi/cyMbWGmWUQg8U1i8Y9tgVNwPBYHt2OPsXHNIiJyZkGxyQTFJpOfeRD/9b8Q57eTjKJ1LH95LN+7J9B92AQ69xmo+dpEzpLeKSJyyRiGwZ6tG1k2fw7Lf/4Wc3EWCf5mhsebaBbuS0KTWAJimuMW3oxqR3dAQ+2LiNRHviFR+Pa7mZKCPPzW/0Kk32YyCvay5sP7+fXDF+k05C66pw3GyVktziJnorAmInXu8N6dLPvxa5bO/5ry7H0k+JsZGGameZgXiU2iCYxJwiOqBdWOXmAyUW3rgkVE5KLw8PGnac/rqSxLw2/DQsJ2ryG7IJN1sx/jxc/+RetrJtD7muG4uLrZulQRu6SwJiJ1IifjMMt+/Ial8+eQu28L8f7H5kJrkehOYnwMIdEJeMakYHHxU0ATEWngnN3cieucRnXbKzi0cTHBO1bQvvAoG+c/w8tfvkrzAePpM2Q07h5eti5VxK4orInIRVNckMfaeT+xdP4c9m9eSbyfmfYBZlp0dSUpLpLQmHh8YlthcT82F5q6OIqINC6Ozi7Etu+DpU0vDm1aSsC2JbQuKGbz4pd45Zu3SbxyDP1vGI+Ht4+tSxWxCwprInJBSkpKmPXVbN55Yyq71iwmxttKUoCZIV2cSYwJJzymCT5xrcErBMPkoIAmIiI4ODgS07oHUandOLxlJf5bFpOSX8DW1W/y2rzpNL1yDP2H36rQJo2ehu4XkXNWVVXF/Pnz+eijj/hmzmwCncpo6m+mVagDiVFBRMY0wbdJKmbfKAyzvhOSxqmquppPv18MwA1p3XHS6Hcip2UYVo5sX0ve5kXk5eWxNcfCulw34vsqtF0MGrq//lJYE5GzYrVaWbJkCR999BFffP4ZLpVHSfA30zrUTHKUP8ERUXjHpOIV3lSTVYuIyHkxDIOM7WvJ3rSQgvw8tmRbWKvQdsEU1uovhTUROaMtW7Ywc+ZMPv74Y0pzDtLU30xqiJnkcC9aJyfQJLk1flHNWHKgFJPJhLuzg61LFhGRes4wDDJ3rCf3918pOJrHlhwL63Jdibl8NH2HjcXDS6HtXGQVVeDu5MBf+jTTxOT1jMKaiJwkJyeHjz/+mPfee4/tm9bQ1N9My2AzLcPcaZPchKbNU4hu3g6zqzcVlZXcfe+9uMW2BQyMynJbly9iF6yGQXZ+GQBBvm6Y9QeSyDkzMHCtKiCcHKqrqtiSY2HpYRP7zJE4BcZhclRPjrPh4OmPtaqc9F/ex8PDw9blyDlQB3oRAaCyspLvvvuO9957jx/nfke0l5XmgWau7upKu+Q4kpq3IK5lB5w8AsBkPuU2zK6e4Ox+iSsXsU/WaguffbMBgLuG9cTBUa3OIuejmgD2E4dLaRapLodIDizn9+yDLD1ymEMeyThHp2B2crV1mXbNZHbEejTd1mXIeVDLmkgjZhgGq1atYubMmXzy8Ue4V+eTFGCmTZgDreJDadG8OQmtOuMZGAnmU/+haXAs6B3OL6Paoo8TkeNKyytoM+wRANZ99g/cXV1sXJFI/Wc1DPZvXcfhdT+Tm5vH79nHuke2ShvL0Jtvw9vXz9Yl2i1vV0daxwWrG2Q9o7Am0ggdOnSIDz74gPfee4/MfdtIDHCgTaiZlpHetGqRRGKrDgTHNAcHZ1uXKlJvlZRV4NljAgDFv76Fh5vCmsjFYjUMNq1ZzsbF35OelcPvWRY2HnUjbdRfuO++SQQEBNi6RJGLQmFNpJEoLS3lyy+/5L333uO3hT8T72eiZbCZ1DBn2rVIoGlyKrEtOmB28bJ1qSINgsKaSN2zGgab165g0+LvOZyZzaYsCxvzXEm76S4mTbqfwMBAW5cockEU1kQaMMMwWLNmDVOnTuXjjz7Cx1REswAzrUMdaJcUSXKLFiSkdsbVN+S016GJyPlRWBO5dAxg89oVbFz8PYcysticZWFDrktNaAsKCrJ1iSLnRWFNpAHKy8vjww8/5N133+XAjo0k/bebY2qML21TmtM0tSP+EU3BQaNoidQVhTWRS88Afl+3gg2/fs+h9Cw2Zx8Lbf1HTuD++x8gODjY1iWKnBOFNZEGwmq18ssvvzB16lS+nfMVkR5VtAwy0yrMmfYt42nWsg3Rye0xu3jaulSRRkFhTcR2DGDL+pVs+PU7DqZnsSXLwvpcZ/qNmMD9Dzyo0Cb1hsKaSD138OBBZsyYwbRp0yjP2U+zQDNtQ820jg+hZYsWJLXtirt/hLo5ilxilVXVPDv9WwD+b+zVODtpthyRS+1YaFvFxl+/42B6JluyLazPcaL39bfy1/smER0dbesSRc5IYU2kHqqsrOTrr79m6tSp/PrzPJr6m2gdemzS6nYpiSS16khYQiomjeYoIiKCAWzbuJp1C7/jSEYG23MsrMow0abvDdz/4MO0aNHC1iWKnJLCmkg9smXLFqZOncr7M9/DrSqP5CAzrUMcaJsUSYuWKcS37oaLl0a+EhERORUD2LZpHZuWzOXQwQPsyrOy/JCF2I5XMenBR+jWrZutSxSpRWFNxM4VFRXx6aefMnXqVH5fu5xmgWbahDqQEulF29TmJLXuQkBUIpjVxUrEnlitVrbuTQegeVwYZrO6IovYk/17drBu0Xfs372DfflWlh2y4tmkIxMf/D/S0tL0nhW7oLAmYocMw2DZsmVMnTqVzz/7lGCnUloEO9Am1IF2yU1o3rIVcamdcXD1tnWpInIaGmBEpH7IzDjEmgXfsXfbJg4WVLPisIUK3wRG3z6RUaNG4eHhYesSpRFTWBOxI1lZWcycOZOpU6eSuW8bzQIdaBdmplVcAK1TWpDUpiteQdFgdrB1qSLyJxTWROqX/KN5rFr4HXs2rya9oIK16Vb2lLpz5dBbuOuuvxAfH2/rEqURUlgTsTGLxcK8efOYOnUqP3z7NTHeVlKCzbQOd6FDSlOSUtoS1awdJic3W5cqIudAYU2kfiotLWH90p/ZtWEph7MK2JZjYW2GQXzHK5nwl3vp27evukjKJaOwJmIju3fvZvr06cyYMYOq/CM0CzTTLsxMu8RwUlq0ILFNV1x9QzXkvkg9pbAmUr9ZDYPtG1exdeUC9u3bx4ECKysPW6n0iePm2+9h9OjR+Pj42LpMaeAU1kQuodLSUmbNmsW0adNYtnghiQFmWoWaaR3pQYeUZiS16kBIXAtw1B91IvWdwppIw5GZfogNS+azZ+tG0vPLWZ9pZVehE+37DGHsLePo2bMnJpPJ1mVKA6SwJlLHDMNgxYoVTJs2jU8++QQfUzHNAsy0C3egU4tYklu0pElqF5w8/EEf9CINhsKaSMNTXl7K+mUL2LV+KUey8tiXb2VtupUKr2iGjhrPzTffTEREhK3LlAZEYU2kjmRmZvL+++8zbdo0Du3eSmKAmTahZto2CaBdSjMSUzvhGx4PDk62LlVE6oDCmkjDZQD7d21j26qF7N25lczCCn7PsrIlxyAqtTvDRo5i8ODB+Pr62rpUqecU1kQuoqqqKr7//numT5/OD999S5SXlRbBDrSLcKZTalOat2hFZLO2mDXkvkiDV1lVzaNvfgnA3+8cjLOT5kIUaYgqKsr5ffVv7N64nIOHDpNZbLA+w8K+IkdSLruK4SNvZMCAAbi5aaAwOXcKayIXwdatW5k2bRozZ87EKM4mKdBM21AzHZtFkNoymYTUjrj5RWjIfRERkQYsJyuDrWsWc2D7Bg5n5nK40MqGTCvpFa607n4Vg4dcT1paGl5eXrYuVeoJhTWR81RYWMinn37KtGnT2LB6OU0DzKSGmGkd5UWn1GYkpbYjKCYZnFxtXaqIiIhcYof372b72iXs37mZjNwijhRZ2ZRl5XCpIy069+XawUMYMGAAQUFBti5V7JjCmsg5qK6u5scff+T999/n6zmzCXYup1mgmbbhjnRs0YTkFi2JbdERRw0WItLoWa1WDmTkARAd6q95mUQaKQM4uHsbuzet4ODubRzJziej2MrvWVb2FRiEJraj71VXk5aWRtu2bfVZIbUorIn8CcMwWLNmDe+//z6ffPIJlGTT1P/YYCGt4gJpk9KcxNZd8AqKAQddkyIix2iAERE5kQGkH9jDzo3LObJnG4czssktNdiea2XPUSvlzgF07NWfK664gt69exMdHW3rksXGFNZETmPv3r18+OGHfPDBBxzZu52mAWZSgs2kRnrRvmVTElq0JiwhFZOTu61LFRE7pLAmIn/maG4We35fw5Hdv3Po4AFyiio5XHQsvB0qNHAOiKFrz2PBrXfv3oSFhdm6ZLnE/r+9O4+Oqr7/P/6aIfs2AbKRfQNDIKxJIGJErQqKxeNStFJEEGt/rYeibZFvEYHWfk/FH5bWiv7qQfh+j1ZACigEcCmCqCyCUEU0bAkhGyGQdSYJWe7vj9QpUVASM5mb5Pk4J+dcP7lzec+8M5553c+9nyGsARepqKjQ2rVr9corr+jj3R8osa9VQ0KtGjbASxlDkzUoJVWxqeny8OvLZY4AvhVhDUB7NDU1Ku/LT1V4/LDKCvNVXHpG5+tadKqyRScrDBXXtCgwcqDGjf+Bxo0bp6ysLCUkJPBl3D0cYQ29Xk1Njd58802tXbtW77y1TQP8GnVVf6uGhfdRxuA4DR6cosShGfIJHsBqjgCuGGENwPdRZ6/RqdxPVZL3pUqLClRUWqaqekOnqlqUX2motNZQi19/DRmVpaysLI0dO1YZGRny9/d3d+noRIQ19Eq1tbXavHmz1q5dq61btijM54KS+lo1IsKq4YnhGjr4KiWnpcsWkSD18XJ3uQC6IcIagM5kr6lQfu5nKs0/qvLSIpWeKVNFXbPOOgwdP9eiUruh8jqrIpOHKmPMfwJccnIys2/dGGENvYbD4dCWLVu0Zs0abcnJUV+PeiX1s2p4uFVpcSFKG5ysxNQRCosdzHL7AL43whoAV2q8UKeivKM6c+qYyksKdKakRKUVNapukE5VtqiwxtBZu6FGL5sGDctQRuYYZWRkKCMjQxEREe4uH1foisPadyXy6dOna9WqVZ1RUxuLFi3Sxo0bdejQoU4/dkfs2LFD119/vSoqKhQcHOzucvAd6uvrtXXrVq1du1abN21SkNWhxL6t34eWFttPwwYnK2nwcIXFD5bFi8sGAHQewhqALmW0qLK8REUnc1VWmKezpUU6c6ZMlXVNqqg3lF9pqKTW0Fl7i3z6RSllRKYyMjKVkZGh9PR0BQUFufsZ4BKueJ3xkpIS5/aaNWv05JNPKjc31znm6+vbZv/GxkZ5enp2QolA+1RVVSknJ0cbNmzQtq1bZft3QLs/1aoh0aEanpqkxJRhikgcIotXgLvLBdBDefSx6ud3X+/cBgCXslgVHBql4NAoDRnTOtTUeEElp46ptOCEzpcU6GxZqcrKz6mmoUwVhZv00eE3tf45Q+fqDAVHJmvIqNb73jIzMzV8+HB5e3OSyd06dBnkqlWrNGfOHFVWVkqS8vPzlZCQoDVr1mj58uXas2ePXnjhBc2YMUMrV67UkiVLlJeXp/j4eM2ePVs///nPncd6/PHHtWHDBhUWFioiIkJTp07Vk08+KU9PT61atUozZsxo82+vXLlSDzzwgCwWi1588UVt2rRJ27dvV1xcnF5++WWFhoZq1qxZ+vjjjzVs2DC98sorSkpKcj5+06ZNWrRokT7//HNFRkZq+vTpmj9/vjw8WnOrxWLRSy+9pJycHL311luKiorS0qVLNXnyZOfzvJirZhTRPiUlJXrjjTe0YcMGvb/jPYX5NikhuHUG7apIm4YNTlZiyjBFJg2VxZuABgAAeqf6uloV5x1VacFJnT9ToLLSM6qoqlbNBUMVdYbyq1oXL6m60EcRSUOUOnKsMjNbZ+BSUlLUpw+LrXWlTg1r8fHxWrp0qUaOHClvb2/l5ORo4cKF+utf/6qRI0fq4MGDeuihh/Tss89q+vTpkqSnnnpKN9xwgyIjI/XZZ5/poYce0mOPPaa5c+eqrq5OCxYs0LZt2/Tuu+9Kkmw2m3x9fWWxWBQVFaVnn31WI0aM0OOPP65Dhw4pMTFRc+fOVWxsrGbOnKng4GBt3bpVkvTWW29pypQp+stf/qLs7GydOHFCP/3pT/XAAw9o4cKFrS+IxaLo6GgtWbJEGRkZeu655/Tyyy/r1KlTstlseuONN3TXXXcpNzdXQUFB8vX1lc1m64xeoB0Mw9CXX36pzZs3a8OGDfrk4z2KCbIoIdiioWFWpcaGKnVQguIHDdWApKFc4ggAAHAZ1VXnVXTyqMqKTup8yWmdLTujGnvdNwKcQ76KvmqE0kZnOWfgYmNjWcDEhTo1rC1btky//OUvnfvFxsbq6aef1o9//GPn2FNPPaUtW7boo48+uuSxn3nmGa1Zs0b79++XdPl71iwWi5544gn9/ve/lyTt2bNHWVlZWrFihWbOnClJWr16tWbMmKG6ujpJ0rXXXqtbbrlF//Vf/+U8ziuvvKK5c+equLj4kse12+0KDAzUli1bNHHiRO5Zc6O6ujrt2LFDOTk5ysnJ0bnifMUFW5XY16rUEKuGJg7QoIGJSkgZrpDoZIkvqwbgRoZhqLyyRpIUEhzIhxkA3YYh6dzZUhXlHVXZ6ZOqPFOk8rNnZG9oVE2DofK61nvgztS2qNmnn+JS0zUyY6xzAZPQ0FB3P4Ue44rvWbsS6enpzu2zZ8/q9OnTevDBB/XQQw85x5uamtrMRK1bt07Lli3T8ePHVVtbq6ampiu+wXHYsGHO7fDwcElSWlpam7H6+npVV1crKChIBw4c0Mcff6w//OEPzn2am5tVX18vh8MhPz+/bxzX399fgYGBKisru9KXAZ2ooKBAOTk52rJli7b/858K6lOvWJtV4/pZNGicr9IGRishIVEJqSNlC49nmX0ApuGov6Cwm+dIYoERAN2LRVJIaIRCQiOkzGslSS1Gi0qLTqso76jKi/JVUVaoc+XlqmusUU31dhVsfFfv/0/rCpTe/aKVNGyM0jMylZmZqVGjRikggNtQOqJTw9rFX8LX0tIiSXrppZc0ZsyYNvt9da3rnj17dO+992rx4sWaMGGCbDabVq9eraVLl17Rv3fxAiZfnbG81NhXtbS0tGjx4sW68847v3EsH5//LNX+9YVRLBaL8xhwrerqau3cuVPvvvuu3nnnHRUc/0LRQVbF2iyalWbVwAH9NXhgnOISkhRz1Qh5B4byRdUAAAAuZrVYFRkdp8joOOdYY1OjCvNPqvTUMZUX56uirFgVFRWyN5aqsvAN7Tu8Qev/bKi8TgqOHqSho1rvf7v66qs1dOhQWa0svvRdOjWsXSw8PFxRUVE6efKkpk6desl9PvzwQ8XFxWn+/PnOsVOnTrXZx8vLS83NzZ1S06hRo5Sbm6vk5OQOH8PLq3XmprNq6u0aGxu1d+9eZzg78PFehfm2KDrIqvR+Fv3oam8NTohUUkK8YgcOUVjcIFk8/SUuJwIAAHArTw9PJSRfpYTkq5xjDoddhXlHdabguCpKC1ReVqqKqlpVN5zQmU+Pa92O/9XzdkN1fQI1eNQ4XZN9rbKzs5Wenu78nI3/cFlYk1rvN5s9e7aCgoJ0yy23qKGhQfv371dFRYUee+wxJScnq6CgQKtXr1ZGRoZzufWLxcfHKy8vT4cOHVJ0dLQCAwM7vIzok08+qdtuu00xMTH60Y9+JKvVqk8//VSfffaZnnrqqSs6RlxcnCwWizZv3qxbb71Vvr6+TOu2w4ULF3TgwAHt2rVLO3fu1K7335efYVdkoEVxNqt+mdFHiZGhGpQQrajYBEUPTJNfcITUx6V/qgAAAOgEfn7+GjRkpAYNGekcq6woV3FerspOn9T50tMqLS3VeXudzp97Rx+tfFuv/7lFlU1eiktNV9Y145Wdna2rr75agYGBbnwm5uDST8CzZs2Sn5+fnnnmGc2dO1f+/v5KS0vTnDlzJEm33367Hn30UT3yyCNqaGjQpEmTtGDBAi1atMh5jLvuukvr16/X9ddfr8rKSufS/R0xYcIEbd68Wb/73e+0ZMkSeXp6KiUlRbNmzbriY0RFRWnx4sWaN2+eZsyYofvvv5+l+7+F3W7Xnj17tGvXLr3//vvau2ePAqz1GhBgUXSQVbOGWhTT36aUpBjFxMQqKilVfSPiWBwEAACghwjuG6LgviFKHTVOktTU1KjiU8dUdOJLlRflqaS4SOdr6lRVv0/HN+7R9v/5o8ocUnhSmjKuHq9rrrlG2dnZzjUqepMOrQYJXIphGMrPz9e+ffu0d+9e7d69W4c+2a9+3s2KCLAoKtCq5H4WxfT308C4KEVGRWpA/FUKjx0kq3cAlzYC6FHsdQ0KuPb/SGKBEQD4NoakM4X5KjxxRGWnT6ispFDlFdWqajB0uqpFeZWGSmoM+YcnaFRW68xbdna2EhMTe/xKu4Q1dFhFRYX27dvnDGf79u1TfdVZhQdYFe5vUUyQRfHBVkWHBikpNlKRUVGKiBuk0OjE1u89s3BTKYCei7AGAB1Xca5Mp48dVmnBcZ0tLlBZ+TlV1hkqqW3R8fOGSmoNyT9MaZnZzvCWlpbW4760m7CG72QYhkpKSnTo0CHnz8GDB1WUf1yh/haF+lkUHmBVQrBF4YEeSowKVWREuMIHRGpAQoqCw2Jk8fRl5gxAr9JwoVEP//f/SpL+32/vl7eX53c8AgBwOfbaahUc+1ylp47qbNEplZw5o0pHs8ocho6fa1FxrSG7JUCDR49T9kWLlnR0rQuzIKyhjYaGBh09elSHDx9uE84clWXq72tRiF9rOIsPtirU36KYsL6KiQxXRESEQqLiFR6TJE+/YKkPH0oAAADgGhca6lV44oiK83J1tihfJSUlOme/oHKHoePnDRVVty5akjAkQ+Oyr9W1116rrKysbrdoCWGtl3I4HMrNzdWRI0fa/BTkHZfNy1A/X4v6+VoU9u/LGfv5WRUT3l+R4SEKCQ1Vv/Bohcckyj84TPLo3mcsAAAA0L01NzepOP+Yik9+obNFJ1VcXKzyKofO10knK1pUWN2iModFd894RP/32WXuLveKsR56L3Ps2DFNnDhRxQV5CvaRgn0s6uvTOmN2faBF/cd4qF+gj6LD+yk0JEQhYREKGRCtkMgEefnbpD58/wUAXAnDMOSovyBJ8vPx6vE3wQOAO/Xp46GYpMGKSRosSTKMFp0pzFfRyS909vQJlRQXqayiWvFhTW6utH2YWetlampqFBsWpJkjvBTT31dRYf3Uv39/9e3XT8GhA9Q/IkaB/cL/fY8ZC4AAQEexwAgAmEvNyX1qTrpJwaPvdHcpV4yZtV4mMDBQ2za/oaG1u+TXL1IWnyBCGQAAAHq8wIBAyWZzdxntwqf0XmhMZqb8/fxk8fAmqAEAAAAmxSd1AAAAADAhwhoAAAAAmBBhDQAAAABMiLAGAAAAACbEapAAALhAH6tVd/8g3bkNAEB7EdYAAHABH29Pvf7Hn7u7DABAN8apPgAAAAAwIcIaAAAAAJgQYQ0AABew1zXIkjFTloyZstc1uLscAEA3RFgDAAAAABMirAEAAACACRHWAAAAAMCECGsAAAAAYEKENQAAAAAwIcIaAAAAAJiQh7sLQNcyDEN1Doc8GhtlXLggGX3cXRIA9EhNTU2amDXUud1wweLmigCgd7M0NclTUnf6v7HFMAzD3UWg69jtdiVHBGp2ppdqLhhqaKL9AAAA6PkS+1r14JJ/yGfoJHeXcsWYWeuFGpulynpDgd6Sn2d3OrcAAAAAdExFvSGjj6e7y2gXZtZ6GcMw5HA4pIYaqaXJ3eUAAAAAXcavb7gs3SiwEdYAAHABu92usLAwSVJZWZn8/f3dXBEAoLvhMkgAAFzE4XC4uwQAQDfG0v0AAAAAYEKENQAAAAAwIcIaAAAAAJgQYQ0AAAAATIiwBgAAAAAmxGqQAAC4gNVq1fjx453bAAC0F9+zBgAAAAAmxKk+AAAAADAhwhoAAAAAmBBhDQAAF7Db7QoNDVVoaKjsdru7ywEAdEMsMAIAgIuUl5e7uwQAQDfGzBoAAAAAmBBhDQAAAABMiLAGAAAAACZEWAMAAAAAEyKsAQAAAIAJsRokAAAuYLValZ6e7twGAKC9LIZhGO4uAgAAAADQFqf6AAAAAMCECGsAAAAAYEKENQAAXMDhcCg+Pl7x8fFyOBzuLgcA0A2xwAgAAC5gGIZOnTrl3AYAoL2YWQMAAAAAEyKsAQAAAIAJEdYAAAAAwIQIawAAAABgQoQ1AAAAADAhVoMEAMAFLBaLUlNTndsAALSXxWA9YQAAAAAwHS6DBAAAAAATIqwBAAAAgAkR1gAAcAGHw6EhQ4ZoyJAhcjgc7i4HANANscAIAAAuYBiGjhw54twGAKC9mFkDAAAAABMirAEAAACACRHWAAAAAMCECGsAAAAAYEKENQAAAAAwIVaDBADABSwWi+Li4pzbAAC0l8VgPWEAAAAAMB0ugwQAAAAAEyKsAQAAAIAJEdYAAHCBuro6ZWRkKCMjQ3V1de4uBwDQDXHPGgAALmC32xUQECBJqq2tlb+/v5srAgB0N8ysAQAAAIAJEdYAAAAAwIQIawAAAABgQoQ1AAAAADAhwhoAAAAAmJCHuwsAAKCnCgkJcXcJAIBujKX7AQAAAMCEuAwSAAAAAEyIsAYAAAAAJkRYAwDABerq6nTdddfpuuuuU11dnbvLAQB0Q9yzBgCAC9jtdgUEBEiSamtr5e/v7+aKAADdDTNrAAAAAGBChDUAAAAAMCHCGgAAAACYEGENAAAAAEyIsAYAAAAAJuTh7gIAAOip/Pz83F0CAKAbY+l+AAAAADAhLoMEAAAAABMirAEAAACACRHWAABwgfr6ek2aNEmTJk1SfX29u8sBAHRD3LMGAIAL2O12BQQESJJqa2vl7+/v5ooAAN0NM2sAAAAAYEKENQAAAAAwIcIaAAAAAJgQYQ0AAAAATIiwBgAAAAAm5OHuAnoLwzBUU1Pj7jIAAF3Ebrc7t6urq9Xc3OzGagAAZhQYGCiLxXLZ37N0fxeprq6WzWZzdxkAAAAATKKqqkpBQUGX/T1hrYsws9a5qqurFRMTo9OnT3/rHzi6Bv0wD3phLvTDXOiHudAPc6Ef7vFdM2tcBtlFLBYLf/guEBQUxOtqIvTDPOiFudAPc6Ef5kI/zIV+mAsLjAAAAACACRHWAAAAAMCECGvolry9vbVw4UJ5e3u7uxSIfpgJvTAX+mEu9MNc6Ie50A9zYoERAAAAADAhZtYAAAAAwIQIawAAAABgQoQ1AAAAADAhwhoAAAAAmBBhDd1CRUWFpk2bJpvNJpvNpmnTpqmysvI7H/fFF19o8uTJstlsCgwM1NixY1VQUOD6gnu4jvbjKw8//LAsFouWLVvmshp7k/b2o7GxUY8//rjS0tLk7++vyMhI3X///SouLu66onuQ5cuXKyEhQT4+Pho9erR27dr1rfvv3LlTo0ePlo+PjxITE/Xiiy92UaW9Q3v6sX79et10000KDQ1VUFCQsrKy9NZbb3VhtT1fe98fX/nwww/l4eGhESNGuLbAXqa9/WhoaND8+fMVFxcnb29vJSUl6eWXX+6iaiER1tBN3HfffTp06JC2bdumbdu26dChQ5o2bdq3PubEiRO65pprlJKSoh07duhf//qXFixYIB8fny6quufqSD++snHjRu3du1eRkZEurrL3aG8/HA6HPvnkEy1YsECffPKJ1q9fr6NHj2ry5MldWHXPsGbNGs2ZM0fz58/XwYMHlZ2drVtuueWyJ4Xy8vJ06623Kjs7WwcPHtRvf/tbzZ49W//4xz+6uPKeqb39eP/993XTTTdpy5YtOnDggK6//nr98Ic/1MGDB7u48p6pvf34SlVVle6//3794Ac/6KJKe4eO9GPKlCn65z//qRUrVig3N1evvfaaUlJSurBqyABM7siRI4YkY8+ePc6x3bt3G5KML7/88rKPu+eee4yf/OQnXVFir9LRfhiGYRQWFhpRUVHG4cOHjbi4OONPf/qTi6vt+b5PPy62b98+Q5Jx6tQpV5TZY2VmZho/+9nP2oylpKQY8+bNu+T+c+fONVJSUtqMPfzww8bYsWNdVmNv0t5+XEpqaqqxePHizi6tV+poP+655x7jiSeeMBYuXGgMHz7chRX2Lu3tx9atWw2bzWacO3euK8rDZTCzBtPbvXu3bDabxowZ4xwbO3asbDabPvroo0s+pqWlRTk5ORo0aJAmTJigsLAwjRkzRhs3buyiqnuujvRDau3JtGnT9Jvf/EZDhgzpilJ7hY724+uqqqpksVgUHBzsgip7pgsXLujAgQO6+eab24zffPPNl33td+/e/Y39J0yYoP3796uxsdFltfYGHenH17W0tKimpkb9+vVzRYm9Skf7sXLlSp04cUILFy50dYm9Skf68eabbyo9PV1LlixRVFSUBg0apF//+teqq6vripLxb4Q1mF5paanCwsK+MR4WFqbS0tJLPqasrEy1tbX64x//qIkTJ+rtt9/WHXfcoTvvvFM7d+50dck9Wkf6IUlPP/20PDw8NHv2bFeW1+t0tB8Xq6+v17x583TfffcpKCios0vsscrLy9Xc3Kzw8PA24+Hh4Zd97UtLSy+5f1NTk8rLy11Wa2/QkX583dKlS2W32zVlyhRXlNirdKQfx44d07x58/Tqq6/Kw8OjK8rsNTrSj5MnT+qDDz7Q4cOHtWHDBi1btkzr1q3TL37xi64oGf9GWIPbLFq0SBaL5Vt/9u/fL0myWCzfeLxhGJccl1rPjkrS7bffrkcffVQjRozQvHnzdNttt3Ez/2W4sh8HDhzQn//8Z61ateqy+6AtV/bjYo2Njbr33nvV0tKi5cuXd/rz6A2+/jp/12t/qf0vNY6OaW8/vvLaa69p0aJFWrNmzSVPgKBjrrQfzc3Nuu+++7R48WINGjSoq8rrddrz/mhpaZHFYtGrr76qzMxM3XrrrXr22We1atUqZte6EKct4DaPPPKI7r333m/dJz4+Xp9++qnOnDnzjd+dPXv2G2eIvhISEiIPDw+lpqa2GR88eLA++OCDjhfdg7myH7t27VJZWZliY2OdY83NzfrVr36lZcuWKT8//3vV3hO5sh9faWxs1JQpU5SXl6ft27czq9ZOISEh6tOnzzfOSpeVlV32tY+IiLjk/h4eHurfv7/Lau0NOtKPr6xZs0YPPvigXn/9dd14442uLLPXaG8/ampqtH//fh08eFCPPPKIpNawYBiGPDw89Pbbb+uGG27oktp7oo68PwYMGKCoqCjZbDbn2ODBg2UYhgoLCzVw4ECX1oxWhDW4TUhIiEJCQr5zv6ysLFVVVWnfvn3KzMyUJO3du1dVVVW6+uqrL/kYLy8vZWRkKDc3t8340aNHFRcX9/2L74Fc2Y9p06Z94wPQhAkTNG3aNM2YMeP7F98DubIf0n+C2rFjx/Tee+8RFDrAy8tLo0eP1jvvvKM77rjDOf7OO+/o9ttvv+RjsrKytGnTpjZjb7/9ttLT0+Xp6enSenu6jvRDap1Rmzlzpl577TVNmjSpK0rtFdrbj6CgIH322WdtxpYvX67t27dr3bp1SkhIcHnNPVlH3h/jxo3T66+/rtraWgUEBEhq/RxltVoVHR3dJXVDrAaJ7mHixInGsGHDjN27dxu7d+820tLSjNtuu63NPldddZWxfv1653+vX7/e8PT0NP72t78Zx44dM5577jmjT58+xq5du7q6/B6nI/34OlaD7Dzt7UdjY6MxefJkIzo62jh06JBRUlLi/GloaHDHU+i2Vq9ebXh6ehorVqwwjhw5YsyZM8fw9/c38vPzDcMwjHnz5hnTpk1z7n/y5EnDz8/PePTRR40jR44YK1asMDw9PY1169a56yn0KO3tx9///nfDw8PDeP7559u8DyorK931FHqU9vbj61gNsnO1tx81NTVGdHS0cffddxuff/65sXPnTmPgwIHGrFmz3PUUeiXCGrqFc+fOGVOnTjUCAwONwMBAY+rUqUZFRUWbfSQZK1eubDO2YsUKIzk52fDx8TGGDx9ubNy4seuK7sE62o+LEdY6T3v7kZeXZ0i65M97773X5fV3d88//7wRFxdneHl5GaNGjTJ27tzp/N306dON8ePHt9l/x44dxsiRIw0vLy8jPj7eeOGFF7q44p6tPf0YP378Jd8H06dP7/rCe6j2vj8uRljrfO3txxdffGHceOONhq+vrxEdHW089thjhsPh6OKqezeLYfz7zmYAAAAAgGmwGiQAAAAAmBBhDQAAAABMiLAGAAAAACZEWAMAAAAAEyKsAQAAAIAJEdYAAAAAwIQIawAAAABgQoQ1AAAAADAhwhoAAAAAmBBhDQAAAABMiLAGAAAAACZEWAMAAAAAE/r/MjQAp/gFcY0AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1011,7 +1098,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -1024,10 +1111,10 @@ { "data": { "text/plain": [ - "0.5068569705412103" + "0.496535899999178" ] }, - "execution_count": 13, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -1041,7 +1128,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -1054,10 +1141,10 @@ { "data": { "text/plain": [ - "0.49944292437387866" + "0.4905238060849129" ] }, - "execution_count": 14, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } @@ -1080,12 +1167,12 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 17, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABlUAAAIzCAYAAACZcp93AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACI3klEQVR4nOzdd3iUVf7+8Xv6pEMooYeAUqQohBUCqzRpNiwsKC5F4bsilgXEgrpSFo2iIrZQVpEfFsSCrKuIGxVcXFApIqsgNiCACVUINfX8/ggzyTATmMQkE5L367rGMGfO8zxnhhjm5J5zPhZjjBEAAAAAAAAAAADOyBrqAQAAAAAAAAAAAJwLCFUAAAAAAAAAAACCQKgCAAAAAAAAAAAQBEIVAAAAAAAAAACAIBCqAAAAAAAAAAAABIFQBQAAAAAAAAAAIAiEKgAAAAAAAAAAAEEgVAEAAAAAAAAAAAgCoQoAAAAAAAAAAEAQCFUAnPMWLFggi8Uit9utHTt2+D3eo0cPtW3bNgQjkw4cOKBJkybpggsuUEREhGJiYtSqVSsNGzZMmzZt8vZbvXq1pkyZokOHDpXLOF5//XXNmjUr4GMWi0VTpkzxafvkk0/UqVMnRUREyGKxaOnSpd7Xefv27WU2rilTpshisZy138iRI2WxWLw3p9Op5s2ba+LEicrMzCyz8VR2PXr0UI8ePUI9DAAAAEBffvmlrr32WjVp0kQul0txcXFKSkrS3Xff7dMvJSVFCxYsKJcxHD9+XFOmTNHKlSv9Hitu/vLQQw+pSZMmstvtqlGjhqTyeZ/dtGlTjRw58qz9is5zLBaLoqOj1bVrVy1atKhMx1OZbd++XRaLpdy+TwCgrNlDPQAAKCtZWVl66KGH9Morr4R6KJKko0ePqkuXLjp69KjuueceXXjhhTpx4oR++OEHLVmyRBs3blT79u0lFYQqU6dO1ciRI71v7MvS66+/rm+//Vbjxo3ze2zNmjVq1KiR974xRoMHD1aLFi303nvvKSIiQi1btlRubq7WrFmj+vXrl/n4ghEWFqZPP/1UknTo0CG9/fbbeuqpp7Rp0yb9+9//DsmYKlpKSkqohwAAAADogw8+0NVXX60ePXpoxowZql+/vtLT07Vu3Tq98cYbeuqpp7x9U1JSVLt27aAChpI6fvy4pk6dKkl+ocgVV1zhN3/55z//qUceeUQPPvigBgwYIJfL5R1jKA0aNEh33323jDHatm2bHn30UQ0dOlTGGA0dOjSkY6sI9evX15o1a9S8efNQDwUAgkKoAqDK6N+/v15//XVNnDhRF154YaiHo7feeks//fSTPv30U/Xs2dPnsQkTJig/P7/U5z5x4oTCwsJ+7xAlSV26dPG5/+uvv+rgwYO69tpr1bt3b5/H6tSpUybXLA2r1eoz1v79++uXX35Ramqqtm3bpoSEhAobS15ennJzc72TsIpywQUXVOj1AAAAgEBmzJihhIQEffTRR7LbC3+1dMMNN2jGjBmlPm9OTo4sFovPOUurTp06fvOXb7/9VpJ01113qW7dut72UL/PjouL8851kpKS1K1bNzVt2lRz586t8FDl+PHjCg8Pr9Brulwuv3kpAFRmbP8FoMq49957VatWLd13331n7Xvy5ElNmjRJCQkJcjqdatiwoW6//Xa/7beaNm2qK6+8UsuXL1fHjh0VFhamVq1aaf78+We9xoEDBySp2JUdVmvBj+ApU6bonnvukSQlJCR4l317lrB7xrBkyRJ16NBBbrfb+2msF154QZdeeqnq1q2riIgItWvXTjNmzFBOTo73Oj169NAHH3ygHTt2+Cwr9yi6/deUKVO8q1buu+8+WSwWNW3aVFLxy+c//vhj9e7dW9HR0QoPD1e3bt30ySef+D3fDz74QBdddJFcLpcSEhL05JNPnvU1PJtOnTpJkvbs2ePTvnjxYiUlJSkiIkKRkZHq16+fvv76a7/j//GPf6hFixZyuVy64IIL9Prrr2vkyJHe5ywVLkWfMWOGpk+froSEBLlcLq1YsUKStG7dOl199dWKjY2V2+1Whw4d9Oabb/pc5/jx45o4caISEhLkdrsVGxurTp06+Szp/+WXX3TDDTeoQYMG3u0TevfurY0bN3r7BNqW4ODBgxo7dqwaNmwop9OpZs2a6cEHH1RWVpZPP4vFojvuuEOvvPKKWrdurfDwcF144YV6//33g369AQAAAKlgrlO7du2A4YdnniMVzGW+++47ffbZZ955iOe99sqVK2WxWPTKK6/o7rvvVsOGDeVyufTTTz9p3759Gjt2rC644AJFRkaqbt266tWrl1atWuU99/bt272hydSpU73n96yIOX3+0rRpUz300EOSCkKMovOgQO+zs7OzNX36dLVq1Uoul0t16tTRzTffrH379vn0y8nJ0b333qt69eopPDxcf/zjH/XVV1+V9qWVJMXHx6tOnTp+85zMzEzvvMIzjx03bpyOHTvm0+/QoUMaNWqUYmNjFRkZqSuuuEK//PKL39bPnu2YN2zYoEGDBqlmzZre1SLGGKWkpOiiiy5SWFiYatasqUGDBumXX37xudbXX3+tK6+8UnXr1pXL5VKDBg10xRVXaNeuXd4+b731ljp37qyYmBiFh4erWbNmuuWWW7yPF7f91+eff67evXsrKipK4eHh6tq1qz744AOfPp6/5xUrVui2225T7dq1VatWLV133XX69ddfS/zaA0AwWKkCoMqIiorSQw89pL/+9a/69NNP1atXr4D9jDG65ppr9Mknn2jSpEm65JJLtGnTJk2ePFlr1qzRmjVrfFYgfPPNN7r77rt1//33Ky4uTi+++KJGjRql8847T5deemmx40lKSpIkDR8+XA888IAuueQS1apVy6/f6NGjdfDgQT333HNasmSJN4Qp+mmpDRs2aMuWLXrooYeUkJCgiIgISdLPP/+soUOHet9Uf/PNN3rkkUf0/fffe4OflJQU/eUvf9HPP/+sd99994yv4ejRo3XhhRfquuuu05133qmhQ4eecTXGq6++quHDh2vgwIH6f//v/8nhcGju3Lnq16+fPvroI+9Kl08++UQDBw5UUlKS3njjDeXl5WnGjBl+k4SS2rZtm+x2u5o1a+Zte/TRR/XQQw/p5ptv1kMPPaTs7Gw98cQTuuSSS/TVV195X9d58+bp1ltv1fXXX6+nn35ahw8f1tSpU/3CCI9nn31WLVq00JNPPqno6Gidf/75WrFihfr376/OnTtrzpw5iomJ0RtvvKEhQ4bo+PHj3gndhAkT9Morr2j69Onq0KGDjh07pm+//dYbvEnS5Zdf7n1dmjRpov3792v16tVnrLNz8uRJ9ezZUz///LOmTp2q9u3ba9WqVUpOTtbGjRv9JhwffPCB1q5dq2nTpikyMlIzZszQtddeq61bt/q8hgAAAMCZJCUl6cUXX9Rdd92lm266SR07dpTD4fDr9+6772rQoEGKiYnxbrF1+vxi0qRJSkpK0pw5c2S1WlW3bl1vcDF58mTVq1dPR48e1bvvvqsePXrok08+UY8ePVS/fn0tX75c/fv316hRozR69GhJxa+uf/fdd/XCCy/opZde0vLlyxUTE+OzDXJR+fn5GjhwoFatWqV7771XXbt21Y4dOzR58mT16NFD69at8+4c8H//939auHChJk6cqD59+ujbb7/VddddpyNHjpTuxZV0+PBhHTx40Gf1xvHjx9W9e3ft2rVLDzzwgNq3b6/vvvtODz/8sP73v//p448/lsViUX5+vq666iqtW7dOU6ZMUceOHbVmzRr179+/2Otdd911uuGGGzRmzBhvQHPrrbdqwYIFuuuuu/T444/r4MGDmjZtmrp27apvvvlGcXFxOnbsmPr06aOEhAS98MILiouLU0ZGhlasWOF9/mvWrNGQIUM0ZMgQTZkyxVsL1bO1c3E+++wz9enTR+3bt9dLL70kl8ullJQUXXXVVVq0aJGGDBni03/06NG64oor9Prrr2vnzp2655579Oc///ms1wGAUjEAcI57+eWXjSSzdu1ak5WVZZo1a2Y6depk8vPzjTHGdO/e3bRp08bbf/ny5UaSmTFjhs95Fi9ebCSZefPmedvi4+ON2+02O3bs8LadOHHCxMbGmltvvfWsY5s2bZpxOp1GkpFkEhISzJgxY8w333zj0++JJ54wksy2bdv8zhEfH29sNpvZunXrGa+Vl5dncnJyzMKFC43NZjMHDx70PnbFFVeY+Pj4gMdJMpMnT/be37Ztm5FknnjiCZ9+ntfZM8Zjx46Z2NhYc9VVV/mN48ILLzQXX3yxt61z586mQYMG5sSJE962zMxMExsba4L5p2jEiBEmIiLC5OTkmJycHLN//34ze/ZsY7VazQMPPODtl5aWZux2u7nzzjt9jj9y5IipV6+eGTx4sHeM9erVM507d/bpt2PHDuNwOHxeK8/r0bx5c5Odne3Tv1WrVqZDhw4mJyfHp/3KK6809evXN3l5ecYYY9q2bWuuueaaYp/f/v37jSQza9asM74O3bt3N927d/fenzNnjpFk3nzzTZ9+jz/+uJFk/v3vf3vbJJm4uDiTmZnpbcvIyDBWq9UkJyef8boAAABAUfv37zd//OMfvfMch8NhunbtapKTk82RI0d8+rZp08bnPazHihUrjCRz6aWXnvV6ubm5Jicnx/Tu3dtce+213vZ9+/b5zWc8Tp+/GGPM5MmTjSSzb98+n76nv89etGiRkWTeeecdn35r1641kkxKSooxxpgtW7YYSWb8+PE+/V577TUjyYwYMeKsz02SGTt2rMnJyTHZ2dnmhx9+MFdffbWJiooy69at8/ZLTk42VqvVrF271uf4t99+20gyy5YtM8YY88EHHxhJZvbs2T79kpOT/V4rz+vx8MMP+/Rds2aNkWSeeuopn/adO3easLAwc++99xpjjFm3bp2RZJYuXVrs83vyySeNJHPo0KFi+3jmXC+//LK3rUuXLqZu3bo+30+5ubmmbdu2plGjRt75vufveezYsT7nnDFjhpFk0tPTi70uAJQW238BqFKcTqemT5+udevW+W3B5OH5pMrphRL/9Kc/KSIiwm/rqosuukhNmjTx3ne73WrRooV27Nhx1vH87W9/U1pamubPn69bb71VkZGRmjNnjhITE322fjqb9u3bq0WLFn7tX3/9ta6++mrVqlVLNptNDodDw4cPV15enn744Yegz18aq1ev1sGDBzVixAjl5uZ6b/n5+erfv7/Wrl2rY8eO6dixY1q7dq2uu+46ud1u7/FRUVG66qqrgr7esWPH5HA45HA4VLt2bd12220aMmSIHnnkEW+fjz76SLm5uRo+fLjPmNxut7p37+7dUm3r1q3KyMjQ4MGDfa7RpEkTdevWLeD1r776ap9P3/3000/6/vvvddNNN0mSz/Uuv/xypaena+vWrZKkiy++WB9++KHuv/9+rVy5UidOnPA5d2xsrJo3b64nnnhCM2fO1Ndffx1UzZ1PP/1UERERGjRokE+753v79O/lnj17Kioqyns/Li5OdevWDep7GQAAAPCoVauWVq1apbVr1+qxxx7TwIED9cMPP2jSpElq166d9u/fH/S5rr/++oDtc+bMUceOHeV2u2W32+VwOPTJJ59oy5YtZfU0ivX++++rRo0auuqqq3ze51900UWqV6+ed17h2RLYMyfwGDx4cInqwqSkpMjhcMjpdKpFixb68MMPtWjRIiUmJvqMqW3btrrooot8xtSvXz+f7aM/++wz7xiKuvHGG4u9/ul/B++//74sFov+/Oc/+1yrXr16uvDCC73XOu+881SzZk3dd999mjNnjjZv3ux37j/84Q/e8bz55pvavXv3WV+PY8eO6csvv9SgQYMUGRnpbbfZbBo2bJh27drlnWt5XH311T7327dvL0nMdQCUC0IVAFXODTfcoI4dO+rBBx/0qS3iceDAAdntdr9l4RaLRfXq1fPZkklSwC27XC6X3y/GixMXF6ebb75Zc+bM0aZNm/TZZ5/J6XTqr3/9a9DPKVBdlrS0NF1yySXavXu3nnnmGe+k5oUXXpCkoMdXWp6tuwYNGuQNOzy3xx9/XMYYHTx4UL/99pvy8/NVr149v3MEaitOWFiY1q5dq7Vr1+pf//qXevTooUWLFumxxx7zG9Mf/vAHvzEtXrzYO7nz/B3HxcX5XSdQm+T/d+C51sSJE/2uNXbsWEnyXu/ZZ5/Vfffdp6VLl6pnz56KjY3VNddcox9//FFSwffeJ598on79+mnGjBnq2LGj6tSpo7vuuuuM2wYcOHBA9erV86mRI0l169aV3W4v8+9lAAAAoKhOnTrpvvvu01tvvaVff/1V48eP1/bt20tUrD7QXGfmzJm67bbb1LlzZ73zzjv64osvtHbtWvXv379C3rvu2bNHhw4dktPp9Huvn5GR4TevOH1eY7fbA773Ls7gwYO1du1arV69WnPnzlVUVJRuuOEG73zBM6ZNmzb5jScqKkrGGJ8x2e12xcbG+lyjuHmOFHiuY4xRXFyc3/W++OIL77ViYmL02Wef6aKLLtIDDzygNm3aqEGDBpo8ebJ3Ln7ppZdq6dKl3g+/NWrUSG3btj3jhwx/++03GWMCfm80aNDA+zyLOv319mwzx1wHQHmgpgqAKsdisejxxx9Xnz59NG/ePL/Ha9WqpdzcXO3bt88nWDHGKCMjw/tJmvJy6aWXqm/fvlq6dKn27t2runXrnvWY039pLklLly7VsWPHtGTJEsXHx3vbixY2L0+1a9eWJD333HM+e/0WFRcXp5ycHFksFmVkZPg9HqitOFar1VuYXpL69OmjxMRETZ06VTfddJMaN27sHdPbb7/t85qczvOGO1BNl+LGdPrfgedakyZN0nXXXRfwmJYtW0qSIiIiNHXqVE2dOlV79uzxrlq56qqr9P3330sqKEb50ksvSZJ++OEHvfnmm5oyZYqys7M1Z86cYp/Hl19+KWOMz/j27t2r3Nxc7xgBAACA8uZwODR58mQ9/fTT+vbbb4M+LtBc59VXX1WPHj00e/Zsn/bfU6ekJDzFzpcvXx7wcc/qb8+8IiMjQw0bNvQ+npub6/dL/zOpU6eOd66TlJSk1q1bq3v37ho/frzef/9975jCwsK8tTMDjdkzptzcXB08eNAnWDnT3CvQXMdisWjVqlUBa2wWbWvXrp3eeOMNGWO0adMmLViwQNOmTVNYWJjuv/9+SdLAgQM1cOBAZWVl6YsvvlBycrKGDh2qpk2bemuRFlWzZk1ZrValp6f7PeYpPs9cB0AosVIFQJV02WWXqU+fPpo2bZqOHj3q85inePqrr77q0/7OO+/o2LFj3sd/rz179gTcwikvL08//vijwsPDVaNGDUml+xSN541v0Te0xhj94x//8OtbHqsRunXrpho1amjz5s3q1KlTwJvT6VRERIQuvvhiLVmyRCdPnvQef+TIEf3rX/8q9fVdLpdeeOEFnTx5UtOnT5ck9evXT3a7XT///HOxY5IKwo569er5bRGXlpam1atXB3X9li1b6vzzz9c333xT7LWKbrXlERcXp5EjR+rGG2/U1q1bdfz4cb8+LVq00EMPPaR27dppw4YNxY6hd+/eOnr0qJYuXerTvnDhQu/jAAAAQFkL9MtuSd6tuTyrCaTSzUUsFovfL/M3bdqkNWvW+LSV12qEK6+8UgcOHFBeXl7A9/meD0/16NFDkvTaa6/5HP/mm28qNze31Ne/5JJLNHz4cH3wwQfe53zllVfq559/Vq1atQKOqWnTppKk7t27S5IWL17sc8433ngj6OtfeeWVMsZo9+7dAa/Vrl07v2MsFosuvPBCPf3006pRo0bAeYzL5VL37t31+OOPSyrYzjqQiIgIde7cWUuWLPH5u83Pz9err76qRo0aBdweGwAqCitVAFRZjz/+uBITE7V37161adPG296nTx/169dP9913nzIzM9WtWzdt2rRJkydPVocOHTRs2LAyuf4rr7yiuXPnaujQofrDH/6gmJgY7dq1Sy+++KK+++47Pfzww3I6nZLkfVP6zDPPaMSIEXI4HGrZsmXAX8oXfR5Op1M33nij7r33Xp08eVKzZ8/Wb7/95te3Xbt2WrJkiWbPnq3ExES/VR+lERkZqeeee04jRozQwYMHNWjQINWtW1f79u3TN998o3379nk/Wfb3v/9d/fv3V58+fXT33XcrLy9Pjz/+uCIiInTw4MFSj6F79+66/PLL9fLLL+v+++9XQkKCpk2bpgcffFC//PKL+vfvr5o1a2rPnj366quvvCtGrFarpk6dqltvvVWDBg3SLbfcokOHDmnq1KmqX7++rNbgPnMwd+5cDRgwQP369dPIkSPVsGFDHTx4UFu2bNGGDRv01ltvSZI6d+6sK6+8Uu3bt1fNmjW1ZcsWvfLKK0pKSlJ4eLg2bdqkO+64Q3/60590/vnny+l06tNPP9WmTZu8n+4KZPjw4XrhhRc0YsQIbd++Xe3atdPnn3+uRx99VJdffrkuu+yyUr+2AAAAQHH69eunRo0a6aqrrlKrVq2Un5+vjRs36qmnnlJkZKTPVseelQyLFy9Ws2bN5Ha7A/5Svqgrr7xSf//73zV58mR1795dW7du1bRp05SQkOATVkRFRSk+Pl7//Oc/1bt3b8XGxqp27dregKG0brjhBr322mu6/PLL9de//lUXX3yxHA6Hdu3apRUrVmjgwIG69tpr1bp1a/35z3/WrFmz5HA4dNlll+nbb7/Vk08+qejo6N81hr///e9avHix/va3v+njjz/WuHHj9M477+jSSy/V+PHj1b59e+Xn5ystLU3//ve/dffdd6tz587q37+/unXrprvvvluZmZlKTEzUmjVrvB+8Cmau061bN/3lL3/RzTffrHXr1unSSy9VRESE0tPT9fnnn6tdu3a67bbb9P777yslJUXXXHONmjVrJmOMlixZokOHDqlPnz6SpIcffli7du1S79691ahRIx06dEjPPPOMHA6HNwAKJDk5WX369FHPnj01ceJEOZ1OpaSk6Ntvv9WiRYsCrnACgApTxoXvAaDCvfzyy0aSWbt2rd9jQ4cONZJMmzZtfNpPnDhh7rvvPhMfH28cDoepX7++ue2228xvv/3m0y8+Pt5cccUVfuft3r276d69+xnHtXnzZnP33XebTp06mTp16hi73W5q1qxpunfvbl555RW//pMmTTINGjQwVqvVSDIrVqw44xiMMeZf//qXufDCC43b7TYNGzY099xzj/nwww99jjfGmIMHD5pBgwaZGjVqGIvFYor++JdkJk+e7L2/bds2I8k88cQTPtfyvM7btm3zaf/ss8/MFVdcYWJjY43D4TANGzY0V1xxhXnrrbd8+r333numffv2xul0miZNmpjHHnvMTJ482QTzT9GIESNMREREwMf+97//GavVam6++WZv29KlS03Pnj1NdHS0cblcJj4+3gwaNMh8/PHHPsfOmzfPnHfeecbpdJoWLVqY+fPnm4EDB5oOHTqc9fXw+Oabb8zgwYNN3bp1jcPhMPXq1TO9evUyc+bM8fa5//77TadOnUzNmjWNy+UyzZo1M+PHjzf79+83xhizZ88eM3LkSNOqVSsTERFhIiMjTfv27c3TTz9tcnNzvecJ9H134MABM2bMGFO/fn1jt9tNfHy8mTRpkjl58qRPP0nm9ttv9xt/fHy8GTFiRMDnBgAAAASyePFiM3ToUHP++eebyMhI43A4TJMmTcywYcPM5s2bffpu377d9O3b10RFRRlJJj4+3hhjzIoVK4wkv3mDMcZkZWWZiRMnmoYNGxq32206duxoli5dakaMGOE93uPjjz82HTp0MC6Xy0jyvrcNNH/xzD/27dvnc45A77NzcnLMk08+6Z1vRUZGmlatWplbb73V/Pjjjz5jvfvuu03dunWN2+02Xbp0MWvWrAn6fXZx79ONMeaee+4xksxnn31mjDHm6NGj5qGHHjItW7Y0TqfTxMTEmHbt2pnx48ebjIwM73EHDx40N998s6lRo4YJDw83ffr0MV988YWRZJ555pmzvh4e8+fPN507dzYREREmLCzMNG/e3AwfPtysW7fOGGPM999/b2688UbTvHlzExYWZmJiYszFF19sFixY4D3H+++/bwYMGGAaNmxonE6nqVu3rrn88svNqlWrvH08c66XX37Z5/qrVq0yvXr18l6/S5cu5l//+pdPn+J+H+D5/io6LwaAsmIxxpgKzHAAAKi0Dh06pBYtWuiaa64JWI8HAAAAAM5Fr7/+um666Sb997//VdeuXUM9HAA4p7H9FwCgWsrIyNAjjzyinj17qlatWtqxY4eefvppHTlyxGe7AgAAAAA4lyxatEi7d+9Wu3btZLVa9cUXX+iJJ57QpZdeSqACAGWAUAUAUC25XC5t375dY8eO1cGDBxUeHq4uXbpozpw5PjV4AAAAAOBcEhUVpTfeeEPTp0/XsWPHVL9+fY0cOVLTp08P9dAAoEpg+y8AAAAAAAAAAIAgWEM9AAAAAAAAAAAAgHMBoQoAlJPt27fLYrHIYrFoypQpAfvccsst3j5lqUePHurRo0epjm3atKlGjhwZVD/P2C0WiyIjI9W5c2ctXLiwVNctqQULFshisWj79u3ettI+70cffVRLly71a1+5cqUsFotWrlxZ6nECAAAACIw5U/lizgQA5YNQBQDKWVRUlBYsWKD8/Hyf9qNHj+qtt95SdHR0iEb2+3Xr1k1r1qzRmjVrvG/YR4wYodmzZ4dkPCkpKUpJSSnxccVNEDp27Kg1a9aoY8eOZTA6AAAAAIEwZ6o4zJkA4PcjVAGAcjZkyBDt2LFDn3zyiU/74sWLlZeXp6uvvjpEI/v9atSooS5duqhLly4aNGiQli9frujoaM2cObPYY/Ly8pSVlVUu47ngggt0wQUXlNn5oqOj1aVLl3N6EgcAAABUdsyZfDFnAoDKjVAFAMpZy5Yt1bVrV82fP9+nff78+bruuusUExPjd0x+fr5mzJihVq1ayeVyqW7duho+fLh27drl088YoxkzZig+Pl5ut1sdO3bUhx9+GHAcmZmZmjhxohISEuR0OtWwYUONGzdOx44dK7PnWqNGDbVs2VI7duyQVLicf8aMGZo+fboSEhLkcrm0YsUKSdK6det09dVXKzY2Vm63Wx06dNCbb77pd94vvvhC3bp1k9vtVoMGDTRp0iTl5OT49Qu0lD0rK0vTpk1T69at5Xa7VatWLfXs2VOrV6+WJFksFh07dkz/7//9P++yfM85ilvK/t577ykpKUnh4eGKiopSnz59tGbNGp8+U6ZMkcVi0Xfffacbb7xRMTExiouL0y233KLDhw/79H3rrbfUuXNnxcTEKDw8XM2aNdMtt9wS9OsOAAAAnMuYMzFnYs4E4FxiD/UAAKA6GDVqlG6//Xb99ttvqlmzprZu3arVq1dr+vTpeuedd/z633bbbZo3b57uuOMOXXnlldq+fbv+9re/aeXKldqwYYNq164tSZo6daqmTp2qUaNGadCgQdq5c6f+7//+T3l5eWrZsqX3fMePH1f37t21a9cuPfDAA2rfvr2+++47Pfzww/rf//6njz/+uEz2KM7JydGOHTtUp04dn/Znn31WLVq00JNPPqno6Gidf/75WrFihfr376/OnTtrzpw5iomJ0RtvvKEhQ4bo+PHj3j2KN2/erN69e6tp06ZasGCBwsPDlZKSotdff/2s48nNzdWAAQO0atUqjRs3Tr169VJubq6++OILpaWlqWvXrlqzZo169eqlnj176m9/+5sknfFTVq+//rpuuukm9e3bV4sWLVJWVpZmzJihHj166JNPPtEf//hHn/7XX3+9hgwZolGjRul///ufJk2aJEneCeOaNWs0ZMgQDRkyRFOmTJHb7daOHTv06aefBv26AwAAAOc65kzMmZgzAThnGABAudi2bZuRZJ544glz5MgRExkZaZ5//nljjDH33HOPSUhIMPn5+eb22283RX8cb9myxUgyY8eO9Tnfl19+aSSZBx54wBhjzG+//Wbcbre59tprffr997//NZJM9+7dvW3JycnGarWatWvX+vR9++23jSSzbNkyb1t8fLwZMWLEWZ9ffHy8ufzyy01OTo7Jyckx27ZtMyNGjDCSzD333OPzGjRv3txkZ2f7HN+qVSvToUMHk5OT49N+5ZVXmvr165u8vDxjjDFDhgwxYWFhJiMjw9snNzfXtGrVykgy27Zt87Z3797d53kvXLjQSDL/+Mc/zvhcIiIiAj7nFStWGElmxYoVxhhj8vLyTIMGDUy7du284zPGmCNHjpi6deuarl27etsmT55sJJkZM2b4nHPs2LHG7Xab/Px8Y4wxTz75pJFkDh06dMYxAgAAAFUNcybmTMyZAJyL2P4LACpAZGSk/vSnP2n+/PnKzc3VwoULdfPNNwf8pJNnmbfnU0ceF198sVq3bu3dZ3jNmjU6efKkbrrpJp9+Xbt2VXx8vE/b+++/r7Zt2+qiiy5Sbm6u99avX7+AS7WDtWzZMjkcDjkcDiUkJOjNN9/UnXfeqenTp/v0u/rqq+VwOLz3f/rpJ33//ffesRcd0+WXX6709HRt3brV+3r07t1bcXFx3uNtNpuGDBly1vF9+OGHcrvdZbYsfOvWrfr11181bNgwWa2F/4RGRkbq+uuv1xdffKHjx4/7HHP6/s/t27fXyZMntXfvXknSH/7wB0nS4MGD9eabb2r37t1lMlYAAADgXMKciTmTB3MmAJUdoQoAVJBRo0Zpw4YNeuSRR7Rv3z6/CYDHgQMHJEn169f3e6xBgwbexz1f69Wr59fv9LY9e/Zo06ZN3jfznltUVJSMMdq/f3+pntMf//hHrV27VuvWrdPmzZt16NAhPfvss3I6nT79Tn8ue/bskSRNnDjRb0xjx46VJO+YDhw4ENRzDGTfvn1q0KCBz5v53+Nsfzf5+fn67bfffNpr1arlc9/lckmSTpw4IUm69NJLtXTpUuXm5mr48OFq1KiR2rZtq0WLFpXJmAEAAIBzBXMm3/FIzJkk5kwAKh9qqgBABenWrZtatmypadOmqU+fPmrcuHHAfp43lOnp6WrUqJHPY7/++qt3b2BPv4yMDL9zZGRkqGnTpt77tWvXVlhYmF/hx6KPl0ZMTIw6dep01n6nf7rMc71JkybpuuuuC3iMZ3/jWrVqFfscz6ZOnTr6/PPPlZ+fXyaThKJ/N6f79ddfZbVaVbNmzRKfd+DAgRo4cKCysrL0xRdfKDk5WUOHDlXTpk2VlJT0u8cNAAAAnAuYM/lfjzlTAeZMACoTVqoAQAV66KGHdNVVV+nuu+8utk+vXr0kSa+++qpP+9q1a7Vlyxb17t1bktSlSxe53W699tprPv1Wr16tHTt2+LRdeeWV+vnnn1WrVi116tTJ71Z0MlERWrZsqfPPP1/ffPNNwPF06tRJUVFRkqSePXvqk08+8X5SS5Ly8vK0ePHis15nwIABOnnypBYsWHDGfi6Xy/spqLONu2HDhnr99ddljPG2Hzt2TO+8846SkpIUHh5+1vOcaRzdu3fX448/Lkn6+uuvS30uAAAA4FzEnKkAc6bix8GcCUCosVIFACrQn//8Z/35z38+Y5+WLVvqL3/5i5577jlZrVYNGDBA27dv19/+9jc1btxY48ePlyTVrFlTEydO1PTp0zV69Gj96U9/0s6dOzVlyhS/Zd7jxo3TO++8o0svvVTjx49X+/btlZ+fr7S0NP373//W3Xffrc6dO5fb8w5k7ty5GjBggPr166eRI0eqYcOGOnjwoLZs2aINGzborbfeklQwqXrvvffUq1cvPfzwwwoPD9cLL7ygY8eOnfUaN954o15++WWNGTNGW7duVc+ePZWfn68vv/xSrVu31g033CBJateunVauXKl//etfql+/vqKioryf+irKarVqxowZuummm3TllVfq1ltvVVZWlp544gkdOnRIjz32WIlfh4cffli7du1S79691ahRIx06dEjPPPOMHA6HunfvXuLzAQAAAOcy5kyFmDMVYM4EoLIhVAGASmj27Nlq3ry5XnrpJb3wwguKiYlR//79lZyc7LPf7LRp0xQREaGUlBS98soratWqlebMmaMnn3zS53wRERFatWqVHnvsMc2bN0/btm1TWFiYmjRpossuu6zCP3UlFXya6quvvtIjjzyicePG6bffflOtWrV0wQUXaPDgwd5+bdu21ccff6y7775bI0aMUM2aNTVs2DBdf/31+stf/nLGa9jtdi1btkzJyclatGiRZs2apaioKF144YXq37+/t98zzzyj22+/XTfccIOOHz+u7t27F1uIcujQoYqIiFBycrKGDBkim82mLl26aMWKFeratWuJX4fOnTtr3bp1uu+++7Rv3z7VqFFDnTp10qeffqo2bdqU+HwAAABAdcCciTkTcyYAoWIxRdfiAQAAAAAAAAAAICBqqgAAAAAAAAAAAASBUAUAAAAAAAAAACAIhCoAAAAAAAAAAABBIFQBAAAAAAAAAAAIAqEKAAAAAAAAAABAEAhVAAAAAAAAAAAAgkCoAgAAAAAAAAAAEAR7qAdQ0fLz8/Xrr78qKipKFosl1MMBAAAAyp0xRkeOHFGDBg1ktfK5Kpwd8yYAAABUJyWZM1W7UOXXX39V48aNQz0MAAAAoMLt3LlTjRo1CvUwcA5g3gQAAIDqKJg5U7ULVaKioiQVvDjR0dEhHg0AAABQ/jIzM9W4cWPve2HgbJg3AQAAoDopyZyp2oUqnqXr0dHRTA4AAABQrbCNE4LFvAkAAADVUTBzJjZUBgAAAAAAAAAACAKhCgAAAAAAAAAAQBAIVQAAAAAAAAAAAIJAqAIAAAAAAAAAABAEQhUAAAAAAAAAAIAgEKoAAAAAAAAAAAAEgVAFAAAAAAAAAAAgCIQqAAAAAAAAAAAAQSBUAQAAAAAAAAAACAKhCgAAAAAAAAAAQBAIVQAAAAAAAAAAAIJAqAIAAAAAAAAAABAEQhUAAAAAAAAAAIAgEKoAAAAAAAAAAAAEgVAFAAAAAAAAAAAgCIQqAAAAAAAAAAAAQSBUAQAAAAAAAAAACII91AOojg6fyNHx7FxZLRZZJMkiWWSRxSJZJFlOtVtOtcuiYh+zWArOaTnTOTydAAAAAOAckJdvtPfIyVAPA+Xk1EwYvwPT/KqNv97fiRewSuPfkN+nsv/7Eemyy+2whXoYZ0WoEgI/7jmiH/YcrfDrWi2erwV/8AQuheHL6UGNf4Djua9iA5wiQdAZzhEwSArm/MUFSSUZY5FzWE+9KIFem6L3C78Wvjae+wRdAAAAQNk6mZOnFd/vC/UwAAAAUIE6N4tV8zqRoR7GWRGqVCP5xvPVFGk1AfuiYpw1zLGe/rh/CFTVgi6/sO9sYyxyTKDXtPigrMhrSNAFAAAAAAAAIAiEKkAIBQ66JMKu0CkaAhUbRvkFQZYAYU7hY4Hai10xVpWCLs/rF+QY/V5DTwMAAAAAAABQSRCqAEARxpyKtAr/43kkJONB6YOuQCHQmYKk0mz/J52+jWDVCrrOtCoMAAAAAACgOiJUAQBUagRdlU9FBV1nPH+AIClw0FU0CDstEAsQpBF0AQAAAACAMyFUAQAAJULQVflU1qDL5xxBnL/UK8aK9CPoAgAAAACUJ0IVAACAcxxBV+VzetDlclg18KKGoR4WAAAAAOB3IlQBAAAAytjpQZctj4ALAAAAAKoCa6gHkJKSooSEBLndbiUmJmrVqlVn7P/aa6/pwgsvVHh4uOrXr6+bb75ZBw4cqKDRAgAAAAAAAACA6iqkocrixYs1btw4Pfjgg/r66691ySWXaMCAAUpLSwvY//PPP9fw4cM1atQofffdd3rrrbe0du1ajR49uoJHDgAAAAAAAAAAqpuQhiozZ87UqFGjNHr0aLVu3VqzZs1S48aNNXv27ID9v/jiCzVt2lR33XWXEhIS9Mc//lG33nqr1q1bV8EjBwAAAAAAAAAA1U3IQpXs7GytX79effv29Wnv27evVq9eHfCYrl27ateuXVq2bJmMMdqzZ4/efvttXXHFFcVeJysrS5mZmT43AAAAAAAAAACAkgpZqLJ//37l5eUpLi7Opz0uLk4ZGRkBj+natatee+01DRkyRE6nU/Xq1VONGjX03HPPFXud5ORkxcTEeG+NGzcu0+cBAAAAAAAAAACqh5AXqrdYLD73jTF+bR6bN2/WXXfdpYcffljr16/X8uXLtW3bNo0ZM6bY80+aNEmHDx/23nbu3Fmm4wcAAAAAAAAAANWDPVQXrl27tmw2m9+qlL179/qtXvFITk5Wt27ddM8990iS2rdvr4iICF1yySWaPn266tev73eMy+WSy+Uq+ycAAAAAAAAAAACqlZCtVHE6nUpMTFRqaqpPe2pqqrp27RrwmOPHj8tq9R2yzWaTVLDCBQAAAAAAAAAAoLyEdPuvCRMm6MUXX9T8+fO1ZcsWjR8/Xmlpad7tvCZNmqThw4d7+1911VVasmSJZs+erV9++UX//e9/ddddd+niiy9WgwYNQvU0AAAAAAAAAABANRCy7b8kaciQITpw4ICmTZum9PR0tW3bVsuWLVN8fLwkKT09XWlpad7+I0eO1JEjR/T888/r7rvvVo0aNdSrVy89/vjjoXoKAAAAAAAAAACgmrCYarZvVmZmpmJiYnT48GFFR0eHZAzrth/UD3uOhuTaAAAAqHguu1XXJzYK2fUrw3tgnFtC/T1zLCtX/9z4a4VfFwAAAKHTuVmsmteJDMm1S/L+N6TbfwEAAAAAAAAAAJwrCFUAAAAAAAAAAACCQKgCAAAAAAAAAAAQBEIVAAAAAAAAAACAIBCqAAAAAAAAAAAABIFQBQAAAAAAAAAAIAiEKgAAAAAAAAAAAEEgVAEAAAAAAAAAAAgCoQoAAAAAAAAAAEAQCFUAAAAAAAAAAACCQKgCAAAAAAAAAAAQBEIVAAAAAAAAAACAIBCqAAAAAAAAAAAABIFQBQAAAAAAAAAAIAiEKgAAAAAAAAAAAEEgVAEAAAAAAAAAAAgCoQoAAAAAAAAAAEAQCFUAAAAAAAAAAACCQKgCAAAAAAAAAAAQBEIVAAAAAAAAAACAIBCqAAAAAAAAAAAABIFQBQAAAAAAAAAAIAiEKgAAAAAAAAAAAEEgVAEAAAAAAAAAAAgCoQoAAAAAAAAAAEAQCFUAAAAAAAAAAACCQKgCAAAAAAAAAAAQBEIVAAAAAAAAAACAIBCqAAAAAAAAAAAABIFQBQAAAAAAAAAAIAiEKgAAAAAAAAAAAEEgVAEAAAAAAAAAAAgCoQoAAAAAAAAAAEAQCFUAAAAAAAAAAACCQKgCAAAAAAAAAAAQBEIVAAAAAAAAAACAIBCqAAAAAEAll5KSooSEBLndbiUmJmrVqlVn7J+VlaUHH3xQ8fHxcrlcat68uebPn19BowUAAACqLnuoBwAAAAAAKN7ixYs1btw4paSkqFu3bpo7d64GDBigzZs3q0mTJgGPGTx4sPbs2aOXXnpJ5513nvbu3avc3NwKHjkAAABQ9RCqAAAAAEAlNnPmTI0aNUqjR4+WJM2aNUsfffSRZs+ereTkZL/+y5cv12effaZffvlFsbGxkqSmTZtW5JABAACAKovtvwAAAACgksrOztb69evVt29fn/a+fftq9erVAY9577331KlTJ82YMUMNGzZUixYtNHHiRJ04caIihgwAAABUaaxUAQAAAIBKav/+/crLy1NcXJxPe1xcnDIyMgIe88svv+jzzz+X2+3Wu+++q/3792vs2LE6ePBgsXVVsrKylJWV5b2fmZlZdk8CAAAAqEJYqQIAAAAAlZzFYvG5b4zxa/PIz8+XxWLRa6+9posvvliXX365Zs6cqQULFhS7WiU5OVkxMTHeW+PGjcv8OQAAAABVAaEKAAAAAFRStWvXls1m81uVsnfvXr/VKx7169dXw4YNFRMT421r3bq1jDHatWtXwGMmTZqkw4cPe287d+4suycBAAAAVCGEKgAAAABQSTmdTiUmJio1NdWnPTU1VV27dg14TLdu3fTrr7/q6NGj3rYffvhBVqtVjRo1CniMy+VSdHS0zw0AAACAv5CHKikpKUpISJDb7VZiYqJWrVpVbN+RI0fKYrH43dq0aVOBIwYAAACAijNhwgS9+OKLmj9/vrZs2aLx48crLS1NY8aMkVSwymT48OHe/kOHDlWtWrV08803a/PmzfrPf/6je+65R7fccovCwsJC9TQAAACAKiGkocrixYs1btw4Pfjgg/r66691ySWXaMCAAUpLSwvY/5lnnlF6err3tnPnTsXGxupPf/pTBY8cAAAAACrGkCFDNGvWLE2bNk0XXXSR/vOf/2jZsmWKj4+XJKWnp/vMoSIjI5WamqpDhw6pU6dOuummm3TVVVfp2WefDdVTAAAAAKoMizHGhOrinTt3VseOHTV79mxvW+vWrXXNNdcoOTn5rMcvXbpU1113nbZt2+adUJxNZmamYmJidPjw4ZAtaV+3/aB+2HP07B0BAABQJbjsVl2fGHjbpYpQGd4D49wS6u+ZY1m5+ufGXyv8ugAAAAidzs1i1bxOZEiuXZL3vyFbqZKdna3169erb9++Pu19+/bV6tWrgzrHSy+9pMsuu+yMgUpWVpYyMzN9bgAAAAAAAAAAACUVslBl//79ysvLU1xcnE97XFycMjIyznp8enq6PvzwQ40ePfqM/ZKTkxUTE+O9NW7c+HeNGwAAAAAAAAAAVE8hL1RvsVh87htj/NoCWbBggWrUqKFrrrnmjP0mTZqkw4cPe287d+78PcMFAAAAAAAAAADVlD1UF65du7ZsNpvfqpS9e/f6rV45nTFG8+fP17Bhw+R0Os/Y1+VyyeVy/e7xAgAAAAAAAACA6i1kK1WcTqcSExOVmprq056amqquXbue8djPPvtMP/30k0aNGlWeQwQAAAAAAAAAAPAK2UoVSZowYYKGDRumTp06KSkpSfPmzVNaWprGjBkjqWDrrt27d2vhwoU+x7300kvq3Lmz2rZtG4phAwAAAAAAAACAaiikocqQIUN04MABTZs2Tenp6Wrbtq2WLVum+Ph4SQXF6NPS0nyOOXz4sN555x0988wzoRgyAAAAAAAAAACopkIaqkjS2LFjNXbs2ICPLViwwK8tJiZGx48fL+dRAQAAAAAAAAAA+ApZTRUAAAAAAAAAAIBzCaEKAAAAAAAAAABAEAhVAAAAAAAAAAAAgkCoAgAAAAAAAAAAEARCFQAAAAAAAAAAgCAQqgAAAAAAAAAAAASBUAUAAAAAAAAAACAIhCoAAAAAAAAAAABBIFQBAAAAAAAAAAAIAqEKAAAAAAAAAABAEAhVAAAAAAAAAAAAgkCoAgAAAAAAAAAAEARCFQAAAAAAAAAAgCAQqgAAAAAAAAAAAASBUAUAAAAAAAAAACAIhCoAAAAAAAAAAABBIFQBAAAAAAAAAAAIAqEKAAAAAAAAAABAEAhVAAAAAAAAAAAAgkCoAgAAAAAAAAAAEARCFQAAAAAAAAAAgCAQqgAAAAAAAAAAAASBUAUAAAAAAAAAACAIhCoAAAAAAAAAAABBIFQBAAAAAAAAAAAIAqEKAAAAAAAAAABAEAhVAAAAAAAAAAAAgkCoAgAAAAAAAAAAEARCFQAAAAAAAAAAgCAQqgAAAAAAAAAAAASBUAUAAAAAAAAAACAIhCoAAAAAAAAAAABBIFQBAAAAAAAAAAAIAqEKAAAAAAAAAABAEAhVAAAAAAAAAAAAgkCoAgAAAAAAAAAAEARCFQAAAAAAAAAAgCAQqgAAAAAAAAAAAASBUAUAAAAAAAAAACAIhCoAAAAAAAAAAABBIFQBAAAAAAAAAAAIAqEKAAAAAAAAAABAEAhVAAAAAAAAAAAAgkCoAgAAAAAAAAAAEISQhyopKSlKSEiQ2+1WYmKiVq1adcb+WVlZevDBBxUfHy+Xy6XmzZtr/vz5FTRaAAAAAAAAAABQXdlDefHFixdr3LhxSklJUbdu3TR37lwNGDBAmzdvVpMmTQIeM3jwYO3Zs0cvvfSSzjvvPO3du1e5ubkVPHIAAAAAAAAAAFDdhDRUmTlzpkaNGqXRo0dLkmbNmqWPPvpIs2fPVnJysl//5cuX67PPPtMvv/yi2NhYSVLTpk0rcsgAAAAAAAAAAKCaCtn2X9nZ2Vq/fr369u3r0963b1+tXr064DHvvfeeOnXqpBkzZqhhw4Zq0aKFJk6cqBMnThR7naysLGVmZvrcAAAAAAAAAAAASipkK1X279+vvLw8xcXF+bTHxcUpIyMj4DG//PKLPv/8c7ndbr377rvav3+/xo4dq4MHDxZbVyU5OVlTp04t8/EDAAAAAAAAAIDqJeSF6i0Wi899Y4xfm0d+fr4sFotee+01XXzxxbr88ss1c+ZMLViwoNjVKpMmTdLhw4e9t507d5b5cwAAAAAAAAAAAFVfyFaq1K5dWzabzW9Vyt69e/1Wr3jUr19fDRs2VExMjLetdevWMsZo165dOv/88/2OcblccrlcZTt4AAAAAAAAAABQ7YRspYrT6VRiYqJSU1N92lNTU9W1a9eAx3Tr1k2//vqrjh496m374YcfZLVa1ahRo3IdLwAAAAAAAAAAqN5Cuv3XhAkT9OKLL2r+/PnasmWLxo8fr7S0NI0ZM0ZSwdZdw4cP9/YfOnSoatWqpZtvvlmbN2/Wf/7zH91zzz265ZZbFBYWFqqnAQAAAAAAAAAAqoGQbf8lSUOGDNGBAwc0bdo0paenq23btlq2bJni4+MlSenp6UpLS/P2j4yMVGpqqu6880516tRJtWrV0uDBgzV9+vRQPQUAAAAAAAAAAFBNhDRUkaSxY8dq7NixAR9bsGCBX1urVq38tgwDAAAAAAAAAAAobyHd/gsAAAAAAAAAAOBcQagCAAAAAAAAAAAQBEIVAAAAAAAAAACAIBCqAAAAAAAAAAAABIFQBQAAAAAAAAAAIAiEKgAAAAAAAAAAAEEgVAEAAAAAAAAAAAgCoQoAAAAAAAAAAEAQCFUAAAAAAAAAAACCQKgCAAAAAAAAAAAQBEIVAAAAAKjkUlJSlJCQILfbrcTERK1atSqo4/773//KbrfroosuKt8BAgAAANUEoQoAAAAAVGKLFy/WuHHj9OCDD+rrr7/WJZdcogEDBigtLe2Mxx0+fFjDhw9X7969K2ikAAAAQNVHqAIAAAAAldjMmTM1atQojR49Wq1bt9asWbPUuHFjzZ49+4zH3XrrrRo6dKiSkpIqaKQAAABA1UeoAgAAAACVVHZ2ttavX6++ffv6tPft21erV68u9riXX35ZP//8syZPnlzeQwQAAACqFXuoBwAAAAAACGz//v3Ky8tTXFycT3tcXJwyMjICHvPjjz/q/vvv16pVq2S3Bzfly8rKUlZWlvd+ZmZm6QcNAAAAVGGsVAEAAACASs5isfjcN8b4tUlSXl6ehg4dqqlTp6pFixZBnz85OVkxMTHeW+PGjX/3mAEAAICqiFAFAAAAACqp2rVry2az+a1K2bt3r9/qFUk6cuSI1q1bpzvuuEN2u112u13Tpk3TN998I7vdrk8//TTgdSZNmqTDhw97bzt37iyX5wMAAACc69j+CwAAAAAqKafTqcTERKWmpuraa6/1tqempmrgwIF+/aOjo/W///3Ppy0lJUWffvqp3n77bSUkJAS8jsvlksvlKtvBAwAAAFUQoQoAAAAAVGITJkzQsGHD1KlTJyUlJWnevHlKS0vTmDFjJBWsMtm9e7cWLlwoq9Wqtm3b+hxft25dud1uv3YAAAAAJUeoAgAAAACV2JAhQ3TgwAFNmzZN6enpatu2rZYtW6b4+HhJUnp6utLS0kI8SgAAAKB6sBhjTKgHUZEyMzMVExOjw4cPKzo6OiRjWLf9oH7YczQk1wYAAEDFc9mtuj6xUciuXxneA+PcEurvmWNZufrnxl8r/LoAAAAInc7NYtW8TmRIrl2S978UqgcAAAAAAAAAAAgCoQoAAAAAAAAAAEAQCFUAAAAAAAAAAACCQKgCAAAAAAAAAAAQBEIVAAAAAAAAAACAIBCqAAAAAAAAAAAABMEe6gEAAAAAVUlufr6OZeXpyMkcHc3K1dGTubJaLLo+sVGohwYAAAAA+J0IVQAAAICzyDdGx7JyvSHJEc/XU8FJ4f1cncjJ8zs+wmnTk4MvDMHIAQAAAABliVAFAAAA1ZIxRidy8nTk5Olhyamg5FT7kZO5OpaVK1OCc1stUqTLrii3Q5Euu2LCHTLGyGKxlNvzAQAAAACUP0IVAAAAVBnGGGXn5utIkVDk6Mkc70qSoz7tucozwUclFknhLruiXHZFuv2/RrocinLbFemyK8xpk7VIgOKyWwlUAAAAAKAKIFQBAABApZeTl++77VZWjl9I4tmKKyevJGtKpDCH7VQoYleUNyRxeO9HngpNIpx22awEIwAAAABQnRGqAAAAICTy8o13xcjRrJzCcKRIfZKjWQVBycmc/BKd22m3FoQjntUknpUkPvcLbnabtZyeIQAAAACgqiFUAQAAQJnJN0bHs/O8q0YKw5HC1SSe+8ez/Qu6n4ndailcUXJqNUnRcCTKXVjDxGknKAEAAAAAlD1CFQAAAJyRMUYnc/K9QYl/fZLCoORYVq7yS7D7lqegu3dFicvhsxWXt81ll9tBXRIAAAAAQGgRqgAAAFRTWbl5PuHIkQBbcXnqmOSVICmxSAp32ryrRnyLuZ9aTXLqz+GnFXQHAAAAAKAyI1QBAACoQnLy8ovUKfGEJf5F3Y+ezFV2XsnqlLgd1oK6JEVXkriK1Cs5dT/CRUF3AAAAAEDVRKgCAABQyeXlGx3LCrzdlu+KkpwSF3R32CzeFSXe+iSnttwqej/SZZeDgu4AAAAAgGqOUAUAACAEPAXdC4u55/hst1W4siRHx7PzVIIyJbJZLadtt+UJRxyKOi08cdlt5fYcAQAAAACoaghVAAAAyoinoHtBMfecU2GJ70qSoltzlaSgu0U6LSRxnFbMvbBeCQXdAQAAAAAoH4QqAAAAZ5Gdm+9dNeINSTxbb53MKVhZciosyS1JUqKCgu6ecMRb2L1IWOIJSijoDgAAAABA6BGqAACAainXU9DdG46c2nbLU6/Es/1WVq6yc0tT0L1I8XaflSSnVpmcCkwo6A4AAAAAwLmDUAUAAFQZeflGx7NzAxRxL1hNUnQrrhM5eSU6t8Nm8a4aCVTU3RucuCnoDgAAAABAVUWoAgAAKrV8Y3TiVEH3glAkx6eYe9Gvx7NyS1bQ3WIJUMzdE44UhidRLrucduqUAAAAAABQ3YU8VElJSdETTzyh9PR0tWnTRrNmzdIll1wSsO/KlSvVs2dPv/YtW7aoVatW5T1UAABQRowxysrN94YhR07mFCnmXmTrrVPtJS3oHlEkJCkMSxzelSSe9jCHjaAEAAAAAAAELaShyuLFizVu3DilpKSoW7dumjt3rgYMGKDNmzerSZMmxR63detWRUdHe+/XqVOnIoYLAADOwlPQvWjxdp96JadCkiOlKOge5rAFqE/i8FtpEuGyU9AdAAAAAACUi5CGKjNnztSoUaM0evRoSdKsWbP00Ucfafbs2UpOTi72uLp166pGjRoVNEoAAKq33Px8HcvKK1g1UqR4e0FYkuNTuySrhAXdXXZrYSBy2nZbhWGJQxEum+xW6pQAAAAAAIDQClmokp2drfXr1+v+++/3ae/bt69Wr159xmM7dOigkydP6oILLtBDDz0UcEswj6ysLGVlZXnvZ2Zm/r6BAwBQBeQbo2NZpxdzL9huy7PCpOB+yQu6262WIltvOQrrlBRZYeIJUJx2ghIAAAAAAHDuCFmosn//fuXl5SkuLs6nPS4uThkZGQGPqV+/vubNm6fExERlZWXplVdeUe/evbVy5UpdeumlAY9JTk7W1KlTy3z8AABUNsYYncjJ84YkhWFJTuGfT7UfK2FBd6tF/iGJNyw5tcLk1H0XBd0BAAAAAEAVFfJC9af/0sUYU+wvYlq2bKmWLVt67yclJWnnzp168skniw1VJk2apAkTJnjvZ2ZmqnHjxmUwcgAAyp8xRtm5+YXbbRWtV+IXnuQqzwQflVgkhZ8KQwqLuXvCEd+tuNxOG3VKAAAAAABAtReyUKV27dqy2Wx+q1L27t3rt3rlTLp06aJXX3212MddLpdcLlepxwkAQHnIycv3Kd7uCUl8w5KCeiU5eSUv6O6zkuRUSOJbp8SucKddNitBCQAAAAAAQLBKHaocOnRIb7/9tn7++Wfdc889io2N1YYNGxQXF6eGDRue9Xin06nExESlpqbq2muv9banpqZq4MCBQY/j66+/Vv369Uv1HAAAKEt5+aawFklWjs9KksKwpGArrpIWdHfarX6hSKTLUaR2yamVJi677DbqlABAefm98yAAAAAA57ZShSqbNm3SZZddppiYGG3fvl3/93//p9jYWL377rvasWOHFi5cGNR5JkyYoGHDhqlTp05KSkrSvHnzlJaWpjFjxkgq2Lpr9+7d3vPNmjVLTZs2VZs2bZSdna1XX31V77zzjt55553SPA0AAM4q3xgdz84rWDVy2nZbnpUknvvHs0te0D3ytOLtRcORqCL1SijoDgChV1bzIAAAAADnrlKFKhMmTNDIkSM1Y8YMRUVFedsHDBigoUOHBn2eIUOG6MCBA5o2bZrS09PVtm1bLVu2TPHx8ZKk9PR0paWleftnZ2dr4sSJ2r17t8LCwtSmTRt98MEHuvzyy0vzNAAA1ZQxRidz8nXEs+2WZ3XJqZUk3qDkZK6OZecqvwS7b3kKuheEJUWKuvvULCkITyjoDgDnlrKaBwEAAAA4d5UqVFm7dq3mzp3r196wYUO/GilnM3bsWI0dOzbgYwsWLPC5f++99+ree+8t0fkBANVHVm5ekXCkSL0STyH3IqtK8kqQlFgkhTttBatGPNtt+WzF5fCuOAmjoDsAVFllOQ8CAAAAcG4qVajidruVmZnp175161bVqVPndw8KAACPnLx870qSwvok/ltxHT2Zq+y8ktUpcTusBatJitQlKQxLTm3F5bYrgoLuAAAxDwIAAABQylBl4MCBmjZtmt58801JksViUVpamu6//35df/31ZTpAAEDVk5dvdCzLv3j7kdPCk6NZOTqZU7KgxGGzKMrtOGtR9wiXXQ4KugMASoB5EAAAAIBShSpPPvmkLr/8ctWtW1cnTpxQ9+7dlZGRoaSkJD3yyCNlPUYAwDnAU9D9aDFF3I8WWWFyPDtPJShTIpvVEjAk8Wy5VbReictuK7fnCACo3pgHAQAAAChVqBIdHa3PP/9cn376qTZs2KD8/Hx17NhRl112WVmPDwAQQt6C7qeKtxetV1I0JDmSlatjWSUv6B7hCrDdlreYe2FRd7eDgu4AgNBjHgQAAACgVKGKR69evdSrV6+yGgsAoIJk5+b7rSQpDEtyfLbhyi1JUiJPQfciBdxdRVaXnApJIt12hVPQHQBwjmIeBAAAAFRfpQ5VvvrqK61cuVJ79+5Vfr7vfvczZ8783QMDAJRMrqeguycg8awk8blf8Hh2bskLuke6HKeFI0XDksLwhILuAICqjHkQAAAAUL2VKlR59NFH9dBDD6lly5aKi4vz2ZKF7VkAoOzk5Rsdyz6teLtnhUmRsORoVq5O5OSV6Nyegu6nrySJdBWsJim6FRcF3QEAYB4EAAAAoJShyjPPPKP58+dr5MiRZTwcAKj68o3Riey8Ilts5ZxWp6Tw6/Gs3JIVdLdYTivmXrSIu6NInRK7nHbqlAAAUBLMgwAAAACUKlSxWq3q1q1bWY8FAM5Zxhhl5eYXqU+SEyAkyfGuKilJmRKL5F0xUhiSOHyKuXvawxw2ghIAAMoJ8yAAAAAApQpVxo8frxdeeEGzZs0q4+EAQOWSnZvvU7zdf0VJYc2S0hR0jyyycsS7FddpYUmEy05BdwAAKgHmQQAAAABKFapMnDhRV1xxhZo3b64LLrhADofD5/ElS5aUyeAAoDzk5ud7V4wULd7uqVdSuC1XrrJKWNDdZbf6FG+POi0kiTq1wiTCZZPdSp0SAADOJcyDAAAAAJQqVLnzzju1YsUK9ezZU7Vq1WKrGQAhl2+MjvmEI4UrSYqGJEdOlrygu91qKVKfxOGz3VbUqVolnmLvTjtBCQAAVRXzIAAAAAClClUWLlyod955R1dccUVZjwcAvEzRgu5FVpIcLboN16k/HythQXerRYXbbfkUcy/chsuzusRFQXcAACDmQQAAAABKGarExsaqefPmZT0WANWAp6B70WDEp6h7kbDk6Mlc5ZngoxKLpIhAIcmp1STe1SYuu9xOG3VKAABAiTAPAgAAAFCqUGXKlCmaPHmyXn75ZYWHh5f1mACcg3Ly8gNuueX96glOsnKVk1eygu5hDttpdUl865V4QpRwp102K0EJAAAoH8yDAAAAAJQqVHn22Wf1888/Ky4uTk2bNvUr0Lhhw4YyGRyA0MrLN0WKuef41CXxhCee+6Ut6F40LIl0OYrUKbF7t+ay26hTAgAAQo95EAAAAIBShSrXXHNNGQ8DQEXJN0bHs/MKVo4UWUni2Yar6P3j2SUv6H6mlSTeQu8UdAcAAOcg5kEAAAAAShWqTJ48uazHAeB3MMboRE5egJAkV0ezcgrrlJz6WtKC7oUrShx+IYmnPYqC7gAAoIpjHgQAAACgVKGKx/r167VlyxZZLBZdcMEF6tChQ1mNC4CkrNw8b/H2I97i7Tk+xdw9f87LL1lB93CnrWDViGdliScgObUNl6c9jILuAAAAPpgHAQAAANVXqUKVvXv36oYbbtDKlStVo0YNGWN0+PBh9ezZU2+88Ybq1KlT1uMEqoycvPzCOiWeFSWn6pX4hiU5JS7o7nZYvatJvNttndqKy7u6xG1XBAXdAQAASox5EAAAAIBShSp33nmnMjMz9d1336l169aSpM2bN2vEiBG66667tGjRojIdJFDZ5eUbHcvyL94eaCuukzklK+jutFlPK+ZuP1XM3XcrrgiXXQ4KugMAAJQb5kEVJ+PwSf39/c0lOqY0i6uLPaSYkxXXv/jzlLB/scMp2RHnzHiKPX/JzlTez1cqfkyWEp6tpN+nJX9uIRpPsecP1fduMd8r5fz6n+mhYv9uyuz/yxL2D9n3bgn/Py7ZaYrvX8IThWw8qn4/YxnPWc5TXP9SvPE5F37G1oxwqHmdyJKdKARKFaosX75cH3/8sXciIUkXXHCBXnjhBfXt27fMBgeEkqege0GdkpzTwpFcb/uRk7k6kZ1XojolNqvFG5IUhiWOIsXcC7fjctlt5fYcAQAAEDzmQRUn/1TNQAAAAFQff0iIDfUQglKqUCU/P18Oh8Ov3eFwKD+/ZJ/CByqSMUYnc/IDhiSelSSeYu/HsnJVgjIlslqkCFfgkKRoeBLlcsjtoKA7AADAuYZ5UMWpE+XSuMvO93/gDO/PS7Zx7hn6F/OAKeEVTAkHVNLxFDwUqjEFfqTEfwfFvtYlV+xrUUbXKPlrV77jkc40phL+/ZT7a1Ty75cy+14t9vwl/H+nhA8Uf/YzPFLOPzNKOqaK+RlWXHvV/Nl2xmNKeLLy/xlWshOV7ud2iS5R7BGV7WfbGR+pbD9vy/TfpLL5uRpfK7wUV694pQpVevXqpb/+9a9atGiRGjRoIEnavXu3xo8fr969e5fpAIFgZOfm60iRbbcChSSeryUp6C55Crr7b7cVWSQkiXTbFU5BdwAAgCqNeVDFcdisqhvlDvUwAAAAUIFa148O9RCCUqpQ5fnnn9fAgQPVtGlTNW7cWBaLRWlpaWrXrp1effXVsh4jqqncUwXdA223dbRISHL0ZK6y80r2yUC3wxpwJUnhfYeiXAV1SijoDgAAAIl5EAAAAIBShiqNGzfWhg0blJqaqu+//17GGF1wwQW67LLLynp8qGLy8o2OZZ8KRLzhSE5BOOIJUE6FJyUt6O6wWRTldhSEIp6AxLOSpMj9SAq6AwAAoBSYBwEAAAAoVaji0adPH/Xp06esxoJzVL4xOpGd5101ctSzmsSzDZdnVcnJHB0vaUF3i6UgGPGsIPGGI6eCkiKrS5x26pQAAACg/DEPAgAAAKqvUoUqd911l8477zzdddddPu3PP/+8fvrpJ82aNassxoYQMsYoKzdfR06tGjm9qPvR09pLUqbEInm33CqsTxJoKy4KugMAAKDyYB4EAAAAoFShyjvvvKP33nvPr71r16567LHHmExUYtm5njolOQFCkiJbcZ3MVW4pCrqfHooUvV+w4sRBQXcAAACck5gHAQAAAChVqHLgwAHFxMT4tUdHR2v//v2/e1Aomdz8fO+KEU84cuTUNlxFi7kfzcpVVm7J6pS47Fa/4u2+K0ocinTbFeGyyW6lTgkAAACqLuZBAAAAAEoVqpx33nlavny57rjjDp/2Dz/8UM2aNSuTgVV3+cbo2FlWkni+nsjJK9G5HTbLqW23AqwkKRKeRLop6A4AAAB4MA8CAAAAUKpQZcKECbrjjju0b98+9erVS5L0ySef6KmnnmLJexD2HcnSz/uOnirmnuOzksQTohzLyi1RQXerRYUhibeYu90nPPGsMHFR0B0AAAAoMeZBAAAAAEoVqtxyyy3KysrSI488or///e+SpKZNm2r27NkaPnx4mQ6wKnp7/S598v3es/azSIoout2Wz9ZbhYXdo1x2ualTAgAAAJQr5kEAAAAAShWqSNJtt92m2267Tfv27VNYWJgiIyPLclxVWly0W3WjXKdtveUoUsy9ICwJd9plsxKUAAAAAJUF8yAAAACgeitVqNKrVy8tWbJENWrUUJ06dbztmZmZuuaaa/Tpp5+W2QCrous6NlTbhv4FLgEAAABUXsyDAAAAAJSqCvnKlSuVnZ3t137y5EmtWrXqdw8KAAAAACob5kEAAAAASrRSZdOmTd4/b968WRkZGd77eXl5Wr58uRo2bFh2owMAAACAEGMeBAAAAMCjRKHKRRddJIvFIovFol69evk9HhYWpueee67MBgcAAAAAocY8CAAAAIBHiUKVbdu2yRijZs2a6auvvvLZR9jpdKpu3bqy2WxlPkgAAAAACBXmQQAAAAA8ShSqxMfHS5Ly8/PLZTAAAAAAUNkwDwIAAADgUaJQxWPhwoVnfHz48OGlGgwAAAAAVFahnAelpKToiSeeUHp6utq0aaNZs2bpkksuCdh3yZIlmj17tjZu3KisrCy1adNGU6ZMUb9+/cptfAAAAEB1UapQ5a9//avP/ZycHB0/flxOp1Ph4eGEKgAAAACqnFDNgxYvXqxx48YpJSVF3bp109y5czVgwABt3rxZTZo08ev/n//8R3369NGjjz6qGjVq6OWXX9ZVV12lL7/8Uh06dCiXMQIAAADVhbU0B/32228+t6NHj2rr1q364x//qEWLFpX1GAEAAAAg5EI1D5o5c6ZGjRql0aNHq3Xr1po1a5YaN26s2bNnB+w/a9Ys3XvvvfrDH/6g888/X48++qjOP/98/etf/yq3MQIAAADVRalClUDOP/98PfbYY36f3gIAAACAqqq850HZ2dlav369+vbt69Pet29frV69Oqhz5Ofn68iRI4qNjS22T1ZWljIzM31uAAAAAPyVWagiSTabTb/++muJjklJSVFCQoLcbrcSExO1atWqoI7773//K7vdrosuuqgUIwUAAACAslGaeVCw9u/fr7y8PMXFxfm0x8XFKSMjI6hzPPXUUzp27JgGDx5cbJ/k5GTFxMR4b40bN/5d4wYAAACqqlLVVHnvvfd87htjlJ6erueff17dunUL+jwl3RvY4/Dhwxo+fLh69+6tPXv2lOYpAAAAAECJlNU8qDQsFovftU9vC2TRokWaMmWK/vnPf6pu3brF9ps0aZImTJjgvZ+ZmUmwAgAAAARQqlDlmmuu8blvsVhUp04d9erVS0899VTQ5ym6N7BUsPfvRx99pNmzZys5ObnY42699VYNHTpUNptNS5cuLc1TAAAAAIASKat5UEnUrl1bNpvNb1XK3r17/VavnG7x4sUaNWqU3nrrLV122WVn7OtyueRyuX73eAEAAICqrlShSn5+viRp3759slgsql27donP4dkb+P777/dpP9vewC+//LJ+/vlnvfrqq5o+ffpZr5OVlaWsrCzvffYGBgAAAFAaZTEPKimn06nExESlpqbq2muv9banpqZq4MCBxR63aNEi3XLLLVq0aJGuuOKKch8nAAAAUF2UuKbKoUOHdPvtt6t27dqqV6+e4uLiVLt2bd1xxx06dOhQ0Ocpzd7AP/74o+6//3699tprstuDy4PYGxgAAADA71VW86DSmDBhgl588UXNnz9fW7Zs0fjx45WWlqYxY8ZIKti6a/jw4d7+ixYt0vDhw/XUU0+pS5cuysjIUEZGhg4fPlyu4wQAAACqgxKtVDl48KCSkpK0e/du3XTTTWrdurWMMdqyZYsWLFigTz75RKtXr1bNmjWDPmewewPn5eVp6NChmjp1qlq0aBH0+dkbGAAAAMDvUR7zoJIYMmSIDhw4oGnTpik9PV1t27bVsmXLFB8fL0lKT09XWlqat//cuXOVm5ur22+/Xbfffru3fcSIEVqwYEG5jBEAAACoLkoUqkybNk1Op1M///yz3wqTadOmqW/fvpo2bZqefvrps56rpHsDHzlyROvWrdPXX3+tO+64Q1LB8ntjjOx2u/7973+rV69efsexNzAAAACA36Ms50GlNXbsWI0dOzbgY6cHJStXriy3cQAAAADVXYm2/1q6dKmefPLJgKFHvXr1NGPGDL377rtBnavo3sBFpaamqmvXrn79o6Oj9b///U8bN2703saMGaOWLVtq48aN6ty5c0meCgAAAAAEpSznQQAAAADObSVaqZKenq42bdoU+3jbtm2LrYcSyIQJEzRs2DB16tRJSUlJmjdvnt/ewLt379bChQtltVrVtm1bn+Pr1q0rt9vt1w4AAAAAZaWs50EAAAAAzl0lClVq166t7du3q1GjRgEf37Ztm2rVqhX0+Uq6NzAAAAAAVLSyngcBAAAAOHdZjDEm2M6jRo3STz/9pNTUVDmdTp/HsrKy1K9fPzVv3lwvvfRSmQ+0rGRmZiomJkaHDx9WdHR0SMawbvtB/bDnaEiuDQAAgIrnslt1fWLgX8hXhMrwHvhcVhXmQSUV6u+ZY1m5+ufGXyv8ugAAAAidzs1i1bxOZEiuXZL3vyVaqTJ16lR16tRJ559/vm6//Xa1atVKkrR582alpKQoKytLr7zySulHDgAAAACVDPMgAAAAAB4lClUaNWqkNWvWaOzYsZo0aZI8i1wsFov69Omj559/Xo0bNy6XgQIAAABAKDAPAgAAAOBRolBFkhISEvThhx/qt99+048//ihJOu+88xQbG1vmgwMAAACAyoB5EAAAAACpFKGKR82aNXXxxReX5VgAAAAAoFJjHgQAAABUb9ZQDwAAAAAAAAAAAOBcQKgCAAAAAAAAAAAQBEIVAAAAAAAAAACAIBCqAAAAAAAAAAAABIFQBQAAAAAAAAAAIAiEKgAAAAAAAAAAAEEgVAEAAAAAAAAAAAgCoQoAAAAAAAAAAEAQCFUAAAAAAAAAAACCQKgCAAAAAAAAAAAQBEIVAAAAAAAAAACAIBCqAAAAAAAAAAAABIFQBQAAAAAAAAAAIAiEKgAAAAAAAAAAAEEgVAEAAAAAAAAAAAgCoQoAAAAAAAAAAEAQCFUAAAAAAAAAAACCQKgCAAAAAAAAAAAQBEIVAAAAAAAAAACAIBCqAAAAAAAAAAAABIFQBQAAAAAAAAAAIAiEKgAAAAAAAAAAAEEgVAEAAAAAAAAAAAgCoQoAAAAAAAAAAEAQCFUAAAAAAAAAAACCQKgCAAAAAAAAAAAQBEIVAAAAAAAAAACAIBCqAAAAAAAAAAAABIFQBQAAAAAAAAAAIAiEKgAAAAAAAAAAAEEgVAEAAAAAAAAAAAgCoQoAAAAAAAAAAEAQCFUAAAAAAAAAAACCQKgCAAAAAAAAAAAQBEIVAAAAAAAAAACAIBCqAAAAAAAAAAAABIFQBQAAAAAAAAAAIAiEKgAAAAAAAAAAAEEgVAEAAAAAAAAAAAgCoQoAAAAAAAAAAEAQQh6qpKSkKCEhQW63W4mJiVq1alWxfT///HN169ZNtWrVUlhYmFq1aqWnn366AkcLAAAAAAAAAACqK3soL7548WKNGzdOKSkp6tatm+bOnasBAwZo8+bNatKkiV//iIgI3XHHHWrfvr0iIiL0+eef69Zbb1VERIT+8pe/hOAZAAAAAAAAAACA6iKkK1VmzpypUaNGafTo0WrdurVmzZqlxo0ba/bs2QH7d+jQQTfeeKPatGmjpk2b6s9//rP69et3xtUtAAAAAAAAAAAAZSFkoUp2drbWr1+vvn37+rT37dtXq1evDuocX3/9tVavXq3u3bsX2ycrK0uZmZk+NwAAAAAAAAAAgJIKWaiyf/9+5eXlKS4uzqc9Li5OGRkZZzy2UaNGcrlc6tSpk26//XaNHj262L7JycmKiYnx3ho3blwm4wcAAAAAAAAAANVLyAvVWywWn/vGGL+2061atUrr1q3TnDlzNGvWLC1atKjYvpMmTdLhw4e9t507d5bJuAEAAAAAAAAAQPUSskL1tWvXls1m81uVsnfvXr/VK6dLSEiQJLVr10579uzRlClTdOONNwbs63K55HK5ymbQAAAAAAAAAACg2grZShWn06nExESlpqb6tKempqpr165Bn8cYo6ysrLIeHgAAAAAAAAAAgI+QrVSRpAkTJmjYsGHq1KmTkpKSNG/ePKWlpWnMmDGSCrbu2r17txYuXChJeuGFF9SkSRO1atVKkvT555/rySef1J133hmy5wAAAAAAAAAAAKqHkIYqQ4YM0YEDBzRt2jSlp6erbdu2WrZsmeLj4yVJ6enpSktL8/bPz8/XpEmTtG3bNtntdjVv3lyPPfaYbr311lA9BQAAAAAAAAAAUE1YjDEm1IOoSJmZmYqJidHhw4cVHR0dkjGs235QP+w5GpJrAwAAoOK57FZdn9goZNevDO+BcW4J9ffMsaxc/XPjrxV+XQAAAIRO52axal4nMiTXLsn735DVVAEAAAAAAAAAADiXEKoAAAAAAAAAAAAEgVAFAAAAAAAAAAAgCIQqAAAAAAAAAAAAQSBUAQAAAAAAAAAACAKhCgAAAAAAAAAAQBAIVQAAAAAAAAAAAIJAqAIAAAAAAAAAABAEQhUAAAAAAAAAAIAgEKoAAAAAAAAAAAAEgVAFAAAAAAAAAAAgCIQqAAAAAAAAAAAAQSBUAQAAAAAAAAAACAKhCgAAAAAAAAAAQBAIVQAAAACgkktJSVFCQoLcbrcSExO1atWqM/b/7LPPlJiYKLfbrWbNmmnOnDkVNFIAAACgaiNUAQAAAIBKbPHixRo3bpwefPBBff3117rkkks0YMAApaWlBey/bds2XX755brkkkv09ddf64EHHtBdd92ld955p4JHDgAAAFQ9hCoAAAAAUInNnDlTo0aN0ujRo9W6dWvNmjVLjRs31uzZswP2nzNnjpo0aaJZs2apdevWGj16tG655RY9+eSTFTxyAAAAoOohVAEAAACASio7O1vr169X3759fdr79u2r1atXBzxmzZo1fv379eundevWKScnJ+AxWVlZyszM9LkBAAAA8EeoAgAAAACV1P79+5WXl6e4uDif9ri4OGVkZAQ8JiMjI2D/3Nxc7d+/P+AxycnJiomJ8d4aN25cNk8AAAAAqGIIVQAAAACgkrNYLD73jTF+bWfrH6jdY9KkSTp8+LD3tnPnzt85YgAAAKBqsod6AAAAAACAwGrXri2bzea3KmXv3r1+q1E86tWrF7C/3W5XrVq1Ah7jcrnkcrnKZtAAAABAFcZKFQAAAACopJxOpxITE5WamurTnpqaqq5duwY8Jikpya//v//9b3Xq1EkOh6PcxgoAAABUB4QqAAAAAFCJTZgwQS+++KLmz5+vLVu2aPz48UpLS9OYMWMkFWzdNXz4cG//MWPGaMeOHZowYYK2bNmi+fPn66WXXtLEiRND9RQAAACAKoPtvwAAAIByZLVIUW7edqP0hgwZogMHDmjatGlKT09X27ZttWzZMsXHx0uS0tPTlZaW5u2fkJCgZcuWafz48XrhhRfUoEEDPfvss7r++utD9RQAAACAKsNiPBULq4nMzEzFxMTo8OHDio6ODskY1m0/qB/2HA3JtQEAAFA+7DaLot0OxYQ5FB1mV7Tboegwh6JcdlmtxRcUrwiV4T0wzi2h/p45lpWrf278tcKvCwAAgNDp3CxWzetEhuTaJXn/y0fmAAAAgBIIc1q9gUnRECXcyVtrAAAAAKjqmPkBAAAAp7FYpAiXXdFu+6nQ5FR44nbIaacsIQAAAABUV4QqAAAAqLZsVnlXnXhCk+gwu6LcDtlCvGUXAAAAAKDyIVQBAABAlee0W31WnRRs3WVXpMsui4XwBAAAAAAQHEIVAAAAVBkRLpt3tUlhvROH3A5bqIcGAAAAAKgCCFUAAABwTrFapEjPqpMiW3dFue1y2Kh3AgAAAAAoP4QqAAAAqJTsNot31UnRACXKZZeVeicAAAAAgBAgVAEAAEBIuR3WwlonRUKUcCdvVQEAAAAAlQszVQAAAJQ7i0WKcNkV7bZ7t+vyBCguO/VOAAAAAADnBkIVAAAAlBmbVYpy+4YmBfVOHLKxZRcAAAAA4BxHqAIAAIASc9qtvqtOwhyKdtsV6bLLYiE8AQAAAABUTYQqAAAAKFa403YqNLF7C8XHhDnkdrBlFwAAAACg+iFUAQAAqOasFinS7RuaeFahOGzWUA8PAAAAAIBKg1AFAACgmrDbLN6wJNpduG1XlMsuK/VOAAAAAAA4K0IVAACAKsbtsBaEJuGFxeKj3Q5FuHjrBwAAAADA78HMGgAA4BxksUgRLnuAlSd2uezUOwEAAAAAoDwQqgAAAFRiNqsU5fYNTaLdDkW57bJT7wQAAAAAgApFqAIAAFAJOGwWb42Twq277Ip02WWxUO8EAAAAAIDKgFAFAACgAoU7bYoOsxcEKO7CECXMyZZdAAAAAABUdiHfMyIlJUUJCQlyu91KTEzUqlWriu27ZMkS9enTR3Xq1FF0dLSSkpL00UcfVeBoAQAAzs5qkaLD7GpUM0wXNIhWl2ax6tcmTn/q1EjXdGioXq3ilBgfq/PjohQX7SZQAQAAAADgHBHSlSqLFy/WuHHjlJKSom7dumnu3LkaMGCANm/erCZNmvj1/89//qM+ffro0UcfVY0aNfTyyy/rqquu0pdffqkOHTqE4BkAAIDqzG61eGucRIc5vKtPotx2Wa1s2QUAAAAAQFVjMcaYUF28c+fO6tixo2bPnu1ta926ta655holJycHdY42bdpoyJAhevjhh4Pqn5mZqZiYGB0+fFjR0dGlGvfvtW77Qf2w52hIrg0AAErOZbcW1jspsnVXhIudVHFuqAzvgXFuCfX3zLGsXP1z468Vfl0AAACETudmsWpeJzIk1y7J+9+Q/SYgOztb69ev1/333+/T3rdvX61evTqoc+Tn5+vIkSOKjY0tjyECAIBqJsJl81lx4lmF4nawPRcAAAAAAAhhqLJ//37l5eUpLi7Opz0uLk4ZGRlBneOpp57SsWPHNHjw4GL7ZGVlKSsry3s/MzOzdAMGAABVgs0qRbl9Q5OYsIItu+y2kJebAwAAAAAAlVjI96ywWHz3GzfG+LUFsmjRIk2ZMkX//Oc/Vbdu3WL7JScna+rUqb97nAAA4NzisFkKtus6FZp4tu2KdNmDeq8BAAAAAABwupCFKrVr15bNZvNblbJ3716/1SunW7x4sUaNGqW33npLl1122Rn7Tpo0SRMmTPDez8zMVOPGjUs/cAAAUKmEOa3e7bq8dU/cDoU52bILAAAAAACUrZCFKk6nU4mJiUpNTdW1117rbU9NTdXAgQOLPW7RokW65ZZbtGjRIl1xxRVnvY7L5ZLL5SqTMQMAgNCwWKRIl71IaGL3hidOO1t2AQAAAACAihHS7b8mTJigYcOGqVOnTkpKStK8efOUlpamMWPGSCpYZbJ7924tXLhQUkGgMnz4cD3zzDPq0qWLd5VLWFiYYmJiQvY8AABA2bBbLd46J0ULxke57bJa2bILAAAAAACEVkhDlSFDhujAgQOaNm2a0tPT1bZtWy1btkzx8fGSpPT0dKWlpXn7z507V7m5ubr99tt1++23e9tHjBihBQsWVPTwAQBAKbns1sLQpEix+AhXyMu9AQAAAAAAFCvkv7kYO3asxo4dG/Cx04OSlStXlv+AAABAmYlw2fyKxUe7HXI7qHcCAAAAAADOPSEPVQAAwLnNapGiTgtNPHVP7DbqnQAAAAAAgKqDUAUAAATFYbN4V51EhxUWjY9y2WWxUO8EAAAAAABUfYQqAADAR5jTWmS7rsKtu8KcbNkFAAAAAACqN0IVAACqIYtFinTZvdt0FQ1QnHa27AIAAAAAAAiEUAUAgCrMbrUo6rTQJDrMrii3QzYrW3YBAAAAAACUBKEKAABVgMtu9a46iQ4r3Lor0sU/9QAAAAAAAGWF37QAAHAOiXDZTq02cSgmzO5dfeJ2UO8EAAAAAACgvBGqAABQyVgtUtSpbbpivFt2FaxCsduodwIAAAAAABAqhCoAAISI3WYpEprYFe12KCbcoUinXVbqnQAAAAAAAFQ6hCoAAJSzMKe1yJZdhSFKuJN/hgEAAAAAAM4l/DYHAIAyYLFIES7Pdl12nwDFaWfLLgAAAAAAgKqAUAUAgBKwWy2KOi00iQ6zK8rtkI0tuwAAAAAAAKo0QhUAAAJw2q0+q048IUqE0yaLhfAEAAAAAACgOiJUAQBUaxEum3e1SeHKE4fcDluohwYAAAAAAIBKhlAFAFDlWS1SpNs3NPGsQrHbqHcCAAAAAACA4BCqAACqDLvNEnDVSZTLLiv1TgAAAAAAAPA7EaoAAM45bsepeidFCsXHhDkU7uSfNQAAAAAAAJQffvsEAKiULBYpwmX3FoqPKRKguOzUOwEAAAAAAEDFI1QBAISUzSpFuQtDk4IVKHZFuR2ysWUXAAAAAAAAKhFCFQBAhXDarYr2FIv3bt1lV6TLLouF8AQAAAAAAACVH6EKAKBMRbhs3m26CleeOOR2sGUXAAAAAAAAzm2EKgCAErNapEi3b2jiqX3isFlDPTwAAAAAAACgXBCqAACKZbdZAq46iXLZZaXeCQAAAAAAAKoZQhUAgNwOa0FoEu7wCVEiXPwzAQAAAAAAAHjw2zIAqCYsFinCZfdu01W48sQul516JwAAAAAAAMDZEKoAQBVjs0pRbt/QpGD1iUM2tuwCAAAAAAAASo1QBQDOUQ6bpUiReM/WXXZFuuyyWAhPAAAAAAAAgLJGqAIAlVy406boMHtBgOIuDFHCnGzZBQAAAAAAAFQkQhUAqASsFinSbS8Smti9q1AcNmuohwcAAAAAAABAhCoAUKHsVotPjRNPcBLlsstKvRMAAAAAAACgUiNUAYBy4LJbvYFJ0WLxES5+7AIAAAAAAADnKn67BwClZLEU1DspWizeU/vEZafeCQAAAAAAAFDVEKoAwFnYrFKU2zc0iXY7FOW2y069EwAAAAAAAKDaIFQBgFMcNkvhdl1FApRIl10WC/VOAAAAAAAAgOqOUAVAtRPutHlrnBTduivMyZZdAAAAAAAAAIpHqAKgSrJYpEiXvUhoYveGJ047W3YBAAAAAAAAKDlCFQDnNLvV4l11UnTrrii3XVYrW3YBAAAAAAAAKDuEKgDOCS67tTA0KbJ1V4SLH2MAAAAAAAAAKga/jQRQqUS4bN5tuooGKG4H9U4AAAAAAAAAhBahCoAKZ7VIUaeFJp66J3Yb9U4AAAAAAAAAVE6EKgDKjcNm8a46iQ4rLBof5bLLYqHeCQAAAAAAAIBzC6EKgN8tzGktsl1XYbH4MCdbdgEAAAAAAACoOghVAATFYpEiXfYioYnduwrFaWfLLgAAAAAAAABVH6EKAB92q+W0OicFIUqU2y6rlS27AAAAKtJvv/2mu+66S++9954k6eqrr9Zzzz2nGjVqBOyfk5Ojhx56SMuWLdMvv/yimJgYXXbZZXrsscfUoEGDChw5AAAAUDWF/OPlKSkpSkhIkNvtVmJiolatWlVs3/T0dA0dOlQtW7aU1WrVuHHjKm6gQBXjsltVJ8ql5nUi1DG+hnq0rKOrL2qgwX9orP5t66vrebXVtmGMmtQKV0y4g0AFAAAgBIYOHaqNGzdq+fLlWr58uTZu3Khhw4YV2//48ePasGGD/va3v2nDhg1asmSJfvjhB1199dUVOGoAAACg6grpSpXFixdr3LhxSklJUbdu3TR37lwNGDBAmzdvVpMmTfz6Z2VlqU6dOnrwwQf19NNPh2DEwLknwmUrsuKkcMsut4N6JwAAAJXZli1btHz5cn3xxRfq3LmzJOkf//iHkpKStHXrVrVs2dLvmJiYGKWmpvq0Pffcc7r44ouVlpYWcJ4FAAAAIHghDVVmzpypUaNGafTo0ZKkWbNm6aOPPtLs2bOVnJzs179p06Z65plnJEnz58+v0LEClZnVIkW5HYoOs3uLxEefqntit4V8QRoAAABKYc2aNYqJifEGKpLUpUsXxcTEaPXq1QFDlUAOHz4si8VS7JZhUsEH2LKysrz3MzMzSz1uAAAAoCoLWaiSnZ2t9evX6/777/dp79u3r1avXh2iUQGVm8Nm8a408dQ9iQl3KNJJvRMAAICqJiMjQ3Xr1vVrr1u3rjIyMoI6x8mTJ3X//fdr6NChio6OLrZfcnKypk6dWuqxAgAAANVFyEKV/fv3Ky8vT3FxcT7tcXFxQU8QgsEnrnAuCnNavatNYoqEKOHOkC4uAwAAQBmYMmXKWQOMtWvXSpIsFv8PzhhjArafLicnRzfccIPy8/OVkpJyxr6TJk3ShAkTvPczMzPVuHHjs14DAAAAqG5C/hva0ycDwU4QgsUnrlBZWSxShMuzXZfdJ0Bx2tmyCwAAoKq64447dMMNN5yxT9OmTbVp0ybt2bPH77F9+/b5fTjtdDk5ORo8eLC2bdumTz/99IyrVCTJ5XLJ5XKdffAAAABANReyUKV27dqy2Wx+q1L27t171glCSfCJK4Sa3WpR1GmhSXSYXVFuh2xs2QUAAFDt1K5dW7Vr1z5rv6SkJB0+fFhfffWVLr74YknSl19+qcOHD6tr167FHucJVH788UetWLFCtWrVKrOxAwAAANVdyEIVp9OpxMREpaam6tprr/W2p6amauDAgWV2HT5xhYritFt9Vp14QpQIp61MV18BAACgemjdurX69++v//u//9PcuXMlSX/5y1905ZVX+hSpb9WqlZKTk3XttdcqNzdXgwYN0oYNG/T+++8rLy/P+0G22NhYOZ3OkDwXAAAAoKoI6fZfEyZM0LBhw9SpUyclJSVp3rx5SktL05gxYyQVrDLZvXu3Fi5c6D1m48aNkqSjR49q37592rhxo5xOpy644IJQPAVUQxEum3e1SeHKE4fcDluohwYAAIAq5rXXXtNdd92lvn37SpKuvvpqPf/88z59tm7dqsOHD0uSdu3apffee0+SdNFFF/n0W7FihXr06FHuYwYAAACqspCGKkOGDNGBAwc0bdo0paenq23btlq2bJni4+MlSenp6UpLS/M5pkOHDt4/r1+/Xq+//rri4+O1ffv2ihw6qjirRYp0F4YmMadWnkS77bLbqHcCAACAihEbG6tXX331jH2MMd4/N23a1Oc+AAAAgLIV8kL1Y8eO1dixYwM+tmDBAr82JggoS3abpUhoYveuOoly2WWl3gkAAAAAAAAAoIiQhypARQhzWr2BSdEQJdzJ/wIAAAAAAAAAgODwG2VUGRaLFOGyK9qzbVeRAMVpZ8suAAAAAAAAAMDvQ6iCc47NqoCrTqLcDtnYsgsAAAAAAAAAUE4IVVBpOe1W31UnpwrFR7rsslgITwAAAAAAAAAAFYtQBSEX4bKdWnliL7LyxCG3wxbqoQEAAAAAAAAA4EWoggphtUiRbt/QJNptV3SYQw4b9U4AAAAAAAAAAJUfoQrKlN1mCbjqJMpll5V6JwAAAACCEOawqX/beso3RsZIRgVfC+9L+fmFj+UbyZiCr/LeL+yfb4ykgq+evkaFxxhT9M8FjxU91tO34L7/tYqOq+Ax376+4wzNawoAAICyQaiCUnE7rAWhSbjDJ0SJcPEtBQAAAOD3sVotio1whnoY5aZogJNfJPTxhDiFQY5/X0/AVDTwyc8vDI0KzyFJheFOoIDpbKHR6dfy9JXxDagChlk+5yz+WgAAAOcafgOOYlksUoTL7t2mq3DliV0uO/VOAAAAAKA0LBaLbBZJYjV/UKGRZ7XPaeFMYXvhSqBAAZNfaCSj/PwzXct3RdSZxqViQqP808bls2Ipn4AJAPD/27v32Kzq+w/gn6e0pRRpNzdXKyUgEwYuChNEwBDEqSjT3afLzNQFlpGFEHU3MhRodFvmLxLjJrvJaLJxmzAW5pRBFkVBlggpm5GFKeCFiXMwGUWG4/L9/aGttLT4tPZpgfN6JU14jqfnfOrnoZ6P7+ecL6cyoQrRoyiiT1nz0KSyV0n0KSuJHh7ZBQAAQIEImN5xbGjUVpDT7DF1rQY8rQQ5J7oDquWj9doKs+LtR+61OFdbdyW1DKharasp3GoeUAmYADjZCVUypKRHrmmNk2MXiz+jZ3Hkci5gAQAAoLvkcrnI5SKKBEwR0XiXUNt3JTU9eq5FENQY0Lzz+viAqdXQqGUwdOwdUG9va1pH6WjrAdWJQqOW52rcNxpftxIwNZ4DgJOLUOU0VF7ao+mOk7fWO3krRCkr8cguAAAA4ORXVJQTML3t2LuEmt8R1GIdpVaCoHxCo2Z3QEWLu5vaCrNarqN0onO1sr5Ta/tGs9ctAqokYAJOHkKVU1RRLuKMsuahSePaJyU9irq7PAAAAAA6QdHbj2bvIWRqNWCKFq9TRKSjrYRGLR9313i8PEOjNs+V3tm3ZUB1wvWdWpzr2LpSi1Dr2IBKwATdT6hykisuyr11x0mzheJLok/P4qb/qAIAAADA6U7A9I5jA5zW1mFqdR2lNvZtDJgimgdBjaHPcXcatQioThQatVXXsesopXR8QNXWmk2tnQu6mlDlJFFWUtT8rpO3H93Vu6cWAQAAAADvyOVy0SMXEQKmZsFLm6HRsY+ea3X7MY/PezupOT6gOiY0alo3qa1zNb8jqvF74tiAKlqso9RWQNXGmk0Cpu7j/9h3g/eVl8aQ6j5vhyjFUdmrJHoWW+8EAAAAAKA9crlc5HJhHaY4cWh0/CPrjgl+3g6Poq0gp42AqtVH67UVZkXzR/i1dq7y0lPj/5ELVbrBeR86o7tLAAAAAADgNCJg6hpWNAcAAAAAAMiDUAUAAAAAACAPQhUAAAAAAIA8CFUAAAAAAADyIFQBAAAAAADIg1AFAAAAAAAgD0IVAAAAAACAPAhVAAAAAAAA8iBUAQAAAAAAyINQBQAAAAAAIA9CFQAAAAAAgDwIVQAAAAAAAPIgVAEAAAAAAMiDUAUAAAAAACAPQhUAAAAAAIA8CFUAAAAAAADyIFQBAAAAAADIg1AFAAAAAAAgD0IVAAAAAACAPBR3dwFdLaUUERH79u3r5koAAKBrNF77Nl4Lw7sxNwEAkCXtmZkyF6o0NDRERES/fv26uRIAAOhaDQ0NUVlZ2d1lcAowNwEAkEX5zEy5lLGPqx09ejReeeWV6NOnT+RyuS4//759+6Jfv37x8ssvR0VFRZefn+7nPZBt+p9t+p9t+p9t3d3/lFI0NDTEOeecE0VFngDMuzM30Z30P9v0P9v0P9v0P9u6u//tmZkyd6dKUVFR1NTUdHcZUVFR4ZdDxnkPZJv+Z5v+Z5v+Z1t39t8dKrSHuYmTgf5nm/5nm/5nm/5n26kwM/mYGgAAAAAAQB6EKgAAAAAAAHkQqnSxnj17xuzZs6Nnz57dXQrdxHsg2/Q/2/Q/2/Q/2/Qf2sffmWzT/2zT/2zT/2zT/2w7lfqfuYXqAQAAAAAAOsKdKgAAAAAAAHkQqgAAAAAAAORBqAIAAAAAAJAHoUoBzJs3L84999woKyuLESNGxJNPPnnC/deuXRsjRoyIsrKyGDhwYPz0pz/tokophPb0/7e//W1ceeWVcdZZZ0VFRUWMGTMm/vjHP3ZhtXS29v79b7R+/fooLi6O4cOHF7ZACq6974E333wzZs6cGf3794+ePXvGhz/84fjlL3/ZRdXS2drb/4ULF8awYcOivLw8qqur4ytf+Urs2bOni6qlszzxxBNx3XXXxTnnnBO5XC5+97vfvev3uP4Dc1PWmZuyzdyUbWambDMzZdfpNDcJVTrZ0qVL49Zbb42ZM2dGfX19jBs3Lq655pp46aWXWt1/x44dMWnSpBg3blzU19fHd7/73Zg+fXosX768iyunM7S3/0888URceeWV8cgjj8SmTZtiwoQJcd1110V9fX0XV05naG//G/3nP/+Jm266KT7+8Y93UaUUSkfeA9dff3386U9/ivnz58fWrVtj8eLFMWTIkC6sms7S3v6vW7cubrrpppg8eXI8++yz8dBDD8XTTz8dU6ZM6eLKea/eeOONGDZsWPz4xz/Oa3/Xf2BuyjpzU7aZm7LNzJRtZqZsO63mpkSnGjVqVJo6dWqzbUOGDEkzZsxodf9vf/vbaciQIc22fe1rX0ujR48uWI0UTnv735rzzz8/1dbWdnZpdIGO9v+GG25Id9xxR5o9e3YaNmxYASuk0Nr7Hnj00UdTZWVl2rNnT1eUR4G1t///93//lwYOHNhs2/33359qamoKViOFFxFpxYoVJ9zH9R+Ym7LO3JRt5qZsMzNlm5mJRqf63OROlU70v//9LzZt2hRXXXVVs+1XXXVVPPXUU61+z4YNG47bf+LEibFx48Y4dOhQwWql83Wk/y0dPXo0Ghoa4swzzyxEiRRQR/u/YMGC2LZtW8yePbvQJVJgHXkPrFy5MkaOHBn33HNP9O3bNwYPHhzf/OY347///W9XlEwn6kj/x44dGzt37oxHHnkkUkrxz3/+M5YtWxaf+MQnuqJkupHrP7LO3JRt5qZsMzdlm5kp28xMtNfJfP1X3K1nP83s3r07jhw5ElVVVc22V1VVxauvvtrq97z66qut7n/48OHYvXt3VFdXF6xeOldH+t/SvffeG2+88UZcf/31hSiRAupI/5977rmYMWNGPPnkk1Fc7Nfxqa4j74Ht27fHunXroqysLFasWBG7d++Or3/96/Hvf//bM4JPMR3p/9ixY2PhwoVxww03xMGDB+Pw4cPxyU9+Mn70ox91Rcl0I9d/ZJ25KdvMTdlmbso2M1O2mZlor5P5+s+dKgWQy+WavU4pHbft3fZvbTunhvb2v9HixYtjzpw5sXTp0vjQhz5UqPIosHz7f+TIkfjSl74UtbW1MXjw4K4qjy7Qnt8BR48ejVwuFwsXLoxRo0bFpEmTYu7cuVFXV+eTV6eo9vR/y5YtMX369Jg1a1Zs2rQpVq1aFTt27IipU6d2Ral0M9d/YG7KOnNTtpmbss3MlG1mJtrjZL3+E/F3og9+8IPRo0eP49LV11577bhUrdHZZ5/d6v7FxcXxgQ98oGC10vk60v9GS5cujcmTJ8dDDz0UV1xxRSHLpEDa2/+GhobYuHFj1NfXx7Rp0yLirYvFlFIUFxfH6tWr4/LLL++S2ukcHfkdUF1dHX379o3KysqmbUOHDo2UUuzcuTMGDRpU0JrpPB3p/w9+8IO49NJL41vf+lZERFx44YXRu3fvGDduXNx9990+dX0ac/1H1pmbss3clG3mpmwzM2WbmYn2Opmv/9yp0olKS0tjxIgRsWbNmmbb16xZE2PHjm31e8aMGXPc/qtXr46RI0dGSUlJwWql83Wk/xFvfdLqlltuiUWLFnkm5Cmsvf2vqKiIZ555JjZv3tz0NXXq1PjIRz4SmzdvjksuuaSrSqeTdOR3wKWXXhqvvPJK7N+/v2nb3//+9ygqKoqampqC1kvn6kj/Dxw4EEVFzS/FevToERHvfPqG05PrP7LO3JRt5qZsMzdlm5kp28xMtNdJff3XyQvfZ96SJUtSSUlJmj9/ftqyZUu69dZbU+/evdMLL7yQUkppxowZ6ctf/nLT/tu3b0/l5eXptttuS1u2bEnz589PJSUladmyZd31I/AetLf/ixYtSsXFxemBBx5Iu3btavrau3dvd/0IvAft7X9Ls2fPTsOGDeuiaimE9r4HGhoaUk1NTfr85z+fnn322bR27do0aNCgNGXKlO76EXgP2tv/BQsWpOLi4jRv3ry0bdu2tG7dujRy5Mg0atSo7voR6KCGhoZUX1+f6uvrU0SkuXPnpvr6+vTiiy+mlFz/QWvMTdlmbso2c1O2mZmyzcyUbafT3CRUKYAHHngg9e/fP5WWlqaLLroorV27tumf3XzzzWn8+PHN9n/88cfTxz72sVRaWpoGDBiQfvKTn3RxxXSm9vR//PjxKSKO+7r55pu7vnA6RXv//h/LcHB6aO974G9/+1u64oorUq9evVJNTU26/fbb04EDB7q4ajpLe/t///33p/PPPz/16tUrVVdXpxtvvDHt3Lmzi6vmvXrsscdO+N9z13/QOnNTtpmbss3clG1mpmwzM2XX6TQ35VJyrxQAAAAAAMC7saYKAAAAAABAHoQqAAAAAAAAeRCqAAAAAAAA5EGoAgAAAAAAkAehCgAAAAAAQB6EKgAAAAAAAHkQqgAAAAAAAORBqAIAAAAAAJAHoQoAAAAAAEAehCoAp7lcLnfCr1tuuaUg550zZ04MHz68IMfuiMcffzxyuVzs3bu3u0sBAABOMuamt5ibAN5dcXcXAEBh7dq1q+nPS5cujVmzZsXWrVubtvXq1avZ/ocOHYqSkpIuqw8AAKC7mZsAyJc7VQBOc2effXbTV2VlZeRyuabXBw8ejPe9733xm9/8Ji677LIoKyuLX//61xERsWDBghg6dGiUlZXFkCFDYt68ec2O+53vfCcGDx4c5eXlMXDgwLjzzjvj0KFDERFRV1cXtbW18Ze//KXpk111dXUR8dYnwH72s5/FtddeG+Xl5TF06NDYsGFDPP/883HZZZdF7969Y8yYMbFt27Zm5/v9738fI0aMiLKyshg4cGDU1tbG4cOHm/55LpeLBx98MD7zmc9EeXl5DBo0KFauXBkRES+88EJMmDAhIiLe//73F/STZgAAwKnH3GRuAshbAiAzFixYkCorK5te79ixI0VEGjBgQFq+fHnavn17+sc//pF+/vOfp+rq6qZty5cvT2eeeWaqq6tr+t677rorrV+/Pu3YsSOtXLkyVVVVpR/+8IcppZQOHDiQvvGNb6SPfvSjadeuXWnXrl3pwIEDKaWUIiL17ds3LV26NG3dujV9+tOfTgMGDEiXX355WrVqVdqyZUsaPXp0uvrqq5vOtWrVqlRRUZHq6urStm3b0urVq9OAAQPSnDlzmvaJiFRTU5MWLVqUnnvuuTR9+vR0xhlnpD179qTDhw+n5cuXp4hIW7duTbt27Up79+4t8L9tAADgVGRuMjcBnIhQBSBD2hoO7rvvvmb79evXLy1atKjZtrvuuiuNGTOmzWPfc889acSIEU2vZ8+enYYNG3bcfhGR7rjjjqbXGzZsSBGR5s+f37Rt8eLFqaysrOn1uHHj0ve///1mx/nVr36Vqqur2zzu/v37Uy6XS48++mhKKaXHHnssRUR6/fXX2/wZAAAAzE3mJoATsaYKADFy5MimP//rX/+Kl19+OSZPnhxf/epXm7YfPnw4Kisrm14vW7Ys7rvvvnj++edj//79cfjw4aioqMjrfBdeeGHTn6uqqiIi4oILLmi27eDBg7Fv376oqKiITZs2xdNPPx3f+973mvY5cuRIHDx4MA4cOBDl5eXHHbd3797Rp0+feO211/L91wAAANAmcxMAERaqByDeupBudPTo0YiI+MUvfhGXXHJJs/169OgRERF//vOf44tf/GLU1tbGxIkTo7KyMpYsWRL33ntvXuc7dkHHXC7X5rbGWo4ePRq1tbXx2c9+9rhjlZWVtXrcxuM0HgMAAOC9MDcBECFUAaCFqqqq6Nu3b2zfvj1uvPHGVvdZv3599O/fP2bOnNm07cUXX2y2T2lpaRw5cqRTarroooti69atcd5553X4GKWlpRERnVYTAACQXeYmgOwSqgBwnDlz5sT06dOjoqIirrnmmnjzzTdj48aN8frrr8ftt98e5513Xrz00kuxZMmSuPjii+MPf/hDrFixotkxBgwYEDt27IjNmzdHTU1N9OnTJ3r27NmhembNmhXXXntt9OvXL77whS9EUVFR/PWvf41nnnkm7r777ryO0b9//8jlcvHwww/HpEmTolevXnHGGWd0qB4AAABzE0A2FXV3AQCcfKZMmRIPPvhg1NXVxQUXXBDjx4+Purq6OPfccyMi4lOf+lTcdtttMW3atBg+fHg89dRTceeddzY7xuc+97m4+uqrY8KECXHWWWfF4sWLO1zPxIkT4+GHH441a9bExRdfHKNHj465c+dG//798z5G3759o7a2NmbMmBFVVVUxbdq0DtcDAABgbgLIplxKKXV3EQAAAAAAACc7d6oAAAAAAADkQagCAAAAAACQB6EKAAAAAABAHoQqAAAAAAAAeRCqAAAAAAAA5EGoAgAAAAAAkAehCgAAAAAAQB6EKgAAAAAAAHkQqgAAAAAAAORBqAIAAAAAAJAHoQoAAAAAAEAehCoAAAAAAAB5+H/TvZ3pQdqK1wAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABlUAAAIzCAYAAACZcp93AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACJoElEQVR4nOzdd3iUVf7+8Xv6pNNDCyGiFCkKYYXAIk06ioUliktR+CqiIs0SG5BFo4iIq4ayivywIPZ1FXGjgosLKkVlFRZdBUIJXQhFUs/vD8iQYSYwCUkmJO/Xdc2SOXOe5/k8Qxbn5M45x2KMMQIAAAAAAAAAAMBZWYNdAAAAAAAAAAAAwIWAUAUAAAAAAAAAACAAhCoAAAAAAAAAAAABIFQBAAAAAAAAAAAIAKEKAAAAAAAAAABAAAhVAAAAAAAAAAAAAkCoAgAAAAAAAAAAEABCFQAAAAAAAAAAgAAQqgAAAAAAAAAAAASAUAXABW/hwoWyWCxyu93atm2bz+vdunVTq1atglCZdODAASUlJenSSy9VWFiYoqKi1Lx5cw0bNkwbNmzw9Fu1apWmTp2qQ4cOlUkdr7/+umbPnu33NYvFoqlTp3q1ffbZZ2rfvr3CwsJksVj0/vvve97nrVu3llpdU6dOlcViOWe/kSNHymKxeB5Op1NNmjTR5MmTlZmZWWr1VHTdunVTt27dgl0GAAAAoK+//lrXXXedGjVqJJfLpejoaCUkJGjSpEle/VJTU7Vw4cIyqeH48eOaOnWqVqxY4fNaUeOXhx9+WI0aNZLdble1atUklc3n7MaNG2vkyJHn7Fd4nGOxWBQZGalOnTpp8eLFpVpPRbZ161ZZLJYy+z4BgNJmD3YBAFBasrKy9PDDD+uVV14JdimSpKNHj6pjx446evSo7r33Xl122WX6/fff9dNPP+ndd9/Vd999pzZt2kg6GapMmzZNI0eO9HywL02vv/66fvjhB40fP97ntdWrV6thw4ae58YYDRkyRE2bNtUHH3ygsLAwNWvWTLm5uVq9erXq1atX6vUFIiQkRJ9//rkk6dChQ3r77bf19NNPa8OGDfrnP/8ZlJrKW2pqarBLAAAAAPTRRx/pmmuuUbdu3TRjxgzVq1dPGRkZWrt2rd544w09/fTTnr6pqamqVatWQAFDcR0/flzTpk2TJJ9QZMCAAT7jl7///e967LHH9NBDD6lfv35yuVyeGoNp8ODBmjRpkowx2rJlix5//HENHTpUxhgNHTo0qLWVh3r16mn16tVq0qRJsEsBgIAQqgCoNPr27avXX39dkydP1mWXXRbscvTWW2/pf//7nz7//HN1797d67WJEycqPz+/xOf+/fffFRIScr4lSpI6duzo9XzXrl06ePCgrrvuOvXs2dPrtdq1a5fKNUvCarV61dq3b1/9+uuvSktL05YtWxQXF1duteTl5Sk3N9czCCsvl156ableDwAAAPBnxowZiouL0yeffCK7/fSPlm688UbNmDGjxOfNycmRxWLxOmdJ1a5d22f88sMPP0iSxo0bpzp16njag/05Ozo62jPWSUhIUOfOndW4cWPNmzev3EOV48ePKzQ0tFyv6XK5fMalAFCRsfwXgErjvvvuU82aNXX//fefs++JEyeUlJSkuLg4OZ1ONWjQQHfeeafP8luNGzfWwIEDtWzZMrVr104hISFq3ry5FixYcM5rHDhwQJKKnNlhtZ78J3jq1Km69957JUlxcXGead8FU9gLanj33XfVtm1bud1uz29jvfDCC7ryyitVp04dhYWFqXXr1poxY4ZycnI81+nWrZs++ugjbdu2zWtaeYHCy39NnTrVM2vl/vvvl8ViUePGjSUVPX3+008/Vc+ePRUZGanQ0FB17txZn332mc/9fvTRR7r88svlcrkUFxenmTNnnvM9PJf27dtLkvbs2ePVvmTJEiUkJCgsLEzh4eHq06ePvv32W5/j//a3v6lp06ZyuVy69NJL9frrr2vkyJGee5ZOT0WfMWOGpk+frri4OLlcLi1fvlyStHbtWl1zzTWqUaOG3G632rZtqzfffNPrOsePH9fkyZMVFxcnt9utGjVqqH379l5T+n/99VfdeOONql+/vmf5hJ49e+q7777z9PG3LMHBgwc1duxYNWjQQE6nUxdddJEeeughZWVlefWzWCy666679Morr6hFixYKDQ3VZZddpg8//DDg9xsAAACQTo51atWq5Tf8KBjnSCfHMj/++KO++OILzzik4LP2ihUrZLFY9Morr2jSpElq0KCBXC6X/ve//2nfvn0aO3asLr30UoWHh6tOnTrq0aOHVq5c6Tn31q1bPaHJtGnTPOcvmBFz5vilcePGevjhhyWdDDEKj4P8fc7Ozs7W9OnT1bx5c7lcLtWuXVu33HKL9u3b59UvJydH9913n+rWravQ0FD98Y9/1DfffFPSt1aSFBsbq9q1a/uMczIzMz3jioJx7Pjx43Xs2DGvfocOHdKoUaNUo0YNhYeHa8CAAfr11199ln4uWI55/fr1Gjx4sKpXr+6ZLWKMUWpqqi6//HKFhISoevXqGjx4sH799Veva3377bcaOHCg6tSpI5fLpfr162vAgAHasWOHp89bb72lDh06KCoqSqGhobrooot06623el4vavmvL7/8Uj179lRERIRCQ0PVqVMnffTRR159Cv6ely9frjvuuEO1atVSzZo1df3112vXrl3Ffu8BIBDMVAFQaUREROjhhx/WPffco88//1w9evTw288Yo2uvvVafffaZkpKS1KVLF23YsEFTpkzR6tWrtXr1aq8ZCN9//70mTZqkBx54QNHR0XrxxRc1atQoXXzxxbryyiuLrCchIUGSNHz4cD344IPq0qWLatas6dNv9OjROnjwoJ577jm9++67nhCm8G9LrV+/Xps2bdLDDz+suLg4hYWFSZJ++eUXDR061POh+vvvv9djjz2m//73v57gJzU1Vbfddpt++eUXvffee2d9D0ePHq3LLrtM119/ve6++24NHTr0rLMxXn31VQ0fPlyDBg3S//t//08Oh0Pz5s1Tnz599Mknn3hmunz22WcaNGiQEhIS9MYbbygvL08zZszwGSQU15YtW2S323XRRRd52h5//HE9/PDDuuWWW/Twww8rOztbTz31lLp06aJvvvnG877Onz9ft99+u2644QY988wzOnz4sKZNm+YTRhT461//qqZNm2rmzJmKjIzUJZdcouXLl6tv377q0KGD5s6dq6ioKL3xxhtKTEzU8ePHPQO6iRMn6pVXXtH06dPVtm1bHTt2TD/88IMneJOk/v37e96XRo0aaf/+/Vq1atVZ99k5ceKEunfvrl9++UXTpk1TmzZttHLlSqWkpOi7777zGXB89NFHWrNmjZKTkxUeHq4ZM2bouuuu0+bNm73eQwAAAOBsEhIS9OKLL2rcuHG6+eab1a5dOzkcDp9+7733ngYPHqyoqCjPEltnji+SkpKUkJCguXPnymq1qk6dOp7gYsqUKapbt66OHj2q9957T926ddNnn32mbt26qV69elq2bJn69u2rUaNGafTo0ZKKnl3/3nvv6YUXXtBLL72kZcuWKSoqymsZ5MLy8/M1aNAgrVy5Uvfdd586deqkbdu2acqUKerWrZvWrl3rWTng//7v/7Ro0SJNnjxZvXr10g8//KDrr79eR44cKdmbK+nw4cM6ePCg1+yN48ePq2vXrtqxY4cefPBBtWnTRj/++KMeffRR/ec//9Gnn34qi8Wi/Px8XX311Vq7dq2mTp2qdu3aafXq1erbt2+R17v++ut14403asyYMZ6A5vbbb9fChQs1btw4Pfnkkzp48KCSk5PVqVMnff/994qOjtaxY8fUq1cvxcXF6YUXXlB0dLR2796t5cuXe+5/9erVSkxMVGJioqZOnerZC7VgaeeifPHFF+rVq5fatGmjl156SS6XS6mpqbr66qu1ePFiJSYmevUfPXq0BgwYoNdff13bt2/Xvffeqz//+c/nvA4AlIgBgAvcyy+/bCSZNWvWmKysLHPRRReZ9u3bm/z8fGOMMV27djUtW7b09F+2bJmRZGbMmOF1niVLlhhJZv78+Z622NhY43a7zbZt2zxtv//+u6lRo4a5/fbbz1lbcnKycTqdRpKRZOLi4syYMWPM999/79XvqaeeMpLMli1bfM4RGxtrbDab2bx581mvlZeXZ3JycsyiRYuMzWYzBw8e9Lw2YMAAExsb6/c4SWbKlCme51u2bDGSzFNPPeXVr+B9Lqjx2LFjpkaNGubqq6/2qeOyyy4zV1xxhaetQ4cOpn79+ub333/3tGVmZpoaNWqYQP5TNGLECBMWFmZycnJMTk6O2b9/v5kzZ46xWq3mwQcf9PRLT083drvd3H333V7HHzlyxNStW9cMGTLEU2PdunVNhw4dvPpt27bNOBwOr/eq4P1o0qSJyc7O9urfvHlz07ZtW5OTk+PVPnDgQFOvXj2Tl5dnjDGmVatW5tprry3y/vbv328kmdmzZ5/1fejatavp2rWr5/ncuXONJPPmm2969XvyySeNJPPPf/7T0ybJREdHm8zMTE/b7t27jdVqNSkpKWe9LgAAAFDY/v37zR//+EfPOMfhcJhOnTqZlJQUc+TIEa++LVu29PoMW2D58uVGkrnyyivPeb3c3FyTk5Njevbsaa677jpP+759+3zGMwXOHL8YY8yUKVOMJLNv3z6vvmd+zl68eLGRZN555x2vfmvWrDGSTGpqqjHGmE2bNhlJZsKECV79XnvtNSPJjBgx4pz3JsmMHTvW5OTkmOzsbPPTTz+Za665xkRERJi1a9d6+qWkpBir1WrWrFnjdfzbb79tJJmlS5caY4z56KOPjCQzZ84cr34pKSk+71XB+/Hoo4969V29erWRZJ5++mmv9u3bt5uQkBBz3333GWOMWbt2rZFk3n///SLvb+bMmUaSOXToUJF9CsZcL7/8sqetY8eOpk6dOl7fT7m5uaZVq1amYcOGnvF+wd/z2LFjvc45Y8YMI8lkZGQUeV0AKCmW/wJQqTidTk2fPl1r1671WYKpQMFvqpy5UeKf/vQnhYWF+Sxddfnll6tRo0ae5263W02bNtW2bdvOWc8jjzyi9PR0LViwQLfffrvCw8M1d+5cxcfHey39dC5t2rRR06ZNfdq//fZbXXPNNapZs6ZsNpscDoeGDx+uvLw8/fTTTwGfvyRWrVqlgwcPasSIEcrNzfU88vPz1bdvX61Zs0bHjh3TsWPHtGbNGl1//fVyu92e4yMiInT11VcHfL1jx47J4XDI4XCoVq1auuOOO5SYmKjHHnvM0+eTTz5Rbm6uhg8f7lWT2+1W165dPUuqbd68Wbt379aQIUO8rtGoUSN17tzZ7/WvueYar9+++9///qf//ve/uvnmmyXJ63r9+/dXRkaGNm/eLEm64oor9PHHH+uBBx7QihUr9Pvvv3udu0aNGmrSpImeeuopzZo1S99++21Ae+58/vnnCgsL0+DBg73aC763z/xe7t69uyIiIjzPo6OjVadOnYC+lwEAAIACNWvW1MqVK7VmzRo98cQTGjRokH766SclJSWpdevW2r9/f8DnuuGGG/y2z507V+3atZPb7ZbdbpfD4dBnn32mTZs2ldZtFOnDDz9UtWrVdPXVV3t9zr/88stVt25dz7iiYEnggjFBgSFDhhRrX5jU1FQ5HA45nU41bdpUH3/8sRYvXqz4+Hivmlq1aqXLL7/cq6Y+ffp4LR/9xRdfeGoo7Kabbiry+mf+HXz44YeyWCz685//7HWtunXr6rLLLvNc6+KLL1b16tV1//33a+7cudq4caPPuf/whz946nnzzTe1c+fOc74fx44d09dff63BgwcrPDzc026z2TRs2DDt2LHDM9YqcM0113g9b9OmjSQx1gFQJghVAFQ6N954o9q1a6eHHnrIa2+RAgcOHJDdbveZFm6xWFS3bl2vJZkk+V2yy+Vy+fxgvCjR0dG65ZZbNHfuXG3YsEFffPGFnE6n7rnnnoDvyd++LOnp6erSpYt27typZ5991jOoeeGFFyQp4PpKqmDprsGDB3vCjoLHk08+KWOMDh48qN9++035+fmqW7euzzn8tRUlJCREa9as0Zo1a/SPf/xD3bp10+LFi/XEE0/41PSHP/zBp6YlS5Z4BncFf8fR0dE+1/HXJvn+HRRca/LkyT7XGjt2rCR5rvfXv/5V999/v95//311795dNWrU0LXXXquff/5Z0snvvc8++0x9+vTRjBkz1K5dO9WuXVvjxo0767IBBw4cUN26db32yJGkOnXqyG63l/r3MgAAAFBY+/btdf/99+utt97Srl27NGHCBG3durVYm9X7G+vMmjVLd9xxhzp06KB33nlHX331ldasWaO+ffuWy2fXPXv26NChQ3I6nT6f9Xfv3u0zrjhzXGO32/1+9i7KkCFDtGbNGq1atUrz5s1TRESEbrzxRs94oaCmDRs2+NQTEREhY4xXTXa7XTVq1PC6RlHjHMn/WMcYo+joaJ/rffXVV55rRUVF6YsvvtDll1+uBx98UC1btlT9+vU1ZcoUz1j8yiuv1Pvvv+/55beGDRuqVatWZ/0lw99++03GGL/fG/Xr1/fcZ2Fnvt8Fy8wx1gFQFthTBUClY7FY9OSTT6pXr16aP3++z+s1a9ZUbm6u9u3b5xWsGGO0e/duz2/SlJUrr7xSvXv31vvvv6+9e/eqTp065zzmzB+aS9L777+vY8eO6d1331VsbKynvfDG5mWpVq1akqTnnnvOa63fwqKjo5WTkyOLxaLdu3f7vO6vrShWq9WzMb0k9erVS/Hx8Zo2bZpuvvlmxcTEeGp6++23vd6TMxV84Pa3p0tRNZ35d1BwraSkJF1//fV+j2nWrJkkKSwsTNOmTdO0adO0Z88ez6yVq6++Wv/9738lndyM8qWXXpIk/fTTT3rzzTc1depUZWdna+7cuUXex9dffy1jjFd9e/fuVW5urqdGAAAAoKw5HA5NmTJFzzzzjH744YeAj/M31nn11VfVrVs3zZkzx6v9fPYpKY6Czc6XLVvm9/WC2d8F44rdu3erQYMGntdzc3N9fuh/NrVr1/aMdRISEtSiRQt17dpVEyZM0IcffuipKSQkxLN3pr+aC2rKzc3VwYMHvYKVs429/I11LBaLVq5c6XePzcJtrVu31htvvCFjjDZs2KCFCxcqOTlZISEheuCBByRJgwYN0qBBg5SVlaWvvvpKKSkpGjp0qBo3buzZi7Sw6tWry2q1KiMjw+e1gs3nGesACCZmqgColK666ir16tVLycnJOnr0qNdrBZunv/rqq17t77zzjo4dO+Z5/Xzt2bPH7xJOeXl5+vnnnxUaGqpq1apJKtlv0RR88C38gdYYo7/97W8+fctiNkLnzp1VrVo1bdy4Ue3bt/f7cDqdCgsL0xVXXKF3331XJ06c8Bx/5MgR/eMf/yjx9V0ul1544QWdOHFC06dPlyT16dNHdrtdv/zyS5E1SSfDjrp16/osEZeenq5Vq1YFdP1mzZrpkksu0ffff1/ktQovtVUgOjpaI0eO1E033aTNmzfr+PHjPn2aNm2qhx9+WK1bt9b69euLrKFnz546evSo3n//fa/2RYsWeV4HAAAASpu/H3ZL8izNVTCbQCrZWMRisfj8MH/Dhg1avXq1V1tZzUYYOHCgDhw4oLy8PL+f8wt+eapbt26SpNdee83r+DfffFO5ubklvn6XLl00fPhwffTRR557HjhwoH755RfVrFnTb02NGzeWJHXt2lWStGTJEq9zvvHGGwFff+DAgTLGaOfOnX6v1bp1a59jLBaLLrvsMj3zzDOqVq2a33GMy+VS165d9eSTT0o6uZy1P2FhYerQoYPeffddr7/b/Px8vfrqq2rYsKHf5bEBoLwwUwVApfXkk08qPj5ee/fuVcuWLT3tvXr1Up8+fXT//fcrMzNTnTt31oYNGzRlyhS1bdtWw4YNK5Xrv/LKK5o3b56GDh2qP/zhD4qKitKOHTv04osv6scff9Sjjz4qp9MpSZ4Ppc8++6xGjBghh8OhZs2a+f2hfOH7cDqduummm3TffffpxIkTmjNnjn777Tefvq1bt9a7776rOXPmKD4+3mfWR0mEh4frueee04gRI3Tw4EENHjxYderU0b59+/T9999r3759nt8s+8tf/qK+ffuqV69emjRpkvLy8vTkk08qLCxMBw8eLHENXbt2Vf/+/fXyyy/rgQceUFxcnJKTk/XQQw/p119/Vd++fVW9enXt2bNH33zzjWfGiNVq1bRp03T77bdr8ODBuvXWW3Xo0CFNmzZN9erVk9Ua2O8czJs3T/369VOfPn00cuRINWjQQAcPHtSmTZu0fv16vfXWW5KkDh06aODAgWrTpo2qV6+uTZs26ZVXXlFCQoJCQ0O1YcMG3XXXXfrTn/6kSy65RE6nU59//rk2bNjg+e0uf4YPH64XXnhBI0aM0NatW9W6dWt9+eWXevzxx9W/f39dddVVJX5vAQAAgKL06dNHDRs21NVXX63mzZsrPz9f3333nZ5++mmFh4d7LXVcMJNhyZIluuiii+R2u/3+UL6wgQMH6i9/+YumTJmirl27avPmzUpOTlZcXJxXWBEREaHY2Fj9/e9/V8+ePVWjRg3VqlXLEzCU1I033qjXXntN/fv31z333KMrrrhCDodDO3bs0PLlyzVo0CBdd911atGihf785z9r9uzZcjgcuuqqq/TDDz9o5syZioyMPK8a/vKXv2jJkiV65JFH9Omnn2r8+PF65513dOWVV2rChAlq06aN8vPzlZ6ern/+85+aNGmSOnTooL59+6pz586aNGmSMjMzFR8fr9WrV3t+8SqQsU7nzp1122236ZZbbtHatWt15ZVXKiwsTBkZGfryyy/VunVr3XHHHfrwww+Vmpqqa6+9VhdddJGMMXr33Xd16NAh9erVS5L06KOPaseOHerZs6caNmyoQ4cO6dlnn5XD4fAEQP6kpKSoV69e6t69uyZPniyn06nU1FT98MMPWrx4sd8ZTgBQbkp543sAKHcvv/yykWTWrFnj89rQoUONJNOyZUuv9t9//93cf//9JjY21jgcDlOvXj1zxx13mN9++82rX2xsrBkwYIDPebt27Wq6du161ro2btxoJk2aZNq3b29q165t7Ha7qV69uunatat55ZVXfPonJSWZ+vXrG6vVaiSZ5cuXn7UGY4z5xz/+YS677DLjdrtNgwYNzL333ms+/vhjr+ONMebgwYNm8ODBplq1asZisZjC//xLMlOmTPE837Jli5FknnrqKa9rFbzPW7Zs8Wr/4osvzIABA0yNGjWMw+EwDRo0MAMGDDBvvfWWV78PPvjAtGnTxjidTtOoUSPzxBNPmClTpphA/lM0YsQIExYW5ve1//znP8ZqtZpbbrnF0/b++++b7t27m8jISONyuUxsbKwZPHiw+fTTT72OnT9/vrn44ouN0+k0TZs2NQsWLDCDBg0ybdu2Pef7UeD77783Q4YMMXXq1DEOh8PUrVvX9OjRw8ydO9fT54EHHjDt27c31atXNy6Xy1x00UVmwoQJZv/+/cYYY/bs2WNGjhxpmjdvbsLCwkx4eLhp06aNeeaZZ0xubq7nPP6+7w4cOGDGjBlj6tWrZ+x2u4mNjTVJSUnmxIkTXv0kmTvvvNOn/tjYWDNixAi/9wYAAAD4s2TJEjN06FBzySWXmPDwcONwOEyjRo3MsGHDzMaNG736bt261fTu3dtEREQYSSY2NtYYY8zy5cuNJJ9xgzHGZGVlmcmTJ5sGDRoYt9tt2rVrZ95//30zYsQIz/EFPv30U9O2bVvjcrmMJM9nW3/jl4Lxx759+7zO4e9zdk5Ojpk5c6ZnvBUeHm6aN29ubr/9dvPzzz971Tpp0iRTp04d43a7TceOHc3q1asD/pxd1Od0Y4y59957jSTzxRdfGGOMOXr0qHn44YdNs2bNjNPpNFFRUaZ169ZmwoQJZvfu3Z7jDh48aG655RZTrVo1Exoaanr16mW++uorI8k8++yz53w/CixYsMB06NDBhIWFmZCQENOkSRMzfPhws3btWmOMMf/973/NTTfdZJo0aWJCQkJMVFSUueKKK8zChQs95/jwww9Nv379TIMGDYzT6TR16tQx/fv3NytXrvT0KRhzvfzyy17XX7lypenRo4fn+h07djT/+Mc/vPoU9fOAgu+vwuNiACgtFmOMKccMBwCACuvQoUNq2rSprr32Wr/78QAAAADAhej111/XzTffrH//+9/q1KlTsMsBgAsay38BAKqk3bt367HHHlP37t1Vs2ZNbdu2Tc8884yOHDnitVwBAAAAAFxIFi9erJ07d6p169ayWq366quv9NRTT+nKK68kUAGAUkCoAgCoklwul7Zu3aqxY8fq4MGDCg0NVceOHTV37lyvPXgAAAAA4EISERGhN954Q9OnT9exY8dUr149jRw5UtOnTw92aQBQKbD8FwAAAAAAAAAAQACswS4AAAAAAAAAAADgQkCoAgBlZOvWrbJYLLJYLJo6darfPrfeequnT2nq1q2bunXrVqJjGzdurJEjRwbUr6B2i8Wi8PBwdejQQYsWLSrRdYtr4cKFslgs2rp1q6etpPf9+OOP6/333/dpX7FihSwWi1asWFHiOgEAAAD4x5ipbDFmAoCyQagCAGUsIiJCCxcuVH5+vlf70aNH9dZbbykyMjJIlZ2/zp07a/Xq1Vq9erXnA/uIESM0Z86coNSTmpqq1NTUYh9X1AChXbt2Wr16tdq1a1cK1QEAAADwhzFT+WHMBADnj1AFAMpYYmKitm3bps8++8yrfcmSJcrLy9M111wTpMrOX7Vq1dSxY0d17NhRgwcP1rJlyxQZGalZs2YVeUxeXp6ysrLKpJ5LL71Ul156aamdLzIyUh07drygB3EAAABARceYyRtjJgCo2AhVAKCMNWvWTJ06ddKCBQu82hcsWKDrr79eUVFRPsfk5+drxowZat68uVwul+rUqaPhw4drx44dXv2MMZoxY4ZiY2PldrvVrl07ffzxx37ryMzM1OTJkxUXFyen06kGDRpo/PjxOnbsWKnda7Vq1dSsWTNt27ZN0unp/DNmzND06dMVFxcnl8ul5cuXS5LWrl2ra665RjVq1JDb7Vbbtm315ptv+pz3q6++UufOneV2u1W/fn0lJSUpJyfHp5+/qexZWVlKTk5WixYt5Ha7VbNmTXXv3l2rVq2SJFksFh07dkz/7//9P8+0/IJzFDWV/YMPPlBCQoJCQ0MVERGhXr16afXq1V59pk6dKovFoh9//FE33XSToqKiFB0drVtvvVWHDx/26vvWW2+pQ4cOioqKUmhoqC666CLdeuutAb/vAAAAwIWMMRNjJsZMAC4k9mAXAABVwahRo3TnnXfqt99+U/Xq1bV582atWrVK06dP1zvvvOPT/4477tD8+fN11113aeDAgdq6daseeeQRrVixQuvXr1etWrUkSdOmTdO0adM0atQoDR48WNu3b9f//d//KS8vT82aNfOc7/jx4+ratat27NihBx98UG3atNGPP/6oRx99VP/5z3/06aeflsoaxTk5Odq2bZtq167t1f7Xv/5VTZs21cyZMxUZGalLLrlEy5cvV9++fdWhQwfNnTtXUVFReuONN5SYmKjjx4971ijeuHGjevbsqcaNG2vhwoUKDQ1VamqqXn/99XPWk5ubq379+mnlypUaP368evToodzcXH311VdKT09Xp06dtHr1avXo0UPdu3fXI488Ikln/S2r119/XTfffLN69+6txYsXKysrSzNmzFC3bt302Wef6Y9//KNX/xtuuEGJiYkaNWqU/vOf/ygpKUmSPAPG1atXKzExUYmJiZo6darcbre2bdumzz//POD3HQAAALjQMWZizMSYCcAFwwAAysSWLVuMJPPUU0+ZI0eOmPDwcPP8888bY4y59957TVxcnMnPzzd33nmnKfzP8aZNm4wkM3bsWK/zff3110aSefDBB40xxvz222/G7Xab6667zqvfv//9byPJdO3a1dOWkpJirFarWbNmjVfft99+20gyS5cu9bTFxsaaESNGnPP+YmNjTf/+/U1OTo7JyckxW7ZsMSNGjDCSzL333uv1HjRp0sRkZ2d7Hd+8eXPTtm1bk5OT49U+cOBAU69ePZOXl2eMMSYxMdGEhISY3bt3e/rk5uaa5s2bG0lmy5YtnvauXbt63feiRYuMJPO3v/3trPcSFhbm956XL19uJJnly5cbY4zJy8sz9evXN61bt/bUZ4wxR44cMXXq1DGdOnXytE2ZMsVIMjNmzPA659ixY43b7Tb5+fnGGGNmzpxpJJlDhw6dtUYAAACgsmHMxJiJMROACxHLfwFAOQgPD9ef/vQnLViwQLm5uVq0aJFuueUWv7/pVDDNu+C3jgpcccUVatGihWed4dWrV+vEiRO6+eabvfp16tRJsbGxXm0ffvihWrVqpcsvv1y5ubmeR58+ffxO1Q7U0qVL5XA45HA4FBcXpzfffFN33323pk+f7tXvmmuukcPh8Dz/3//+p//+97+e2gvX1L9/f2VkZGjz5s2e96Nnz56Kjo72HG+z2ZSYmHjO+j7++GO53e5Smxa+efNm7dq1S8OGDZPVevo/oeHh4brhhhv01Vdf6fjx417HnLn+c5s2bXTixAnt3btXkvSHP/xBkjRkyBC9+eab2rlzZ6nUCgAAAFxIGDMxZirAmAlARUeoAgDlZNSoUVq/fr0ee+wx7du3z2cAUODAgQOSpHr16vm8Vr9+fc/rBX/WrVvXp9+ZbXv27NGGDRs8H+YLHhERETLGaP/+/SW6pz/+8Y9as2aN1q5dq40bN+rQoUP661//KqfT6dXvzHvZs2ePJGny5Mk+NY0dO1aSPDUdOHAgoHv0Z9++fapfv77Xh/nzca6/m/z8fP32229e7TVr1vR67nK5JEm///67JOnKK6/U+++/r9zcXA0fPlwNGzZUq1attHjx4lKpGQAAALhQMGbyrkdizCQxZgJQ8bCnCgCUk86dO6tZs2ZKTk5Wr169FBMT47dfwQfKjIwMNWzY0Ou1Xbt2edYGLui3e/dun3Ps3r1bjRs39jyvVauWQkJCfDZ+LPx6SURFRal9+/bn7Hfmb5cVXC8pKUnXX3+932MK1jeuWbNmkfd4LrVr19aXX36p/Pz8UhkkFP67OdOuXbtktVpVvXr1Yp930KBBGjRokLKysvTVV18pJSVFQ4cOVePGjZWQkHDedQMAAAAXAsZMvtdjzHQSYyYAFQkzVQCgHD388MO6+uqrNWnSpCL79OjRQ5L06quverWvWbNGmzZtUs+ePSVJHTt2lNvt1muvvebVb9WqVdq2bZtX28CBA/XLL7+oZs2aat++vc+j8GCiPDRr1kyXXHKJvv/+e7/1tG/fXhEREZKk7t2767PPPvP8ppYk5eXlacmSJee8Tr9+/XTixAktXLjwrP1cLpfnt6DOVXeDBg30+uuvyxjjaT927JjeeecdJSQkKDQ09JznOVsdXbt21ZNPPilJ+vbbb0t8LgAAAOBCxJjpJMZMRdfBmAlAsDFTBQDK0Z///Gf9+c9/PmufZs2a6bbbbtNzzz0nq9Wqfv36aevWrXrkkUcUExOjCRMmSJKqV6+uyZMna/r06Ro9erT+9Kc/afv27Zo6darPNO/x48frnXfe0ZVXXqkJEyaoTZs2ys/PV3p6uv75z39q0qRJ6tChQ5ndtz/z5s1Tv3791KdPH40cOVINGjTQwYMHtWnTJq1fv15vvfWWpJODqg8++EA9evTQo48+qtDQUL3wwgs6duzYOa9x00036eWXX9aYMWO0efNmde/eXfn5+fr666/VokUL3XjjjZKk1q1ba8WKFfrHP/6hevXqKSIiwvNbX4VZrVbNmDFDN998swYOHKjbb79dWVlZeuqpp3To0CE98cQTxX4fHn30Ue3YsUM9e/ZUw4YNdejQIT377LNyOBzq2rVrsc8HAAAAXMgYM53GmOkkxkwAKhpCFQCogObMmaMmTZropZde0gsvvKCoqCj17dtXKSkpXuvNJicnKywsTKmpqXrllVfUvHlzzZ07VzNnzvQ6X1hYmFauXKknnnhC8+fP15YtWxQSEqJGjRrpqquuKvffupJO/jbVN998o8cee0zjx4/Xb7/9ppo1a+rSSy/VkCFDPP1atWqlTz/9VJMmTdKIESNUvXp1DRs2TDfccINuu+22s17Dbrdr6dKlSklJ0eLFizV79mxFRETosssuU9++fT39nn32Wd1555268cYbdfz4cXXt2rXIjSiHDh2qsLAwpaSkKDExUTabTR07dtTy5cvVqVOnYr8PHTp00Nq1a3X//fdr3759qlatmtq3b6/PP/9cLVu2LPb5AAAAgKqAMRNjJsZMAILFYgrPxQMAAAAAAAAAAIBf7KkCAAAAAAAAAAAQAEIVAAAAAAAAAACAABCqAAAAAAAAAAAABIBQBQAAAAAAAAAAIACEKgAAAAAAAAAAAAEgVAEAAAAAAAAAAAgAoQoAAAAAAAAAAEAA7MEuoLzl5+dr165dioiIkMViCXY5AAAAQJkzxujIkSOqX7++rFZ+rwrnxrgJAAAAVUlxxkxVLlTZtWuXYmJigl0GAAAAUO62b9+uhg0bBrsMlEBqaqqeeuopZWRkqGXLlpo9e7a6dOlSZP/XXntNM2bM0M8//6yoqCj17dtXM2fOVM2aNQO6HuMmAAAAVEWBjJksxhhTTvVUCIcPH1a1atW0fft2RUZGBrscAAAAoMxlZmYqJiZGhw4dUlRUVLDLQTEtWbJEw4YNU2pqqjp37qx58+bpxRdf1MaNG9WoUSOf/l9++aW6du2qZ555RldffbV27typMWPG6JJLLtF7770X0DUZNwEAAKAqKc6YqcqFKpmZmYqKitLhw4cZHAAAAKBK4DPwha1Dhw5q166d5syZ42lr0aKFrr32WqWkpPj0nzlzpubMmaNffvnF0/bcc89pxowZ2r59e0DX5HsGAAAAVUlxPv+yoDIAAAAAVFDZ2dlat26devfu7dXeu3dvrVq1yu8xnTp10o4dO7R06VIZY7Rnzx69/fbbGjBgQHmUDAAAAFRqhCoAAAAAUEHt379feXl5io6O9mqPjo7W7t27/R7TqVMnvfbaa0pMTJTT6VTdunVVrVo1Pffcc0VeJysrS5mZmV4PAAAAAL4IVQAAAACggrNYLF7PjTE+bQU2btyocePG6dFHH9W6deu0bNkybdmyRWPGjCny/CkpKYqKivI82KQeAAAA8I9QBQAAAAAqqFq1aslms/nMStm7d6/P7JUCKSkp6ty5s+699161adNGffr0UWpqqhYsWKCMjAy/xyQlJenw4cOeR6B7rwAAAABVDaEKAAAAAFRQTqdT8fHxSktL82pPS0tTp06d/B5z/PhxWa3eQz2bzSbp5AwXf1wulyIjI70eAAAAAHwRqgAAAABABTZx4kS9+OKLWrBggTZt2qQJEyYoPT3ds5xXUlKShg8f7ul/9dVX691339WcOXP066+/6t///rfGjRunK664QvXr1w/WbQAAAACVgj3YBQAAAAAAipaYmKgDBw4oOTlZGRkZatWqlZYuXarY2FhJUkZGhtLT0z39R44cqSNHjuj555/XpEmTVK1aNfXo0UNPPvlksG4BAAAAqDQspqj535VUZmamoqKidPjwYaa0AwAAoErgMzCKi+8ZAAAAVCXF+fzL8l8AAAAAAAAAAAABIFQBAAAAAAAAAAAIAKEKAAAAAAAAAABAAAhVAAAAAAAAAAAAAkCoAgAAAAAAAAAAEABCFQAAAAAAAAAAgAAQqgAAAAAAAAAAAASAUAUAAAAAAAAAACAAhCoAAAAAAAAAAAABsAe7AACBM8aU8LhSLqTgvCU9rgwKOp8zlsX7Y0pYUVn9XZVUVXhv+D4+20lLeljZ/GWV9B7L5K0p6b/HpVyH57wV6e+qAv09SRXnvbFaLIqOdJfqOYHKLC/faO+RE7JaLLJIkkWyyCKLRZ42y6k2WSSrRbKc0W6xnPG1Th17qi8AAABQEoQqQfDd9kP6396jRb5e0X5QVzY/b6ksP1Qt1TIAAEAl5bJbdUN8w2CXAVwwTuTkafl/95XpNQqCFu8QplAwcyrAOdn3dHvhUEf+gp6izieLrBZ5BUQWSVbrOc7nLyAqdL7Cx3kFR6fadMY1igqcLJZT5zsVVJ31fBbv4wruAwAAoCogVAmC3Lx8ZefmB7sMAAAAAKiyjDn1y1Wn/0dlN2+u6rAWCmzkM0OIoIqgCgCACx+hCgAAAAAAKBX5RmcEVWd+jeI6V1BVVOB0MkyS5C/oKep8Z/Q98+siz1coIPKEWOc6X6HrFhx35vlOXa5QKFY4bAvgfJ6gzPs4AADOB6EKAAAAAABABUVQVfoKzxrSmcGM9cyQyDfo8Q6xvI8jqAKAyo9QBQAAAAAAAFVGwfJ/+YagqrSURVBVECb5nM/iHRB5BT2BnE+nAyLvwEqe5f98gqPCy/ydcb7CdRRuKzwj7KznK/Q+nJ6FRlAFVGSEKgAAAAAAAABKjKCq9HkFRP6W+fMKiXyDnoKAyCfoKep88t2n6szAiaAKOIlQBQAAAAAAAAAqkIKgynv5P4Kq81ERgiqLJKv1HOfzFxB5zco6fZxXcFRoRljhaxQVOBWeNSbP60Wcz+J9XMF9VFWEKgAAAAAAAACASo2gqmxYCwU2OjOYOUvgZLH47ivVqkGU6lcLCer9BIJQBQAAAAAAAAAAFFu+0RlB1ZlfB+73nLxSqKjsWYNdAAAAAAAAAAAAwIWAUAUAAAAAAAAAACAAQQ9VUlNTFRcXJ7fbrfj4eK1cufKs/V977TVddtllCg0NVb169XTLLbfowIED5VQtAAAAAAAAAACoqoIaqixZskTjx4/XQw89pG+//VZdunRRv379lJ6e7rf/l19+qeHDh2vUqFH68ccf9dZbb2nNmjUaPXp0OVcOAAAAAAAAAACqmqCGKrNmzdKoUaM0evRotWjRQrNnz1ZMTIzmzJnjt/9XX32lxo0ba9y4cYqLi9Mf//hH3X777Vq7dm05Vw4AAAAAAAAAAKqaoIUq2dnZWrdunXr37u3V3rt3b61atcrvMZ06ddKOHTu0dOlSGWO0Z88evf322xowYEB5lAwAAAAAAAAAAKqwoIUq+/fvV15enqKjo73ao6OjtXv3br/HdOrUSa+99poSExPldDpVt25dVatWTc8991yR18nKylJmZqbXAwAAAAAAAAAAoLiCvlG9xWLxem6M8WkrsHHjRo0bN06PPvqo1q1bp2XLlmnLli0aM2ZMkedPSUlRVFSU5xETE1Oq9QMAAAAAAAAAgKohaKFKrVq1ZLPZfGal7N2712f2SoGUlBR17txZ9957r9q0aaM+ffooNTVVCxYsUEZGht9jkpKSdPjwYc9j+/btpX4vAAAAAAAAAACg8gtaqOJ0OhUfH6+0tDSv9rS0NHXq1MnvMcePH5fV6l2yzWaTdHKGiz8ul0uRkZFeDwAAAAAAAAAAgOIK6vJfEydO1IsvvqgFCxZo06ZNmjBhgtLT0z3LeSUlJWn48OGe/ldffbXeffddzZkzR7/++qv+/e9/a9y4cbriiitUv379YN0GAAAAAAAAAACoAuzBvHhiYqIOHDig5ORkZWRkqFWrVlq6dKliY2MlSRkZGUpPT/f0HzlypI4cOaLnn39ekyZNUrVq1dSjRw89+eSTwboFAAAAAAAAAABQRVhMUetmVVKZmZmKiorS4cOHg7YU2NqtB/XTnqNBuTYAAADKn8tu1Q3xDYN2/YrwGRgXlmB/zxzLytXfv9tV7tcFAABA8HS4qIaa1A4PyrWL8/k3qMt/AQAAAAAAAAAAXCgIVQAAAAAAAAAAAAJAqAIAAAAAAAAAABAAQhUAAAAAAAAAAIAAEKoAAAAAAAAAAAAEgFAFAAAAAAAAAAAgAIQqAAAAAAAAAAAAASBUAQAAAAAAAAAACAChCgAAAAAAAAAAQAAIVQAAAAAAAAAAAAJAqAIAAAAAAAAAABAAQhUAAAAAAAAAAIAAEKoAAAAAAAAAAAAEgFAFAAAAAAAAAAAgAIQqAAAAAAAAAAAAASBUAQAAAAAAAAAACAChCgAAAAAAAAAAQAAIVQAAAAAAAAAAAAJAqAIAAAAAAAAAABAAQhUAAAAAAAAAAIAAEKoAAAAAAAAAAAAEgFAFAAAAAAAAAAAgAIQqAAAAAAAAAAAAASBUAQAAAAAAAAAACAChCgAAAAAAAAAAQAAIVQAAAAAAAAAAAAJAqAIAAAAAAAAAABAAQhUAAAAAAAAAAIAAEKoAAAAAAAAAAAAEgFAFAAAAAAAAAAAgAIQqAAAAAAAAAAAAASBUAQAAAAAAAAAACAChCgAAAAAAAAAAQAAIVQAAAAAAAAAAAAJAqAIAAAAAAAAAABAAQhUAAAAAAAAAAIAAEKoAAAAAAAAAAAAEgFAFAAAAAAAAAAAgAIQqAAAAAAAAAAAAASBUAQAAAIAKLjU1VXFxcXK73YqPj9fKlSvP2j8rK0sPPfSQYmNj5XK51KRJEy1YsKCcqgUAAAAqL3uwCwAAAAAAFG3JkiUaP368UlNT1blzZ82bN0/9+vXTxo0b1ahRI7/HDBkyRHv27NFLL72kiy++WHv37lVubm45Vw4AAABUPoQqAAAAAFCBzZo1S6NGjdLo0aMlSbNnz9Ynn3yiOXPmKCUlxaf/smXL9MUXX+jXX39VjRo1JEmNGzcuz5IBAACASovlvwAAAACggsrOzta6devUu3dvr/bevXtr1apVfo/54IMP1L59e82YMUMNGjRQ06ZNNXnyZP3+++9FXicrK0uZmZleDwAAAAC+gh6qFGdt4JEjR8pisfg8WrZsWY4VAwAAAED52L9/v/Ly8hQdHe3VHh0drd27d/s95tdff9WXX36pH374Qe+9955mz56tt99+W3feeWeR10lJSVFUVJTnERMTU6r3AQAAAFQWQQ1VCtYGfuihh/Ttt9+qS5cu6tevn9LT0/32f/bZZ5WRkeF5bN++XTVq1NCf/vSncq4cAAAAAMqPxWLxem6M8WkrkJ+fL4vFotdee01XXHGF+vfvr1mzZmnhwoVFzlZJSkrS4cOHPY/t27eX+j0AAAAAlUFQQ5XCawO3aNFCs2fPVkxMjObMmeO3f1RUlOrWret5rF27Vr/99ptuueWWcq4cAAAAAMperVq1ZLPZfGal7N2712f2SoF69eqpQYMGioqK8rS1aNFCxhjt2LHD7zEul0uRkZFeDwAAAAC+ghaqlGRt4DO99NJLuuqqqxQbG1sWJQIAAABAUDmdTsXHxystLc2rPS0tTZ06dfJ7TOfOnbVr1y4dPXrU0/bTTz/JarWqYcOGZVovAAAAUNkFLVQpydrAhWVkZOjjjz/W6NGjz9qPDRcBAAAAXMgmTpyoF198UQsWLNCmTZs0YcIEpaena8yYMZJOLt01fPhwT/+hQ4eqZs2auuWWW7Rx40b961//0r333qtbb71VISEhwboNAAAAoFKwB7uA4qwNXNjChQtVrVo1XXvttWftl5KSomnTpp1PiQAAAAAQNImJiTpw4ICSk5OVkZGhVq1aaenSpZ4Z+xkZGV77UoaHhystLU1333232rdvr5o1a2rIkCGaPn16sG4BAAAAqDSCFqqUZG3gAsYYLViwQMOGDZPT6Txr36SkJE2cONHzPDMzUzExMSUvHAAAAADK2dixYzV27Fi/ry1cuNCnrXnz5j5LhgEAAAA4f0Fb/qskawMX+OKLL/S///1Po0aNOud12HARAAAAAAAAAACUhqAu/zVx4kQNGzZM7du3V0JCgubPn++zNvDOnTu1aNEir+NeeukldejQQa1atQpG2QAAAAAAAAAAoAoKaqhS3LWBJenw4cN655139OyzzwajZAAAAAAAAAAAUEUFfaP64q4NHBUVpePHj5dxVQAAAAAAAAAAAN6CtqcKAAAAAAAAAADAhYRQBQAAAAAAAAAAIACEKgAAAAAAAAAAAAEgVAEAAAAAAAAAAAgAoQoAAAAAAAAAAEAACFUAAAAAAAAAAAACQKgCAAAAAAAAAAAQAEIVAAAAAAAAAACAABCqAAAAAAAAAAAABIBQBQAAAAAAAAAAIACEKgAAAAAAAAAAAAEgVAEAAAAAAAAAAAgAoQoAAAAAAAAAAEAACFUAAAAAAAAAAAACQKgCAAAAAAAAAAAQAEIVAAAAAAAAAACAABCqAAAAAAAAAAAABIBQBQAAAAAAAAAAIACEKgAAAAAAAAAAAAEgVAEAAAAAAAAAAAgAoQoAAAAAAAAAAEAACFUAAAAAAAAAAAACQKgCAAAAAAAAAAAQAEIVAAAAAAAAAACAABCqAAAAAAAAAAAABIBQBQAAAAAAAAAAIACEKgAAAAAAAAAAAAEgVAEAAAAAAAAAAAgAoQoAAAAAAAAAAEAACFUAAAAAAAAAAAACQKgCAAAAAAAAAAAQAEIVAAAAAAAAAACAABCqAAAAAAAAAAAABIBQBQAAAAAAAAAAIACEKgAAAAAAAAAAAAEgVAEAAAAAAAAAAAgAoQoAAAAAAAAAAEAACFUAAAAAAAAAAAACQKgCAAAAAAAAAAAQAEIVAAAAAAAAAACAABCqAAAAAAAAAAAABIBQBQAAAAAAAAAAIACEKgAAAAAAAAAAAAEIeqiSmpqquLg4ud1uxcfHa+XKlWftn5WVpYceekixsbFyuVxq0qSJFixYUE7VAgAAAAAAAACAqsoezIsvWbJE48ePV2pqqjp37qx58+apX79+2rhxoxo1auT3mCFDhmjPnj166aWXdPHFF2vv3r3Kzc0t58oBAAAAAAAAAEBVE9RQZdasWRo1apRGjx4tSZo9e7Y++eQTzZkzRykpKT79ly1bpi+++EK//vqratSoIUlq3LhxeZYMAAAAAAAAAACqqKAt/5Wdna1169apd+/eXu29e/fWqlWr/B7zwQcfqH379poxY4YaNGigpk2bavLkyfr999/Lo2QAAAAAAAAAAFCFBW2myv79+5WXl6fo6Giv9ujoaO3evdvvMb/++qu+/PJLud1uvffee9q/f7/Gjh2rgwcPFrmvSlZWlrKysjzPMzMzS+8mAAAAAAAAAABAlRH0jeotFovXc2OMT1uB/Px8WSwWvfbaa7riiivUv39/zZo1SwsXLixytkpKSoqioqI8j5iYmFK/BwAAAAAAAAAAUPkFLVSpVauWbDabz6yUvXv3+sxeKVCvXj01aNBAUVFRnrYWLVrIGKMdO3b4PSYpKUmHDx/2PLZv3156NwEAAAAAAAAAAKqMoIUqTqdT8fHxSktL82pPS0tTp06d/B7TuXNn7dq1S0ePHvW0/fTTT7JarWrYsKHfY1wulyIjI70eAAAAAAAAAAAAxRXU5b8mTpyoF198UQsWLNCmTZs0YcIEpaena8yYMZJOzjIZPny4p//QoUNVs2ZN3XLLLdq4caP+9a9/6d5779Wtt96qkJCQYN0GAAAAAAAAAACoAoK2Ub0kJSYm6sCBA0pOTlZGRoZatWqlpUuXKjY2VpKUkZGh9PR0T//w8HClpaXp7rvvVvv27VWzZk0NGTJE06dPD9YtAAAAAAAAAACAKiKooYokjR07VmPHjvX72sKFC33amjdv7rNkGAAAAAAAAAAAQFkL6vJfAAAAAAAAAAAAFwpCFQAAAAAAAAAAgAAQqgAAAAAAAAAAAASAUAUAAAAAAAAAACAAhCoAAAAAAAAAAAABIFQBAAAAAAAAAAAIAKEKAAAAAAAAAABAAAhVAAAAAAAAAAAAAkCoAgAAAAAAAAAAEABCFQAAAAAAAAAAgAAQqgAAAAAAAAAAAASAUAUAAAAAAAAAACAAhCoAAAAAUMGlpqYqLi5Obrdb8fHxWrlyZUDH/fvf/5bdbtfll19etgUCAAAAVQShCgAAAABUYEuWLNH48eP10EMP6dtvv1WXLl3Ur18/paenn/W4w4cPa/jw4erZs2c5VQoAAABUfoQqAAAAAFCBzZo1S6NGjdLo0aPVokULzZ49WzExMZozZ85Zj7v99ts1dOhQJSQklFOlAAAAQOVHqAIAAAAAFVR2drbWrVun3r17e7X37t1bq1atKvK4l19+Wb/88oumTJlS1iUCAAAAVYo92AUAAAAAAPzbv3+/8vLyFB0d7dUeHR2t3bt3+z3m559/1gMPPKCVK1fKbg9syJeVlaWsrCzP88zMzJIXDQAAAFRizFQBAAAAgArOYrF4PTfG+LRJUl5enoYOHapp06apadOmAZ8/JSVFUVFRnkdMTMx51wwAAABURoQqAAAAAFBB1apVSzabzWdWyt69e31mr0jSkSNHtHbtWt11112y2+2y2+1KTk7W999/L7vdrs8//9zvdZKSknT48GHPY/v27WVyPwAAAMCFjuW/AAAAAKCCcjqdio+PV1pamq677jpPe1pamgYNGuTTPzIyUv/5z3+82lJTU/X555/r7bffVlxcnN/ruFwuuVyu0i0eAAAAqIQIVQAAAACgAps4caKGDRum9u3bKyEhQfPnz1d6errGjBkj6eQsk507d2rRokWyWq1q1aqV1/F16tSR2+32aQcAAABQfIQqAAAAAFCBJSYm6sCBA0pOTlZGRoZatWqlpUuXKjY2VpKUkZGh9PT0IFcJAAAAVA0WY4wJdhHlKTMzU1FRUTp8+LAiIyODUsParQf1056jQbk2AAAAyp/LbtUN8Q2Ddv2K8BkYF5Zgf88cy8rV37/bVe7XBQAAQPB0uKiGmtQOD8q1i/P5l43qAQAAAAAAAAAAAsDyXwAAAEAZysnLV1ZuXrDLAAAAAACUAkIVAAAAoJhy8vJ19ESujmTl6uiJXB3NytXRrJyTf57RnpWbr6gQh27pHBfssgEAAAAA54lQBQAAAJCUnZt/KhQ5GY4cycr1hCRef54KSorjRE6ejDGyWCxlVD0AAAAAoDwQqgAAAKDSKghKjpwKSs4MR44U+jq7mEGJ3WpRuMuucLf95J9nfB3hdni+jgqxE6gAAAAAQCVAqAIAAIALSlZunicYKRyKnBmYHD2Rq+y8EgQlbrsi/IQk4adCkohT7S67NeCghEAFAAAAACoHQhUAAAAElTHm9NJbZwYlnvDk9EyTnDxTrPM7bBafYKRwYBJR6OviBCUAAAAAgKqHUAUAAAClzhijLM8eJX72Jym0d8n5BCURfkKSk+2nv3YSlAAAAAAASgmhCgAAAALiCUq8QhLfvUqOnPo6N794QYnTZi1yfxKvoMRtl8tuK6O7BAAAAACgaIQqAAAAVZgxRidyCi+95X9D94Kvix2U2K1+Z4/429DdabeW0V0CAAAAAFA6CFUAAAAqmYKg5EhWjnc4csam7kdO5OpYCYISV6GgJNztZ3+SQnuXEJQAAAAAACoTQhUAAIALgDFGv+fk+Syx5XdWSVau8koalLi9N24Pdzl82h02ghIAAAAAQNVEqAIAABAkxhj9np13en+SImaVHDmRo2NZecozxQtK3I7CM0pOb+ge4WeGCUEJAAAAAADnRqgCAABQivJPBSWFQxLvWSXeS3IVc0LJqaDE4bNx+5kbuocRlAAAAAAAUOoIVQAAAM4h3xgdLwhKPDNJcryW2yoIT46VICgJcdh89ieJKBSSFA5N7AQlAAAAAAAEDaEKAACokjxBSaEZJEf8beh+IlfHsksYlLi9Z4+cGZJEuB0Kc9lktxKUAAAAAABwISBUAQAAlUa+MTp2jv1JTu5RcnJGSTFzEoU6bV7BSITPTBKHwt12ghIAAAAAACopQhUAAFCheQUlJ06HIv6W3jp+PkGJu/Am7g6f8CTMZZfNaimTewQAAAAAABcGQhUAAFDu8vKNjmX7LrN15tclCUosOhWUeC295fDdn8RtV5iToAQAAAAAAASOUAUAAJSKvHzfpbeOFLGh+/HsvOIHJS5/y235fk1QAgAAAAAAykrQQ5XU1FQ99dRTysjIUMuWLTV79mx16dLFb98VK1aoe/fuPu2bNm1S8+bNy7pUAACqnLx842d/khzPLJLC7cez84p1bouksDM3bi8iMAklKAEAAAAAABVAUEOVJUuWaPz48UpNTVXnzp01b9489evXTxs3blSjRo2KPG7z5s2KjIz0PK9du3Z5lAsAQKWQm5+vY1l5p8KQHN89Sgp9XZKg5FwzSQq+DnPZZbUQlAAAAAAAgAtHUEOVWbNmadSoURo9erQkafbs2frkk080Z84cpaSkFHlcnTp1VK1atXKqEgCAii83P7/IPUnObP89p3hBidVSaEaJZ4+SwiGJw/N1qNNGUAIAAAAAACqtoIUq2dnZWrdunR544AGv9t69e2vVqlVnPbZt27Y6ceKELr30Uj388MN+lwQDAOBCl5uX73f2iL9ZJSUJSvzPJPHd0J2gBAAAAAAA4KSghSr79+9XXl6eoqOjvdqjo6O1e/duv8fUq1dP8+fPV3x8vLKysvTKK6+oZ8+eWrFiha688kq/x2RlZSkrK8vzPDMzs/RuAgCAYsopCEoKByOFgxJPe45O5OQX69yeoMQTkjj8zCo5+QghKAEAAAAAACi2oG9UbznjBzrGGJ+2As2aNVOzZs08zxMSErR9+3bNnDmzyFAlJSVF06ZNK72CAQA4Q06e79JbR04FI2eGJ8UNSmwWi/dMksLhSKH2CJddboISAAAAAACAMhW0UKVWrVqy2Ww+s1L27t3rM3vlbDp27KhXX321yNeTkpI0ceJEz/PMzEzFxMQUv2AAQJWSnetv6a0cv0tvZeUWMyixWvyGJBF+wpMQh63IXzYAAAAAAABA+SpxqHLo0CG9/fbb+uWXX3TvvfeqRo0aWr9+vaKjo9WgQYNzHu90OhUfH6+0tDRdd911nva0tDQNGjQo4Dq+/fZb1atXr8jXXS6XXC5XwOcDAFRenqDkRM7pTdwLhyaFApPiBiX2gqDkHLNKIlwOuR1WghIAuECd7zgIAAAAwIWtRKHKhg0bdNVVVykqKkpbt27V//3f/6lGjRp67733tG3bNi1atCig80ycOFHDhg1T+/btlZCQoPnz5ys9PV1jxoyRdHKWyc6dOz3nmz17tho3bqyWLVsqOztbr776qt555x298847JbkNAEAlkJ2bryOnQhKf5bfOWHoruyRBiZ+QJOLMDd1ddoISAKgCSmscBAAAAODCVaJQZeLEiRo5cqRmzJihiIgIT3u/fv00dOjQgM+TmJioAwcOKDk5WRkZGWrVqpWWLl2q2NhYSVJGRobS09M9/bOzszV58mTt3LlTISEhatmypT766CP179+/JLcBAKigsnLzPIGIv+W2Cj/Pzit+UOK1zJZnJonDa3+ScLddLjtBCQDgtNIaBwEAAAC4cJUoVFmzZo3mzZvn096gQQOfPVLOZezYsRo7dqzf1xYuXOj1/L777tN9991XrPMDAILPGHNyRkkRwciRQktyHc3KVU6eKdb5HbZCe5QUDkf8hCcEJQCAkirNcRAAAACAC1OJQhW3263MzEyf9s2bN6t27drnXRQAoOIzxigrN/90KOKzP4n3klwlCUoizlhiq/BSXIUDEydBCQCgHDAOAgAAAFCiUGXQoEFKTk7Wm2++KUmyWCxKT0/XAw88oBtuuKFUCwQAlJ+CoMR7ya3T4ciZS3Hl5hcvKHHarN57lBQRkpxcestWRncJAEDJMA4CAAAAUKJQZebMmerfv7/q1Kmj33//XV27dtXu3buVkJCgxx57rLRrBACcB2OMTuTk60hWju++JH6+LnZQYree3IPkjJDEs6F7oSW5nHZrGd0lAABlj3EQAAAAgBKFKpGRkfryyy/1+eefa/369crPz1e7du101VVXlXZ9AAA/vIISP8HIkTP2LckrZlDislv9hiQnN3F3eLUTlAAAqgrGQQAAAABKFKoU6NGjh3r06FFatQBAlWaM0e85ed57lBQ1q+Q8ghLPMlueYMThs/SWw0ZQAgBAURgHAQAAAFVXiUOVb775RitWrNDevXuVn5/v9dqsWbPOuzAAqAzyjdGJ7LwiQ5LCS3Idy8pTnileUOJ2WD3BiNf+JIVDk1N/EpQAAHD+GAcBAAAAVVuJQpXHH39cDz/8sJo1a6bo6GhZLBbPa4W/BoDKKN8Y/Z6d53fj9pNfey/JVcwJJaeCEt/ZI2eGJWEEJQAAlCvGQQAAAABKFKo8++yzWrBggUaOHFnK5QBAcOQbo+OngpKTgYh3MFI4PDlWgqAkxGHzXnLLaxP3QuGJyy47QQkAABUS4yAAAAAAJQpVrFarOnfuXNq1AECp8gQlBctsFbU/yYlcHcsuYVDiPmOprYLlt9ynl+QKc9lktxKUAABwoWMcBAAAAKBEocqECRP0wgsvaPbs2aVcDgCcXb4xOnaWTdyPFPr6WFauipmTKNRp811uy2uGiePU0lsEJQAAVDWMgwAAAACUKFSZPHmyBgwYoCZNmujSSy+Vw+Hwev3dd98tleIAVA15+UbHs89YZqtwYOLZ1D1Xx4sZlFgkhZwKSrz3KHGcMavk5B4lNivroQMAAP8YBwEAAAAoUahy9913a/ny5erevbtq1qzJpowAfOTlGx3LLhSO+A1JTi7JdTw7r9hBSaizYOkth8/SW4X3LQlzEpQAAIDSwTgIAAAAQIlClUWLFumdd97RgAEDSrseABVYXv7ppbeOeC29leOzofvvJQlKXP73J/EsxXXqz1CCEgAAEASMgwAAAACUKFSpUaOGmjRpUtq1AAiCvHzjG44U3p+k0PPj2XnFOrdFUlihYMRnf5JCX4e57LLy254AAKACYxwEAAAAoEShytSpUzVlyhS9/PLLCg0NLe2aAJyn3Px8HcvKOxWG5HjPKim0P8nRE7n6Pad4QYnVIoU5/Qcjp8OTk0tyhTptBCUAAKDSYBwEAAAAoEShyl//+lf98ssvio6OVuPGjX02aFy/fn2pFAfgtNy8fJ9gxDOb5Ix9S0oUlBRabivCJzA5vW8JQQkAAKiqGAcBAAAAKFGocu2115ZyGUDV5BWUnPBdbuv0HiU5OpGTX6xzWy3yDUbOmFVSEJ6EEJQAAACcE+MgAAAAACUKVaZMmVLadQCVRk5BUHLCT1jiaT+5d0lxgxKbxaIwl+30xu2FZpB4bejusstNUAIAAFCqGAcBAAAAKFGoUmDdunXatGmTLBaLLr30UrVt27a06gIqlJy8fL+zR7yW4Tr1Z1Zu8YOSs+1PUhCShLvtCnHYZCEoAQAACCrGQQAAAEDVVaJQZe/evbrxxhu1YsUKVatWTcYYHT58WN27d9cbb7yh2rVrl3adQKnLzj1z6a0cn6W3jpY0KLFaTgcjhfco8bOhu9thJSgBAAC4ADAOAgAAAFCiUOXuu+9WZmamfvzxR7Vo0UKStHHjRo0YMULjxo3T4sWLS7VIIFCeoOREju8m7mds7p5dzKDEXhCUnHNWCUEJAABAZcQ4CAAAAECJQpVly5bp008/9QwkJOnSSy/VCy+8oN69e5dacYAkZeXm+Vl6y3dD96MncpWdV4KgxM/G7SdDEodXu8tOUAIAAFCVMQ4CAAAAUKJQJT8/Xw6Hw6fd4XAoP794P9RG1WOM8Vp6q8iQJCtXR07kKCfPFOv8Dpv30luecKRweHLqOUEJAAAAAsU4CAAAAECJQpUePXronnvu0eLFi1W/fn1J0s6dOzVhwgT17NmzVAvEhcEYoyzP0ltFzSrJ8Xx9XkGJ2+EJRbzDk5NhiZOgBAAAAGWAcVD5McYo3xRvzCBJRY0CGB8AAACgtJQoVHn++ec1aNAgNW7cWDExMbJYLEpPT1fr1q316quvlnaNCBJPUHLi1N4kZ4YjZ4QnufnFG/Q4bVa/wYi/zd1ddlsZ3SUAAAAQGMZB5Sfj8Ak9/P4PQbt+cSOYkmQ2lqKuUrzmos9f2WsqpWuctXsRJysyvCvmRYr//hX/DbygairyGsU709n/TovVXPRpijxP2X6/nrxG8V4Iak1FXqOYNZXgxaKPKeL7prT+7TjLeYr+t4N/ewM5WVnfd9F/p8X9bjrLNUqppsr8b2+Yy6YmtcPPdrYKoUShSkxMjNavX6+0tDT997//lTFGl156qa666qrSrg+lzBijEzn5XktsHT2R47uh+6nnxQ5K7Fa/s0f8hScEJQAAALiQMA6qOoo7R6YEk2qKvkqJzlVagnpxAABQxXVvXifYJQSkRKFKgV69eqlXr16lVQtKqCAoOZJ1xgwSPyHJ0aziByWuwkGJ2/vPiDP2LXHarWV0lwAAAEDFwDio7EVHuvXwgBa+L5xlKFPUS8UPSIp3RJG9SykzKW49Z71GkGoqzXpMMQ8q9r0V84Ui6ynqNCXIrSpaTUXX4/+VkkR1RdVU/L/PMv5+KfZ7V/x/xEqvpmL+/ZTLe1S8mkrte7XI85ftv21nf6mI96LU/v8ZnHrOeo1i1lSZ/20rsn8xT1T2/4YV/2TFremSOhV/lopUwlBl3LhxuvjiizVu3Div9ueff17/+9//NHv27NKorUozxuj3nDw/G7f7D0zyShqU+Cy35bupO0EJAAAAwDioPNmsFoU6z+t3AAEAAHCBaVKZQ5V33nlHH3zwgU97p06d9MQTTzCYOId9R7L0y76j55xVklfMuNDt8F16K9zlZ1N3t10OG0EJAAAAUByMgwAAAACUKFQ5cOCAoqKifNojIyO1f//+8y6qsnt73Q599t+9AfU9GZR4zx6JKGJzd4ISAAAAoOwwDgIAAABQolDl4osv1rJly3TXXXd5tX/88ce66KKLSqWwyiw60q3a4S6f2SMRZ4QkYQQlAAAAQIXBOAgAAABAiUKViRMn6q677tK+ffvUo0cPSdJnn32mp59+minvAbi+XQO1auD7G24AAAAAKi7GQQAAAABKFKrceuutysrK0mOPPaa//OUvkqTGjRtrzpw5Gj58eKkWCAAAAAAVAeMgAAAAACUKVSTpjjvu0B133KF9+/YpJCRE4eHhpVkXAAAAAFQ4jIMAAACAqq1EG3b06NFDhw4dkiTVrl3bM5DIzMz0TIMHAAAAgMqEcRAAAACAEoUqK1asUHZ2tk/7iRMntHLlyvMuCgAAAAAqGsZBAAAAAIq1/NeGDRs8X2/cuFG7d+/2PM/Ly9OyZcvUoEGD0qsOAAAAAIKMcRAAAACAAsUKVS6//HJZLBZZLBa/09tDQkL03HPPlVpxAAAAABBsjIMAAAAAFChWqLJlyxYZY3TRRRfpm2++Ue3atT2vOZ1O1alTRzabrdSLBAAAAIBgYRwEAAAAoECxQpXY2FhJUn5+fpkUAwAAAAAVTUUYB6Wmpuqpp55SRkaGWrZsqdmzZ6tLly5++7777ruaM2eOvvvuO2VlZally5aaOnWq+vTpU85VAwAAAJVPsUKVAosWLTrr68OHDy9RMQAAAABQUQVrHLRkyRKNHz9eqamp6ty5s+bNm6d+/fpp48aNatSokU//f/3rX+rVq5cef/xxVatWTS+//LKuvvpqff3112rbtm2Z1AgAAABUFRZjjCnuQdWrV/d6npOTo+PHj8vpdCo0NFQHDx4stQJLW2ZmpqKionT48GFFRkYGpYa1Ww/qpz1Hg3JtAAAAlD+X3aob4hsG7foV4TNwZRCscVCHDh3Url07zZkzx9PWokULXXvttUpJSQnoHC1btlRiYqIeffTRgPoH+3vmWFau/v7drnK/LgAAAIKnw0U11KR2eFCuXZzPv9aSXOC3337zehw9elSbN2/WH//4Ry1evLhERQMAAABARRaMcVB2drbWrVun3r17e7X37t1bq1atCugc+fn5OnLkiGrUqFEWJQIAAABVSolCFX8uueQSPfHEE7rnnnuKdVxqaqri4uLkdrsVHx+vlStXBnTcv//9b9ntdl1++eUlqBYAAAAAzl9Jx0GB2r9/v/Ly8hQdHe3VHh0drd27dwd0jqefflrHjh3TkCFDiuyTlZWlzMxMrwcAAAAAX6UWqkiSzWbTrl2BT9EuWBv4oYce0rfffqsuXbqoX79+Sk9PP+txhw8f1vDhw9WzZ8/zLRkAAAAAzktxx0ElYbFYvJ4bY3za/Fm8eLGmTp2qJUuWqE6dOkX2S0lJUVRUlOcRExNz3jUDAAAAlVGJNqr/4IMPvJ4bY5SRkaHnn39enTt3Dvg8s2bN0qhRozR69GhJ0uzZs/XJJ59ozpw5Z10b+Pbbb9fQoUNls9n0/vvvl+QWAAAAAKBYSmscVBy1atWSzWbzmZWyd+9en9krZ1qyZIlGjRqlt956S1ddddVZ+yYlJWnixIme55mZmQQrAAAAgB8lClWuvfZar+cWi0W1a9dWjx499PTTTwd0joK1gR944AGv9nOtDfzyyy/rl19+0auvvqrp06cXu3YAAAAAKInSGAcVl9PpVHx8vNLS0nTdddd52tPS0jRo0KAij1u8eLFuvfVWLV68WAMGDDjndVwul1wuV6nUDAAAAFRmJQpV8vPzJUn79u2TxWJRrVq1in2OkqwN/PPPP+uBBx7QypUrZbcHVnpWVpaysrI8z1kbGAAAAEBJlMY4qCQmTpyoYcOGqX379kpISND8+fOVnp6uMWPGSDo5y2Tnzp1atGiRpJOByvDhw/Xss8+qY8eOnvFVSEiIoqKiyqVmAAAAoLIq9p4qhw4d0p133qlatWqpbt26io6OVq1atXTXXXfp0KFDxS4g0LWB8/LyNHToUE2bNk1NmzYN+PysDQwAAADgfJX2OKg4EhMTNXv2bCUnJ+vyyy/Xv/71Ly1dulSxsbGSpIyMDK99KefNm6fc3Fzdeeedqlevnudxzz33lGmdAAAAQFVgMcaYQDsfPHhQCQkJ2rlzp26++Wa1aNFCxhht2rRJr7/+umJiYrRq1SpVr179nOfKzs5WaGio3nrrLa9p7Pfcc4++++47ffHFF179Dx06pOrVq8tms3na8vPzZYyRzWbTP//5T/Xo0cPnOv5mqsTExOjw4cOKjIwM9NZL1dqtB/XTnqNBuTYAAADKn8tu1Q3xDYN2/czMTEVFRQX1M/CFrDTHQReKYH/PHMvK1d+/21Xu1wUAAEDwdLiohprUDg/KtYvz+bdYy38lJyfL6XTql19+8Vm2Kzk5Wb1791ZycrKeeeaZc56ruGsDR0ZG6j//+Y9XW2pqqj7//HO9/fbbiouL83sd1gYGAAAAcD5KcxwEAAAA4MJWrOW/3n//fc2cOdNnICFJdevW1YwZM/Tee+8FfL6JEyfqxRdf1IIFC7Rp0yZNmDDBZ23g4cOHnyzUalWrVq28HnXq1JHb7VarVq0UFhZWnFsBAAAAgICU9jgIAAAAwIWrWDNVMjIy1LJlyyJfb9WqVZGbzPuTmJioAwcOKDk5WRkZGWrVqtVZ1wYGAAAAgPJW2uMgAAAAABeuYs1UqVWrlrZu3Vrk61u2bFHNmjWLVcDYsWO1detWZWVlad26dbryyis9ry1cuFArVqwo8tipU6fqu+++K9b1AAAAAKA4ymIcBAAAAODCVKxQpW/fvnrooYeUnZ3t81pWVpYeeeQR9e3bt9SKAwAAAIBgYxwEAAAAoECxlv+aNm2a2rdvr0suuUR33nmnmjdvLknauHGjUlNTlZWVpVdeeaVMCgUAAACAYGAcBAAAAKBAsUKVhg0bavXq1Ro7dqySkpJkjJEkWSwW9erVS88//7xiYmLKpFAAAAAACAbGQQAAAAAKFCtUkaS4uDh9/PHH+u233/Tzzz9Lki6++GLVqFGj1IsDAAAAgIqAcRAAAAAAqQShSoHq1avriiuuKM1aAAAAAKBCYxwEAAAAVG3F2qgeAAAAAAAAAACgqiJUAQAAAAAAAAAACAChCgAAAAAAAAAAQAAIVQAAAAAAAAAAAAJAqAIAAAAAAAAAABAAQhUAAAAAAAAAAIAAEKoAAAAAAAAAAAAEgFAFAAAAAAAAAAAgAIQqAAAAAAAAAAAAASBUAQAAAAAAAAAACAChCgAAAAAAAAAAQAAIVQAAAAAAAAAAAAJAqAIAAAAAAAAAABAAQhUAAAAAAAAAAIAAEKoAAAAAAAAAAAAEgFAFAAAAAAAAAAAgAIQqAAAAAAAAAAAAASBUAQAAAAAAAAAACAChCgAAAAAAAAAAQAAIVQAAAAAAAAAAAAJAqAIAAAAAAAAAABAAQhUAAAAAAAAAAIAAEKoAAAAAAAAAAAAEgFAFAAAAAAAAAAAgAIQqAAAAAAAAAAAAASBUAQAAAAAAAAAACAChCgAAAAAAAAAAQAAIVQAAAAAAAAAAAAJAqAIAAAAAAAAAABAAQhUAAAAAAAAAAIAAEKoAAAAAAAAAAAAEgFAFAAAAAAAAAAAgAIQqAAAAAAAAAAAAASBUAQAAAAAAAAAACAChCgAAAAAAAAAAQAAIVQAAAAAAAAAAAAJAqAIAAAAAAAAAABAAQhUAAAAAAAAAAIAABD1USU1NVVxcnNxut+Lj47Vy5coi+3755Zfq3LmzatasqZCQEDVv3lzPPPNMOVYLAAAAAAAAAACqKnswL75kyRKNHz9eqamp6ty5s+bNm6d+/fpp48aNatSokU//sLAw3XXXXWrTpo3CwsL05Zdf6vbbb1dYWJhuu+22INwBAAAAAAAAAACoKoI6U2XWrFkaNWqURo8erRYtWmj27NmKiYnRnDlz/PZv27atbrrpJrVs2VKNGzfWn//8Z/Xp0+ess1sAAAAAAAAAAABKQ9BClezsbK1bt069e/f2au/du7dWrVoV0Dm+/fZbrVq1Sl27di2LEgEAAAAAAAAAADyCtvzX/v37lZeXp+joaK/26Oho7d69+6zHNmzYUPv27VNubq6mTp2q0aNHF9k3KytLWVlZnueZmZnnVzgAAAAAAAAAAKiSgr5RvcVi8XpujPFpO9PKlSu1du1azZ07V7Nnz9bixYuL7JuSkqKoqCjPIyYmplTqBgAAAAAAAAAAVUvQZqrUqlVLNpvNZ1bK3r17fWavnCkuLk6S1Lp1a+3Zs0dTp07VTTfd5LdvUlKSJk6c6HmemZlJsAIAAAAAAAAAAIotaDNVnE6n4uPjlZaW5tWelpamTp06BXweY4zX8l5ncrlcioyM9HoAAAAAAAAAAAAUV9BmqkjSxIkTNWzYMLVv314JCQmaP3++0tPTNWbMGEknZ5ns3LlTixYtkiS98MILatSokZo3by5J+vLLLzVz5kzdfffdQbsHAAAAAAAAAABQNQQ1VElMTNSBAweUnJysjIwMtWrVSkuXLlVsbKwkKSMjQ+np6Z7++fn5SkpK0pYtW2S329WkSRM98cQTuv3224N1CwAAAAAAAAAAoIqwGGNMsIsoT5mZmYqKitLhw4eDthTY2q0H9dOeo0G5NgAAAMqfy27VDfENg3b9ivAZGBeWYH/PHMvK1d+/21Xu1wUAAEDwdLiohprUDg/KtYvz+Tdoe6oAAAAAAAAAAABcSAhVAAAAAAAAAAAAAkCoAgAAAAAAAAAAEABCFQAAAAAAAAAAgAAQqgAAAAAAAAAAAASAUAUAAAAAAAAAACAAhCoAAAAAAAAAAAABIFQBAAAAAAAAAAAIAKEKAAAAAAAAAABAAAhVAAAAAAAAAAAAAkCoAgAAAAAAAAAAEABCFQAAAAAAAAAAgAAQqgAAAAAAAAAAAASAUAUAAAAAKrjU1FTFxcXJ7XYrPj5eK1euPGv/L774QvHx8XK73brooos0d+7ccqoUAAAAqNwIVQAAAACgAluyZInGjx+vhx56SN9++626dOmifv36KT093W//LVu2qH///urSpYu+/fZbPfjggxo3bpzeeeedcq4cAAAAqHwIVQAAAACgAps1a5ZGjRql0aNHq0WLFpo9e7ZiYmI0Z84cv/3nzp2rRo0aafbs2WrRooVGjx6tW2+9VTNnziznygEAAIDKh1AFAAAAACqo7OxsrVu3Tr179/Zq7927t1atWuX3mNWrV/v079Onj9auXaucnBy/x2RlZSkzM9PrAQAAAMAXoQoAAAAAVFD79+9XXl6eoqOjvdqjo6O1e/duv8fs3r3bb//c3Fzt37/f7zEpKSmKioryPGJiYkrnBgAAAIBKhlAFAAAAACo4i8Xi9dwY49N2rv7+2gskJSXp8OHDnsf27dvPs2IAAACgcrIHuwAAAAAAgH+1atWSzWbzmZWyd+9en9koBerWreu3v91uV82aNf0e43K55HK5SqdoAAAAoBJjpgoAAAAAVFBOp1Px8fFKS0vzak9LS1OnTp38HpOQkODT/5///Kfat28vh8NRZrUCAAAAVQGhCgAAAABUYBMnTtSLL76oBQsWaNOmTZowYYLS09M1ZswYSSeX7ho+fLin/5gxY7Rt2zZNnDhRmzZt0oIFC/TSSy9p8uTJwboFAAAAoNJg+S8AAAAAqMASExN14MABJScnKyMjQ61atdLSpUsVGxsrScrIyFB6erqnf1xcnJYuXaoJEybohRdeUP369fXXv/5VN9xwQ7BuAQAAAKg0CFUAAACAUhbmsinS7VBkiENRIQ5VC2XJJZyfsWPHauzYsX5fW7hwoU9b165dtX79+jKuCgAAAKh6CFUAAACAErBYpDCXXZFuu6JOhScFIYrDxiq7AAAAAFAZEaoAAAAAZ2G1SOFuuyLdDk94EhXiUITbLjvhCQAAAABUKYQqAAAAgCSbVYpwO/yGJ1arJdjlAQAAAAAqAEIVAAAAVCl2q0WRIXZFhhQKUEIdinDZZbEQngAAAAAAikaoAgAAgErJYbN49jgpvN9JuIuPwAAAAACAkmFECQAAgAuay249Izw5uXF8qJOPugAAAACA0sVIEwAAABeEEKfVa7+TgiDF7bAFuzQAAAAAQBVBqAIAAIAKJcxlU6T7dGhSMPPEZSc8AQAAAAAEF6EKAAAAyp3FIoW57Ip02z0zTwpmnzhs1mCXBwAAAACAX4QqAAAAKDNWixTutnst2xUV4lCE2y474QkAAAAA4AJDqAIAAIDzZrNKEaeCk8IBSoTbLqvVEuzyAAAAAAAoFYQqAAAACJjdalFkiP30fiduh6JCHYpw2WWxEJ4AAAAAACo3QhUAAAD4cNgsnuCkYK+TqBCHwl18fAQAAAAAVF2MigEAAKowl916RnhycuP4UCcfEwEAAAAAOBOjZQAAgCogxGn12uukIEhxO2zBLg0AAAAAgAsGoQoAAEAlEuayKdJ9OjQpmHnishOeAAAAAABwvghVAAAALjAWixTmsivSbffMPCmYfeKwWYNdHgAAAAAAlRahCgAAQAVltUjhhYKTguW7IkMcslktwS4PAAAAAIAqh1AFAAAgyGxWKaLwfienvo5w22UlPAEAAAAAoMII+voQqampiouLk9vtVnx8vFauXFlk33fffVe9evVS7dq1FRkZqYSEBH3yySflWC0AAEDJ2a0W1QhzqHGtUF0WE6Uul9TSwMvqaUj7GPVvXU+dL66lVg2i1KhmqKJCHQQqAAAAAABUMEGdqbJkyRKNHz9eqamp6ty5s+bNm6d+/fpp48aNatSokU//f/3rX+rVq5cef/xxVatWTS+//LKuvvpqff3112rbtm0Q7gAAAMCXw2bxbBRfsFxXVIhD4S4mCQMAAAAAcCGzGGNMsC7eoUMHtWvXTnPmzPG0tWjRQtdee61SUlICOkfLli2VmJioRx99NKD+mZmZioqK0uHDhxUZGVmius/X2q0H9dOeo0G5NgAAKD0uu/WM8OTk/iehTsITVCwV4TMwLizB/p45lpWrv3+3q9yvCwAAgODpcFENNakdHpRrF+fzb9BG/NnZ2Vq3bp0eeOABr/bevXtr1apVAZ0jPz9fR44cUY0aNcqiRAAAAElSiNPq2eek8MwTt8MW7NIAAAAAAEA5Clqosn//fuXl5Sk6OtqrPTo6Wrt37w7oHE8//bSOHTumIUOGFNknKytLWVlZnueZmZklKxgAAFR6YS6bIt0Or9knUSEOOe1B34YOAAAAAABUAEFfm8Ji8d6A1Rjj0+bP4sWLNXXqVP39739XnTp1iuyXkpKiadOmnXedAACgcrBYpDDXyWW6It12r9knDhvhCQAAAAAAKFrQQpVatWrJZrP5zErZu3evz+yVMy1ZskSjRo3SW2+9pauuuuqsfZOSkjRx4kTP88zMTMXExJS8cAAAcEGwWqTwwqGJ+3R4YrOe+xc4AAAAAAAAzhS0UMXpdCo+Pl5paWm67rrrPO1paWkaNGhQkcctXrxYt956qxYvXqwBAwac8zoul0sul6tUagYAABWPzSpFFN7v5NTXEW67rIQnAAAAAACgFAV1+a+JEydq2LBhat++vRISEjR//nylp6drzJgxkk7OMtm5c6cWLVok6WSgMnz4cD377LPq2LGjZ5ZLSEiIoqKignYfAACg7NmtFkWG2D37nUS6HYoKdSjCZQ9o6VAAAAAAAIDzFdRQJTExUQcOHFBycrIyMjLUqlUrLV26VLGxsZKkjIwMpaene/rPmzdPubm5uvPOO3XnnXd62keMGKGFCxeWd/kAAKAMOGwWr43iC74OdwV9KzgAAAAAAFDFBf2nE2PHjtXYsWP9vnZmULJixYqyLwgAAJQLl93qFZ6cDFDsCnUG/eMJAAAAAACAX/zUAgAAlKkQp9Wzz0nh2Sduhy3YpQEAAAAAABQLoQoAACgVYS6bIgttFF/wcNqtwS4NAAAAAACgVBCqAACAgFksUpjLfnrGidvumXnisBGeAAAAAACAyo1QBQAA+LBapHB34fDk9LJdNqsl2OUBAAAAAAAEBaEKAABVmM0qRRRarqsgPIlw22UlPAEAAAAAAPBCqAIAQBVgt1oUGWJXZOHwJNShCJddFgvhCQAAAAAAQCAIVQAAqEQcNosnOClYrisqxKFwF//JBwAAAAAAOF/8hAUAgAuQy271Ck9OBih2hTr5TzsAAAAAAEBZ4ScvAABUYCFOq9deJwWzT9wOW7BLAwAAAAAAqHIIVQAAqADCXDbv/U5Ofe20W4NdGgAAAAAAAE4hVAEAoJxYLFKYy356xonb7pl54rARngAAAAAAAFR0hCoAAJQyq0UKdxcOT04v22WzWoJdHgAAAAAAAEqIUAUAgBKyWaWIwnudnPo6wm2XlfAEAAAAAACg0iFUAQDgHOxWiyJD7N57noQ6FOGyy2IhPAEAAAAAAKgqCFUAADjFYbN4ghPP7JMQh8Jd/OcSAAAAAAAAhCoAgCrIZbd6ApPCAUqI0xbs0gAAAAAAAFCBEaoAACqtEKfV72bxbgfhCQAAAAAAAIqPUAUAcMELc9m89zs59bXTbg12aQAAAAAAAKhECFUAABcEi0UKc9kLzTyxe2aeOGyEJwAAAAAAACh7hCoAgArFapHC3Xa/y3bZrJZglwcAAAAAAIAqjFAFABAUNqsU4fbeKD7S7VCE2y4r4QkAAAAAAAAqIEIVAECZslstigyxe/Y8KXiEu+yyWAhPAAAAAAAAcOEgVAEAlAqHzeJZpqtweBLm4j81AAAAAAAAqBz4SRcAoFhcduvJwCT09H4nUSEOhThtwS4NAAAAAAAAKFOEKgAAv0KcVr+bxbsdhCcAAAAAAAComghVAKCKC3PZPEt2FZ554rRbg10aAAAAAAAAUKEQqgBAFWCxSGEue6GZJ6e/ttsITwAAAAAAAIBAEKoAQCVitUjhbrvfZbtsVkuwywMAAAAAAAAuaIQqAHABslmliEJLdRUEKBFuu6yEJwAAAAAAAECZIFQBgArMbrUoMsShyBC7V4AS7rLLYiE8AQAAAAAAAMoToQoAVAAOm+X0jJNC4UmYi3+mAQAAAAAAgIqCn9YBQDly2a0nA5PQ0/udRIU4FOK0Bbs0AAAAAAAAAOdAqAIAZSDEafW7WbzbQXgCAAAAAAAAXKgIVQDgPIS5bJ7lugrPPHHarcEuDQAAAAAAAEApI1QBgHOwWKQwl73QzJPTX9tthCcAAAAAAABAVUGoAgCnWC1SeKHApGD2SWSIQzarJdjlAQAAAAAAAAgyQhUAVY7NKk9Y4glPQhyKcNllJTwBAAAAAAAAUARCFQCVlt1qOb3fScjpGSjhLrssFsITAAAAAAAAAMVDqALgguewWbxmnBR8HebinzgAAAAAAAAApYefOAK4YLjs1pOBSejJvU4KwpMQpy3YpQEAAAAAAACoAqzBLgAAzhTitKpulEvN6obrD42r66oWdXR9uwa6Ib6hrro0Wn9oXEPN6kaobpSbQAUAAFRqv/32m4YNG6aoqChFRUVp2LBhOnToUJH9c3JydP/996t169YKCwtT/fr1NXz4cO3atav8igYAAAAqMWaqAAiaMJft9J4nhWaeOO3kvQAAAJI0dOhQ7dixQ8uWLZMk3XbbbRo2bJj+8Y9/+O1//PhxrV+/Xo888oguu+wy/fbbbxo/fryuueYarV27tjxLBwAAAColQhUAZcpikcJcpzeJ9+x94rbLbiM8AQAAKMqmTZu0bNkyffXVV+rQoYMk6W9/+5sSEhK0efNmNWvWzOeYqKgopaWlebU999xzuuKKK5Senq5GjRqVS+0AAABAZRX0n2impqYqLi5Obrdb8fHxWrlyZZF9MzIyNHToUDVr1kxWq1Xjx48vv0IBnJXVIkWFOBRTI0StGkSq88U11b91XQ1pH6NrLquvrk1r6/KYaoqrFaYaYU4CFQAAgHNYvXq1oqKiPIGKJHXs2FFRUVFatWpVwOc5fPiwLBaLqlWrVgZVAgAAAFVLUGeqLFmyROPHj1dqaqo6d+6sefPmqV+/ftq4caPf36DKyspS7dq19dBDD+mZZ54JQsUAbFZ5luryLN0V4lCEyy6r1RLs8gAAACqN3bt3q06dOj7tderU0e7duwM6x4kTJ/TAAw9o6NChioyMLLJfVlaWsrKyPM8zMzOLXzAAAABQBQQ1VJk1a5ZGjRql0aNHS5Jmz56tTz75RHPmzFFKSopP/8aNG+vZZ5+VJC1YsKBcawWqGrvNUig8Ob18V7jLLouF8AQAAKCkpk6dqmnTpp21z5o1ayTJ7+cuY0xAn8dycnJ04403Kj8/X6mpqWftm5KScs6aAAAAAAQxVMnOzta6dev0wAMPeLX37t27WFPZAZwfh81yep+TQnuehLnYcgkAAKAs3HXXXbrxxhvP2qdx48basGGD9uzZ4/Pavn37FB0dfdbjc3JyNGTIEG3ZskWff/75WWepSFJSUpImTpzoeZ6ZmamYmJizHgMAAABURUH7qen+/fuVl5fnMxiIjo4OeCp7IJjGDpzksltPBiahDs8MlKgQh0KctmCXBgAAUKXUqlVLtWrVOme/hIQEHT58WN98842uuOIKSdLXX3+tw4cPq1OnTkUeVxCo/Pzzz1q+fLlq1qx5zmu5XC65XK7AbwIAAACoooL+q+hnTlsPdCp7oJjGjqomxGk9PfOk0N4nbgfhCQAAwIWkRYsW6tu3r/7v//5P8+bNkyTddtttGjhwoJo1a+bp17x5c6WkpOi6665Tbm6uBg8erPXr1+vDDz9UXl6e55fWatSoIafTGZR7AQAAACqLoIUqtWrVks1m85mVsnfv3nNOZS8OprGjsgpz2byW6yoIUJx2a7BLAwAAQCl57bXXNG7cOPXu3VuSdM011+j555/36rN582YdPnxYkrRjxw598MEHkqTLL7/cq9/y5cvVrVu3Mq8ZAAAAqMyCFqo4nU7Fx8crLS1N1113nac9LS1NgwYNKrXrMI0dFzKLRQpznd4k/nSAYpfdRngCAABQ2dWoUUOvvvrqWfsYYzxfN27c2Os5AAAAgNIV1OW/Jk6cqGHDhql9+/ZKSEjQ/PnzlZ6erjFjxkg6Octk586dWrRokeeY7777TpJ09OhR7du3T999952cTqcuvfTSYNwCUCqsFinCs1TX6RAlwu2QzVp6y+EBAAAAAAAAAEouqKFKYmKiDhw4oOTkZGVkZKhVq1ZaunSpYmNjJUkZGRlKT0/3OqZt27aer9etW6fXX39dsbGx2rp1a3mWDpSIzSqvfU4K/oxw2WUlPAEAAAAAAACACi3oG9WPHTtWY8eO9fvawoULfdqYyo4Lgd1mKRSenJ55Eu6yy2IhPAEAAAAAAACAC1HQQxXgQuawWU7vc1Joz5MwF//XAgAAAAAAAIDKhp/8AgFw2a0nA5NQh2cGSlSIQyFOW7BLAwAAAAAAAACUE0IVoJAQp9UTmESFnAxQIkMccjsITwAAAAAAAACgqiNUQZUU5rJ5LddVEKA47dZglwYAAAAAAAAAqKAIVVBpWSxSuMvus99JpNsuu43wBAAAAAAAAABQPIQquOBZLVKEu2CzeLsnPIlwO2SzWoJdHgAAAAAAAACgkiBUwQXDZpVnk/iCmSeRIQ5FuOyyEp4AAAAAAAAAAMoYoQoqHLvNUig8OT3zJNxll8VCeAIA+P/t3XtslfX9B/DP6Z0C7ebmsFICMnXoojDBCxjiZSrqdPfpMjN1gWVkMUTdjQwFGt2W+YvGuMluMppsgkyZi3PqNIs3kCVCymZkYQp4mziH01llOKDf3x/YwmlPy2nt6QGe1ytp7Hn69Dmf8jnU58P7fJ8HAAAAoDyEKpRNdWVuz31O9rrnyfBaL0sAAAAAAPY//vWakqutqtgdmNR33ih+93+H1VSWuzQAAAAAACiaUIVBU19TmXe5roZ3A5S6auEJAAAAAAAHPqEK/Ta8trLHJbsa6qqjpqqi3KUBAAAHgeG1VfGFKc3RkVKkFLs/YvfnHSlFine3pV62Rez53ojo6EgR7369o/vX9/rePd+T/7wd7+63+zCdj/dsS7H7iToK1tn5eO/n2qu2vT7P+3n2OkZ0+xkBACgfoQoF5XIRI2qrCoQnVVFVKTwBAABKq9rc0auOjj3hTEeBECgv1OnID4Y6g5woEOp0hk/dQ51iwqfuYVVv4VOhsCq/7p7hU0e3/feuUfgEAAw1oUrGVeQiRtZ1Xq5rz6W7RtZVR2VFrtzlAQAA0E1F16xmZuvLvsKnvBVI3YOe2BM+dQ919rl6KroFU+8GPHkBVoHwqdfVU9F7+NRj9VQv4VNvYRUA0H9ClYyoqsjFyLr8lScNw6pjZG3VXifkAAAAcHAQPhWnM3zaOwiK6BnqFAqf9rkCaV+XxIvew6eCYVVHz23dV0pF2neAVWilVEdH/mX49g6wAGBvQpWDTFVlLhoKrDwZUVsVuZwTSQAAAGCPzvCpUvjUq0L3byoUPuWtNupxib2+w6ceAVb0Hj71OEZ0e84C4VOv92rqXuc+VkoVCp86wyqArBCqHKBqqiqi4d2VJ4311V1ByvBaLQUAAAAYLLlcLnK5iArBU5/6Cp96XYHUR/jUFVZ19LF6qvsKpI4+Aqy8GvNXW+19qb/ewqeeIVN+MFUofMpbPRXCJzhY+Bf4/VxtVUVXcLLnZvHVMaymstylAQAAAEBECJ+K1RXm9HIJvd7Cp+6Xuese6hQKn3pdgdTH6qkeYVUv4VNfYVVv4VP3kK1ggBXCJ/Z/QpX9RH1NZd7luhreDU/qqoUnAAAAAHAwyOVyUZmLcL+nvu25jF0R4VNHz6CnUPhU7P2b9t63RxAUex+ncPjUPTAqdK+mgoHUXj9D3nMKn/Y7QpUyeF99TUxoGpm38qSmqqLcZQEAAAAAlF3n/Z6ET33rK3zqcbm8AquM9lyirvD9nnpdPRV9h1X7XCnVfdu7ddYfIFdnEqqUwZEfGlHuEgAAAAAAOIAJn8rD8ggAAAAAAIAiCFUAAAAAAACKIFQBAAAAAAAoglAFAAAAAACgCEIVAAAAAACAIghVAAAAAAAAiiBUAQAAAAAAKIJQBQAAAAAAoAhCFQAAAAAAgCIIVQAAAAAAAIogVAEAAAAAACiCUAUAAAAAAKAIQhUAAAAAAIAiCFUAAAAAAACKIFQBAAAAAAAoglAFAAAAAACgCEIVAAAAAACAIghVAAAAAAAAiiBUAQAAAAAAKEJVuQsYaimliIh48803y1wJAAAMjc5z385zYdgXcxMAAFnSn5kpc6FKe3t7RESMGTOmzJUAAMDQam9vj8bGxnKXwQHA3AQAQBYVMzPlUsbertbR0REvv/xyjBw5MnK53JA//5tvvhljxoyJF198MRoaGob8+Sk/r4Fs0/9s0/9s0/9sK3f/U0rR3t4ehx9+eFRUuAIw+2Zuopz0P9v0P9v0P9v0P9vK3f/+zEyZW6lSUVERzc3N5S4jGhoa/HLIOK+BbNP/bNP/bNP/bCtn/61QoT/MTewP9D/b9D/b9D/b9D/bDoSZydvUAAAAAAAAiiBUAQAAAAAAKIJQZYjV1tbGggULora2ttylUCZeA9mm/9mm/9mm/9mm/9A//s5km/5nm/5nm/5nm/5n24HU/8zdqB4AAAAAAGAgrFQBAAAAAAAoglAFAAAAAACgCEIVAAAAAACAIghVSmDRokVxxBFHRF1dXUyePDkef/zxPvd/9NFHY/LkyVFXVxfjx4+Pn/70p0NUKaXQn/7/9re/jbPPPjsOPfTQaGhoiKlTp8Yf//jHIayWwdbfv/+dVq1aFVVVVTFp0qTSFkjJ9fc18M4778S8efNi7NixUVtbGx/+8Ifjl7/85RBVy2Drb/9vv/32mDhxYtTX10dTU1N85Stfiddee22IqmWwPPbYY3HhhRfG4YcfHrlcLn73u9/t83uc/4G5KevMTdlmbso2M1O2mZmy62Cam4Qqg2z58uVx5ZVXxrx586KtrS2mT58e5513XrzwwgsF99+8eXOcf/75MX369Ghra4vvfve7MWfOnFixYsUQV85g6G//H3vssTj77LPjvvvui7Vr18YZZ5wRF154YbS1tQ1x5QyG/va/03/+85+49NJL4+Mf//gQVUqpDOQ1cNFFF8Wf/vSnWLx4cWzYsCGWLVsWEyZMGMKqGSz97f/KlSvj0ksvjZkzZ8bTTz8dd955Zzz55JMxa9asIa6c9+rtt9+OiRMnxo9//OOi9nf+B+amrDM3ZZu5KdvMTNlmZsq2g2puSgyqk046Kc2ePTtv24QJE9LcuXML7v/tb387TZgwIW/b1772tXTKKaeUrEZKp7/9L+TYY49NLS0tg10aQ2Cg/b/44ovTNddckxYsWJAmTpxYwgoptf6+Bu6///7U2NiYXnvttaEojxLrb///7//+L40fPz5v2y233JKam5tLViOlFxHp7rvv7nMf539gbso6c1O2mZuyzcyUbWYmOh3oc5OVKoPof//7X6xduzbOOeecvO3nnHNOPPHEEwW/Z/Xq1T32nzFjRqxZsyZ27NhRsloZfAPpf3cdHR3R3t4ehxxySClKpIQG2v8lS5bExo0bY8GCBaUukRIbyGvgnnvuiSlTpsQNN9wQo0ePjqOPPjq++c1vxn//+9+hKJlBNJD+T5s2LV566aW47777IqUU//znP+Ouu+6KT3ziE0NRMmXk/I+sMzdlm7kp28xN2WZmyjYzE/21P5//VZX12Q8yW7dujV27dsWoUaPyto8aNSpeeeWVgt/zyiuvFNx/586dsXXr1mhqaipZvQyugfS/uxtvvDHefvvtuOiii0pRIiU0kP4/88wzMXfu3Hj88cejqsqv4wPdQF4DmzZtipUrV0ZdXV3cfffdsXXr1vj6178e//73v10j+AAzkP5PmzYtbr/99rj44otj+/btsXPnzvjkJz8ZP/rRj4aiZMrI+R9ZZ27KNnNTtpmbss3MlG1mJvprfz7/s1KlBHK5XN7jlFKPbfvav9B2Dgz97X+nZcuWxcKFC2P58uXxoQ99qFTlUWLF9n/Xrl3xpS99KVpaWuLoo48eqvIYAv35HdDR0RG5XC5uv/32OOmkk+L888+Pm266KVpbW73z6gDVn/6vX78+5syZE/Pnz4+1a9fGAw88EJs3b47Zs2cPRamUmfM/MDdlnbkp28xN2WZmyjYzE/2xv57/ifgH0Qc/+MGorKzska6++uqrPVK1TocddljB/auqquIDH/hAyWpl8A2k/52WL18eM2fOjDvvvDPOOuusUpZJifS3/+3t7bFmzZpoa2uLK664IiJ2nyymlKKqqioefPDBOPPMM4ekdgbHQH4HNDU1xejRo6OxsbFr2zHHHBMppXjppZfiqKOOKmnNDJ6B9P8HP/hBnHrqqfGtb30rIiKOP/74GD58eEyfPj2uv/5677o+iDn/I+vMTdlmbso2c1O2mZmyzcxEf+3P539WqgyimpqamDx5cjz00EN52x966KGYNm1awe+ZOnVqj/0ffPDBmDJlSlRXV5esVgbfQPofsfudVpdffnksXbrUNSEPYP3tf0NDQzz11FOxbt26ro/Zs2fHRz7ykVi3bl2cfPLJQ1U6g2QgvwNOPfXUePnll+Ott97q2vb3v/89Kioqorm5uaT1MrgG0v9t27ZFRUX+qVhlZWVE7Hn3DQcn539knbkp28xN2WZuyjYzU7aZmeiv/fr8b5BvfJ95d9xxR6qurk6LFy9O69evT1deeWUaPnx4eu6551JKKc2dOzd9+ctf7tp/06ZNqb6+Pl111VVp/fr1afHixam6ujrddddd5foReA/62/+lS5emqqqqdOutt6YtW7Z0fbzxxhvl+hF4D/rb/+4WLFiQJk6cOETVUgr9fQ20t7en5ubm9PnPfz49/fTT6dFHH01HHXVUmjVrVrl+BN6D/vZ/yZIlqaqqKi1atCht3LgxrVy5Mk2ZMiWddNJJ5foRGKD29vbU1taW2traUkSkm266KbW1taXnn38+peT8DwoxN2WbuSnbzE3ZZmbKNjNTth1Mc5NQpQRuvfXWNHbs2FRTU5NOOOGE9Oijj3Z97bLLLkunnXZa3v6PPPJI+tjHPpZqamrSuHHj0k9+8pMhrpjB1J/+n3baaSkienxcdtllQ184g6K/f//3Zjg4OPT3NfC3v/0tnXXWWWnYsGGpubk5XX311Wnbtm1DXDWDpb/9v+WWW9Kxxx6bhg0blpqamtIll1ySXnrppSGumvfq4Ycf7vP/587/oDBzU7aZm7LN3JRtZqZsMzNl18E0N+VSslYKAAAAAABgX9xTBQAAAAAAoAhCFQAAAAAAgCIIVQAAAAAAAIogVAEAAAAAACiCUAUAAAAAAKAIQhUAAAAAAIAiCFUAAAAAAACKIFQBAAAAAAAoglAFAAAAAACgCEIVgINcLpfr8+Pyyy8vyfMuXLgwJk2aVJJjD8QjjzwSuVwu3njjjXKXAgAA7GfMTbuZmwD2rarcBQBQWlu2bOn6fPny5TF//vzYsGFD17Zhw4bl7b9jx46orq4esvoAAADKzdwEQLGsVAE4yB122GFdH42NjZHL5boeb9++Pd73vvfFb37zmzj99NOjrq4ufv3rX0dExJIlS+KYY46Jurq6mDBhQixatCjvuN/5znfi6KOPjvr6+hg/fnxce+21sWPHjoiIaG1tjZaWlvjLX/7S9c6u1tbWiNj9DrCf/exnccEFF0R9fX0cc8wxsXr16nj22Wfj9NNPj+HDh8fUqVNj48aNec/3+9//PiZPnhx1dXUxfvz4aGlpiZ07d3Z9PZfLxW233Raf+cxnor6+Po466qi45557IiLiueeeizPOOCMiIt7//veX9J1mAADAgcfcZG4CKFoCIDOWLFmSGhsbux5v3rw5RUQaN25cWrFiRdq0aVP6xz/+kX7+85+npqamrm0rVqxIhxxySGptbe363uuuuy6tWrUqbd68Od1zzz1p1KhR6Yc//GFKKaVt27alb3zjG+mjH/1o2rJlS9qyZUvatm1bSimliEijR49Oy5cvTxs2bEif/vSn07hx49KZZ56ZHnjggbR+/fp0yimnpHPPPbfruR544IHU0NCQWltb08aNG9ODDz6Yxo0blxYuXNi1T0Sk5ubmtHTp0vTMM8+kOXPmpBEjRqTXXnst7dy5M61YsSJFRNqwYUPasmVLeuONN0r8pw0AAByIzE3mJoC+CFUAMqS34eDmm2/O22/MmDFp6dKleduuu+66NHXq1F6PfcMNN6TJkyd3PV6wYEGaOHFij/0iIl1zzTVdj1evXp0iIi1evLhr27Jly1JdXV3X4+nTp6fvf//7ecf51a9+lZqamno97ltvvZVyuVy6//77U0opPfzwwyki0uuvv97rzwAAAGBuMjcB9MU9VQCIKVOmdH3+r3/9K1588cWYOXNmfPWrX+3avnPnzmhsbOx6fNddd8XNN98czz77bLz11luxc+fOaGhoKOr5jj/++K7PR40aFRERxx13XN627du3x5tvvhkNDQ2xdu3aePLJJ+N73/te1z67du2K7du3x7Zt26K+vr7HcYcPHx4jR46MV199tdg/BgAAgF6ZmwCIcKN6AGL3iXSnjo6OiIj4xS9+ESeffHLefpWVlRER8ec//zm++MUvRktLS8yYMSMaGxvjjjvuiBtvvLGo59v7ho65XK7XbZ21dHR0REtLS3z2s5/tcay6urqCx+08TucxAAAA3gtzEwARQhUAuhk1alSMHj06Nm3aFJdccknBfVatWhVjx46NefPmdW17/vnn8/apqamJXbt2DUpNJ5xwQmzYsCGOPPLIAR+jpqYmImLQagIAALLL3ASQXUIVAHpYuHBhzJkzJxoaGuK8886Ld955J9asWROvv/56XH311XHkkUfGCy+8EHfccUeceOKJ8Yc//CHuvvvuvGOMGzcuNm/eHOvWrYvm5uYYOXJk1NbWDqie+fPnxwUXXBBjxoyJL3zhC1FRURF//etf46mnnorrr7++qGOMHTs2crlc3HvvvXH++efHsGHDYsSIEQOqBwAAwNwEkE0V5S4AgP3PrFmz4rbbbovW1tY47rjj4rTTTovW1tY44ogjIiLiU5/6VFx11VVxxRVXxKRJk+KJJ56Ia6+9Nu8Yn/vc5+Lcc8+NM844Iw499NBYtmzZgOuZMWNG3HvvvfHQQw/FiSeeGKecckrcdNNNMXbs2KKPMXr06GhpaYm5c+fGqFGj4oorrhhwPQAAAOYmgGzKpZRSuYsAAAAAAADY31mpAgAAAAAAUAShCgAAAAAAQBGEKgAAAAAAAEUQqgAAAAAAABRBqAIAAAAAAFAEoQoAAAAAAEARhCoAAAAAAABFEKoAAAAAAAAUQagCAAAAAABQBKEKAAAAAABAEYQqAAAAAAAARRCqAAAAAAAAFOH/AW8Aljz1KFH0AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1097,8 +1184,8 @@ "source": [ "fig, axs = plt.subplots(1, 2, figsize=(20, 6))\n", "axs = axs.flatten()\n", - "bmb.interpret.plot_predictions(reg, results, covariates=[\"Treatment\"], ax=axs[0])\n", - "bmb.interpret.plot_predictions(reg_strata, results_strata, covariates=[\"Treatment\"], ax=axs[1])\n", + "bmb.interpret.plot_predictions(reg, results, conditional=[\"Treatment\"], ax=axs[0])\n", + "bmb.interpret.plot_predictions(reg_strata, results_strata, conditional=[\"Treatment\"], ax=axs[1])\n", "axs[0].set_title(\"Non Stratified Regression \\n Model Predictions\")\n", "axs[1].set_title(\"Stratified Regression \\n Model Predictions\");" ] @@ -1129,7 +1216,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -1334,7 +1421,7 @@ "[5 rows x 526 columns]" ] }, - "execution_count": 16, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } @@ -1356,7 +1443,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 19, "metadata": {}, "outputs": [ { @@ -1453,7 +1540,7 @@ "4 1.0 MA White -0.5 40-49 HS 202120533" ] }, - "execution_count": 17, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } @@ -1591,7 +1678,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 20, "metadata": {}, "outputs": [ { @@ -1713,7 +1800,7 @@ "48197 0.416893 Northeast 7.134465 " ] }, - "execution_count": 18, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -1748,12 +1835,12 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 21, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9sAAAPzCAYAAAAXr2wFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxUZf//8fcAAm5YboiCaOWOpWEqGmZqeFuZRZZGqZWWhpZk3qapuZTZYoYtWFppppWltEoplhYuZRr01TQjl0CESLsFywQdzu+P+TExzgw7DMvr+XicBzPXdq4z2zXM51zXMRmGYQgAAAAAAAAAAAAAABSbm6s7AAAAAAAAAAAAAABAdUOwHQAAAAAAAAAAAACAEiLYDgAAAAAAAAAAAABACRFsBwAAAAAAAAAAAACghAi2AwAAAAAAAAAAAABQQgTbAQAAAAAAAAAAAAAoIYLtAAAAAAAAAAAAAACUEMF2AAAAAAAAAAAAAABKiGA7AAAAAAAAAAAAAAAlRLAdAAAAqCbatGkjk8mku+++29VdqRFSUlI0fvx4XXrppfL29pbJZJLJZNJHH33k6q6hDPr37y+TyaT+/fu7uisAXOzuu++WyWRSmzZtXN0VAAAAADUUwXYAAADo3Llzeu+99zRmzBh16tRJTZo0UZ06ddS0aVMFBwfrgQce0ObNm5WXl+fqrgLlIiUlRcHBwVq2bJkOHz6snJycUrWTH8i5cHNzc1OjRo3UpUsXjRs3Ttu3by/nIwDKT3JysqZNm6aePXuqcePG1s//zp07KywsTHPnztXWrVt19uxZV3e1Vvvmm280duxYde7cWT4+PvL09FTLli3VrVs3hYeHKzo6WomJiYzVVURaWprc3d1lMpl0zTXXlLh+aGioTCaTPDw8lJGRUaa+7NmzR4899ph69+6tVq1aycvLSz4+Prr00ks1fPhwvfbaazp16lSZ9gEAAADUVibDMAxXdwIAAACu8/HHH2vKlCk6fPhwkWXbt2+vxYsX64YbbqiEnuFCbdq00W+//aYxY8Zo5cqVru5OtXb//fdr+fLl8vDw0IIFC9SvXz81aNBAkhQYGKiGDRsWq527775bb731VrHKjh07Vq+99prc3d1L3e/aKv9xDgwM1NGjRwst279/f3399de65pprtHXr1krpX3W2YMECzZ07V+fPny+y7KOPPqqnn366EnqFgs6cOaMxY8Zo3bp1xSr/+eef6z//+U8F96p6KMlnR0W47rrrtHnzZplMJh0+fLjYM+yPHj2qSy65RIZh6D//+Y8+//zzUu0/NTVVDz74oD7++OMiy9atW1cPP/ywZs2apbp165ZqfwAAAEBt5OHqDgAAAMB1Fi5cqJkzZyr//MtBgwZp2LBh6ty5sy666CL9+eefOnjwoD799FPFx8frl19+0cyZMwm2u4grAgU11ebNmyVJN998s6ZNm1YubW7cuFEtW7aUJBmGoT/++EPx8fFasmSJ/vnnH73xxhtq2rQpwcoKRoC9+J577jnNmjVLktSoUSONHz9e11xzjfz8/JSbm6tjx47pu+++06effqqff/7Zxb2tvW677TbFxcVJki677DLdd999uuqqq3TxxRfr77//VnJysrZv365PPvlEmZmZLu4tCho9erQ2b94swzC0Zs0azZw5s1j1Vq9ebf1uNnr06FLtOzExUTfccIPS09MlWU4ku+OOO9S3b1/5+vpa3+ObN2/Whx9+qJMnT+qpp57Sbbfdpm7dupVqnwAAAEBtxMx2AACAWurtt9+2/oDbrFkzrV27Vtdee63T8nv37lVUVJROnjyppKSkSuolUDG8vLyUm5urxx57TAsWLCh1OwVnth85csThrMVvv/1W/fr107lz5+Tl5aW0tDQ1adKk1PusjVw9O7UmOnnypAICAvTPP//I399fO3bsUEBAgNPyu3bt0smTJzVkyJBK7CU+//xzXX/99ZKkwYMH6+OPP5aXl5fDsmazWR999JE6duyoLl26VGY3qyxXf3b8/fffatGihf766y916NCh2CetdOzYUQcPHpSPj48yMjJKPNM8MzNT3bp1swbaH3vsMT3++ONOXzunT5/WokWL9NRTT+n7778n2A4AAACUANdsBwAAqIWOHz+uBx54QJJUr149bd26tdBAuyR17dpV8fHxmjp1amV0EahQubm5kqQ6depU+L569+6t22+/XZKUk5Ojr776qsL3CRRl06ZN+ueffyRJ06dPLzTQLkk9e/Yk0O4CH330kfX2888/7zRYKknu7u669dZbCbRXIfXr19ett94qSTp48KC+//77Iuvs2rVLBw8elCQNHz68VEu6jx8/3hponzt3rhYsWFDoa6dhw4aaN2+evvzySzVq1KjE+wMAAABqM4LtAAAAtdALL7ygv//+W5I0b948de7cuVj13NzcdNdddznN37Ztm0aNGqU2bdrI29tbF110kbp3765Zs2bpjz/+cFpv69atMplMMplM2rp1qwzD0BtvvKGrr75aTZo0kY+Pj3r27Km3337bpl5ubq5effVV9e7dW40bN1bDhg3Vt29fvf/++073dfToUeu+8q97/sEHH2jQoEFq3ry56tatq44dO2r69On63//+V+jjsW/fPj355JMaPHiw/P395eXlpQYNGqhdu3YaM2aMvv3220Lrz50719oXScrKytITTzyh7t2766KLLrLpo2S5ZrvJZNLdd9/tsL2zZ8/qxRdfVP/+/dW0aVPVqVNHjRs3VseOHXX99dfrhRdeKHRm3x9//KFZs2ZZ9+/t7a02bdpo1KhR2rZtW6HHcmHffv75Z913331q06aNvLy85Ovrq1tuuaXIx6S48vLytHr1al1//fVq0aKFPD091axZM1177bWKiYmxBtMLWrlypc3jLVle//lphT22ZdW7d2/r7d9++816u6SvAUn666+/9PTTTyskJESNGzeWl5eX/P39NXz4cH322WeF9qN///4ymUzq37+/JEvw5/7771fbtm3l7e0tPz8/3Xbbbdq5c2exjqu83vN5eXl68803de2118rX11dubm66++67rY9P/uoBv/32m83zdeHz6egYK7rvkvT+++9r4MCBatasmerWrasOHTpo2rRp+vPPPwvtwy+//KIHH3xQQUFBatCggTw9PdWyZUt169ZN9957r9auXaucnJxC2yitgq/Dyy67rNTtFHxfFfb54uizt6C7775bJpPJujpEenq6Hn30UXXp0kUNGza0Pt733HOPTCaT6tWrp9OnTxfZvy5dushkMik4ONhpmfj4eN11111q27at6tatKx8fH11xxRWaNm2aNWBZ0Llz59SiRQuZTKZinYCwb98+67E/9dRTRZYvqLyep/x+lOeYlZ2drblz56pr165q0KCBfH19df3112vHjh029TIzMzVr1ix16dJF9evXV5MmTTRs2DAlJiY63deFr6ucnBwtWrRIV155pRo1aiQfHx/16tVLr7zyisxmc5keF0k6c+aMoqOjrZ9Bnp6eat68ucLCwrRixYoy7aPgMvAXfo9xpGCZ0iwh/9NPP1mv0X7FFVdYLxVRHP369VPbtm0d5hmGoXXr1unWW29VQECAvL29dfHFF6tnz5564okndOrUKaftXvj+PnXqlB5//HHra+Kiiy5Sv379tGbNmiL7+OGHH+rmm2+2voYbNmyoSy65RKGhoZo9e7Z27dpV5P6dKc7n2VdffaU77rjD+nlRr149tWnTRr1799bUqVM5oQ4AAKA2MgAAAFCr5OXlGc2aNTMkGfXr1zeysrLK3KbZbDYmTpxoSHK6NWrUyNi0aZPD+lu2bLGW27RpkzF06FCn7Tz00EOGYRjGn3/+afTr189puQULFjjc15EjR6xlVqxYYdx7771O2/Dz8zN++umnIvtc2DZ9+nSnj9ucOXOs5X755RejTZs2dvVXrFhhLR8YGGhIMsaMGWPX1vHjx43OnTsX2Z9HHnnEYV82btxo+Pj4FFp34sSJhtlsdli/YN/Wr19v1KtXz2Eb7u7uxnvvvef0MSmOkydPGn379i20r506dTKOHj1qU2/FihVFPj6OHtvCjBkzxlr3yJEjTsstXbrUWu7pp5+2ppf0NfDDDz8YLVu2LPQYwsPDjX/++cdhP6655hpDknHNNdcYcXFxRv369R224ebmZjz//PNOj6c83/Off/65MWjQIIfPRcHHp7DN2TFWdN83b95sREREOG3nsssuM9LT0x228/777xuenp5FHtvevXvt6hZ8Lc+ZM8fp81SY559/3trGCy+8UKo2LuxLYe+BCz97L5T/XgoMDDR27txpNG3a1O6x2LJli7F582br/ZUrVxbat8TERGtZR6/nv/76y7jlllsKffwbNGhgfPrpp3Z1//vf/1rfK8eOHSu0Hw8//LD186+oshcqOB4mJiaWqG5B5T1mpaSkGO3bt3f6Of/+++8bhmEYP/74o9GqVSuH5by8vIwvv/zS4b4Kvq5++OEHIzg42Gmfr776aiM7O9thOwVfV87s2rXLaR/zt549exoZGRnFf8ALyMvLM1q3bm1IMpo1a2acO3fOadnc3Fzraz8wMNDIy8sr8f4eeeQRa79ff/31UvX5QpmZmUWOu76+vsa3337rsH7B5+HAgQMOx7r8beLEiQ7bOH/+vHHbbbcV+RoODg4udP+FKerzLP+9XNjWpEmTIh9PAAAA1CzMbAcAAKhl9u/fb521GRoaKh8fnzK3OX36dL3yyiuSpLZt2+rVV1/Vrl27tGXLFj388MOqU6eOsrKydOONN+rHH38stK3Zs2fr008/1Z133qkNGzZoz549evfdd9WhQwdJ0osvvqjNmzfr7rvv1o4dO/TAAw9o06ZN2rNnj9544w21bNlSkvT444/rp59+KnRfMTExevPNN9WzZ0+9++672r17t+Li4jRixAhJlpmVgwcPVnZ2tl3d8+fPq379+rr99tv16quvauvWrfrhhx/0xRdf6Pnnn1dgYKAk6emnn9aKFSuKfAyHDx+utLQ0Pfjgg4qPj9fu3bttjrsoDz74oPbv3y9JuuuuuxQbG6tvv/1W33//vT777DPNmzdP3bt3d1g3KSlJQ4cOVXZ2turUqaOoqCht2bJFu3bt0muvvWad5fbKK69oxowZhfbj//7v/3TnnXfK19dXL7/8sr799lvt3LlTc+fOlbe3t8xms+6///5CZw4Xxmw268Ybb9T27dslSddcc40++OAD7d69W5988oluvvlmSdKBAwc0cOBA/fXXX9a6N998s/bu3au9e/da0x544AFr2t69e8t0/fbC/N///Z/1dv5r9EJFvQbS0tI0cOBAHT9+XCaTSffcc482btyo3bt3a9WqVbriiiskSbGxsRozZkyh/Tl+/LgiIiLk4eGhp556Sjt27NCOHTu0YMEC+fj4KC8vT4888ohiY2Md1i/P9/yjjz6qzZs366abblJsbKz27NmjuLg4DRkyRJGRkdq7d6+GDRtmfewKPl8XPp/FUZ59f/zxx/XOO+/o5ptvtun7DTfcIEn69ddf9fDDD9vV+/3333XPPfcoNzdXzZs31/z587Vp0yb98MMP2rFjh1avXq37779fTZs2LdGxlUTBz4MFCxYUeayV5a+//tKtt96qs2fPaubMmdq6dat27dqlN954Q35+frr22mut76GiZsHm57u5uWnkyJE2eWazWUOHDtWHH34ok8mkO+64w/pZsnPnTi1ZskStW7e29mfPnj029ceNGyfJssrGqlWrnPbh3LlzWr16tSQpLCxMrVq1KtHjUfB5mjRpUqk/O8t7zLrtttt07NgxzZgxQ19//bW+//57vfDCC/Lx8ZHZbNbYsWN15MgR3Xjjjfrnn3+0YMECbdu2Td99953mzZsnT09P5eTkWN8HhRk/frz27NmjESNGKC4uTrt379Y777yjq666SpJllYo777yzVI/L3r17de211yotLU3NmzfXnDlztHnzZiUmJmrjxo2aOHGiPDw8tGvXLg0bNkznzp0r8T5MJpN1VaA//vhDX3zxhdOyX3zxhU6cOCFJGjVqlN3KHcXx9ddfW2/feOONJa5/ob///lvXXHONtm/fLk9PT40fP14ff/yxfvjhByUkJGjBggVq0qSJfv/9dw0ZMsRmNYYLnTlzRjfddJNOnjypWbNmaevWrdq9e7eWL18uf39/SZbvGhs3brSru3TpUn3wwQeSpKuvvlorV65UQkKCEhMT9eWXX2rJkiX6z3/+I3d39zIfsyOfffaZXnjhBUnS5ZdfrqVLl2rr1q1KTEzU1q1b9eqrr+rWW28tdLl+AAAA1FCujvYDAACgcq1Zs8Y6++axxx4rc3v/93//Z7i5uRmSjKCgION///ufXZnPP//cWqZnz552+RfOuIuOjrYrk56ebp153axZM8NkMhkffvihXbkff/zRuq/8WfAFFZxdKcm4/vrrHc4ymz9/vrXM1KlT7fL/+OMPh8eaLycnx7juuuusM6nOnz9vV6bgLEE3NzenM2nzOZvZ/s8//xh16tQxJOcz1/OdPHnSLu2qq66yzkbcuHGjXf6ff/5pnTXv5uZm7Nu3z2nf9P9nlZ06dcquzOrVq61lFi9eXGg/nXn55ZetbYwePdrhrL/HHnvMWmbatGkO28nPL+2s4HzFmdl+9OhR62vXZDIZv/32mzWvJK+B4cOHFzpb8ezZs8a1115rLRMXF2dXJn/Wt2SZvb1//367Mvv27bP2t2XLlkZOTo5NfkW852fPnu30uA2j+LMSCx6jo5ntFdH3J5980q5MXl6eERYWZkgyPDw8jMzMTJv8N954w1rf0cz1fP/8849x5swZu/TymNluNpuNyy+/3NqOyWQyrrnmGuOJJ54wNm7cWOjnm7O+lMfMdskymzwpKclpW1OmTLF+ZjlbOSAvL8/w9/c3JBkDBw60y1+0aJEhyahTp47D94phWD77unTpYp09faH81VXatWvntK+xsbHW41q3bp3Tcs789ttvNiuF1K1b1wgPDzeio6ONnTt3GmfPni1WO+U9Znl5eTmcxbxhwwZrmWbNmhlNmzY1fv31V7tyr7zyirVcbGysXf6FK5E89dRTdmXOnTtnDB482Frms88+sytT2GdHXl6e9T1wxRVXGH/88YfDx6bgZ0JpZ4r//PPP1n7efvvtTssVnLl98ODBUu0r//tAy5YtS1X/QpMmTbKOGd9//73DMkePHjX8/PwMScZdd91ll1/w/X3RRRc5/B6RnJxseHt7G5KMm266yS4/NDTUkGT06tWr0NUBHH3PKY+Z7aNGjbK2cfr06RLtHwAAADUbwXYAAIBaZsmSJdYfEpcsWVLm9h544AFrezt37nRabty4cdZyu3btsskrGLzq1auX0zYK/lg7cuRIp+XyAyDdu3e3yysY8PHy8jLS0tIctmE2m42goCBDknHxxRcXO6BRUFJSknVfu3fvtssvGLi49957i2zPWbA9LS3N2s7HH39coj5+99131rrjx493Wm7btm3WcpGRkU77Jsn48ccfHbaRl5dnXQL9lltuKVE/83Xq1MmQZDRt2tTpssHnz583OnbsWOhzV9HB9ry8PCMzM9NYvXq1NeDn6HVb3NfA8ePHDXd3d0OSMXjwYKfljhw5Ynh4eBiS5USSCxUMti9atMhpO88884y1XP5y0PnK+z3fvn17h4G9gsor2F7efQ8ODna6zPMXX3zh9H25YMEC6+uzNMoj2G4YluDWZZddZhPULBh879q1qzFt2rRCg34VEWyfP39+of3es2ePtayjk7MMw/Z5evPNN23ycnNzrYHBhx9+uNB9xcXFWdtJTk62yVu1apU1b9u2bQ7r5y8D37RpU7sTV4rr008/NRo0aODwefLy8jJCQ0ONxYsXlznIV5Ix69FHH3XaTsHx4NVXX3VY5syZM9bAqqPnoODr6vLLL3d6CZPU1FRrcNnRZ15hnx2ffvppkeNWvttvv92QZPTt27fQcoXp2bOnIcnw9vZ2eELaqVOnrI9J7969S7WPrKws6zE5+g5UUn/88Ye1T0V9Z4yJiTEkywksf//9t01ewff3iy++6LSNkSNHOv1sbNeuXbHes46UR7A9/2SU0n5/AQAAQM3FMvIAAAC1zOnTp62369evX+b2Nm/eLEnq3Lmzevfu7bTcfffdZ1fHkQuX+i3o8ssvt97OX+rdkfzltA8fPuy0jGRZ0tfZkt5ubm7Wpbj/97//6Ycffii0rZycHKWkpGj//v3at2+f9u3bJ8MwrPlFLdFc2iVwJalJkyby9PSUJL399ts6f/58sesWfC7Gjh3rtFzfvn3VqVMnuzoX6tq1q83zVJDJZLIuiVzUc+PI8ePHdeDAAUnS7bffroYNGzos5+7urnvuuUdS8Z678tK2bVuZTCaZTCa5ubmpefPmuuuuu3Ts2DFJUu/evfXaa685rV/Ya2DLli0ym82SCn+e2rRpo+uuu06StHXrVmudC5lMpkKXmr/nnnusyxdf+HyX93t+xIgRFbbs74XKu+8RERFOl3kODg623r7w9e7n5yfJ8vr8+OOPi+74Be6++24ZlpPnNXfu3BLXz3fZZZcpKSlJTz/9tC699FKbPMMwtHfvXj377LPq3LmzHnnkkRJ9tpRFUZ+HV155pfXz6J133nFYJj/d29tb4eHhNnm7du1Senq6JMtnSWH69etnvb1z506bvOHDh+uiiy6SJIdLr//+++/6/PPPJVku75H/OV1SN954o/bv36+JEyeqcePGNnk5OTlKSEjQlClTdOmllxa6pP2F9coyZhVnrDaZTE4f37p166pdu3aSih4PxowZIzc3xz9f+fv7KywsTFLhn3mO5L/3OnTo4HTcypf/Ovj+++9LtI+C8j9zz549q3Xr1tnlf/DBBzp79qwkafTo0aXaR3l/x9u4caO1T8V9r5w7d87usgv5TCaTIiIinLaR/7n5v//9T6dOnbLJy//c/PTTT61L7Vem/P1/8803OnToUKXvHwAAAFUXwXYAAIBapmCA8u+//y5TWzk5OUpOTpYk9erVq9Cy3bt3V506dSRJ+/btc1quffv2TvPygxrFLVfwR2dH8q/36kzPnj2ttx31+e+//9bChQt1xRVXqH79+goMDFSXLl3UtWtXde3a1eZau0X9MFzUD/2F8fLysp58sG7dOl122WWaNm2a4uLilJWVVWjd/OPy9PR0ek33fPnPcXJystNr7Hbs2LHQNvIDRUU9N44UfA6Ker0VzC/s9VbR6tSpo6uuukqvvPKKEhIS5OPj47RsYa+B0hz7mTNnnAax2rZtW+j1wJs1a6Y2bdrY7bsi3vNlee2XREX0vbDXe8Gg6IWv95tuusn6OXXLLbdowIABeuGFF7Rnz55SB/JKq379+nr00Uf166+/6ueff9abb76phx56SD179rQGOM1msxYvXmy9TnlFatCggS655JIiy+UH5Hft2mV9XvPl5uZag5k33nijGjVqZJO/e/du6+2QkBDrSTKOtgYNGljLZmRk2LRTt25da+Dw/ffftxtTC578dO+99xZ5TIUJCAjQyy+/rN9//13fffedXnzxRd1zzz3WgLUknTp1SmPGjHF6zfXyHLOKMwY3bdpUF198cZHlymusLuwzz5H818HBgwcLfQ2YTCZNmjRJkuW19eeffxZ7HwWNHDnS5sS4C+WneXp6FnpCYWHK8zueZPte8fPzK/QxCgoKspa98L2Sr2nTpmrSpInT/RX2uZl/ssKvv/6qyy67TPfee6/effdd6wltFS3/BIiTJ08qKChII0eO1IoVK/Trr79Wyv4BAABQdRFsBwAAqGUKBth+//33MrX1v//9z3rb19e30LJ16tSx/sBa2A/V9erVc5pXcGZbccrl5eUV2qfmzZsXml/wmC7s89GjR9W1a1c99thj+r//+78iA2T//PNPofmFBSSK4+WXX9bQoUMlSb/99puee+453XDDDWrSpIl69uypRYsWKTs7265e/nE1btxYHh4ehe6jRYsWkiwzXgs+9wUV9rxIsgnelVTB56Co11t+Xy+sV5E2btyovXv3au/evfrpp5/022+/6fTp09q1a5ciIyOLfHwLew2U97EX9dovuJ+CbVTEe76sr/3icuXn1YWv9yZNmuiTTz5Rq1atZBiGtmzZoilTpqhHjx5q3Lixbr31Vn322WeF9rEidOjQQffcc4+WLFmi7777TikpKTYB9rfeekvbtm2r0D4UPKmqMAVnx144uz0uLs76fDuaJZ+ZmVmqvp05c8YuLX8VhNOnT2v9+vU2eflB76uuukpdu3Yt1T4v5OHhoZ49e+rBBx/Um2++qV9++UW7d+/W1VdfbS3zyCOP2AUqy3vMKs5rv7zGg7KM1YUpz9dBcTRu3Fg33HCDJMvs6N9++82a99tvvykhIUGSdMMNN9itYFBcPj4+1hOFyvodTyr/x6i4rwnJ/nVx77336rHHHpOHh4eysrK0YsUKRUREKCAgQJdddpmmTp1aqlVzimvgwIF6+eWXVbduXZ09e1Zr167Vvffeq3bt2snf318TJkwockUIAAAA1EwE2wEAAGqZ/CXWJZXr8trOllIuqOAStVVBUX0urL+jRo3SkSNHZDKZdO+992rTpk1KTU3V2bNnrcs7F/yhuKhjL+sy2j4+Pvrkk0/03Xff6ZFHHtGVV14pd3d3mc1mff/99/rvf/+rdu3a2S2DnK+6PX9lee4qSvv27RUUFKSgoCB17txZrVu3lpeXV7Hrl9dS6sU59vJ4vsvrNVNZS8gXVBVe76Ghofr111+1evVqRUREyN/fX5KUnZ2t2NhYDR06VP/5z39KHdgrD61atdLy5cttlgz/4IMPKnSfxX09tG3bVn369JFkH2zPv3/RRRfp+uuvt6tb8LN569at1pNkitoeeOABu7a6detmXfq64Izy7777Tvv375dU9lntRQkODtYXX3yhyy67TJLlxJILL39Q3mNWZaqoz/v84+3bt2+xXwN79+51evmZ4sifHW0YhtasWWNNX716tfU4SruEfL7873nHjx8vc8A9/zHy9PQs0WM0bNiwMu3XmQULFujXX3/VggULNGDAAGvw/tChQ3r++efVsWNHvfrqqxWyb0maOHGijh49qhdeeEHXX3+9ddWMtLQ0vfbaa+revbtmzZpVYfsHAABA1VT41AoAAADUOJ07d1bTpk114sQJJSQkKDs7u9ClrQtTcEaqsyVD850/f95mFnVVUNSP0AVndBXs888//2yd3TljxgwtWLDAYX1ns78rUs+ePa1L6p4+fVpbt27VihUr9OGHHyozM1O33nqrDh06pLp160r697hOnjyp8+fPFzr7Ov/xMplMlTYbuaCCz0FRr7eCz21Veb2VRcFj+P3339W6dWunZYtz7MUJwOS//gu2UZ3f81Wx797e3rrzzjuts68PHz6sDRs26OWXX9Yvv/yijRs3aubMmXrhhRcqrA/Fcd999+m9996TJLslkwvORC1sNZHyWNL6QnfddZd27Nhhnd3do0cPnT59Wp9++qkk6bbbbnN4nfSCy1h7enraLH9dGuPGjdOePXv09ddf6/Dhw7rkkkusgfe6devqjjvuKFP7xVG/fn3dcccdeuKJJyTZPk9Vecwqjt9//73QZeudjdVFadKkiX7//Xf98ccfZX4NFNcNN9xg/Q729ttv67HHHpNkCbbn9yl/9ntpXXPNNdbl3zds2FCmkz3y3yu5ublq0qSJ9brlrhQYGKjHHntMjz32mM6dO6ddu3bpgw8+0GuvvaazZ88qMjJSvXr1srksQnFXPCrO51Tz5s0VFRWlqKgo5eXlKSkpSbGxsXrllVd06tQpLViwQFdddVWFnXAAAACAqoeZ7QAAALWMyWTS3XffLcnyo+Lrr79e6ra8vLys14v97rvvCi2bmJioc+fOSVKl/ahdlO+//77Y+QX7/NNPP1lvF5zxeaGC1zp1hYYNG2ro0KGKjY3VQw89JElKT0+3WQY6/7hyc3OVmJhYaHu7du2SJLVr185hAKuiFXwOinq95ff1wnrVVWmOvV69emrbtq3DMkeOHNHJkyedtvHHH3/o6NGjdvt21Xu+ODPRi1IdPq8uueQSPfjgg/r++++tM93ff//9Stu/MwVn8hYMrku214guLFh78ODBcu/X7bffbl0yO382e2xsrM6ePSvJ8RLykmyCcJs2bSpzPyIiIlSvXj0ZhqG33npL//zzj/XkhPDwcLtrxlcUZ89TdRmznCnuWF2vXj1dcsklxW43/3Xwyy+/2CzpXpHq1KljfQ5+/vln7d69W99//71+/vlnSZbnJ/81XVr53/Ek6aWXXirVZVvylfd7pbzVqVNHffv2VXR0tPUzwDAMrVu3zqZc/ufUqVOnCm2vpJ9Tbm5uuvLKK/Xkk0/qyy+/tKZXhc9tAAAAVB6C7QAAALVQVFSUdenNxx9/3Pojb1Hy8vKss6/yDRo0SJK0f/9+ffvtt07rFgzq59dxtU2bNik9Pd1hXl5ent566y1JlhmxV155pTXv/Pnz1tuFLfFckUuZltTAgQOtt0+cOGG9XfC5eOONN5zW37lzp3VJZFc9fy1btlSnTp0kWZayvvCaxPnMZrNWrlwpyf65q6769+9vXV67sOcpJSVF8fHx1jrOViowDEOrVq1y2s7KlSutSxpf+Hy74j3v7e0tScrJySlTO9Xl88rHx0dXXXWVJNv3a3kqydLbBYOwF57AUfB+YcHaC5d6Lw9NmjTR4MGDJUnvvfee8vLyrEtz+/v7q1+/fg7rXX311dYZ0K+++qqys7PL1A8fHx/dfvvtkizXtV+3bp2ysrIkSWPHji1T2+XxPFXHMaugt99+2+njkJaWZg0CF/ycLI6bbrrJevvZZ58tWydLoOAy8W+//bbefvtth3mlFRQUZD22pKQkLVy4sNh1ExISdOTIEev9IUOGWIP/L7zwgs1rqapx9j1H+vf9cPr0aacB9dzcXK1fv77U+7/yyiutK6hU1Oc2AAAAqiaC7QAAALVQq1at9PLLL0uyzG6/5ppr9PXXXxdaZ//+/Ro8eLAWLVpkk/7AAw9YZ9Ddf//91gBDQZs2bbIGCHv27GkNIrlaTk6Oxo8f73DW19NPP629e/dKslxvt+C1t/Nnx0qyBuQvtHTpUn300Ufl22EnDh8+XOTzV3BGWsEgTMHn4/XXX7cGagvKysrS+PHjJVlmcTm6bnFlmThxoiTLzOsHH3zQYQBm3rx51hMD7rvvvhJdN72qatmypW655RZJ0saNG/Xmm2/alcnNzdW9995rnZE9adKkQtt84oknHAYdDhw4YF1m2s/Pz24pXFe85/OXLs7MzHR6kkVxVJXPq40bNzo90UeyvOfyVyhwtDrBypUrZTKZZDKZNHfu3FL1Yfny5br//vvtloW/0G+//aaZM2da71/4eggKCrIGrl9++WWHJ0S8++67ZQpiFSZ/9np6erreffddffXVV5Iss82drYjg7e2tqVOnSrJcUmDkyJGFLh99+vRp65jpzLhx4yRZHq9p06ZJsjx3/fv3L9HxXOiBBx7QU089Zb2sgTPx8fHW8ah+/fo2J4lUtTGrpJKSkvTcc8/ZpZ8/f1733XefcnNzJanEY9Ott95qPYFr6dKlhZ7IJEn79u2zXqKgLK666ip17txZkuUkkfxVEDp06GC9DExZvfbaa/L19ZUkzZ49W48//rj1cXLk77//1rx58zRw4ECbz8VWrVrpnnvukST9+OOPGj9+fKEB98zMzDKtmFSY1atXF7pvZ99zJMvS+vmef/55u7qGYWjy5Mk6fvy40/bXrl2rf/75x2n+7t27rat7OFtVBgAAADUT12wHAACope655x4dO3ZMjz/+uDIzM9W/f3+FhYVp2LBh6tSpky666CL9+eef+uWXX7RhwwZ98cUXMpvNuuKKK2za6dq1qx555BE999xz2rt3r6688ko9+uij6t69u86cOaNPP/1UL774osxmszw9PfXaa6+56Ijt9ejRQ59++qn69u2rhx9+WO3atVNmZqbeeust64/f/v7+mj17tk297t27KygoSPv27dPSpUt16tQp3XnnnfLz81NqaqpWr16tdevWqW/fvtq+fXuFH0dKSoquvfZade7cWbfccot69OihVq1aSZJSU1O1du1a65Km3bt3V69evWzqL1u2TL169VJubq5uuOEGPfjggxo6dKgaNGigxMREPf300zp8+LAkaerUqS5dln3ChAlas2aNdu7cqbfeeku//fabJk6cqEsuuUTp6el68803FRsbK0m69NJL7Z676uyFF17Ql19+qf/9738aN26ctm/frpEjR6px48b6+eeftWjRIiUlJUmyLK89ZMgQp23lv9Z79+6tRx991BoQ3Lp1q55++mlrsOWll16yu2SAK97zffr0kWRZcWLChAl68MEH1aRJE2sw9bLLLitWO1Xl8+rdd9/V0KFDdd111yksLMwasD59+rT27dunl19+WWlpaZJKHkAsrtzcXC1fvlzLly9Xnz59NHjwYAUHB8vX11dubm5KS0vTli1b9Prrr1tPcLjppptsZo9KkoeHh+6//349/fTT2rdvnwYMGKBp06apdevWysjI0AcffKC33npLISEh2rlzZ7kfx7Bhw9SwYUOdPn1akyZNsp485WwJ+XzTpk3Tl19+qS+//FKff/65OnfurAkTJigkJEQXXXSRdQbs1q1b9dFHH8nb27vQE1j69u2rTp066cCBA8rIyJBkGWfLegmEEydO6LXXXtO8efN0/fXXq3///urSpYuaNGmi8+fP69dff9Unn3yi999/33o96ieffFI+Pj7WNqramFVSPXr00KOPPqqkpCSNHj1azZs3V3JyshYvXmw9KWXo0KG68cYbS9Suu7u71q5dqz59+uivv/7SuHHj9MEHHygiIkIdOnRQnTp1lJmZqcTERH322WfasWOHHnnkEQ0dOrTMxzRq1CjNmDHD5nrz5TGrPV+LFi302Wef6cYbb9Tvv/+uJ554Qm+//bYiIiLUt29fNW/eXLm5uUpLS9NXX32l9evX648//nDY1vPPP68dO3Zo3759evPNN/Xtt9/q/vvvV3BwsBo0aKBTp07pp59+0ubNmxUXF6euXbtaTz4pT6NGjdLUqVMVHh6uPn366NJLL5W3t7d+//13xcfHa+nSpZKkBg0a6K677rKp2717d/Xu3Vvffvutli9frtzcXI0ZM0aNGjVScnKyXn31VW3durXQz6lHH31UEyZM0LBhw9SvXz+1b99e9evX18mTJ7Vt2za99NJLkiyvq/vuu6/cjx8AAABVmAEAAIBabf369UabNm0MSUVuXbp0MTZu3GjXhtlsNiIjIwut26hRI4d1DcMwtmzZYi23ZcsWp31dsWKFtdyRI0eclpszZ4613IWOHDlizVuxYoVx9913O+2zn5+f8dNPPzncR2JionHxxRc7rdu1a1fj+PHj1vtz5swpUT8dCQwMNCQZY8aMsUkv+PgVtnXq1Mnp47Zx40bDx8en0PoTJ040zGZzifp2oTFjxhiSjMDAwGIdsyMnT540+vbtW+SxHj161GkbhT0vJZF/PEW9Jp0p6Wvghx9+MFq2bFnosYeHhxv//POPw/rXXHONIcm45pprjM8++8yoV6+ewzbc3NyMRYsWOe1HZb3nC+6vd+/eTvfl7Bhd3Xdnr7OCr5vSvOcKfhaW9jW8du1aw9PTs1j9kGREREQYZ86ccdjW33//Xejzc8011xh79+61+ey9UFk+G0aPHm2zvy5duhSr3pkzZ+zqOtvatm1bZHuLFi2yeQ+lpKSU+Fgu9NBDDxX7OfL29jaeeeYZh+1U5phV3OeysPdqwdf4Dz/8YHTv3t1p3/v27WtkZ2eXui8//vij0a5du2I9xvPmzSv0mIorNTXVcHNzs7ZrMpmM3377rVzaLujo0aPGDTfcUKxjq1+/vjF37lzj7Nmzdu2cPHnS+M9//lOsdq699lq7+sV9TRT2Pa84+77oooucfnYfOHDAaN68udO6U6ZMKXT/+d9zinoPvvXWW4UeIwAAAGoelpEHAACo5cLDw3Xw4EGtWbNGd911lzp06KCLL75YHh4eaty4sa688kpFRkbqyy+/1N69exUWFmbXhpubm1555RV98803uvPOO9W6dWt5eXnJx8dH3bp102OPPabk5GSHdV1txYoVeuedd9S/f381adJEXl5eat++vaZNm6affvrJutTrhbp166akpCRNmDBBgYGBqlOnjho3bqyePXtq0aJF2rVrl3Xp64oWGhqqnTt3av78+RowYIAuu+wyNWzYUHXq1JGvr6/CwsL02muvKSkpSW3atHHYRlhYmH799Vc99thj6tatm3x8fOTl5aXWrVvrzjvvVEJCgl5++WXrEtyu1LhxY33zzTd6++239Z///Ee+vr6qU6eOmjRpov79++vll19WUlKSAgMDXd3Vcte9e3cdPHhQCxcuVK9evXTRRRfJ09NTLVu2VHh4uD755BOtX7/eeo3zwtxwww3avXu37rnnHgUGBsrT01PNmzfXrbfeqm3btumRRx5xWrey3/Nubm7atGmTZs2apSuuuEINGjQo9YzhqvB5FR0drfXr12vChAnWlSg8PT1Vt25dtW/fXnfffbe2bdtWoe+522+/XZmZmXr//fc1ceJEhYSEyNfXV56envL09FTTpk3Vu3dvPfzww9q9e7fWrFmjunXrOmyrXr16+uqrr7RgwQJ17dpVdevWtV53/uWXX9aXX36pBg0aVMhxSPaz2Iua1Z6vbt26euutt7R792498MAD6tKlixo1aiQPDw9ddNFF6tatm8aOHat169bpwIEDRbY3atQo6+3rrrtOAQEBJTsQB5YsWaLffvtNr732mu666y5169bNOkbXrVtXLVu21KBBg7RgwQL98ssv1iXsL1SVxqySuvjii7Vjxw4tXLhQ3bp1U8OGDdWgQQNdddVVeumll/T111+rYcOGpW7/8ssv1/79+/XWW2/p5ptvVkBAgLy9veXp6Sk/Pz/1799fs2bN0p49e/T444+XyzH5+/trwIAB1vv9+/dX69aty6XtggIDA/XZZ59p165devTRR9WzZ0/5+fnJ09NTDRo00CWXXKLhw4dr2bJlOn78uObMmePw0iuNGzfW559/ri+//FL33HOP2rVrpwYNGli/K1511VWaOHGi4uLiHF6Opjz8/PPPeumll3TzzTerc+fOatKkiTw8PHTxxRerd+/emjt3rg4ePOj0s7tjx4764Ycf9MADD1jHvGbNmuk///mPNmzY4HB5+YK++eYbvf766xoxYoS6du2qZs2aycPDQz4+Prryyiv13//+V/v37y/XFQoAAABQPZgMw8FFDgEAAIAa6ujRo9Zraa5YsUJ33323azsEVKL+/fvr66+/1jXXXKOtW7e6ujtAjfLll19ar5W+du1a3X777S7uUfW1cuVK67XCjxw54vREMQAAAABwNddPSwEAAAAAAKjm3nzzTUlSkyZNNGzYMBf3BgAAAABQGQi2AwAAAAAAlMHRo0f1wQcfSJLuueceh0txAwAAAABqHg9XdwAAAAAAAKC6SUtL05kzZ3TkyBFNnz5d586dk7e3t6KiolzdNQAAAABAJSHYDgAAAAAAUEJ33nmnvv76a5u0+fPnq1WrVi7qEQAAAACgshFsBwAAAAAAKKV69eqpffv2ioqK0pgxY1zdHQAAAABAJTIZhmG4uhMAAAAAAAAAAAAAAFQnbq7uAAAAAAAAAAAAAAAA1Q3BdgAAAAAAAAAAAAAASohgOwAAAAAAAAAAAAAAJUSwHQAAAAAAAAAAAACAEiLYDgAAAAAAAAAAAABACRFsBwAAAAAAAAAAAACghDxc3YGqKC8vT8ePH1fDhg1lMplc3R0AQA1nGIZOnz6tli1bys2N8+AqGuM8AKAyMc5XHsZ4AEBlYoyvPIzxAIDKVNIxnmC7A8ePH1dAQICruwEAqGVSU1Pl7+/v6m7UeIzzAABXYJyveIzxAABXYIyveIzxAABXKO4YT7DdgYYNG0qyPIg+Pj4u7g0AoKbLzs5WQECAdfxBxWKcBwBUJsb5ysMYDwCoTIzxlYcxHgBQmUo6xhNsdyB/KRofHx8GbwBApWEptMrBOA8AcAXG+YrHGA8AcAXG+IrHGA8AcIXijvFcTAYAAAAAAJRITEyM2rZtK29vbwUHByshIcFp2a1bt8pkMtltP//8s0259evXq3PnzvLy8lLnzp314YcfVvRhAAAAAABQJgTbAQAAAABAsa1du1ZRUVGaOXOmEhMTFRoaqiFDhiglJaXQegcPHlR6erp1a9eunTVv586dGjFihEaNGqUff/xRo0aN0u23367vvvuuog8HAAAAAIBSI9gOAAAAAACKbfHixRo7dqzGjRunTp06KTo6WgEBAVq6dGmh9Zo3b64WLVpYN3d3d2tedHS0rrvuOs2YMUMdO3bUjBkzNHDgQEVHR1fw0QAAAAAAUHoE2wEAAAAAQLHk5uZqz549CgsLs0kPCwvTjh07Cq3bvXt3+fn5aeDAgdqyZYtN3s6dO+3aHDx4cKFt5uTkKDs722YDAAAAAKAyEWwHAAAAAADFcuLECZnNZvn6+tqk+/r6KiMjw2EdPz8/LVu2TOvXr1dsbKw6dOiggQMH6ptvvrGWycjIKFGbkrRw4UI1atTIugUEBJThyAAAAAAAKDkPV3cAAAAAAABULyaTyea+YRh2afk6dOigDh06WO+HhIQoNTVVixYtUr9+/UrVpiTNmDFDU6ZMsd7Pzs4m4A4AAAAAqFTMbAcAAAAAAMXStGlTubu72804z8zMtJuZXpjevXsrOTnZer9FixYlbtPLy0s+Pj42GwAAAAAAlYlgOwAAAAAAKBZPT08FBwcrPj7eJj0+Pl59+vQpdjuJiYny8/Oz3g8JCbFrc9OmTSVqEwAAAACAysYy8gAAAAAAoNimTJmiUaNGqUePHgoJCdGyZcuUkpKiCRMmSLIs756WlqZVq1ZJkqKjo9WmTRt16dJFubm5Wr16tdavX6/169db25w8ebL69eunZ555RsOGDdPHH3+szZs3a9u2bS45RgAAAAAAioNgOwAAAAAAKLYRI0bo5MmTmj9/vtLT0xUUFKS4uDgFBgZKktLT05WSkmItn5ubq6lTpyotLU1169ZVly5dtGHDBl1//fXWMn369NF7772nWbNmafbs2br00ku1du1a9erVq9KPDwAAAACA4jIZhmG4uhNVTXZ2tho1aqSsrCyu+QYAqHCMO5WLxxsAUJkYdyoPjzUAoDIx7lQeHmsAQGUq6bjDNdsBAAAAAAAAAAAAACghlpEHAKCEzLlm7Y1J0JlD6ap3qZ+6RobK3dPd1d0CAADlwGyWEhKk9HTJz08KDZXcGeYBAKj2GOMBAKiZXD3GE2wHAKAEvp0Wq9aLJ6ub+Zg17fhUf6VMWaLez4a7sGcAAKCsYmOlyZOlY/8O8/L3l5YskcIZ5gEAqLYY4wEAqJmqwhjPMvIAABTTt9Ni1fO54WpRINAuSS3Maer53HB9Oy3WRT0DAABlFRsrDR9u+w+6JKWlWdJjGeYBAKiWGOMBAKiZqsoYT7AdAIBiMOea1XrxZEmG3eDpJkOSFLA4SuZcc6X3DQAAlI3ZbDkT3jDs8/LToqIs5QAAQPXBGA8AQM1UlcZ4gu0AABTD3pgEtTQfczpwuslQK3Oq9sYkVGq/XCkmJkZt27aVt7e3goODlZDg/Ni3bt0qk8lkt/3888/WMsuXL1doaKguvvhiXXzxxRo0aJB27dpl087cuXPt2mjRokWFHSMAoHZISLA/E74gw5BSUy3lAABA9cEYDwBAzVSVxniXB9td8UM9AAAldeZQermWq+7Wrl2rqKgozZw5U4mJiQoNDdWQIUOUkpJSaL2DBw8qPT3durVr186at3XrVt1xxx3asmWLdu7cqdatWyssLExpaWk2bXTp0sWmjb1791bIMQIAao/0AsO3qc55BT66QYGPbpCpznmn5QAAQNXHGA8AQM1UlcZ4lwbbXflDPQAAJVHvUr9yLVfdLV68WGPHjtW4cePUqVMnRUdHKyAgQEuXLi20XvPmzdWiRQvr5u7ubs1bs2aNIiMj1a1bN3Xs2FHLly9XXl6evvzyS5s2PDw8bNpo1qxZhRwjAKD28Cvm8F3ccgAAoGpgjAcAoGaqSmO8S4PtrvyhvqCcnBxlZ2fbbAAAFNQ1MlTH3f2VJ5PD/DyZlOYeoK6RoZXcs8qXm5urPXv2KCwszCY9LCxMO3bsKLRu9+7d5efnp4EDB2rLli2Flj1z5ozOnTunxo0b26QnJyerZcuWatu2rUaOHKnDhw8X2g7jPACgKKGhkr+/ZHI8zMtkkgICLOUAAED1wRgPAEDNVJXGeJcF2139Q31BCxcuVKNGjaxbQEBA8Q8EAFAruHu6K2XKEkmyC7jn30+dEi13T3e7ujXNiRMnZDab5evra5Pu6+urjIwMh3X8/Py0bNkyrV+/XrGxserQoYMGDhyob775xul+pk+frlatWmnQoEHWtF69emnVqlXauHGjli9froyMDPXp00cnT5502g7jPACgKO7u0hLLMG/3j3r+/ehoSzkAAFB9MMYDAFAzVaUx3mXBdlf+UH+hGTNmKCsry7qlpqaW7qAAADVa72fDteu/65Th3somPd3dX7v+u069nw13Uc9cw3TBtxjDMOzS8nXo0EH33XefrrzySoWEhCgmJkY33HCDFi1a5LD8s88+q3fffVexsbHy9va2pg8ZMkS33nqrunbtqkGDBmnDhg2SpLfeestpPxnnAQDFER4urVsntbxgiTl/f0t6eO0a5gEAqDEY4wEAqJmqyhjvUTm7ca6kP9R36NDBej8kJESpqalatGiR+vXrZ1c+/4f6rVu32vxQfyEvLy95eXmV8ggAALVJ72fDZX5ymJJiEnTmULrqXeqnrpGhalULZrTna9q0qdzd3e1OjsvMzLQ7ia4wvXv31urVq+3SFy1apKeeekqbN2/W5ZdfXmgb9evXV9euXZWcnOy0DOM8AKC4wsOl64ZIXedZ7n8eJw26ltluAABUd4zxAADUTFVhjHfZzPby/KHe0Q/s+T/Ub9q0qcgf6gEAKAl3T3d1i+qvPi/doW5R/WvF0vEFeXp6Kjg4WPHx8Tbp8fHx6tOnT7HbSUxMlJ+f7WmHzz33nJ544gl98cUX6tGjR5Ft5OTk6MCBA3btAABQWgX/IQ/tx4/wAADUFIzxAADUTK4e4102s73gD/W33HKLNT0+Pl7Dhg0rdjvOfqh/8skntXHjxmL9UA8AAEpmypQpGjVqlHr06KGQkBAtW7ZMKSkpmjBhgiTL0u1paWlatWqVJCk6Olpt2rRRly5dlJubq9WrV2v9+vVav369tc1nn31Ws2fP1jvvvKM2bdpYT8hr0KCBGjRoIEmaOnWqhg4dqtatWyszM1NPPvmksrOzNWbMmEp+BAAAAAAAAAAAtZ1Ll5F31Q/1AACgbEaMGKGTJ09q/vz5Sk9PV1BQkOLi4hQYGChJSk9PV0pKirV8bm6upk6dqrS0NNWtW1ddunTRhg0bdP3111vLxMTEKDc3V8OHD7fZ15w5czR37lxJ0rFjx3THHXfoxIkTatasmXr37q1vv/3Wul8AAAAAAAAAACqLS4PtrvqhHgAAlF1kZKQiIyMd5q1cudLm/rRp0zRt2rRC2zt69GiR+3zvvfeK2z0AAAAAAAAAACqUS4Ptkmt+qAcAAAAAAAAAAAAAoCzcXN0BAAAAAAAAAAAAAACqG4LtAAAAAAAAAAAAAACUEMF2AAAAAAAAAAAAAABKiGA7AAAAAAAAAAAAAAAlRLAdAAAAAAAAAAAAAIASItgOAAAAAAAAAAAAAEAJEWwHAAAAAAAAAAAAAKCECLYDAAAAAAAAAFALxMTEqG3btvL29lZwcLASEhKKVW/79u3y8PBQt27dbNL79+8vk8lkt91www3WMnPnzrXLb9GiRXkeFgAALkOwHQAAAAAAAACAGm7t2rWKiorSzJkzlZiYqNDQUA0ZMkQpKSmF1svKytLo0aM1cOBAu7zY2Filp6dbt3379snd3V233XabTbkuXbrYlNu7d2+5HhsAAK5CsB0AAAAAAAAAgBpu8eLFGjt2rMaNG6dOnTopOjpaAQEBWrp0aaH1xo8fr4iICIWEhNjlNW7cWC1atLBu8fHxqlevnl2w3cPDw6Zcs2bNyvXYAABwFYLtAAAAAAAAAADUYLm5udqzZ4/CwsJs0sPCwrRjxw6n9VasWKFDhw5pzpw5xdrPG2+8oZEjR6p+/fo26cnJyWrZsqXatm2rkSNH6vDhw07byMnJUXZ2ts0GAEBVRbAdAAAAAAAAAIAa7MSJEzKbzfL19bVJ9/X1VUZGhsM6ycnJmj59utasWSMPD48i97Fr1y7t27dP48aNs0nv1auXVq1apY0bN2r58uXKyMhQnz59dPLkSYftLFy4UI0aNbJuAQEBxTxKAAAqH8F2AAAAAAAAAABqAZPJZHPfMAy7NEkym82KiIjQvHnz1L59+2K1/cYbbygoKEg9e/a0SR8yZIhuvfVWde3aVYMGDdKGDRskSW+99ZbDdmbMmKGsrCzrlpqaWqz9AwDgCkWfjgYAAAAAAAAAAKqtpk2byt3d3W4We2Zmpt1sd0k6ffq0du/ercTERE2aNEmSlJeXJ8Mw5OHhoU2bNmnAgAHW8mfOnNF7772n+fPnF9mX+vXrq2vXrkpOTnaY7+XlJS8vr5IcHgAALsPMdgAAAAAAAAAAajBPT08FBwcrPj7eJj0+Pl59+vSxK+/j46O9e/cqKSnJuk2YMEEdOnRQUlKSevXqZVP+/fffV05Oju66664i+5KTk6MDBw7Iz8+vbAcFAEAVwMx2AAAAAAAAAABquClTpmjUqFHq0aOHQkJCtGzZMqWkpGjChAmSLMu3p6WladWqVXJzc1NQUJBN/ebNm8vb29suXbIsIX/zzTerSZMmdnlTp07V0KFD1bp1a2VmZurJJ59Udna2xowZUzEHCgBAJSLYDgAAAAAAAABADTdixAidPHlS8+fPV3p6uoKCghQXF6fAwEBJUnp6ulJSUkrc7i+//KJt27Zp06ZNDvOPHTumO+64QydOnFCzZs3Uu3dvffvtt9b9AgBQnRFsBwAAAAAAAACgFoiMjFRkZKTDvJUrVxZad+7cuZo7d65devv27WUYhtN67733Xkm6CABAtcI12wEAAAAAAAAAAAAAKCGC7QAAAAAAAAAAAAAAlBDBdgAAAAAAAAAAAAAASohgOwAAAAAAAAAAAAAAJUSwHQAAAAAAAAAAAACAEiLYDgAAAAAAAAAAAABACRFsBwAAAAAAAAAAAACghAi2AwAAAAAAAAAAAABQQgTbAQAAAAAAAAAAAAAoIYLtAAAAAAAAAAAAAACUEMF2AAAAAAAAAAAAAABKiGA7AAAAAAAAAAAAAAAlRLAdAAAAAAAAAAAAAIASItgOAAAAAAAAAAAAAEAJEWwHAAAAAAAAAAAAAKCECLYDAAAAAAAAAAAAAFBCBNsBAAAAAAAAAAAAACghgu0AAAAAAAAAAAAAAJQQwXYAAAAAAAAAAAAAAEqIYDsAAAAAAAAAAAAAACVEsB0AAAAAAAAAAAAAgBIi2A4AAAAAAAAAAAAAQAkRbAcAAAAAAAAAAAAAoIQItgMAAAAAAAAAAAAAUEIE2wEAAAAAAAAAAAAAKCGXB9tjYmLUtm1beXt7Kzg4WAkJCU7Lbt26VSaTyW77+eefbcqtX79enTt3lpeXlzp37qwPP/ywog8DAAAAAAAAAAAAAFCLuDTYvnbtWkVFRWnmzJlKTExUaGiohgwZopSUlELrHTx4UOnp6datXbt21rydO3dqxIgRGjVqlH788UeNGjVKt99+u7777ruKPhwAAAAAAAAAAAAAQC3h0mD74sWLNXbsWI0bN06dOnVSdHS0AgICtHTp0kLrNW/eXC1atLBu7u7u1rzo6Ghdd911mjFjhjp27KgZM2Zo4MCBio6OruCjAQAAAAAAAAAAAADUFi4Ltufm5mrPnj0KCwuzSQ8LC9OOHTsKrdu9e3f5+flp4MCB2rJli03ezp077docPHhwoW3m5OQoOzvbZgMAAAAAAAAAAAAAwBmXBdtPnDghs9ksX19fm3RfX19lZGQ4rOPn56dly5Zp/fr1io2NVYcOHTRw4EB988031jIZGRklalOSFi5cqEaNGlm3gICAMhwZAAAAAAAAAAAAAKDCmc3/3v4mwfZ+JXDpMvKSZDKZbO4bhmGXlq9Dhw667777dOWVVyokJEQxMTG64YYbtGjRolK3KUkzZsxQVlaWdUtNTS3l0QAAAAAAAAAAAAAAKlxsrNSp87/3rx8itWljSa8kLgu2N23aVO7u7nYzzjMzM+1mphemd+/eSk5Ott5v0aJFidv08vKSj4+PzQYAAAoXExOjtm3bytvbW8HBwUpISHBaduvWrTKZTHbbzz//bFNu/fr16ty5s7y8vNS5c2d9+OGHZdovAAAAAAAAAKAGio2Vhg+XjqfZpqelWdIrKeDusmC7p6engoODFR8fb5MeHx+vPn36FLudxMRE+fn5We+HhITYtblp06YStQkAAAq3du1aRUVFaebMmUpMTFRoaKiGDBmilJSUQusdPHhQ6enp1q1du3bWvJ07d2rEiBEaNWqUfvzxR40aNUq33367vvvuuzLvFwAAAAAAAABQQ5jN0uTJkmHY5+WnRUVVypLyLl1GfsqUKXr99df15ptv6sCBA3r44YeVkpKiCRMmSLIs7z569Ghr+ejoaH300UdKTk7WTz/9pBkzZmj9+vWaNGmStczkyZO1adMmPfPMM/r555/1zDPPaPPmzYqKiqrswwMAoMZavHixxo4dq3HjxqlTp06Kjo5WQECAli5dWmi95s2bq0WLFtbN3d3dmhcdHa3rrrtOM2bMUMeOHTVjxgwNHDhQ0dHRZdpvTk6OsrOzbTYAAAAAAAAAQDWVkCAdO+Y83zCk1FRLuQrm0mD7iBEjFB0drfnz56tbt2765ptvFBcXp8DAQElSenq6zUy13NxcTZ06VZdffrlCQ0O1bds2bdiwQeHh4dYyffr00XvvvacVK1bo8ssv18qVK7V27Vr16tWr0o8PAICaKDc3V3v27FFYWJhNelhYmHbs2FFo3e7du8vPz08DBw7Uli1bbPJ27txp1+bgwYOtbZZ2vwsXLlSjRo2sW0BAQJHHCAAAAAAAAACootLTrTfrncvR0Wdu1NFnblS9czlOy1UUjwrfQxEiIyMVGRnpMG/lypU296dNm6Zp06YV2ebw4cM1fPjw8ugeAAC4wIkTJ2Q2m+Xr62uT7uvrq4yMDId1/Pz8tGzZMgUHBysnJ0dvv/22Bg4cqK1bt6pfv36SpIyMjELbLM1+JctKOVOmTLHez87OJuAOAAAAAAAAANVVgUuMl0u5MnB5sB0AAFRPJpPJ5r5hGHZp+Tp06KAOHTpY74eEhCg1NVWLFi2yBtuL22ZJ9itJXl5e8vLyKvxgAAAAAAAAAADVQ2io5O8vpaU5vm67yWTJDw2t8K64dBl5AABQ/TRt2lTu7u52s8kzMzPtZp0Xpnfv3kpOTrbeb9GiRaFtltd+AQAAAAAAAADVmLu7tGSJ5faFE7Hy70dHW8pVMILtAACgRDw9PRUcHKz4+Hib9Pj4ePXp06fY7SQmJsqvwDI+ISEhdm1u2rTJ2mZ57RcAAJRdTEyM2rZtK29vbwUHByshIaFY9bZv3y4PDw9169bNLi86OlodOnRQ3bp1FRAQoIcfflhnz54t554DAAAAAGqE8HBp3TqpVSvbdH9/S3p4eKV0g2XkAQBAiU2ZMkWjRo1Sjx49FBISomXLliklJUUTJkyQZLlOelpamlatWiXJ8uN5mzZt1KVLF+Xm5mr16tVav3691q9fb21z8uTJ6tevn5555hkNGzZMH3/8sTZv3qxt27YVe78AUJOYzVJCgpSebrnEWGhopZyQDRRp7dq1ioqKUkxMjPr27avXXntNQ4YM0f79+9W6dWun9bKysjR69GgNHDhQv//+u03emjVrNH36dL355pvq06ePfvnlF919992SpBdeeKEiDwcAAAAAUF2Fh0vDhrn0BxSC7QAAoMRGjBihkydPav78+UpPT1dQUJDi4uIUGBgoSUpPT1dKSoq1fG5urqZOnaq0tDTVrVtXXbp00YYNG3T99ddby/Tp00fvvfeeZs2apdmzZ+vSSy/V2rVr1atXr2LvFwBqithYafJk6dixf9P8/S0rpFXSidmAU4sXL9bYsWM1btw4SZaT6jZu3KilS5dq4cKFTuuNHz9eERERcnd310cffWSTt3PnTvXt21cRERGSpDZt2uiOO+7Qrl27Kuw4AAAAAAA1gLu71L+/y3ZPsB0AAJRKZGSkIiMjHeatXLnS5v60adM0bdq0ItscPny4hg8fXur9AkBNEBsrDR8uGYZtelqaJb0SV0ID7OTm5mrPnj2aPn26TXpYWJh27NjhtN6KFSt06NAhrV69Wk8++aRd/tVXX63Vq1dr165d6tmzpw4fPqy4uDiNGTPGaZs5OTnKycmx3s/Ozi7FEQEAAAAAUHoE2wEAAACgijCbLTPaLwy0S5Y0k0mKirKskMaS8nCFEydOyGw2y9fX1ybd19dXGRkZDuskJydr+vTpSkhIkIeH458hRo4cqT/++ENXX321DMPQ+fPn9cADD9gF9QtauHCh5s2bV/qDAQAAAACgjNxc3QEAAAAAgEVCgu3S8RcyDCk11VIOcCWTyWRz3zAMuzRJMpvNioiI0Lx589S+fXun7W3dulULFixQTEyMfvjhB8XGxuqzzz7TE0884bTOjBkzlJWVZd1SU1NLf0AAAAAAAJQCM9sBAAAAoIpIT//3tqnOebWeslGSlLJ4sIxzHg7LAZWpadOmcnd3t5vFnpmZaTfbXZJOnz6t3bt3KzExUZMmTZIk5eXlyTAMeXh4aNOmTRowYIBmz56tUaNGWa8D37VrV/3999+6//77NXPmTLm52c8V8PLykpeXVwUcJQAAAAAAxcPMdgAAAACoIvz8yrccUN48PT0VHBys+Ph4m/T4+Hj16dPHrryPj4/27t2rpKQk6zZhwgR16NBBSUlJ6tWrlyTpzJkzdgF1d3d3GYYhw9F1FQAAAAAAqAIItgMAAABAFREaKvn7W67N7ojJJAUEWMoBrjJlyhS9/vrrevPNN3XgwAE9/PDDSklJ0YQJEyRZlncfPXq0JMnNzU1BQUE2W/PmzeXt7a2goCDVr19fkjR06FAtXbpU7733no4cOaL4+HjNnj1bN910k9zd3V12rAAA1DQxMTFq27atvL29FRwcrIRiXp9o+/bt8vDwULdu3WzSV65cKZPJZLedPXu2XPYLAEBVxzLyAAAAAFBFuLtLS5ZIw4fbB9zz70dHW8oBrjJixAidPHlS8+fPV3p6uoKCghQXF6fAwEBJUnp6ulJSUkrU5qxZs2QymTRr1iylpaWpWbNmGjp0qBYsWFARhwAAqI3M5n9vf5MgXduv1n2pWrt2raKiohQTE6O+ffvqtdde05AhQ7R//361bt3aab2srCyNHj1aAwcO1O+//26X7+Pjo4MHD9qkeXt7l3m/AABUByaD9djsZGdnq1GjRsrKypKPj4+ruwMAqOEYdyoXjzeA6iA2Vpo85bzcR/57zXb/Fh6KjpbCw13bt5ruTO55dX7c8rjvnz9Y9TzLdo46407l4bEGADgVG6szU/6rziNflCTtX3yr6vk2s5zlWMovV9Vx3OnVq5euvPJKLV261JrWqVMn3XzzzVq4cKHTeiNHjlS7du3k7u6ujz76SElJSda8lStXKioqSqdOnSr3/earjo81AKD6Kum4wzLyAAAAAFDFhIdL+w/8e//zOOnIEQLtAAAAJRYba1k26HiabXpamiU9NtY1/apkubm52rNnj8LCwmzSw8LCtGPHDqf1VqxYoUOHDmnOnDlOy/z1118KDAyUv7+/brzxRiUmJpZpvzk5OcrOzrbZAACoqgi2AwAAAEAVVHBV09Dat8opAABA2ZnN0uTJkqPFXfPToqJsl5ivoU6cOCGz2SxfX1+bdF9fX2VkZDisk5ycrOnTp2vNmjXy8HC82k/Hjh21cuVKffLJJ3r33Xfl7e2tvn37Kjk5udT7XbhwoRo1amTdAgICSnq4AABUGoLtAAAAAADku/B6rrXgx3cAAGqshATp2DHn+YYhpaZaytUSJpPJ5r5hGHZpkmQ2mxUREaF58+apffv2Ttvr3bu37rrrLl1xxRUKDQ3V+++/r/bt2+ull14q1X4lacaMGcrKyrJuqampxT08AAAqXdkuPgcAAAAAQE0RGytN+a/0/6/nquuHSGW8nisAAHCh9HTrzXrncnT0mRuLLFdTNW3aVO7u7nazyTMzM+1mnUvS6dOntXv3biUmJmrSpEmSpLy8PBmGIQ8PD23atEkDBgywq+fm5qarrrrKOrO9pPuVJC8vL3l5eZXqOAEAqGzMbAcAAAAAgOu5AgBQ8/j5lW+5aszT01PBwcGKj4+3SY+Pj1efPn3syvv4+Gjv3r1KSkqybhMmTFCHDh2UlJSkXr16OdyPYRhKSkqS3/9/TEu6XwAAqhtmtgMAAAAAareirudqMlmu5zpsmOTuXundAwAApRQaKvn7W06eczTOm0yW/NDQyu+bC0yZMkWjRo1Sjx49FBISomXLliklJUUTJkyQZFm+PS0tTatWrZKbm5uCgoJs6jdv3lze3t426fPmzVPv3r3Vrl07ZWdn68UXX1RSUpJeeeWVYu8XAIDqjGA7AAAAAKB2K8n1XPv3r7RuAQCAMnJ3t1wOZvhwS2C9YMA9/3rh0dG15mS6ESNG6OTJk5o/f77S09MVFBSkuLg4BQYGSpLS09OVkpJSojZPnTql+++/XxkZGWrUqJG6d++ub775Rj179iz2fgEAqM5MhuHolL7aLTs7W40aNVJWVpZ8fHxc3R0AQA3HuFO5eLwBVBdncs+r8+MbJUn75w9WPU/Ola4w774rRUQUXe6dd6Q77ihR04w7lYfHGgDgVGysZRWbgifXBQRYAu3h4aVqknGn8vBYAwAqU0nHHX6tAQAAAADUblzPFQCAmi083HI5mIQEKT3dMqaHhtaaGe0AAKDiEGwHAAAAANRuXM8VAICaz92dy8EAAIBy5+bqDgAAAAAA4FL513OV/r1+a75aeD1XAAAAAABQPATbAQAAAAAID5fWrZNatbJN9/e3pJfyeq4AAAAAAKDmYhl5AAAAAIUym7m8JWoJrucKAAAAAABKgGA7AAAAAKdiY6XJk6Vjx/5N8/e3rLjNRF/USFzPFQAAAAAAFBPLyAMAAABwKDZWGj7cNtAuSWlplvTYWNf0CwAAAAAAAKgKCLYDAAAAsGM2W2a0G4Z9Xn5aVJSlHAAAAAAAAFAbEWwHAAAAYCchwX5Ge0GGIaWmWsoBAAAAAAAAtRHXbAcASLLMTExIkNLTJT8/KTTUcslSAEDtlJ7+721TnfNqPWWjJCll8WAZ5zwclgMAAAAAAABqE4LtAADFxlqWCi44g9HfX1qyRAoPd12/AACu4+dXvuUAAAAAAACAmoZl5AGglouNlYYPt18qOC3Nkh4b65p+AQBcKzTUcuKVyeQ432SSAgIs5QAAAAAAAIDaiGA7ANRiZrNlRrth2Oflp0VFWcoBAGoXd3fLCieSfcA9/350NJccAQAAAAAAQO1FsB0AarGEBPsZ7QUZhpSaaikHAKh9wsOldeuklhcsFe/vb0nnUiMAAAAAAACozQi2A0Atlp7+721TnfMKfHSDAh/dIFOd807LAQBql/Bwaf+Bf+9/HicdOUKgHQAAAAAAACDYDgC1mJ9f0WVKUg4AUDMVXCo+tB9LxwMAAAAAAAASwXYAqNVCQy1LAV94Ld58JpMUEGApBwAAAAAAAAAAgH8RbAeAWszdXVqyxHL7woB7/v3oaGYwAgAAAAAAAAAAXIhgOwDUcuHh0rp1UssLlor397ekc01eAAAAAAAAAAAAewTbAQAKD5f2H/j3/udx0pEjBNoBAAAAAAAAAACcIdgOAJBku1R8aD+WjgcAAAAAAAAAACgMwXYAAAAAAAAAAAAAAErI5cH2mJgYtW3bVt7e3goODlZCQkKx6m3fvl0eHh7q1q2bXV50dLQ6dOigunXrKiAgQA8//LDOnj1bzj0HAAAAAAAAAAAAANRWLg22r127VlFRUZo5c6YSExMVGhqqIUOGKCUlpdB6WVlZGj16tAYOHGiXt2bNGk2fPl1z5szRgQMH9MYbb2jt2rWaMWNGRR0GAAAAAAAAAAAAAKCWcWmwffHixRo7dqzGjRunTp06KTo6WgEBAVq6dGmh9caPH6+IiAiFhITY5e3cuVN9+/ZVRESE2rRpo7CwMN1xxx3avXt3RR0GAAAAAAAAAAAAAKCWcVmwPTc3V3v27FFYWJhNelhYmHbs2OG03ooVK3To0CHNmTPHYf7VV1+tPXv2aNeuXZKkw4cPKy4uTjfccIPTNnNycpSdnW2zAQAAAAAAAAAAAADgjIerdnzixAmZzWb5+vrapPv6+iojI8NhneTkZE2fPl0JCQny8HDc9ZEjR+qPP/7Q1VdfLcMwdP78eT3wwAOaPn26074sXLhQ8+bNK/3BAAAAAAAAAAAAAABqFZcuIy9JJpPJ5r5hGHZpkmQ2mxUREaF58+apffv2TtvbunWrFixYoJiYGP3www+KjY3VZ599pieeeMJpnRkzZigrK8u6paamlv6AAAAAAAAAAAAAAAA1nstmtjdt2lTu7u52s9gzMzPtZrtL0unTp7V7924lJiZq0qRJkqS8vDwZhiEPDw9t2rRJAwYM0OzZszVq1CiNGzdOktS1a1f9/fffuv/++zVz5ky5udmfX+Dl5SUvL68KOEoAAAAAAAAAAAAAQE3kspntnp6eCg4OVnx8vE16fHy8+vTpY1fex8dHe/fuVVJSknWbMGGCOnTooKSkJPXq1UuSdObMGbuAuru7uwzDkGEYFXdAAAAAAAAAAAAAAIBaw2Uz2yVpypQpGjVqlHr06KGQkBAtW7ZMKSkpmjBhgiTL8u5paWlatWqV3NzcFBQUZFO/efPm8vb2tkkfOnSoFi9erO7du6tXr1769ddfNXv2bN10001yd3ev1OMDAAAAAAAAAAAAANRMLg22jxgxQidPntT8+fOVnp6uoKAgxcXFKTAwUJKUnp6ulJSUErU5a9YsmUwmzZo1S2lpaWrWrJmGDh2qBQsWVMQhAAAAAAAAAAAAAABqIZcG2yUpMjJSkZGRDvNWrlxZaN25c+dq7ty5NmkeHh6aM2eO5syZU049BAAAAAAAAAAAAADAlsuu2Q4AAAAAAAAAAAAAQHVFsB0AAJRKTEyM2rZtK29vbwUHByshIaFY9bZv3y4PDw9169bNJr1///4ymUx22w033GAtM3fuXLv8Fi1alOdhAQAAAAAAAABQLATbAQBAia1du1ZRUVGaOXOmEhMTFRoaqiFDhiglJaXQellZWRo9erQGDhxolxcbG6v09HTrtm/fPrm7u+u2226zKdelSxebcnv37i3XYwMAAAAAAAAAoDgItgMAgBJbvHixxo4dq3HjxqlTp06Kjo5WQECAli5dWmi98ePHKyIiQiEhIXZ5jRs3VosWLaxbfHy86tWrZxds9/DwsCnXrFmzcj02AAAAAAAAAACKg2A7gBrNbJa2bpXefdfy12x2dY+A6i83N1d79uxRWFiYTXpYWJh27NjhtN6KFSt06NAhzZkzp1j7eeONNzRy5EjVr1/fJj05OVktW7ZU27ZtNXLkSB0+fLjQdnJycpSdnW2zAQAAAAAAAKh5iAmgshFsB1BjxcZKbdpI114rRURY/rZpY0kHUHonTpyQ2WyWr6+vTbqvr68yMjIc1klOTtb06dO1Zs0aeXh4FLmPXbt2ad++fRo3bpxNeq9evbRq1Spt3LhRy5cvV0ZGhvr06aOTJ086bWvhwoVq1KiRdQsICCjGUQIAAAAAAACoTogJwBUItgOokWJjpeHDpWPHbNPT0izpDK5A2ZlMJpv7hmHYpUmS2WxWRESE5s2bp/bt2xer7TfeeENBQUHq2bOnTfqQIUN06623qmvXrho0aJA2bNggSXrrrbectjVjxgxlZWVZt9TU1GL1AQAAAAAAAED1QEwArkKwHUCNYzZLkydLhmGfl58WFcXyMUBpNW3aVO7u7naz2DMzM+1mu0vS6dOntXv3bk2aNEkeHh7y8PDQ/Pnz9eOPP8rDw0NfffWVTfkzZ87ovffes5vV7kj9+vXVtWtXJScnOy3j5eUlHx8fmw0AAAAAAABAzUBMAK5EsB1AjZOQYH/2WkGGIaWmWsoBKDlPT08FBwcrPj7eJj0+Pl59+vSxK+/j46O9e/cqKSnJuk2YMEEdOnRQUlKSevXqZVP+/fffV05Oju66664i+5KTk6MDBw7Iz8+vbAcFAAAAAAAAoFoiJgBXKvqiqQBQzaSn/3vbVOe8Wk/ZKElKWTxYxjkPh+UAlMyUKVM0atQo9ejRQyEhIVq2bJlSUlI0YcIESZal29PS0rRq1Sq5ubkpKCjIpn7z5s3l7e1tly5ZlpC/+eab1aRJE7u8qVOnaujQoWrdurUyMzP15JNPKjs7W2PGjKmYAwUAAAAAAABQpRETgCsRbAdQ4xR3gisTYYHSGzFihE6ePKn58+crPT1dQUFBiouLU2BgoCQpPT1dKSkpJW73l19+0bZt27Rp0yaH+ceOHdMdd9yhEydOqFmzZurdu7e+/fZb634BAAAAAAAA1C7EBOBKBNsB1DihoZK/v5SW5jjfZLLkh4ZWbr+AmiYyMlKRkZEO81auXFlo3blz52ru3Ll26e3bt5fh6OJK/997771Xki4CAAAAAAAAqOGICcCVuGY7gBrH3V1assRy22Syzcu/Hx1tKQcAAAAAAAAAAKovYgJwJYLtAGqk8HBp3Tqp5QXLwvj7W9LDw13TLwAAAAAAAMBVYmJi1LZtW3l7eys4OFgJCQnFqrd9+3Z5eHioW7duNunLly9XaGioLr74Yl188cUaNGiQdu3aZVNm7ty5MplMNluLFi3K65AAQBIxAbgOwXYANVZ4uLT/wL/3P4+TjhxhUAUAoMTM5n9vf5Ngex8AAABAtbB27VpFRUVp5syZSkxMVGhoqIYMGaKUlJRC62VlZWn06NEaOHCgXd7WrVt1xx13aMuWLdq5c6dat26tsLAwpV2wlnOXLl2Unp5u3fbu3VuuxwYAEjEBuAbBdgA1WsFlYUL7sUwMAAAlFhsrder87/3rh0ht2ljSAQAAAFQbixcv1tixYzVu3Dh16tRJ0dHRCggI0NKlSwutN378eEVERCgkJMQub82aNYqMjFS3bt3UsWNHLV++XHl5efryyy9tynl4eKhFixbWrVmzZuV6bACQj5gAKhvBdgAAAACOxcZKw4dLx21npSgtzZJOwB0AAACoFnJzc7Vnzx6FhYXZpIeFhWnHjh1O661YsUKHDh3SnDlzirWfM2fO6Ny5c2rcuLFNenJyslq2bKm2bdtq5MiROnz4sNM2cnJylJ2dbbMBAFBVEWwHAAAAYM9sliZPlgzDPi8/LSqKJeUBAACAauDEiRMym83y9fW1Sff19VVGRobDOsnJyZo+fbrWrFkjDw+PYu1n+vTpatWqlQYNGmRN69Wrl1atWqWNGzdq+fLlysjIUJ8+fXTy5EmHbSxcuFCNGjWybgEBAcU8SgAAKh/BdgAAAAD2EhKkY8ec5xuGlJpqKQcAAACgWjCZTDb3DcOwS5Mks9msiIgIzZs3T+3bty9W288++6zeffddxcbGytvb25o+ZMgQ3XrrreratasGDRqkDRs2SJLeeusth+3MmDFDWVlZ1i01NbW4hwcAQKUr3uloAAAAAGqX9HTrzXrncnT0mRuLLAcAAACgamratKnc3d3tZrFnZmbazXaXpNOnT2v37t1KTEzUpEmTJEl5eXkyDEMeHh7atGmTBgwYYC2/aNEiPfXUU9q8ebMuv/zyQvtSv359de3aVcnJyQ7zvby85OXlVdJDBADAJZjZDgAAAMCen1/5lgMAAADgMp6engoODlZ8fLxNenx8vPr06WNX3sfHR3v37lVSUpJ1mzBhgjp06KCkpCT16tXLWva5557TE088oS+++EI9evQosi85OTk6cOCA/PhfAgBQAzCzHQAAAIC90FDJ319KS3N83XaTyZIfGlr5fQMAAABQYlOmTNGoUaPUo0cPhYSEaNmyZUpJSdGECRMkWZZvT0tL06pVq+Tm5qagoCCb+s2bN5e3t7dN+rPPPqvZs2frnXfeUZs2bawz5xs0aKAGDRpIkqZOnaqhQ4eqdevWyszM1JNPPqns7GyNGTOmko4ctZnZbLn6WXq65Vzx0FDJ3d3VvQJQkxBsBwAAAGDP3V1askQaPtwSWC8YcM+/pmN0NL9SAAAAANXEiBEjdPLkSc2fP1/p6ekKCgpSXFycAgMDJUnp6elKSUkpUZsxMTHKzc3V8OHDbdLnzJmjuXPnSpKOHTumO+64QydOnFCzZs3Uu3dvffvtt9b9AhUlNlaaPFk6duzfNH9/y7+64eGu6xeAmoVgOwAAAADHwsOldesc/zoRHc2vEwAAAEA1ExkZqcjISId5K1euLLTu3LlzrQH0fEePHi1yn++9914xeweUn9hYy7njFy7UlpZmSV+3jn9pAZQPgu0AAAAAnAsPl4YNY909AAAAAEC1YDZbzhl3dEU0w7As1hYVZflXl39tAZQVwXYAAAAAhXN3l/r3d3UvAAAAAAAoUkKC7eJsFzIMKTXVUo5/dQGUFcF2AAAAAAAAAAAA1Ajp6f/eNtU5r9ZTNkqSUhYPlnHOw2E5ACgtN1d3AAAAAAAAAAAAACgPfn7lWw4ACkOwHQAAAAAAAAAAADVCaKjk72+5NrsjJpMUEGApBwBlRbAdAAAAAAAAAAAANYK7u7RkieX2hQH3/PvR0ZZyAFBWBNsBAAAAAAAAAABQY4SHS+vWSS0vWCre39+SHh7umn4BqHkItgMAAAAAAAAAAKBGCQ+X9h/49/7ncdKRIwTaAZQvgu0AAAAAAAAAAACocQouFR/aj6XjAZQ/gu0AAAAAAKBEYmJi1LZtW3l7eys4OFgJCQnFqrd9+3Z5eHioW7dudnmnTp3SxIkT5efnJ29vb3Xq1ElxcXHl3HMAAAAAAMqPh6s7AAAAAAAAqo+1a9cqKipKMTEx6tu3r1577TUNGTJE+/fvV+vWrZ3Wy8rK0ujRozVw4ED9/vvvNnm5ubm67rrr1Lx5c61bt07+/v5KTU1Vw4YNK/pwAAAAAAAoNWa2A6jZzOZ/b3+TYHsfAAAAQIktXrxYY8eO1bhx49SpUydFR0crICBAS5cuLbTe+PHjFRERoZCQELu8N998U3/++ac++ugj9e3bV4GBgbr66qt1xRVXVNRhAAAAAABQZgTbAdRcsbFSp87/3r9+iNSmjSUdAAAAQInl5uZqz549CgsLs0kPCwvTjh07nNZbsWKFDh06pDlz5jjM/+STTxQSEqKJEyfK19dXQUFBeuqpp2Qu5GTZnJwcZWdn22wAAAAAAFQmgu0AaqbYWGn4cOl4mm16WpolnYA7AAAAUGInTpyQ2WyWr6+vTbqvr68yMjIc1klOTtb06dO1Zs0aeXg4vprd4cOHtW7dOpnNZsXFxWnWrFl6/vnntWDBAqd9WbhwoRo1amTdAgICSn9gAAAAAACUAsF2ADWP2SxNniwZhn1eflpUFEvKAwAAAKVkMpls7huGYZcmSWazWREREZo3b57at2/vtL28vDw1b95cy5YtU3BwsEaOHKmZM2cWujT9jBkzlJWVZd1SU1NLf0AAAAAAAJSC41PKAaA6S0iQjh1znm8YUmqqpVz//pXWLQAAAKC6a9q0qdzd3e1msWdmZtrNdpek06dPa/fu3UpMTNSkSZMkWQLrhmHIw8NDmzZt0oABA+Tn56c6derI3d3dWrdTp07KyMhQbm6uPD097dr28vKSl5dXOR8hAAAAAADFR7AdQM2Tnm69We9cjo4+c2OR5QAAAAAUzdPTU8HBwYqPj9ctt9xiTY+Pj9ewYcPsyvv4+Gjv3r02aTExMfrqq6+0bt06tW3bVpLUt29fvfPOO8rLy5Obm2URvl9++UV+fn4OA+0AAAAAAFQFLCMPoObx8yvfcrVFwWX1v0lgmX0AAAA4NGXKFL3++ut68803deDAAT388MNKSUnRhAkTJFmWdx89erQkyc3NTUFBQTZb8+bN5e3traCgINWvX1+S9MADD+jkyZOaPHmyfvnlF23YsEFPPfWUJk6c6LLjBAAAAACgKATbAdQ8oaGSv7/k4JqRkizpAQGWcrCIjZU6df73/vVDpDZtLOkAAABAASNGjFB0dLTmz5+vbt266ZtvvlFcXJwCAwMlSenp6UpJSSlRmwEBAdq0aZO+//57XX755XrooYc0efJkTZ8+vSIOAQAAAACAcuHyYHtMTIzatm0rb29vBQcHKyEhoVj1tm/fLg8PD3Xr1s0u79SpU5o4caL8/Pzk7e2tTp06KS4urpx7DqDKcneXliyx3L4w4J5/PzraUg6WgPrw4dLxNNv0tDRLOgF3AAAAXCAyMlJHjx5VTk6O9uzZo379+lnzVq5cqa1btzqtO3fuXCUlJdmlh4SE6Ntvv9XZs2d16NAhPfbYYzbXcAcAAAAAoKpxabB97dq1ioqK0syZM5WYmKjQ0FANGTKkyDPgs7KyNHr0aA0cONAuLzc3V9ddd52OHj2qdevW6eDBg1q+fLlatWpVUYcBoCoKD5fWrZMufO/7+1vSw8Nd06+qxmyWJk+WDMM+Lz8tKool5QEAAAAAAAAAAC7g4cqdL168WGPHjtW4ceMkSdHR0dq4caOWLl2qhQsXOq03fvx4RUREyN3dXR999JFN3ptvvqk///xTO3bsUJ06dSTJupQdgFomPFwaNkxKSJDS0y3XaA8NZUZ7QQkJ0rFjzvMNQ0pNtZTr37/SugUAAAAAAAAAAFDVuWxme25urvbs2aOwsDCb9LCwMO3YscNpvRUrVujQoUOaM2eOw/xPPvlEISEhmjhxonx9fRUUFKSnnnpK5kJmZebk5Cg7O9tmA1BDuLtbgsR33GH5S6DdVnq69Wa9czk6+syNOvrMjap3LsdpOQAAAAAAAAAAALgw2H7ixAmZzWb5+vrapPv6+iojI8NhneTkZE2fPl1r1qyRh4fjSfmHDx/WunXrZDabFRcXp1mzZun555/XggULnPZl4cKFatSokXULCAgo/YEBQHXi51e+5QAAAAAAAAAAAGoJl16zXZJMJpPNfcMw7NIkyWw2KyIiQvPmzVP79u2dtpeXl6fmzZtr2bJlCg4O1siRIzVz5kwtXbrUaZ0ZM2YoKyvLuqWmppb+gACgOgkNtVzH3sHnriRLekCApRwAAAAAAAAAAACsXHbN9qZNm8rd3d1uFntmZqbdbHdJOn36tHbv3q3ExERNmjRJkiWwbhiGPDw8tGnTJg0YMEB+fn6qU6eO3AssFd2pUydlZGQoNzdXnp6edm17eXnJy8urnI8QAKoBd3dpyRJp+HBLYN0w/s3LD8BHR7P8PgAAAAAAAAAAwAVcNrPd09NTwcHBio+Pt0mPj49Xnz597Mr7+Pho7969SkpKsm4TJkxQhw4dlJSUpF69ekmS+vbtq19//VV5eXnWur/88ov8/PwcBtoBoNYLD5fWrZNatbJN9/e3pIeHu6ZfAAAAAAAAAAAAVZjLZrZL0pQpUzRq1Cj16NFDISEhWrZsmVJSUjRhwgRJluXd09LStGrVKrm5uSkoKMimfvPmzeXt7W2T/sADD+ill17S5MmT9eCDDyo5OVlPPfWUHnrooUo9NgCoVsLDpWHDpIQEKT3dco320FBmtAMAAAAAAAAAADhRqmD733//raefflpffvmlMjMzbWaRS9Lhw4eL1c6IESN08uRJzZ8/X+np6QoKClJcXJwCAwMlSenp6UpJSSlR3wICArRp0yY9/PDDuvzyy9WqVStNnjxZjz76aInaAYBax91d6t/f1b1ABSuvMRwAAFQ/fA8AAKB6YgwHAKDqKlWwfdy4cfr66681atQo+fn5yZR/Xd9SiIyMVGRkpMO8lStXFlp37ty5mjt3rl16SEiIvv3221L3CQCAmqo8x3AAAFC98D0AAIDqiTEcAICqq1TB9s8//1wbNmxQ3759y7s/AACgAjGGAwBQe/E9AACA6okxHACAqsutNJUuvvhiNW7cuLz7AgAAKhhjOAAAtRffAwAAqJ4YwwEAqLpKFWx/4okn9Pjjj+vMmTPl3R8AAFCBGMMBAKi9+B4AAED1xBgOAEDVVapl5J9//nkdOnRIvr6+atOmjerUqWOT/8MPP5RL5wAAQPliDAcAoPbiewAAANUTYzgAAFVXqYLtN998czl3AwAAVAbGcAAAai++BwAAUD0xhgMAUHWVKtg+Z86c8u4HAACoBIzhAADUXnwPAACgemIMBwCg6ipVsD3fnj17dODAAZlMJnXu3Fndu3cvr34BAIAKxBgOAEDtxfcAAACqJ8ZwAACqHrfSVMrMzNSAAQN01VVX6aGHHtKkSZMUHBysgQMH6o8//ijvPgIAgHJSnmN4TEyM2rZtK29vbwUHByshIaFY9bZv3y4PDw9169bNJn3lypUymUx229mzZ8tlvwAA1Hb8Lw8AQPXEGA4AQNVVqmD7gw8+qOzsbP3000/6888/9b///U/79u1Tdna2HnroofLuIwAAKCflNYavXbtWUVFRmjlzphITExUaGqohQ4YoJSWl0HpZWVkaPXq0Bg4c6DDfx8dH6enpNpu3t3eZ9wsAAPhfHgCA6ooxHACAqqtUwfYvvvhCS5cuVadOnaxpnTt31iuvvKLPP/+83DoHAADKV3mN4YsXL9bYsWM1btw4derUSdHR0QoICNDSpUsLrTd+/HhFREQoJCTEYb7JZFKLFi1stvLYLwBUS2bzv7e/SbC9D5QC/8sDAFA9MYYDAFB1lSrYnpeXpzp16til16lTR3l5eWXuFAAAqBjlMYbn5uZqz549CgsLs0kPCwvTjh07nNZbsWKFDh06pDlz5jgt89dffykwMFD+/v668cYblZiYWOb95uTkKDs722YDgCovNlbq1Pnf+9cPkdq0saQDpcT/8gAAVE+M4QAAVF2lCrYPGDBAkydP1vHjx61paWlpevjhh50uCwsAAFyvPMbwEydOyGw2y9fX1ybd19dXGRkZDuskJydr+vTpWrNmjTw8PByW6dixo1auXKlPPvlE7777rry9vdW3b18lJyeXer+StHDhQjVq1Mi6BQQEFOs4AcBlYmOl4cOl42m26WlplnQC7igl/pcHAKB6YgwHAKDqKlWw/eWXX9bp06fVpk0bXXrppbrsssvUtm1bnT59Wi+99FJ59xEAAJST8hzDTSaTzX3DMOzSJMlsNisiIkLz5s1T+/btnbbXu3dv3XXXXbriiisUGhqq999/X+3bt7frV3H3m2/GjBnKysqybqmpqcU5PABwDbNZmjxZMgz7vPy0qCiWlEep8L88AADVE2M4AABVl+OpZUUICAjQDz/8oPj4eP38888yDEOdO3fWoEGDyrt/AACgHJXHGN60aVO5u7vbzSbPzMy0m3UuSadPn9bu3buVmJioSZMmSbIsgWcYhjw8PLRp0yYNGDDArp6bm5uuuuoq68z2ku43n5eXl7y8vIp9fADgUgkJ0rFjzvMNQ0pNtZTr37/SuoWagf/lAQConhjDAQCoukoVbM933XXX6brrriuvvgAAgEpSljHc09NTwcHBio+P1y233GJNj4+P17Bhw+zK+/j4aO/evTZpMTEx+uqrr7Ru3Tq1bdvW4X4Mw1BSUpK6du1aqv0CQLWUnm69We9cjo4+c2OR5YCS4n95AACqJ8ZwAACqnmIH21988UXdf//98vb21osvvlho2YceeqjMHQMAAOWjIsbwKVOmaNSoUerRo4dCQkK0bNkypaSkaMKECZIsS7enpaVp1apVcnNzU1BQkE395s2by9vb2yZ93rx56t27t9q1a6fs7Gy9+OKLSkpK0iuvvFLs/QJAtefnV77lUOvxvzwAANUTYzgAANVDsYPtL7zwgu688055e3vrhRdecFrOZDIxuAMAUIVUxBg+YsQInTx5UvPnz1d6erqCgoIUFxenwMBASVJ6erpSUlJK1M9Tp07p/vvvV0ZGhho1aqTu3bvrm2++Uc+ePYu9XwCo9kJDJX9/KS3N8XXbTSZLfmho5fcN1RL/ywMAUD1V1BgeExOj5557Tunp6erSpYuio6MVWozvltu3b9c111yjoKAgJSUl2eStX79es2fP1qFDh3TppZdqwYIFNivSlWW/AABUdSbDcPQLTu2WnZ2tRo0aKSsrSz4+Pq7uDgCghmPcqVw83gCqvNhYafhwy+2C/66ZTJa/69ZJ4eGV3y+UCuNO5eGxBgBUpuo47qxdu1ajRo1STEyM+vbtq9dee02vv/669u/fr9atWzutl5WVpSuvvFKXXXaZfv/9d5tg+86dOxUaGqonnnhCt9xyiz788EM9/vjj2rZtm3r16lWm/earjo81qo4zuefV+fGNkqT98wernmeZrq6MaoDnHGVV0nHHrTQ7mT9/vs6cOWOX/s8//2j+/PmlaRIAAFQCxnAAqAbCwy0B9VatbNP9/Qm0o0z4HgAAQPVUXmP44sWLNXbsWI0bN06dOnVSdHS0AgICtHTp0kLrjR8/XhEREQoJCbHLi46O1nXXXacZM2aoY8eOmjFjhgYOHKjo6Ogy7xcAgOqgVMH2efPm6a+//rJLP3PmjObNm1fmTgEAgIrBGA4A1UR4uHT0qLRli/TOO5a/R44QaEeZ8D0AAIDqqTzG8NzcXO3Zs0dhYWE26WFhYdqxY4fTeitWrNChQ4c0Z84ch/k7d+60a3Pw4MHWNkuz35ycHGVnZ9tsAABUVaVaO8EwDJnylzAs4Mcff1Tjxo3L3CkAAFAxGMMBoBpxd5f693d1L1CD8D0AAIDqqTzG8BMnTshsNsvX19cm3dfXVxkZGQ7rJCcna/r06UpISJCHh+NQQkZGRqFtlma/Cxcu5ERAAEC1UaJg+8UXXyyTySSTyaT27dvbDPBms1l//fWXJkyYUO6dBAAAZcMYDgBA7cX3AAAAqqeKGMMvDNo7C+SbzWZFRERo3rx5at++fZnbLO5+JWnGjBmaMmWK9X52drYCAgIK7QPglNn87+1vEqRr+1lObAaAclKiYHt0dLQMw9C9996refPmqVGjRtY8T09PtWnTxuF1WwAAgGsxhgMAUHvxPQAAgOqpPMfwpk2byt3d3W42eWZmpt2sc0k6ffq0du/ercTERE2aNEmSlJeXJ8Mw5OHhoU2bNmnAgAFq0aJFoW2WdL+S5OXlJS8vr2IdF1Co2Fhpyn+lkS9a7l8/RPJtJi1ZwiW6AJSbEgXbx4wZo/Pnz0uSBg0aJH9//wrpFAAAKF+M4QAA1F58DwAAoHoqzzHc09NTwcHBio+P1y233GJNj4+P17Bhw+zK+/j4aO/evTZpMTEx+uqrr7Ru3Tq1bdtWkhQSEqL4+Hg9/PDD1nKbNm1Snz59SrVfoNzExkrDh0senrbpaWmW9HXrCLgDKBclvma7h4eHIiMjdeDAgYroDwAAqCCM4QAA1F58DwAAoHoqzzF8ypQpGjVqlHr06KGQkBAtW7ZMKSkp1qXoZ8yYobS0NK1atUpubm4KCgqyqd+8eXN5e3vbpE+ePFn9+vXTM888o2HDhunjjz/W5s2btW3btmLvFyh3ZrM0ebJkGPZ5hiGZTFJUlDRsGEvKAyizEgfbJalXr15KTExUYGBgefcHAABUIMZwAABqL74HAABQPZXXGD5ixAidPHlS8+fPV3p6uoKCghQXF2dtNz09XSkpKSVqs0+fPnrvvfc0a9YszZ49W5deeqnWrl2rXr16FXu/QLlLSJCOHXOebxhSaqqlXP/+ldYtADVTqYLtkZGReuSRR3Ts2DEFBwerfv36NvmXX355uXQOAACUL8ZwAABqL74HAABQPZXnGB4ZGanIyEiHeStXriy07ty5czV37ly79OHDh2v48OGl3i9Q7tLTrTfrncvR0WduLLIcAJSWyTAcraNRODc3N/uGTCYZhiGTySSz2VwunXOV7OxsNWrUSFlZWfLx8XF1dwAANVxljjs1fQwvDsZ5AEBlqkrjTk3/HlCVHmsAQM3H//KVhzEeJbZ1q3TttUWX27KFme010Jnc8+r8+EZJ0v75g1XPs1TzjlGLlXTcKdUr7MiRI6WpBgAAXIwxHACA2ovvAQAAVE+M4UAJhYZK/v5SWprj67abTJb80NDK7xuAGqdUwXaupQIAQPXEGA4AQO3F9wAAAKonxnCghNzdpSVLpOHDLYH1ggF3k8nyNzraUg4AyqjUayccOnRI0dHROnDggEwmkzp16qTJkyfr0ksvLc/+AQCAcsYYDgBA7cX3AAAAqifGcKCEwsOldeukyZOlY8f+Tff3twTaw8Nd1jUANYv9xV6KYePGjercubN27dqlyy+/XEFBQfruu+/UpUsXxcfHl3cfAQBAOWEMBwCg9uJ7AAAA1RNjOFBK4eHS0aOWa7O/847l75EjBNoBlCuTYTi6YEXhunfvrsGDB+vpp5+2SZ8+fbo2bdqkH374odw66AolvfA9AABlUZnjTk0fw4uDcR4AUJmq0rhT078HVKXHGgBQ8/G/fOVhjAdQEmdyz6vz4xslSfvnD1Y9z1Iv8o1aqqTjTqlmth84cEBjx461S7/33nu1f//+0jQJAAAqAWM4qjuzWdq6VXr3Xctfs9nVPQKA6oPvAQAAVE+M4QAAVF2lCrY3a9ZMSUlJdulJSUlq3rx5WfsEAAAqCGM4qrPYWKlNG+naa6WICMvfNm0s6QCAovE9AACA6okxHACAqqtUayfcd999uv/++3X48GH16dNHJpNJ27Zt0zPPPKNHHnmkvPsIAADKCWM4qqvYWGn4cOnCCyClpVnS163jkmsAUBS+BwAAUD0xhgMAUHWV6prthmEoOjpazz//vI4fPy5Jatmypf773//qoYcekslkKveOViauAQMAqEyVOe7U9DG8OBjnqx+z2TKD/dgxx/kmk+TvLx05Irm7V2rXAKBIVWncqenfA6rSYw0AqPn4X77yMMYDKAmu2Y6yKum4U6pge0GnT5+WJDVs2LAszVQpDN4AgP/H3v3H11z//x+/H5udMbb83A+bbREjhO2dRvMjGiqRlPxWiMTbj3c/7I2MlEha9W5C8qO8UUz1KcUUmV/JUMI7P6LNbES1kQzb8/vHvjs5zsY2+8ntermcy87r+Xq+nq/n67lzzvP1Oo/zfL6KU0n1OzdiH54X9PNlz4YNWVPGX8v69VLbtkVdGwDIn9La79yI5wGlta0BADcmruWLD308gPwg2I7rld9+57peYSdPntRPP/0ki8Wi+vXrq0aNGtdTHAAAKCb04ShLkpP/fm4pf0m1x2ZdMCXM6ihz0TnHfACA3HEeAABA2UQfDgBA6VOuIBulpaWpX79+8vHxUZs2bdS6dWv5+Piob9++Sk1NLew6AgCAQkIfjrLI27tw8wHAzYrzAAAAyib6cAAASq8CBdsHDx6sb7/9Vp9//rn++OMPpaam6rPPPtOOHTs0ZMiQwq4jAAAoJPThKIvCwrLuyZ7bbQgtFsnPLysfACB3nAcAAFA20YcDAFB6FWga+c8//1xr1qzR3XffbUvr2LGj5s2bp06dOhVa5QAAQOGiD0dZ5OQkvfGG1KOHY8A9ezkqKisfACB3nAcAAFA20YcDAFB6FWhke7Vq1eTh4eGQ7uHhoSpVqlx3pQAAQNGgD0dZ1b27tGKF5HPFVPG+vlnp3buXTL0AoCzhPAAAgLKJPhwAgNKrQMH2CRMmaOzYsUpOTralpaSk6Nlnn9XEiRPzVVZ0dLQCAwPl6uqq4OBgxcXF5Wm7zZs3y9nZWU2bNs01z7Jly2SxWNStW7d81QkAgBtVYfbhQHHr3l3at//v5S9WS0eOEGgHgLziPAAAgLKJPhwAgNKrQNPIz549W4cOHZK/v79q164tSUpISJDVatWvv/6qOXPm2PLu3Lkz13KWL1+u0aNHKzo6Wq1atdKcOXPUuXNn7du3z1ZuTlJTU9W/f3+1b99eJ06cyDHPL7/8omeeeUZh3LwTAACbwurDgZJy+VTxYa2ZOh4A8oPzAAAAyib6cAAASq8CBdsLa6T4rFmzNGjQIA0ePFiSFBUVpTVr1mj27NmaNm1artsNHTpUvXv3lpOTkz7++GOH9RkZGerTp48mT56suLg4/fHHH4VSXwAAyjpmewEA4ObFeQAAAGUTfTgAAKVXgYLtkyZNuu4dX7hwQfHx8Ro3bpxdenh4uLZs2ZLrdgsWLNDhw4f1wQcfaOrUqTnmmTJlimrUqKFBgwblaVr69PR0paen25bT0tLyeBQAAJQthdGHAwCAsonzAAAAyib6cAAASq8CBduzxcfHa//+/bJYLGrYsKGaNWuW521PnTqljIwMeXp62qV7enoqJSUlx20OHjyocePGKS4uTs7OOVd98+bNmj9/vnbv3p3nukybNk2TJ0/Oc34AAMq66+nDAQBA2cZ5AAAAZRN9OAAApU+Bgu0nT57UY489pg0bNuiWW26RMUapqalq166dli1bpho1auS5LIvFYrdsjHFIk7Kmhu/du7cmT56sevXq5VjWmTNn1LdvX82bN0/Vq1fPcx0iIiI0duxY23JaWpr8/PzyvD0AAGVFYfbhAACgbOE8AACAsok+HACA0qtcQTYaOXKk0tLStHfvXv3222/6/fff9eOPPyotLU3//Oc/81RG9erV5eTk5DCK/eTJkw6j3aWsQPqOHTs0YsQIOTs7y9nZWVOmTNH3338vZ2dnff311zp8+LCOHj2qLl262PIsXrxYn376qZydnXX48OEc62K1WuXu7m73AADgRlQYfTgAACibOA8AAKBsog8HAKD0KtDI9i+//FLr1q1TgwYNbGkNGzbU22+/rfDw8DyV4eLiouDgYMXGxuqhhx6ypcfGxqpr164O+d3d3bVnzx67tOjoaH399ddasWKFAgMD5eTk5JBnwoQJOnPmjN544w1GqwMAbnqF0YcDAICyifMAAADKJvpwAABKrwIF2zMzM1W+fHmH9PLlyyszMzPP5YwdO1b9+vVTSEiIQkNDNXfuXCUkJGjYsGGSsqZ3T0pK0uLFi1WuXDk1atTIbvuaNWvK1dXVLv3KPLfcckuO6QAA3IwKqw8HAABlD+cBAACUTfThAACUXgWaRv6ee+7RqFGjdPz4cVtaUlKSxowZo/bt2+e5nJ49eyoqKkpTpkxR06ZNtXHjRq1evVr+/v6SpOTkZCUkJBSkigAAIAeF1YcDAICyh/MAAADKJvpwAABKL4sxxuR3o8TERHXt2lU//vij/Pz8ZLFYlJCQoMaNG+uTTz6Rr69vUdS12KSlpcnDw0Opqancvx0AUOSKs9+50fvwvKCfL9vOXbikhi+skSTtm9JRFV0KNFETABSb0tTv3OjnAaWprQEANz6u5YsPfTyA/OC7I1yv/PY7BXqF+fn5aefOnYqNjdX//vc/GWPUsGFDdejQoSDFAQCAYkIfDgDAzYvzAAAAyib6cAAASq98B9svXbokV1dX7d69W/fee6/uvffeoqgXAAAoZPThAADcvDgPAACgbKIPBwCgdMv3PdudnZ3l7++vjIyMoqgPAAAoIvThAADcvDgPAACgbKIPBwCgdMt3sF2SJkyYoIiICP3222+FXR8AAFCE6MMBALh5cR4AAEDZRB8OAEDpVaB7tr/55ps6dOiQfHx85O/vLzc3N7v1O3fuLJTKAQCAwkUfDgDAzYvzAAAAyib6cAAASq8CBdu7desmi8UiY0xh1wcAABQh+nAAAG5enAcAAFA20YcDQD5cftuNjXFSu9aSk1PJ1Qc3vHwF28+dO6dnn31WH3/8sS5evKj27dvrrbfeUvXq1YuqfgAAoBDQhwMAcPPiPAAAgLKJPhwA8ikmRhr7rPTYm1nL93WWPGtIb7whde9esnXDDStf92yfNGmSFi5cqPvvv1+9evXSunXr9NRTTxVV3QAAQCGhDwcA4ObFeQAAAGUTfTgA5ENMjNSjh3Q8yT49KSkrPSamZOqFG16+RrbHxMRo/vz5euyxxyRJffr0UatWrZSRkSEnpmAAAKDUog8HAODmxXkAAABlE304AORRRoY0apSU0+02jJEsFmn0aKlrV6aUR6HL18j2xMREhYWF2ZbvvPNOOTs76/jx44VeMQAAUHjowwEAuHkVxXlAdHS0AgMD5erqquDgYMXFxeVpu82bN8vZ2VlNmzbNNc+yZctksVjUrVu3AtcPAIAbAdfyAJBHcXHSsWO5rzdGSkzMygcUsnwF2zMyMuTi4mKX5uzsrEuXLhVqpQAAQOGiDwcA4OZV2OcBy5cv1+jRozV+/Hjt2rVLYWFh6ty5sxISEq66XWpqqvr376/27dvnmueXX37RM888YxdYAADgZsW1PADkUXKy7WnFi+k6Ov0BHZ3+gCpeTM81H1BY8jWNvDFGAwcOlNVqtaWdP39ew4YNk5ubmy0thvseAABQqtCHAwBw8yrs84BZs2Zp0KBBGjx4sCQpKipKa9as0ezZszVt2rRctxs6dKh69+4tJycnffzxxw7rMzIy1KdPH02ePFlxcXH6448/8naAAADcoLiWB4A88vYu3HxAPuQr2D5gwACHtL59+xZaZQAAQNGgDwcA4OZVmOcBFy5cUHx8vMaNG2eXHh4eri1btuS63YIFC3T48GF98MEHmjp1ao55pkyZoho1amjQoEF5mpY+PT1d6el/j1RJS0vL41EAAFA2cC0PAHkUFib5+kpJSTnft91iyVrPDFooAvkKti9YsKCo6gEAAIoQfTgAADevwjwPOHXqlDIyMuTp6WmX7unpqZSUlBy3OXjwoMaNG6e4uDg5O+f8NcTmzZs1f/587d69O891mTZtmiZPnpzn/AAAlDVcywNAHjk5SW+8IfXokRVYvzzgbrFk/Y2KysoHFLJ83bMdAAAgW3R0tAIDA+Xq6qrg4OA8jUCTsr5Md3Z2VtOmTe3S582bp7CwMFWpUkVVqlRRhw4dtH37drs8kZGRslgsdg8vL6/COiQAAJBHluwvrP4/Y4xDmpQ1NXzv3r01efJk1atXL8eyzpw5o759+2revHmqXr16nusQERGh1NRU2yMxMTF/BwEAAADgxtG9u7RihVSrln26r29WevfuJVMv3PDyNbIdAABAkpYvX67Ro0crOjparVq10pw5c9S5c2ft27dPtWvXznW71NRU9e/fX+3bt9eJEyfs1m3YsEG9evVSy5Yt5erqqhkzZig8PFx79+5VrctOkm+//XatW7fOtuzEL1IBACg21atXl5OTk8Mo9pMnTzqMdpeyAuk7duzQrl27NGLECElSZmamjDFydnbW2rVrVbVqVR09elRdunSxbZeZmSlJcnZ21k8//aQ6deo4lG21Wu3uYVtYMjKkuDgpOTnrlo5hYQyAAQAAAMqE7t2lrl05oUexItgOAADybdasWRo0aJAGDx4sSYqKitKaNWs0e/ZsTZs2Ldfthg4dqt69e8vJyUkff/yx3bolS5bYLc+bN08rVqzQV199pf79+9vSnZ2dGc0OAEAJcXFxUXBwsGJjY/XQQw/Z0mNjY9W1a1eH/O7u7tqzZ49dWnR0tL7++mutWLFCgYGBcnJycsgzYcIEnTlzRm+88Yb8/PyK5mByEBMjjRolHTv2d5qvb9aMlAyEAQAAAMoAJyepbduSrgVuIgTbAQBAvly4cEHx8fEaN26cXXp4eLi2bNmS63YLFizQ4cOH9cEHH2jq1KnX3M+5c+d08eJFVa1a1S794MGD8vHxkdVqVYsWLfTyyy/r1ltvzbWc9PR0paen25bT0tKuuW8AAJC7sWPHql+/fgoJCVFoaKjmzp2rhIQEDRs2TFLW9O5JSUlavHixypUrp0aNGtltX7NmTbm6utqlX5nnlltuyTG9KMXEZN3i8fLbO0pSUlJWOjNPAgAAAACuRLAdAADky6lTp5SRkeEwVaynp6fDlLLZDh48qHHjxikuLk7Oznk7/Rg3bpxq1aqlDh062NJatGihxYsXq169ejpx4oSmTp2qli1bau/evapWrVqO5UybNk2TJ0/O49EBAIBr6dmzp06fPq0pU6YoOTlZjRo10urVq+Xv7y9JSk5OVkJCQgnXMn8yMrJGtF8ZaJey0iwWafTorBkpmYESAAAAAJCtXElXAAAAlE0Wi8Vu2RjjkCZJGRkZ6t27tyZPnqx69erlqewZM2Zo6dKliomJkaurqy29c+fOevjhh9W4cWN16NBBn3/+uSRp0aJFuZYVERGh1NRU2yMxMTFPdQAAALkbPny4jh49qvT0dMXHx6t169a2dQsXLtSGDRty3TYyMlK7d+++avkLFy50uOVMUYqLs586/krGSImJWfkAACjLoqOjFRgYKFdXVwUHByvuKp3bpk2b1KpVK1WrVk0VKlRQUFCQXn/9dbs8bdu2lcVicXjcf//9tjyRkZEO67k9HADgRsHIdgAAkC/Vq1eXk5OTwyj2kydPOox2l6QzZ85ox44d2rVrl0aMGCFJyszMlDFGzs7OWrt2re655x5b/pkzZ+rll1/WunXr1KRJk6vWxc3NTY0bN9bBgwdzzWO1WmW1WvNziAAA4CaTnPz3c0v5S6o9do0kKWFWR5mLzjnmAwCgrFm+fLlGjx6t6OhotWrVSnPmzFHnzp21b98+1a5d2yG/m5ubRowYoSZNmsjNzU2bNm3S0KFD5ebmpieffFKSFBMTowsXLti2OX36tO644w498sgjdmXdfvvtWrdunW3ZialiAAA3CILtAAAgX1xcXBQcHKzY2Fg99NBDtvTY2Fh17drVIb+7u7v27NljlxYdHa2vv/5aK1asUGBgoC391Vdf1dSpU7VmzRqFhIRcsy7p6enav3+/wsLCruOIAADAzc7bu3DzAQBQGs2aNUuDBg3S4MGDJUlRUVFas2aNZs+erWnTpjnkb9asmZo1a2ZbDggIUExMjOLi4mzB9qpVq9pts2zZMlWsWNEh2O7s7MxodgDADYlgOwAAyLexY8eqX79+CgkJUWhoqObOnauEhAQNGzZMUtbU7UlJSVq8eLHKlSunRo0a2W1fs2ZNubq62qXPmDFDEydO1H//+18FBATYRs5XqlRJlSpVkiQ988wz6tKli2rXrq2TJ09q6tSpSktL04ABA4rpyAEAwI0oLEzy9ZWSknJeb7Fkref3fQCAsurChQuKj4/XuHHj7NLDw8O1ZcuWPJWxa9cubdmyRVOnTs01z/z58/XYY4/Jzc3NLv3gwYPy8fGR1WpVixYt9PLLL+vWW2/NsYz09HSlp6fbltPS0vJUPwAASgL3bAcAAPnWs2dPRUVFacqUKWratKk2btyo1atXy9/fX5KUnJyshISEfJUZHR2tCxcuqEePHvL29rY9Zs6cactz7Ngx9erVS/Xr11f37t3l4uKibdu22fYLAABQEE5O0htvZD23WOzXZS9HRWXlAwCgLDp16pQyMjIcbv/m6enpcJu4K/n6+spqtSokJERPP/20bWT8lbZv364ff/zRYX2LFi20ePFirVmzRvPmzVNKSopatmyp06dP51jOtGnT5OHhYXv4+fnl40gBAChejGwHyqCMDCkuLut+gd7eWaMr+NIHQHEbPny4hg8fnuO6hQsXXnXbyMhIRUZG2qUdPXr0mvtctmxZHmsHAACQP927SytWSKPG2qf7+mYF2rt3L5FqAQBQqCxX/KrMGOOQdqW4uDidPXtW27Zt07hx41S3bl316tXLId/8+fPVqFEj3XnnnXbpnTt3tj1v3LixQkNDVadOHS1atEhjx469shhFRETYpaelpRFwBwCUWgTbgTImJkYaNUo6duzvNF/frFEYfPkDAAAAAAXXvbt0b2ep8eSs5S9WSx3a8eNmAEDZV716dTk5OTmMYj958qTDaPcrBQYGSsoKlJ84cUKRkZEOwfZz585p2bJlmjJlyjXr4ubmpsaNG+vgwYM5rrdarbJardcsBwCA0oBp5IEyJCZG6tHDPtAuZd1XsEePrPUAAAAAgIK7PLAe1ppAOwDgxuDi4qLg4GDFxsbapcfGxqply5Z5LscYY3c/9Wwffvih0tPT1bdv32uWkZ6erv3798vb2zvP+wUAoLRiZDtQRmRkZI1oN8ZxnTFZ9xEcPVrq2pUvgwAAAAAAAADYGzt2rPr166eQkBCFhoZq7ty5SkhI0LBhwyRlTd+elJSkxYsXS5Lefvtt1a5dW0FBQZKkTZs2aebMmRo5cqRD2fPnz1e3bt1UrVo1h3XPPPOMunTpotq1a+vkyZOaOnWq0tLSNGDAgCI8WgAAigfBdqCMiItzHNF+OWOkxMSsfG3bFlu1AAAAAAAAAJQBPXv21OnTpzVlyhQlJyerUaNGWr16tfz9/SVJycnJSkhIsOXPzMxURESEjhw5ImdnZ9WpU0evvPKKhg4dalfugQMHtGnTJq1duzbH/R47dky9evXSqVOnVKNGDd11113atm2bbb8AAJRlBNuBMiI5+e/nlvKXVHvsGklSwqyOMhedc8wHAAAAAAAAANmGDx+u4cOH57hu4cKFdssjR47McRT7lerVqyeT03Sc/9+yZcvyVUcAAMoS7tkOlBF5vYURtzoCAAAAAAAAAAAAih7BdqCMCAuTfH2z7s2eE4tF8vPLygcAAAAAAAAAAACgaBFsB8oIJyfpjTeynl8ZcM9ejorKygcAAAAAAAAAAACgaBFsR+mQkSFt2CAtXZr1NyOjpGtUKnXvLq1YIflcMVW8r29WevfuJVMvAAAAAAAAAAAA4GZDsB0lLyZGCgiQ2rWTevfO+hsQkJUOB927S/v2/738xWrpyBEC7QAAAAAAAAAAAEBxItiOkhUTI/XoIR07Zp+elJSVTsA9R5dPFR/WmqnjAQAAAAAAAAAAgOJGsB0lJyNDGjVKMsZxXXba6NFMKQ8AAAAAAAAAAACg1CHYjpITF+c4ov1yxkiJiVn5AAAAAAAAAAAAAKAUIdiOkpOcbHt6rrxVAc9/poDnP9O58tZc8wEAAAAAAAAAAABAaUCwHSXH27tw8wEAAAAAAAAAAABAMSHYjpITFib5+koWS87rLRbJzy8rHwAAAAAAAAAAAACUIgTbUXKcnKQ33sh6fmXAPXs5KiorHwAAAAAAAAAAAACUIgTbUbK6d5dWrJC8fezTfX2z0rt3L5l6AQAAAAAAAAAAAMBVlHiwPTo6WoGBgXJ1dVVwcLDi4uLytN3mzZvl7Oyspk2b2qXPmzdPYWFhqlKliqpUqaIOHTpo+/btRVBzFJru3aX9+/5eXv2FdOQIgXYAAAAAAAAAAAAApVaJBtuXL1+u0aNHa/z48dq1a5fCwsLUuXNnJSQkXHW71NRU9e/fX+3bt3dYt2HDBvXq1Uvr16/X1q1bVbt2bYWHhyspKamoDgOF4fKp4luHMXU8AAAAAAAAAAAAgFKtRIPts2bN0qBBgzR48GA1aNBAUVFR8vPz0+zZs6+63dChQ9W7d2+FhoY6rFuyZImGDx+upk2bKigoSPPmzVNmZqa++uqrojoMAAAAAAAAAAAAAMBNpsSC7RcuXFB8fLzCw8Pt0sPDw7Vly5Zct1uwYIEOHz6sSZMm5Wk/586d08WLF1W1atVc86SnpystLc3uAQAAAAAAAAAAAABAbkos2H7q1CllZGTI09PTLt3T01MpKSk5bnPw4EGNGzdOS5YskbOzc572M27cONWqVUsdOnTINc+0adPk4eFhe/j5+eX9QAAAAAAAAAAAAAAAN50SnUZekiwWi92yMcYhTZIyMjLUu3dvTZ48WfXq1ctT2TNmzNDSpUsVExMjV1fXXPNFREQoNTXV9khMTMzfQQAAAAAAAAAAAAAAbip5Gx5eBKpXry4nJyeHUewnT550GO0uSWfOnNGOHTu0a9cujRgxQpKUmZkpY4ycnZ21du1a3XPPPbb8M2fO1Msvv6x169apSZMmV62L1WqV1WothKMCAAAAAAAAAAAAANwMSizY7uLiouDgYMXGxuqhhx6ypcfGxqpr164O+d3d3bVnzx67tOjoaH399ddasWKFAgMDbemvvvqqpk6dqjVr1igkJKToDgIAAAAAAAAAAAAAcFMqsWC7JI0dO1b9+vVTSEiIQkNDNXfuXCUkJGjYsGGSsqZ3T0pK0uLFi1WuXDk1atTIbvuaNWvK1dXVLn3GjBmaOHGi/vvf/yogIMA2cr5SpUqqVKlS8R0cAAAAAAAAAAAAAOCGVaLB9p49e+r06dOaMmWKkpOT1ahRI61evVr+/v6SpOTkZCUkJOSrzOjoaF24cEE9evSwS580aZIiIyMLq+oAAAAAAAAAAAAAgJtYiQbbJWn48OEaPnx4jusWLlx41W0jIyMdAuhHjx4tnIoBAAAAAAAAAAAAAJCLciVdAQAAACDPMjL+fr4xzn4ZAAAAAAAAAIoRwXYAAACUDTExUoOGfy/f11kKCMhKBwAAAAAAAIBiRrAdAAAApV9MjNSjh3Q8yT49KSkrnYA7AAAAAAAAgGJGsB0AAAClW0aGNGqUZIzjuuy00aOZUh4AAAAAAABAsSLYDgAAgNItLk46diz39cZIiYlZ+QAAAAAAAACgmDiXdAUAAACAq0pOtj2teDFdR6c/cM18AAAAAAAAAFDUGNkOAACA0s3bu3DzAQAAAAAAAEAhINgOAACA0i0sTPL1lSyWnNdbLJKfX1Y+AAAAAAAAACgmBNsBAABQujk5SW+8kfX8yoB79nJUVFY+AAAAAAAAACgmBNsBAABQ+nXvLq1YIdWqZZ/u65uV3r17ydQLAAAAAAAAwE3LuaQrAEhSRsbfz+M2Sh3aMTgNAABcoXt3qWtXKS5OSk7Oukd7WBgnDQAAAAAAAABKBCPbUeJiYqSGDf5e7nyfFBCQlQ4AAGDHyUlq21bq1SvrL4F2AAAAAAAAACWEYDtKVEyM1KOHlHTcPj0pKSudgDsAAAAAAAAAAACA0ohgO0pMRoY0apRkjOO67LTRo+2nmAcAAAAAAAAAAACA0oBgO0pMXJx07Fju642REhOz8gEAAAAAAAAAAABAaeJc0hXAzSs5+e/n5qKzfpl+/zXzAQAAAAAAAAAAAEBpwMh2lBhv78LNBwAAAAAAAAAAAADFhWA7SkxYmOTrK1ksOa+3WCQ/v6x8AAAAAAAAAAAAAFCaEGxHiXFykt54I+v5lQH37OWoqKx8AAAAAAAAAAAAAFCaEGxHiereXVqxQqpVyz7d1zcrvXv3kqkXAAAAAAAAAAAAAFwNwXaUuO7dpaNHpfXrpf/+N+vvkSME2gGgtIuOjlZgYKBcXV0VHBysuLi4PG23efNmOTs7q2nTpg7rVq5cqYYNG8pqtaphw4ZatWpVoe0XAAAAAAAAAIDCRLAdpYKTk9S2rdSrV9Zfpo4HgNJt+fLlGj16tMaPH69du3YpLCxMnTt3VkJCwlW3S01NVf/+/dW+fXuHdVu3blXPnj3Vr18/ff/99+rXr58effRRffvtt9e9XwAAAAAAAAAAChvBdgAAkG+zZs3SoEGDNHjwYDVo0EBRUVHy8/PT7Nmzr7rd0KFD1bt3b4WGhjqsi4qK0r333quIiAgFBQUpIiJC7du3V1RU1HXvFwAAAAAA5G+2uE2bNqlVq1aqVq2aKlSooKCgIL3++ut2eRYuXCiLxeLwOH/+fIH3CwBAWUKwHQAA5MuFCxcUHx+v8PBwu/Tw8HBt2bIl1+0WLFigw4cPa9KkSTmu37p1q0OZHTt2tJVZ0P2mp6crLS3N7gEAAAAAwM0mv7PFubm5acSIEdq4caP279+vCRMmaMKECZo7d65dPnd3dyUnJ9s9XF1dC7xfAADKEoLtAAAgX06dOqWMjAx5enrapXt6eiolJSXHbQ4ePKhx48ZpyZIlcnZ2zjFPSkrKVcssyH4ladq0afLw8LA9/Pz8rnmMAAAAAADcaPI7W1yzZs3Uq1cv3X777QoICFDfvn3VsWNHh1HpFotFXl5edo/r2S8AAGUJwXYAAFAgFovFbtkY45AmSRkZGerdu7cmT56sevXqXXeZed1vtoiICKWmptoeiYmJV60DAAAAAAA3moLOFne5Xbt2acuWLWrTpo1d+tmzZ+Xv7y9fX1898MAD2rVr13XtlxnqAABlSc5DywAAAHJRvXp1OTk5OYwmP3nypMOoc0k6c+aMduzYoV27dmnEiBGSpMzMTBlj5OzsrLVr1+qee+6Rl5fXVcvM736zWa1WWa3WAh0rAAAAAAA3goLOFidJvr6++vXXX3Xp0iVFRkZq8ODBtnVBQUFauHChGjdurLS0NL3xxhtq1aqVvv/+e912220F2u+0adM0efLkAh4pAADFi5HtAAAgX1xcXBQcHKzY2Fi79NjYWLVs2dIhv7u7u/bs2aPdu3fbHsOGDVP9+vW1e/dutWjRQpIUGhrqUObatWttZeZ3vwAAAAAAwF5+Z4uTpLi4OO3YsUPvvPOOoqKitHTpUtu6u+66S3379tUdd9yhsLAwffjhh6pXr57eeuutAu+XGeoAAGUJI9sBAEC+jR07Vv369VNISIhCQ0M1d+5cJSQkaNiwYZKyLoyTkpK0ePFilStXTo0aNbLbvmbNmnJ1dbVLHzVqlFq3bq3p06era9eu+uSTT7Ru3Tpt2rQpz/sFAAAAAACOCjpbnCQFBgZKkho3bqwTJ04oMjJSvXr1yjFvuXLl9I9//EMHDx4s8H6ZoQ4AUJYwsh0AAORbz549FRUVpSlTpqhp06bauHGjVq9eLX9/f0lScnKyEhIS8lVmy5YttWzZMi1YsEBNmjTRwoULtXz5ctvI97zsFwAAAAAAOCqs2eKMMUpPT7/q+t27d8vb27tQ9wsAQGnFyHYAAFAgw4cP1/Dhw3Nct3DhwqtuGxkZqcjISIf0Hj16qEePHgXeLwAAAAAAyFl+ZqmTpLffflu1a9dWUFCQJGnTpk2aOXOmRo4caStz8uTJuuuuu3TbbbcpLS1Nb775pnbv3q233347z/sFAKAsI9gOAAAAAAAAAMANrmfPnjp9+rSmTJmi5ORkNWrU6Kqz1GVmZioiIkJHjhyRs7Oz6tSpo1deeUVDhw615fnjjz/05JNPKiUlRR4eHmrWrJk2btyoO++8M8/7BQCgLLMYY0xJV6K0SUtLk4eHh1JTU+Xu7l7S1QEcnLtwSQ1fWCNJ2jeloyq68LsZoCyj3yletDcAoDjR7xSfwmprrrcAAHlBH198aGsAQHHKb7/DPdsBAAAAAAAAAAAAAMgngu0AAAAAAAAAAAAAAOQTwXYAAAAAAAAAAAAAAPKJYDsAAAAAAAAAAAAAAPlEsB0AAAAAAAAAAAAAgHwi2A4AAAAAAAAAAAAAQD4RbAcAAAAAAAAAAAAAIJ8ItgMAAAAAgHyJjo5WYGCgXF1dFRwcrLi4uDxtt3nzZjk7O6tp06Z26fPmzVNYWJiqVKmiKlWqqEOHDtq+fXsR1BwAAAAAgMJDsB0AAAAAAOTZ8uXLNXr0aI0fP167du1SWFiYOnfurISEhKtul5qaqv79+6t9+/YO6zZs2KBevXpp/fr12rp1q2rXrq3w8HAlJSUV1WEAAAAAAHDdCLYDAAAAAIA8mzVrlgYNGqTBgwerQYMGioqKkp+fn2bPnn3V7YYOHarevXsrNDTUYd2SJUs0fPhwNW3aVEFBQZo3b54yMzP11VdfFdVhAAAAAABw3Uo82F7YU89J0sqVK9WwYUNZrVY1bNhQq1atKuRaAwAAAABw87lw4YLi4+MVHh5ulx4eHq4tW7bkut2CBQt0+PBhTZo0KU/7OXfunC5evKiqVavmmic9PV1paWl2DwAAAAAAilOJBtuLYuq5rVu3qmfPnurXr5++//579evXT48++qi+/fbbojoMAAAAAABuCqdOnVJGRoY8PT3t0j09PZWSkpLjNgcPHtS4ceO0ZMkSOTs752k/48aNU61atdShQ4dc80ybNk0eHh62h5+fX94PBAAAAACAQlCiwfaimHouKipK9957ryIiIhQUFKSIiAi1b99eUVFRRXQUAAAAAADcXCwWi92yMcYhTZIyMjLUu3dvTZ48WfXq1ctT2TNmzNDSpUsVExMjV1fXXPNFREQoNTXV9khMTMzfQQAAAAAAcJ1KLNheVFPPbd261aHMjh07XrVMpp4DAAAAAODaqlevLicnJ4dR7CdPnnQY7S5JZ86c0Y4dOzRixAg5OzvL2dlZU6ZM0ffffy9nZ2d9/fXXdvlnzpypl19+WWvXrlWTJk2uWher1Sp3d3e7BwAAAAAAxanEgu1FNfVcSkpKvsqUmHoOAAAAAIC8cHFxUXBwsGJjY+3SY2Nj1bJlS4f87u7u2rNnj3bv3m17DBs2TPXr19fu3bvVokULW95XX31VL774or788kuFhIQU+bEAAAAAAHC98naztCJUFFPP5bXMbBERERo7dqxtOS0tjYA7AAAAAAA5GDt2rPr166eQkBCFhoZq7ty5SkhI0LBhwyRlXWMnJSVp8eLFKleunBo1amS3fc2aNeXq6mqXPmPGDE2cOFH//e9/FRAQYPvBfKVKlVSpUqXiOzgAAAAAAPKhxILtBZ16bteuXRoxYoQkKTMzU8YYOTs7a+3atbrnnnvk5eWV5zKzWa1WWa3WQjgqAAAAAABubD179tTp06c1ZcoUJScnq1GjRlq9erX8/f0lScnJyUpISMhXmdHR0bpw4YJ69Ohhlz5p0iRFRkYWVtUBAAAAAChUJRZsv3zquYceesiWHhsbq65duzrkz5567nLR0dH6+uuvtWLFCgUGBkqSQkNDFRsbqzFjxtjyrV27Nsfp7AAAAAAAQP4NHz5cw4cPz3HdwoULr7ptZGSkQwD96NGjhVMxAAAAAACKUYlOI18UU8+NGjVKrVu31vTp09W1a1d98sknWrdunTZt2lSsxwYAAAAAAAAAAAAAuHGVaLC9KKaea9mypZYtW6YJEyZo4sSJqlOnjpYvX64WLVoUxSEAAAAAAAAAAAAAAG5CJRpslwp/6jlJ6tGjh8N93gAAAAAAAAAAAAAAKCzlSroCAAAAAAAAAAAAAACUNQTbAQAAAAAAAAAAAADIJ4LtAAAAAAAAAAAAAADkE8F2AAAAAAAAAAAAAADyiWA7AAAAAAAAAAAAAAD5RLAdAAAAAAAAAAAAAIB8ItgOAAAAAAAAAAAAAEA+EWwHAAAAAAAAAAAAACCfnEu6AgAAAGVNRoYUFyclJ0ve3lJYmOTkVNK1AgAAAAAAAAAUJ4LtAAAA+RATI40aJR079near6/0xhtS9+4lVy8AAAAAAAAAQPFiGnmgLMrI+Pv5xjj7ZQBAkYmJkXr0sA+0S1JSUlZ6TEzJ1AsAAAAAAAAAUPwIthehjAxpwwZp6dKsv8RDUShiYqQGDf9evq+zFBBAhAcAilhGRtaIdmMc12WnjR5Nfw8AAAAAAAAANwuC7UUkJiYr/tmundS7d9Zf4qG4btlDKo8n2aczpBIAilxcnOOI9ssZIyUmZuUDAAAAAAAAANz4CLYXAaaYRZFgSCUAlKjk5L+fW8pfkv/zn8v/+c9lKX8p13wAAAAAAAAAgBsXwfZCRjwURYYhlQBQory9CzcfAAAAAAAAAKBscy7pCtxo8hMPbdu22KqFG8FlQyUrXkzX0ekPXDMfAKDwhIVJvr5ZM9XkxGLJWh8WVrz1AgAAAAAAAACUDEa2FzKmmEWRYUglAJQoJyfpjTeynlss9uuyl6OisvIBAAAAAAAAAG58BNsLGfFQFJnsIZVXRniyWSySnx9DKgGgCHXvLq1YIflc0Y/7+mald+9eMvUCAAAAAADXkJEhbdggLV2a9Zd7vQIACgHB9kJGPBRFhiGVAFAqdO8u7dv/9/IXq6UjRwi0AwAAAABQasXESAEBUrt2Uu/eWX8DArLSAQC4DgTbCxnxUBSp7CGVtWrZpzOkEgCK1eX9eFhr+nUAAAAAAEqtmBipRw/p2DH79KSkrHQC7gCA60CwvQgwxSyKVPfu0tGj0vr10n//m/WXIZUAAAAAAAAAYC8jQxo1SjLGcV122ujRTCkPACgw55KuwI2qe3fp3s5S48lZy1+sljq0Y+QbComTk9S2bUnXAgAAAAAAAABKr7g4xxHtlzNGSkzMysf3rQCAAmBkexFiilkAAAAAAAAAAEpIcrLt6bnyVgU8/5kCnv9M58pbc80HAEB+EGwHAAAAAAAAAAA3Hm/va+fJTz4AAK5AsB0AAAAAAAAAANx4wsIkX1/JYsl5vcUi+fll5QMAoAAItgMAAAAAAAAAgBuPk5P0xhtZz68MuGcvR0VxD1gAQIERbAcAAAAAAAAA4CYQHR2twMBAubq6Kjg4WHFxcbnm3bRpk1q1aqVq1aqpQoUKCgoK0uuvv26XZ968eQoLC1OVKlVUpUoVdejQQdu3b7fLExkZKYvFYvfw8vIqkuPLUffu0ooVkrePfbqvb1Z69+7FVxcAwA2HYDsAACiQwr5Ab9u2rcPFt8Vi0f3332/LU+IX6AAAAAAAlFHLly/X6NGjNX78eO3atUthYWHq3LmzEhIScszv5uamESNGaOPGjdq/f78mTJigCRMmaO7cubY8GzZsUK9evbR+/Xpt3bpVtWvXVnh4uJKSkuzKuv3225WcnGx77Nmzp0iP1UH37tL+fX8vr/5COnKEQDsA4Lo5l3QFAABA2ZN9gR4dHa1WrVppzpw56ty5s/bt26fatWs75M++QG/SpInc3Ny0adMmDR06VG5ubnryySclSTExMbpw4YJtm9OnT+uOO+7QI488YlfW7bffrnXr1tmWnZjqDQAAAACAa5o1a5YGDRqkwYMHS5KioqK0Zs0azZ49W9OmTXPI36xZMzVr1sy2HBAQoJiYGMXFxdmu5ZcsWWK3zbx587RixQp99dVX6t+/vy3d2dk5zz+WT09PV3p6um05LS0t7wd5NZd/f9A6jKnjAQCFgpHtAAAg3y6/QG/QoIGioqLk5+en2bNn55i/WbNm6tWrl26//XYFBASob9++6tixo91o+KpVq8rLy8v2iI2NVcWKFR2C7dkX6NmPGjVqXLWu6enpSktLs3sAAAAAAHAzuXDhguLj4xUeHm6XHh4eri1btuSpjF27dmnLli1q06ZNrnnOnTunixcvqmrVqnbpBw8elI+PjwIDA/XYY4/p559/zrWMadOmycPDw/bw8/PLU/0AACgJBNsBAEC+FNcF+vz58/XYY4/Jzc3NLj0/F+gSF+kAAAAAAJw6dUoZGRny9PS0S/f09FRKSspVt/X19ZXValVISIiefvpp28j4nIwbN061atVShw4dbGktWrTQ4sWLtWbNGs2bN08pKSlq2bKlTp8+nWMZERERSk1NtT0SExPzcaQAABQvppEHAAD5cr0X6L/++qsuXbqkyMjIXC/Qt2/frh9//FHz58+3S8++QK9Xr55OnDihqVOnqmXLltq7d6+qVauWY1kREREaO3asbTktLY2AOwAAAADgpmSxWOyWjTEOaVeKi4vT2bNntW3bNo0bN05169ZVr169HPLNmDFDS5cu1YYNG+Tq6mpL79y5s+1548aNFRoaqjp16mjRokV21+vZrFarrFZrfg8NAIASQbAdAAAUSFFeoM+fP1+NGjXSnXfeaZee3wt0iYt0AAAAAACqV68uJycnhx/Jnzx50uHH9FcKDAyUlHUdfuLECUVGRjpcy8+cOVMvv/yy1q1bpyZNmly1PDc3NzVu3FgHDx4swJEAAFC6MI08AADIl+u9QG/cuLGGDBmiMWPGKDIy0iHPuXPntGzZsqtOS5eNC3QAAAAAAK7NxcVFwcHBio2NtUuPjY1Vy5Yt81yOMUbp6el2aa+++qpefPFFffnllwoJCblmGenp6dq/f7+8vb3zvF8AAEorgu0AACBfivICXZI+/PBDpaenq2/fvtcsgwt0AAAAAADyZuzYsXr33Xf13nvvaf/+/RozZowSEhI0bNgwSVm3Yevfv78t/9tvv63/+7//08GDB3Xw4EEtWLBAM2fOtLtenzFjhiZMmKD33ntPAQEBSklJUUpKis6ePWvL88wzz+ibb77RkSNH9O2336pHjx5KS0vTgAEDiu/gAQAoIkwjDwAA8m3s2LHq16+fQkJCFBoaqrlz5zpcoCclJWnx4sWSsi7Qa9euraCgIEnSpk2bNHPmTI0cOdKh7Pnz56tbt2453oP9mWeeUZcuXVS7dm2dPHlSU6dO5QIdAAAAAIA86Nmzp06fPq0pU6YoOTlZjRo10urVq+Xv7y9JSk5OVkJCgi1/ZmamIiIidOTIETk7O6tOnTp65ZVXNHToUFue6OhoXbhwQT169LDb16RJk2yz2R07dky9evXSqVOnVKNGDd11113atm2bbb8AAJRlBNsBAEC+FcUFuiQdOHBAmzZt0tq1a3PcLxfoAAAAAAAU3PDhwzV8+PAc1y1cuNBueeTIkTn+SP5yR48eveY+ly1bltfqAQBQ5hBsBwAABVLYF+iSVK9ePRljcl3PBToAAAAAAAAAoLTgnu0AAAAAAAAAAAAAAOQTwXYAAAAAAAAAAAAAAPKJYDsAAAAAAAAAAAAAAPlEsB0AAAAAAAAAAAAAgHwi2A4AAAAAAAAAAAAAQD6VeLA9OjpagYGBcnV1VXBwsOLi4nLNu2nTJrVq1UrVqlVThQoVFBQUpNdff90hX1RUlOrXr68KFSrIz89PY8aM0fnz54vyMAAAAAAAAAAAAAAANxHnktz58uXLNXr0aEVHR6tVq1aaM2eOOnfurH379ql27doO+d3c3DRixAg1adJEbm5u2rRpk4YOHSo3Nzc9+eSTkqQlS5Zo3Lhxeu+999SyZUsdOHBAAwcOlKQcA/MAAAAAAAAAAAAAAORXiQbbZ82apUGDBmnw4MGSskakr1mzRrNnz9a0adMc8jdr1kzNmjWzLQcEBCgmJkZxcXG2YPvWrVvVqlUr9e7d25anV69e2r59ezEcEQAAAAAAAAAAAADgZlBi08hfuHBB8fHxCg8Pt0sPDw/Xli1b8lTGrl27tGXLFrVp08aWdvfddys+Pt4WXP/555+1evVq3X///bmWk56errS0NLsHAAAAAAAAAAAAAAC5KbGR7adOnVJGRoY8PT3t0j09PZWSknLVbX19ffXrr7/q0qVLioyMtI2Ml6THHntMv/76q+6++24ZY3Tp0iU99dRTGjduXK7lTZs2TZMnT76+AwIAAAAAAAAAAAAA3DRKbGR7NovFYrdsjHFIu1JcXJx27Nihd955R1FRUVq6dKlt3YYNG/TSSy8pOjpaO3fuVExMjD777DO9+OKLuZYXERGh1NRU2yMxMfH6DgoAAAAAAAAAAAAAcEMrsZHt1atXl5OTk8Mo9pMnTzqMdr9SYGCgJKlx48Y6ceKEIiMj1atXL0nSxIkT1a9fP9to98aNG+vPP//Uk08+qfHjx6tcOcffF1itVlmt1sI4LAAAAAAAAAAAAADATaDERra7uLgoODhYsbGxdumxsbFq2bJlnssxxig9Pd22fO7cOYeAupOTk4wxMsZcX6UBAAAAAAAAAAAAAFAJjmyXpLFjx6pfv34KCQlRaGio5s6dq4SEBA0bNkxS1vTuSUlJWrx4sSTp7bffVu3atRUUFCRJ2rRpk2bOnKmRI0fayuzSpYtmzZqlZs2aqUWLFjp06JAmTpyoBx98UE5OTsV/kAAAAAAAAAAAAACAG06JBtt79uyp06dPa8qUKUpOTlajRo20evVq+fv7S5KSk5OVkJBgy5+ZmamIiAgdOXJEzs7OqlOnjl555RUNHTrUlmfChAmyWCyaMGGCkpKSVKNGDXXp0kUvvfRSsR8fAAAAAAAAAAAAAODGVKLBdkkaPny4hg8fnuO6hQsX2i2PHDnSbhR7TpydnTVp0iRNmjSpsKoIAAAAAAAAAAAAAICdErtnOwAAAAAAAAAAAAAAZRXBdgAAAAAAAAAAAAAA8olgOwAAAAAAAAAAAAAA+USwHQAAAAAAAAAAAACAfCLYDgAAAAAAAAAAAABAPhFsBwAAAAAAAAAAAAAgnwi2AwAAAAAAAAAAAACQTwTbAQAAAAAAAAAAAADIJ4LtAAAAAAAAAAAAAADkE8F2AAAAAAAAAAAAAADyiWB7UcrI+Pv5xjj7ZQAAUHbRxwMAcOOinwcA4IZ0eZcet5EuHgBQOAi2F5WYGKlBw7+X7+ssBQRkpQMAgLKLPh4AgBsX/TwAADekmBipYYO/lzvfRxcPACgcBNuLQkyM1KOHdDzJPj0pKSudHhwAgLKJPh4AgBsX/TwAADek7C4+6bh9Ol08AKAwEGwvbBkZ0qhRkjGO67LTRo9mjhoAAMoa+ngAAG5c9PMAANyQ6OIBAEWNYHthi4uTjh3Lfb0xUmJiVj4AAFB20McDAHDjop8HAOCGRBcPAChqziVdgRtOcrLtacWL6To6/YFr5gMAAGUAfTwAADcu+nkAAG5Il3fd5qKzfpl+/zXzAQCQH4xsL2ze3oWbDwAAlA708QAA2ERHRyswMFCurq4KDg5WXB6Hg23evFnOzs5q2rSpw7qVK1eqYcOGslqtatiwoVatWlXItb4K+nkAAG5IdPEAgKJGsL2whYVJvr6SxZLzeotF8vPLygcAAMoO+ngAACRJy5cv1+jRozV+/Hjt2rVLYWFh6ty5sxISEq66XWpqqvr376/27ds7rNu6dat69uypfv366fvvv1e/fv306KOP6ttvvy2qw7BHPw8AwA2JLh4AUNQIthc2JyfpjTeynl/Zg2cvR0Vl5QMAAGUHfTwAAJKkWbNmadCgQRo8eLAaNGigqKgo+fn5afbs2VfdbujQoerdu7dCQ0Md1kVFRenee+9VRESEgoKCFBERofbt2ysqKqqIjuIK9PMAANyQ6OIBAEWNYHtR6N5dWrFCqlXLPt3XNyu9e/eSqRcAALg+9PEAgJvchQsXFB8fr/DwcLv08PBwbdmyJdftFixYoMOHD2vSpEk5rt+6datDmR07drxqmenp6UpLS7N7XBf6eQAAbkh08QCAouRc0hW4YXXvLnXtKsXFScnJWTd9CQvjJ3IAAJR19PEAgJvYqVOnlJGRIU9PT7t0T09PpaSk5LjNwYMHNW7cOMXFxcnZOeevIVJSUvJVpiRNmzZNkydPzucRXAP9PAAANyS6eABAUSHYXpScnKS2bUu6FgAAoLDRxwMAbnKWK+ZhNcY4pElSRkaGevfurcmTJ6tevXqFUma2iIgIjR071raclpYmPz+/vFT/6ujnAQC4IdHFAwCKAsF2AAAAAACQJ9WrV5eTk5PDiPOTJ086jEyXpDNnzmjHjh3atWuXRowYIUnKzMyUMUbOzs5au3at7rnnHnl5eeW5zGxWq1VWq7UQjgoAAAAAgILhnu0AAAAAACBPXFxcFBwcrNjYWLv02NhYtWzZ0iG/u7u79uzZo927d9sew4YNU/369bV79261aNFCkhQaGupQ5tq1a3MsEwAAAACA0oKR7QAAAAAAIM/Gjh2rfv36KSQkRKGhoZo7d64SEhI0bNgwSVnTuyclJWnx4sUqV66cGjVqZLd9zZo15erqapc+atQotW7dWtOnT1fXrl31ySefaN26ddq0aVOxHhsAAAAAAPlBsB0AAAAAAORZz549dfr0aU2ZMkXJyclq1KiRVq9eLX9/f0lScnKyEhIS8lVmy5YttWzZMk2YMEETJ05UnTp1tHz5ctvIdwAAAAAASiOLMcaUdCVKm7S0NHl4eCg1NVXu7u4lXR0AwA2Ofqd40d4AgOJEv1N8aGsAQHGi3yk+tDUAoDjlt9/hnu0AAAAAAAAAAAAAAOQTwXYAAAAAAAAAAAAAAPKJYDsAAAAAAAAAADeB6OhoBQYGytXVVcHBwYqLi8s176ZNm9SqVStVq1ZNFSpUUFBQkF5//XWHfCtXrlTDhg1ltVrVsGFDrVq16rr2CwBAWUKwHQAAAAAAAACAG9zy5cs1evRojR8/Xrt27VJYWJg6d+6shISEHPO7ublpxIgR2rhxo/bv368JEyZowoQJmjt3ri3P1q1b1bNnT/Xr10/ff/+9+vXrp0cffVTffvttgfcLAEBZYjHGmJKuRGmT3xvfAwBwPeh3ihftDQAoTvQ7xYe2BgAUp7LY77Ro0ULNmzfX7NmzbWkNGjRQt27dNG3atDyV0b17d7m5uen999+XJPXs2VNpaWn64osvbHk6deqkKlWqaOnSpYWy37LY1gCAsiu//Q4j2wEAAAAAAAAAuIFduHBB8fHxCg8Pt0sPDw/Xli1b8lTGrl27tGXLFrVp08aWtnXrVocyO3bsaCuzIPtNT09XWlqa3QMAgNKKYDsAAAAAAAAAADewU6dOKSMjQ56ennbpnp6eSklJueq2vr6+slqtCgkJ0dNPP63Bgwfb1qWkpFy1zILsd9q0afLw8LA9/Pz88nycAAAUN4LtAAAAAAAAAADcBCwWi92yMcYh7UpxcXHasWOH3nnnHUVFRdmmh89PmfnZb0REhFJTU22PxMTEq9YPAICS5FzSFSiNsm9jz/Q0AIDikN3fZPc/KFr08wCA4kQ/X3zo4wEAxams9fHVq1eXk5OTw2jykydPOow6v1JgYKAkqXHjxjpx4oQiIyPVq1cvSZKXl9dVyyzIfq1Wq6xWq22ZPh4AUJzy28cTbM/BmTNnJInpaQAAxerMmTPy8PAo6Wrc8OjnAQAlgX6+6NHHAwBKQlnp411cXBQcHKzY2Fg99NBDtvTY2Fh17do1z+UYY5Senm5bDg0NVWxsrMaMGWNLW7t2rVq2bFlo+6WPBwCUhLz28QTbc+Dj46PExERVrlz5mlPoXEtaWpr8/PyUmJgod3f3QqrhjYm2yh/aK+9oq7yjrfKuMNvKGKMzZ87Ix8enkGqHqymsfp73S8mh7UsG7V4yaPeSQT9fNhXmtXxpxOdB/tBeeUdb5R1tlXc3Q1uVxT5+7Nix6tevn0JCQhQaGqq5c+cqISFBw4YNk5Q1fXtSUpIWL14sSXr77bdVu3ZtBQUFSZI2bdqkmTNnauTIkbYyR40apdatW2v69Onq2rWrPvnkE61bt06bNm3K836vhe/rcb34v998+J/ffEryOp5gew7KlSsnX1/fQi3T3d2dN3Qe0Vb5Q3vlHW2Vd7RV3hVWW5WFX8HfKAq7n+f9UnJo+5JBu5cM2r1k0M+XLUVxLV8a8XmQP7RX3tFWeUdb5d2N3lZlrY/v2bOnTp8+rSlTpig5OVmNGjXS6tWr5e/vL0lKTk5WQkKCLX9mZqYiIiJ05MgROTs7q06dOnrllVc0dOhQW56WLVtq2bJlmjBhgiZOnKg6depo+fLlatGiRZ73ey18X4/Cwv/95sP//OZTEtfxBNsBAAAAAAAAALgJDB8+XMOHD89x3cKFC+2WR44caTeKPTc9evRQjx49CrxfAADKsnIlXQEAAAAAAAAAAAAAAMoagu1FzGq1atKkSbJarSVdlVKPtsof2ivvaKu8o63yjrYCr4GSQ9uXDNq9ZNDuJYN2R2nE6zJ/aK+8o63yjrbKO9oKpRWvzZsT//ebD//zm09J/s8txhhT7HsFAAAAAAAAAAAAAKAMY2Q7AAAAAAAAAAAAAAD5RLAdAAAAAAAAAAAAAIB8ItgOAAAAAAAAAAAAAEA+EWwHAAAoYyIjI9W0adOSrkaZNnDgQHXr1s223LZtW40ePbrE6gMUBYvFoo8//liSdPToUVksFu3evbtE6wQAAAAUpaI47738vBrFZ+HChbrllltKuhp2uK4q/Urj6wZF41qfzRs2bJDFYtEff/xR5HUh2J6LjRs3qkuXLvLx8cnxH3b27FmNGDFCvr6+qlChgho0aKDZs2dftcyjR49q0KBBCgwMVIUKFVSnTh1NmjRJFy5csMv31VdfqWXLlqpcubK8vb31/PPP69KlS4V9iEVm2rRpslgsdl9YG2MUGRkpHx8fVahQQW3bttXevXvzXGZ6erqaNm2aY0dWltpr9uzZatKkidzd3eXu7q7Q0FB98cUXtvUFbacHH3xQtWvXlqurq7y9vdWvXz8dP37cLk9ZaqdskZGRslgsdg8vLy/b+oK2V0BAgEO548aNs8tTFtsrKSlJffv2VbVq1VSxYkU1bdpU8fHxtvXX8z78/PPP1aJFC1WoUEHVq1dX9+7d7daXxfa6Uk6vC4vFoqefflrS9X+OoegMHDjQ9v8qX768br31Vj3zzDP6888/r6vcm+kCKqe++3KDBg1S48aNHc5ZVq9erfLly2vHjh3FUMu/HTp0SI8//rh8fX1ltVoVGBioXr16FXs9bjRX/gAh25UXJ3PmzNEdd9whNzc33XLLLWrWrJmmT59evJUtoJMnT2ro0KGqXbu2rFarvLy81LFjR23durWkq4ZCkN0fvPLKK3bpH3/8sSwWy3WVfbUvbK68Xly/fr3atWunqlWrqmLFirrttts0YMCAMnduBAAAUBpd/h2AxWJRtWrV1KlTJ/3www8lXTXkQ16uP3v27KkDBw4Uf+Wuws/PT8nJyWrUqFFJV+WGl5iYqEGDBsnHx0cuLi7y9/fXqFGjdPr0aVuegIAARUVFlVwlUSjeeecdVa5c2e6a+ezZsypfvrzCwsLs8sbFxcliseTps6Fly5ZKTk6Wh4eHpKL9IQbB9lz8+eefuuOOO/Sf//wnx/VjxozRl19+qQ8++ED79+/XmDFjNHLkSH3yySe5lvm///1PmZmZmjNnjvbu3avXX39d77zzjv7973/b8vzwww+677771KlTJ+3atUvLli3Tp59+6hAILK2+++47zZ07V02aNLFLnzFjhmbNmqX//Oc/+u677+Tl5aV7771XZ86cyVO5zz33nHx8fBzSy1p7+fr66pVXXtGOHTu0Y8cO3XPPPeratastYFfQdmrXrp0+/PBD/fTTT1q5cqUOHz6sHj162NaXtXa63O23367k5GTbY8+ePbZ11/O6mjJlil25EyZMsK0ri+31+++/q1WrVipfvry++OIL7du3T6+99ppd51HQ9lq5cqX69eunxx9/XN9//702b96s3r1729aXxfbKyXfffWf3moiNjZUkPfLII5IK1n4Wi0VHjx4tjurf9Dp16qTk5GT9/PPPmjp1qqKjo/XMM8+UdLWu6srAdUnJre++XFRUlM6cOaNJkybZ0v744w89+eSTGj9+vEJCQgq9XhcvXswxfceOHQoODtaBAwc0Z84c7du3T6tWrVJQUJD+9a9/FXo9YG/+/PkaO3as/vnPf9r6hOeee05nz54t6arlycMPP6zvv/9eixYt0oEDB/Tpp5+qbdu2+u2330q6aigkrq6umj59un7//fcS2f/evXvVuXNn/eMf/9DGjRu1Z88evfXWWypfvrwyMzNLpE4AAAA3muzvAJKTk/XVV1/J2dlZDzzwQElXC4WsQoUKqlmzZklXw46Tk5O8vLzk7Oxc0lW5of38888KCQnRgQMHtHTpUh06dEjvvPOOvvrqK4WGhpbINXxu31Ph+rVr105nz561G0QTFxcnLy8vfffddzp37pwtfcOGDfLx8VG9evWuWa6Li4u8vLyu+8f3eWJwTZLMqlWr7NJuv/12M2XKFLu05s2bmwkTJuSr7BkzZpjAwEDbckREhAkJCbHLs2rVKuPq6mrS0tLyV/FidubMGXPbbbeZ2NhY06ZNGzNq1ChjjDGZmZnGy8vLvPLKK7a858+fNx4eHuadd965ZrmrV682QUFBZu/evUaS2bVrl21dWW6vbFWqVDHvvvvudbfT5T755BNjsVjMhQsXjDFlt50mTZpk7rjjjhzXXU97+fv7m9dffz3X9WWxvZ5//nlz991357q+oO118eJFU6tWLfPuu+/mmqcstldejBo1ytSpU8dkZmYWuP0kmSNHjhRDbW9uAwYMMF27drVLGzx4sPHy8jLnz583I0eONDVq1DBWq9W0atXKbN++3Zbvt99+M7179zbVq1c3rq6upm7duua9994zxmT9/y5/tGnTJtc6pKWlmd69e5uKFSsaLy8vM2vWLLu+0Jisz54XX3zRDBgwwLi7u5v+/fsbY4x57rnnzG233WYqVKhgAgMDzYQJE2yf39mmTZtmatasaSpVqmSeeOIJ8/zzz+f6+ZgfufXdOVm/fr0pX7682bZtmzEmq91DQkLMxYsXzbFjx8yjjz5qbrnlFlO1alXz4IMP2r32t2/fbjp06GCqVatm3N3dTevWrU18fLxd+ZLM7NmzzYMPPmgqVqxoXnjhBYc6ZGZmmttvv90EBwebjIwMh/W///677fkPP/xg2rVrZ1xdXU3VqlXNkCFDzJkzZ2zrr3zdXHn86enp5tlnnzU+Pj6mYsWK5s477zTr16+329/cuXONr6+vqVChgunWrZt57bXXjIeHh12eTz/91DRv3txYrVYTGBhoIiMjzcWLF3Np5ZKV03vJmKz/vSTz+++/m65du5qBAwcWf+UKwe+//24kmQ0bNlw13y+//GIefPBB4+bmZipXrmweeeQRk5KSYluffX4yf/584+fnZ9zc3MywYcPMpUuXzPTp042np6epUaOGmTp1ql25f/zxhxkyZIipUaOGqVy5smnXrp3ZvXv3VeuSmJhoevbsaapUqWIqVqxogoODbe9BY4yJjo42t956qylfvrypV6+eWbx4sd32l1/HHDlyxOFceu/evaZz587Gzc3N1KxZ0/Tt29f8+uuvtvV5+WzLy3uluAwYMMA88MADJigoyDz77LO29FWrVpkrL31XrFhhGjZsaFxcXIy/v7+ZOXPmVctesGCBw/s72+Xt/Prrr5uAgIDrOg4AAADkLqfrlo0bNxpJ5uTJkw7nvZcuXTJPPPGECQgIMK6urqZevXomKirKodz58+fbzg+9vLzM008/bVt3ZXxg8uTJpmbNmnbn1sifvFx/XnkOvnv3btO2bVtTqVIlU7lyZdO8eXPz3XffGWP+Pl9ftWqVue2224zVajUdOnQwCQkJtu0PHTpkHnzwQVOzZk3j5uZmQkJCTGxsrN3+/f39zUsvvWQef/xxU6lSJePn52fmzJljW5/TddWPP/5o7rvvPlO5cmVTqVIlc/fdd5tDhw4VTkPdpDp16mR8fX3NuXPn7NKTk5NNxYoVzbBhw0ybNm0cvrsz5u/XwpdffmmCgoKMm5ub6dixozl+/LhdWe+9954JCgoyVqvV1K9f37z99tu2ddn/5+XLl5s2bdoYq9Vq+74QRcPHx8dMmzbNtvzcc8+Zp59+2jRs2NDufXrPPfeYPn36GGOyPpvnzZtnunXrZipUqGDq1q1rPvnkE1veyz9Psp9f/pg0aZIxpnC+12BkewHdfffd+vTTT5WUlCRjjNavX68DBw6oY8eO+SonNTVVVatWtS2np6fL1dXVLk+FChV0/vx5u+mgS6Onn35a999/vzp06GCXfuTIEaWkpCg8PNyWZrVa1aZNG23ZsuWqZZ44cUJDhgzR+++/r4oVKzqsL8vtlZGRoWXLlunPP/9UaGjodbXT5X777TctWbJELVu2VPny5SWV7XY6ePCgfHx8FBgYqMcee0w///yzpOt7XUnS9OnTVa1aNTVt2lQvvfSS3QjTsthen376qUJCQvTII4+oZs2aatasmebNm2dbX9D22rlzp5KSklSuXDk1a9ZM3t7e6ty5s9306WWxva7lwoUL+uCDD/TEE0/IYrEU2vsTxadChQq6ePGinnvuOa1cuVKLFi3Szp07VbduXXXs2NH2C9iJEydq3759+uKLL7R//37Nnj1b1atXlyRt375dkrRu3TolJycrJiYm1/2NHTtWmzdv1qeffqrY2FjFxcVp586dDvleffVVNWrUSPHx8Zo4caIkqXLlylq4cKH27dunN954Q/PmzdPrr79u2+bDDz/UpEmT9NJLL2nHjh3y9vZWdHR0obRTbn13Ttq2bavhw4drwIAB+uijj/Thhx9q8eLFunDhgtq1a6dKlSpp48aN2rRpkypVqqROnTrZPlvPnDmjAQMGKC4uTtu2bdNtt92m++67z2FmiEmTJqlr167as2ePnnjiCYc67N69W3v37tW//vUvlSvneBqbPZvHuXPn1KlTJ1WpUkXfffedPvroI61bt04jRozIc9s8/vjj2rx5s5YtW6YffvhBjzzyiDp16qSDBw9KkjZv3qxhw4Zp1KhR2r17t+6991699NJLdmWsWbNGffv21T//+U/t27dPc+bM0cKFCx3ylSVeXl7atm2bfvnll5KuSr5VqlRJlSpV0scff6z09PQc8xhj1K1bN/3222/65ptvFBsbq8OHD6tnz552+Q4fPqwvvvhCX375pZYuXar33ntP999/v44dO6ZvvvlG06dP14QJE7Rt2zZbuffff79SUlK0evVqxcfHq3nz5mrfvn2uv8g/e/as2rRpo+PHj+vTTz/V999/r+eee842OnrVqlUaNWqU/vWvf+nHH3/U0KFD9fjjj2v9+vV5ao/k5GS1adNGTZs21Y4dO/Tll1/qxIkTevTRR2158vLZdq33SnFzcnLSyy+/rLfeekvHjh3LMU98fLweffRRPfbYY9qzZ48iIyM1ceJELVy48Lr37+XlpeTkZG3cuPG6ywIAAMC1nT17VkuWLFHdunVVrVo1h/WZmZny9fXVhx9+qH379umFF17Qv//9b3344Ye2PLNnz9bTTz+tJ598Unv27NGnn36qunXrOpRljNGoUaM0f/58bdq0SU2bNi3KQ8MV+vTpI19fX3333XeKj4/XuHHjbN9/S1nfBbz00ktatGiRNm/erLS0ND322GO29WfPntV9992ndevWadeuXerYsaO6dOmihIQEu/289tprCgkJ0a5duzR8+HA99dRT+t///pdjnZKSktS6dWu5urrq66+/Vnx8vJ544gluIXUdfvvtN61Zs0bDhw9XhQoV7NZ5eXmpT58+Wr58uVauXClfX1+7GWyznTt3TjNnztT777+vjRs3KiEhwW4GzHnz5mn8+PF66aWXtH//fr388suaOHGiFi1aZLe/559/Xv/85z+1f//+fMf+kD9t27a1+z5j/fr1atu2rdq0aWNLv3DhgrZu3ap27drZ8k2ePFmPPvqobfbdPn365Pg9S8uWLRUVFSV3d3fb6yX7NVEo32sU7DcGNxflMLI9PT3d9O/f30gyzs7OxsXFxWEkybUcOnTIuLu7m3nz5tnS1qxZY8qVK2f++9//mkuXLpljx46Zu+++20gy//3vfwvjcIrE0qVLTaNGjcxff/1ljLEfHbZ582YjySQlJdltM2TIEBMeHp5rmZmZmaZTp07mxRdfNMbk/KuxstheP/zwg3FzczNOTk7Gw8PDfP7558aYgrdTtueee85UrFjRSDJ33XWXOXXqlG1dWWwnY7JmNVixYoX54YcfbKMuPT09zalTp66rvWbNmmU2bNhgvv/+ezNv3jxTvXp1M2jQINv6stheVqvVWK1WExERYXbu3Gneeecd4+rqahYtWmSMKfjra+nSpUaSqV27tlmxYoXZsWOH6dWrl6lWrZo5ffq0MaZstte1LF++3Dg5Odnaq6DtJ0a2F4srfw397bffmmrVqpkePXqY8uXLmyVLltjWXbhwwfj4+JgZM2YYY4zp0qWLefzxx3MsN6d+JydpaWmmfPny5qOPPrKl/fHHH6ZixYoOI9u7det2zeOZMWOGCQ4Oti2HhoaaYcOG2eVp0aLFdY9sv1rfnZtz586ZoKAgU65cOdsMIfPnzzf169c3mZmZtnzp6emmQoUKZs2aNTmWc+nSJVO5cmXzf//3f7Y0SWb06NFX3f/y5cuNJLNz586r5ps7d66pUqWKOXv2rC3t888/N+XKlbONUL7ayPZDhw4Zi8Xi8J5v3769iYiIMMYY07NnT3P//ffbre/Tp4/dr+7DwsLMyy+/bJfn/fffN97e3letf0kZMGCAcXJyMm5ubnYPV1dX2y+Bjx8/bu666y4jydSrV88MGDDALF++PMeZBkqjFStWmCpVqhhXV1fTsmVLExERYb7//nvb+rVr1xonJye70Q/Zsytlz4oxadIkU7FiRbvZWzp27GgCAgLs2qF+/fq2X2V/9dVXxt3d3Zw/f96uPnXq1LEbJXG5OXPmmMqVK9v62yu1bNnSDBkyxC7tkUceMffdd59t+fLrmCs/0yZOnOjQhyUmJhpJ5qeffsrTZ1te3ivF6fL39V133WWeeOIJY4zjyPbevXube++9127bZ5991jRs2DDXshcsWGAkObw/3Nzc7Nr50qVLZuDAgUaS8fLyMt26dTNvvfWWSU1NLdyDBQAAuElded0iyXh7e9tmT8vLtfzw4cPNww8/bFv28fEx48ePzzW/JPPRRx+Zvn37mqCgIJOYmFhox3Ozysv155Uj2ytXrmwWLlyYY3nZ5+uXzwS2f/9+I8l8++23udajYcOG5q233rIt+/v7m759+9qWMzMzTc2aNc3s2bONMY6vr4iICBMYGOgwQyEKbtu2bTnG5LLNmjXLSDInTpzIcQbb7NfC5bMLvP3228bT09O27Ofn5/C99YsvvmhCQ0ONMX//n3OaBQNFY+7cucbNzc1cvHjRpKWlGWdnZ3PixAmzbNky07JlS2OMMd98842RZA4fPmyMyfpsvny28bNnzxqLxWK++OILY4z9yHZjcp6xrrC+12BkewG9+eab2rZtmz799FPFx8frtdde0/Dhw7Vu3TpJ0rBhw2yjZypVquSw/fHjx9WpUyc98sgjGjx4sC09PDxcr776qoYNGyar1ap69erp/vvvl5Q1SqM0SkxM1KhRo/TBBx84jG693JX3RTDG2NJyaq+33npLaWlpioiIyLXMsthe9evX1+7du7Vt2zY99dRTGjBggPbt22dbn992yvbss89q165dWrt2rZycnNS/f39lfd6UzXaSpM6dO+vhhx9W48aN1aFDB33++eeSZPcLs4K015gxY9SmTRs1adJEgwcP1jvvvKP58+fr9OnTkspme2VmZqp58+Z6+eWX1axZMw0dOlRDhgzR7Nmz7fLlt72yR8+NHz9eDz/8sIKDg7VgwQJZLBZ99NFHkspme13L/Pnz1blzZ/n4+NilX639pKzX7JVtePvtt1+1P0Dh+Oyzz1SpUiW5uroqNDRUrVu31siRI3Xx4kW1atXKlq98+fK68847tX//fknSU089pWXLlqlp06Z67rnnrjlTQVxcnN3/c8mSJfr555918eJF3XnnnbZ8Hh4eql+/vsP2Od3bfMWKFbr77rvl5eWlSpUqaeLEiXa/qt6/f79CQ0PttrlyOb/y0ne//PLLdseakJCgChUq6F//+pcqVqyoUaNGScoaIXro0CFVrlzZlrdq1ao6f/68Dh8+LEk6efKkhg0bpnr16snDw0MeHh46e/asw6/Hr3Xv9+x+7Vr3Wtq/f7/uuOMOubm52dJatWqlzMxM/fTTT1dvHGXN6mGMUb169eza4JtvvrEd008//WT3P5fksBwfH68pU6bYlTFkyBAlJyfb3W+qNGnXrp12795t93j33Xdt6729vbV161bt2bNH//znP3Xx4kUNGDBAnTp1KhP3o3744YdtI8U7duyoDRs2qHnz5rYRzfv375efn5/8/Pxs2zRs2FC33HKL7XNDkgICAlS5cmXbsqenpxo2bGg344Knp6dOnjwpKeu1cPbsWVWrVs3u9XDkyBHba+pKu3fvVrNmzexmwbrc/v377T7fpKzX+eX1vJr4+HitX7/erj5BQUGSskbu5+WzLS/vlZIyffp0LVq0yO48O1tubXfw4EFlZGTkWmblypUd3h+7d++2y+Pk5KQFCxbo2LFjmjFjhnx8fPTSSy/p9ttvtxtpAQDFKSAgQFFRUSVdjXyLjIxk1CiAHF1+3fLtt98qPDxcnTt3znUGrnfeeUchISGqUaOGKlWqpHnz5tmuR0+ePKnjx4+rffv2V93nmDFjtHXrVsXFxcnX17fQj+lmdK3rzyuNHTtWgwcPVocOHfTKK684XHM4Ozvbfa8QFBRkdy33559/6rnnnrNd41WqVEn/+9//HL6baNKkie25xWKRl5eX7druSrt371ZYWJjdCHsUrbx8N1SxYkXVqVPHtuzt7W37H/76669KTEzUoEGD7K5jp06d6vCautb3VCg87dq1059//qnvvvtOcXFxqlevnmrWrKk2bdrou+++059//qkNGzaodu3auvXWW23bXf5+dXNzU+XKlXN9v+aksL7XcM5zTtj89ddf+ve//61Vq1bZAkpNmjTR7t27NXPmTHXo0EFTpkyxm5bicsePH1e7du0UGhqquXPnOqwfO3asxowZo+TkZFWpUkVHjx5VRESEAgMDi/S4Cio+Pl4nT55UcHCwLS0jI0MbN27Uf/7zH9uX2ikpKfL29rblOXnypDw9PSUpx/b6+uuvtW3bNlmtVrv0kJAQ9enTxxZwLWvt5eLiYpuGKCQkRN99953eeOMNPf/885Ly307ZqlevrurVq6tevXpq0KCB/Pz8tG3bNltApqy1U07c3NzUuHFjHTx4UN26dZNU8Pa63F133SVJOnTokG26qbLWXt7e3mrYsKFdWoMGDbRy5UpJWVPsSPlvr+y8l5dttVp166232p2IlrX2uppffvlF69ats5syPC/tJ0nvvvuu/vrrL9vybbfdptWrV6tWrVrFUPObW7t27TR79myVL19ePj4+Kl++vL7//ntJV/+RRPbF+Oeff65169apffv2evrppzVz5swc9xMSEmIXWPH09LSdeOW0nytdHvyVpG3btumxxx7T5MmT1bFjR3l4eGjZsmV67bXX8tcA+XStvjs9PV3Dhg2zm046+8cnzs7OcnJysh1vZmamgoODtWTJEof91KhRQ5I0cOBA/frrr4qKipK/v7+sVqtCQ0PtbuEhObbPlerVqycpK1B2tS9er/whzOWuFaiXso7JyclJ8fHxDj8ayv7RTE77uPJ/npmZqcmTJ6t79+4O+7jaDxRLkpubm8N0iTlNxd2oUSM1atRITz/9tDZt2qSwsDB98803dlN5lVaurq669957de+99+qFF17Q4MGDNWnSJA0cODDX186V6Vd+kWKxWHJMy/4BQmZmpry9vbVhwwaHsrNvf3ClK6fLy8m1fgR2NZmZmerSpYumT5/usM7b29s2XdrVXud5ea+UlNatW6tjx47697//rYEDB9qty8v7NyflypXLcTrRnNSqVUv9+vVTv379NHXqVNWrV0/vvPOOJk+enOdjAFD2DBw40GH6USnr9mh5/fwozf766y9Vq1ZNO3futP1A63LZn61bt261XWdLWbce8/Hx0W+//WabEhQArseV1y3BwcHy8PDQvHnz7Aa2SVm3ZhszZoxee+01hYaGqnLlynr11Vf17bffSsrbebck3XvvvVq6dKnWrFmjPn36FN7B3MTyev2ZLTIyUr1799bnn3+uL774QpMmTdKyZcv00EMP2fLkdD2Unfbss89qzZo1mjlzpurWrasKFSqoR48eDt9NXO3a7kp5ff0g7+rWrSuLxaJ9+/bZYgCX+9///qcqVarYbgOZk5z+h9nXfNn/y3nz5qlFixZ2+a68rr3W91QoPHXr1pWvr6/Wr1+v33//XW3atJGU9b18YGCgNm/erPXr1+uee+6x2y4/79ecFNb3GgTbC+DixYu6ePGiw71CnZycbP/EmjVrqmbNmg7bJiUlqV27drbRoTndb1TKekFkf6m9dOlS+fn5qXnz5oV8JIWjffv22rNnj13a448/rqCgID3//PO69dZb5eXlpdjYWDVr1kxS1r0Vsu9nKeXcXm+++aamTp1qWz5+/Lg6duyo5cuXO3wIlqX2upIxRunp6QoMDCxQO+VWpiSH+5GW5XaSso5n//79CgsLK9T22rVrlyTZBVGlstVerVq1chiteeDAAfn7+0tSgdsrODhYVqtVP/30k+6++25JWZ+BR48etZWdrSy119UsWLBANWvWtP2YSspb+0nKMaju7++vgICAIq/3zS6nC7S6devKxcVFmzZtUu/evSVlvX537Nih0aNH2/LVqFFDAwcO1MCBAxUWFqZnn31WM2fOlIuLiyTZjXKsUKGCw37q1Kmj8uXLa/v27bbRsGlpaTp48KDtxDA3mzdvlr+/v8aPH29Lu/KX+A0aNNC2bdvUv39/W1r2faAL6lp9t5OTk6pWrZrriNrLNW/eXMuXL1fNmjXl7u6eY564uDhFR0frvvvuk5Q1sv7UqVP5rnfTpk3VsGFDvfbaa+rZs6fDedQff/yhW265RQ0bNtSiRYv0559/2i6MNm/erHLlytkC9lfTrFkzZWRk6OTJkwoLC8sxT1BQkLZv326XtmPHDrvl5s2b66effrohvly/muwfZP35558lXJOCadiwoT7++GPb84SEBCUmJtrez/v27VNqaqoaNGhQ4H00b95cKSkpcnZ2znOf0KRJE7377rv67bffcnwvNmjQQJs2bbL7bNiyZUue69m8eXOtXLlSAQEBcnZ2vCzMy2dbXt4rJemVV15R06ZNHd73DRs21KZNm+zStmzZonr16hXJrDxVqlSRt7d3mX2PAMifTp06acGCBXZp2T9ALOtiY2Pl5+eXY6A9m5+fnxYsWGAXbF+1apUqVaqU4/0zAaAwWCwWlStXzm4ARLa4uDi1bNlSw4cPt6VdPlqxcuXKCggI0FdffXXVHw8/+OCD6tKli3r37i0nJye7e4Gj+NSrV0/16tXTmDFj1KtXLy1YsMAWbL906ZJ27Nhhm53rp59+0h9//GHrt+Li4jRw4EBb/rNnz+ro0aPXVZ8mTZpo0aJFunjxIqPbC0m1atV07733Kjo6WmPGjLH7QUNKSoqWLFmi/v37y2KxyMXF5aqzk+XE09NTtWrV0s8//8wPZ0qZdu3aacOGDfr999/17LPP2tLbtGmjNWvWaNu2bXr88ccLXH5Or5fC+l6DaeRzcfbsWbtpAY8cOaLdu3crISFB7u7uatOmjZ599llt2LBBR44c0cKFC7V48WK7X1Fd6fjx42rbtq38/Pw0c+ZM/frrr0pJSVFKSopdvldffVV79uzR3r179eKLL+qVV17Rm2++WWqnY65cubJtdFP2w83NTdWqVVOjRo1ksVg0evRovfzyy1q1apV+/PFHDRw4UBUrVrQFP3JSu3ZtuzKzvySrU6eO3VQ9Zam9/v3vfysuLk5Hjx7Vnj17NH78eG3YsEF9+vQpcDtt375d//nPf7R792798ssvWr9+vXr37q06derYTTNcltop2zPPPKNvvvlGR44c0bfffqsePXooLS1NAwYMKHB7bd26Va+//rp2796tI0eO6MMPP9TQoUP14IMPqnbt2rZ8Za29xowZo23btunll1/WoUOH9N///ldz587V008/LUkFbi93d3cNGzZMkyZN0tq1a/XTTz/pqaeekiQ98sgjtnxlrb1yk5mZqQULFmjAgAF2gYeCth9Klpubm5566ik9++yz+vLLL7Vv3z4NGTJE586d06BBgyRJL7zwgj755BMdOnRIe/fu1WeffWYLVNWsWVMVKlTQl19+qRMnTig1NTXH/VSuXFkDBgzQs88+q/Xr12vv3r164oknVK5cuWuOMK1bt64SEhK0bNkyHT58WG+++aZWrVpll2fUqFF677339N577+nAgQOaNGmS9u7de11tc62+Oz/69Omj6tWrq2vXroqLi9ORI0f0zTffaNSoUbZfpNetW1fvv/++9u/fr2+//VZ9+vQp0K+/LRaLFixYoAMHDqh169ZavXq1fv75Z/3www966aWX1LVrV1udXF1dNWDAAP34449av369Ro4cqX79+tnNRpGbevXqqU+fPurfv79iYmJ05MgRfffdd5o+fbpWr14tSRo5cqRWr16tWbNm6eDBg5ozZ46++OILu//5Cy+8oMWLFysyMlJ79+7V/v37tXz5ck2YMCHfx15aPPXUU3rxxRe1efNm/fLLL7YfgtSoUeO6b29Q1E6fPq177rlHH3zwgX744QcdOXJEH330kWbMmGF77XTo0EFNmjRRnz59tHPnTm3fvl39+/dXmzZtrmv6uA4dOig0NFTdunXTmjVrdPToUW3ZskUTJkxw+JFGtl69esnLy0vdunXT5s2b9fPPP2vlypXaunWrpKxRGQsXLtQ777yjgwcPatasWYqJicnTrD6S9PTTT+u3335Tr169tH37dv38889au3atnnjiCWVkZOTpsy0v75WS1LhxY/Xp00dvvfWWXfq//vUvffXVV3rxxRd14MABLVq0SP/5z3/y3HZXM2fOHD311FNau3atDh8+rL179+r555/X3r171aVLl+suH0DpZ7Va5eXlZffIvi76v//7PwUHB8vV1VW33nqrJk+erEuXLtm2tVgsmjNnjh544AFVrFhRDRo00NatW3Xo0CG1bdtWbm5uCg0NtQsSHT58WF27dpWnp6cqVaqkf/zjH7ZbHOYmNTVVTz75pO3Hkvfcc49tVqir+eSTT/Tggw9eNc+AAQO0bNkyu4DXe++9pwEDBjjkff7551WvXj1VrFhRt956qyZOnKiLFy9etfwFCxaoQYMGcnV1VVBQkKKjo69ZbwA3nvT0dNv36vv379fIkSN19uzZHM+36tatqx07dmjNmjU6cOCAJk6cqO+++84uT2RkpF577TW9+eabOnjwoHbu3OlwDilJDz30kN5//309/vjjWrFiRZEdHxz99ddfGjFihDZs2KBffvlFmzdv1nfffWf3Y+Py5ctr5MiR+vbbb7Vz5049/vjjuuuuu2zB97p16yomJka7d+/W999/r969e1/37dBGjBihtLQ0PfbYY9qxY4cOHjyo999/P0+3sEPusmdd7NixozZu3KjExER9+eWXuvfee1WrVi299NJLkrJulbNx40YlJSXla1BHZGSkpk2bpjfeeEMHDhzQnj17tGDBAs2aNauoDgl50K5dO23atEm7d++2G8DUpk0bzZs3T+fPn7+uGRUDAgJ09uxZffXVVzp16pTOnTtXeN9r5Pnu7jeZ9evXG0kOjwEDBhhjjElOTjYDBw40Pj4+xtXV1dSvX9+89tprJjMzM9cyFyxYkGOZV/4b2rVrZzw8PIyrq6tp0aKFWb16dVEeapFo06aNGTVqlG05MzPTTJo0yXh5eRmr1Wpat25t9uzZk68yjxw5YiSZXbt22aWXpfZ64oknjL+/v3FxcTE1atQw7du3N2vXrrWtL0g7/fDDD6Zdu3amatWqxmq1moCAADNs2DBz7Ngxu3xlqZ2y9ezZ03h7e5vy5csbHx8f0717d7N3717b+oK0V3x8vGnRooWtLerXr28mTZpk/vzzT7t8ZbG9/u///s80atTIWK1WExQUZObOnWu3vqDvwwsXLph//etfpmbNmqZy5cqmQ4cO5scff7TLUxbbKydr1qwxksxPP/3ksK4g7SfJHDlypIhqi2wDBgwwXbt2zXHdX3/9ZUaOHGmqV69urFaradWqldm+fbtt/YsvvmgaNGhgKlSoYKpWrWq6du1qfv75Z9v6efPmGT8/P1OuXDnTpk2bXOuQlpZmevfubSpWrGi8vLzMrFmzzJ133mnGjRtny+Pv729ef/11h22fffZZU61aNVOpUiXTs2dP8/rrrxsPDw+7PC+99JKpXr26qVSpkhkwYIB57rnnzB133JGX5smzK/vu3CxYsMChfsnJyaZ///62dr711lvNkCFDTGpqqjHGmJ07d5qQkBBjtVrNbbfdZj766COH9pBkVq1alae6/vTTT6Z///7Gx8fHuLi4GH9/f9OrVy+zc+dOW57s/tHV1dVUrVrVDBkyxJw5c8a2/srXzZXHf+HCBfPCCy+YgIAAU758eePl5WUeeugh88MPP9jyzJ0719SqVctUqFDBdOvWzUydOtV4eXnZ1fXLL780LVu2NBUqVDDu7u7mzjvvdPh8Li1yey9lnxf//vvvZsWKFea+++4z3t7exsXFxfj4+JiHH37Yrl1Kq/Pnz5tx48aZ5s2bGw8PD1OxYkVTv359M2HCBHPu3Dlbvl9++cU8+OCDxs3NzVSuXNk88sgjJiUlxbZ+0qRJDu+/nNruytdUWlqaGTlypPHx8THly5c3fn5+pk+fPiYhISHXOh89etQ8/PDDxt3d3VSsWNGEhISYb7/91rY+Ojra3HrrraZ8+fKmXr16ZvHixXbbX/6+yulc+sCBA+ahhx4yt9xyi6lQoYIJCgoyo0ePtl3T5OWzLS/vleKS0//h6NGjxmq1OlxzrVixwjRs2NCUL1/e1K5d27z66qtXLTunz75sl7fzzp07Td++fU1gYKCxWq2mWrVqpnXr1ubTTz8t6GEBKEOudl765ZdfGnd3d7Nw4UJz+PBhs3btWhMQEGAiIyNteSSZWrVqmeXLl5uffvrJdOvWzQQEBJh77rnHfPnll2bfvn3mrrvuMp06dbJts3v3bvPOO++YH374wRw4cMCMHz/euLq6ml9++cWW5/LzrszMTNOqVSvTpUsX891335kDBw6Yf/3rX6ZatWrm9OnTuR5bRkaGqVmzpomLi8s1T/bn4R133GHef/99Y4wxCQkJxmq1mgMHDhhJZv369bb8L774otm8ebM5cuSI+fTTT42np6eZPn26bf2Vfe7cuXONt7e3Wblypfn555/NypUrTdWqVc3ChQtzrROAG8+AAQPsvlevXLmy+cc//mFWrFhhjHE87z1//rwZOHCg8fDwMLfccot56qmnzLhx4xzO6d955x1Tv359U758eePt7W1GjhxpW3fl9ery5cuNq6urWblyZVEf7g0rL9efl5+Dp6enm8cee8z4+fnZrkVHjBhh/vrrL2PM3+frK1euNLfeeqtxcXEx99xzjzl69Kit7CNHjph27dqZChUqGD8/P/Of//zH4botp+9u7rjjDjNp0iRbGVdeV33//fcmPDzcVKxY0VSuXNmEhYWZw4cPF0Yz3dSOHj1qBg4caLy8vGzX0CNHjjSnTp2y5dm6datp0qSJ3TVfTtduq1atcrgmXLJkiWnatKlxcXExVapUMa1btzYxMTHGmNxjUSha2e0eFBRkl56YmGgkmTp16til5/RdooeHh1mwYIExxv7zJNuwYcNMtWrVjCTb+7owvtew/P8KAQAAoJD8+eefqlWrll577TXbKHrc+IYMGaL//e9/iouLK+mqAEWCzzYAuLqBAwfqgw8+kKurqy2tc+fO+uijj9S6dWt17txZERERtnUffPCBnnvuOR0/flxS1sj2CRMm6MUXX5SUdeug0NBQzZ8/X0888YQkadmyZXr88cdznCo52+23366nnnpKI0aMkJQ1imf06NEaPXq0vv76az300EM6efKkrFarbZu6devqueee05NPPpljmVu2bFHXrl114sSJq94ScdWqVfrll1/0ySef6Ouvv9aUKVO0e/duvffee6pSpcpV79n+6quvavny5bZZXyIjI/Xxxx/bZp2sXbu2pk+frl69etm2mTp1qlavXq0tW7bk2h4AgBvfwoULNXr0aP3xxx8lXRUANyHu2Q4AAHCddu3apf/973+68847lZqaqilTpkiSbWpq3Jhmzpype++9V25ubvriiy+0aNEipjLFDYXPNgDIv3bt2mn27Nm2ZTc3N0lSfHy8vvvuO9u0p5KUkZGh8+fP69y5c6pYsaKkrHu/Zsu+/U3jxo3t0s6fP6+0tDS5u7vrzz//1OTJk/XZZ5/p+PHjunTpkv766y8lJCTkWL/4+HidPXtW1apVs0v/66+/7Kanv9Inn3yiBx54INdA++X69u2rcePG6eeff9bChQv15ptv5phvxYoVioqK0qFDh3T27FldunRJ7u7uOeb99ddflZiYqEGDBmnIkCG29EuXLsnDw+OadQIAAACKCsF2AACAQjBz5kz99NNPcnFxUXBwsOLi4lS9evWSrhaK0Pbt2zVjxgydOXNGt956q958800NHjy4pKsFFCo+2wAgf9zc3FS3bl2H9MzMTE2ePFndu3d3WHf5SPjy5cvbnlssllzTsu8x++yzz2rNmjWaOXOm6tatqwoVKqhHjx66cOFCjvXLzMyUt7e3NmzY4LDulltuyfW4Pv30U02bNi3X9ZerVq2aHnjgAQ0aNEjnz59X586ddebMGbs827Zt02OPPabJkyerY8eO8vDw0LJly/Taa6/lWm9Jmjdvnlq0aGG3zsnJKU/1AgAAAIoCwXYAAIDr1KxZM8XHx5d0NVDMPvzww5KuAlCk+GwDgMLTvHlz/fTTTzkG4q9HXFycBg4cqIceekiSdPbsWR09evSq9UhJSZGzs7MCAgLytI+DBw/q6NGjCg8Pz3O9nnjiCd133316/vnncwyGb968Wf7+/ho/frwt7Zdffsm1PE9PT9WqVUs///yz+vTpk+d6AABuDgMHDtTAgQNLuhoAblIE2wEAAAAAAIAi9MILL+iBBx6Qn5+fHnnkEZUrV04//PCD9uzZo6lTpxa43Lp16yomJkZdunSRxWLRxIkTbaPAc9KhQweFhoaqW7dumj59uurXr6/jx49r9erV6tatm0JCQhy2+eSTT9ShQwfbVPd50alTJ/3666+5Tgtft25dJSQkaNmyZfrHP/6hzz//XKtWrbpqmZGRkfrnP/8pd3d3de7cWenp6dqxY4d+//13jR07Ns91AwAAAArTtW+0BAAAAAAAAKDAOnbsqM8++0yxsbH6xz/+obvuukuzZs2Sv7//dZX7+uuvq0qVKmrZsqW6dOmijh07qnnz5rnmt1gsWr16tVq3bq0nnnhC9erV02OPPaajR4/a7hF/pU8++URdu3bNV70sFouqV68uFxeXHNd37dpVY8aM0YgRI9S0aVNt2bJFEydOvGqZgwcP1rvvvquFCxeqcePGatOmjRYuXKjAwMB81Q0AAAAoTBZjjCnpSgAAAAAAAAAoXU6dOiVvb28lJibKy8urpKsDAAAAlDqMbAcAAAAAAADg4LffftOsWbMItAMAAAC5YGQ7AAAAAAAAAAAAAAD5xMh2AAAAAAAAAAAAAADyiWA7AAAAAAAAAAAAAAD5RLAdAAAAAAAAAAAAAIB8ItgOAAAAAAAAAAAAAEA+EWwHAAAAAAAAAAAAACCfCLYDAAAAAAAAAAAAAJBPBNsBAAAAAAAAAAAAAMgngu0AAAAAAAAAAAAAAOQTwXYAAAAAAAAAAAAAAPKJYDsAAAAAAAAAAAAAAPnkXNIVKI0yMzN1/PhxVa5cWRaLpaSrAwAAAAAAAAAAAAAoYsYYnTlzRj4+PipX7trj1stEsD06OlqvvvqqkpOTdfvttysqKkphYWG55l+yZIlmzJihgwcPysPDQ506ddLMmTNVrVq1PO3v+PHj8vPzK6zqAwAAAAAAAAAAAADKiMTERPn6+l4zn8UYY4qhPgW2fPly9evXT9HR0WrVqpXmzJmjd999V/v27VPt2rUd8m/atElt2rTR66+/ri5duigpKUnDhg3TbbfdplWrVuVpn6mpqbrllluUmJgod3f3wj4kAAAAAAAAAAAAAEApk5aWJj8/P/3xxx/y8PC4Zv5SH2xv0aKFmjdvrtmzZ9vSGjRooG7dumnatGkO+WfOnKnZs2fr8OHDtrS33npLM2bMUGJiYo77SE9PV3p6um05uxFTU1MJtgMAAAAAAAAAAADATSAtLU0eHh55jhNfe6L5EnThwgXFx8crPDzcLj08PFxbtmzJcZuWLVvq2LFjWr16tYwxOnHihFasWKH7778/1/1MmzZNHh4etgdTyAMAAAAAAAAAAAAArqZUB9tPnTqljIwMeXp62qV7enoqJSUlx21atmypJUuWqGfPnnJxcZGXl5duueUWvfXWW7nuJyIiQqmpqbZHbiPgAQAAAAAAAAAAAACQSnmwPZvFYrFbNsY4pGXbt2+f/vnPf+qFF15QfHy8vvzySx05ckTDhg3LtXyr1Sp3d3e7BwAAAAAAAAAAAAAAuXEu6QpcTfXq1eXk5OQwiv3kyZMOo92zTZs2Ta1atdKzzz4rSWrSpInc3NwUFhamqVOnytvbu9Dql5GRoYsXLxZaeSg4FxcXlStXJn47AgAAAAAAAAAAAOAGUKqD7S4uLgoODlZsbKweeughW3psbKy6du2a4zbnzp2Ts7P9YTk5OUnKGhFfGIwxSklJ0R9//FEo5eH6lStXToGBgXJxcSnpqgAAAAAAAAAAAAC4CZTqYLskjR07Vv369VNISIhCQ0M1d+5cJSQk2KaFj4iIUFJSkhYvXixJ6tKli4YMGaLZs2erY8eOSk5O1ujRo3XnnXfKx8enUOqUHWivWbOmKlasmOuU9igemZmZOn78uJKTk1W7dm3+HwAAAAAAAAAAAACKXKkPtvfs2VOnT5/WlClTlJycrEaNGmn16tXy9/eXJCUnJyshIcGWf+DAgTpz5oz+85//6F//+pduueUW3XPPPZo+fXqh1CcjI8MWaK9WrVqhlInrV6NGDR0/flyXLl1S+fLlS7o6AAAAAAAAAAAAAG5wFlNYc6vfQNLS0uTh4aHU1FS5u7vbrTt//ryOHDmigIAAVahQoYRqiCv99ddfOnr0qAIDA+Xq6lrS1QEAAAAAAAAAAABQxlwtTpyTcsVQpxsSU5WXLvw/AAAAAAAAAAAAABQngu0AAAAAAAAAAAAAAOQTwXaUGhaLRR9//HFJVwMAAAAAAAAAAAAArolg+03m5MmTGjp0qGrXri2r1SovLy917NhRW7duLemqAQAAAAAAAAAAAECZ4VzSFbiZZWRIcXFScrLk7S2FhUlOTkW7z4cfflgXL17UokWLdOutt+rEiRP66quv9NtvvxXtjgEAAAAAAAAAAADgBsLI9hISEyMFBEjt2km9e2f9DQjISi8qf/zxhzZt2qTp06erXbt28vf315133qmIiAjdf//9kqRZs2apcePGcnNzk5+fn4YPH66zZ8/ayli4cKFuueUWffbZZ6pfv74qVqyoHj166M8//9SiRYsUEBCgKlWqaOTIkcrIyLBtFxAQoBdffFG9e/dWpUqV5OPjo7feeuuq9U1KSlLPnj1VpUoVVatWTV27dtXRo0eLpG0AAAAAAAAAAACA0i4jQ9qwQVq6NOvvZeE4lACC7SUgJkbq0UM6dsw+PSkpK72oAu6VKlVSpUqV9PHHHys9PT3HPOXKldObb76pH3/8UYsWLdLXX3+t5557zi7PuXPn9Oabb2rZsmX68ssvtWHDBnXv3l2rV6/W6tWr9f7772vu3LlasWKF3XavvvqqmjRpop07dyoiIkJjxoxRbGxsjvU4d+6c2rVrp0qVKmnjxo3atGmTKlWqpE6dOunChQuF0yAAAAAAAAAAAABAGVESg3lxdRZjjCnpSpQ2aWlp8vDwUGpqqtzd3e3WnT9/XkeOHFFgYKBcXV3zXXZGRtaL/spAezaLRfL1lY4cKZop5VeuXKkhQ4bor7/+UvPmzdWmTRs99thjatKkSY75P/roIz311FM6deqUpKyR7Y8//rgOHTqkOnXqSJKGDRum999/XydOnND/Y+/O4+uq6/zxvy5JF6tQZC9NaRBkqeCgOCo4qa1sFnDKXCqb4gLoMDjYwowi7uAolt+IrQsoKuAGoiUyyipqCwFcERxHcEFa26bhC4JSBClten9/XNMmaUqbkJt7kj6fj8d93Hs+55N73rnLOeee92d53vOelyR57Wtfm+bm5nzuc59LUu3Zvu++++bGG29c99wnnHBCVq5cmRtuuOHv/3sp3/72t3PMMcfksssuy4UXXpj77rsvpVIpSfL0009n2223zbXXXpvDDz+8R5zP9n0BAAAAAACAourqzNs7s/v3NFoWLEjK5aGPa6R5pjxxX/RsH2JtbRtPtCfVL8iyZdV6tXDsscdmxYoV+c53vpMjjjgiixYtyktf+tJcccUVSZKFCxfmsMMOy8SJE7P11lvnTW96Ux555JE88cQT655j3Lhx6xLtSbLzzjunubl5XaK9q+yhhx7qse2DDjpog+X77ruvzzjvuuuu3H///dl6663X9cjfbrvt8tRTT+UPf/jDs30ZAAAAAAAAYFjo7Exmz94w0Z6sL5szx5Dy9SDZPsQ6Oga33kCMHTs2hx12WD74wQ/mzjvvzFve8pZ86EMfyh//+McceeSR2W+//XLNNdfkrrvuymc/+9kkyerVq9f9/ahRo3o8X6lU6rNs7dq1m4ylq9d6b2vXrs2BBx6Ye+65p8ftd7/7XU466aT+/ssAAAAAAAAwLNW7My8b11jvALY0EyYMbr3BMGXKlFx77bX5+c9/njVr1uQTn/hEttqq2g7jm9/85qBt58c//vEGy/vss0+fdV/60pfm6quvzk477bRZQzQAAAAAAADASNS9k25p1JrsdvbNSZKlFx2RyurGPusxNPRsH2ItLdU52TfSoTulUjJpUrXeYHvkkUfymte8Jl/72tfyv//7v1m8eHG+9a1v5cILL8zMmTOzxx57ZM2aNfn0pz+dBx54IF/96lfXzbk+GO64445ceOGF+d3vfpfPfvaz+da3vpXZs2f3WfcNb3hDdthhh8ycOTNtbW1ZvHhxbr311syePTvLn6npDgAAAAAAAIwgRezMS5Vk+xBraEjmz68+7p1w71qeN69ab7A973nPyyte8Yp88pOfzNSpU7PffvvlAx/4QN72trflM5/5TA444IBcdNFFmTt3bvbbb798/etfzwUXXDBo2/+P//iP3HXXXXnJS16Sj3zkI/nEJz6RI444os+648aNy2233Zbddtst5XI5++67b0455ZT87W9/09MdAAAAAACALUY9O/PyzEqVSqVS7yCKZuXKlRk/fnwee+yxDRK7Tz31VBYvXpzdd989Y8eOHfA2WluT2bN7zq8waVI10V4uD/hpC6u5uTlz5szJnDlzavL8g/W+AAAAAAAAQNG0tiazZlWHkZ901vph5LOmOoz8ggUjM8c41J4pT9wXPdvrpFxOlixJFi5Mrryyer94sS8BAAAAAAAA0FO5XE2o79prqPimJon2emqsdwBbsoaGZNq0ekcBAAAAAAAAFF25nBw2I9n/vOryjTckh06vzfTUbB7JdobEkiVL6h0CAAAAAAAADGvdE+stUyXa680w8gAAAAAAAADQT5LtAAAAAAAAANBPku0AAAAAAAAA0E+S7QAAAAAAAADQT5LtAAAAAAAAANBPku0AAAAAAAAA0E+S7QAAAAAAAADQT5LtW5gHH3wwZ555Zl7wghdkzJgxmTRpUl73utflBz/4Qb1DAwAAAAAAABg2GusdwBatszNpa0s6OpIJE5KWlqShoWabW7JkSV71qldl2223zYUXXpgXv/jFWb16dW6++ea8Tr2bXwAAfGZJREFU4x3vyG9+85uabRsAAAAAAABgJNGzvV5aW5Pm5mT69OSkk6r3zc3V8ho544wzUiqV8tOf/jSzZs3KXnvtlRe96EU5++yz8+Mf/zhJ8thjj+Xtb397dtppp2yzzTZ5zWtek1/+8pfrnuPDH/5wDjjggHz1q19Nc3Nzxo8fnxNOOCGPP/74ujoLFizI/vvvn+c85znZfvvtc+ihh+aJJ55IkkybNi1z5szpEdcxxxyTt7zlLeuWL7744rzwhS/M2LFjs/POO2fWrFk1e00AAAAAAACgu87OZNGi5KqrqvednfWOiKKSbK+H1tZk1qxk+fKe5e3t1fIaJNwfffTR3HTTTXnHO96R5z73uRus33bbbVOpVHLUUUflwQcfzA033JC77rorL33pS3PIIYfk0UcfXVf3D3/4Q6699tpcd911ue6663Lrrbfm4x//eJKko6MjJ554Yk455ZTcd999WbRoUcrlciqVymbF+fOf/zzvfOc7c/755+e3v/1tbrrppkydOnVwXgQAAAAAAAB4BnXoL8swZhj5odbZmcyenfSVfK5UklIpmTMnmTlzUIeUv//++1OpVLLPPvtstM7ChQvzq1/9Kg899FDGjBmTJPnv//7vXHvttVmwYEHe/va3J0nWrl2bK664IltvvXWS5OSTT84PfvCDfPSjH01HR0fWrFmTcrmcyZMnJ0n233//zY5z6dKlee5zn5ujjz46W2+9dSZPnpyXvOQlA/23AQAAAAAAYLN09Zftncbr6i+7YEFSLtcnNopJz/ah1ta2YY/27iqVZNmyar1B1NWzvFQqbbTOXXfdlb/+9a/Zfvvt87znPW/dbfHixfnDH/6wrl5zc/O6RHuSTJgwIQ899FCS5B/+4R9yyCGHZP/998/rX//6fOELX8if//znzY7zsMMOy+TJk/OCF7wgJ598cr7+9a/nySef7O+/CwAAAAAAAJttU/1lk2p/WUPK051k+1Dr6BjcepvphS98YUqlUu67776N1lm7dm0mTJiQe+65p8ftt7/9bd71rnetqzdq1Kgef1cqlbJ27dokSUNDQ2655ZbceOONmTJlSj796U9n7733zuLFi5MkW2211QZDyq9evXrd46233jq/+MUvctVVV2XChAn54Ac/mH/4h3/IX/7yl2f7EgAAAAAAAECf6tRflmFOsn2oTZgwuPU203bbbZcjjjgin/3sZ/PEE09ssP4vf/lLXvrSl+bBBx9MY2Nj9txzzx63HXbYYbO3VSqV8qpXvSrnnXde7r777owePTrf/va3kyQ77rhjOro1JOjs7Mz//d//9fj7xsbGHHroobnwwgvzv//7v1myZEl++MMfDvA/BwAAAAAAgGfWvR9sadSaTD7n+kw+5/qURq3ZaD0wZ/tQa2lJmpqqkzv0NQ5FqVRd39Iy6Ju++OKLc/DBB+flL395zj///Lz4xS/OmjVrcsstt+SSSy7Jvffem4MOOijHHHNM5s6dm7333jsrVqzIDTfckGOOOSYve9nLNrmNn/zkJ/nBD36Qww8/PDvttFN+8pOf5OGHH86+++6bJHnNa16Ts88+O9dff3322GOPfPKTn+zRa/26667LAw88kKlTp+b5z39+brjhhqxduzZ77733oL8eAAAAAAAAkNStvyzDnGT7UGtoSObPT2bNqibWuyfcu+ZTnzevWm+Q7b777vnFL36Rj370o/mP//iPdHR0ZMcdd8yBBx6YSy65JKVSKTfccEPe97735ZRTTsnDDz+cXXbZJVOnTs3OO++8WdvYZpttctttt2XevHlZuXJlJk+enE984hOZMWNGkuSUU07JL3/5y7zpTW9KY2NjzjrrrEyfPn3d32+77bZpbW3Nhz/84Tz11FN54QtfmKuuuiovetGLBv31AAAAAAAAgKRnf9m+1LC/LMNYqdJ7Am2ycuXKjB8/Po899li22WabHuueeuqpLF68OLvvvnvGjh078I20tiazZ/ec/GHSpGqivVwe+PNuoQbtfQEAAAAAAGCL1Nr69/6yo9Zk0lk3J0mWXnREsqbaf3nBgvqn8Z58ek2mfLAa273nH5Fxo/WtHkzPlCfuiznb66VcTpYsSRYuTK68snq/eHH9v6EAAAAAAACwBSqXqwn1XXsNFd/UVIxEO8WjqUM9NTQk06bVOwoAAAAAAAAg1YT6YTOS/c+rLt94Q3Lo9JrMAM0IoGc7AAAAAAAAwN91T6y3TJVoZ+Mk2wEAAAAAAACgnyTbAQAAAAAAAKCfJNsHaO3atfUOgW4qlUq9QwAAAAAAAAC2II31DmC4GT16dLbaaqusWLEiO+64Y0aPHp1SqVTvsLZolUolDz/8cEqlUkaNGlXvcAAAAAAAAIAtgGR7P2211VbZfffd09HRkRUrVtQ7HP6uVCqlqakpDQ0N9Q4FAAAAAAAA2AJItg/A6NGjs9tuu2XNmjXp7OysdzgkGTVqlEQ7AAAAAAAAMGQk2weoa8hyw5YDAAAAAAAAbHm2qncAAAAAAAAAADDc6NkOAAAAAAAADKnOzqStLenoSCZMSFpaEjMGM9xItgMAAAAAAABDprU1mT07Wb58fVlTUzJ/flIu1y8u6C/DyAMAAAAAAABDorU1mTWrZ6I9Sdrbq+WtrfWJCwZCsh0AAAAAAACouc7Oao/2SmXDdV1lc+ZU68FwINkOAAAAAAAA1Fxb24Y92rurVJJly6r1YDgwZzsAAAAAAABQcx0d6x+XRq3JbmffnCRZetERqaxu7LMeFJme7QAAAAAAAEDNTZgwuPWg3iTbAQAAAAAAgJpraUmampJSqe/1pVIyaVK1HgwHku0AAAAAAABAzTU0JPPnVx/3Trh3Lc+bV60Hw4FkOwAAAAAAADAkyuVkwYJk115DxTc1VcvL5frEBQMh2Q4AAAAAAAAMmXI5ufe+9cs33pAsXizRzvAj2Q4AAAAAAAAMqe5DxbdMNXQ8w5NkOwAAAAAAAAD0k2Q7AAAAAAAAAPSTZDsAAAAAAAAA9JNkOwAAAAAAAAD0U2O9AwAAAAAAAAAGX2dn0taWdHQkEyYkLS1JQ0O9o4KRQ7IdAAAAAAAARpjW1mT27GT58vVlTU3J/PlJuVy/uGAkMYw8AAAAAAAAjCCtrcmsWT0T7UnS3l4tb22tT1ww0ki2AwAAAAAAwAjR2Vnt0V6pbLiuq2zOnGo94NkZFsn2iy++OLvvvnvGjh2bAw88MG1tbRut+5a3vCWlUmmD24te9KIhjBgAAAAAAACGXlvbhj3au6tUkmXLqvWAZ6fwyfarr746c+bMyfve977cfffdaWlpyYwZM7J06dI+68+fPz8dHR3rbsuWLct2222X17/+9UMcOQAAAAAAAAytjo71j0uj1mTyOddn8jnXpzRqzUbrAQNT+GT7RRddlFNPPTWnnXZa9t1338ybNy+TJk3KJZdc0mf98ePHZ5dddll3+/nPf54///nPeetb37rRbaxatSorV67scQMAAAAAAIDhZsKEwa0HbFyhk+1PP/107rrrrhx++OE9yg8//PDceeedm/UcX/rSl3LooYdm8uTJG61zwQUXZPz48etukyZNelZxAwAAAAAAQD20tCRNTUmp1Pf6UimZNKlaD3h2Cp1s/9Of/pTOzs7svPPOPcp33nnnPPjgg5v8+46Ojtx444057bTTnrHeueeem8cee2zdbdmyZc8qbgAAAAAAAKiHhoZk/vzq494J967lefOq9YBnp9DJ9i6lXnuCSqWyQVlfrrjiimy77bY55phjnrHemDFjss022/S4AQAAAAAAwHBULicLFiS79hoqvqmpWl4u1ycuGGkKnWzfYYcd0tDQsEEv9oceemiD3u69VSqVXHbZZTn55JMzevToWoYJAAAAAAAAhVIuJ/fet375xhuSxYsl2mEwFTrZPnr06Bx44IG55ZZbepTfcsstOfjgg5/xb2+99dbcf//9OfXUU2sZIgAAAAAAABRS96HiW6YaOh4GW2O9A9iUs88+OyeffHJe9rKX5aCDDsqll16apUuX5vTTT09SnW+9vb09X/nKV3r83Ze+9KW84hWvyH777VePsAEAAAAAAAAYwQqfbD/++OPzyCOP5Pzzz09HR0f222+/3HDDDZk8eXKSpKOjI0uXLu3xN4899liuueaazJ8/vx4hAwAAAAAAADDCFT7ZniRnnHFGzjjjjD7XXXHFFRuUjR8/Pk8++WSNowIAAAAAAABgS1XoOdsBAAAAAAAAoIgk2wEAAAAAAACgnyTbAQAAAAAAAKCfJNsBAAAAAAAAoJ8k2wEAAAAAAACgnyTbAQAAAAAAAKCfJNsBAAAAAAAAoJ8k2wEAAAAAAACgnyTbAQAAAAAAAKCfJNsBAAAAAAAAoJ8k2wEAAAAAAACgnyTbAQAAAAAAAKCfJNsBAAAAAAAAoJ8a6x0AAAAAAAAADFednUlbW9LRkUyYkLS0JA0N9Y4KGAqS7QAAAAAAADAAra3J7NnJ8uXry5qakvnzk3K5fnEBQ8Mw8gAAAAAAANBPra3JrFk9E+1J0t5eLW9trU9cwNCRbAcAAAAAAIB+6Oys9mivVDZc11U2Z061HjBySbYDAAAAAABAP7S1bdijvbtKJVm2rFoPGLnM2Q4AAAAAAAD90NGx/nFp1JrsdvbNSZKlFx2RyurGPusBI4+e7QAAAAAAANAPEyYMbj1geJJsBwAAAAAAgH5oaUmampJSqe/1pVIyaVK1HjBySbYDAAAAAABAPzQ0JPPnVx/3Trh3Lc+bV60HjFyS7QAAAAAAANBP5XKyYEGya6+h4puaquXlcn3iAoaOZDsAAAAAAAAMQLmc3Hvf+uUbb0gWL5Zohy2FZDsAAAAAAAAMUPeh4lumGjoetiSS7QAAAAAAAADQT5LtAAAAAAAAANBPku0AAAAAAAAA0E+S7QAAAAAAAADQT5LtAAAAAAAAANBPjfUOAAAAAAAAAJ5JZ2fS1pZ0dCQTJiQtLUlDQ72jArZ0ku0AAAAAAAAUVmtrMnt2snz5+rKmpmT+/KRcrl9cAIaRBwAAAAAAoJBaW5NZs3om2pOkvb1a3tpan7gAEsl2AAAAAAAACqizs9qjvVLZcF1X2Zw51XoA9SDZDgAAAAAAQOG0tW3Yo727SiVZtqxaD6AezNkOAAAAAABA4XR0rH9cGrUmu519c5Jk6UVHpLK6sc96AENJz3YAAAAAAAAKZ8KEwa0HMNgk2wEAAAAAACiclpakqSkplfpeXyolkyZV6wHUg2Q7AAAAAAAAhdPQkMyfX33cO+HetTxvXrUeQD1ItgMAAAAAAFBI5XKyYEGya6+h4puaquXlcn3iAkgk2wEAAAAAACiwcjm59771yzfekCxeLNEO1J9kOwAAAAAAAIXWfaj4lqmGjgeKQbIdAAAAAAAAAPpJsh0AAAAAAAAA+kmyHQAAAAAAAAD6SbIdAAAAAAAAAPpJsh0AAAAAAAAA+kmyHQAAAAAAAAD6SbIdAAAAAAAAAPpJsh0AAAAAAAAA+kmyHQAAAAAAAAD6SbIdAAAAAAAAAPpJsh0AAAAAAAAA+kmyHQAAAAAAAAD6SbIdAAAAAAAAAPpJsh0AAAAAAAAA+kmyHQAAAAAAAAD6SbIdAAAAAAAAAPpJsh0AAAAAAAAA+kmyHQAAAAAAAAD6SbIdAAAAAAAAAPpJsh0AAAAAAAAA+kmyHQAAAAAAAAD6SbIdAAAAAAAAAPpJsh0AAAAAAAAA+mlYJNsvvvji7L777hk7dmwOPPDAtLW1PWP9VatW5X3ve18mT56cMWPGZI899shll102RNECAAAAAAAAMNI11juATbn66qszZ86cXHzxxXnVq16Vz3/+85kxY0buvffe7Lbbbn3+zXHHHZf/9//+X770pS9lzz33zEMPPZQ1a9YMceQAAAAAAAAAjFSFT7ZfdNFFOfXUU3PaaaclSebNm5ebb745l1xySS644IIN6t9000259dZb88ADD2S77bZLkjQ3Nw9lyAAAAAAAAACMcIUeRv7pp5/OXXfdlcMPP7xH+eGHH54777yzz7/5zne+k5e97GW58MILM3HixOy11175z//8z/ztb3/b6HZWrVqVlStX9rgBAAAAAAAAwMYUumf7n/70p3R2dmbnnXfuUb7zzjvnwQcf7PNvHnjggdx+++0ZO3Zsvv3tb+dPf/pTzjjjjDz66KMbnbf9ggsuyHnnnTfo8QMAAAAAAAAwMhW6Z3uXUqnUY7lSqWxQ1mXt2rUplUr5+te/npe//OU58sgjc9FFF+WKK67YaO/2c889N4899ti627Jlywb9fwAAAAAAAABg5Ch0z/YddtghDQ0NG/Rif+ihhzbo7d5lwoQJmThxYsaPH7+ubN99902lUsny5cvzwhe+cIO/GTNmTMaMGTO4wQMAAAAAAAAwYhW6Z/vo0aNz4IEH5pZbbulRfsstt+Tggw/u829e9apXZcWKFfnrX/+6rux3v/tdttpqqzQ1NdU0XgAAAAAAgOGqszNZtCi56qrqfWdnvSMCKLZCJ9uT5Oyzz84Xv/jFXHbZZbnvvvty1llnZenSpTn99NOTVIeAf9Ob3rSu/kknnZTtt98+b33rW3Pvvffmtttuy7ve9a6ccsopec5znlOvfwMAAAAAAKCwCe3W1qS5OZk+PTnppOp9c3O1HIC+FXoY+SQ5/vjj88gjj+T8889PR0dH9ttvv9xwww2ZPHlykqSjoyNLly5dV/95z3tebrnllpx55pl52ctelu233z7HHXdc/uu//qte/wIAAAAAAEBaW5PZs5Ply9eXNTUl8+cn5XJ945o1K6lUepa3t1fLFyyob3wARVX4ZHuSnHHGGTnjjDP6XHfFFVdsULbPPvtsMPQ8AAAAAABAvRQ1od3ZWW0A0DuupFpWKiVz5iQzZyYNDUMeHkChFX4YeQAAAAAAgOFsUwntpJrQrseQ8m1tPXva91apJMuWVesB0JNkOwAAAAAAMKIUbV70Iie0OzrWPy6NWpPJ51yfyedcn9KoNRutB0CVZDsAAAAAADBitLYmzc3J9OnJSSdV75ubq+X1UuSE9oQJ6x9vlfWtEv4pbT2Wu9cDoEqyHQAAAAAAGBG65kXv3Yu8a170eiXcNzdRXY+EdktL0tSUlNOaezNlXflNmZElaU45rZk0qVoPgJ4k2wEAAAAAgGGvyPOidyW0S6W+15dKqVtCu6Eh+daJrflWZmXXtPdYNzHt+VZm5ZsntKahYehjAyg6yXYAAAAAAGDYK/K86A0Nyfz51ce9E+5dy/PmpT4J7c7OvPKq2SmlskHSaKtUUkryym/Mqf/E9wAFJNkOAAAAAAAMe0WeFz1JyuVkwYJk115DxTc1VcvL5frE1dVKYSOd7lNKHVspABRcY70DAAAAAAAAeLaKPC96l3I5OWxGsv951eUbb0gOnV6nHu1durU+GLd6VZbMPXqT9QCo0rMdAAAAAAAY9oo8L3p33RPrLVPrnGhPhkcrBYCCkmwHAAAAAAD6rbMzWbQoueqq6n29p/Qu9LzoRTZcWikAFJBkOwAAAAAAFFTREtpdWluT5uZk+vTkpJOq983N1fJ6Kuy86EWmlQLAgEm2AwAAAABAARU1od3amsyalSxf3rO8vb1aXu/4yuXk3vvWL994Q7J4sUT7M+pqpTBxYs9yrRQAnpFkOwAAAAAAFExRE9qdncns2UmlsuG6rrI5c+rfA79w86IPB+VysmRJsnBhcuWV1XutFACeUWO9AwAAAAAAANbbVEK7VKomtGfOHPokclvbhg0AuqtUkmXLqvWmTRuysBgsDQ3eOIB+0LMdAAAAAAAKpD8J7aHW0bH+cWnUmkw+5/pMPuf6lEat2Wg9ABip9GwHAAAAAIAC6Z3Q3u3sm5MkSy86IpXVjX3WGyoTJgxuPQAYzvRsBwAAAACAAilyQrulJWlqqg5l35dSKZk0qVoPAEY6yXYAAAAAALZonZ3JokXJVVdV7zs76xtPkRPaDQ3J/Pnr4+gdV5LMmzf0c8kDQD1ItgMAAAAAsMVqbU2am5Pp05OTTqreNzdXy+ul6AntcjlZsCDZtVfP+qamanm5XJ+4AGCoSbYDAAAAALBFam1NZs1Kli/vWd7eXi2vZ8K96Antcjm59771yzfekCxeXP+4AGAoSbYDAAAAALDF6exMZs9OKpUN13WVzZlT3yHli57Q7t6zvmWqoeMB2PJItgMAAAAAsMVpa9uwR3t3lUqybFm1Xj1JaANAcUm2AwAAAACwxenoWP+4NGpNJp9zfSafc31Ko9ZstB7AsNN9eI7b2uo7XMdw4nVjM0m2AwAAAACwxZkwYdN1+lMPoHBaW5N9p6xfPnJG0txcLWfjvG70g2Q7AAAAAABbnJaWpKkpKZX6Xl8qJZMmVesBDDutrcmsWcmK9p7l7e3Vconjvnnd6CfJdgAAAAAAtjgNDcn8+dXHvRPuXcvz5pkjHRiGOjuT2bOTSmXDdV1lc+YYGr03rxsDINkOAAAAAMAWqVxOFixIdu01VHxTU7W8XK5PXADPSltbsnz5xtdXKsmyZdV6rOd1YwAaa/XETzzxRD7+8Y/nBz/4QR566KGsXbu2x/oHHnigVpsGAAAAAIDNUi4nh81I9j+vunzjDcmh0/VoB4axjo51D8etXpUlc4/eZD3idWNAapZsP+2003Lrrbfm5JNPzoQJE1La2MQ3AAAAAABQR90T6y1TJdqBYW7ChE3X6U+9LYXXjQGoWbL9xhtvzPXXX59XvepVtdoEAAAAAAAA0F1LS3U+jPb2vucfL5Wq61tahj62IvO6MQA1m7P9+c9/frbbbrtaPT0AAAAAAADQW0NDMn9+9XHvkae7lufNM4xHb143BqBmyfaPfOQj+eAHP5gnn3yyVpsAAAAAAAAAeiuXkwULkokTe5Y3NVXLy+X6xFV0Xjf6qWbDyH/iE5/IH/7wh+y8885pbm7OqFGjeqz/xS9+UatNAwAAAAAAwJatXE5mzkza2pKOjupc4y0temZviteNfqhZsv2YY46p1VMDAAAAAAAAm9LQkEybVu8ohh+vG5upZsn2D33oQ7V6agAAAAAAAACoq5ol27vcddddue+++1IqlTJlypS85CUvqfUmAQAAAAAAAKCmapZsf+ihh3LCCSdk0aJF2XbbbVOpVPLYY49l+vTp+cY3vpEdd9yxVpsGAAAAAAAAgJraqlZPfOaZZ2blypX59a9/nUcffTR//vOf83//939ZuXJl3vnOd9ZqswAAAAAAFFBnZ7JoUXLVVdX7zs56R9RN92BuaytYcABAUdUs2X7TTTflkksuyb777ruubMqUKfnsZz+bG2+8sVabBQAAAACgYFpbk+bmZPr05KSTqvfNzdXyumttTfadsn75yBkFCg4AKLKaJdvXrl2bUaNGbVA+atSorF27tlabBQAAAACgQFpbk1mzkuXLe5a3t1fL65rT7gpuRXvP8kIEBwAUXc2S7a95zWsye/bsrFixYl1Ze3t7zjrrrBxyyCG12iwAAAAAAAXR2ZnMnp1UKhuu6yqbM6dOo7YXOjgAYDioWbL9M5/5TB5//PE0Nzdnjz32yJ577pndd989jz/+eD796U/XarMAAAAAABREW9uGPdq7q1SSZcuq9YZcoYMDhpXujXJua9NIB7YgjbV64kmTJuUXv/hFbrnllvzmN79JpVLJlClTcuihh9ZqkwAAAAAAtdfZWU3AdnQkEyYkLS1JQ0O9oyqkjo71j0uj1mS3s29Okiy96IhUVjf2WW/IdNvouNWrsmTu0ZusB7CB1tbk7HclJ3yqunzkjGTnHZP585Nyub6xATVXs2R7l8MOOyyHHXZYrTcDAAAAAFB7ra3Voce794huaipMUqVo7QAmTBjceoOq0MEBw0JrazJrVtI4umd5e3u1fMGCQhwbgNoZ1GT7pz71qbz97W/P2LFj86lPfeoZ677zne8czE0DAAAAANRWV1Kl9xzfBUmqFLEdQEtLNYb29r7Xl0rV9S0tQxtXkp7B9TVve12DAwqvs7O60+1r/1GpVPchc+YkM2ca/QRGsEFNtn/yk5/MG97whowdOzaf/OQnN1qvVCpJtgMAAAAAw0fBkypFbQfQ0FBN9s+alTRk/RzG/5S23JmpWZuGzJtXpzxU9+BKpZ4vXqlUva9bcEDhtbX1bN3UW6WSLFtWrTdt2pCFBQytQU22L168uM/HAAAAAADDWoGTKgVvB5ByObnzP1uz46fflUNSHRH1pszIXxp2zNKz5+eV9RxiuVyutkToa0iAefMM/wxsXEfHuofjVq/KkrlHb7IeMPJsVasnPv/88/Pkk09uUP63v/0t559/fq02CwAAAABsrs7OZNGi5KqrqvednZv6iy1Xt2TJk6PGpPmc69J8znV5ctSYjdYbKv1pB1AXra155X/Pyi6dPceSn7C2Pa/871nVbvn1VC4nS5YkCxcmV15ZvV+8WKIdeGYTJgxuPWBYqlmy/bzzzstf//rXDcqffPLJnHfeebXaLAAAAAAUS1ET2q2tSXNzMn16ctJJ1fvm5vonPouqwEmV7vn90qg1mXzO9Zl8zvUpjVqz0XpDplu3+1KvVaWurvhz5tT/e9HQUB2R4MQTq/eGjgc2paWlOgpGqffe7e9KpWTSpGo9YMSqWbK9Uqmk1McO5pe//GW22267Wm0WAAAAAIqjqAntrgm+e3eH7prgu97xFVFLS57cvilrN0gZV61NKU9uX5+kSoHbAQyDbvcAA9TQkMyfX33cOx/WtTxvnsY7MMINerL9+c9/frbbbruUSqXstdde2W677dbdxo8fn8MOOyzHHXfcYG8WAAAAAIqlqAntTU3wnRSjp3HBdKYhs1NNqvROuHctz8m8dGbokyqF7lzZx5zGS+YenXGrV220HsCwUS4nCxYkEyf2LG9qqpabjgJGvMbBfsJ58+alUqnklFNOyXnnnZfx48evWzd69Og0NzfnoIMOGuzNAgAAAEBxbCqhXSpVE9ozZw59j7f+9DSeNm3Iwiq6trbki4+U80gW5ON5V491y9OUOZmXbz9Szkl1eNm6OlfOmlXAzpWF7nbPs9a9Uc5tbcn0qXrxsuUpl6vH87a2asOhCROqrZt8F2CLMOjJ9je/+c1Zs6Y6F9Chhx6apqamwd4EAAAAABRbkRPa3XoQPzlqTKacfU2S5N6Lju3Z21hP4x66Xo5vp5z/WT0zLXPbMiEdOTI3pS0tWfv3Hu31etm6OlfOPrtneVNTNdFet86VXd3u29v7bnxSKlXXm9N4+GltTc5+V3LCp6rLR85Idt6x2vJDb162NA0NGqjBFqomc7Y3NjbmjDPOSKehpgAAAADYEvVKaDefc12az7kuT44as9F6Q0ZP4wHp/nKsTUNuzbR8Iyfm1kxbl2jvXW+olcvJvfetX77xhmTx4jrnPc1pPDJ1TZOxor1neb2nyQCAIVaTZHuSvOIVr8jdd99dq6cHAAAAgOIqckK70BN8F9dwedm656xbijKitzmNR5ZNTZORVKfJ0BkPgC3AoA8j3+WMM87If/zHf2T58uU58MAD89znPrfH+he/+MW12jQAAAAA1Ff3obP7Us+hsws9wfd6nZ3Fmv6298vWPc9YoJetuMxpPHIUeZoMYHjp3ijntrZkelFaicHmq1my/fjjj0+SvPOd71xXViqVUqlUUiqVDDEPAAAAwMhV9IR2V0/js9/Vs7zuE3xXtbZWO852z+c1NdV/Kuh186L3EVsBXrbiM6fxyNBt+otxq1dlydyjN1kPYAOtrdXzkBM+VV0+ckay8471P9hDP9Us2b548eJaPTUAAADAyFW07rwMXMET2imXkxlHJed9v7p8w42F6FHWNRV07xGqu6aCrveo4zpos8Ur8jQZwPDQdbBvHN2zvCgHe+iHmiXbJ0+eXKunBgAAABiZitqdl4EraEK7S2fWx9GWlhyahtQzsk1NBV0qVaeCnjmz/kPK66DNFqv7NBl9fVnrOU0GUHzD5WAPm2mrWj75H/7wh5x55pk59NBDc9hhh+Wd73xn/vCHP9RykwAAAADDU1cPn97z4Hb18GltrU9cPHvdLxRPLU4X6NbWZMq+65dnHJk0N9f3o9afqaCBOumaJiMp5jQZQLE52DPC1CzZfvPNN2fKlCn56U9/mhe/+MXZb7/98pOf/CQvetGLcsstt9RqswAAAADDz6Z6+CTVHj6dnUMaFoOj+9vWdlsx3sauth3tK3qW17ttR/cpnkuj1mTyOddn8jnXpzRqzUbr0Uv3D9htbcX4wDHydE2TMXFiz/KmJsM/A8+s20F83OpVWTL36CyZe3TGrV610XpQZDVLtr/nPe/JWWedlZ/85Ce56KKL8slPfjI/+clPMmfOnJxzzjm12iwAAADA8KOHz4hVxN7jRW7bYSroZ6m1Ndl3yvrlI2fU/wPHyFUuJ0uWJAsXJldeWb1fvFiiHXhmDvaMMDVLtt9333059dRTNyg/5ZRTcu+999ZqswAAAADDT7eeO0+OGpPmc65L8znX5clRYzZaj+Irau/xIrft6JoKuvfI1F1KpWTSJFNB96nrA7eivWd5vT9wjGwNDcm0acmJJ1bvDR0PbIqDPSNMzZLtO+64Y+65554Nyu+5557stNNOtdosAAAAwPCjh8+IU+Te493bbFRWN+aPc4/KH+celcrqxo3WGyqmgh6gIn/gAKA7B3tGmJol29/2trfl7W9/e+bOnZu2trbcfvvt+fjHP55//dd/zdvf/vZabRYAAABg+NHDZ8Qpcu/xorft6JoKetde2zcV9DMo8gcOAHrrOthPnNiz3MGeYahx01UG5gMf+EC23nrrfOITn8i5556bJNl1113z4Q9/OO985ztrtVkAAACA4aerh8+sWXr4DFBnZzWP2NFRTRK3tNT35eqr9/im6g2VrrYd7e19d4Qularr69m2o1xODpuR7H9edfnGG5JDp/sKbFS3D9K41auyZO7Rm6wHAHVVLiczZxbrBA4GoGY920ulUs4666wsX748jz32WB577LEsX748s2fPTmljrbQ34uKLL87uu++esWPH5sADD0zbM7TAXLRoUUql0ga33/zmN8/2XwIAAACona4ePhN27Vmuh88mtbYmL5jcmQ9PX5TvnHRVPjx9UV4wubOuU1QXuff4cBm9tfv2W6bWP55CK/IHDgA2pqEhmTYtOfHE6r2DPcNQzZLtXR566KHcc889+eUvf5mHH364339/9dVXZ86cOXnf+96Xu+++Oy0tLZkxY0aWLl36jH/329/+Nh0dHetuL3zhCwf6LwAAAAAMjXI5ue/e9cs33JgsXlycRHtnZ7JoUXLVVdX7Asz/3NqafP3Y1tze3pxFmZ6rclIWZXpub2/O149trVvCvegzAxi9dYQp+gcOAGCEqlmyfeXKlTn55JOz66675tWvfnWmTp2aXXfdNW984xvz2GOPbfbzXHTRRTn11FNz2mmnZd999828efMyadKkXHLJJc/4dzvttFN22WWXdbcGrWEAAACA4aD7NYypBRpKs7U1aW5Opk9PTjqpet/cnHp2H+/sTG58e2u+lVmZmJ7zVU9Me76VWbnp7a11aRMwHHqPl8vJkiXJwoXJlVdW74vUtoN+GA4fOACAEahmyfbTTjstP/nJT3L99dfnL3/5Sx577LFcd911+fnPf563ve1tm/UcTz/9dO66664cfvjhPcoPP/zw3Hnnnc/4ty95yUsyYcKEHHLIIVm4cOEz1l21alVWrlzZ4wYAAADA37W2VueTX94zoZ329mp5nRLubYs688FHZiepbHCRa6tUJyN//yNz0raoPj3wh0PvcaO3jiDD4QMHADDCNNbqia+//vrcfPPN+ad/+qd1ZUcccUS+8IUv5LWvfe1mPcef/vSndHZ2Zuedd+5RvvPOO+fBBx/s828mTJiQSy+9NAceeGBWrVqVr371qznkkEOyaNGiTJ06tc+/ueCCC3Leeedt5n8GAAAAsAXp7Exmz04qlQ3XVSrVXrNz5iQzZw55prZzUVsm/b1H+5OjxmTK2dckSe696NiMW70qW6WS3bIsv1/UlhwybUhj61IuV1+atrako6M6ZXZLgQYsYITxgQMAGFI1S7Zvv/32GT9+/Abl48ePz/Of//x+PVep19BHlUplg7Iue++9d/bee+91ywcddFCWLVuW//7v/95osv3cc8/N2WefvW555cqVmTRpUr9iBAAAABiR2to27NHeXaWSLFtWrTdt2pCFlSQT0rHu8bjVq7Jk7tGbrFcPXb3HYUj4wAEADJmaDSP//ve/P2effXY6Otb/mHnwwQfzrne9Kx/4wAc26zl22GGHNDQ0bNCL/aGHHtqgt/szeeUrX5nf//73G10/ZsyYbLPNNj1uAAAAAKTaO/bvnhw1Js3nXJfmc67Lk6PGbLTeUNl72oRBrQcAANAfNevZfskll+T+++/P5MmTs9tuuyVJli5dmjFjxuThhx/O5z//+XV1f/GLX/T5HKNHj86BBx6YW265Jf/yL/+yrvyWW27JzJkzNzuWu+++OxMm+FEFAAAA0G+be02lDtdeGqa15MntmzL2kfZ1c7R3tzalPLV9U8ZNaxny2AAAoCY6O9c/vq0tmT7VlDF1VLNk+zHHHDMoz3P22Wfn5JNPzste9rIcdNBBufTSS7N06dKcfvrpSapDwLe3t+crX/lKkmTevHlpbm7Oi170ojz99NP52te+lmuuuSbXXHPNoMQDAAAAsCXpPLgl/6+hKbt0tve5fm1K6Whoyi4Ht2TIL/E1NGTcpfNTOXZW1qbUI+G+NqWUkoy7dJ6LjwAAjAytrcnZ70pO+FR1+cgZyc47JvPnJ+VyfWPbQtUs2f6hD31oUJ7n+OOPzyOPPJLzzz8/HR0d2W+//XLDDTdk8uTJSZKOjo4sXbp0Xf2nn346//mf/5n29vY85znPyYte9KJcf/31OfLIIwclHgAAAIAtSdudDflU5/wsSDWh3V3X8pmd8/LOOxvqM010uZzSNQuS2bN7zC1fampKaf48Fx0BABgZWluTWbOSxtE9y9vbq+ULFjj3rYOaJdu73HXXXbnvvvtSKpUyZcqUvOQlL+n3c5xxxhk544wz+lx3xRVX9Fh+97vfnXe/+90DCRUAAACAXjo6km+nnFlZkPmrZ2fJ3KPXrVuaSZmTefl2ynn90E/Zvl65nNLMmUlbWzXgCRNSamnRox0AgJGhs7PauLSy4dRJqVSSUimZMyeZOdM58BCrWbL9oYceygknnJBFixZl2223TaVSyWOPPZbp06fnG9/4RnbcccdabRoAAACAQdI1Ffu3U87/ZGZa0pYJ6UhHJqQtLVn798Hj6zBle08NDalP13oAAKixtrYeozhtoFJJli2r1nNOPKS2qtUTn3nmmVm5cmV+/etf59FHH82f//zn/N///V9WrlyZd77znbXaLAAAAACDqKUlaWqqdpZZm4bcmmn5Rk7MrZmWtWlIqZRMmlStBwAA1EDH+mGkxq1elSVzj86SuUdn3OpVG63H0KhZsv2mm27KJZdckn333Xdd2ZQpU/LZz342N954Y602CwAAAMAgamhI5s+vPi71nLJ93fK8eUarBACAmtncYaTqPtzUlqdmyfa1a9dm1KhRG5SPGjUqa9eurdVmAQAAABhk5XKyYEEycWLP8qamanm5XJ+4ALYInZ3rH9/W1nMZgC1D9+Gm+mK4qbqpWbL9Na95TWbPnp0VK1asK2tvb89ZZ52VQw45pFabBQAAAKAGyuVkyZJk4cLkyiur94sXS7QD1FRra7LvlPXLR85Impur5QBsOQw3VVg1S7Z/5jOfyeOPP57m5ubsscce2XPPPbP77rvn8ccfz6c//elabRYAAACAGmloSKZNS048sXrvWh5ADbW2JrNmJSvae5a3t1fLJdwBtiyGmyqkxlo98aRJk/KLX/wit9xyS37zm9+kUqlkypQpOfTQQ2u1SQAAAIBhr/vowG23JYdOl9QG2OJ0diazZyeVyobrKpVqL8Y5c5KZMx0kALYk5XJ139/WlnR0VOdob2lxLKijmiTb16xZk7Fjx+aee+7JYYcdlsMOO6wWmwEAAAAYUVpbk9lnJw0nVJdnHJlM3Lk6YqSOKgBbkLa2ZPnyja+vVJJly6r1pk0bsrAAKICu4aYohJok2xsbGzN58uR0dm+KDQAAAMBGdY0WnMZkt27lXaMFGxkSYAvS0bHu4bjVq7Jk7tGbrAcADL2azdn+/ve/P+eee24effTRWm0CAAAAYEA6O5NFi5Krrqre17u/wKZGC06qowXXO04AhsiECYNbDwCoiZrN2f6pT30q999/f3bddddMnjw5z33uc3us/8UvflGrTQMAAAAF0NlZzKkEW1urie3uo/M2NdV3qHajBQPQQ0tL9eDU3t53S6xSqbq+pWXoYwMA1qlZsv2YY45JqVRKpa8TAWDkKOrVMwAA2EIU9ZS8iAntrrhmzdowb1Hvodq7jwJcWd2YP849apP1ABjBGhqqB81Zs6qJ9e4HrlKpej9vXjEO+gCwBRv0ZPuTTz6Zd73rXbn22muzevXqHHLIIfn0pz+dHXbYYbA3BdRbUa+eAQDAFqKop+RFTWhvaqj2Uqk6VPvMmUOfuzBaMPSh+7wJt7Ul06dKLLJlKZerB82+Dvbz5rn+BgAFMOhztn/oQx/KFVdckaOOOionnnhivv/97+ff/u3fBnszQL11XT3rPc5h19Wz1tb6xAUAAFuIop6SF3nu8f4M1T7UukYL7uqs2FuplEyaZLRgtiCtrcm+U9YvHzkjaW52vYEtT7mcLFmSLFyYXHll9X7xYol2ACiIQe/Z3trami996Us54YQTkiRveMMb8qpXvSqdnZ1p0PIURoYidwcBAIAaKNpQ7UU+JS/y3OPdh2AvjVqT3c6+OUmy9KIjUlnd2Ge9oWK0YOimqzVR4+ie5fUeHgPqpaFh6A+aAMBmGfSe7cuWLUtLt2bWL3/5y9PY2JgVK1YM9qaAeilydxAAABhkra3VzpTTpycnnVS9r3fnyiKfkvdOaE8+5/pMPuf6lEat2Wi9oVL0odq7RgueOLFneVOT3CJbkCIPjwEAAL0Mes/2zs7OjB7ds9VpY2Nj1qxZs5G/AIadblfFnhw1JlPOviZJcu9Fx2bc6lV91gMAgE0pWu/xpLhzjxe5h3aRE9pdQ7W3t/e9vlSqrq/nUO3lcnVEgqJ9F2DIFHl4DAAA6GXQk+2VSiVvectbMmbMmHVlTz31VE4//fQ897nPXVfWan4lGL6KfPUMAIBhqbW12pGxe36lqak6rHa9evMWeaj2Ip+SFzmh3Xuo9t5xJcUYqt1owWzRurUSGrd6VZbMPXqT9QAAoF4GfRj5N7/5zdlpp50yfvz4dbc3vvGN2XXXXXuUAcNY19Wz3lenupRKyaRJ9e0OAgBAnzo7k0WLkquuqt4XYRTert7jvTsydvUer1db7SIP1V7kU/KuhHZXHL3jSuqb0O4aqn3XXg0RDNUOBVHk1kQAANDLoPdsv/zyywf7KYGiGS7dQQAA6EHv8f4p8lDtRT8l70pozz67Z3lTUzWueie0y+XksBnJ/udVl2+8ITl0up8wUAjdh8fo6+BQhPkeAADg7wa9Zzuwhei6ejZh157luoMAABSS3uP9V/TOlUXvoV0uJ/fet375xhuSxYvrH1eX7on1lqkS7VAYRR8eAwAAupFshy5FHE+z6Mrl5L571y/fcGOxrp4BAJBk073Hk2rv8XqcAvfuPT75nOsz+ZzrUxq1ZqP1hkqRh2rvIqENjEhdrYkmTuxZXpTWRAAA8HeDPow8DEtFHE9zuOh+tWxqi6tnAMCQ6eys9nbu6Kj2LG4p0KlI0WLrT+/xadOGLKwkxe49XvSh2rtIaAMjUrlcnUOkSAdUAADoRbIdusbT7N3Np2s8TS2mAYAtWNGSxl2K3FayiLEVee7x7lPz9qXeU/MWfe5xgBGtoWHoW4EBAEA/GEaeLVuRx9MEAKiz1takuTmZPj056aTqfXNz/eb27h5XEeceT4ob23DoPZ4Ut/d40YdqBwAAAOpDsp0tW3/G0wQA2IIUNWlc5LaSRY6t6HOPd/Ue37VXsr9IU/Maqh0AAADoTbKdLVu3cTKfHDUmzedcl+ZzrsuTo8ZstB4AwEhX5KRxkdtKFjk2vccBAAAABp9kO1u2Io+nCQBsMTo7k0WLkquuqt7XewabIieNe889Pvmc6zP5nOtTGrVmo/WGSpFjS/QeBwAAABhsku1s2Yo+niYAMOIVcV70IieNi9xWssixddF7HAAAAGDwSLazZRsO42kCACNWUedFL3LSuHtbya2yfgiAf0pbtkpnXdtKDpd2nHqPAwAAAAwOyXboGk9zwq49y4s0niYAMOIUeV70IieNu9pK/kulNfdmyrrymzIjS9Kcf6m01q2tpHacAAAAAFsWyXZIqgn1++5dv3zDjcbTBABqqsjzohc9aVxOaxZkVnZNe4/yiWnPgsxKOfUbg7+rHWfTLj173e82sVM7TgAAAIARRrIdunS/Wjy1RZcjAKCmijwverI+abxrr6Hi6z74z9+HBCilssGPma1SqTYGqNeQAH9XTmvuLfXsdb84zXVtBMAI1/3zfltbXT//AAAAsCWRbAcAgDoo8rzoXcrl5N771i/feEMBBv8p8pAASdLamsyaldKKnr3uS+3tyaxZ1fUwmFpbk33XN+7IkTOS5mafNQAAABgCku0AAFAHRZ4Xvbvug/20TC3A4D/duvqPW70qS+YenSVzj8641as2Wm/I/L3XfSqVDdd1ldW51z0jzN8bd6RX445o3AEAAABDQrIdAADqoOjzohdWkYcEKHqve0YWjTsAAACg7iTbAQCgTgo7L3qRFXlIgCL3umfk0bjj2TPXPQAAAM+SZDsAANRRIedFL7IiDwlQ5F73jDwadzw75roHAABgEEi2AwBAnRVuXvSi6xoSYOLEnuX1HhKgyL3uGXk07hg4c90DAAAwSCTbAQCA4adcTpYsSRYuTK68snpf7yEBitzrnpFH446BMdc9AAAAg0iyHQAAGJ4aGpJp05ITT6zeFyGJXdRe94w8GncMjLnuAQAAGESN9Q4AAABgRCmXk5kzq8m6jo7qMN4tLZKeDL6uxh2zZ/dMIDc1VRPtGndsqI+57jdVDwAAADZGsh0AAGCwdfW6h1rTuKN/zHUPAADAIJJsBwAAoBi6z5N9W1syfaqk8ebQuGPzdc11397e97ztpVJ1vbnuAQAA2AzmbAegp87OZNGi5KqrqvfdL3oDDGN2b1Bwra3JvlPWLx85I2lurpbDYDHXPQAAAINIsh2A9Vpbqxe1p09PTjqpeu8iNzAC2L1BwbW2JrNmJSvae5a3t1fLi/Bl7d3rXoud4atrrvuJE3uWNzVVy811DwDUmnNLgBFDsh2Aqq6L3MuX9ywv0kVugAGwe4OC6+xMZs/ue0jvrrI5c+p7AVKv+5GnXE6WLEkWLkyuvLJ6v3ixRDsAUHvOLQFGFMl2AIbHRW5gPeOhbza7NxgG2to2bA3TXaWSLFtWrVcPw6HXPQPTNdf9iSdW7w0dDwDUmnNLgBFHsh2A4l/kBtYzHnq/2L3BMNDRse7huNWrsmTu0Vky9+iMW71qo/WGjBY7AAAMFueWACOSZDsAPS5ePzlqTJrPuS7N51yXJ0eN2Wg9oA6Mh95v3XdbpVFrMvmc6zP5nOtTGrVmo/WAITZhwuDWG0xa7AAAMFicWwKMSI31DgCAAijyRW6galMt4Eulagv4mTMNg9uN3RsMAy0tSVNTteFQX/u4Uqm6vqVl6GPro9f9puoBAECfnFsCjEh6tgOw/iJ3qdT3+lIpmTSpPhe5gSot4AfE7g2GgYaGZP786uPeX9au5Xnz6tOQSIsdAAAGi3NLgBFJsh2AYl/kBqqGyXQPnZ3JokXJVVdV7+s91ZzdGwwT5XKyYEEycWLP8qamanm5XJ+4tNgBAGCwOLcEGJEk2wGo6rrIPWHXnuX1vsgNVA2DFvCtrUlzczJ9enLSSdX75ub6TyXftXvbtddLY/cGBVMuJ0uWJAsXJldeWb1fvLi+X1ItdgAAGCzOLQFGJMl2ANYrl5P77l2/fMON9b/IDVQVvAV8a2sya9aGI923t1fLi5Bwv/e+9cs33mD3BoXU0JBMm5aceGL1vggXGova6x4AgOHHuSXAiNNY7wAAKJjuF7WnthTjIjewvgX8rFmFawHf2ZnMnl2dNr63SqUa3pw5ycyZ9d2ldN92y1S7N6AfyuXqTqytrTpdx4QJ1cZNdiQAAPSXc0uAEUWyHQCgD52dBfzd+/cW8JWz39WjuDKxKaX58+rWAr6tbcMe7d1VKsmyZdV606YNWVgAg6ur1z0AADxbzi0BRgzDyAMA9FLUuceTpDXlTKmsn+7htbkxzZXFaU39hprr6Fj/uDRqTSafc30mn3N9SqPWbLQeAAAAAMBwJ9kOANRNZ2eyaFFy1VXV+87OekdU7LnHu2Jb1rG+i/3tacmyFQ11jW3ChMGtBwAAAAAwHEi2AwB1UcTe45uaezypzj1ej0YBRY6tpSVpatpwKvkupVIyaVK1HgAAAADASCHZDgAMuaL2Hu/P3ONDrcixNTQk8+dXH/dOuHctz5tXgDnvAQAAAAAGkWQ7ADCkitxDu8hzj3ffZmV1Y/4496j8ce5Rqaxu3Gi9oVQuJwsWJLv2Giq+qalaXq7flPIAAAAAADXRuOkqQN11dla7KnZ0VCe8bWnRPRAKpshf06LF1p8e2tOmDVlYSYo993iRY+tSLieHzUj2P6+6fOMNyaHTi/NdAAAAAAAYTHq2Q9EVcVJjoIcif02LGFuRe48Xee7xIsfWXffEesvUgiXauw+XcFtbfYZPAAAAAABGDMl2KLKiTmoMddLZmSxalFx1VfW+CHmyIn9NixpbkXtoF3nu8SLHNiy0tib7Tlm/fOSM+rc8GS40UgAAAKAI/D4FCkiyHYqqyJMaQx0UsYd2kb+mRY6t6D20izz3eFdsEyf2LC9CbIXW1fJkRXvP8nq3PBkONFIAAACgCPw+BQpqWCTbL7744uy+++4ZO3ZsDjzwwLS1tW3W391xxx1pbGzMAQccUNsAoRb6M6kxjHBF7aFd5K9pkWMbDj20y+Xk3vvWL994Q7J4cTGS2eVysmRJsnBhcuWV1fuixFZIRW55UnQaKQAAAFAEfp8CBVb4ZPvVV1+dOXPm5H3ve1/uvvvutLS0ZMaMGVm6dOkz/t1jjz2WN73pTTnkkEOGKFIYZN0mK35y1Jg0n3Ndms+5Lk+OGrPRejASFTlPVuS5x4scW1Ls3uNdijz3eENDMm1acuKJ1fsixVY4RW55UmRF3vkCAACw5fD7FCi4wifbL7roopx66qk57bTTsu+++2bevHmZNGlSLrnkkmf8u3/913/NSSedlIMOOmiIIoVBVuRJjWEIFTlPVuSvaZFj61Lk3uOMIN1alIxbvSpL5h6dJXOPzrjVqzZajxR75wsAAMCWw+9ToOAa6x3AM3n66adz11135T3veU+P8sMPPzx33nnnRv/u8ssvzx/+8Id87Wtfy3/9139tcjurVq3KqlXrL7iuXLly4EHDYOma1Li9ve/1pVJ1fb0mNYYh0ruH9m5n35wkWXrREamsbuyz3lAp8te0yLF1V+Te44wQw6HlSRH10UhhU/UAAABg0Pl9ChRcoXu2/+lPf0pnZ2d23nnnHuU777xzHnzwwT7/5ve//33e85735Otf/3oaGzevLcEFF1yQ8ePHr7tNmjTpWccOz9pwmNQYhkCR82RF/poWOTYYUl0tT3p/EbqUSsmkSfVveVI0Rd75AgAAsOXw+xQouEIn27uUel0crVQqG5QlSWdnZ0466aScd9552WuvvTb7+c8999w89thj627Lli171jHDoOia1HjCrj3LizSpMdRY0fNkRZ57vMixwZDR8mRgir7zBQAAYMvg9ylQcIVOtu+www5paGjYoBf7Qw89tEFv9yR5/PHH8/Of/zz//u//nsbGxjQ2Nub888/PL3/5yzQ2NuaHP/xhn9sZM2ZMttlmmx43KIxyObnv3vXLN9xoUmO2KMMhT1bkuceLHBsMma6WJxMn9izX8mTjhsPOFwAAgJHP71Og4AqdbB89enQOPPDA3HLLLT3Kb7nllhx88MEb1N9mm23yq1/9Kvfcc8+62+mnn569994799xzT17xilcMVegwuLqfKExtceLAFmc49NAu8tzjRY4Nhky5nCxZkixcmFx5ZfVey5NnppECAAAAReD3KVBgmzepeR2dffbZOfnkk/Oyl70sBx10UC699NIsXbo0p59+epLqEPDt7e35yle+kq222ir77bdfj7/faaedMnbs2A3KARheyuXksBnJ/udVl2+8ITl0usQx0A8NDcm0afWOYngpl5OZM5O2tqSjozoHXouGfwAAAAwxv0+Bgip8sv3444/PI488kvPPPz8dHR3Zb7/9csMNN2Ty5MlJko6OjixdurTOUQIwFPTQBqgDjRQAAAAoAr9PgQIqfLI9Sc4444ycccYZfa674oornvFvP/zhD+fDH/7w4AcFAAAAAAAAwBar0HO2AwAAAAAAAEARSbYDAAAAtdHZuf7xbW09lwEAAGCYk2wHAAAABl9ra7LvlPXLR85Impur5QAAADACSLYD0EP3zkZtt+l8BADAALS2JrNmJSvae5a3t1fLJdwBAAAYASTbAeqgszNZtCi56qrqfVES2q2tyZR91y/POFLnIwAA+qmzM5k9O6lUNlzXVTZnTnFOggEAAGCAJNsBhlhrazWBPX16ctJJ1fsiJLS7Oh+1r+hZrvMRAAD90taWLF++8fWVSrJsWbUeAAAADGOS7QBDqCuh3fvaY70T2jofAcAWpPsB/bY2B3gGX0fHuofjVq/KkrlHZ8ncozNu9aqN1gMAAIDhSLIdYIgUOaGt8xEAbCFaW5N9p6xfPnJGMYbYYWSZMGFw6wEAAEBBNdY7AIBa6Xy6M7+6uC1P/qEj4/aYkP3PaEnD6Ia6xdOfhPa0aUMWVpKenYoqqxvzx7lHbbIeADDMdA2x0zi6Z3nXEDsLFiTlcn1iY2RpaUmamqqfrb5ampZK1fUtLUMfGwAAAAwiPduBEenH727N/xvXnAPOmp6DP3NSDjhrev7fuOb8+N3167XVPVFdGrUmk8+5PpPPuT6lUWs2Wm+o6HwEACNckYfYYeRpaEjmz68+LpV6rutanjevWg8AAACGMcl2YMT58btb8/L/b1Z26ezZjXyXzva8/P+bVbeEe5ET2l2dj3pfC+1SKiWTJul8BADDljljGGrlcnW0hIkTe5Y3NRlFAQAAgBFDsh14Vrp3fmq7rf6doTqf7sxuF81OUtlgB7dVqr22Jl00J51PD32gRU5o63wEACNct6Fzxq1elSVzj86SuUdn3OpVG60Hz1q5nCxZkixcmFx5ZfV+8WKJdgAAAEYMyXZgwFpbkyn7rl+ecWTS3Fwtr5dfXdyWXTuXb3TntlUqmdi5LL+6eOh7bRU9oa3zEQCMYEUeYoeRraEhmTYtOfHE6r3WmwAAAIwgku3AgLS2JrNmJe0repa3t1fL65Vwf/IPm9cba3PrDbauhPauva5jFyWhrfMRdNN9qI7b2uo/dAfAs1HkIXYAAAAAhinJdqDfOjuT2bOrU3v21lU2Z0598lLj9ti83libW68WyuXk3vvWL994Q7ES2jofQaothvadsn75yBn1H7oD4Nko+hA7AAAAAMOQZDvQb21tyfLlG19fqSTLllXrDbX9z2jJioamrE3fvbbWppT2hknZ/4z69trqfh27Zarr2lAoXUN3rGjvWV7voTsAni1zxgAAAAAMqsZ6BwAMPx3dRmCvrG7MH+cetcl6Q6VhdEOWnj0/u/x/s7I2pWyV9d3vuxLwy86el4mjZbeBPmxq6I5SqTp0x8yZWskAw1O5XN2HtbVVT9YmTKgOHW+fBgAAANBvku1Av03YzBHYN7feYHvlheX8OAuy20Wzs2vn+i74HQ1NWXb2vLzyQr22gI3oz9Ad06YNWVgAg6przhgAAAAAnhXJdqDfWlqqo422t/fd+bNUqq5vqeNI7a+8sJzO/5qZey5uy5N/6Mi4PSZk/zNa9Ghny9TZuf7xbW3JdHMXbFS3ITnGrV6VJXOP3mQ9AAAAAAC2TOZsB/qtoSGZP7/6uNRravSu5Xnz6p/LaxjdkAPmTMvBnz4xB8yZlgaJdrZEra3JvlPWLx85I2luNu/4xhR96A4AAAAAAApDsh0YkHI5WbAgmTixZ3lTU7W8bKR2qL/W1mTWrGRFe8/y9vZquYT7hrqG7ujdkqhLqZRMmlTfoTsAAAAAACgEyXZgwMrlZMmSZOHC5Morq/eLF0u0QyF0diazZ/c910NX2Zw5PYeYZ/gM3QEAAAAAQN1JtgPPSkNDMm1acuKJ1Xv5JyiItrZk+fKNr69UkmXLqvXoydAdAAAAAABshsZ6BwCwRerem/i2tmT6VC0VGFwdHesejlu9KkvmHr3JenRTLiczZ1YbI3R0VOdob2nxPQUAAAAAYB092wGGWmtrsu+U9ctHzkiam82fzeCaMGFw622JDN0BAAAAAMAzkGwHGEqtrcmsWcmK9p7l7e3Vcgl3BktLS3XY897zjncplZJJk6r1gPrrPeJJ92UAAAAAoJAk2wGGSmdnMnt2da7s3rrK5syRYGFwNDQk8+dXH/dOuHctz5untzYUgRFPAAAAAGBYkmwHGCptbcny5RtfX6kky5ZV68FgKJeTBQuSiRN7ljc1VcvL5frEBaxnxBMAAAAAGLYa6x0AwBajo2Pdw3GrV2XJ3KM3WQ+etXI5mTmz2oijo6M6R3tLix7tUASbGvGkVKqOeDJzpu8sAAAAABSQZDvAUJkwYXDrUSy951uePrU4ybGGhmTatHpHAfTWnxFPfIcBAAAAoHAMIw8wVFpaqsN3954/u0uplEyaVK3H8GK+ZWAg+hjxZMncozNu9aqN1gMAAAAAikOyHWCoNDQk8+dXH/dOuHctz5tXnN7QbB7zLQMDZcQTAAAAABjWJNsBhlK5nCxYkEyc2LO8qalaXi7XJy4GZlPzLSfV+Za7DzEP0MWIJwAAAAAwrEm2Awy1cjlZsiRZuDC58srq/eLFEu3DUX/mWwbozYgnAAAAADCsNdY7AIAtUkNDMm1avaPg2epjvuVN1QPooWvEk9mzezbeaWqqJto1xAIAAACAwpJsB4CBMt8yMBjK5WTmzOooGB0d1X1GS4se7QAAAABQcJLtADBQXfMtt7f3PW97qVRdb75lYFOMeAIAAAAAw4452wFgoMy3DAAAAAAAWyzJdgB4NrrmW544sWd5U1O13HzLAAAAAAAwIhlGHoaBzs71j9tuSw6drqMsFIr5lgEAAAAAYIujZzsUXGtrMmXf9cszjkyam6vlQIF0zbd84onVe4l2AAAAAAAY0STbocBaW5NZs5L2FT3L29ur5RLuAAAAAAAAUB+S7VBQnZ3J7NlJpbLhuq6yOXN6DjEPAAAAAAAADA3JdiiotrZk+fKNr69UkmXLqvUAAAAAAACAodVY7wCAvnV0rH9cWd2YP849apP1AAAAAAAAgKGhZzsU1IQJg1sPAAAAAAAAGDyS7VBQLS1JU1NSKvW9vlRKJk2q1gMAAAAAAACGlmQ7FFRDQzJ/fvVx74R71/K8edV6AAAAAAAAwNCSbIcCK5eTBQuSiRN7ljc1VcvL5frEBQAAAAAAAFu6xnoHwBamszNpa0s6OqqTjbe06Jq9CeVyMnOmlw2AYaKzc/3j29qS6VMdtAAAAACAEUnPdoZOa2vS3JxMn56cdFL1vrm5Ws4zamhIpk1LTjyxei9nAUAhtbYm+05Zv3zkDMd6AAAAAGDEkmxnaLS2JrNmJcuX9yxvb6+WuwgPAMNb17F+RXvPcsd6AAAAAGCEkmyn9jo7k9mzk0plw3VdZXPm9Bx2FgAYPhzrAQAAAIAtkGQ7tdfWtmGP9u4qlWTZsmo9AGD4cawHAAAAALZAjfUOgC1AR8e6h0+OGpMpZ1+TJLn3omMzbvWqPusBAMNIt2P4uNWrsmTu0ZusBwAAAAAw3OnZTu1NmDC49QCAYnGsBwAAAAC2QJLt1F5LS9LUlJRKfa8vlZJJk6r1AIDhx7EeAAAAANgCSbZTew0Nyfz51ce9L8J3Lc+bV60HAAw/jvUAAAAAwBZIsp2hUS4nCxYkE3btWd7UVC0vl+sTFwAwOLqO9RMn9ix3rAcAAAAARijJdoZOuZzcd+/65RtuTBYvLszF987O9Y/bbuu5DABshnI5WbIkWbgwufLK6n2BjvUAAAAAAINJsp2h1X342KkthRlOtrU1mbLv+uUZRybNzdVyAKAfGhqSadOSE0+s3hfkWA8AAAAAMNgk29nitbYms2Yl7St6lre3V8sl3AEAAAAAAIDeJNvZonV2JrNnJ5XKhuu6yubMMaQ8AAAAAAAA0JNkO1u0trZk+fKNr69UkmXLqvWAAuje8uW2Ni1hAAAAAACAupFsZ4vW0bH+cWV1Y/4496j8ce5Rqaxu3Gg9oE5aW5N9p6xfPnJG0txsrgcAAAAAAKAuJNvZok2YMLj1gBppbU1mzUpWtPcsb2+vlku4AwAAAAAAQ2xYJNsvvvji7L777hk7dmwOPPDAtD3DmN633357XvWqV2X77bfPc57znOyzzz755Cc/OYTRMpy0tCRNTUmp1Pf6UimZNKlaD6iTzs5k9uzqvA69dZXNmWNIeQAAAAAAYEgVPtl+9dVXZ86cOXnf+96Xu+++Oy0tLZkxY0aWLl3aZ/3nPve5+fd///fcdtttue+++/L+978/73//+3PppZcOceQMBw0Nyfz51ce9E+5dy/PmVesBddLWlixfvvH1lUqybFm1HgAAAAAAwBApfLL9oosuyqmnnprTTjst++67b+bNm5dJkyblkksu6bP+S17ykpx44ol50YtelObm5rzxjW/MEUcc8Yy94dmylcvJggXJxIk9y5uaquXlcn3iAv6uo2Pdw3GrV2XJ3KOzZO7RGbd61UbrAQAAAAAA1Fqhk+1PP/107rrrrhx++OE9yg8//PDceeedm/Ucd999d+688868+tWv3midVatWZeXKlT1ubFnK5WTJkmThwuTKK6v3ixdLtEMhTJgwuPUAAAAAAAAGQWO9A3gmf/rTn9LZ2Zmdd965R/nOO++cBx988Bn/tqmpKQ8//HDWrFmTD3/4wznttNM2WveCCy7IeeedNygxM3w1NCTTptU7CmADLS3VoSba2/uet71Uqq5vaRn62AAAAAAAgC1WoXu2dyn1mky7UqlsUNZbW1tbfv7zn+dzn/tc5s2bl6uuumqjdc8999w89thj627Lli0blLgBGAQNDcn8+dXHvff9Xcvz5lXrAQAAAAAADJFC92zfYYcd0tDQsEEv9oceemiD3u697b777kmS/fffP//v//2/fPjDH86JJ57YZ90xY8ZkzJgxgxM0AIOvXE4WLEhmz06WL19f3tRUTbSb8wEAAAAAABhihe7ZPnr06Bx44IG55ZZbepTfcsstOfjggzf7eSqVSlatWjXY4TEAnZ3rH7fd1nMZ4BmVy8mSJcnChcmVV1bvFy+WaAcAAAAAAOqi0D3bk+Tss8/OySefnJe97GU56KCDcumll2bp0qU5/fTTk1SHgG9vb89XvvKVJMlnP/vZ7Lbbbtlnn32SJLfffnv++7//O2eeeWbd/geqWluT2WcnDSdUl2ccmUzcuTo6tFwZsFkaGpJp0+odBYOpe6ur29qS6VNNCQAAAAAAwLBQ+GT78ccfn0ceeSTnn39+Ojo6st9+++WGG27I5MmTkyQdHR1ZunTpuvpr167Nueeem8WLF6exsTF77LFHPv7xj+df//Vf6/UvkGqifdasJI3Jbt3K29ur5QsWSLgDbHFaW5Oz35Wc8Knq8pEzkp131AoLAAAAAIBhoVSpVCr1DqJoVq5cmfHjx+exxx7LNttsU+9whr3OzqS5uTrNcmnUmux29s1JkqUXHZHK6saUStVplxcv1pkRYIvx91ZYTzaOzpSzr0mS3HvRsRm35unqeq2wAAAAgGfhyafXZMoHq9ei7z3/iIwbXfi+hwAUQH/zxIWes52Roa2tmmjfmEolWbasWg+ALUBnZzJ7dvUA0FtX2Zw5PYeYBwAAAACAgtGUi5rr6Fj/uLK6MX+ce9Qm6wEwgvWnFda0aUMWFgAAAAAA9IdkOzU3YcLg1gNgmOvWumrc6lVZMvfoTdYDAAAAAICiMYw8NdfSUp2TvVTqe32plEyaVK0HwBZAKywAAAAAAEYAyXZqrqEhmT+/+rh3wr1red68aj0AtgBaYQEAAAAAMAJItjMkyuVkwYJk4sSe5U1N1fJyuT5xAVAHWmEBAAAAADACSLYzZMrlZMmSZOHC5Morq/eLF0u0A2yRtMICAAAAAGCYa6x3AGxZGhqSadPqHQUAhVAuJzNnJm1tSUdHdY72lhY92gEAAAAAGBYk2wGA+tEKCwAAAACAYcow8gAAAAAAAADQT5LtAAAAAAAAANBPku0AAAAAAAAA0E+S7QAAAAAAAADQT5LtAAAAAAAAANBPku0AAAAAAAAA0E+S7QAAAAAAAADQT5LtAAAAAAAAANBPku0AAAAAAAAA0E+S7QAAAAAAAADQT5LtAAAAAAAAANBPku0AAAAAAAAA0E+S7QAAAAAAAADQT5LtAAAAAAAAANBPku0AAAAAAAAA0E+S7QAAAAAAAADQT5LtAAAAAADAyNLZuf7xbW09lwFgkEi2AwAAAAAAI0dra7LvlPXLR85Impur5QAwiCTbAQAAAACAkaG1NZk1K1nR3rO8vb1aLuEOwCCSbAcAAAAAAIa/zs5k9uykUtlwXVfZnDmGlAdg0Ei2AwAAAAAAw19bW7J8+cbXVyrJsmXVegAwCBrrHQAAAAAAAMCz1tGx7uG41auyZO7Rm6wHAM+Gnu0AAAAAAMDwN2HC4NYDgE2QbAcAAAAAAIa/lpakqSkplfpeXyolkyZV6wHAIJBsBwAAAAAAhr+GhmT+/Orj3gn3ruV586r1AGAQSLYDAAAAAAAjQ7mcLFiQTJzYs7ypqVpeLtcnLgBGpMZ6BwAAAAAAADBoyuVk5sykrS3p6KjO0d7Sokc7AINOsh0AAAAAABhZGhqSadPqHQUAI5xh5AEAAAAAAACgnyTbAQAAAAAAAKCfJNsBAAAAAAAAoJ8k2wEAAAAAAACgnyTbAQAAAAAAAKCfJNsBAAAAAAAAoJ8k2wEAAAAAAACgnyTbAQAAAAAAAKCfJNsBAAAAAAAAoJ8k2wEAAAAAAACgnyTbAQAAAAAAAKCfJNsBAAAAAAAAoJ8a6x1AEVUqlSTJypUr6xwJAAAAAAAAAEOhKz/clS/eFMn2Pjz++ONJkkmTJtU5EgAAAAAAAACG0uOPP57x48dvsl6psrlp+S3I2rVrs2LFimy99dYplUr1DmfEWblyZSZNmpRly5Zlm222qXc4PYhtYMQ2MGIbGLENjNgGRmwDI7aBEdvAiG1gxDYwYhsYsQ2M2AZGbAMjtoER28CIbWDENjBiGxixDYzYBkZsA1Pk2Ia7SqWSxx9/PLvuumu22mrTM7Lr2d6HrbbaKk1NTfUOY8TbZpttCrsDENvAiG1gxDYwYhsYsQ2M2AZGbAMjtoER28CIbWDENjBiGxixDYzYBkZsAyO2gRHbwIhtYMQ2MGIbGLENjNgGpsixDWeb06O9y6bT8QAAAAAAAABAD5LtAAAAAAAAANBPku0MuTFjxuRDH/pQxowZU+9QNiC2gRHbwIhtYMQ2MGIbGLENjNgGRmwDI7aBEdvAiG1gxDYwYhsYsQ2M2AZGbAMjtoER28CIbWDENjBiGxixDUyRY9vSlCqVSqXeQQAAAAAAAADAcKJnOwAAAAAAAAD0k2Q7AAAAAAAAAPSTZDsAAAAAAAAA9JNkOwAAAAAAAAD0k2Q7AAAAAAAAAPSTZDs1s2zZspx66qnZddddM3r06EyePDmzZ8/OI488sq7OtGnTMmfOnB5/N3/+/IwZMyZXXnllzWJ7y1veklKplFKplFGjRuUFL3hB/vM//zNPPPHEujpvf/vb09DQkG984xs1i6OvmE4//fQN1p1xxhkplUp5y1veskH83W+vfe1rCxPXqFGjsvPOO+ewww7LZZddlrVr1w56bP2N76GHHsq//uu/ZrfddsuYMWOyyy675IgjjsiPfvSjmsSWJA8++GDOPPPMvOAFL8iYMWMyadKkvO51r8sPfvCDdXXuvPPOHHnkkXn+85+fsWPHZv/9988nPvGJdHZ21iyu7rpew49//OM9yq+99tqUSqUkyaJFi1IqlfKXv/xlSGLZnPcz2bz9zGDb1Oeoubl53ffgOc95Tpqbm3Pcccflhz/8Yc1iSvr3PpZKpWy11VYZP358XvKSl+Td7353Ojo6ahpf71iPOeaYHmV33nlnGhoaarIf68vnPve5bL311lmzZs26sr/+9a8ZNWpUWlpaetRta2tLqVTKdtttl4997GMbPNdxxx2Xf/zHf+zxXIPpwQcfzOzZs7Pnnntm7Nix2XnnnfNP//RP+dznPpcnn3yyR92PfexjaWho2OBzUAt9HcOT9Z+5adOm9Xms6ro1NzfXJK7N3Y88U2y99zW1irH37f777+/z+zGU+tr+ggULstVWW2XcuHEbnJ+tXbs2Bx98cP7lX/6lJvFs7vtUKpUyduzY/PGPf+zx98ccc0xN38vuur929Tgn2lhM/Tk29L49+OCDNYttoL8VkuSKK67ItttuW5O4Nve96368734biv3vxo6ZS5Ys6RHL+PHj88pXvjLf/e53axrPQH4vPNNncihiLZVKaWxszG677ZZ/+7d/y5///Od1dZqbmzNv3ryax9I9noGeh9c61s35/XT33Xfn9a9/fXbeeeeMHTs2e+21V972trfld7/7XU1i6s9r9vznPz9PPfVUj3o//elP130GauF1r3tdDj300D7X/ehHP9rkca1UKmXJkiU1iW0g57+/+93vhuw7sbnHha7XafTo0dljjz1y7rnnZtWqVTWPb3N+2ydDcz4+0N8y//Vf/9Xn811wwQXZYYcd8vTTT9cltq79xVD/JnymbXYdU++5554hi6XL5vweWL58eUaPHp199tlnaILqQ+9z33r+huluY7F0P54O1TWu7jE907Hrq1/9ap773Ofm/vvv77F+xYoVef7zn5/58+fXJa5rrrkmDQ0NWbp0aZ9/v88+++Sd73xnXWLrUqlUcumll+YVr3hFnve852XbbbfNy172ssybN2+D6yWDGdfmXrdM6rNv6+/5+VB9fzd2vWHs2LG58MIL88QTT+Scc87JC17wgowdOzY77rhjpk2bluuuu25I4uvPMeHxxx/PtGnTss8++2TZsmU1i2lzzi1/8YtfJBn6fBY9SbZTEw888EBe9rKX5Xe/+12uuuqq3H///fnc5z6XH/zgBznooIPy6KOP9vl3H/rQh3Luuefm29/+dk466aSaxvja1742HR0deeCBB/Jf//Vfufjii/Of//mfSZInn3wyV199dd71rnflS1/6Uk3j6G7SpEn5xje+kb/97W/ryp566qlcddVV2W233fqMv/vtqquuKkxcS5YsyY033pjp06dn9uzZOfroo2uWiNrc+I499tj88pe/zJe//OX87ne/y3e+851MmzZto5/HZ2vJkiU58MAD88Mf/jAXXnhhfvWrX+Wmm27K9OnT8453vCNJ8u1vfzuvfvWr09TUlIULF+Y3v/lNZs+enY9+9KM54YQTUqlUahJbb2PHjs3cuXN7XGisl819Pwe6n3m2NudzdP7556ejoyO//e1v85WvfCXbbrttDj300Hz0ox+tSUxdNvd9/O1vf5sVK1bkZz/7Wc4555x8//vfz3777Zdf/epXNY3vmVx22WU588wzc/vtt2/0h9xgmj59ev7617/m5z//+bqytra27LLLLvnZz37W40fZokWLsuuuu+aKK67Ieeed1+N1WrBgQb773e/mK1/5ShobGwc9zgceeCAveclL8r3vfS8f+9jHcvfdd+f73/9+zjrrrHz3u9/N97///R71L7/88rz73e/OZZddNuix9Fdra+u649NPf/rTJMn3v//9dWU/+9nParbtzdmPdD9+zps3L9tss02Pslpd0OjS13F89913r+k2B+KLX/xi3vCGN+TSSy/Nxz/+8Zx55pk9Gud84hOfyP3335/Pf/7zNdl+f96nUqmUD37wgzWJYyDqcU7Ul/4cG3p/JnfaaaeaxFSvY/jm2tz3rut43/125pln1jy+TR0zu/a1P/nJT/Lyl788xx57bP7v//6vpjH15/dCvc87u7+/X/ziF/Pd7343Z5xxRl1iSer/ejyTTZ33XnfddXnlK1+ZVatW5etf/3ruu+++fPWrX8348ePzgQ98oGZxbe5rtvXWW+fb3/52j7LLLrtsg8/kYDr11FPzwx/+cIPGX13bPuCAA3rsM5qamjbYl0yaNKkmsQ3k/HevvfaqSSy99ee48La3vS0dHR25//77c+GFF+azn/1sPvzhD9c0vs35bd9lKM7HB/JevulNb8oVV1zR5zWGyy+/PCeffHJGjx5dl9i6PmdD/ZuwXtscDFdccUWOO+64PPnkk7njjjvqHQ6b4ZmOXSeffHKOOOKIvPnNb+7RuPPtb397XvKSl9Qsob2puP75n/8522+/fb785S9vsO6OO+7Ib3/725x66ql1ia3LySefnDlz5mTmzJlZuHBh7rnnnnzgAx/I//zP/+R73/teTeLqz3lvUr/9TH/jrIeu6w2f+cxn8u53vzunn356rr322nzmM5/Jb37zm9x000059thja9qpqrvNfa8efvjhdce722+/vWbnbsnmnVu+9KUvrVs+i/Uk26mJd7zjHRk9enS+973v5dWvfnV22223zJgxI9///vfT3t6e973vfT3qVyqVnHnmmZk/f36+973v5cgjj6x5jF0t8ydNmpSTTjopb3jDG3LttdcmSb71rW9lypQpOffcc3PHHXfUrGV5by996Uuz2267pbW1dV1Za2trJk2alJe85CV9xt/99vznP78wcU2cODEvfelL8973vjf/8z//kxtvvDFXXHFF3eL7y1/+kttvvz1z587N9OnTM3ny5Lz85S/Pueeem6OOOqomcXW1FPzpT3+aWbNmZa+99sqLXvSinH322fnxj3+cJ554Im9729vyz//8z7n00ktzwAEHpLm5Oaeddlq+/OUvZ8GCBfnmN79Zk9h6O/TQQ7PLLrvkggsuGJLtPZPN/bz1dz8zGDb3c7T11ltnl112yW677ZapU6fm0ksvzQc+8IF88IMfzG9/+9tBj6vL5r6PO+20U3bZZZfstddeOeGEE3LHHXdkxx13zL/927/VLLZn8sQTT+Sb3/xm/u3f/i1HH310zfYV3e29997Zdddds2jRonVlixYtysyZM7PHHnvkzjvv7FE+ffr0/PM//3NOOumkvOlNb8rq1avz8MMP54wzzsgFF1yQfffdtyZxnnHGGWlsbMzPf/7zHHfccdl3332z//7759hjj83111+f173udevq3nrrrfnb3/6W888/P0888URuu+22msS0ubbbbrt1x6cdd9wxSbL99ttvUFYLm7Mf6X78HD9+fEql0gZltdTXcbyhoaGm2+yvCy+8MP/+7/+eK6+8MqeddlrOPPPMHHDAAXnb296WJPnNb36TD37wg7n00ktrlpTtz/t05pln5mtf+1pdGw51V49zor7099jQ/bbVVrX5uViPY3h/bO5713W873577nOfW9PYNueY2bWv3WefffLRj340q1evzsKFC2saV39+L9T7vLPr/W1qasrhhx+e448/vmYXYzdHvV+PjdnUee+TTz6Zt771rTnyyCPzne98J4ceemh23333vOIVr8h///d/16wRVrL5r9mb3/zmHgnPv/3tb/nGN76RN7/5zTWL7eijj85OO+20wXez6wLoqaeeusGxv/e+pFbnAwM5/x0q/TkujBs3bt1vrWOPPTaHHXZYzb/Dm/pt32WozscH8l6eeuqp+cMf/rBBTG1tbfn9738/aAmzgX7O6vGbsB7bHAyVSmVdA4mTTjpJUmWY2NSx6/Of/3zuv//+XHTRRUmqDSra2tpy+eWX13T0n2eKa9SoUTn55JP7bKhz2WWX5cADD8w//MM/1CW2JPnmN7+Zr3/967nqqqvy3ve+N//4j/+Y5ubmzJw5Mz/84Q9rdhzrz3lvPfcz/YmzHnpfb0iS7373u3nve9+bI488Ms3NzTnwwANz5pln1vTcrcvmvlfLli1LS0tLtt566yxcuDA77LBDTePanHPLpH75LNaTbGfQPfroo7n55ptzxhln5DnPeU6Pdbvsskve8IY35Oqrr153kF6zZk1OPvnkfOtb38qtt96af/qnf6pH2HnOc56T1atXJ0m+9KUv5Y1vfGPGjx+fI488MpdffvmQxfHWt761x/Yuu+yynHLKKUO2/Y15NnG95jWvyT/8wz/0OLgPtk3F97znPS/Pe97zcu211w7JEHOPPvpobrrpprzjHe/o86Lrtttum+9973t55JFH1o2o0N3rXve67LXXXjUbraC3hoaGfOxjH8unP/3pLF++fEi2+Uw29X72dz8zWJ7N52j27NmpVCr5n//5n0GNqbuBvo/Pec5zcvrpp+eOO+7IQw89VLP4Nubqq6/O3nvvnb333jtvfOMbc/nllw/JqA7Tpk3rkXxYuHBhpk2blle/+tXryp9++un86Ec/Wvcjbf78+Xn00UfzkY98JGeccUb222+/zJ49uybxPfLII/ne97630f1Ikh4/ur/0pS/lxBNPzKhRo3LiiSdu8Rddino8HS7e85735CMf+Uiuu+66HHvssUmqn7fLL788bW1t+cIXvpC3vOUtOf744wszZOTBBx+co48+Oueee269Q9mooTgn6q1ox/h6HcOfrXq8d33pzzFz9erV+cIXvpCkerG01jZ3v1ukz+QDDzyQm266aUhen40p0uvR3abOe2+++eb86U9/yrvf/e4+/75WUz0km/+anXzyyWlra1vXM+maa65Jc3NzXvrSl9YstsbGxj57EH/rW9/K008/nTe84Q012/bmGMj5b609m+PCL3/5y9xxxx01/Q5vzm/7LkN5Pt7f93L//ffPP/7jP25wfeuyyy7Ly1/+8uy33351iy2pz2/Cev0OfbYWLlyYJ598MoceemhOPvnkfPOb38zjjz9e77DYhE0du3bcccd8/vOfzwc+8IHccsstOeusszJ//vxMnjy5rnGdeuqpeeCBB3LrrbeuK+tKStayV/vmxPb1r389e++9d2bOnLnBuq4plWplc897672fKep1kb6uNyTV4/4NN9xQl33a5rxXv/3tb/OqV70q++yzT2666aZsvfXWNY9rc88t65nPokqynUH3+9//PpVKZaO9/Pbdd9/8+c9/zsMPP5wk+cIXvpBvfetbWbRoUU1bwz2Tn/70p7nyyitzyCGH5Pe//31+/OMf5/jjj0+SdTvXoZpf8+STT87tt9+eJUuW5I9//GPuuOOOvPGNb9yg3nXXXbfuAkjX7SMf+Ujd49qYffbZp6YtqjYVX2NjY6644op8+ctfzrbbbptXvepVee9735v//d//rUk8999/fyqVyjPOn9U1L9nGviv77LNPzeY67Mu//Mu/5IADDsiHPvShIdvmxmzq/ezvfmawPJvP0XbbbZeddtqp5i0LB/o+dn1W69HyseuEMKkO7frXv/51g7kPa2HatGm54447smbNmjz++OO5++67M3Xq1Lz61a9e1xPjxz/+cf72t7+tuwi0zTbb5PLLL8/HPvaxfO9736tpK/Ou/cjee+/do3yHHXZYt98/55xzkiQrV67MNddcs+51fOMb35gFCxZk5cqVNYltOHi2x61a630cf/3rX1/vkNa58cYbM3fu3PzP//zPBnOD7bbbbpk3b15OP/30rFixoubD7ffXBRdckJtuuiltbW31DmWjan1O1JfNOTY0NTX1+Ez23vcMlv4ewy+++OINznn7mntwKPR+784555wNYuvek68WNueYefDBB+d5z3texo4dm//4j/9Ic3NzjjvuuJrGlfRvv1vP886u/e9znvOc7LHHHrn33nvXHU/rZSDf0ec973k1HYp0U+e9v//975OkbvMFb85rttNOO2XGjBnregIN1QXmU045JUuWLOmxP7jssstSLpdrNhrd5hrI+W+tDfS4MGbMmBxwwAF5+OGH8653vatm8W3Ob/tk6M/HB/JennLKKVmwYEH++te/JqnOpf6tb31r0BNmA4mtHr8J6/U79Nn60pe+lBNOOCENDQ150YtelD333DNXX311vcMqlL6umc6YMaPeYW3y2HXMMcfkuOOOy2tf+9pMnTp1g7m/6xHXlClT8opXvKJH4u6b3/xmOjs7c+KJJ9Y1tt///vc1+82yKZt73lvv/UwRr4s80/WGSy+9NHfeeWe23377/OM//mPOOuusIZsqY3Peqze96U3ZY489cs0112TMmDFDEley6XPLeuezqJJsZ8h1tcDpSk780z/9U573vOfl/e9//5DOX9l14jV27NgcdNBBmTp1aj796U/nS1/6Uo444oh1Q4AceeSReeKJJzaYF7dWdthhhxx11FH58pe/nMsvvzxHHXVUn8ORTJ8+Pffcc0+PW++5wuoR18ZUKpWaDnu0OfEde+yxWbFiRb7zne/kiCOOyKJFi/LSl760JkP49P6cb07dvspr+Zr1Ze7cufnyl7+ce++9d0i329tgfN6SzXv9++vZfI6G6j0dyPtYy9fsmfz2t7/NT3/605xwwglJqhd2jz/++CGZc3z69Ol54okn8rOf/SxtbW3Za6+9stNOO+XVr351fvazn+WJJ57IokWLsttuu+UFL3jBur97zWtek1e+8pU5+eSTa97KPNnwPfnpT3+ae+65Jy960YvW9TS78sor84IXvGBdo7UDDjggL3jBC/KNb3yj5vEV1bPdj9Ra7+P4pz71qXqHtM6LX/ziNDc354Mf/GCfLcrf+ta3ZsKECXnnO99Z8+H2+2vKlCl505veVPfE2TOpx/E92fSxoa2trcdn8uabbx7iCKt6H4/e8IY3bHDOe/7559cttu7v3bve9a4NYnvFK15Rs+1v7jHz6quvzt13353vfOc72XPPPfPFL34x2223Xc3i6tLf/W69zju79r8/+clPcuaZZ+aII47ImWeeOaQx9KW/39F77rknu+66a01jeqbz3iL0/tycz9App5ySK664Ig888EB+9KMfDUnP8n322ScHH3zwuu/mH/7wh7S1tRWiJ9lAz3/raWPHhR/96Ec57rjjcsopp/ToFVfr7W/MUJ+PD+S9PPHEE7N27dp1idmuEQO6jiv1iq0evwnr+Tv02fjLX/6S1tbWHsmyN77xjYWPe6j1dc30i1/8Yr3DSrLpY9cHPvCBrF27Nh/4wAcKE9epp56aBQsWrPtt2JXkq+UoNpsTW71+VyWbd95bhP1MEa+LPNP1hqlTp+aBBx7ID37wgxx77LH59a9/nZaWlpp2MEw2/72aOXNmbr/99lxzzTU1jae3TZ1b1jufRZVkO4Nuzz33TKlU2uhJw29+85s8//nPX/fl33///fODH/wgixYtynHHHbduKPda6zrx+u1vf5unnnoqra2t2X777fOVr3wl119/fRobG9PY2Jhx48bl0UcfHdLheLsuCHz5y1/e6A/y5z73udlzzz173Gp9EW1z4tqY++67L7vvvnuNIqvanPjGjh2bww47LB/84Adz55135i1veUtNetS88IUvTKlUyn333bfROnvttVeSbLTOb37zm7zwhS8c9NieydSpU3PEEUfkve9975Buty/P9H72dz8z2AbyOXrkkUfy8MMP1/x7kAzsfez6HDY3N9coqr596Utfypo1azJx4sR1+91LLrkkra2t+fOf/1zTbe+5555pamrKwoULs3Dhwrz61a9OUh22avfdd88dd9yRhQsX5jWvec0Gf9sVa63jK5VK+c1vftOj/AUveEH23HPPHsNsXnbZZfn1r3+9Lq7Gxsb8+te/rumxa5tttsljjz22Qflf/vKXbLPNNjXbbn88m+NWrfU+jk+YMKHeIa0zceLE3Hrrreno6MhrX/vaPhPuQ/EdGKjzzjsvd999d6699tp6h9KnoTgn6sumjg277757j89krY4H/T2Gjx8/foNz3p122qkmsW1K7/duhx122CC23kMgD6bNPWZOmjQpL3zhC3PUUUfli1/8Yo4//vghmyamP/vdep13du1/X/ziF+dTn/pUVq1alfPOO29IY+hLf7+je+6555Dshzd23tv1W6b3ecpQ2pzP0JFHHpmnnnoqp556al73utdl++23H5LYTj311FxzzTVZuXJlLr/88kyePDmHHHLIkGz7mTyb899axjSQ48JLX/rSfO1rX8utt95a03Pezfltnwz9+fhA3svx48dn1qxZ63qoXn755Zk1a9agn7v3N7Z6/Cas5+/QZ+PKK6/MU089lVe84hXr4j7nnHPyox/9qO6dJoqkr2umEydOrHdYSTZ97Oo6tg/1b61niuuEE05IqVTK1Vdfnfvvvz+33357zYeQ35zY9tprr03um2tpU+e9RdnPFO26yKauN4waNSotLS15z3vek+9973s5//zz85GPfCRPP/10zWLa3Pfqve99bz70oQ+tm+JmKG3s3LKzs7MQ+Swk26mB7bffPocddlguvvji/O1vf+ux7sEHH8zXv/71HH/88T1anh1wwAH54Q9/mNtvvz2vf/3rhyTh3nXiNXny5HXze3XNCXL33Xf3aP34rW99K9dee20eeeSRmseVVIcqefrpp/P000/niCOOGJJtbo6BxvXDH/4wv/rVr2ra2jwZWHxTpkzJE088MeixbLfddjniiCPy2c9+ts/n/8tf/pLDDz882223XT7xiU9ssP473/lO/v/27j2kqfePA/hbTaGL/ZFFdLfcF01tEVqRmWswZ5C0SFepZJQllFqR2mXZhbSMdRFtJGXrqhUFhWhkiLgKLfJSUdkNCQqiovIWqWj1+yMUL5tu1jk78nu/YP8sx97snM7nuZznOW/evBFlS6aeDh06hIKCApSXl4v+3V31dTwHcp0RkjXnUWZmJhwdHUV7trEtx7G5uRmnTp1CUFAQxowZI0K6P9rb23HhwgUcPXq02zX3yZMnmDJlCvLy8gTPoFQqYTKZYDKZsHDhws73FQoFbt++jQcPHoi2hWZPHee5wWDo8/x6+vQpKisrYTKZuv2Od+/eRUVFBZ49eyZIPi8vL1RWVvZ6v6Kiwm5bufUk1Xo6GEyePBl37tzB58+foVarB9UjCSZNmoT4+HjodDr8/PnT3nG6EatNZIkUarzUari17H3sBlozFQoFfH19ceDAAVFy2nrdlcI5uXfvXhw5cgQfPnywW4YOUvg9+tPR7lWr1Rg9ejT0er3Zv6uvrxclT3+/mZOTE1atWgWTySTqAPPy5cvh5OSES5cu4fz581izZo1krmtSa//+TV1wdnaGTqdDSkoKfvz4IUg+a/r29mqPD+RYxsTEoKysDIWFhSgrKxNswszabPboE0qhHzpQRqMRiYmJvXIrlUqubh9EpFrvLeVydXWFVqvF2bNncebMGUybNq3b/2t7ZYuMjMTr16+Rn5/f6+9///5tdnHAv9RXu1dK1xkpjovYMt7g7e2N9vZ2tLS0CJLF1mOVkpKC1NRUREVF4fLly4JkMsdS21Iq81kESHM5Cg16BoMBAQEBCAkJQVpaGqZOnYrnz58jOTkZEyZMMDvYI5fLO+9sDQ8Px7Vr1+Di4iJqbqPRiMWLF/d6dryPjw+2bNmC3NxcbN68WfAcTk5OnXfmOTk5mf2b1tZWfPz4sdt7Q4YMEXQrGFty/fz5E58+fUJRURHS09MRGhqK6OhowbL1l+/r16/QarVYu3Yt5HI5XF1dUVlZCb1eD41GI0ieEydOICAgAHPmzMH+/fshl8vR3t6O4uJiZGdn48WLFzh58iRWrlyJ2NhYxMfHY+TIkSgpKUFycjLCw8NFeb5mTzNmzEBUVBSOHz8u+nd31d/5NpDrzN+y9jxqamrCx48f0dbWhrdv3yI3NxenT59Geno6ZDLZP89lTl/H8fPnz2hpaUFTUxOqqqqg1+vx5csXXL9+XZRsHQoLC1FXV4eYmJheW1GHh4fDaDQiPj5e0AxKpRJxcXFoa2vrXHEB/BkE2rBhA1paWuw22Q78uY7Mnz8f/v7+2LdvH+RyORwdHVFRUYGXL1/Cz88PRqMRc+bMQVBQUK/Pz5s3D0ajERkZGf8828aNG2EwGBAXF4fY2FgMHToUxcXFMBqNuHjx4j//voGwpm5JUUNDAx4/ftztvVGjRmHy5Mmi5pg4cSJMJhOUSiXUajVu374tuW3jLdm5cydycnLw9u3bzueWic2ebSJLrKkNXbm5uXXelPov2aOG28LaY9dR77saNmyYILt7WFMzQ0NDzX42MTERWq0W27ZtE3xVl63XXSm0OxcuXAgfHx8cPHgQBoPBbjkAafweHfpr9w4fPhynT5+GVqvFkiVLsGnTJshkMnz58gVXr17Fu3fvRHmcjTW/WWpqKpKTk0Vb1Q4AI0aMwIoVK6DT6dDQ0CDac3etIcX279/UhcjISOh0Opw4cQJJSUmC5Ouvbx8SEmKX9vhAjqVCoYBMJkN0dDRkMpnZzGJms0ef0Jaa+urVq16f9/b2Fny80lx/oLGxEdXV1cjLy4OXl1e3f4uIiMCuXbuQnp4uSNvNGlLpwwwGUqr3XfWVKyYmBgsWLEBNTQ2SkpJEv4HMXLbly5fjxo0biIiIwO7duxEcHIwxY8bg6dOnyMjIQEJCgqALXvpq90phvMuanPZkbrxBo9EgIiIC/v7+cHNzQ01NDXQ6HZRKpWA7KA6kn7Vjx47OGzp//folymOKLLUtpTKfRVzZTgL577//UFlZCQ8PD6xYsQIeHh6IjY2FUqnE/fv3LW537uPjg9LSUjx8+BBhYWGCbg/S06dPn3Dz5k2zq1UcHBywbNkyUbfeGDlyZJ9FpKioCOPGjev2CgwMlEwud3d3LFq0CKWlpcjKykJ+fr4oBd1SvhEjRmDu3LnIyMhAUFAQfH19sXv3bqxfv16wQbWpU6eiuroaSqUSiYmJ8PX1RXBwMEpKSpCdnQ3gT9EuLS3F+/fvERQUBE9PTxw7dgy7du3ClStX7Lb6ITU1tdtzGH/9+gVA/G2s+jrfBnqd+RvWnkd79uzBuHHjIJPJsGrVKjQ0NKCkpET0Zwj3PI4dPD09MX78ePj5+eHQoUNQqVR49uwZvL29Rc1nNBqhUqnMTt6FhYXh8ePHqK6uFjSDUqlEc3MzZDIZxo4d2/m+QqFAU1MTPDw8MGnSJEEz9MXDwwOPHj2CSqXCzp07MXPmTPj7++P48eNISkrC3r17kZuba3GlZVhYGHJzcwWpp+7u7rh37x5qa2uhVqsxe/ZsnDt3DufOnYNWq/3n3zdQ/dUtKTKZTJg1a1a31549e+ySpWOLt/r6egQHB4u2UvFvjRo1Ctu3bxfs7ndr2LtNZElftaFn27KqqkqQDPao4baw9th11Puur23btgmSyZqa+e3bN7OfDQ0Nhbu7u2g3Mdh63bV0Topp69atyMnJwfv37+2aA5DG7wFY1+7VaDQoLy+Hs7MzIiMj4eXlhYiICDQ0NCAtLU20rP39Zi4uLhg9erTofauYmBjU1dVBpVJJarJJiu3fv6kLLi4uiI+Ph16vx/fv3wXJ11ffPjMz027t8YEey7Vr16Kurk7Q3R6szWaPPqEtNXXlypW92uVi7IRirj9w+PBheHt795poB4ClS5fi27dvKCgoEDybJVLqwwwGUqn3PVnKFRgYCE9PTzQ2NmL16tV2SNY7m4ODAy5duoRjx47hxo0bUCgUkMvl2LdvHzQajSiruC21e6Uw3tWVVMdFeo43hISE4Pz581Cr1Zg+fToSEhIQEhKCq1evCpZhoP2s5ORk6PV6rF69WrQFJz3bllKbz/p/5/Bbild1IiKSlCtXrmDdunWCDV4QERERERERERERERENNtxGnoiILGptbUVtbS0MBgNUKpW94xAREREREREREREREUkGt5EnIiKLbt26hblz52L48OHIysqydxwiIiIiIiIiIiIiIiLJ4DbyRERERERERERERERERERENuLKdiIiIiIiIiIiIiIiIiIiIhtxsp2IiIiIiIiIiIiIiIiIiMhGnGwnIiIiIiIiIiIiIiIiIiKyESfbiYiIiIiIiIiIiIiIiIiIbMTJdiIiIiIiIiIiIiIiIiIiIhtxsp2IiIiIiIiIiIiIiIiIiMhGnGwnIiIiIiIiIiIiIiIiIiKyESfbiYiIiIiIiIiIiIiIiIiIbPQ/y2nSP7Q589AAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9sAAAPzCAYAAAAXr2wFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxUZf//8fcAAm5YboiCaOWOpWEqGmZqeFuZRZZGqZWWhpZk3qapuZTZYoYtWFppppWltEoplhYuZRr01TQjl0CESLsFywQdzu+P+TExzgw7DMvr+XicBzPXdq4z2zXM51zXMRmGYQgAAAAAAAAAAAAAABSbm6s7AAAAAAAAAAAAAABAdUOwHQAAAAAAAAAAAACAEiLYDgAAAAAAAAAAAABACRFsBwAAAAAAAAAAAACghAi2AwAAAAAAAAAAAABQQgTbAQAAAAAAAAAAAAAoIYLtAAAAAAAAAAAAAACUEMF2AAAAAAAAAAAAAABKiGA7AAAAAAAAAAAAAAAlRLAdAAAAqCbatGkjk8mku+++29VdqRFSUlI0fvx4XXrppfL29pbJZJLJZNJHH33k6q6hDPr37y+TyaT+/fu7uisAXOzuu++WyWRSmzZtXN0VAAAAADUUwXYAAADo3Llzeu+99zRmzBh16tRJTZo0UZ06ddS0aVMFBwfrgQce0ObNm5WXl+fqrgLlIiUlRcHBwVq2bJkOHz6snJycUrWTH8i5cHNzc1OjRo3UpUsXjRs3Ttu3by/nIwDKT3JysqZNm6aePXuqcePG1s//zp07KywsTHPnztXWrVt19uxZV3e1Vvvmm280duxYde7cWT4+PvL09FTLli3VrVs3hYeHKzo6WomJiYzVVURaWprc3d1lMpl0zTXXlLh+aGioTCaTPDw8lJGRUaa+7NmzR4899ph69+6tVq1aycvLSz4+Prr00ks1fPhwvfbaazp16lSZ9gEAAADUVibDMAxXdwIAAACu8/HHH2vKlCk6fPhwkWXbt2+vxYsX64YbbqiEnuFCbdq00W+//aYxY8Zo5cqVru5OtXb//fdr+fLl8vDw0IIFC9SvXz81aNBAkhQYGKiGDRsWq527775bb731VrHKjh07Vq+99prc3d1L3e/aKv9xDgwM1NGjRwst279/f3399de65pprtHXr1krpX3W2YMECzZ07V+fPny+y7KOPPqqnn366EnqFgs6cOaMxY8Zo3bp1xSr/+eef6z//+U8F96p6KMlnR0W47rrrtHnzZplMJh0+fLjYM+yPHj2qSy65RIZh6D//+Y8+//zzUu0/NTVVDz74oD7++OMiy9atW1cPP/ywZs2apbp165ZqfwAAAEBt5OHqDgAAAMB1Fi5cqJkzZyr//MtBgwZp2LBh6ty5sy666CL9+eefOnjwoD799FPFx8frl19+0cyZMwm2u4grAgU11ebNmyVJN998s6ZNm1YubW7cuFEtW7aUJBmGoT/++EPx8fFasmSJ/vnnH73xxhtq2rQpwcoKRoC9+J577jnNmjVLktSoUSONHz9e11xzjfz8/JSbm6tjx47pu+++06effqqff/7Zxb2tvW677TbFxcVJki677DLdd999uuqqq3TxxRfr77//VnJysrZv365PPvlEmZmZLu4tCho9erQ2b94swzC0Zs0azZw5s1j1Vq9ebf1uNnr06FLtOzExUTfccIPS09MlWU4ku+OOO9S3b1/5+vpa3+ObN2/Whx9+qJMnT+qpp57Sbbfdpm7dupVqnwAAAEBtxMx2AACAWurtt9+2/oDbrFkzrV27Vtdee63T8nv37lVUVJROnjyppKSkSuolUDG8vLyUm5urxx57TAsWLCh1OwVnth85csThrMVvv/1W/fr107lz5+Tl5aW0tDQ1adKk1PusjVw9O7UmOnnypAICAvTPP//I399fO3bsUEBAgNPyu3bt0smTJzVkyJBK7CU+//xzXX/99ZKkwYMH6+OPP5aXl5fDsmazWR999JE6duyoLl26VGY3qyxXf3b8/fffatGihf766y916NCh2CetdOzYUQcPHpSPj48yMjJKPNM8MzNT3bp1swbaH3vsMT3++ONOXzunT5/WokWL9NRTT+n7778n2A4AAACUANdsBwAAqIWOHz+uBx54QJJUr149bd26tdBAuyR17dpV8fHxmjp1amV0EahQubm5kqQ6depU+L569+6t22+/XZKUk5Ojr776qsL3CRRl06ZN+ueffyRJ06dPLzTQLkk9e/Yk0O4CH330kfX2888/7zRYKknu7u669dZbCbRXIfXr19ett94qSTp48KC+//77Iuvs2rVLBw8elCQNHz68VEu6jx8/3hponzt3rhYsWFDoa6dhw4aaN2+evvzySzVq1KjE+wMAAABqM4LtAAAAtdALL7ygv//+W5I0b948de7cuVj13NzcdNdddznN37Ztm0aNGqU2bdrI29tbF110kbp3765Zs2bpjz/+cFpv69atMplMMplM2rp1qwzD0BtvvKGrr75aTZo0kY+Pj3r27Km3337bpl5ubq5effVV9e7dW40bN1bDhg3Vt29fvf/++073dfToUeu+8q97/sEHH2jQoEFq3ry56tatq44dO2r69On63//+V+jjsW/fPj355JMaPHiw/P395eXlpQYNGqhdu3YaM2aMvv3220Lrz50719oXScrKytITTzyh7t2766KLLrLpo2S5ZrvJZNLdd9/tsL2zZ8/qxRdfVP/+/dW0aVPVqVNHjRs3VseOHXX99dfrhRdeKHRm3x9//KFZs2ZZ9+/t7a02bdpo1KhR2rZtW6HHcmHffv75Z913331q06aNvLy85Ovrq1tuuaXIx6S48vLytHr1al1//fVq0aKFPD091axZM1177bWKiYmxBtMLWrlypc3jLVle//lphT22ZdW7d2/r7d9++816u6SvAUn666+/9PTTTyskJESNGzeWl5eX/P39NXz4cH322WeF9qN///4ymUzq37+/JEvw5/7771fbtm3l7e0tPz8/3Xbbbdq5c2exjqu83vN5eXl68803de2118rX11dubm66++67rY9P/uoBv/32m83zdeHz6egYK7rvkvT+++9r4MCBatasmerWrasOHTpo2rRp+vPPPwvtwy+//KIHH3xQQUFBatCggTw9PdWyZUt169ZN9957r9auXaucnJxC2yitgq/Dyy67rNTtFHxfFfb54uizt6C7775bJpPJujpEenq6Hn30UXXp0kUNGza0Pt733HOPTCaT6tWrp9OnTxfZvy5dushkMik4ONhpmfj4eN11111q27at6tatKx8fH11xxRWaNm2aNWBZ0Llz59SiRQuZTKZinYCwb98+67E/9dRTRZYvqLyep/x+lOeYlZ2drblz56pr165q0KCBfH19df3112vHjh029TIzMzVr1ix16dJF9evXV5MmTTRs2DAlJiY63deFr6ucnBwtWrRIV155pRo1aiQfHx/16tVLr7zyisxmc5keF0k6c+aMoqOjrZ9Bnp6eat68ucLCwrRixYoy7aPgMvAXfo9xpGCZ0iwh/9NPP1mv0X7FFVdYLxVRHP369VPbtm0d5hmGoXXr1unWW29VQECAvL29dfHFF6tnz5564okndOrUKaftXvj+PnXqlB5//HHra+Kiiy5Sv379tGbNmiL7+OGHH+rmm2+2voYbNmyoSy65RKGhoZo9e7Z27dpV5P6dKc7n2VdffaU77rjD+nlRr149tWnTRr1799bUqVM5oQ4AAKA2MgAAAFCr5OXlGc2aNTMkGfXr1zeysrLK3KbZbDYmTpxoSHK6NWrUyNi0aZPD+lu2bLGW27RpkzF06FCn7Tz00EOGYRjGn3/+afTr189puQULFjjc15EjR6xlVqxYYdx7771O2/Dz8zN++umnIvtc2DZ9+nSnj9ucOXOs5X755RejTZs2dvVXrFhhLR8YGGhIMsaMGWPX1vHjx43OnTsX2Z9HHnnEYV82btxo+Pj4FFp34sSJhtlsdli/YN/Wr19v1KtXz2Eb7u7uxnvvvef0MSmOkydPGn379i20r506dTKOHj1qU2/FihVFPj6OHtvCjBkzxlr3yJEjTsstXbrUWu7pp5+2ppf0NfDDDz8YLVu2LPQYwsPDjX/++cdhP6655hpDknHNNdcYcXFxRv369R224ebmZjz//PNOj6c83/Off/65MWjQIIfPRcHHp7DN2TFWdN83b95sREREOG3nsssuM9LT0x228/777xuenp5FHtvevXvt6hZ8Lc+ZM8fp81SY559/3trGCy+8UKo2LuxLYe+BCz97L5T/XgoMDDR27txpNG3a1O6x2LJli7F582br/ZUrVxbat8TERGtZR6/nv/76y7jlllsKffwbNGhgfPrpp3Z1//vf/1rfK8eOHSu0Hw8//LD186+oshcqOB4mJiaWqG5B5T1mpaSkGO3bt3f6Of/+++8bhmEYP/74o9GqVSuH5by8vIwvv/zS4b4Kvq5++OEHIzg42Gmfr776aiM7O9thOwVfV87s2rXLaR/zt549exoZGRnFf8ALyMvLM1q3bm1IMpo1a2acO3fOadnc3Fzraz8wMNDIy8sr8f4eeeQRa79ff/31UvX5QpmZmUWOu76+vsa3337rsH7B5+HAgQMOx7r8beLEiQ7bOH/+vHHbbbcV+RoODg4udP+FKerzLP+9XNjWpEmTIh9PAAAA1CzMbAcAAKhl9u/fb521GRoaKh8fnzK3OX36dL3yyiuSpLZt2+rVV1/Vrl27tGXLFj388MOqU6eOsrKydOONN+rHH38stK3Zs2fr008/1Z133qkNGzZoz549evfdd9WhQwdJ0osvvqjNmzfr7rvv1o4dO/TAAw9o06ZN2rNnj9544w21bNlSkvT444/rp59+KnRfMTExevPNN9WzZ0+9++672r17t+Li4jRixAhJlpmVgwcPVnZ2tl3d8+fPq379+rr99tv16quvauvWrfrhhx/0xRdf6Pnnn1dgYKAk6emnn9aKFSuKfAyHDx+utLQ0Pfjgg4qPj9fu3bttjrsoDz74oPbv3y9JuuuuuxQbG6tvv/1W33//vT777DPNmzdP3bt3d1g3KSlJQ4cOVXZ2turUqaOoqCht2bJFu3bt0muvvWad5fbKK69oxowZhfbj//7v/3TnnXfK19dXL7/8sr799lvt3LlTc+fOlbe3t8xms+6///5CZw4Xxmw268Ybb9T27dslSddcc40++OAD7d69W5988oluvvlmSdKBAwc0cOBA/fXXX9a6N998s/bu3au9e/da0x544AFr2t69e8t0/fbC/N///Z/1dv5r9EJFvQbS0tI0cOBAHT9+XCaTSffcc482btyo3bt3a9WqVbriiiskSbGxsRozZkyh/Tl+/LgiIiLk4eGhp556Sjt27NCOHTu0YMEC+fj4KC8vT4888ohiY2Md1i/P9/yjjz6qzZs366abblJsbKz27NmjuLg4DRkyRJGRkdq7d6+GDRtmfewKPl8XPp/FUZ59f/zxx/XOO+/o5ptvtun7DTfcIEn69ddf9fDDD9vV+/3333XPPfcoNzdXzZs31/z587Vp0yb98MMP2rFjh1avXq37779fTZs2LdGxlUTBz4MFCxYUeayV5a+//tKtt96qs2fPaubMmdq6dat27dqlN954Q35+frr22mut76GiZsHm57u5uWnkyJE2eWazWUOHDtWHH34ok8mkO+64w/pZsnPnTi1ZskStW7e29mfPnj029ceNGyfJssrGqlWrnPbh3LlzWr16tSQpLCxMrVq1KtHjUfB5mjRpUqk/O8t7zLrtttt07NgxzZgxQ19//bW+//57vfDCC/Lx8ZHZbNbYsWN15MgR3Xjjjfrnn3+0YMECbdu2Td99953mzZsnT09P5eTkWN8HhRk/frz27NmjESNGKC4uTrt379Y777yjq666SpJllYo777yzVI/L3r17de211yotLU3NmzfXnDlztHnzZiUmJmrjxo2aOHGiPDw8tGvXLg0bNkznzp0r8T5MJpN1VaA//vhDX3zxhdOyX3zxhU6cOCFJGjVqlN3KHcXx9ddfW2/feOONJa5/ob///lvXXHONtm/fLk9PT40fP14ff/yxfvjhByUkJGjBggVq0qSJfv/9dw0ZMsRmNYYLnTlzRjfddJNOnjypWbNmaevWrdq9e7eWL18uf39/SZbvGhs3brSru3TpUn3wwQeSpKuvvlorV65UQkKCEhMT9eWXX2rJkiX6z3/+I3d39zIfsyOfffaZXnjhBUnS5ZdfrqVLl2rr1q1KTEzU1q1b9eqrr+rWW28tdLl+AAAA1FCujvYDAACgcq1Zs8Y6++axxx4rc3v/93//Z7i5uRmSjKCgION///ufXZnPP//cWqZnz552+RfOuIuOjrYrk56ebp153axZM8NkMhkffvihXbkff/zRuq/8WfAFFZxdKcm4/vrrHc4ymz9/vrXM1KlT7fL/+OMPh8eaLycnx7juuuusM6nOnz9vV6bgLEE3NzenM2nzOZvZ/s8//xh16tQxJOcz1/OdPHnSLu2qq66yzkbcuHGjXf6ff/5pnTXv5uZm7Nu3z2nf9P9nlZ06dcquzOrVq61lFi9eXGg/nXn55ZetbYwePdrhrL/HHnvMWmbatGkO28nPL+2s4HzFmdl+9OhR62vXZDIZv/32mzWvJK+B4cOHFzpb8ezZs8a1115rLRMXF2dXJn/Wt2SZvb1//367Mvv27bP2t2XLlkZOTo5NfkW852fPnu30uA2j+LMSCx6jo5ntFdH3J5980q5MXl6eERYWZkgyPDw8jMzMTJv8N954w1rf0cz1fP/8849x5swZu/TymNluNpuNyy+/3NqOyWQyrrnmGuOJJ54wNm7cWOjnm7O+lMfMdskymzwpKclpW1OmTLF+ZjlbOSAvL8/w9/c3JBkDBw60y1+0aJEhyahTp47D94phWD77unTpYp09faH81VXatWvntK+xsbHW41q3bp3Tcs789ttvNiuF1K1b1wgPDzeio6ONnTt3GmfPni1WO+U9Znl5eTmcxbxhwwZrmWbNmhlNmzY1fv31V7tyr7zyirVcbGysXf6FK5E89dRTdmXOnTtnDB482Frms88+sytT2GdHXl6e9T1wxRVXGH/88YfDx6bgZ0JpZ4r//PPP1n7efvvtTssVnLl98ODBUu0r//tAy5YtS1X/QpMmTbKOGd9//73DMkePHjX8/PwMScZdd91ll1/w/X3RRRc5/B6RnJxseHt7G5KMm266yS4/NDTUkGT06tWr0NUBHH3PKY+Z7aNGjbK2cfr06RLtHwAAADUbwXYAAIBaZsmSJdYfEpcsWVLm9h544AFrezt37nRabty4cdZyu3btsskrGLzq1auX0zYK/lg7cuRIp+XyAyDdu3e3yysY8PHy8jLS0tIctmE2m42goCBDknHxxRcXO6BRUFJSknVfu3fvtssvGLi49957i2zPWbA9LS3N2s7HH39coj5+99131rrjx493Wm7btm3WcpGRkU77Jsn48ccfHbaRl5dnXQL9lltuKVE/83Xq1MmQZDRt2tTpssHnz583OnbsWOhzV9HB9ry8PCMzM9NYvXq1NeDn6HVb3NfA8ePHDXd3d0OSMXjwYKfljhw5Ynh4eBiS5USSCxUMti9atMhpO88884y1XP5y0PnK+z3fvn17h4G9gsor2F7efQ8ODna6zPMXX3zh9H25YMEC6+uzNMoj2G4YluDWZZddZhPULBh879q1qzFt2rRCg34VEWyfP39+of3es2ePtayjk7MMw/Z5evPNN23ycnNzrYHBhx9+uNB9xcXFWdtJTk62yVu1apU1b9u2bQ7r5y8D37RpU7sTV4rr008/NRo0aODwefLy8jJCQ0ONxYsXlznIV5Ix69FHH3XaTsHx4NVXX3VY5syZM9bAqqPnoODr6vLLL3d6CZPU1FRrcNnRZ15hnx2ffvppkeNWvttvv92QZPTt27fQcoXp2bOnIcnw9vZ2eELaqVOnrI9J7969S7WPrKws6zE5+g5UUn/88Ye1T0V9Z4yJiTEkywksf//9t01ewff3iy++6LSNkSNHOv1sbNeuXbHes46UR7A9/2SU0n5/AQAAQM3FMvIAAAC1zOnTp62369evX+b2Nm/eLEnq3Lmzevfu7bTcfffdZ1fHkQuX+i3o8ssvt97OX+rdkfzltA8fPuy0jGRZ0tfZkt5ubm7Wpbj/97//6Ycffii0rZycHKWkpGj//v3at2+f9u3bJ8MwrPlFLdFc2iVwJalJkyby9PSUJL399ts6f/58sesWfC7Gjh3rtFzfvn3VqVMnuzoX6tq1q83zVJDJZLIuiVzUc+PI8ePHdeDAAUnS7bffroYNGzos5+7urnvuuUdS8Z678tK2bVuZTCaZTCa5ubmpefPmuuuuu3Ts2DFJUu/evfXaa685rV/Ya2DLli0ym82SCn+e2rRpo+uuu06StHXrVmudC5lMpkKXmr/nnnusyxdf+HyX93t+xIgRFbbs74XKu+8RERFOl3kODg623r7w9e7n5yfJ8vr8+OOPi+74Be6++24ZlpPnNXfu3BLXz3fZZZcpKSlJTz/9tC699FKbPMMwtHfvXj377LPq3LmzHnnkkRJ9tpRFUZ+HV155pfXz6J133nFYJj/d29tb4eHhNnm7du1Senq6JMtnSWH69etnvb1z506bvOHDh+uiiy6SJIdLr//+++/6/PPPJVku75H/OV1SN954o/bv36+JEyeqcePGNnk5OTlKSEjQlClTdOmllxa6pP2F9coyZhVnrDaZTE4f37p166pdu3aSih4PxowZIzc3xz9f+fv7KywsTFLhn3mO5L/3OnTo4HTcypf/Ovj+++9LtI+C8j9zz549q3Xr1tnlf/DBBzp79qwkafTo0aXaR3l/x9u4caO1T8V9r5w7d87usgv5TCaTIiIinLaR/7n5v//9T6dOnbLJy//c/PTTT61L7Vem/P1/8803OnToUKXvHwAAAFUXwXYAAIBapmCA8u+//y5TWzk5OUpOTpYk9erVq9Cy3bt3V506dSRJ+/btc1quffv2TvPygxrFLVfwR2dH8q/36kzPnj2ttx31+e+//9bChQt1xRVXqH79+goMDFSXLl3UtWtXde3a1eZau0X9MFzUD/2F8fLysp58sG7dOl122WWaNm2a4uLilJWVVWjd/OPy9PR0ek33fPnPcXJystNr7Hbs2LHQNvIDRUU9N44UfA6Ker0VzC/s9VbR6tSpo6uuukqvvPKKEhIS5OPj47RsYa+B0hz7mTNnnAax2rZtW+j1wJs1a6Y2bdrY7bsi3vNlee2XREX0vbDXe8Gg6IWv95tuusn6OXXLLbdowIABeuGFF7Rnz55SB/JKq379+nr00Uf166+/6ueff9abb76phx56SD179rQGOM1msxYvXmy9TnlFatCggS655JIiy+UH5Hft2mV9XvPl5uZag5k33nijGjVqZJO/e/du6+2QkBDrSTKOtgYNGljLZmRk2LRTt25da+Dw/ffftxtTC578dO+99xZ5TIUJCAjQyy+/rN9//13fffedXnzxRd1zzz3WgLUknTp1SmPGjHF6zfXyHLOKMwY3bdpUF198cZHlymusLuwzz5H818HBgwcLfQ2YTCZNmjRJkuW19eeffxZ7HwWNHDnS5sS4C+WneXp6FnpCYWHK8zueZPte8fPzK/QxCgoKspa98L2Sr2nTpmrSpInT/RX2uZl/ssKvv/6qyy67TPfee6/effdd6wltFS3/BIiTJ08qKChII0eO1IoVK/Trr79Wyv4BAABQdRFsBwAAqGUKBth+//33MrX1v//9z3rb19e30LJ16tSx/sBa2A/V9erVc5pXcGZbccrl5eUV2qfmzZsXml/wmC7s89GjR9W1a1c99thj+r//+78iA2T//PNPofmFBSSK4+WXX9bQoUMlSb/99puee+453XDDDWrSpIl69uypRYsWKTs7265e/nE1btxYHh4ehe6jRYsWkiwzXgs+9wUV9rxIsgnelVTB56Co11t+Xy+sV5E2btyovXv3au/evfrpp5/022+/6fTp09q1a5ciIyOLfHwLew2U97EX9dovuJ+CbVTEe76sr/3icuXn1YWv9yZNmuiTTz5Rq1atZBiGtmzZoilTpqhHjx5q3Lixbr31Vn322WeF9rEidOjQQffcc4+WLFmi7777TikpKTYB9rfeekvbtm2r0D4UPKmqMAVnx144uz0uLs76fDuaJZ+ZmVmqvp05c8YuLX8VhNOnT2v9+vU2eflB76uuukpdu3Yt1T4v5OHhoZ49e+rBBx/Um2++qV9++UW7d+/W1VdfbS3zyCOP2AUqy3vMKs5rv7zGg7KM1YUpz9dBcTRu3Fg33HCDJMvs6N9++82a99tvvykhIUGSdMMNN9itYFBcPj4+1hOFyvodTyr/x6i4rwnJ/nVx77336rHHHpOHh4eysrK0YsUKRUREKCAgQJdddpmmTp1aqlVzimvgwIF6+eWXVbduXZ09e1Zr167Vvffeq3bt2snf318TJkwockUIAAAA1EwE2wEAAGqZ/CXWJZXr8trOllIuqOAStVVBUX0urL+jRo3SkSNHZDKZdO+992rTpk1KTU3V2bNnrcs7F/yhuKhjL+sy2j4+Pvrkk0/03Xff6ZFHHtGVV14pd3d3mc1mff/99/rvf/+rdu3a2S2DnK+6PX9lee4qSvv27RUUFKSgoCB17txZrVu3lpeXV7Hrl9dS6sU59vJ4vsvrNVNZS8gXVBVe76Ghofr111+1evVqRUREyN/fX5KUnZ2t2NhYDR06VP/5z39KHdgrD61atdLy5cttlgz/4IMPKnSfxX09tG3bVn369JFkH2zPv3/RRRfp+uuvt6tb8LN569at1pNkitoeeOABu7a6detmXfq64Izy7777Tvv375dU9lntRQkODtYXX3yhyy67TJLlxJILL39Q3mNWZaqoz/v84+3bt2+xXwN79+51evmZ4sifHW0YhtasWWNNX716tfU4SruEfL7873nHjx8vc8A9/zHy9PQs0WM0bNiwMu3XmQULFujXX3/VggULNGDAAGvw/tChQ3r++efVsWNHvfrqqxWyb0maOHGijh49qhdeeEHXX3+9ddWMtLQ0vfbaa+revbtmzZpVYfsHAABA1VT41AoAAADUOJ07d1bTpk114sQJJSQkKDs7u9ClrQtTcEaqsyVD850/f95mFnVVUNSP0AVndBXs888//2yd3TljxgwtWLDAYX1ns78rUs+ePa1L6p4+fVpbt27VihUr9OGHHyozM1O33nqrDh06pLp160r697hOnjyp8+fPFzr7Ov/xMplMlTYbuaCCz0FRr7eCz21Veb2VRcFj+P3339W6dWunZYtz7MUJwOS//gu2UZ3f81Wx797e3rrzzjuts68PHz6sDRs26OWXX9Yvv/yijRs3aubMmXrhhRcqrA/Fcd999+m9996TJLslkwvORC1sNZHyWNL6QnfddZd27Nhhnd3do0cPnT59Wp9++qkk6bbbbnN4nfSCy1h7enraLH9dGuPGjdOePXv09ddf6/Dhw7rkkkusgfe6devqjjvuKFP7xVG/fn3dcccdeuKJJyTZPk9Vecwqjt9//73QZeudjdVFadKkiX7//Xf98ccfZX4NFNcNN9xg/Q729ttv67HHHpNkCbbn9yl/9ntpXXPNNdbl3zds2FCmkz3y3yu5ublq0qSJ9brlrhQYGKjHHntMjz32mM6dO6ddu3bpgw8+0GuvvaazZ88qMjJSvXr1srksQnFXPCrO51Tz5s0VFRWlqKgo5eXlKSkpSbGxsXrllVd06tQpLViwQFdddVWFnXAAAACAqoeZ7QAAALWMyWTS3XffLcnyo+Lrr79e6ra8vLys14v97rvvCi2bmJioc+fOSVKl/ahdlO+//77Y+QX7/NNPP1lvF5zxeaGC1zp1hYYNG2ro0KGKjY3VQw89JElKT0+3WQY6/7hyc3OVmJhYaHu7du2SJLVr185hAKuiFXwOinq95ff1wnrVVWmOvV69emrbtq3DMkeOHNHJkyedtvHHH3/o6NGjdvt21Xu+ODPRi1IdPq8uueQSPfjgg/r++++tM93ff//9Stu/MwVn8hYMrku214guLFh78ODBcu/X7bffbl0yO382e2xsrM6ePSvJ8RLykmyCcJs2bSpzPyIiIlSvXj0ZhqG33npL//zzj/XkhPDwcLtrxlcUZ89TdRmznCnuWF2vXj1dcsklxW43/3Xwyy+/2CzpXpHq1KljfQ5+/vln7d69W99//71+/vlnSZbnJ/81XVr53/Ek6aWXXirVZVvylfd7pbzVqVNHffv2VXR0tPUzwDAMrVu3zqZc/ufUqVOnCm2vpJ9Tbm5uuvLKK/Xkk0/qyy+/tKZXhc9tAAAAVB6C7QAAALVQVFSUdenNxx9/3Pojb1Hy8vKss6/yDRo0SJK0f/9+ffvtt07rFgzq59dxtU2bNik9Pd1hXl5ent566y1JlhmxV155pTXv/Pnz1tuFLfFckUuZltTAgQOtt0+cOGG9XfC5eOONN5zW37lzp3VJZFc9fy1btlSnTp0kWZayvvCaxPnMZrNWrlwpyf65q6769+9vXV67sOcpJSVF8fHx1jrOViowDEOrVq1y2s7KlSutSxpf+Hy74j3v7e0tScrJySlTO9Xl88rHx0dXXXWVJNv3a3kqydLbBYOwF57AUfB+YcHaC5d6Lw9NmjTR4MGDJUnvvfee8vLyrEtz+/v7q1+/fg7rXX311dYZ0K+++qqys7PL1A8fHx/dfvvtkizXtV+3bp2ysrIkSWPHji1T2+XxPFXHMaugt99+2+njkJaWZg0CF/ycLI6bbrrJevvZZ58tWydLoOAy8W+//bbefvtth3mlFRQUZD22pKQkLVy4sNh1ExISdOTIEev9IUOGWIP/L7zwgs1rqapx9j1H+vf9cPr0aacB9dzcXK1fv77U+7/yyiutK6hU1Oc2AAAAqiaC7QAAALVQq1at9PLLL0uyzG6/5ppr9PXXXxdaZ//+/Ro8eLAWLVpkk/7AAw9YZ9Ddf//91gBDQZs2bbIGCHv27GkNIrlaTk6Oxo8f73DW19NPP629e/dKslxvt+C1t/Nnx0qyBuQvtHTpUn300Ufl22EnDh8+XOTzV3BGWsEgTMHn4/XXX7cGagvKysrS+PHjJVlmcTm6bnFlmThxoiTLzOsHH3zQYQBm3rx51hMD7rvvvhJdN72qatmypW655RZJ0saNG/Xmm2/alcnNzdW9995rnZE9adKkQtt84oknHAYdDhw4YF1m2s/Pz24pXFe85/OXLs7MzHR6kkVxVJXPq40bNzo90UeyvOfyVyhwtDrBypUrZTKZZDKZNHfu3FL1Yfny5br//vvtloW/0G+//aaZM2da71/4eggKCrIGrl9++WWHJ0S8++67ZQpiFSZ/9np6erreffddffXVV5Iss82drYjg7e2tqVOnSrJcUmDkyJGFLh99+vRp65jpzLhx4yRZHq9p06ZJsjx3/fv3L9HxXOiBBx7QU089Zb2sgTPx8fHW8ah+/fo2J4lUtTGrpJKSkvTcc8/ZpZ8/f1733XefcnNzJanEY9Ott95qPYFr6dKlhZ7IJEn79u2zXqKgLK666ip17txZkuUkkfxVEDp06GC9DExZvfbaa/L19ZUkzZ49W48//rj1cXLk77//1rx58zRw4ECbz8VWrVrpnnvukST9+OOPGj9+fKEB98zMzDKtmFSY1atXF7pvZ99zJMvS+vmef/55u7qGYWjy5Mk6fvy40/bXrl2rf/75x2n+7t27rat7OFtVBgAAADUT12wHAACope655x4dO3ZMjz/+uDIzM9W/f3+FhYVp2LBh6tSpky666CL9+eef+uWXX7RhwwZ98cUXMpvNuuKKK2za6dq1qx555BE999xz2rt3r6688ko9+uij6t69u86cOaNPP/1UL774osxmszw9PfXaa6+56Ijt9ejRQ59++qn69u2rhx9+WO3atVNmZqbeeust64/f/v7+mj17tk297t27KygoSPv27dPSpUt16tQp3XnnnfLz81NqaqpWr16tdevWqW/fvtq+fXuFH0dKSoquvfZade7cWbfccot69OihVq1aSZJSU1O1du1a65Km3bt3V69evWzqL1u2TL169VJubq5uuOEGPfjggxo6dKgaNGigxMREPf300zp8+LAkaerUqS5dln3ChAlas2aNdu7cqbfeeku//fabJk6cqEsuuUTp6el68803FRsbK0m69NJL7Z676uyFF17Ql19+qf/9738aN26ctm/frpEjR6px48b6+eeftWjRIiUlJUmyLK89ZMgQp23lv9Z79+6tRx991BoQ3Lp1q55++mlrsOWll16yu2SAK97zffr0kWRZcWLChAl68MEH1aRJE2sw9bLLLitWO1Xl8+rdd9/V0KFDdd111yksLMwasD59+rT27dunl19+WWlpaZJKHkAsrtzcXC1fvlzLly9Xnz59NHjwYAUHB8vX11dubm5KS0vTli1b9Prrr1tPcLjppptsZo9KkoeHh+6//349/fTT2rdvnwYMGKBp06apdevWysjI0AcffKC33npLISEh2rlzZ7kfx7Bhw9SwYUOdPn1akyZNsp485WwJ+XzTpk3Tl19+qS+//FKff/65OnfurAkTJigkJEQXXXSRdQbs1q1b9dFHH8nb27vQE1j69u2rTp066cCBA8rIyJBkGWfLegmEEydO6LXXXtO8efN0/fXXq3///urSpYuaNGmi8+fP69dff9Unn3yi999/33o96ieffFI+Pj7WNqramFVSPXr00KOPPqqkpCSNHj1azZs3V3JyshYvXmw9KWXo0KG68cYbS9Suu7u71q5dqz59+uivv/7SuHHj9MEHHygiIkIdOnRQnTp1lJmZqcTERH322WfasWOHHnnkEQ0dOrTMxzRq1CjNmDHD5nrz5TGrPV+LFi302Wef6cYbb9Tvv/+uJ554Qm+//bYiIiLUt29fNW/eXLm5uUpLS9NXX32l9evX648//nDY1vPPP68dO3Zo3759evPNN/Xtt9/q/vvvV3BwsBo0aKBTp07pp59+0ubNmxUXF6euXbtaTz4pT6NGjdLUqVMVHh6uPn366NJLL5W3t7d+//13xcfHa+nSpZKkBg0a6K677rKp2717d/Xu3Vvffvutli9frtzcXI0ZM0aNGjVScnKyXn31VW3durXQz6lHH31UEyZM0LBhw9SvXz+1b99e9evX18mTJ7Vt2za99NJLkiyvq/vuu6/cjx8AAABVmAEAAIBabf369UabNm0MSUVuXbp0MTZu3GjXhtlsNiIjIwut26hRI4d1DcMwtmzZYi23ZcsWp31dsWKFtdyRI0eclpszZ4613IWOHDlizVuxYoVx9913O+2zn5+f8dNPPzncR2JionHxxRc7rdu1a1fj+PHj1vtz5swpUT8dCQwMNCQZY8aMsUkv+PgVtnXq1Mnp47Zx40bDx8en0PoTJ040zGZzifp2oTFjxhiSjMDAwGIdsyMnT540+vbtW+SxHj161GkbhT0vJZF/PEW9Jp0p6Wvghx9+MFq2bFnosYeHhxv//POPw/rXXHONIcm45pprjM8++8yoV6+ewzbc3NyMRYsWOe1HZb3nC+6vd+/eTvfl7Bhd3Xdnr7OCr5vSvOcKfhaW9jW8du1aw9PTs1j9kGREREQYZ86ccdjW33//Xejzc8011xh79+61+ey9UFk+G0aPHm2zvy5duhSr3pkzZ+zqOtvatm1bZHuLFi2yeQ+lpKSU+Fgu9NBDDxX7OfL29jaeeeYZh+1U5phV3OeysPdqwdf4Dz/8YHTv3t1p3/v27WtkZ2eXui8//vij0a5du2I9xvPmzSv0mIorNTXVcHNzs7ZrMpmM3377rVzaLujo0aPGDTfcUKxjq1+/vjF37lzj7Nmzdu2cPHnS+M9//lOsdq699lq7+sV9TRT2Pa84+77oooucfnYfOHDAaN68udO6U6ZMKXT/+d9zinoPvvXWW4UeIwAAAGoelpEHAACo5cLDw3Xw4EGtWbNGd911lzp06KCLL75YHh4eaty4sa688kpFRkbqyy+/1N69exUWFmbXhpubm1555RV98803uvPOO9W6dWt5eXnJx8dH3bp102OPPabk5GSHdV1txYoVeuedd9S/f381adJEXl5eat++vaZNm6affvrJutTrhbp166akpCRNmDBBgYGBqlOnjho3bqyePXtq0aJF2rVrl3Xp64oWGhqqnTt3av78+RowYIAuu+wyNWzYUHXq1JGvr6/CwsL02muvKSkpSW3atHHYRlhYmH799Vc99thj6tatm3x8fOTl5aXWrVvrzjvvVEJCgl5++WXrEtyu1LhxY33zzTd6++239Z///Ee+vr6qU6eOmjRpov79++vll19WUlKSAgMDXd3Vcte9e3cdPHhQCxcuVK9evXTRRRfJ09NTLVu2VHh4uD755BOtX7/eeo3zwtxwww3avXu37rnnHgUGBsrT01PNmzfXrbfeqm3btumRRx5xWrey3/Nubm7atGmTZs2apSuuuEINGjQo9YzhqvB5FR0drfXr12vChAnWlSg8PT1Vt25dtW/fXnfffbe2bdtWoe+522+/XZmZmXr//fc1ceJEhYSEyNfXV56envL09FTTpk3Vu3dvPfzww9q9e7fWrFmjunXrOmyrXr16+uqrr7RgwQJ17dpVdevWtV53/uWXX9aXX36pBg0aVMhxSPaz2Iua1Z6vbt26euutt7R792498MAD6tKlixo1aiQPDw9ddNFF6tatm8aOHat169bpwIEDRbY3atQo6+3rrrtOAQEBJTsQB5YsWaLffvtNr732mu666y5169bNOkbXrVtXLVu21KBBg7RgwQL98ssv1iXsL1SVxqySuvjii7Vjxw4tXLhQ3bp1U8OGDdWgQQNdddVVeumll/T111+rYcOGpW7/8ssv1/79+/XWW2/p5ptvVkBAgLy9veXp6Sk/Pz/1799fs2bN0p49e/T444+XyzH5+/trwIAB1vv9+/dX69aty6XtggIDA/XZZ59p165devTRR9WzZ0/5+fnJ09NTDRo00CWXXKLhw4dr2bJlOn78uObMmePw0iuNGzfW559/ri+//FL33HOP2rVrpwYNGli/K1511VWaOHGi4uLiHF6Opjz8/PPPeumll3TzzTerc+fOatKkiTw8PHTxxRerd+/emjt3rg4ePOj0s7tjx4764Ycf9MADD1jHvGbNmuk///mPNmzY4HB5+YK++eYbvf766xoxYoS6du2qZs2aycPDQz4+Prryyiv13//+V/v37y/XFQoAAABQPZgMw8FFDgEAAIAa6ujRo9Zraa5YsUJ33323azsEVKL+/fvr66+/1jXXXKOtW7e6ujtAjfLll19ar5W+du1a3X777S7uUfW1cuVK67XCjxw54vREMQAAAABwNddPSwEAAAAAAKjm3nzzTUlSkyZNNGzYMBf3BgAAAABQGQi2AwAAAAAAlMHRo0f1wQcfSJLuueceh0txAwAAAABqHg9XdwAAAAAAAKC6SUtL05kzZ3TkyBFNnz5d586dk7e3t6KiolzdNQAAAABAJSHYDgAAAAAAUEJ33nmnvv76a5u0+fPnq1WrVi7qEQAAAACgshFsBwAAAAAAKKV69eqpffv2ioqK0pgxY1zdHQAAAABAJTIZhmG4uhMAAAAAAAAAAAAAAFQnbq7uAAAAAAAAAAAAAAAA1Q3BdgAAAAAAAAAAAAAASohgOwAAAAAAAAAAAAAAJUSwHQAAAAAAAAAAAACAEiLYDgAAAAAAAAAAAABACRFsBwAAAAAAAAAAAACghDxc3YGqKC8vT8ePH1fDhg1lMplc3R0AQA1nGIZOnz6tli1bys2N8+AqGuM8AKAyMc5XHsZ4AEBlYoyvPIzxAIDKVNIxnmC7A8ePH1dAQICruwEAqGVSU1Pl7+/v6m7UeIzzAABXYJyveIzxAABXYIyveIzxAABXKO4YT7DdgYYNG0qyPIg+Pj4u7g0AoKbLzs5WQECAdfxBxWKcBwBUJsb5ysMYDwCoTIzxlYcxHgBQmUo6xhNsdyB/KRofHx8GbwBApWEptMrBOA8AcAXG+YrHGA8AcAXG+IrHGA8AcIXijvFcTAYAAAAAAJRITEyM2rZtK29vbwUHByshIcFp2a1bt8pkMtltP//8s0259evXq3PnzvLy8lLnzp314YcfVvRhAAAAAABQJgTbAQAAAABAsa1du1ZRUVGaOXOmEhMTFRoaqiFDhiglJaXQegcPHlR6erp1a9eunTVv586dGjFihEaNGqUff/xRo0aN0u23367vvvuuog8HAAAAAIBSI9gOAAAAAACKbfHixRo7dqzGjRunTp06KTo6WgEBAVq6dGmh9Zo3b64WLVpYN3d3d2tedHS0rrvuOs2YMUMdO3bUjBkzNHDgQEVHR1fw0QAAAAAAUHoE2wEAAAAAQLHk5uZqz549CgsLs0kPCwvTjh07Cq3bvXt3+fn5aeDAgdqyZYtN3s6dO+3aHDx4cKFt5uTkKDs722YDAAAAAKAyEWwHAAAAAADFcuLECZnNZvn6+tqk+/r6KiMjw2EdPz8/LVu2TOvXr1dsbKw6dOiggQMH6ptvvrGWycjIKFGbkrRw4UI1atTIugUEBJThyAAAAAAAKDkPV3cAAAAAAABULyaTyea+YRh2afk6dOigDh06WO+HhIQoNTVVixYtUr9+/UrVpiTNmDFDU6ZMsd7Pzs4m4A4AAAAAqFTMbAcAAAAAAMXStGlTubu72804z8zMtJuZXpjevXsrOTnZer9FixYlbtPLy0s+Pj42GwAAAAAAlYlgOwAAAAAAKBZPT08FBwcrPj7eJj0+Pl59+vQpdjuJiYny8/Oz3g8JCbFrc9OmTSVqEwAAAACAysYy8gAAAAAAoNimTJmiUaNGqUePHgoJCdGyZcuUkpKiCRMmSLIs756WlqZVq1ZJkqKjo9WmTRt16dJFubm5Wr16tdavX6/169db25w8ebL69eunZ555RsOGDdPHH3+szZs3a9u2bS45RgAAAAAAioNgOwAAAAAAKLYRI0bo5MmTmj9/vtLT0xUUFKS4uDgFBgZKktLT05WSkmItn5ubq6lTpyotLU1169ZVly5dtGHDBl1//fXWMn369NF7772nWbNmafbs2br00ku1du1a9erVq9KPDwAAAACA4jIZhmG4uhNVTXZ2tho1aqSsrCyu+QYAqHCMO5WLxxsAUJkYdyoPjzUAoDIx7lQeHmsAQGUq6bjDNdsBAAAAAAAAAAAAACghlpEHAKCEzLlm7Y1J0JlD6ap3qZ+6RobK3dPd1d0CAADlwGyWEhKk9HTJz08KDZXcGeYBAKj2GOMBAKiZXD3GE2wHAKAEvp0Wq9aLJ6ub+Zg17fhUf6VMWaLez4a7sGcAAKCsYmOlyZOlY/8O8/L3l5YskcIZ5gEAqLYY4wEAqJmqwhjPMvIAABTTt9Ni1fO54WpRINAuSS3Maer53HB9Oy3WRT0DAABlFRsrDR9u+w+6JKWlWdJjGeYBAKiWGOMBAKiZqsoYT7AdAIBiMOea1XrxZEmG3eDpJkOSFLA4SuZcc6X3DQAAlI3ZbDkT3jDs8/LToqIs5QAAQPXBGA8AQM1UlcZ4gu0AABTD3pgEtTQfczpwuslQK3Oq9sYkVGq/XCkmJkZt27aVt7e3goODlZDg/Ni3bt0qk8lkt/3888/WMsuXL1doaKguvvhiXXzxxRo0aJB27dpl087cuXPt2mjRokWFHSMAoHZISLA/E74gw5BSUy3lAABA9cEYDwBAzVSVxniXB9td8UM9AAAldeZQermWq+7Wrl2rqKgozZw5U4mJiQoNDdWQIUOUkpJSaL2DBw8qPT3durVr186at3XrVt1xxx3asmWLdu7cqdatWyssLExpaWk2bXTp0sWmjb1791bIMQIAao/0AsO3qc55BT66QYGPbpCpznmn5QAAQNXHGA8AQM1UlcZ4lwbbXflDPQAAJVHvUr9yLVfdLV68WGPHjtW4cePUqVMnRUdHKyAgQEuXLi20XvPmzdWiRQvr5u7ubs1bs2aNIiMj1a1bN3Xs2FHLly9XXl6evvzyS5s2PDw8bNpo1qxZhRwjAKD28Cvm8F3ccgAAoGpgjAcAoGaqSmO8S4PtrvyhvqCcnBxlZ2fbbAAAFNQ1MlTH3f2VJ5PD/DyZlOYeoK6RoZXcs8qXm5urPXv2KCwszCY9LCxMO3bsKLRu9+7d5efnp4EDB2rLli2Flj1z5ozOnTunxo0b26QnJyerZcuWatu2rUaOHKnDhw8X2g7jPACgKKGhkr+/ZHI8zMtkkgICLOUAAED1wRgPAEDNVJXGeJcF2139Q31BCxcuVKNGjaxbQEBA8Q8EAFAruHu6K2XKEkmyC7jn30+dEi13T3e7ujXNiRMnZDab5evra5Pu6+urjIwMh3X8/Py0bNkyrV+/XrGxserQoYMGDhyob775xul+pk+frlatWmnQoEHWtF69emnVqlXauHGjli9froyMDPXp00cnT5502g7jPACgKO7u0hLLMG/3j3r+/ehoSzkAAFB9MMYDAFAzVaUx3mXBdlf+UH+hGTNmKCsry7qlpqaW7qAAADVa72fDteu/65Th3somPd3dX7v+u069nw13Uc9cw3TBtxjDMOzS8nXo0EH33XefrrzySoWEhCgmJkY33HCDFi1a5LD8s88+q3fffVexsbHy9va2pg8ZMkS33nqrunbtqkGDBmnDhg2SpLfeestpPxnnAQDFER4urVsntbxgiTl/f0t6eO0a5gEAqDEY4wEAqJmqyhjvUTm7ca6kP9R36NDBej8kJESpqalatGiR+vXrZ1c+/4f6rVu32vxQfyEvLy95eXmV8ggAALVJ72fDZX5ymJJiEnTmULrqXeqnrpGhalULZrTna9q0qdzd3e1OjsvMzLQ7ia4wvXv31urVq+3SFy1apKeeekqbN2/W5ZdfXmgb9evXV9euXZWcnOy0DOM8AKC4wsOl64ZIXedZ7n8eJw26ltluAABUd4zxAADUTFVhjHfZzPby/KHe0Q/s+T/Ub9q0qcgf6gEAKAl3T3d1i+qvPi/doW5R/WvF0vEFeXp6Kjg4WPHx8Tbp8fHx6tOnT7HbSUxMlJ+f7WmHzz33nJ544gl98cUX6tGjR5Ft5OTk6MCBA3btAABQWgX/IQ/tx4/wAADUFIzxAADUTK4e4102s73gD/W33HKLNT0+Pl7Dhg0rdjvOfqh/8skntXHjxmL9UA8AAEpmypQpGjVqlHr06KGQkBAtW7ZMKSkpmjBhgiTL0u1paWlatWqVJCk6Olpt2rRRly5dlJubq9WrV2v9+vVav369tc1nn31Ws2fP1jvvvKM2bdpYT8hr0KCBGjRoIEmaOnWqhg4dqtatWyszM1NPPvmksrOzNWbMmEp+BAAAAAAAAAAAtZ1Ll5F31Q/1AACgbEaMGKGTJ09q/vz5Sk9PV1BQkOLi4hQYGChJSk9PV0pKirV8bm6upk6dqrS0NNWtW1ddunTRhg0bdP3111vLxMTEKDc3V8OHD7fZ15w5czR37lxJ0rFjx3THHXfoxIkTatasmXr37q1vv/3Wul8AAAAAAAAAACqLS4PtrvqhHgAAlF1kZKQiIyMd5q1cudLm/rRp0zRt2rRC2zt69GiR+3zvvfeK2z0AAAAAAAAAACqUS4Ptkmt+qAcAAAAAAAAAAAAAoCzcXN0BAAAAAAAAAAAAAACqG4LtAAAAAAAAAAAAAACUEMF2AAAAAAAAAAAAAABKiGA7AAAAAAAAAAAAAAAlRLAdAAAAAAAAAAAAAIASItgOAAAAAAAAAAAAAEAJEWwHAAAAAAAAAAAAAKCECLYDAAAAAAAAAFALxMTEqG3btvL29lZwcLASEhKKVW/79u3y8PBQt27dbNL79+8vk8lkt91www3WMnPnzrXLb9GiRXkeFgAALkOwHQAAAAAAAACAGm7t2rWKiorSzJkzlZiYqNDQUA0ZMkQpKSmF1svKytLo0aM1cOBAu7zY2Filp6dbt3379snd3V233XabTbkuXbrYlNu7d2+5HhsAAK5CsB0AAAAAAAAAgBpu8eLFGjt2rMaNG6dOnTopOjpaAQEBWrp0aaH1xo8fr4iICIWEhNjlNW7cWC1atLBu8fHxqlevnl2w3cPDw6Zcs2bNyvXYAABwFYLtAAAAAAAAAADUYLm5udqzZ4/CwsJs0sPCwrRjxw6n9VasWKFDhw5pzpw5xdrPG2+8oZEjR6p+/fo26cnJyWrZsqXatm2rkSNH6vDhw07byMnJUXZ2ts0GAEBVRbAdAAAAAAAAAIAa7MSJEzKbzfL19bVJ9/X1VUZGhsM6ycnJmj59utasWSMPD48i97Fr1y7t27dP48aNs0nv1auXVq1apY0bN2r58uXKyMhQnz59dPLkSYftLFy4UI0aNbJuAQEBxTxKAAAqH8F2AAAAAAAAAABqAZPJZHPfMAy7NEkym82KiIjQvHnz1L59+2K1/cYbbygoKEg9e/a0SR8yZIhuvfVWde3aVYMGDdKGDRskSW+99ZbDdmbMmKGsrCzrlpqaWqz9AwDgCkWfjgYAAAAAAAAAAKqtpk2byt3d3W4We2Zmpt1sd0k6ffq0du/ercTERE2aNEmSlJeXJ8Mw5OHhoU2bNmnAgAHW8mfOnNF7772n+fPnF9mX+vXrq2vXrkpOTnaY7+XlJS8vr5IcHgAALsPMdgAAAAAAAAAAajBPT08FBwcrPj7eJj0+Pl59+vSxK+/j46O9e/cqKSnJuk2YMEEdOnRQUlKSevXqZVP+/fffV05Oju66664i+5KTk6MDBw7Iz8+vbAcFAEAVwMx2AAAAAAAAAABquClTpmjUqFHq0aOHQkJCtGzZMqWkpGjChAmSLMu3p6WladWqVXJzc1NQUJBN/ebNm8vb29suXbIsIX/zzTerSZMmdnlTp07V0KFD1bp1a2VmZurJJ59Udna2xowZUzEHCgBAJSLYDgAAAAAAAABADTdixAidPHlS8+fPV3p6uoKCghQXF6fAwEBJUnp6ulJSUkrc7i+//KJt27Zp06ZNDvOPHTumO+64QydOnFCzZs3Uu3dvffvtt9b9AgBQnRFsBwAAAAAAAACgFoiMjFRkZKTDvJUrVxZad+7cuZo7d65devv27WUYhtN67733Xkm6CABAtcI12wEAAAAAAAAAAAAAKCGC7QAAAAAAAAAAAAAAlBDBdgAAAAAAAAAAAAAASohgOwAAAAAAAAAAAAAAJUSwHQAAAAAAAAAAAACAEiLYDgAAAAAAAAAAAABACRFsBwAAAAAAAAAAAACghAi2AwAAAAAAAAAAAABQQgTbAQAAAAAAAAAAAAAoIYLtAAAAAAAAAAAAAACUEMF2AAAAAAAAAAAAAABKiGA7AAAAAAAAAAAAAAAlRLAdAAAAAAAAAAAAAIASItgOAAAAAAAAAAAAAEAJEWwHAAAAAAAAAAAAAKCECLYDAAAAAAAAAAAAAFBCBNsBAAAAAAAAAAAAACghgu0AAAAAAAAAAAAAAJQQwXYAAAAAAAAAAAAAAEqIYDsAAAAAAAAAAAAAACVEsB0AAAAAAAAAAAAAgBIi2A4AAAAAAAAAAAAAQAkRbAcAAAAAAAAAAAAAoIQItgMAAAAAAAAAAAAAUEIE2wEAAAAAAAAAAAAAKCGXB9tjYmLUtm1beXt7Kzg4WAkJCU7Lbt26VSaTyW77+eefbcqtX79enTt3lpeXlzp37qwPP/ywog8DAAAAAAAAAAAAAFCLuDTYvnbtWkVFRWnmzJlKTExUaGiohgwZopSUlELrHTx4UOnp6datXbt21rydO3dqxIgRGjVqlH788UeNGjVKt99+u7777ruKPhwAAAAAAAAAAAAAQC3h0mD74sWLNXbsWI0bN06dOnVSdHS0AgICtHTp0kLrNW/eXC1atLBu7u7u1rzo6Ghdd911mjFjhjp27KgZM2Zo4MCBio6OruCjAQAAAAAAAAAAAADUFi4Ltufm5mrPnj0KCwuzSQ8LC9OOHTsKrdu9e3f5+flp4MCB2rJli03ezp077docPHhwoW3m5OQoOzvbZgMAAAAAAAAAAAAAwBmXBdtPnDghs9ksX19fm3RfX19lZGQ4rOPn56dly5Zp/fr1io2NVYcOHTRw4EB988031jIZGRklalOSFi5cqEaNGlm3gICAMhwZAAAAAAAAAAAAAKDCmc3/3v4mwfZ+JXDpMvKSZDKZbO4bhmGXlq9Dhw667777dOWVVyokJEQxMTG64YYbtGjRolK3KUkzZsxQVlaWdUtNTS3l0QAAAAAAAAAAAAAAKlxsrNSp87/3rx8itWljSa8kLgu2N23aVO7u7nYzzjMzM+1mphemd+/eSk5Ott5v0aJFidv08vKSj4+PzQYAAAoXExOjtm3bytvbW8HBwUpISHBaduvWrTKZTHbbzz//bFNu/fr16ty5s7y8vNS5c2d9+OGHZdovAAAAAAAAAKAGio2Vhg+XjqfZpqelWdIrKeDusmC7p6engoODFR8fb5MeHx+vPn36FLudxMRE+fn5We+HhITYtblp06YStQkAAAq3du1aRUVFaebMmUpMTFRoaKiGDBmilJSUQusdPHhQ6enp1q1du3bWvJ07d2rEiBEaNWqUfvzxR40aNUq33367vvvuuzLvFwAAAAAAAABQQ5jN0uTJkmHY5+WnRUVVypLyLl1GfsqUKXr99df15ptv6sCBA3r44YeVkpKiCRMmSLIs7z569Ghr+ejoaH300UdKTk7WTz/9pBkzZmj9+vWaNGmStczkyZO1adMmPfPMM/r555/1zDPPaPPmzYqKiqrswwMAoMZavHixxo4dq3HjxqlTp06Kjo5WQECAli5dWmi95s2bq0WLFtbN3d3dmhcdHa3rrrtOM2bMUMeOHTVjxgwNHDhQ0dHRZdpvTk6OsrOzbTYAAAAAAAAAQDWVkCAdO+Y83zCk1FRLuQrm0mD7iBEjFB0drfnz56tbt2765ptvFBcXp8DAQElSenq6zUy13NxcTZ06VZdffrlCQ0O1bds2bdiwQeHh4dYyffr00XvvvacVK1bo8ssv18qVK7V27Vr16tWr0o8PAICaKDc3V3v27FFYWJhNelhYmHbs2FFo3e7du8vPz08DBw7Uli1bbPJ27txp1+bgwYOtbZZ2vwsXLlSjRo2sW0BAQJHHCAAAAAAAAACootLTrTfrncvR0Wdu1NFnblS9czlOy1UUjwrfQxEiIyMVGRnpMG/lypU296dNm6Zp06YV2ebw4cM1fPjw8ugeAAC4wIkTJ2Q2m+Xr62uT7uvrq4yMDId1/Pz8tGzZMgUHBysnJ0dvv/22Bg4cqK1bt6pfv36SpIyMjELbLM1+JctKOVOmTLHez87OJuAOAAAAAAAAANVVgUuMl0u5MnB5sB0AAFRPJpPJ5r5hGHZp+Tp06KAOHTpY74eEhCg1NVWLFi2yBtuL22ZJ9itJXl5e8vLyKvxgAAAAAAAAAADVQ2io5O8vpaU5vm67yWTJDw2t8K64dBl5AABQ/TRt2lTu7u52s8kzMzPtZp0Xpnfv3kpOTrbeb9GiRaFtltd+AQAAAAAAAADVmLu7tGSJ5faFE7Hy70dHW8pVMILtAACgRDw9PRUcHKz4+Hib9Pj4ePXp06fY7SQmJsqvwDI+ISEhdm1u2rTJ2mZ57RcAAJRdTEyM2rZtK29vbwUHByshIaFY9bZv3y4PDw9169bNLi86OlodOnRQ3bp1FRAQoIcfflhnz54t554DAAAAAGqE8HBp3TqpVSvbdH9/S3p4eKV0g2XkAQBAiU2ZMkWjRo1Sjx49FBISomXLliklJUUTJkyQZLlOelpamlatWiXJ8uN5mzZt1KVLF+Xm5mr16tVav3691q9fb21z8uTJ6tevn5555hkNGzZMH3/8sTZv3qxt27YVe78AUJOYzVJCgpSebrnEWGhopZyQDRRp7dq1ioqKUkxMjPr27avXXntNQ4YM0f79+9W6dWun9bKysjR69GgNHDhQv//+u03emjVrNH36dL355pvq06ePfvnlF919992SpBdeeKEiDwcAAAAAUF2Fh0vDhrn0BxSC7QAAoMRGjBihkydPav78+UpPT1dQUJDi4uIUGBgoSUpPT1dKSoq1fG5urqZOnaq0tDTVrVtXXbp00YYNG3T99ddby/Tp00fvvfeeZs2apdmzZ+vSSy/V2rVr1atXr2LvFwBqithYafJk6dixf9P8/S0rpFXSidmAU4sXL9bYsWM1btw4SZaT6jZu3KilS5dq4cKFTuuNHz9eERERcnd310cffWSTt3PnTvXt21cRERGSpDZt2uiOO+7Qrl27Kuw4AAAAAAA1gLu71L+/y3ZPsB0AAJRKZGSkIiMjHeatXLnS5v60adM0bdq0ItscPny4hg8fXur9AkBNEBsrDR8uGYZtelqaJb0SV0ID7OTm5mrPnj2aPn26TXpYWJh27NjhtN6KFSt06NAhrV69Wk8++aRd/tVXX63Vq1dr165d6tmzpw4fPqy4uDiNGTPGaZs5OTnKycmx3s/Ozi7FEQEAAAAAUHoE2wEAAACgijCbLTPaLwy0S5Y0k0mKirKskMaS8nCFEydOyGw2y9fX1ybd19dXGRkZDuskJydr+vTpSkhIkIeH458hRo4cqT/++ENXX321DMPQ+fPn9cADD9gF9QtauHCh5s2bV/qDAQAAAACgjNxc3QEAAAAAgEVCgu3S8RcyDCk11VIOcCWTyWRz3zAMuzRJMpvNioiI0Lx589S+fXun7W3dulULFixQTEyMfvjhB8XGxuqzzz7TE0884bTOjBkzlJWVZd1SU1NLf0AAAAAAAJQCM9sBAAAAoIpIT//3tqnOebWeslGSlLJ4sIxzHg7LAZWpadOmcnd3t5vFnpmZaTfbXZJOnz6t3bt3KzExUZMmTZIk5eXlyTAMeXh4aNOmTRowYIBmz56tUaNGWa8D37VrV/3999+6//77NXPmTLm52c8V8PLykpeXVwUcJQAAAAAAxcPMdgAAAACoIvz8yrccUN48PT0VHBys+Ph4m/T4+Hj16dPHrryPj4/27t2rpKQk6zZhwgR16NBBSUlJ6tWrlyTpzJkzdgF1d3d3GYYhw9F1FQAAAAAAqAIItgMAAABAFREaKvn7W67N7ojJJAUEWMoBrjJlyhS9/vrrevPNN3XgwAE9/PDDSklJ0YQJEyRZlncfPXq0JMnNzU1BQUE2W/PmzeXt7a2goCDVr19fkjR06FAtXbpU7733no4cOaL4+HjNnj1bN910k9zd3V12rAAA1DQxMTFq27atvL29FRwcrIRiXp9o+/bt8vDwULdu3WzSV65cKZPJZLedPXu2XPYLAEBVxzLyAAAAAFBFuLtLS5ZIw4fbB9zz70dHW8oBrjJixAidPHlS8+fPV3p6uoKCghQXF6fAwEBJUnp6ulJSUkrU5qxZs2QymTRr1iylpaWpWbNmGjp0qBYsWFARhwAAqI3M5n9vf5MgXduv1n2pWrt2raKiohQTE6O+ffvqtdde05AhQ7R//361bt3aab2srCyNHj1aAwcO1O+//26X7+Pjo4MHD9qkeXt7l3m/AABUByaD9djsZGdnq1GjRsrKypKPj4+ruwMAqOEYdyoXjzeA6iA2Vpo85bzcR/57zXb/Fh6KjpbCw13bt5ruTO55dX7c8rjvnz9Y9TzLdo46407l4bEGADgVG6szU/6rziNflCTtX3yr6vk2s5zlWMovV9Vx3OnVq5euvPJKLV261JrWqVMn3XzzzVq4cKHTeiNHjlS7du3k7u6ujz76SElJSda8lStXKioqSqdOnSr3/earjo81AKD6Kum4wzLyAAAAAFDFhIdL+w/8e//zOOnIEQLtAAAAJRYba1k26HiabXpamiU9NtY1/apkubm52rNnj8LCwmzSw8LCtGPHDqf1VqxYoUOHDmnOnDlOy/z1118KDAyUv7+/brzxRiUmJpZpvzk5OcrOzrbZAACoqgi2AwAAAEAVVHBV09Dat8opAABA2ZnN0uTJkqPFXfPToqJsl5ivoU6cOCGz2SxfX1+bdF9fX2VkZDisk5ycrOnTp2vNmjXy8HC82k/Hjh21cuVKffLJJ3r33Xfl7e2tvn37Kjk5udT7XbhwoRo1amTdAgICSnq4AABUGoLtAAAAAADku/B6rrXgx3cAAGqshATp2DHn+YYhpaZaytUSJpPJ5r5hGHZpkmQ2mxUREaF58+apffv2Ttvr3bu37rrrLl1xxRUKDQ3V+++/r/bt2+ull14q1X4lacaMGcrKyrJuqampxT08AAAqXdkuPgcAAAAAQE0RGytN+a/0/6/nquuHSGW8nisAAHCh9HTrzXrncnT0mRuLLFdTNW3aVO7u7nazyTMzM+1mnUvS6dOntXv3biUmJmrSpEmSpLy8PBmGIQ8PD23atEkDBgywq+fm5qarrrrKOrO9pPuVJC8vL3l5eZXqOAEAqGzMbAcAAAAAgOu5AgBQ8/j5lW+5aszT01PBwcGKj4+3SY+Pj1efPn3syvv4+Gjv3r1KSkqybhMmTFCHDh2UlJSkXr16OdyPYRhKSkqS3/9/TEu6XwAAqhtmtgMAAAAAareirudqMlmu5zpsmOTuXundAwAApRQaKvn7W06eczTOm0yW/NDQyu+bC0yZMkWjRo1Sjx49FBISomXLliklJUUTJkyQZFm+PS0tTatWrZKbm5uCgoJs6jdv3lze3t426fPmzVPv3r3Vrl07ZWdn68UXX1RSUpJeeeWVYu8XAIDqjGA7AAAAAKB2K8n1XPv3r7RuAQCAMnJ3t1wOZvhwS2C9YMA9/3rh0dG15mS6ESNG6OTJk5o/f77S09MVFBSkuLg4BQYGSpLS09OVkpJSojZPnTql+++/XxkZGWrUqJG6d++ub775Rj179iz2fgEAqM5MhuHolL7aLTs7W40aNVJWVpZ8fHxc3R0AQA3HuFO5eLwBVBdncs+r8+MbJUn75w9WPU/Ola4w774rRUQUXe6dd6Q77ihR04w7lYfHGgDgVGysZRWbgifXBQRYAu3h4aVqknGn8vBYAwAqU0nHHX6tAQAAAADUblzPFQCAmi083HI5mIQEKT3dMqaHhtaaGe0AAKDiEGwHAAAAANRuXM8VAICaz92dy8EAAIBy5+bqDgAAAAAA4FL513OV/r1+a75aeD1XAAAAAABQPATbAQAAAAAID5fWrZNatbJN9/e3pJfyeq4AAAAAAKDmYhl5AAAAAIUym7m8JWoJrucKAAAAAABKgGA7AAAAAKdiY6XJk6Vjx/5N8/e3rLjNRF/USFzPFQAAAAAAFBPLyAMAAABwKDZWGj7cNtAuSWlplvTYWNf0CwAAAAAAAKgKCLYDAAAAsGM2W2a0G4Z9Xn5aVJSlHAAAAAAAAFAbEWwHAAAAYCchwX5Ge0GGIaWmWsoBAAAAAAAAtRHXbAcASLLMTExIkNLTJT8/KTTUcslSAEDtlJ7+721TnfNqPWWjJCll8WAZ5zwclgMAAAAAAABqE4LtAADFxlqWCi44g9HfX1qyRAoPd12/AACu4+dXvuUAAAAAAACAmoZl5AGglouNlYYPt18qOC3Nkh4b65p+AQBcKzTUcuKVyeQ432SSAgIs5QAAAAAAAIDaiGA7ANRiZrNlRrth2Oflp0VFWcoBAGoXd3fLCieSfcA9/350NJccAQAAAAAAQO1FsB0AarGEBPsZ7QUZhpSaaikHAKh9wsOldeuklhcsFe/vb0nnUiMAAAAAAACozQi2A0Atlp7+721TnfMKfHSDAh/dIFOd807LAQBql/Bwaf+Bf+9/HicdOUKgHQAAAAAAACDYDgC1mJ9f0WVKUg4AUDMVXCo+tB9LxwMAAAAAAAASwXYAqNVCQy1LAV94Ld58JpMUEGApBwAAAAAAAAAAgH8RbAeAWszdXVqyxHL7woB7/v3oaGYwAgAAAAAAAAAAXIhgOwDUcuHh0rp1UssLlor397ekc01eAAAAAAAAAAAAewTbAQAKD5f2H/j3/udx0pEjBNoBAAAAAAAAAACcIdgOAJBku1R8aD+WjgcAAAAAAAAAACgMwXYAAAAAAAAAAAAAAErI5cH2mJgYtW3bVt7e3goODlZCQkKx6m3fvl0eHh7q1q2bXV50dLQ6dOigunXrKiAgQA8//LDOnj1bzj0HAAAAAAAAAAAAANRWLg22r127VlFRUZo5c6YSExMVGhqqIUOGKCUlpdB6WVlZGj16tAYOHGiXt2bNGk2fPl1z5szRgQMH9MYbb2jt2rWaMWNGRR0GAAAAAAAAAAAAAKCWcWmwffHixRo7dqzGjRunTp06KTo6WgEBAVq6dGmh9caPH6+IiAiFhITY5e3cuVN9+/ZVRESE2rRpo7CwMN1xxx3avXt3RR0GAAAAAAAAAAAAAKCWcVmwPTc3V3v27FFYWJhNelhYmHbs2OG03ooVK3To0CHNmTPHYf7VV1+tPXv2aNeuXZKkw4cPKy4uTjfccIPTNnNycpSdnW2zAQAAAAAAAAAAAADgjIerdnzixAmZzWb5+vrapPv6+iojI8NhneTkZE2fPl0JCQny8HDc9ZEjR+qPP/7Q1VdfLcMwdP78eT3wwAOaPn26074sXLhQ8+bNK/3BAAAAAAAAAAAAAABqFZcuIy9JJpPJ5r5hGHZpkmQ2mxUREaF58+apffv2TtvbunWrFixYoJiYGP3www+KjY3VZ599pieeeMJpnRkzZigrK8u6paamlv6AAAAAAAAAAAAAAAA1nstmtjdt2lTu7u52s9gzMzPtZrtL0unTp7V7924lJiZq0qRJkqS8vDwZhiEPDw9t2rRJAwYM0OzZszVq1CiNGzdOktS1a1f9/fffuv/++zVz5ky5udmfX+Dl5SUvL68KOEoAAAAAAAAAAAAAQE3kspntnp6eCg4OVnx8vE16fHy8+vTpY1fex8dHe/fuVVJSknWbMGGCOnTooKSkJPXq1UuSdObMGbuAuru7uwzDkGEYFXdAAAAAAAAAAAAAAIBaw2Uz2yVpypQpGjVqlHr06KGQkBAtW7ZMKSkpmjBhgiTL8u5paWlatWqV3NzcFBQUZFO/efPm8vb2tkkfOnSoFi9erO7du6tXr1769ddfNXv2bN10001yd3ev1OMDAAAAAAAAAAAAANRMLg22jxgxQidPntT8+fOVnp6uoKAgxcXFKTAwUJKUnp6ulJSUErU5a9YsmUwmzZo1S2lpaWrWrJmGDh2qBQsWVMQhAAAAAAAAAAAAAABqIZcG2yUpMjJSkZGRDvNWrlxZaN25c+dq7ty5NmkeHh6aM2eO5syZU049BAAAAAAAAAAAAADAlsuu2Q4AAAAAAAAAAAAAQHVFsB0AAJRKTEyM2rZtK29vbwUHByshIaFY9bZv3y4PDw9169bNJr1///4ymUx22w033GAtM3fuXLv8Fi1alOdhAQAAAAAAAABQLATbAQBAia1du1ZRUVGaOXOmEhMTFRoaqiFDhiglJaXQellZWRo9erQGDhxolxcbG6v09HTrtm/fPrm7u+u2226zKdelSxebcnv37i3XYwMAAAAAAAAAoDgItgMAgBJbvHixxo4dq3HjxqlTp06Kjo5WQECAli5dWmi98ePHKyIiQiEhIXZ5jRs3VosWLaxbfHy86tWrZxds9/DwsCnXrFmzcj02AAAAAAAAAACKg2A7gBrNbJa2bpXefdfy12x2dY+A6i83N1d79uxRWFiYTXpYWJh27NjhtN6KFSt06NAhzZkzp1j7eeONNzRy5EjVr1/fJj05OVktW7ZU27ZtNXLkSB0+fLjQdnJycpSdnW2zAQAAAAAAAKh5iAmgshFsB1BjxcZKbdpI114rRURY/rZpY0kHUHonTpyQ2WyWr6+vTbqvr68yMjIc1klOTtb06dO1Zs0aeXh4FLmPXbt2ad++fRo3bpxNeq9evbRq1Spt3LhRy5cvV0ZGhvr06aOTJ086bWvhwoVq1KiRdQsICCjGUQIAAAAAAACoTogJwBUItgOokWJjpeHDpWPHbNPT0izpDK5A2ZlMJpv7hmHYpUmS2WxWRESE5s2bp/bt2xer7TfeeENBQUHq2bOnTfqQIUN06623qmvXrho0aJA2bNggSXrrrbectjVjxgxlZWVZt9TU1GL1AQAAAAAAAED1QEwArkKwHUCNYzZLkydLhmGfl58WFcXyMUBpNW3aVO7u7naz2DMzM+1mu0vS6dOntXv3bk2aNEkeHh7y8PDQ/Pnz9eOPP8rDw0NfffWVTfkzZ87ovffes5vV7kj9+vXVtWtXJScnOy3j5eUlHx8fmw0AAAAAAABAzUBMAK5EsB1AjZOQYH/2WkGGIaWmWsoBKDlPT08FBwcrPj7eJj0+Pl59+vSxK+/j46O9e/cqKSnJuk2YMEEdOnRQUlKSevXqZVP+/fffV05Oju66664i+5KTk6MDBw7Iz8+vbAcFAAAAAAAAoFoiJgBXKvqiqQBQzaSn/3vbVOe8Wk/ZKElKWTxYxjkPh+UAlMyUKVM0atQo9ejRQyEhIVq2bJlSUlI0YcIESZal29PS0rRq1Sq5ubkpKCjIpn7z5s3l7e1tly5ZlpC/+eab1aRJE7u8qVOnaujQoWrdurUyMzP15JNPKjs7W2PGjKmYAwUAAAAAAABQpRETgCsRbAdQ4xR3gisTYYHSGzFihE6ePKn58+crPT1dQUFBiouLU2BgoCQpPT1dKSkpJW73l19+0bZt27Rp0yaH+ceOHdMdd9yhEydOqFmzZurdu7e+/fZb634BAAAAAAAA1C7EBOBKBNsB1DihoZK/v5SW5jjfZLLkh4ZWbr+AmiYyMlKRkZEO81auXFlo3blz52ru3Ll26e3bt5fh6OJK/997771Xki4CAAAAAAAAqOGICcCVuGY7gBrH3V1assRy22Syzcu/Hx1tKQcAAAAAAAAAAKovYgJwJYLtAGqk8HBp3Tqp5QXLwvj7W9LDw13TLwAAAAAAAMBVYmJi1LZtW3l7eys4OFgJCQnFqrd9+3Z5eHioW7duNunLly9XaGioLr74Yl188cUaNGiQdu3aZVNm7ty5MplMNluLFi3K65AAQBIxAbgOwXYANVZ4uLT/wL/3P4+TjhxhUAUAoMTM5n9vf5Ngex8AAABAtbB27VpFRUVp5syZSkxMVGhoqIYMGaKUlJRC62VlZWn06NEaOHCgXd7WrVt1xx13aMuWLdq5c6dat26tsLAwpV2wlnOXLl2Unp5u3fbu3VuuxwYAEjEBuAbBdgA1WsFlYUL7sUwMAAAlFhsrder87/3rh0ht2ljSAQAAAFQbixcv1tixYzVu3Dh16tRJ0dHRCggI0NKlSwutN378eEVERCgkJMQub82aNYqMjFS3bt3UsWNHLV++XHl5efryyy9tynl4eKhFixbWrVmzZuV6bACQj5gAKhvBdgAAAACOxcZKw4dLx21npSgtzZJOwB0AAACoFnJzc7Vnzx6FhYXZpIeFhWnHjh1O661YsUKHDh3SnDlzirWfM2fO6Ny5c2rcuLFNenJyslq2bKm2bdtq5MiROnz4sNM2cnJylJ2dbbMBAFBVEWwHAAAAYM9sliZPlgzDPi8/LSqKJeUBAACAauDEiRMym83y9fW1Sff19VVGRobDOsnJyZo+fbrWrFkjDw+PYu1n+vTpatWqlQYNGmRN69Wrl1atWqWNGzdq+fLlysjIUJ8+fXTy5EmHbSxcuFCNGjWybgEBAcU8SgAAKh/BdgAAAAD2EhKkY8ec5xuGlJpqKQcAAACgWjCZTDb3DcOwS5Mks9msiIgIzZs3T+3bty9W288++6zeffddxcbGytvb25o+ZMgQ3XrrreratasGDRqkDRs2SJLeeusth+3MmDFDWVlZ1i01NbW4hwcAQKUr3uloAAAAAGqX9HTrzXrncnT0mRuLLAcAAACgamratKnc3d3tZrFnZmbazXaXpNOnT2v37t1KTEzUpEmTJEl5eXkyDEMeHh7atGmTBgwYYC2/aNEiPfXUU9q8ebMuv/zyQvtSv359de3aVcnJyQ7zvby85OXlVdJDBADAJZjZDgAAAMCen1/5lgMAAADgMp6engoODlZ8fLxNenx8vPr06WNX3sfHR3v37lVSUpJ1mzBhgjp06KCkpCT16tXLWva5557TE088oS+++EI9evQosi85OTk6cOCA/PhfAgBQAzCzHQAAAIC90FDJ319KS3N83XaTyZIfGlr5fQMAAABQYlOmTNGoUaPUo0cPhYSEaNmyZUpJSdGECRMkWZZvT0tL06pVq+Tm5qagoCCb+s2bN5e3t7dN+rPPPqvZs2frnXfeUZs2bawz5xs0aKAGDRpIkqZOnaqhQ4eqdevWyszM1JNPPqns7GyNGTOmko4ctZnZbLn6WXq65Vzx0FDJ3d3VvQJQkxBsBwAAAGDP3V1askQaPtwSWC8YcM+/pmN0NL9SAAAAANXEiBEjdPLkSc2fP1/p6ekKCgpSXFycAgMDJUnp6elKSUkpUZsxMTHKzc3V8OHDbdLnzJmjuXPnSpKOHTumO+64QydOnFCzZs3Uu3dvffvtt9b9AhUlNlaaPFk6duzfNH9/y7+64eGu6xeAmoVgOwAAAADHwsOldesc/zoRHc2vEwAAAEA1ExkZqcjISId5K1euLLTu3LlzrQH0fEePHi1yn++9914xeweUn9hYy7njFy7UlpZmSV+3jn9pAZQPgu0AAAAAnAsPl4YNY909AAAAAEC1YDZbzhl3dEU0w7As1hYVZflXl39tAZQVwXYAAAAAhXN3l/r3d3UvAAAAAAAoUkKC7eJsFzIMKTXVUo5/dQGUFcF2AAAAAAAAAAAA1Ajp6f/eNtU5r9ZTNkqSUhYPlnHOw2E5ACgtN1d3AAAAAAAAAAAAACgPfn7lWw4ACkOwHQAAAAAAAAAAADVCaKjk72+5NrsjJpMUEGApBwBlRbAdAAAAAAAAAAAANYK7u7RkieX2hQH3/PvR0ZZyAFBWBNsBAAAAAAAAAABQY4SHS+vWSS0vWCre39+SHh7umn4BqHkItgMAAAAAAAAAAKBGCQ+X9h/49/7ncdKRIwTaAZQvgu0AAAAAAAAAAACocQouFR/aj6XjAZQ/gu0AAAAAAKBEYmJi1LZtW3l7eys4OFgJCQnFqrd9+3Z5eHioW7dudnmnTp3SxIkT5efnJ29vb3Xq1ElxcXHl3HMAAAAAAMqPh6s7AAAAAAAAqo+1a9cqKipKMTEx6tu3r1577TUNGTJE+/fvV+vWrZ3Wy8rK0ujRozVw4ED9/vvvNnm5ubm67rrr1Lx5c61bt07+/v5KTU1Vw4YNK/pwAAAAAAAoNWa2A6jZzOZ/b3+TYHsfAAAAQIktXrxYY8eO1bhx49SpUydFR0crICBAS5cuLbTe+PHjFRERoZCQELu8N998U3/++ac++ugj9e3bV4GBgbr66qt1xRVXVNRhAAAAAABQZgTbAdRcsbFSp87/3r9+iNSmjSUdAAAAQInl5uZqz549CgsLs0kPCwvTjh07nNZbsWKFDh06pDlz5jjM/+STTxQSEqKJEyfK19dXQUFBeuqpp2Qu5GTZnJwcZWdn22wAAAAAAFQmgu0AaqbYWGn4cOl4mm16WpolnYA7AAAAUGInTpyQ2WyWr6+vTbqvr68yMjIc1klOTtb06dO1Zs0aeXg4vprd4cOHtW7dOpnNZsXFxWnWrFl6/vnntWDBAqd9WbhwoRo1amTdAgICSn9gAAAAAACUAsF2ADWP2SxNniwZhn1eflpUFEvKAwAAAKVkMpls7huGYZcmSWazWREREZo3b57at2/vtL28vDw1b95cy5YtU3BwsEaOHKmZM2cWujT9jBkzlJWVZd1SU1NLf0AAAAAAAJSC41PKAaA6S0iQjh1znm8YUmqqpVz//pXWLQAAAKC6a9q0qdzd3e1msWdmZtrNdpek06dPa/fu3UpMTNSkSZMkWQLrhmHIw8NDmzZt0oABA+Tn56c6derI3d3dWrdTp07KyMhQbm6uPD097dr28vKSl5dXOR8hAAAAAADFR7AdQM2Tnm69We9cjo4+c2OR5QAAAAAUzdPTU8HBwYqPj9ctt9xiTY+Pj9ewYcPsyvv4+Gjv3r02aTExMfrqq6+0bt06tW3bVpLUt29fvfPOO8rLy5Obm2URvl9++UV+fn4OA+0AAAAAAFQFLCMPoObx8yvfcrVFwWX1v0lgmX0AAAA4NGXKFL3++ut68803deDAAT388MNKSUnRhAkTJFmWdx89erQkyc3NTUFBQTZb8+bN5e3traCgINWvX1+S9MADD+jkyZOaPHmyfvnlF23YsEFPPfWUJk6c6LLjBAAAAACgKATbAdQ8oaGSv7/k4JqRkizpAQGWcrCIjZU6df73/vVDpDZtLOkAAABAASNGjFB0dLTmz5+vbt266ZtvvlFcXJwCAwMlSenp6UpJSSlRmwEBAdq0aZO+//57XX755XrooYc0efJkTZ8+vSIOAQAAAACAcuHyYHtMTIzatm0rb29vBQcHKyEhoVj1tm/fLg8PD3Xr1s0u79SpU5o4caL8/Pzk7e2tTp06KS4urpx7DqDKcneXliyx3L4w4J5/PzraUg6WgPrw4dLxNNv0tDRLOgF3AAAAXCAyMlJHjx5VTk6O9uzZo379+lnzVq5cqa1btzqtO3fuXCUlJdmlh4SE6Ntvv9XZs2d16NAhPfbYYzbXcAcAAAAAoKpxabB97dq1ioqK0syZM5WYmKjQ0FANGTKkyDPgs7KyNHr0aA0cONAuLzc3V9ddd52OHj2qdevW6eDBg1q+fLlatWpVUYcBoCoKD5fWrZMufO/7+1vSw8Nd06+qxmyWJk+WDMM+Lz8tKool5QEAAAAAAAAAAC7g4cqdL168WGPHjtW4ceMkSdHR0dq4caOWLl2qhQsXOq03fvx4RUREyN3dXR999JFN3ptvvqk///xTO3bsUJ06dSTJupQdgFomPFwaNkxKSJDS0y3XaA8NZUZ7QQkJ0rFjzvMNQ0pNtZTr37/SugUAAAAAAAAAAFDVuWxme25urvbs2aOwsDCb9LCwMO3YscNpvRUrVujQoUOaM2eOw/xPPvlEISEhmjhxonx9fRUUFKSnnnpK5kJmZebk5Cg7O9tmA1BDuLtbgsR33GH5S6DdVnq69Wa9czk6+syNOvrMjap3LsdpOQAAAAAAAAAAALgw2H7ixAmZzWb5+vrapPv6+iojI8NhneTkZE2fPl1r1qyRh4fjSfmHDx/WunXrZDabFRcXp1mzZun555/XggULnPZl4cKFatSokXULCAgo/YEBQHXi51e+5QAAAAAAAAAAAGoJl16zXZJMJpPNfcMw7NIkyWw2KyIiQvPmzVP79u2dtpeXl6fmzZtr2bJlCg4O1siRIzVz5kwtXbrUaZ0ZM2YoKyvLuqWmppb+gACgOgkNtVzH3sHnriRLekCApRwAAAAAAAAAAACsXHbN9qZNm8rd3d1uFntmZqbdbHdJOn36tHbv3q3ExERNmjRJkiWwbhiGPDw8tGnTJg0YMEB+fn6qU6eO3AssFd2pUydlZGQoNzdXnp6edm17eXnJy8urnI8QAKoBd3dpyRJp+HBLYN0w/s3LD8BHR7P8PgAAAAAAAAAAwAVcNrPd09NTwcHBio+Pt0mPj49Xnz597Mr7+Pho7969SkpKsm4TJkxQhw4dlJSUpF69ekmS+vbtq19//VV5eXnWur/88ov8/PwcBtoBoNYLD5fWrZNatbJN9/e3pIeHu6ZfAAAAAAAAAAAAVZjLZrZL0pQpUzRq1Cj16NFDISEhWrZsmVJSUjRhwgRJluXd09LStGrVKrm5uSkoKMimfvPmzeXt7W2T/sADD+ill17S5MmT9eCDDyo5OVlPPfWUHnrooUo9NgCoVsLDpWHDpIQEKT3dco320FBmtAMAAAAAAAAAADhRqmD733//raefflpffvmlMjMzbWaRS9Lhw4eL1c6IESN08uRJzZ8/X+np6QoKClJcXJwCAwMlSenp6UpJSSlR3wICArRp0yY9/PDDuvzyy9WqVStNnjxZjz76aInaAYBax91d6t/f1b1ABSuvMRwAAFQ/fA8AAKB6YgwHAKDqKlWwfdy4cfr66681atQo+fn5yZR/Xd9SiIyMVGRkpMO8lStXFlp37ty5mjt3rl16SEiIvv3221L3CQCAmqo8x3AAAFC98D0AAIDqiTEcAICqq1TB9s8//1wbNmxQ3759y7s/AACgAjGGAwBQe/E9AACA6okxHACAqsutNJUuvvhiNW7cuLz7AgAAKhhjOAAAtRffAwAAqJ4YwwEAqLpKFWx/4okn9Pjjj+vMmTPl3R8AAFCBGMMBAKi9+B4AAED1xBgOAEDVVapl5J9//nkdOnRIvr6+atOmjerUqWOT/8MPP5RL5wAAQPliDAcAoPbiewAAANUTYzgAAFVXqYLtN998czl3AwAAVAbGcAAAai++BwAAUD0xhgMAUHWVKtg+Z86c8u4HAACoBIzhAADUXnwPAACgemIMBwCg6ipVsD3fnj17dODAAZlMJnXu3Fndu3cvr34BAIAKxBgOAEDtxfcAAACqJ8ZwAACqHrfSVMrMzNSAAQN01VVX6aGHHtKkSZMUHBysgQMH6o8//ijvPgIAgHJSnmN4TEyM2rZtK29vbwUHByshIaFY9bZv3y4PDw9169bNJn3lypUymUx229mzZ8tlvwAA1Hb8Lw8AQPXEGA4AQNVVqmD7gw8+qOzsbP3000/6888/9b///U/79u1Tdna2HnroofLuIwAAKCflNYavXbtWUVFRmjlzphITExUaGqohQ4YoJSWl0HpZWVkaPXq0Bg4c6DDfx8dH6enpNpu3t3eZ9wsAAPhfHgCA6ooxHACAqqtUwfYvvvhCS5cuVadOnaxpnTt31iuvvKLPP/+83DoHAADKV3mN4YsXL9bYsWM1btw4derUSdHR0QoICNDSpUsLrTd+/HhFREQoJCTEYb7JZFKLFi1stvLYLwBUS2bzv7e/SbC9D5QC/8sDAFA9MYYDAFB1lSrYnpeXpzp16til16lTR3l5eWXuFAAAqBjlMYbn5uZqz549CgsLs0kPCwvTjh07nNZbsWKFDh06pDlz5jgt89dffykwMFD+/v668cYblZiYWOb95uTkKDs722YDgCovNlbq1Pnf+9cPkdq0saQDpcT/8gAAVE+M4QAAVF2lCrYPGDBAkydP1vHjx61paWlpevjhh50uCwsAAFyvPMbwEydOyGw2y9fX1ybd19dXGRkZDuskJydr+vTpWrNmjTw8PByW6dixo1auXKlPPvlE7777rry9vdW3b18lJyeXer+StHDhQjVq1Mi6BQQEFOs4AcBlYmOl4cOl42m26WlplnQC7igl/pcHAKB6YgwHAKDqKlWw/eWXX9bp06fVpk0bXXrppbrsssvUtm1bnT59Wi+99FJ59xEAAJST8hzDTSaTzX3DMOzSJMlsNisiIkLz5s1T+/btnbbXu3dv3XXXXbriiisUGhqq999/X+3bt7frV3H3m2/GjBnKysqybqmpqcU5PABwDbNZmjxZMgz7vPy0qCiWlEep8L88AADVE2M4AABVl+OpZUUICAjQDz/8oPj4eP38888yDEOdO3fWoEGDyrt/AACgHJXHGN60aVO5u7vbzSbPzMy0m3UuSadPn9bu3buVmJioSZMmSbIsgWcYhjw8PLRp0yYNGDDArp6bm5uuuuoq68z2ku43n5eXl7y8vIp9fADgUgkJ0rFjzvMNQ0pNtZTr37/SuoWagf/lAQConhjDAQCoukoVbM933XXX6brrriuvvgAAgEpSljHc09NTwcHBio+P1y233GJNj4+P17Bhw+zK+/j4aO/evTZpMTEx+uqrr7Ru3Tq1bdvW4X4Mw1BSUpK6du1aqv0CQLWUnm69We9cjo4+c2OR5YCS4n95AACqJ8ZwAACqnmIH21988UXdf//98vb21osvvlho2YceeqjMHQMAAOWjIsbwKVOmaNSoUerRo4dCQkK0bNkypaSkaMKECZIsS7enpaVp1apVcnNzU1BQkE395s2by9vb2yZ93rx56t27t9q1a6fs7Gy9+OKLSkpK0iuvvFLs/QJAtefnV77lUOvxvzwAANUTYzgAANVDsYPtL7zwgu688055e3vrhRdecFrOZDIxuAMAUIVUxBg+YsQInTx5UvPnz1d6erqCgoIUFxenwMBASVJ6erpSUlJK1M9Tp07p/vvvV0ZGhho1aqTu3bvrm2++Uc+ePYu9XwCo9kJDJX9/KS3N8XXbTSZLfmho5fcN1RL/ywMAUD1V1BgeExOj5557Tunp6erSpYuio6MVWozvltu3b9c111yjoKAgJSUl2eStX79es2fP1qFDh3TppZdqwYIFNivSlWW/AABUdSbDcPQLTu2WnZ2tRo0aKSsrSz4+Pq7uDgCghmPcqVw83gCqvNhYafhwy+2C/66ZTJa/69ZJ4eGV3y+UCuNO5eGxBgBUpuo47qxdu1ajRo1STEyM+vbtq9dee02vv/669u/fr9atWzutl5WVpSuvvFKXXXaZfv/9d5tg+86dOxUaGqonnnhCt9xyiz788EM9/vjj2rZtm3r16lWm/earjo81qo4zuefV+fGNkqT98wernmeZrq6MaoDnHGVV0nHHrTQ7mT9/vs6cOWOX/s8//2j+/PmlaRIAAFQCxnAAqAbCwy0B9VatbNP9/Qm0o0z4HgAAQPVUXmP44sWLNXbsWI0bN06dOnVSdHS0AgICtHTp0kLrjR8/XhEREQoJCbHLi46O1nXXXacZM2aoY8eOmjFjhgYOHKjo6Ogy7xcAgOqgVMH2efPm6a+//rJLP3PmjObNm1fmTgEAgIrBGA4A1UR4uHT0qLRli/TOO5a/R44QaEeZ8D0AAIDqqTzG8NzcXO3Zs0dhYWE26WFhYdqxY4fTeitWrNChQ4c0Z84ch/k7d+60a3Pw4MHWNkuz35ycHGVnZ9tsAABUVaVaO8EwDJnylzAs4Mcff1Tjxo3L3CkAAFAxGMMBoBpxd5f693d1L1CD8D0AAIDqqTzG8BMnTshsNsvX19cm3dfXVxkZGQ7rJCcna/r06UpISJCHh+NQQkZGRqFtlma/Cxcu5ERAAEC1UaJg+8UXXyyTySSTyaT27dvbDPBms1l//fWXJkyYUO6dBAAAZcMYDgBA7cX3AAAAqqeKGMMvDNo7C+SbzWZFRERo3rx5at++fZnbLO5+JWnGjBmaMmWK9X52drYCAgIK7QPglNn87+1vEqRr+1lObAaAclKiYHt0dLQMw9C9996refPmqVGjRtY8T09PtWnTxuF1WwAAgGsxhgMAUHvxPQAAgOqpPMfwpk2byt3d3W42eWZmpt2sc0k6ffq0du/ercTERE2aNEmSlJeXJ8Mw5OHhoU2bNmnAgAFq0aJFoW2WdL+S5OXlJS8vr2IdF1Co2Fhpyn+lkS9a7l8/RPJtJi1ZwiW6AJSbEgXbx4wZo/Pnz0uSBg0aJH9//wrpFAAAKF+M4QAA1F58DwAAoHoqzzHc09NTwcHBio+P1y233GJNj4+P17Bhw+zK+/j4aO/evTZpMTEx+uqrr7Ru3Tq1bdtWkhQSEqL4+Hg9/PDD1nKbNm1Snz59SrVfoNzExkrDh0senrbpaWmW9HXrCLgDKBclvma7h4eHIiMjdeDAgYroDwAAqCCM4QAA1F58DwAAoHoqzzF8ypQpGjVqlHr06KGQkBAtW7ZMKSkp1qXoZ8yYobS0NK1atUpubm4KCgqyqd+8eXN5e3vbpE+ePFn9+vXTM888o2HDhunjjz/W5s2btW3btmLvFyh3ZrM0ebJkGPZ5hiGZTFJUlDRsGEvKAyizEgfbJalXr15KTExUYGBgefcHAABUIMZwAABqL74HAABQPZXXGD5ixAidPHlS8+fPV3p6uoKCghQXF2dtNz09XSkpKSVqs0+fPnrvvfc0a9YszZ49W5deeqnWrl2rXr16FXu/QLlLSJCOHXOebxhSaqqlXP/+ldYtADVTqYLtkZGReuSRR3Ts2DEFBwerfv36NvmXX355uXQOAACUL8ZwAABqL74HAABQPZXnGB4ZGanIyEiHeStXriy07ty5czV37ly79OHDh2v48OGl3i9Q7tLTrTfrncvR0WduLLIcAJSWyTAcraNRODc3N/uGTCYZhiGTySSz2VwunXOV7OxsNWrUSFlZWfLx8XF1dwAANVxljjs1fQwvDsZ5AEBlqkrjTk3/HlCVHmsAQM3H//KVhzEeJbZ1q3TttUWX27KFme010Jnc8+r8+EZJ0v75g1XPs1TzjlGLlXTcKdUr7MiRI6WpBgAAXIwxHACA2ovvAQAAVE+M4UAJhYZK/v5SWprj67abTJb80NDK7xuAGqdUwXaupQIAQPXEGA4AQO3F9wAAAKonxnCghNzdpSVLpOHDLYH1ggF3k8nyNzraUg4AyqjUayccOnRI0dHROnDggEwmkzp16qTJkyfr0ksvLc/+AQCAcsYYDgBA7cX3AAAAqifGcKCEwsOldeukyZOlY8f+Tff3twTaw8Nd1jUANYv9xV6KYePGjercubN27dqlyy+/XEFBQfruu+/UpUsXxcfHl3cfAQBAOWEMBwCg9uJ7AAAA1RNjOFBK4eHS0aOWa7O/847l75EjBNoBlCuTYTi6YEXhunfvrsGDB+vpp5+2SZ8+fbo2bdqkH374odw66AolvfA9AABlUZnjTk0fw4uDcR4AUJmq0rhT078HVKXHGgBQ8/G/fOVhjAdQEmdyz6vz4xslSfvnD1Y9z1Iv8o1aqqTjTqlmth84cEBjx461S7/33nu1f//+0jQJAAAqAWM4qjuzWdq6VXr3Xctfs9nVPQKA6oPvAQAAVE+M4QAAVF2lCrY3a9ZMSUlJdulJSUlq3rx5WfsEAAAqCGM4qrPYWKlNG+naa6WICMvfNm0s6QCAovE9AACA6okxHACAqqtUayfcd999uv/++3X48GH16dNHJpNJ27Zt0zPPPKNHHnmkvPsIAADKCWM4qqvYWGn4cOnCCyClpVnS163jkmsAUBS+BwAAUD0xhgMAUHWV6prthmEoOjpazz//vI4fPy5Jatmypf773//qoYcekslkKveOViauAQMAqEyVOe7U9DG8OBjnqx+z2TKD/dgxx/kmk+TvLx05Irm7V2rXAKBIVWncqenfA6rSYw0AqPn4X77yMMYDKAmu2Y6yKum4U6pge0GnT5+WJDVs2LAszVQpDN4AgP/H3v3H11z//x+/H5udMbb83A+bbREjhO2dRvMjGiqRlPxWiMTbj3c/7I2MlEha9W5C8qO8UUz1KcUUmV/JUMI7P6LNbES1kQzb8/vHvjs5zsY2+8ntermcy87r+Xq+nq/n67lzzvP1Oo/zfL6KU0n1OzdiH54X9PNlz4YNWVPGX8v69VLbtkVdGwDIn9La79yI5wGlta0BADcmruWLD308gPwg2I7rld9+57peYSdPntRPP/0ki8Wi+vXrq0aNGtdTHAAAKCb04ShLkpP/fm4pf0m1x2ZdMCXM6ihz0TnHfACA3HEeAABA2UQfDgBA6VOuIBulpaWpX79+8vHxUZs2bdS6dWv5+Piob9++Sk1NLew6AgCAQkIfjrLI27tw8wHAzYrzAAAAyib6cAAASq8CBdsHDx6sb7/9Vp9//rn++OMPpaam6rPPPtOOHTs0ZMiQwq4jAAAoJPThKIvCwrLuyZ7bbQgtFsnPLysfACB3nAcAAFA20YcDAFB6FWga+c8//1xr1qzR3XffbUvr2LGj5s2bp06dOhVa5QAAQOGiD0dZ5OQkvfGG1KOHY8A9ezkqKisfACB3nAcAAFA20YcDAFB6FWhke7Vq1eTh4eGQ7uHhoSpVqlx3pQAAQNGgD0dZ1b27tGKF5HPFVPG+vlnp3buXTL0AoCzhPAAAgLKJPhwAgNKrQMH2CRMmaOzYsUpOTralpaSk6Nlnn9XEiRPzVVZ0dLQCAwPl6uqq4OBgxcXF5Wm7zZs3y9nZWU2bNs01z7Jly2SxWNStW7d81QkAgBtVYfbhQHHr3l3at//v5S9WS0eOEGgHgLziPAAAgLKJPhwAgNKrQNPIz549W4cOHZK/v79q164tSUpISJDVatWvv/6qOXPm2PLu3Lkz13KWL1+u0aNHKzo6Wq1atdKcOXPUuXNn7du3z1ZuTlJTU9W/f3+1b99eJ06cyDHPL7/8omeeeUZh3LwTAACbwurDgZJy+VTxYa2ZOh4A8oPzAAAAyib6cAAASq8CBdsLa6T4rFmzNGjQIA0ePFiSFBUVpTVr1mj27NmaNm1artsNHTpUvXv3lpOTkz7++GOH9RkZGerTp48mT56suLg4/fHHH4VSXwAAyjpmewEA4ObFeQAAAGUTfTgAAKVXgYLtkyZNuu4dX7hwQfHx8Ro3bpxdenh4uLZs2ZLrdgsWLNDhw4f1wQcfaOrUqTnmmTJlimrUqKFBgwblaVr69PR0paen25bT0tLyeBQAAJQthdGHAwCAsonzAAAAyib6cAAASq8CBduzxcfHa//+/bJYLGrYsKGaNWuW521PnTqljIwMeXp62qV7enoqJSUlx20OHjyocePGKS4uTs7OOVd98+bNmj9/vnbv3p3nukybNk2TJ0/Oc34AAMq66+nDAQBA2cZ5AAAAZRN9OAAApU+Bgu0nT57UY489pg0bNuiWW26RMUapqalq166dli1bpho1auS5LIvFYrdsjHFIk7Kmhu/du7cmT56sevXq5VjWmTNn1LdvX82bN0/Vq1fPcx0iIiI0duxY23JaWpr8/PzyvD0AAGVFYfbhAACgbOE8AACAsok+HACA0qtcQTYaOXKk0tLStHfvXv3222/6/fff9eOPPyotLU3//Oc/81RG9erV5eTk5DCK/eTJkw6j3aWsQPqOHTs0YsQIOTs7y9nZWVOmTNH3338vZ2dnff311zp8+LCOHj2qLl262PIsXrxYn376qZydnXX48OEc62K1WuXu7m73AADgRlQYfTgAACibOA8AAKBsog8HAKD0KtDI9i+//FLr1q1TgwYNbGkNGzbU22+/rfDw8DyV4eLiouDgYMXGxuqhhx6ypcfGxqpr164O+d3d3bVnzx67tOjoaH399ddasWKFAgMD5eTk5JBnwoQJOnPmjN544w1GqwMAbnqF0YcDAICyifMAAADKJvpwAABKrwIF2zMzM1W+fHmH9PLlyyszMzPP5YwdO1b9+vVTSEiIQkNDNXfuXCUkJGjYsGGSsqZ3T0pK0uLFi1WuXDk1atTIbvuaNWvK1dXVLv3KPLfcckuO6QAA3IwKqw8HAABlD+cBAACUTfThAACUXgWaRv6ee+7RqFGjdPz4cVtaUlKSxowZo/bt2+e5nJ49eyoqKkpTpkxR06ZNtXHjRq1evVr+/v6SpOTkZCUkJBSkigAAIAeF1YcDAICyh/MAAADKJvpwAABKL4sxxuR3o8TERHXt2lU//vij/Pz8ZLFYlJCQoMaNG+uTTz6Rr69vUdS12KSlpcnDw0Opqancvx0AUOSKs9+50fvwvKCfL9vOXbikhi+skSTtm9JRFV0KNFETABSb0tTv3OjnAaWprQEANz6u5YsPfTyA/OC7I1yv/PY7BXqF+fn5aefOnYqNjdX//vc/GWPUsGFDdejQoSDFAQCAYkIfDgDAzYvzAAAAyib6cAAASq98B9svXbokV1dX7d69W/fee6/uvffeoqgXAAAoZPThAADcvDgPAACgbKIPBwCgdMv3PdudnZ3l7++vjIyMoqgPAAAoIvThAADcvDgPAACgbKIPBwCgdMt3sF2SJkyYoIiICP3222+FXR8AAFCE6MMBALh5cR4AAEDZRB8OAEDpVaB7tr/55ps6dOiQfHx85O/vLzc3N7v1O3fuLJTKAQCAwkUfDgDAzYvzAAAAyib6cAAASq8CBdu7desmi8UiY0xh1wcAABQh+nAAAG5enAcAAFA20YcDQD5cftuNjXFSu9aSk1PJ1Qc3vHwF28+dO6dnn31WH3/8sS5evKj27dvrrbfeUvXq1YuqfgAAoBDQhwMAcPPiPAAAgLKJPhwA8ikmRhr7rPTYm1nL93WWPGtIb7whde9esnXDDStf92yfNGmSFi5cqPvvv1+9evXSunXr9NRTTxVV3QAAQCGhDwcA4ObFeQAAAGUTfTgA5ENMjNSjh3Q8yT49KSkrPSamZOqFG16+RrbHxMRo/vz5euyxxyRJffr0UatWrZSRkSEnpmAAAKDUog8HAODmxXkAAABlE304AORRRoY0apSU0+02jJEsFmn0aKlrV6aUR6HL18j2xMREhYWF2ZbvvPNOOTs76/jx44VeMQAAUHjowwEAuHkVxXlAdHS0AgMD5erqquDgYMXFxeVpu82bN8vZ2VlNmzbNNc+yZctksVjUrVu3AtcPAIAbAdfyAJBHcXHSsWO5rzdGSkzMygcUsnwF2zMyMuTi4mKX5uzsrEuXLhVqpQAAQOGiDwcA4OZV2OcBy5cv1+jRozV+/Hjt2rVLYWFh6ty5sxISEq66XWpqqvr376/27dvnmueXX37RM888YxdYAADgZsW1PADkUXKy7WnFi+k6Ov0BHZ3+gCpeTM81H1BY8jWNvDFGAwcOlNVqtaWdP39ew4YNk5ubmy0thvseAABQqtCHAwBw8yrs84BZs2Zp0KBBGjx4sCQpKipKa9as0ezZszVt2rRctxs6dKh69+4tJycnffzxxw7rMzIy1KdPH02ePFlxcXH6448/8naAAADcoLiWB4A88vYu3HxAPuQr2D5gwACHtL59+xZaZQAAQNGgDwcA4OZVmOcBFy5cUHx8vMaNG2eXHh4eri1btuS63YIFC3T48GF98MEHmjp1ao55pkyZoho1amjQoEF5mpY+PT1d6el/j1RJS0vL41EAAFA2cC0PAHkUFib5+kpJSTnft91iyVrPDFooAvkKti9YsKCo6gEAAIoQfTgAADevwjwPOHXqlDIyMuTp6WmX7unpqZSUlBy3OXjwoMaNG6e4uDg5O+f8NcTmzZs1f/587d69O891mTZtmiZPnpzn/AAAlDVcywNAHjk5SW+8IfXokRVYvzzgbrFk/Y2KysoHFLJ83bMdAAAgW3R0tAIDA+Xq6qrg4OA8jUCTsr5Md3Z2VtOmTe3S582bp7CwMFWpUkVVqlRRhw4dtH37drs8kZGRslgsdg8vL6/COiQAAJBHluwvrP4/Y4xDmpQ1NXzv3r01efJk1atXL8eyzpw5o759+2revHmqXr16nusQERGh1NRU2yMxMTF/BwEAAADgxtG9u7RihVSrln26r29WevfuJVMv3PDyNbIdAABAkpYvX67Ro0crOjparVq10pw5c9S5c2ft27dPtWvXznW71NRU9e/fX+3bt9eJEyfs1m3YsEG9evVSy5Yt5erqqhkzZig8PFx79+5VrctOkm+//XatW7fOtuzEL1IBACg21atXl5OTk8Mo9pMnTzqMdpeyAuk7duzQrl27NGLECElSZmamjDFydnbW2rVrVbVqVR09elRdunSxbZeZmSlJcnZ21k8//aQ6deo4lG21Wu3uYVtYMjKkuDgpOTnrlo5hYQyAAQAAAMqE7t2lrl05oUexItgOAADybdasWRo0aJAGDx4sSYqKitKaNWs0e/ZsTZs2Ldfthg4dqt69e8vJyUkff/yx3bolS5bYLc+bN08rVqzQV199pf79+9vSnZ2dGc0OAEAJcXFxUXBwsGJjY/XQQw/Z0mNjY9W1a1eH/O7u7tqzZ49dWnR0tL7++mutWLFCgYGBcnJycsgzYcIEnTlzRm+88Yb8/PyK5mByEBMjjRolHTv2d5qvb9aMlAyEAQAAAMoAJyepbduSrgVuIgTbAQBAvly4cEHx8fEaN26cXXp4eLi2bNmS63YLFizQ4cOH9cEHH2jq1KnX3M+5c+d08eJFVa1a1S794MGD8vHxkdVqVYsWLfTyyy/r1ltvzbWc9PR0paen25bT0tKuuW8AAJC7sWPHql+/fgoJCVFoaKjmzp2rhIQEDRs2TFLW9O5JSUlavHixypUrp0aNGtltX7NmTbm6utqlX5nnlltuyTG9KMXEZN3i8fLbO0pSUlJWOjNPAgAAAACuRLAdAADky6lTp5SRkeEwVaynp6fDlLLZDh48qHHjxikuLk7Oznk7/Rg3bpxq1aqlDh062NJatGihxYsXq169ejpx4oSmTp2qli1bau/evapWrVqO5UybNk2TJ0/O49EBAIBr6dmzp06fPq0pU6YoOTlZjRo10urVq+Xv7y9JSk5OVkJCQgnXMn8yMrJGtF8ZaJey0iwWafTorBkpmYESAAAAAJCtXElXAAAAlE0Wi8Vu2RjjkCZJGRkZ6t27tyZPnqx69erlqewZM2Zo6dKliomJkaurqy29c+fOevjhh9W4cWN16NBBn3/+uSRp0aJFuZYVERGh1NRU2yMxMTFPdQAAALkbPny4jh49qvT0dMXHx6t169a2dQsXLtSGDRty3TYyMlK7d+++avkLFy50uOVMUYqLs586/krGSImJWfkAACjLoqOjFRgYKFdXVwUHByvuKp3bpk2b1KpVK1WrVk0VKlRQUFCQXn/9dbs8bdu2lcVicXjcf//9tjyRkZEO67k9HADgRsHIdgAAkC/Vq1eXk5OTwyj2kydPOox2l6QzZ85ox44d2rVrl0aMGCFJyszMlDFGzs7OWrt2re655x5b/pkzZ+rll1/WunXr1KRJk6vWxc3NTY0bN9bBgwdzzWO1WmW1WvNziAAA4CaTnPz3c0v5S6o9do0kKWFWR5mLzjnmAwCgrFm+fLlGjx6t6OhotWrVSnPmzFHnzp21b98+1a5d2yG/m5ubRowYoSZNmsjNzU2bNm3S0KFD5ebmpieffFKSFBMTowsXLti2OX36tO644w498sgjdmXdfvvtWrdunW3ZialiAAA3CILtAAAgX1xcXBQcHKzY2Fg99NBDtvTY2Fh17drVIb+7u7v27NljlxYdHa2vv/5aK1asUGBgoC391Vdf1dSpU7VmzRqFhIRcsy7p6enav3+/wsLCruOIAADAzc7bu3DzAQBQGs2aNUuDBg3S4MGDJUlRUVFas2aNZs+erWnTpjnkb9asmZo1a2ZbDggIUExMjOLi4mzB9qpVq9pts2zZMlWsWNEh2O7s7MxodgDADYlgOwAAyLexY8eqX79+CgkJUWhoqObOnauEhAQNGzZMUtbU7UlJSVq8eLHKlSunRo0a2W1fs2ZNubq62qXPmDFDEydO1H//+18FBATYRs5XqlRJlSpVkiQ988wz6tKli2rXrq2TJ09q6tSpSktL04ABA4rpyAEAwI0oLEzy9ZWSknJeb7Fkref3fQCAsurChQuKj4/XuHHj7NLDw8O1ZcuWPJWxa9cubdmyRVOnTs01z/z58/XYY4/Jzc3NLv3gwYPy8fGR1WpVixYt9PLLL+vWW2/NsYz09HSlp6fbltPS0vJUPwAASgL3bAcAAPnWs2dPRUVFacqUKWratKk2btyo1atXy9/fX5KUnJyshISEfJUZHR2tCxcuqEePHvL29rY9Zs6cactz7Ngx9erVS/Xr11f37t3l4uKibdu22fYLAABQEE5O0htvZD23WOzXZS9HRWXlAwCgLDp16pQyMjIcbv/m6enpcJu4K/n6+spqtSokJERPP/20bWT8lbZv364ff/zRYX2LFi20ePFirVmzRvPmzVNKSopatmyp06dP51jOtGnT5OHhYXv4+fnl40gBAChejGwHyqCMDCkuLut+gd7eWaMr+NIHQHEbPny4hg8fnuO6hQsXXnXbyMhIRUZG2qUdPXr0mvtctmxZHmsHAACQP927SytWSKPG2qf7+mYF2rt3L5FqAQBQqCxX/KrMGOOQdqW4uDidPXtW27Zt07hx41S3bl316tXLId/8+fPVqFEj3XnnnXbpnTt3tj1v3LixQkNDVadOHS1atEhjx469shhFRETYpaelpRFwBwCUWgTbgTImJkYaNUo6duzvNF/frFEYfPkDAAAAAAXXvbt0b2ep8eSs5S9WSx3a8eNmAEDZV716dTk5OTmMYj958qTDaPcrBQYGSsoKlJ84cUKRkZEOwfZz585p2bJlmjJlyjXr4ubmpsaNG+vgwYM5rrdarbJardcsBwCA0oBp5IEyJCZG6tHDPtAuZd1XsEePrPUAAAAAgIK7PLAe1ppAOwDgxuDi4qLg4GDFxsbapcfGxqply5Z5LscYY3c/9Wwffvih0tPT1bdv32uWkZ6erv3798vb2zvP+wUAoLRiZDtQRmRkZI1oN8ZxnTFZ9xEcPVrq2pUvgwAAAAAAAADYGzt2rPr166eQkBCFhoZq7ty5SkhI0LBhwyRlTd+elJSkxYsXS5Lefvtt1a5dW0FBQZKkTZs2aebMmRo5cqRD2fPnz1e3bt1UrVo1h3XPPPOMunTpotq1a+vkyZOaOnWq0tLSNGDAgCI8WgAAigfBdqCMiItzHNF+OWOkxMSsfG3bFlu1AAAAAAAAAJQBPXv21OnTpzVlyhQlJyerUaNGWr16tfz9/SVJycnJSkhIsOXPzMxURESEjhw5ImdnZ9WpU0evvPKKhg4dalfugQMHtGnTJq1duzbH/R47dky9evXSqVOnVKNGDd11113atm2bbb8AAJRlBNuBMiI5+e/nlvKXVHvsGklSwqyOMhedc8wHAAAAAAAAANmGDx+u4cOH57hu4cKFdssjR47McRT7lerVqyeT03Sc/9+yZcvyVUcAAMoS7tkOlBF5vYURtzoCAAAAAAAAAAAAih7BdqCMCAuTfH2z7s2eE4tF8vPLygcAAAAAAAAAAACgaBFsB8oIJyfpjTeynl8ZcM9ejorKygcAAAAAAAAAAACgaBFsR+mQkSFt2CAtXZr1NyOjpGtUKnXvLq1YIflcMVW8r29WevfuJVMvAAAAAAAAAAAA4GZDsB0lLyZGCgiQ2rWTevfO+hsQkJUOB927S/v2/738xWrpyBEC7QAAAAAAAAAAAEBxItiOkhUTI/XoIR07Zp+elJSVTsA9R5dPFR/WmqnjAQAAAAAAAAAAgOJGsB0lJyNDGjVKMsZxXXba6NFMKQ8AAAAAAAAAAACg1CHYjpITF+c4ov1yxkiJiVn5AAAAAAAAAAAAAKAUIdiOkpOcbHt6rrxVAc9/poDnP9O58tZc8wEAAAAAAAAAAABAaUCwHSXH27tw8wEAAAAAAAAAAABAMSHYjpITFib5+koWS87rLRbJzy8rHwAAAAAAAAAAAACUIgTbUXKcnKQ33sh6fmXAPXs5KiorHwAAAAAAAAAAAACUIgTbUbK6d5dWrJC8fezTfX2z0rt3L5l6AQAAAAAAAAAAAMBVlHiwPTo6WoGBgXJ1dVVwcLDi4uLytN3mzZvl7Oyspk2b2qXPmzdPYWFhqlKliqpUqaIOHTpo+/btRVBzFJru3aX9+/5eXv2FdOQIgXYAAAAAAAAAAAAApVaJBtuXL1+u0aNHa/z48dq1a5fCwsLUuXNnJSQkXHW71NRU9e/fX+3bt3dYt2HDBvXq1Uvr16/X1q1bVbt2bYWHhyspKamoDgOF4fKp4luHMXU8AAAAAAAAAAAAgFKtRIPts2bN0qBBgzR48GA1aNBAUVFR8vPz0+zZs6+63dChQ9W7d2+FhoY6rFuyZImGDx+upk2bKigoSPPmzVNmZqa++uqrojoMAAAAAAAAAAAAAMBNpsSC7RcuXFB8fLzCw8Pt0sPDw7Vly5Zct1uwYIEOHz6sSZMm5Wk/586d08WLF1W1atVc86SnpystLc3uAQAAAAAAAAAAAABAbkos2H7q1CllZGTI09PTLt3T01MpKSk5bnPw4EGNGzdOS5YskbOzc572M27cONWqVUsdOnTINc+0adPk4eFhe/j5+eX9QAAAAAAAAAAAAAAAN50SnUZekiwWi92yMcYhTZIyMjLUu3dvTZ48WfXq1ctT2TNmzNDSpUsVExMjV1fXXPNFREQoNTXV9khMTMzfQQAAAAAAAAAAAAAAbip5Gx5eBKpXry4nJyeHUewnT550GO0uSWfOnNGOHTu0a9cujRgxQpKUmZkpY4ycnZ21du1a3XPPPbb8M2fO1Msvv6x169apSZMmV62L1WqV1WothKMCAAAAAAAAAAAAANwMSizY7uLiouDgYMXGxuqhhx6ypcfGxqpr164O+d3d3bVnzx67tOjoaH399ddasWKFAgMDbemvvvqqpk6dqjVr1igkJKToDgIAAAAAAAAAAAAAcFMqsWC7JI0dO1b9+vVTSEiIQkNDNXfuXCUkJGjYsGGSsqZ3T0pK0uLFi1WuXDk1atTIbvuaNWvK1dXVLn3GjBmaOHGi/vvf/yogIMA2cr5SpUqqVKlS8R0cAAAAAAAAAAAAAOCGVaLB9p49e+r06dOaMmWKkpOT1ahRI61evVr+/v6SpOTkZCUkJOSrzOjoaF24cEE9evSwS580aZIiIyMLq+oAAAAAAAAAAAAAgJtYiQbbJWn48OEaPnx4jusWLlx41W0jIyMdAuhHjx4tnIoBAAAAAAAAAAAAAJCLciVdAQAAACDPMjL+fr4xzn4ZAAAAAAAAAIoRwXYAAACUDTExUoOGfy/f11kKCMhKBwAAAAAAAIBiRrAdAAAApV9MjNSjh3Q8yT49KSkrnYA7AAAAAAAAgGJGsB0AAAClW0aGNGqUZIzjuuy00aOZUh4AAAAAAABAsSLYDgAAgNItLk46diz39cZIiYlZ+QAAAAAAAACgmDiXdAUAAACAq0pOtj2teDFdR6c/cM18AAAAAAAAAFDUGNkOAACA0s3bu3DzAQAAAAAAAEAhINgOAACA0i0sTPL1lSyWnNdbLJKfX1Y+AAAAAAAAACgmBNsBAABQujk5SW+8kfX8yoB79nJUVFY+AAAAAAAAACgmBNsBAABQ+nXvLq1YIdWqZZ/u65uV3r17ydQLAAAAAAAAwE3LuaQrAEhSRsbfz+M2Sh3aMTgNAABcoXt3qWtXKS5OSk7Oukd7WBgnDQAAAAAAAABKBCPbUeJiYqSGDf5e7nyfFBCQlQ4AAGDHyUlq21bq1SvrL4F2AAAAAAAAACWEYDtKVEyM1KOHlHTcPj0pKSudgDsAAAAAAAAAAACA0ohgO0pMRoY0apRkjOO67LTRo+2nmAcAAAAAAAAAAACA0oBgO0pMXJx07Fju642REhOz8gEAAAAAAAAAAABAaeJc0hXAzSs5+e/n5qKzfpl+/zXzAQAAAAAAAAAAAEBpwMh2lBhv78LNBwAAAAAAAAAAAADFhWA7SkxYmOTrK1ksOa+3WCQ/v6x8AAAAAAAAAAAAAFCaEGxHiXFykt54I+v5lQH37OWoqKx8AAAAAAAAAAAAAFCaEGxHiereXVqxQqpVyz7d1zcrvXv3kqkXAAAAAAAAAAAAAFwNwXaUuO7dpaNHpfXrpf/+N+vvkSME2gGgtIuOjlZgYKBcXV0VHBysuLi4PG23efNmOTs7q2nTpg7rVq5cqYYNG8pqtaphw4ZatWpVoe0XAAAAAAAAAIDCRLAdpYKTk9S2rdSrV9Zfpo4HgNJt+fLlGj16tMaPH69du3YpLCxMnTt3VkJCwlW3S01NVf/+/dW+fXuHdVu3blXPnj3Vr18/ff/99+rXr58effRRffvtt9e9XwAAAAAAAAAAChvBdgAAkG+zZs3SoEGDNHjwYDVo0EBRUVHy8/PT7Nmzr7rd0KFD1bt3b4WGhjqsi4qK0r333quIiAgFBQUpIiJC7du3V1RU1HXvFwAAAAAA5G+2uE2bNqlVq1aqVq2aKlSooKCgIL3++ut2eRYuXCiLxeLwOH/+fIH3CwBAWUKwHQAA5MuFCxcUHx+v8PBwu/Tw8HBt2bIl1+0WLFigw4cPa9KkSTmu37p1q0OZHTt2tJVZ0P2mp6crLS3N7gEAAAAAwM0mv7PFubm5acSIEdq4caP279+vCRMmaMKECZo7d65dPnd3dyUnJ9s9XF1dC7xfAADKEoLtAAAgX06dOqWMjAx5enrapXt6eiolJSXHbQ4ePKhx48ZpyZIlcnZ2zjFPSkrKVcssyH4ladq0afLw8LA9/Pz8rnmMAAAAAADcaPI7W1yzZs3Uq1cv3X777QoICFDfvn3VsWNHh1HpFotFXl5edo/r2S8AAGUJwXYAAFAgFovFbtkY45AmSRkZGerdu7cmT56sevXqXXeZed1vtoiICKWmptoeiYmJV60DAAAAAAA3moLOFne5Xbt2acuWLWrTpo1d+tmzZ+Xv7y9fX1898MAD2rVr13XtlxnqAABlSc5DywAAAHJRvXp1OTk5OYwmP3nypMOoc0k6c+aMduzYoV27dmnEiBGSpMzMTBlj5OzsrLVr1+qee+6Rl5fXVcvM736zWa1WWa3WAh0rAAAAAAA3goLOFidJvr6++vXXX3Xp0iVFRkZq8ODBtnVBQUFauHChGjdurLS0NL3xxhtq1aqVvv/+e912220F2u+0adM0efLkAh4pAADFi5HtAAAgX1xcXBQcHKzY2Fi79NjYWLVs2dIhv7u7u/bs2aPdu3fbHsOGDVP9+vW1e/dutWjRQpIUGhrqUObatWttZeZ3vwAAAAAAwF5+Z4uTpLi4OO3YsUPvvPOOoqKitHTpUtu6u+66S3379tUdd9yhsLAwffjhh6pXr57eeuutAu+XGeoAAGUJI9sBAEC+jR07Vv369VNISIhCQ0M1d+5cJSQkaNiwYZKyLoyTkpK0ePFilStXTo0aNbLbvmbNmnJ1dbVLHzVqlFq3bq3p06era9eu+uSTT7Ru3Tpt2rQpz/sFAAAAAACOCjpbnCQFBgZKkho3bqwTJ04oMjJSvXr1yjFvuXLl9I9//EMHDx4s8H6ZoQ4AUJYwsh0AAORbz549FRUVpSlTpqhp06bauHGjVq9eLX9/f0lScnKyEhIS8lVmy5YttWzZMi1YsEBNmjTRwoULtXz5ctvI97zsFwAAAAAAOCqs2eKMMUpPT7/q+t27d8vb27tQ9wsAQGnFyHYAAFAgw4cP1/Dhw3Nct3DhwqtuGxkZqcjISIf0Hj16qEePHgXeLwAAAAAAyFl+ZqmTpLffflu1a9dWUFCQJGnTpk2aOXOmRo4caStz8uTJuuuuu3TbbbcpLS1Nb775pnbv3q233347z/sFAKAsI9gOAAAAAAAAAMANrmfPnjp9+rSmTJmi5ORkNWrU6Kqz1GVmZioiIkJHjhyRs7Oz6tSpo1deeUVDhw615fnjjz/05JNPKiUlRR4eHmrWrJk2btyoO++8M8/7BQCgLLMYY0xJV6K0SUtLk4eHh1JTU+Xu7l7S1QEcnLtwSQ1fWCNJ2jeloyq68LsZoCyj3yletDcAoDjR7xSfwmprrrcAAHlBH198aGsAQHHKb7/DPdsBAAAAAAAAAAAAAMgngu0AAAAAAAAAAAAAAOQTwXYAAAAAAAAAAAAAAPKJYDsAAAAAAAAAAAAAAPlEsB0AAAAAAAAAAAAAgHwi2A4AAAAAAAAAAAAAQD4RbAcAAAAAAAAAAAAAIJ8ItgMAAAAAgHyJjo5WYGCgXF1dFRwcrLi4uDxtt3nzZjk7O6tp06Z26fPmzVNYWJiqVKmiKlWqqEOHDtq+fXsR1BwAAAAAgMJDsB0AAAAAAOTZ8uXLNXr0aI0fP167du1SWFiYOnfurISEhKtul5qaqv79+6t9+/YO6zZs2KBevXpp/fr12rp1q2rXrq3w8HAlJSUV1WEAAAAAAHDdCLYDAAAAAIA8mzVrlgYNGqTBgwerQYMGioqKkp+fn2bPnn3V7YYOHarevXsrNDTUYd2SJUs0fPhwNW3aVEFBQZo3b54yMzP11VdfFdVhAAAAAABw3Uo82F7YU89J0sqVK9WwYUNZrVY1bNhQq1atKuRaAwAAAABw87lw4YLi4+MVHh5ulx4eHq4tW7bkut2CBQt0+PBhTZo0KU/7OXfunC5evKiqVavmmic9PV1paWl2DwAAAAAAilOJBtuLYuq5rVu3qmfPnurXr5++//579evXT48++qi+/fbbojoMAAAAAABuCqdOnVJGRoY8PT3t0j09PZWSkpLjNgcPHtS4ceO0ZMkSOTs752k/48aNU61atdShQ4dc80ybNk0eHh62h5+fX94PBAAAAACAQlCiwfaimHouKipK9957ryIiIhQUFKSIiAi1b99eUVFRRXQUAAAAAADcXCwWi92yMcYhTZIyMjLUu3dvTZ48WfXq1ctT2TNmzNDSpUsVExMjV1fXXPNFREQoNTXV9khMTMzfQQAAAAAAcJ1KLNheVFPPbd261aHMjh07XrVMpp4DAAAAAODaqlevLicnJ4dR7CdPnnQY7S5JZ86c0Y4dOzRixAg5OzvL2dlZU6ZM0ffffy9nZ2d9/fXXdvlnzpypl19+WWvXrlWTJk2uWher1Sp3d3e7BwAAAAAAxanEgu1FNfVcSkpKvsqUmHoOAAAAAIC8cHFxUXBwsGJjY+3SY2Nj1bJlS4f87u7u2rNnj3bv3m17DBs2TPXr19fu3bvVokULW95XX31VL774or788kuFhIQU+bEAAAAAAHC98naztCJUFFPP5bXMbBERERo7dqxtOS0tjYA7AAAAAAA5GDt2rPr166eQkBCFhoZq7ty5SkhI0LBhwyRlXWMnJSVp8eLFKleunBo1amS3fc2aNeXq6mqXPmPGDE2cOFH//e9/FRAQYPvBfKVKlVSpUqXiOzgAAAAAAPKhxILtBZ16bteuXRoxYoQkKTMzU8YYOTs7a+3atbrnnnvk5eWV5zKzWa1WWa3WQjgqAAAAAABubD179tTp06c1ZcoUJScnq1GjRlq9erX8/f0lScnJyUpISMhXmdHR0bpw4YJ69Ohhlz5p0iRFRkYWVtUBAAAAAChUJRZsv3zquYceesiWHhsbq65duzrkz5567nLR0dH6+uuvtWLFCgUGBkqSQkNDFRsbqzFjxtjyrV27Nsfp7AAAAAAAQP4NHz5cw4cPz3HdwoULr7ptZGSkQwD96NGjhVMxAAAAAACKUYlOI18UU8+NGjVKrVu31vTp09W1a1d98sknWrdunTZt2lSsxwYAAAAAAAAAAAAAuHGVaLC9KKaea9mypZYtW6YJEyZo4sSJqlOnjpYvX64WLVoUxSEAAAAAAAAAAAAAAG5CJRpslwp/6jlJ6tGjh8N93gAAAAAAAAAAAAAAKCzlSroCAAAAAAAAAAAAAACUNQTbAQAAAAAAAAAAAADIJ4LtAAAAAAAAAAAAAADkE8F2AAAAAAAAAAAAAADyiWA7AAAAAAAAAAAAAAD5RLAdAAAAAAAAAAAAAIB8ItgOAAAAAAAAAAAAAEA+EWwHAAAAAAAAAAAAACCfnEu6AgAAAGVNRoYUFyclJ0ve3lJYmOTkVNK1AgAAAAAAAAAUJ4LtAAAA+RATI40aJR079near6/0xhtS9+4lVy8AAAAAAAAAQPFiGnmgLMrI+Pv5xjj7ZQBAkYmJkXr0sA+0S1JSUlZ6TEzJ1AsAAAAAAAAAUPwIthehjAxpwwZp6dKsv8RDUShiYqQGDf9evq+zFBBAhAcAilhGRtaIdmMc12WnjR5Nfw8AAAAAAAAANwuC7UUkJiYr/tmundS7d9Zf4qG4btlDKo8n2aczpBIAilxcnOOI9ssZIyUmZuUDAAAAAAAAANz4CLYXAaaYRZFgSCUAlKjk5L+fW8pfkv/zn8v/+c9lKX8p13wAAAAAAAAAgBsXwfZCRjwURYYhlQBQory9CzcfAAAAAAAAAKBscy7pCtxo8hMPbdu22KqFG8FlQyUrXkzX0ekPXDMfAKDwhIVJvr5ZM9XkxGLJWh8WVrz1AgAAAAAAAACUDEa2FzKmmEWRYUglAJQoJyfpjTeynlss9uuyl6OisvIBAAAAAAAAAG58BNsLGfFQFJnsIZVXRniyWSySnx9DKgGgCHXvLq1YIflc0Y/7+mald+9eMvUCAAAAAADXkJEhbdggLV2a9Zd7vQIACgHB9kJGPBRFhiGVAFAqdO8u7dv/9/IXq6UjRwi0AwAAAABQasXESAEBUrt2Uu/eWX8DArLSAQC4DgTbCxnxUBSp7CGVtWrZpzOkEgCK1eX9eFhr+nUAAAAAAEqtmBipRw/p2DH79KSkrHQC7gCA60CwvQgwxSyKVPfu0tGj0vr10n//m/WXIZUAAAAAAAAAYC8jQxo1SjLGcV122ujRTCkPACgw55KuwI2qe3fp3s5S48lZy1+sljq0Y+QbComTk9S2bUnXAgAAAAAAAABKr7g4xxHtlzNGSkzMysf3rQCAAmBkexFiilkAAAAAAAAAAEpIcrLt6bnyVgU8/5kCnv9M58pbc80HAEB+EGwHAAAAAAAAAAA3Hm/va+fJTz4AAK5AsB0AAAAAAAAAANx4wsIkX1/JYsl5vcUi+fll5QMAoAAItgMAAAAAAAAAgBuPk5P0xhtZz68MuGcvR0VxD1gAQIERbAcAAAAAAAAA4CYQHR2twMBAubq6Kjg4WHFxcbnm3bRpk1q1aqVq1aqpQoUKCgoK0uuvv26XZ968eQoLC1OVKlVUpUoVdejQQdu3b7fLExkZKYvFYvfw8vIqkuPLUffu0ooVkrePfbqvb1Z69+7FVxcAwA2HYDsAACiQwr5Ab9u2rcPFt8Vi0f3332/LU+IX6AAAAAAAlFHLly/X6NGjNX78eO3atUthYWHq3LmzEhIScszv5uamESNGaOPGjdq/f78mTJigCRMmaO7cubY8GzZsUK9evbR+/Xpt3bpVtWvXVnh4uJKSkuzKuv3225WcnGx77Nmzp0iP1UH37tL+fX8vr/5COnKEQDsA4Lo5l3QFAABA2ZN9gR4dHa1WrVppzpw56ty5s/bt26fatWs75M++QG/SpInc3Ny0adMmDR06VG5ubnryySclSTExMbpw4YJtm9OnT+uOO+7QI488YlfW7bffrnXr1tmWnZjqDQAAAACAa5o1a5YGDRqkwYMHS5KioqK0Zs0azZ49W9OmTXPI36xZMzVr1sy2HBAQoJiYGMXFxdmu5ZcsWWK3zbx587RixQp99dVX6t+/vy3d2dk5zz+WT09PV3p6um05LS0t7wd5NZd/f9A6jKnjAQCFgpHtAAAg3y6/QG/QoIGioqLk5+en2bNn55i/WbNm6tWrl26//XYFBASob9++6tixo91o+KpVq8rLy8v2iI2NVcWKFR2C7dkX6NmPGjVqXLWu6enpSktLs3sAAAAAAHAzuXDhguLj4xUeHm6XHh4eri1btuSpjF27dmnLli1q06ZNrnnOnTunixcvqmrVqnbpBw8elI+PjwIDA/XYY4/p559/zrWMadOmycPDw/bw8/PLU/0AACgJBNsBAEC+FNcF+vz58/XYY4/Jzc3NLj0/F+gSF+kAAAAAAJw6dUoZGRny9PS0S/f09FRKSspVt/X19ZXValVISIiefvpp28j4nIwbN061atVShw4dbGktWrTQ4sWLtWbNGs2bN08pKSlq2bKlTp8+nWMZERERSk1NtT0SExPzcaQAABQvppEHAAD5cr0X6L/++qsuXbqkyMjIXC/Qt2/frh9//FHz58+3S8++QK9Xr55OnDihqVOnqmXLltq7d6+qVauWY1kREREaO3asbTktLY2AOwAAAADgpmSxWOyWjTEOaVeKi4vT2bNntW3bNo0bN05169ZVr169HPLNmDFDS5cu1YYNG+Tq6mpL79y5s+1548aNFRoaqjp16mjRokV21+vZrFarrFZrfg8NAIASQbAdAAAUSFFeoM+fP1+NGjXSnXfeaZee3wt0iYt0AAAAAACqV68uJycnhx/Jnzx50uHH9FcKDAyUlHUdfuLECUVGRjpcy8+cOVMvv/yy1q1bpyZNmly1PDc3NzVu3FgHDx4swJEAAFC6MI08AADIl+u9QG/cuLGGDBmiMWPGKDIy0iHPuXPntGzZsqtOS5eNC3QAAAAAAK7NxcVFwcHBio2NtUuPjY1Vy5Yt81yOMUbp6el2aa+++qpefPFFffnllwoJCblmGenp6dq/f7+8vb3zvF8AAEorgu0AACBfivICXZI+/PBDpaenq2/fvtcsgwt0AAAAAADyZuzYsXr33Xf13nvvaf/+/RozZowSEhI0bNgwSVm3Yevfv78t/9tvv63/+7//08GDB3Xw4EEtWLBAM2fOtLtenzFjhiZMmKD33ntPAQEBSklJUUpKis6ePWvL88wzz+ibb77RkSNH9O2336pHjx5KS0vTgAEDiu/gAQAoIkwjDwAA8m3s2LHq16+fQkJCFBoaqrlz5zpcoCclJWnx4sWSsi7Qa9euraCgIEnSpk2bNHPmTI0cOdKh7Pnz56tbt2453oP9mWeeUZcuXVS7dm2dPHlSU6dO5QIdAAAAAIA86Nmzp06fPq0pU6YoOTlZjRo10urVq+Xv7y9JSk5OVkJCgi1/ZmamIiIidOTIETk7O6tOnTp65ZVXNHToUFue6OhoXbhwQT169LDb16RJk2yz2R07dky9evXSqVOnVKNGDd11113atm2bbb8AAJRlBNsBAEC+FcUFuiQdOHBAmzZt0tq1a3PcLxfoAAAAAAAU3PDhwzV8+PAc1y1cuNBueeTIkTn+SP5yR48eveY+ly1bltfqAQBQ5hBsBwAABVLYF+iSVK9ePRljcl3PBToAAAAAAAAAoLTgnu0AAAAAAAAAAAAAAOQTwXYAAAAAAAAAAAAAAPKJYDsAAAAAAAAAAAAAAPlEsB0AAAAAAAAAAAAAgHwi2A4AAAAAAAAAAAAAQD6VeLA9OjpagYGBcnV1VXBwsOLi4nLNu2nTJrVq1UrVqlVThQoVFBQUpNdff90hX1RUlOrXr68KFSrIz89PY8aM0fnz54vyMAAAAAAAAAAAAAAANxHnktz58uXLNXr0aEVHR6tVq1aaM2eOOnfurH379ql27doO+d3c3DRixAg1adJEbm5u2rRpk4YOHSo3Nzc9+eSTkqQlS5Zo3Lhxeu+999SyZUsdOHBAAwcOlKQcA/MAAAAAAAAAAAAAAORXiQbbZ82apUGDBmnw4MGSskakr1mzRrNnz9a0adMc8jdr1kzNmjWzLQcEBCgmJkZxcXG2YPvWrVvVqlUr9e7d25anV69e2r59ezEcEQAAAAAAAAAAAADgZlBi08hfuHBB8fHxCg8Pt0sPDw/Xli1b8lTGrl27tGXLFrVp08aWdvfddys+Pt4WXP/555+1evVq3X///bmWk56errS0NLsHAAAAAAAAAAAAAAC5KbGR7adOnVJGRoY8PT3t0j09PZWSknLVbX19ffXrr7/q0qVLioyMtI2Ml6THHntMv/76q+6++24ZY3Tp0iU99dRTGjduXK7lTZs2TZMnT76+AwIAAAAAAAAAAAAA3DRKbGR7NovFYrdsjHFIu1JcXJx27Nihd955R1FRUVq6dKlt3YYNG/TSSy8pOjpaO3fuVExMjD777DO9+OKLuZYXERGh1NRU2yMxMfH6DgoAAAAAAAAAAAAAcEMrsZHt1atXl5OTk8Mo9pMnTzqMdr9SYGCgJKlx48Y6ceKEIiMj1atXL0nSxIkT1a9fP9to98aNG+vPP//Uk08+qfHjx6tcOcffF1itVlmt1sI4LAAAAAAAAAAAAADATaDERra7uLgoODhYsbGxdumxsbFq2bJlnssxxig9Pd22fO7cOYeAupOTk4wxMsZcX6UBAAAAAAAAAAAAAFAJjmyXpLFjx6pfv34KCQlRaGio5s6dq4SEBA0bNkxS1vTuSUlJWrx4sSTp7bffVu3atRUUFCRJ2rRpk2bOnKmRI0fayuzSpYtmzZqlZs2aqUWLFjp06JAmTpyoBx98UE5OTsV/kAAAAAAAAAAAAACAG06JBtt79uyp06dPa8qUKUpOTlajRo20evVq+fv7S5KSk5OVkJBgy5+ZmamIiAgdOXJEzs7OqlOnjl555RUNHTrUlmfChAmyWCyaMGGCkpKSVKNGDXXp0kUvvfRSsR8fAAAAAAAAAAAAAODGVKLBdkkaPny4hg8fnuO6hQsX2i2PHDnSbhR7TpydnTVp0iRNmjSpsKoIAAAAAAAAAAAAAICdErtnOwAAAAAAAAAAAAAAZRXBdgAAAAAAAAAAAAAA8olgOwAAAAAAAAAAAAAA+USwHQAAAAAAAAAAAACAfCLYDgAAAAAAAAAAAABAPhFsBwAAAAAAAAAAAAAgnwi2AwAAAAAAAAAAAACQTwTbAQAAAAAAAAAAAADIJ4LtAAAAAAAAAAAAAADkE8F2AAAAAAAAAAAAAADyiWB7UcrI+Pv5xjj7ZQAAUHbRxwMAcOOinwcA4IZ0eZcet5EuHgBQOAi2F5WYGKlBw7+X7+ssBQRkpQMAgLKLPh4AgBsX/TwAADekmBipYYO/lzvfRxcPACgcBNuLQkyM1KOHdDzJPj0pKSudHhwAgLKJPh4AgBsX/TwAADek7C4+6bh9Ol08AKAwEGwvbBkZ0qhRkjGO67LTRo9mjhoAAMoa+ngAAG5c9PMAANyQ6OIBAEWNYHthi4uTjh3Lfb0xUmJiVj4AAFB20McDAHDjop8HAOCGRBcPAChqziVdgRtOcrLtacWL6To6/YFr5gMAAGUAfTwAADcu+nkAAG5Il3fd5qKzfpl+/zXzAQCQH4xsL2ze3oWbDwAAlA708QAA2ERHRyswMFCurq4KDg5WXB6Hg23evFnOzs5q2rSpw7qVK1eqYcOGslqtatiwoVatWlXItb4K+nkAAG5IdPEAgKJGsL2whYVJvr6SxZLzeotF8vPLygcAAMoO+ngAACRJy5cv1+jRozV+/Hjt2rVLYWFh6ty5sxISEq66XWpqqvr376/27ds7rNu6dat69uypfv366fvvv1e/fv306KOP6ttvvy2qw7BHPw8AwA2JLh4AUNQIthc2JyfpjTeynl/Zg2cvR0Vl5QMAAGUHfTwAAJKkWbNmadCgQRo8eLAaNGigqKgo+fn5afbs2VfdbujQoerdu7dCQ0Md1kVFRenee+9VRESEgoKCFBERofbt2ysqKqqIjuIK9PMAANyQ6OIBAEWNYHtR6N5dWrFCqlXLPt3XNyu9e/eSqRcAALg+9PEAgJvchQsXFB8fr/DwcLv08PBwbdmyJdftFixYoMOHD2vSpEk5rt+6datDmR07drxqmenp6UpLS7N7XBf6eQAAbkh08QCAouRc0hW4YXXvLnXtKsXFScnJWTd9CQvjJ3IAAJR19PEAgJvYqVOnlJGRIU9PT7t0T09PpaSk5LjNwYMHNW7cOMXFxcnZOeevIVJSUvJVpiRNmzZNkydPzucRXAP9PAAANyS6eABAUSHYXpScnKS2bUu6FgAAoLDRxwMAbnKWK+ZhNcY4pElSRkaGevfurcmTJ6tevXqFUma2iIgIjR071raclpYmPz+/vFT/6ujnAQC4IdHFAwCKAsF2AAAAAACQJ9WrV5eTk5PDiPOTJ086jEyXpDNnzmjHjh3atWuXRowYIUnKzMyUMUbOzs5au3at7rnnHnl5eeW5zGxWq1VWq7UQjgoAAAAAgILhnu0AAAAAACBPXFxcFBwcrNjYWLv02NhYtWzZ0iG/u7u79uzZo927d9sew4YNU/369bV79261aNFCkhQaGupQ5tq1a3MsEwAAAACA0oKR7QAAAAAAIM/Gjh2rfv36KSQkRKGhoZo7d64SEhI0bNgwSVnTuyclJWnx4sUqV66cGjVqZLd9zZo15erqapc+atQotW7dWtOnT1fXrl31ySefaN26ddq0aVOxHhsAAAAAAPlBsB0AAAAAAORZz549dfr0aU2ZMkXJyclq1KiRVq9eLX9/f0lScnKyEhIS8lVmy5YttWzZMk2YMEETJ05UnTp1tHz5ctvIdwAAAAAASiOLMcaUdCVKm7S0NHl4eCg1NVXu7u4lXR0AwA2Ofqd40d4AgOJEv1N8aGsAQHGi3yk+tDUAoDjlt9/hnu0AAAAAAAAAAAAAAOQTwXYAAAAAAAAAAAAAAPKJYDsAAAAAAAAAADeB6OhoBQYGytXVVcHBwYqLi8s176ZNm9SqVStVq1ZNFSpUUFBQkF5//XWHfCtXrlTDhg1ltVrVsGFDrVq16rr2CwBAWUKwHQAAAAAAAACAG9zy5cs1evRojR8/Xrt27VJYWJg6d+6shISEHPO7ublpxIgR2rhxo/bv368JEyZowoQJmjt3ri3P1q1b1bNnT/Xr10/ff/+9+vXrp0cffVTffvttgfcLAEBZYjHGmJKuRGmT3xvfAwBwPeh3ihftDQAoTvQ7xYe2BgAUp7LY77Ro0ULNmzfX7NmzbWkNGjRQt27dNG3atDyV0b17d7m5uen999+XJPXs2VNpaWn64osvbHk6deqkKlWqaOnSpYWy37LY1gCAsiu//Q4j2wEAAAAAAAAAuIFduHBB8fHxCg8Pt0sPDw/Xli1b8lTGrl27tGXLFrVp08aWtnXrVocyO3bsaCuzIPtNT09XWlqa3QMAgNKKYDsAAAAAAAAAADewU6dOKSMjQ56ennbpnp6eSklJueq2vr6+slqtCgkJ0dNPP63Bgwfb1qWkpFy1zILsd9q0afLw8LA9/Pz88nycAAAUN4LtAAAAAAAAAADcBCwWi92yMcYh7UpxcXHasWOH3nnnHUVFRdmmh89PmfnZb0REhFJTU22PxMTEq9YPAICS5FzSFSiNsm9jz/Q0AIDikN3fZPc/KFr08wCA4kQ/X3zo4wEAxams9fHVq1eXk5OTw2jykydPOow6v1JgYKAkqXHjxjpx4oQiIyPVq1cvSZKXl9dVyyzIfq1Wq6xWq22ZPh4AUJzy28cTbM/BmTNnJInpaQAAxerMmTPy8PAo6Wrc8OjnAQAlgX6+6NHHAwBKQlnp411cXBQcHKzY2Fg99NBDtvTY2Fh17do1z+UYY5Senm5bDg0NVWxsrMaMGWNLW7t2rVq2bFlo+6WPBwCUhLz28QTbc+Dj46PExERVrlz5mlPoXEtaWpr8/PyUmJgod3f3QqrhjYm2yh/aK+9oq7yjrfKuMNvKGKMzZ87Ix8enkGqHqymsfp73S8mh7UsG7V4yaPeSQT9fNhXmtXxpxOdB/tBeeUdb5R1tlXc3Q1uVxT5+7Nix6tevn0JCQhQaGqq5c+cqISFBw4YNk5Q1fXtSUpIWL14sSXr77bdVu3ZtBQUFSZI2bdqkmTNnauTIkbYyR40apdatW2v69Onq2rWrPvnkE61bt06bNm3K836vhe/rcb34v998+J/ffEryOp5gew7KlSsnX1/fQi3T3d2dN3Qe0Vb5Q3vlHW2Vd7RV3hVWW5WFX8HfKAq7n+f9UnJo+5JBu5cM2r1k0M+XLUVxLV8a8XmQP7RX3tFWeUdb5d2N3lZlrY/v2bOnTp8+rSlTpig5OVmNGjXS6tWr5e/vL0lKTk5WQkKCLX9mZqYiIiJ05MgROTs7q06dOnrllVc0dOhQW56WLVtq2bJlmjBhgiZOnKg6depo+fLlatGiRZ73ey18X4/Cwv/95sP//OZTEtfxBNsBAAAAAAAAALgJDB8+XMOHD89x3cKFC+2WR44caTeKPTc9evRQjx49CrxfAADKsnIlXQEAAAAAAAAAAAAAAMoagu1FzGq1atKkSbJarSVdlVKPtsof2ivvaKu8o63yjrYCr4GSQ9uXDNq9ZNDuJYN2R2nE6zJ/aK+8o63yjrbKO9oKpRWvzZsT//ebD//zm09J/s8txhhT7HsFAAAAAAAAAAAAAKAMY2Q7AAAAAAAAAAAAAAD5RLAdAAAAAAAAAAAAAIB8ItgOAAAAAAAAAAAAAEA+EWwHAAAoYyIjI9W0adOSrkaZNnDgQHXr1s223LZtW40ePbrE6gMUBYvFoo8//liSdPToUVksFu3evbtE6wQAAAAUpaI47738vBrFZ+HChbrllltKuhp2uK4q/Urj6wZF41qfzRs2bJDFYtEff/xR5HUh2J6LjRs3qkuXLvLx8cnxH3b27FmNGDFCvr6+qlChgho0aKDZs2dftcyjR49q0KBBCgwMVIUKFVSnTh1NmjRJFy5csMv31VdfqWXLlqpcubK8vb31/PPP69KlS4V9iEVm2rRpslgsdl9YG2MUGRkpHx8fVahQQW3bttXevXvzXGZ6erqaNm2aY0dWltpr9uzZatKkidzd3eXu7q7Q0FB98cUXtvUFbacHH3xQtWvXlqurq7y9vdWvXz8dP37cLk9ZaqdskZGRslgsdg8vLy/b+oK2V0BAgEO548aNs8tTFtsrKSlJffv2VbVq1VSxYkU1bdpU8fHxtvXX8z78/PPP1aJFC1WoUEHVq1dX9+7d7daXxfa6Uk6vC4vFoqefflrS9X+OoegMHDjQ9v8qX768br31Vj3zzDP6888/r6vcm+kCKqe++3KDBg1S48aNHc5ZVq9erfLly2vHjh3FUMu/HTp0SI8//rh8fX1ltVoVGBioXr16FXs9bjRX/gAh25UXJ3PmzNEdd9whNzc33XLLLWrWrJmmT59evJUtoJMnT2ro0KGqXbu2rFarvLy81LFjR23durWkq4ZCkN0fvPLKK3bpH3/8sSwWy3WVfbUvbK68Xly/fr3atWunqlWrqmLFirrttts0YMCAMnduBAAAUBpd/h2AxWJRtWrV1KlTJ/3www8lXTXkQ16uP3v27KkDBw4Uf+Wuws/PT8nJyWrUqFFJV+WGl5iYqEGDBsnHx0cuLi7y9/fXqFGjdPr0aVuegIAARUVFlVwlUSjeeecdVa5c2e6a+ezZsypfvrzCwsLs8sbFxcliseTps6Fly5ZKTk6Wh4eHpKL9IQbB9lz8+eefuuOOO/Sf//wnx/VjxozRl19+qQ8++ED79+/XmDFjNHLkSH3yySe5lvm///1PmZmZmjNnjvbu3avXX39d77zzjv7973/b8vzwww+677771KlTJ+3atUvLli3Tp59+6hAILK2+++47zZ07V02aNLFLnzFjhmbNmqX//Oc/+u677+Tl5aV7771XZ86cyVO5zz33nHx8fBzSy1p7+fr66pVXXtGOHTu0Y8cO3XPPPeratastYFfQdmrXrp0+/PBD/fTTT1q5cqUOHz6sHj162NaXtXa63O23367k5GTbY8+ePbZ11/O6mjJlil25EyZMsK0ri+31+++/q1WrVipfvry++OIL7du3T6+99ppd51HQ9lq5cqX69eunxx9/XN9//702b96s3r1729aXxfbKyXfffWf3moiNjZUkPfLII5IK1n4Wi0VHjx4tjurf9Dp16qTk5GT9/PPPmjp1qqKjo/XMM8+UdLWu6srAdUnJre++XFRUlM6cOaNJkybZ0v744w89+eSTGj9+vEJCQgq9XhcvXswxfceOHQoODtaBAwc0Z84c7du3T6tWrVJQUJD+9a9/FXo9YG/+/PkaO3as/vnPf9r6hOeee05nz54t6arlycMPP6zvv/9eixYt0oEDB/Tpp5+qbdu2+u2330q6aigkrq6umj59un7//fcS2f/evXvVuXNn/eMf/9DGjRu1Z88evfXWWypfvrwyMzNLpE4AAAA3muzvAJKTk/XVV1/J2dlZDzzwQElXC4WsQoUKqlmzZklXw46Tk5O8vLzk7Oxc0lW5of38888KCQnRgQMHtHTpUh06dEjvvPOOvvrqK4WGhpbINXxu31Ph+rVr105nz561G0QTFxcnLy8vfffddzp37pwtfcOGDfLx8VG9evWuWa6Li4u8vLyu+8f3eWJwTZLMqlWr7NJuv/12M2XKFLu05s2bmwkTJuSr7BkzZpjAwEDbckREhAkJCbHLs2rVKuPq6mrS0tLyV/FidubMGXPbbbeZ2NhY06ZNGzNq1ChjjDGZmZnGy8vLvPLKK7a858+fNx4eHuadd965ZrmrV682QUFBZu/evUaS2bVrl21dWW6vbFWqVDHvvvvudbfT5T755BNjsVjMhQsXjDFlt50mTZpk7rjjjhzXXU97+fv7m9dffz3X9WWxvZ5//nlz991357q+oO118eJFU6tWLfPuu+/mmqcstldejBo1ytSpU8dkZmYWuP0kmSNHjhRDbW9uAwYMMF27drVLGzx4sPHy8jLnz583I0eONDVq1DBWq9W0atXKbN++3Zbvt99+M7179zbVq1c3rq6upm7duua9994zxmT9/y5/tGnTJtc6pKWlmd69e5uKFSsaLy8vM2vWLLu+0Jisz54XX3zRDBgwwLi7u5v+/fsbY4x57rnnzG233WYqVKhgAgMDzYQJE2yf39mmTZtmatasaSpVqmSeeOIJ8/zzz+f6+ZgfufXdOVm/fr0pX7682bZtmzEmq91DQkLMxYsXzbFjx8yjjz5qbrnlFlO1alXz4IMP2r32t2/fbjp06GCqVatm3N3dTevWrU18fLxd+ZLM7NmzzYMPPmgqVqxoXnjhBYc6ZGZmmttvv90EBwebjIwMh/W///677fkPP/xg2rVrZ1xdXU3VqlXNkCFDzJkzZ2zrr3zdXHn86enp5tlnnzU+Pj6mYsWK5s477zTr16+329/cuXONr6+vqVChgunWrZt57bXXjIeHh12eTz/91DRv3txYrVYTGBhoIiMjzcWLF3Np5ZKV03vJmKz/vSTz+++/m65du5qBAwcWf+UKwe+//24kmQ0bNlw13y+//GIefPBB4+bmZipXrmweeeQRk5KSYluffX4yf/584+fnZ9zc3MywYcPMpUuXzPTp042np6epUaOGmTp1ql25f/zxhxkyZIipUaOGqVy5smnXrp3ZvXv3VeuSmJhoevbsaapUqWIqVqxogoODbe9BY4yJjo42t956qylfvrypV6+eWbx4sd32l1/HHDlyxOFceu/evaZz587Gzc3N1KxZ0/Tt29f8+uuvtvV5+WzLy3uluAwYMMA88MADJigoyDz77LO29FWrVpkrL31XrFhhGjZsaFxcXIy/v7+ZOXPmVctesGCBw/s72+Xt/Prrr5uAgIDrOg4AAADkLqfrlo0bNxpJ5uTJkw7nvZcuXTJPPPGECQgIMK6urqZevXomKirKodz58+fbzg+9vLzM008/bVt3ZXxg8uTJpmbNmnbn1sifvFx/XnkOvnv3btO2bVtTqVIlU7lyZdO8eXPz3XffGWP+Pl9ftWqVue2224zVajUdOnQwCQkJtu0PHTpkHnzwQVOzZk3j5uZmQkJCTGxsrN3+/f39zUsvvWQef/xxU6lSJePn52fmzJljW5/TddWPP/5o7rvvPlO5cmVTqVIlc/fdd5tDhw4VTkPdpDp16mR8fX3NuXPn7NKTk5NNxYoVzbBhw0ybNm0cvrsz5u/XwpdffmmCgoKMm5ub6dixozl+/LhdWe+9954JCgoyVqvV1K9f37z99tu2ddn/5+XLl5s2bdoYq9Vq+74QRcPHx8dMmzbNtvzcc8+Zp59+2jRs2NDufXrPPfeYPn36GGOyPpvnzZtnunXrZipUqGDq1q1rPvnkE1veyz9Psp9f/pg0aZIxpnC+12BkewHdfffd+vTTT5WUlCRjjNavX68DBw6oY8eO+SonNTVVVatWtS2np6fL1dXVLk+FChV0/vx5u+mgS6Onn35a999/vzp06GCXfuTIEaWkpCg8PNyWZrVa1aZNG23ZsuWqZZ44cUJDhgzR+++/r4oVKzqsL8vtlZGRoWXLlunPP/9UaGjodbXT5X777TctWbJELVu2VPny5SWV7XY6ePCgfHx8FBgYqMcee0w///yzpOt7XUnS9OnTVa1aNTVt2lQvvfSS3QjTsthen376qUJCQvTII4+oZs2aatasmebNm2dbX9D22rlzp5KSklSuXDk1a9ZM3t7e6ty5s9306WWxva7lwoUL+uCDD/TEE0/IYrEU2vsTxadChQq6ePGinnvuOa1cuVKLFi3Szp07VbduXXXs2NH2C9iJEydq3759+uKLL7R//37Nnj1b1atXlyRt375dkrRu3TolJycrJiYm1/2NHTtWmzdv1qeffqrY2FjFxcVp586dDvleffVVNWrUSPHx8Zo4caIkqXLlylq4cKH27dunN954Q/PmzdPrr79u2+bDDz/UpEmT9NJLL2nHjh3y9vZWdHR0obRTbn13Ttq2bavhw4drwIAB+uijj/Thhx9q8eLFunDhgtq1a6dKlSpp48aN2rRpkypVqqROnTrZPlvPnDmjAQMGKC4uTtu2bdNtt92m++67z2FmiEmTJqlr167as2ePnnjiCYc67N69W3v37tW//vUvlSvneBqbPZvHuXPn1KlTJ1WpUkXfffedPvroI61bt04jRozIc9s8/vjj2rx5s5YtW6YffvhBjzzyiDp16qSDBw9KkjZv3qxhw4Zp1KhR2r17t+6991699NJLdmWsWbNGffv21T//+U/t27dPc+bM0cKFCx3ylSVeXl7atm2bfvnll5KuSr5VqlRJlSpV0scff6z09PQc8xhj1K1bN/3222/65ptvFBsbq8OHD6tnz552+Q4fPqwvvvhCX375pZYuXar33ntP999/v44dO6ZvvvlG06dP14QJE7Rt2zZbuffff79SUlK0evVqxcfHq3nz5mrfvn2uv8g/e/as2rRpo+PHj+vTTz/V999/r+eee842OnrVqlUaNWqU/vWvf+nHH3/U0KFD9fjjj2v9+vV5ao/k5GS1adNGTZs21Y4dO/Tll1/qxIkTevTRR2158vLZdq33SnFzcnLSyy+/rLfeekvHjh3LMU98fLweffRRPfbYY9qzZ48iIyM1ceJELVy48Lr37+XlpeTkZG3cuPG6ywIAAMC1nT17VkuWLFHdunVVrVo1h/WZmZny9fXVhx9+qH379umFF17Qv//9b3344Ye2PLNnz9bTTz+tJ598Unv27NGnn36qunXrOpRljNGoUaM0f/58bdq0SU2bNi3KQ8MV+vTpI19fX3333XeKj4/XuHHjbN9/S1nfBbz00ktatGiRNm/erLS0ND322GO29WfPntV9992ndevWadeuXerYsaO6dOmihIQEu/289tprCgkJ0a5duzR8+HA99dRT+t///pdjnZKSktS6dWu5urrq66+/Vnx8vJ544gluIXUdfvvtN61Zs0bDhw9XhQoV7NZ5eXmpT58+Wr58uVauXClfX1+7GWyznTt3TjNnztT777+vjRs3KiEhwW4GzHnz5mn8+PF66aWXtH//fr388suaOHGiFi1aZLe/559/Xv/85z+1f//+fMf+kD9t27a1+z5j/fr1atu2rdq0aWNLv3DhgrZu3ap27drZ8k2ePFmPPvqobfbdPn365Pg9S8uWLRUVFSV3d3fb6yX7NVEo32sU7DcGNxflMLI9PT3d9O/f30gyzs7OxsXFxWEkybUcOnTIuLu7m3nz5tnS1qxZY8qVK2f++9//mkuXLpljx46Zu+++20gy//3vfwvjcIrE0qVLTaNGjcxff/1ljLEfHbZ582YjySQlJdltM2TIEBMeHp5rmZmZmaZTp07mxRdfNMbk/KuxstheP/zwg3FzczNOTk7Gw8PDfP7558aYgrdTtueee85UrFjRSDJ33XWXOXXqlG1dWWwnY7JmNVixYoX54YcfbKMuPT09zalTp66rvWbNmmU2bNhgvv/+ezNv3jxTvXp1M2jQINv6stheVqvVWK1WExERYXbu3Gneeecd4+rqahYtWmSMKfjra+nSpUaSqV27tlmxYoXZsWOH6dWrl6lWrZo5ffq0MaZstte1LF++3Dg5Odnaq6DtJ0a2F4srfw397bffmmrVqpkePXqY8uXLmyVLltjWXbhwwfj4+JgZM2YYY4zp0qWLefzxx3MsN6d+JydpaWmmfPny5qOPPrKl/fHHH6ZixYoOI9u7det2zeOZMWOGCQ4Oti2HhoaaYcOG2eVp0aLFdY9sv1rfnZtz586ZoKAgU65cOdsMIfPnzzf169c3mZmZtnzp6emmQoUKZs2aNTmWc+nSJVO5cmXzf//3f7Y0SWb06NFX3f/y5cuNJLNz586r5ps7d66pUqWKOXv2rC3t888/N+XKlbONUL7ayPZDhw4Zi8Xi8J5v3769iYiIMMYY07NnT3P//ffbre/Tp4/dr+7DwsLMyy+/bJfn/fffN97e3letf0kZMGCAcXJyMm5ubnYPV1dX2y+Bjx8/bu666y4jydSrV88MGDDALF++PMeZBkqjFStWmCpVqhhXV1fTsmVLExERYb7//nvb+rVr1xonJye70Q/Zsytlz4oxadIkU7FiRbvZWzp27GgCAgLs2qF+/fq2X2V/9dVXxt3d3Zw/f96uPnXq1LEbJXG5OXPmmMqVK9v62yu1bNnSDBkyxC7tkUceMffdd59t+fLrmCs/0yZOnOjQhyUmJhpJ5qeffsrTZ1te3ivF6fL39V133WWeeOIJY4zjyPbevXube++9127bZ5991jRs2DDXshcsWGAkObw/3Nzc7Nr50qVLZuDAgUaS8fLyMt26dTNvvfWWSU1NLdyDBQAAuElded0iyXh7e9tmT8vLtfzw4cPNww8/bFv28fEx48ePzzW/JPPRRx+Zvn37mqCgIJOYmFhox3Ozysv155Uj2ytXrmwWLlyYY3nZ5+uXzwS2f/9+I8l8++23udajYcOG5q233rIt+/v7m759+9qWMzMzTc2aNc3s2bONMY6vr4iICBMYGOgwQyEKbtu2bTnG5LLNmjXLSDInTpzIcQbb7NfC5bMLvP3228bT09O27Ofn5/C99YsvvmhCQ0ONMX//n3OaBQNFY+7cucbNzc1cvHjRpKWlGWdnZ3PixAmzbNky07JlS2OMMd98842RZA4fPmyMyfpsvny28bNnzxqLxWK++OILY4z9yHZjcp6xrrC+12BkewG9+eab2rZtmz799FPFx8frtdde0/Dhw7Vu3TpJ0rBhw2yjZypVquSw/fHjx9WpUyc98sgjGjx4sC09PDxcr776qoYNGyar1ap69erp/vvvl5Q1SqM0SkxM1KhRo/TBBx84jG693JX3RTDG2NJyaq+33npLaWlpioiIyLXMsthe9evX1+7du7Vt2zY99dRTGjBggPbt22dbn992yvbss89q165dWrt2rZycnNS/f39lfd6UzXaSpM6dO+vhhx9W48aN1aFDB33++eeSZPcLs4K015gxY9SmTRs1adJEgwcP1jvvvKP58+fr9OnTkspme2VmZqp58+Z6+eWX1axZMw0dOlRDhgzR7Nmz7fLlt72yR8+NHz9eDz/8sIKDg7VgwQJZLBZ99NFHkspme13L/Pnz1blzZ/n4+NilX639pKzX7JVtePvtt1+1P0Dh+Oyzz1SpUiW5uroqNDRUrVu31siRI3Xx4kW1atXKlq98+fK68847tX//fknSU089pWXLlqlp06Z67rnnrjlTQVxcnN3/c8mSJfr555918eJF3XnnnbZ8Hh4eql+/vsP2Od3bfMWKFbr77rvl5eWlSpUqaeLEiXa/qt6/f79CQ0PttrlyOb/y0ne//PLLdseakJCgChUq6F//+pcqVqyoUaNGScoaIXro0CFVrlzZlrdq1ao6f/68Dh8+LEk6efKkhg0bpnr16snDw0MeHh46e/asw6/Hr3Xv9+x+7Vr3Wtq/f7/uuOMOubm52dJatWqlzMxM/fTTT1dvHGXN6mGMUb169eza4JtvvrEd008//WT3P5fksBwfH68pU6bYlTFkyBAlJyfb3W+qNGnXrp12795t93j33Xdt6729vbV161bt2bNH//znP3Xx4kUNGDBAnTp1KhP3o3744YdtI8U7duyoDRs2qHnz5rYRzfv375efn5/8/Pxs2zRs2FC33HKL7XNDkgICAlS5cmXbsqenpxo2bGg344Knp6dOnjwpKeu1cPbsWVWrVs3u9XDkyBHba+pKu3fvVrNmzexmwbrc/v377T7fpKzX+eX1vJr4+HitX7/erj5BQUGSskbu5+WzLS/vlZIyffp0LVq0yO48O1tubXfw4EFlZGTkWmblypUd3h+7d++2y+Pk5KQFCxbo2LFjmjFjhnx8fPTSSy/p9ttvtxtpAQDFKSAgQFFRUSVdjXyLjIxk1CiAHF1+3fLtt98qPDxcnTt3znUGrnfeeUchISGqUaOGKlWqpHnz5tmuR0+ePKnjx4+rffv2V93nmDFjtHXrVsXFxcnX17fQj+lmdK3rzyuNHTtWgwcPVocOHfTKK684XHM4Ozvbfa8QFBRkdy33559/6rnnnrNd41WqVEn/+9//HL6baNKkie25xWKRl5eX7druSrt371ZYWJjdCHsUrbx8N1SxYkXVqVPHtuzt7W37H/76669KTEzUoEGD7K5jp06d6vCautb3VCg87dq1059//qnvvvtOcXFxqlevnmrWrKk2bdrou+++059//qkNGzaodu3auvXWW23bXf5+dXNzU+XKlXN9v+aksL7XcM5zTtj89ddf+ve//61Vq1bZAkpNmjTR7t27NXPmTHXo0EFTpkyxm5bicsePH1e7du0UGhqquXPnOqwfO3asxowZo+TkZFWpUkVHjx5VRESEAgMDi/S4Cio+Pl4nT55UcHCwLS0jI0MbN27Uf/7zH9uX2ikpKfL29rblOXnypDw9PSUpx/b6+uuvtW3bNlmtVrv0kJAQ9enTxxZwLWvt5eLiYpuGKCQkRN99953eeOMNPf/885Ly307ZqlevrurVq6tevXpq0KCB/Pz8tG3bNltApqy1U07c3NzUuHFjHTx4UN26dZNU8Pa63F133SVJOnTokG26qbLWXt7e3mrYsKFdWoMGDbRy5UpJWVPsSPlvr+y8l5dttVp166232p2IlrX2uppffvlF69ats5syPC/tJ0nvvvuu/vrrL9vybbfdptWrV6tWrVrFUPObW7t27TR79myVL19ePj4+Kl++vL7//ntJV/+RRPbF+Oeff65169apffv2evrppzVz5swc9xMSEmIXWPH09LSdeOW0nytdHvyVpG3btumxxx7T5MmT1bFjR3l4eGjZsmV67bXX8tcA+XStvjs9PV3Dhg2zm046+8cnzs7OcnJysh1vZmamgoODtWTJEof91KhRQ5I0cOBA/frrr4qKipK/v7+sVqtCQ0PtbuEhObbPlerVqycpK1B2tS9er/whzOWuFaiXso7JyclJ8fHxDj8ayv7RTE77uPJ/npmZqcmTJ6t79+4O+7jaDxRLkpubm8N0iTlNxd2oUSM1atRITz/9tDZt2qSwsDB98803dlN5lVaurq669957de+99+qFF17Q4MGDNWnSJA0cODDX186V6Vd+kWKxWHJMy/4BQmZmpry9vbVhwwaHsrNvf3ClK6fLy8m1fgR2NZmZmerSpYumT5/usM7b29s2XdrVXud5ea+UlNatW6tjx47697//rYEDB9qty8v7NyflypXLcTrRnNSqVUv9+vVTv379NHXqVNWrV0/vvPOOJk+enOdjAFD2DBw40GH6USnr9mh5/fwozf766y9Vq1ZNO3futP1A63LZn61bt261XWdLWbce8/Hx0W+//WabEhQArseV1y3BwcHy8PDQvHnz7Aa2SVm3ZhszZoxee+01hYaGqnLlynr11Vf17bffSsrbebck3XvvvVq6dKnWrFmjPn36FN7B3MTyev2ZLTIyUr1799bnn3+uL774QpMmTdKyZcv00EMP2fLkdD2Unfbss89qzZo1mjlzpurWrasKFSqoR48eDt9NXO3a7kp5ff0g7+rWrSuLxaJ9+/bZYgCX+9///qcqVarYbgOZk5z+h9nXfNn/y3nz5qlFixZ2+a68rr3W91QoPHXr1pWvr6/Wr1+v33//XW3atJGU9b18YGCgNm/erPXr1+uee+6x2y4/79ecFNb3GgTbC+DixYu6ePGiw71CnZycbP/EmjVrqmbNmg7bJiUlqV27drbRoTndb1TKekFkf6m9dOlS+fn5qXnz5oV8JIWjffv22rNnj13a448/rqCgID3//PO69dZb5eXlpdjYWDVr1kxS1r0Vsu9nKeXcXm+++aamTp1qWz5+/Lg6duyo5cuXO3wIlqX2upIxRunp6QoMDCxQO+VWpiSH+5GW5XaSso5n//79CgsLK9T22rVrlyTZBVGlstVerVq1chiteeDAAfn7+0tSgdsrODhYVqtVP/30k+6++25JWZ+BR48etZWdrSy119UsWLBANWvWtP2YSspb+0nKMaju7++vgICAIq/3zS6nC7S6devKxcVFmzZtUu/evSVlvX537Nih0aNH2/LVqFFDAwcO1MCBAxUWFqZnn31WM2fOlIuLiyTZjXKsUKGCw37q1Kmj8uXLa/v27bbRsGlpaTp48KDtxDA3mzdvlr+/v8aPH29Lu/KX+A0aNNC2bdvUv39/W1r2faAL6lp9t5OTk6pWrZrriNrLNW/eXMuXL1fNmjXl7u6eY564uDhFR0frvvvuk5Q1sv7UqVP5rnfTpk3VsGFDvfbaa+rZs6fDedQff/yhW265RQ0bNtSiRYv0559/2i6MNm/erHLlytkC9lfTrFkzZWRk6OTJkwoLC8sxT1BQkLZv326XtmPHDrvl5s2b66effrohvly/muwfZP35558lXJOCadiwoT7++GPb84SEBCUmJtrez/v27VNqaqoaNGhQ4H00b95cKSkpcnZ2znOf0KRJE7377rv67bffcnwvNmjQQJs2bbL7bNiyZUue69m8eXOtXLlSAQEBcnZ2vCzMy2dbXt4rJemVV15R06ZNHd73DRs21KZNm+zStmzZonr16hXJrDxVqlSRt7d3mX2PAMifTp06acGCBXZp2T9ALOtiY2Pl5+eXY6A9m5+fnxYsWGAXbF+1apUqVaqU4/0zAaAwWCwWlStXzm4ARLa4uDi1bNlSw4cPt6VdPlqxcuXKCggI0FdffXXVHw8/+OCD6tKli3r37i0nJye7e4Gj+NSrV0/16tXTmDFj1KtXLy1YsMAWbL906ZJ27Nhhm53rp59+0h9//GHrt+Li4jRw4EBb/rNnz+ro0aPXVZ8mTZpo0aJFunjxIqPbC0m1atV07733Kjo6WmPGjLH7QUNKSoqWLFmi/v37y2KxyMXF5aqzk+XE09NTtWrV0s8//8wPZ0qZdu3aacOGDfr999/17LPP2tLbtGmjNWvWaNu2bXr88ccLXH5Or5fC+l6DaeRzcfbsWbtpAY8cOaLdu3crISFB7u7uatOmjZ599llt2LBBR44c0cKFC7V48WK7X1Fd6fjx42rbtq38/Pw0c+ZM/frrr0pJSVFKSopdvldffVV79uzR3r179eKLL+qVV17Rm2++WWqnY65cubJtdFP2w83NTdWqVVOjRo1ksVg0evRovfzyy1q1apV+/PFHDRw4UBUrVrQFP3JSu3ZtuzKzvySrU6eO3VQ9Zam9/v3vfysuLk5Hjx7Vnj17NH78eG3YsEF9+vQpcDtt375d//nPf7R792798ssvWr9+vXr37q06derYTTNcltop2zPPPKNvvvlGR44c0bfffqsePXooLS1NAwYMKHB7bd26Va+//rp2796tI0eO6MMPP9TQoUP14IMPqnbt2rZ8Za29xowZo23btunll1/WoUOH9N///ldz587V008/LUkFbi93d3cNGzZMkyZN0tq1a/XTTz/pqaeekiQ98sgjtnxlrb1yk5mZqQULFmjAgAF2gYeCth9Klpubm5566ik9++yz+vLLL7Vv3z4NGTJE586d06BBgyRJL7zwgj755BMdOnRIe/fu1WeffWYLVNWsWVMVKlTQl19+qRMnTig1NTXH/VSuXFkDBgzQs88+q/Xr12vv3r164oknVK5cuWuOMK1bt64SEhK0bNkyHT58WG+++aZWrVpll2fUqFF677339N577+nAgQOaNGmS9u7de11tc62+Oz/69Omj6tWrq2vXroqLi9ORI0f0zTffaNSoUbZfpNetW1fvv/++9u/fr2+//VZ9+vQp0K+/LRaLFixYoAMHDqh169ZavXq1fv75Z/3www966aWX1LVrV1udXF1dNWDAAP34449av369Ro4cqX79+tnNRpGbevXqqU+fPurfv79iYmJ05MgRfffdd5o+fbpWr14tSRo5cqRWr16tWbNm6eDBg5ozZ46++OILu//5Cy+8oMWLFysyMlJ79+7V/v37tXz5ck2YMCHfx15aPPXUU3rxxRe1efNm/fLLL7YfgtSoUeO6b29Q1E6fPq177rlHH3zwgX744QcdOXJEH330kWbMmGF77XTo0EFNmjRRnz59tHPnTm3fvl39+/dXmzZtrmv6uA4dOig0NFTdunXTmjVrdPToUW3ZskUTJkxw+JFGtl69esnLy0vdunXT5s2b9fPPP2vlypXaunWrpKxRGQsXLtQ777yjgwcPatasWYqJicnTrD6S9PTTT+u3335Tr169tH37dv38889au3atnnjiCWVkZOTpsy0v75WS1LhxY/Xp00dvvfWWXfq//vUvffXVV3rxxRd14MABLVq0SP/5z3/y3HZXM2fOHD311FNau3atDh8+rL179+r555/X3r171aVLl+suH0DpZ7Va5eXlZffIvi76v//7PwUHB8vV1VW33nqrJk+erEuXLtm2tVgsmjNnjh544AFVrFhRDRo00NatW3Xo0CG1bdtWbm5uCg0NtQsSHT58WF27dpWnp6cqVaqkf/zjH7ZbHOYmNTVVTz75pO3Hkvfcc49tVqir+eSTT/Tggw9eNc+AAQO0bNkyu4DXe++9pwEDBjjkff7551WvXj1VrFhRt956qyZOnKiLFy9etfwFCxaoQYMGcnV1VVBQkKKjo69ZbwA3nvT0dNv36vv379fIkSN19uzZHM+36tatqx07dmjNmjU6cOCAJk6cqO+++84uT2RkpF577TW9+eabOnjwoHbu3OlwDilJDz30kN5//309/vjjWrFiRZEdHxz99ddfGjFihDZs2KBffvlFmzdv1nfffWf3Y+Py5ctr5MiR+vbbb7Vz5049/vjjuuuuu2zB97p16yomJka7d+/W999/r969e1/37dBGjBihtLQ0PfbYY9qxY4cOHjyo999/P0+3sEPusmdd7NixozZu3KjExER9+eWXuvfee1WrVi299NJLkrJulbNx40YlJSXla1BHZGSkpk2bpjfeeEMHDhzQnj17tGDBAs2aNauoDgl50K5dO23atEm7d++2G8DUpk0bzZs3T+fPn7+uGRUDAgJ09uxZffXVVzp16pTOnTtXeN9r5Pnu7jeZ9evXG0kOjwEDBhhjjElOTjYDBw40Pj4+xtXV1dSvX9+89tprJjMzM9cyFyxYkGOZV/4b2rVrZzw8PIyrq6tp0aKFWb16dVEeapFo06aNGTVqlG05MzPTTJo0yXh5eRmr1Wpat25t9uzZk68yjxw5YiSZXbt22aWXpfZ64oknjL+/v3FxcTE1atQw7du3N2vXrrWtL0g7/fDDD6Zdu3amatWqxmq1moCAADNs2DBz7Ngxu3xlqZ2y9ezZ03h7e5vy5csbHx8f0717d7N3717b+oK0V3x8vGnRooWtLerXr28mTZpk/vzzT7t8ZbG9/u///s80atTIWK1WExQUZObOnWu3vqDvwwsXLph//etfpmbNmqZy5cqmQ4cO5scff7TLUxbbKydr1qwxksxPP/3ksK4g7SfJHDlypIhqi2wDBgwwXbt2zXHdX3/9ZUaOHGmqV69urFaradWqldm+fbtt/YsvvmgaNGhgKlSoYKpWrWq6du1qfv75Z9v6efPmGT8/P1OuXDnTpk2bXOuQlpZmevfubSpWrGi8vLzMrFmzzJ133mnGjRtny+Pv729ef/11h22fffZZU61aNVOpUiXTs2dP8/rrrxsPDw+7PC+99JKpXr26qVSpkhkwYIB57rnnzB133JGX5smzK/vu3CxYsMChfsnJyaZ///62dr711lvNkCFDTGpqqjHGmJ07d5qQkBBjtVrNbbfdZj766COH9pBkVq1alae6/vTTT6Z///7Gx8fHuLi4GH9/f9OrVy+zc+dOW57s/tHV1dVUrVrVDBkyxJw5c8a2/srXzZXHf+HCBfPCCy+YgIAAU758eePl5WUeeugh88MPP9jyzJ0719SqVctUqFDBdOvWzUydOtV4eXnZ1fXLL780LVu2NBUqVDDu7u7mzjvvdPh8Li1yey9lnxf//vvvZsWKFea+++4z3t7exsXFxfj4+JiHH37Yrl1Kq/Pnz5tx48aZ5s2bGw8PD1OxYkVTv359M2HCBHPu3Dlbvl9++cU8+OCDxs3NzVSuXNk88sgjJiUlxbZ+0qRJDu+/nNruytdUWlqaGTlypPHx8THly5c3fn5+pk+fPiYhISHXOh89etQ8/PDDxt3d3VSsWNGEhISYb7/91rY+Ojra3HrrraZ8+fKmXr16ZvHixXbbX/6+yulc+sCBA+ahhx4yt9xyi6lQoYIJCgoyo0ePtl3T5OWzLS/vleKS0//h6NGjxmq1OlxzrVixwjRs2NCUL1/e1K5d27z66qtXLTunz75sl7fzzp07Td++fU1gYKCxWq2mWrVqpnXr1ubTTz8t6GEBKEOudl765ZdfGnd3d7Nw4UJz+PBhs3btWhMQEGAiIyNteSSZWrVqmeXLl5uffvrJdOvWzQQEBJh77rnHfPnll2bfvn3mrrvuMp06dbJts3v3bvPOO++YH374wRw4cMCMHz/euLq6ml9++cWW5/LzrszMTNOqVSvTpUsX891335kDBw6Yf/3rX6ZatWrm9OnTuR5bRkaGqVmzpomLi8s1T/bn4R133GHef/99Y4wxCQkJxmq1mgMHDhhJZv369bb8L774otm8ebM5cuSI+fTTT42np6eZPn26bf2Vfe7cuXONt7e3Wblypfn555/NypUrTdWqVc3ChQtzrROAG8+AAQPsvlevXLmy+cc//mFWrFhhjHE87z1//rwZOHCg8fDwMLfccot56qmnzLhx4xzO6d955x1Tv359U758eePt7W1GjhxpW3fl9ery5cuNq6urWblyZVEf7g0rL9efl5+Dp6enm8cee8z4+fnZrkVHjBhh/vrrL2PM3+frK1euNLfeeqtxcXEx99xzjzl69Kit7CNHjph27dqZChUqGD8/P/Of//zH4botp+9u7rjjDjNp0iRbGVdeV33//fcmPDzcVKxY0VSuXNmEhYWZw4cPF0Yz3dSOHj1qBg4caLy8vGzX0CNHjjSnTp2y5dm6datp0qSJ3TVfTtduq1atcrgmXLJkiWnatKlxcXExVapUMa1btzYxMTHGmNxjUSha2e0eFBRkl56YmGgkmTp16til5/RdooeHh1mwYIExxv7zJNuwYcNMtWrVjCTb+7owvtew/P8KAQAAoJD8+eefqlWrll577TXbKHrc+IYMGaL//e9/iouLK+mqAEWCzzYAuLqBAwfqgw8+kKurqy2tc+fO+uijj9S6dWt17txZERERtnUffPCBnnvuOR0/flxS1sj2CRMm6MUXX5SUdeug0NBQzZ8/X0888YQkadmyZXr88cdznCo52+23366nnnpKI0aMkJQ1imf06NEaPXq0vv76az300EM6efKkrFarbZu6devqueee05NPPpljmVu2bFHXrl114sSJq94ScdWqVfrll1/0ySef6Ouvv9aUKVO0e/duvffee6pSpcpV79n+6quvavny5bZZXyIjI/Xxxx/bZp2sXbu2pk+frl69etm2mTp1qlavXq0tW7bk2h4AgBvfwoULNXr0aP3xxx8lXRUANyHu2Q4AAHCddu3apf/973+68847lZqaqilTpkiSbWpq3Jhmzpype++9V25ubvriiy+0aNEipjLFDYXPNgDIv3bt2mn27Nm2ZTc3N0lSfHy8vvvuO9u0p5KUkZGh8+fP69y5c6pYsaKkrHu/Zsu+/U3jxo3t0s6fP6+0tDS5u7vrzz//1OTJk/XZZ5/p+PHjunTpkv766y8lJCTkWL/4+HidPXtW1apVs0v/66+/7Kanv9Inn3yiBx54INdA++X69u2rcePG6eeff9bChQv15ptv5phvxYoVioqK0qFDh3T27FldunRJ7u7uOeb99ddflZiYqEGDBmnIkCG29EuXLsnDw+OadQIAAACKCsF2AACAQjBz5kz99NNPcnFxUXBwsOLi4lS9evWSrhaK0Pbt2zVjxgydOXNGt956q958800NHjy4pKsFFCo+2wAgf9zc3FS3bl2H9MzMTE2ePFndu3d3WHf5SPjy5cvbnlssllzTsu8x++yzz2rNmjWaOXOm6tatqwoVKqhHjx66cOFCjvXLzMyUt7e3NmzY4LDulltuyfW4Pv30U02bNi3X9ZerVq2aHnjgAQ0aNEjnz59X586ddebMGbs827Zt02OPPabJkyerY8eO8vDw0LJly/Taa6/lWm9Jmjdvnlq0aGG3zsnJKU/1AgAAAIoCwXYAAIDr1KxZM8XHx5d0NVDMPvzww5KuAlCk+GwDgMLTvHlz/fTTTzkG4q9HXFycBg4cqIceekiSdPbsWR09evSq9UhJSZGzs7MCAgLytI+DBw/q6NGjCg8Pz3O9nnjiCd133316/vnncwyGb968Wf7+/ho/frwt7Zdffsm1PE9PT9WqVUs///yz+vTpk+d6AABuDgMHDtTAgQNLuhoAblIE2wEAAAAAAIAi9MILL+iBBx6Qn5+fHnnkEZUrV04//PCD9uzZo6lTpxa43Lp16yomJkZdunSRxWLRxIkTbaPAc9KhQweFhoaqW7dumj59uurXr6/jx49r9erV6tatm0JCQhy2+eSTT9ShQwfbVPd50alTJ/3666+5Tgtft25dJSQkaNmyZfrHP/6hzz//XKtWrbpqmZGRkfrnP/8pd3d3de7cWenp6dqxY4d+//13jR07Ns91AwAAAArTtW+0BAAAAAAAAKDAOnbsqM8++0yxsbH6xz/+obvuukuzZs2Sv7//dZX7+uuvq0qVKmrZsqW6dOmijh07qnnz5rnmt1gsWr16tVq3bq0nnnhC9erV02OPPaajR4/a7hF/pU8++URdu3bNV70sFouqV68uFxeXHNd37dpVY8aM0YgRI9S0aVNt2bJFEydOvGqZgwcP1rvvvquFCxeqcePGatOmjRYuXKjAwMB81Q0AAAAoTBZjjCnpSgAAAAAAAAAoXU6dOiVvb28lJibKy8urpKsDAAAAlDqMbAcAAAAAAADg4LffftOsWbMItAMAAAC5YGQ7AAAAAAAAAAAAAAD5xMh2AAAAAAAAAAAAAADyiWA7AAAAAAAAAAAAAAD5RLAdAAAAAAAAAAAAAIB8ItgOAAAAAAAAAAAAAEA+EWwHAAAAAAAAAAAAACCfCLYDAAAAAAAAAAAAAJBPBNsBAAAAAAAAAAAAAMgngu0AAAAAAAAAAAAAAOQTwXYAAAAAAAAAAAAAAPKJYDsAAAAAAAAAAAAAAPnkXNIVKI0yMzN1/PhxVa5cWRaLpaSrAwAAAAAAAAAAAAAoYsYYnTlzRj4+PipX7trj1stEsD06OlqvvvqqkpOTdfvttysqKkphYWG55l+yZIlmzJihgwcPysPDQ506ddLMmTNVrVq1PO3v+PHj8vPzK6zqAwAAAAAAAAAAAADKiMTERPn6+l4zn8UYY4qhPgW2fPly9evXT9HR0WrVqpXmzJmjd999V/v27VPt2rUd8m/atElt2rTR66+/ri5duigpKUnDhg3TbbfdplWrVuVpn6mpqbrllluUmJgod3f3wj4kAAAAAAAAAAAAAEApk5aWJj8/P/3xxx/y8PC4Zv5SH2xv0aKFmjdvrtmzZ9vSGjRooG7dumnatGkO+WfOnKnZs2fr8OHDtrS33npLM2bMUGJiYo77SE9PV3p6um05uxFTU1MJtgMAAAAAAAAAAADATSAtLU0eHh55jhNfe6L5EnThwgXFx8crPDzcLj08PFxbtmzJcZuWLVvq2LFjWr16tYwxOnHihFasWKH7778/1/1MmzZNHh4etgdTyAMAAAAAAAAAAAAArqZUB9tPnTqljIwMeXp62qV7enoqJSUlx21atmypJUuWqGfPnnJxcZGXl5duueUWvfXWW7nuJyIiQqmpqbZHbiPgAQAAAAAAAAAAAACQSnmwPZvFYrFbNsY4pGXbt2+f/vnPf+qFF15QfHy8vvzySx05ckTDhg3LtXyr1Sp3d3e7BwAAAAAAAAAAAAAAuXEu6QpcTfXq1eXk5OQwiv3kyZMOo92zTZs2Ta1atdKzzz4rSWrSpInc3NwUFhamqVOnytvbu9Dql5GRoYsXLxZaeSg4FxcXlStXJn47AgAAAAAAAAAAAOAGUKqD7S4uLgoODlZsbKweeughW3psbKy6du2a4zbnzp2Ts7P9YTk5OUnKGhFfGIwxSklJ0R9//FEo5eH6lStXToGBgXJxcSnpqgAAAAAAAAAAAAC4CZTqYLskjR07Vv369VNISIhCQ0M1d+5cJSQk2KaFj4iIUFJSkhYvXixJ6tKli4YMGaLZs2erY8eOSk5O1ujRo3XnnXfKx8enUOqUHWivWbOmKlasmOuU9igemZmZOn78uJKTk1W7dm3+HwAAAAAAAAAAAACKXKkPtvfs2VOnT5/WlClTlJycrEaNGmn16tXy9/eXJCUnJyshIcGWf+DAgTpz5oz+85//6F//+pduueUW3XPPPZo+fXqh1CcjI8MWaK9WrVqhlInrV6NGDR0/flyXLl1S+fLlS7o6AAAAAAAAAAAAAG5wFlNYc6vfQNLS0uTh4aHU1FS5u7vbrTt//ryOHDmigIAAVahQoYRqiCv99ddfOnr0qAIDA+Xq6lrS1QEAAAAAAAAAAABQxlwtTpyTcsVQpxsSU5WXLvw/AAAAAAAAAAAAABQngu0AAAAAAAAAAAAAAOQTwXaUGhaLRR9//HFJVwMAAAAAAAAAAAAArolg+03m5MmTGjp0qGrXri2r1SovLy917NhRW7duLemqAQAAAAAAAAAAAECZ4VzSFbiZZWRIcXFScrLk7S2FhUlOTkW7z4cfflgXL17UokWLdOutt+rEiRP66quv9NtvvxXtjgEAAAAAAAAAAADgBsLI9hISEyMFBEjt2km9e2f9DQjISi8qf/zxhzZt2qTp06erXbt28vf315133qmIiAjdf//9kqRZs2apcePGcnNzk5+fn4YPH66zZ8/ayli4cKFuueUWffbZZ6pfv74qVqyoHj166M8//9SiRYsUEBCgKlWqaOTIkcrIyLBtFxAQoBdffFG9e/dWpUqV5OPjo7feeuuq9U1KSlLPnj1VpUoVVatWTV27dtXRo0eLpG0AAAAAAAAAAACA0i4jQ9qwQVq6NOvvZeE4lACC7SUgJkbq0UM6dsw+PSkpK72oAu6VKlVSpUqV9PHHHys9PT3HPOXKldObb76pH3/8UYsWLdLXX3+t5557zi7PuXPn9Oabb2rZsmX68ssvtWHDBnXv3l2rV6/W6tWr9f7772vu3LlasWKF3XavvvqqmjRpop07dyoiIkJjxoxRbGxsjvU4d+6c2rVrp0qVKmnjxo3atGmTKlWqpE6dOunChQuF0yAAAAAAAAAAAABAGVESg3lxdRZjjCnpSpQ2aWlp8vDwUGpqqtzd3e3WnT9/XkeOHFFgYKBcXV3zXXZGRtaL/spAezaLRfL1lY4cKZop5VeuXKkhQ4bor7/+UvPmzdWmTRs99thjatKkSY75P/roIz311FM6deqUpKyR7Y8//rgOHTqkOnXqSJKGDRum999/XydOnND/Y+/O4+uq6/zxvy5JF6tQZC9NaRBkqeCgOCo4qa1sFnDKXCqb4gLoMDjYwowi7uAolt+IrQsoKuAGoiUyyipqCwFcERxHcEFa26bhC4JSBClten9/XNMmaUqbkJt7kj6fj8d93Hs+55N73rnLOeee92d53vOelyR57Wtfm+bm5nzuc59LUu3Zvu++++bGG29c99wnnHBCVq5cmRtuuOHv/3sp3/72t3PMMcfksssuy4UXXpj77rsvpVIpSfL0009n2223zbXXXpvDDz+8R5zP9n0BAAAAAACAourqzNs7s/v3NFoWLEjK5aGPa6R5pjxxX/RsH2JtbRtPtCfVL8iyZdV6tXDsscdmxYoV+c53vpMjjjgiixYtyktf+tJcccUVSZKFCxfmsMMOy8SJE7P11lvnTW96Ux555JE88cQT655j3Lhx6xLtSbLzzjunubl5XaK9q+yhhx7qse2DDjpog+X77ruvzzjvuuuu3H///dl6663X9cjfbrvt8tRTT+UPf/jDs30ZAAAAAAAAYFjo7Exmz94w0Z6sL5szx5Dy9SDZPsQ6Oga33kCMHTs2hx12WD74wQ/mzjvvzFve8pZ86EMfyh//+McceeSR2W+//XLNNdfkrrvuymc/+9kkyerVq9f9/ahRo3o8X6lU6rNs7dq1m4ylq9d6b2vXrs2BBx6Ye+65p8ftd7/7XU466aT+/ssAAAAAAAAwLNW7My8b11jvALY0EyYMbr3BMGXKlFx77bX5+c9/njVr1uQTn/hEttqq2g7jm9/85qBt58c//vEGy/vss0+fdV/60pfm6quvzk477bRZQzQAAAAAAADASNS9k25p1JrsdvbNSZKlFx2RyurGPusxNPRsH2ItLdU52TfSoTulUjJpUrXeYHvkkUfymte8Jl/72tfyv//7v1m8eHG+9a1v5cILL8zMmTOzxx57ZM2aNfn0pz+dBx54IF/96lfXzbk+GO64445ceOGF+d3vfpfPfvaz+da3vpXZs2f3WfcNb3hDdthhh8ycOTNtbW1ZvHhxbr311syePTvLn6npDgAAAAAAAIwgRezMS5Vk+xBraEjmz68+7p1w71qeN69ab7A973nPyyte8Yp88pOfzNSpU7PffvvlAx/4QN72trflM5/5TA444IBcdNFFmTt3bvbbb798/etfzwUXXDBo2/+P//iP3HXXXXnJS16Sj3zkI/nEJz6RI444os+648aNy2233Zbddtst5XI5++67b0455ZT87W9/09MdAAAAAACALUY9O/PyzEqVSqVS7yCKZuXKlRk/fnwee+yxDRK7Tz31VBYvXpzdd989Y8eOHfA2WluT2bN7zq8waVI10V4uD/hpC6u5uTlz5szJnDlzavL8g/W+AAAAAAAAQNG0tiazZlWHkZ901vph5LOmOoz8ggUjM8c41J4pT9wXPdvrpFxOlixJFi5Mrryyer94sS8BAAAAAAAA0FO5XE2o79prqPimJon2emqsdwBbsoaGZNq0ekcBAAAAAAAAFF25nBw2I9n/vOryjTckh06vzfTUbB7JdobEkiVL6h0CAAAAAAAADGvdE+stUyXa680w8gAAAAAAAADQT5LtAAAAAAAAANBPku0AAAAAAAAA0E+S7QAAAAAAAADQT5LtAAAAAAAAANBPku0AAAAAAAAA0E+S7QAAAAAAAADQT5LtW5gHH3wwZ555Zl7wghdkzJgxmTRpUl73utflBz/4Qb1DAwAAAAAAABg2GusdwBatszNpa0s6OpIJE5KWlqShoWabW7JkSV71qldl2223zYUXXpgXv/jFWb16dW6++ea8Tr2bXwAAfGZJREFU4x3vyG9+85uabRsAAAAAAABgJNGzvV5aW5Pm5mT69OSkk6r3zc3V8ho544wzUiqV8tOf/jSzZs3KXnvtlRe96EU5++yz8+Mf/zhJ8thjj+Xtb397dtppp2yzzTZ5zWtek1/+8pfrnuPDH/5wDjjggHz1q19Nc3Nzxo8fnxNOOCGPP/74ujoLFizI/vvvn+c85znZfvvtc+ihh+aJJ55IkkybNi1z5szpEdcxxxyTt7zlLeuWL7744rzwhS/M2LFjs/POO2fWrFk1e00AAAAAAACgu87OZNGi5KqrqvednfWOiKKSbK+H1tZk1qxk+fKe5e3t1fIaJNwfffTR3HTTTXnHO96R5z73uRus33bbbVOpVHLUUUflwQcfzA033JC77rorL33pS3PIIYfk0UcfXVf3D3/4Q6699tpcd911ue6663Lrrbfm4x//eJKko6MjJ554Yk455ZTcd999WbRoUcrlciqVymbF+fOf/zzvfOc7c/755+e3v/1tbrrppkydOnVwXgQAAAAAAAB4BnXoL8swZhj5odbZmcyenfSVfK5UklIpmTMnmTlzUIeUv//++1OpVLLPPvtstM7ChQvzq1/9Kg899FDGjBmTJPnv//7vXHvttVmwYEHe/va3J0nWrl2bK664IltvvXWS5OSTT84PfvCDfPSjH01HR0fWrFmTcrmcyZMnJ0n233//zY5z6dKlee5zn5ujjz46W2+9dSZPnpyXvOQlA/23AQAAAAAAYLN09Zftncbr6i+7YEFSLtcnNopJz/ah1ta2YY/27iqVZNmyar1B1NWzvFQqbbTOXXfdlb/+9a/Zfvvt87znPW/dbfHixfnDH/6wrl5zc/O6RHuSTJgwIQ899FCS5B/+4R9yyCGHZP/998/rX//6fOELX8if//znzY7zsMMOy+TJk/OCF7wgJ598cr7+9a/nySef7O+/CwAAAAAAAJttU/1lk2p/WUPK051k+1Dr6BjcepvphS98YUqlUu67776N1lm7dm0mTJiQe+65p8ftt7/9bd71rnetqzdq1Kgef1cqlbJ27dokSUNDQ2655ZbceOONmTJlSj796U9n7733zuLFi5MkW2211QZDyq9evXrd46233jq/+MUvctVVV2XChAn54Ac/mH/4h3/IX/7yl2f7EgAAAAAAAECf6tRflmFOsn2oTZgwuPU203bbbZcjjjgin/3sZ/PEE09ssP4vf/lLXvrSl+bBBx9MY2Nj9txzzx63HXbYYbO3VSqV8qpXvSrnnXde7r777owePTrf/va3kyQ77rhjOro1JOjs7Mz//d//9fj7xsbGHHroobnwwgvzv//7v1myZEl++MMfDvA/BwAAAAAAgGfWvR9sadSaTD7n+kw+5/qURq3ZaD0wZ/tQa2lJmpqqkzv0NQ5FqVRd39Iy6Ju++OKLc/DBB+flL395zj///Lz4xS/OmjVrcsstt+SSSy7Jvffem4MOOijHHHNM5s6dm7333jsrVqzIDTfckGOOOSYve9nLNrmNn/zkJ/nBD36Qww8/PDvttFN+8pOf5OGHH86+++6bJHnNa16Ts88+O9dff3322GOPfPKTn+zRa/26667LAw88kKlTp+b5z39+brjhhqxduzZ77733oL8eAAAAAAAAkNStvyzDnGT7UGtoSObPT2bNqibWuyfcu+ZTnzevWm+Q7b777vnFL36Rj370o/mP//iPdHR0ZMcdd8yBBx6YSy65JKVSKTfccEPe97735ZRTTsnDDz+cXXbZJVOnTs3OO++8WdvYZpttctttt2XevHlZuXJlJk+enE984hOZMWNGkuSUU07JL3/5y7zpTW9KY2NjzjrrrEyfPn3d32+77bZpbW3Nhz/84Tz11FN54QtfmKuuuiovetGLBv31AAAAAAAAgKRnf9m+1LC/LMNYqdJ7Am2ycuXKjB8/Po899li22WabHuueeuqpLF68OLvvvnvGjh078I20tiazZ/ec/GHSpGqivVwe+PNuoQbtfQEAAAAAAGCL1Nr69/6yo9Zk0lk3J0mWXnREsqbaf3nBgvqn8Z58ek2mfLAa273nH5Fxo/WtHkzPlCfuiznb66VcTpYsSRYuTK68snq/eHH9v6EAAAAAAACwBSqXqwn1XXsNFd/UVIxEO8WjqUM9NTQk06bVOwoAAAAAAAAg1YT6YTOS/c+rLt94Q3Lo9JrMAM0IoGc7AAAAAAAAwN91T6y3TJVoZ+Mk2wEAAAAAAACgnyTbAQAAAAAAAKCfJNsHaO3atfUOgW4qlUq9QwAAAAAAAAC2II31DmC4GT16dLbaaqusWLEiO+64Y0aPHp1SqVTvsLZolUolDz/8cEqlUkaNGlXvcAAAAAAAAIAtgGR7P2211VbZfffd09HRkRUrVtQ7HP6uVCqlqakpDQ0N9Q4FAAAAAAAA2AJItg/A6NGjs9tuu2XNmjXp7OysdzgkGTVqlEQ7AAAAAAAAMGQk2weoa8hyw5YDAAAAAAAAbHm2qncAAAAAAAAAADDc6NkOAAAAAAAADKnOzqStLenoSCZMSFpaEjMGM9xItgMAAAAAAABDprU1mT07Wb58fVlTUzJ/flIu1y8u6C/DyAMAAAAAAABDorU1mTWrZ6I9Sdrbq+WtrfWJCwZCsh0AAAAAAACouc7Oao/2SmXDdV1lc+ZU68FwINkOAAAAAAAA1Fxb24Y92rurVJJly6r1YDgwZzsAAAAAAABQcx0d6x+XRq3JbmffnCRZetERqaxu7LMeFJme7QAAAAAAAEDNTZgwuPWg3iTbAQAAAAAAgJpraUmampJSqe/1pVIyaVK1HgwHku0AAAAAAABAzTU0JPPnVx/3Trh3Lc+bV60Hw4FkOwAAAAAAADAkyuVkwYJk115DxTc1VcvL5frEBQMh2Q4AAAAAAAAMmXI5ufe+9cs33pAsXizRzvAj2Q4AAAAAAAAMqe5DxbdMNXQ8w5NkOwAAAAAAAAD0k2Q7AAAAAAAAAPSTZDsAAAAAAAAA9JNkOwAAAAAAAAD0U2O9AwAAAAAAAAAGX2dn0taWdHQkEyYkLS1JQ0O9o4KRQ7IdAAAAAAAARpjW1mT27GT58vVlTU3J/PlJuVy/uGAkMYw8AAAAAAAAjCCtrcmsWT0T7UnS3l4tb22tT1ww0ki2AwAAAAAAwAjR2Vnt0V6pbLiuq2zOnGo94NkZFsn2iy++OLvvvnvGjh2bAw88MG1tbRut+5a3vCWlUmmD24te9KIhjBgAAAAAAACGXlvbhj3au6tUkmXLqvWAZ6fwyfarr746c+bMyfve977cfffdaWlpyYwZM7J06dI+68+fPz8dHR3rbsuWLct2222X17/+9UMcOQAAAAAAAAytjo71j0uj1mTyOddn8jnXpzRqzUbrAQNT+GT7RRddlFNPPTWnnXZa9t1338ybNy+TJk3KJZdc0mf98ePHZ5dddll3+/nPf54///nPeetb37rRbaxatSorV67scQMAAAAAAIDhZsKEwa0HbFyhk+1PP/107rrrrhx++OE9yg8//PDceeedm/UcX/rSl3LooYdm8uTJG61zwQUXZPz48etukyZNelZxAwAAAAAAQD20tCRNTUmp1Pf6UimZNKlaD3h2Cp1s/9Of/pTOzs7svPPOPcp33nnnPPjgg5v8+46Ojtx444057bTTnrHeueeem8cee2zdbdmyZc8qbgAAAAAAAKiHhoZk/vzq494J967lefOq9YBnp9DJ9i6lXnuCSqWyQVlfrrjiimy77bY55phjnrHemDFjss022/S4AQAAAAAAwHBULicLFiS79hoqvqmpWl4u1ycuGGkKnWzfYYcd0tDQsEEv9oceemiD3u69VSqVXHbZZTn55JMzevToWoYJAAAAAAAAhVIuJ/fet375xhuSxYsl2mEwFTrZPnr06Bx44IG55ZZbepTfcsstOfjgg5/xb2+99dbcf//9OfXUU2sZIgAAAAAAABRS96HiW6YaOh4GW2O9A9iUs88+OyeffHJe9rKX5aCDDsqll16apUuX5vTTT09SnW+9vb09X/nKV3r83Ze+9KW84hWvyH777VePsAEAAAAAAAAYwQqfbD/++OPzyCOP5Pzzz09HR0f222+/3HDDDZk8eXKSpKOjI0uXLu3xN4899liuueaazJ8/vx4hAwAAAAAAADDCFT7ZniRnnHFGzjjjjD7XXXHFFRuUjR8/Pk8++WSNowIAAAAAAABgS1XoOdsBAAAAAAAAoIgk2wEAAAAAAACgnyTbAQAAAAAAAKCfJNsBAAAAAAAAoJ8k2wEAAAAAAACgnyTbAQAAAAAAAKCfJNsBAAAAAAAAoJ8k2wEAAAAAAACgnyTbAQAAAAAAAKCfJNsBAAAAAAAAoJ8k2wEAAAAAAACgnyTbAQAAAAAAAKCfJNsBAAAAAAAAoJ8a6x0AAAAAAAAADFednUlbW9LRkUyYkLS0JA0N9Y4KGAqS7QAAAAAAADAAra3J7NnJ8uXry5qakvnzk3K5fnEBQ8Mw8gAAAAAAANBPra3JrFk9E+1J0t5eLW9trU9cwNCRbAcAAAAAAIB+6Oys9mivVDZc11U2Z061HjBySbYDAAAAAABAP7S1bdijvbtKJVm2rFoPGLnM2Q4AAAAAAAD90NGx/nFp1JrsdvbNSZKlFx2RyurGPusBI4+e7QAAAAAAANAPEyYMbj1geJJsBwAAAAAAgH5oaUmampJSqe/1pVIyaVK1HjBySbYDAAAAAABAPzQ0JPPnVx/3Trh3Lc+bV60HjFyS7QAAAAAAANBP5XKyYEGya6+h4puaquXlcn3iAoaOZDsAAAAAAAAMQLmc3Hvf+uUbb0gWL5Zohy2FZDsAAAAAAAAMUPeh4lumGjoetiSS7QAAAAAAAADQT5LtAAAAAAAAANBPku0AAAAAAAAA0E+S7QAAAAAAAADQT5LtAAAAAAAAANBPjfUOAAAAAAAAAJ5JZ2fS1pZ0dCQTJiQtLUlDQ72jArZ0ku0AAAAAAAAUVmtrMnt2snz5+rKmpmT+/KRcrl9cAIaRBwAAAAAAoJBaW5NZs3om2pOkvb1a3tpan7gAEsl2AAAAAAAACqizs9qjvVLZcF1X2Zw51XoA9SDZDgAAAAAAQOG0tW3Yo727SiVZtqxaD6AezNkOAAAAAABA4XR0rH9cGrUmu519c5Jk6UVHpLK6sc96AENJz3YAAAAAAAAKZ8KEwa0HMNgk2wEAAAAAACiclpakqSkplfpeXyolkyZV6wHUg2Q7AAAAAAAAhdPQkMyfX33cO+HetTxvXrUeQD1ItgMAAAAAAFBI5XKyYEGya6+h4puaquXlcn3iAkgk2wEAAAAAACiwcjm59771yzfekCxeLNEO1J9kOwAAAAAAAIXWfaj4lqmGjgeKQbIdAAAAAAAAAPpJsh0AAAAAAAAA+kmyHQAAAAAAAAD6SbIdAAAAAAAAAPpJsh0AAAAAAAAA+kmyHQAAAAAAAAD6SbIdAAAAAAAAAPpJsh0AAAAAAAAA+kmyHQAAAAAAAAD6SbIdAAAAAAAAAPpJsh0AAAAAAAAA+kmyHQAAAAAAAAD6SbIdAAAAAAAAAPpJsh0AAAAAAAAA+kmyHQAAAAAAAAD6SbIdAAAAAAAAAPpJsh0AAAAAAAAA+kmyHQAAAAAAAAD6SbIdAAAAAAAAAPpJsh0AAAAAAAAA+kmyHQAAAAAAAAD6SbIdAAAAAAAAAPpJsh0AAAAAAAAA+mlYJNsvvvji7L777hk7dmwOPPDAtLW1PWP9VatW5X3ve18mT56cMWPGZI899shll102RNECAAAAAAAAMNI11juATbn66qszZ86cXHzxxXnVq16Vz3/+85kxY0buvffe7Lbbbn3+zXHHHZf/9//+X770pS9lzz33zEMPPZQ1a9YMceQAAAAAAAAAjFSFT7ZfdNFFOfXUU3PaaaclSebNm5ebb745l1xySS644IIN6t9000259dZb88ADD2S77bZLkjQ3Nw9lyAAAAAAAAACMcIUeRv7pp5/OXXfdlcMPP7xH+eGHH54777yzz7/5zne+k5e97GW58MILM3HixOy11175z//8z/ztb3/b6HZWrVqVlStX9rgBAAAAAAAAwMYUumf7n/70p3R2dmbnnXfuUb7zzjvnwQcf7PNvHnjggdx+++0ZO3Zsvv3tb+dPf/pTzjjjjDz66KMbnbf9ggsuyHnnnTfo8QMAAAAAAAAwMhW6Z3uXUqnUY7lSqWxQ1mXt2rUplUr5+te/npe//OU58sgjc9FFF+WKK67YaO/2c889N4899ti627Jlywb9fwAAAAAAAABg5Ch0z/YddtghDQ0NG/Rif+ihhzbo7d5lwoQJmThxYsaPH7+ubN99902lUsny5cvzwhe+cIO/GTNmTMaMGTO4wQMAAAAAAAAwYhW6Z/vo0aNz4IEH5pZbbulRfsstt+Tggw/u829e9apXZcWKFfnrX/+6rux3v/tdttpqqzQ1NdU0XgAAAAAAgOGqszNZtCi56qrqfWdnvSMCKLZCJ9uT5Oyzz84Xv/jFXHbZZbnvvvty1llnZenSpTn99NOTVIeAf9Ob3rSu/kknnZTtt98+b33rW3Pvvffmtttuy7ve9a6ccsopec5znlOvfwMAAAAAAKCwCe3W1qS5OZk+PTnppOp9c3O1HIC+FXoY+SQ5/vjj88gjj+T8889PR0dH9ttvv9xwww2ZPHlykqSjoyNLly5dV/95z3tebrnllpx55pl52ctelu233z7HHXdc/uu//qte/wIAAAAAAEBaW5PZs5Ply9eXNTUl8+cn5XJ945o1K6lUepa3t1fLFyyob3wARVX4ZHuSnHHGGTnjjDP6XHfFFVdsULbPPvtsMPQ8AAAAAABAvRQ1od3ZWW0A0DuupFpWKiVz5iQzZyYNDUMeHkChFX4YeQAAAAAAgOFsUwntpJrQrseQ8m1tPXva91apJMuWVesB0JNkOwAAAAAAMKIUbV70Iie0OzrWPy6NWpPJ51yfyedcn9KoNRutB0CVZDsAAAAAADBitLYmzc3J9OnJSSdV75ubq+X1UuSE9oQJ6x9vlfWtEv4pbT2Wu9cDoEqyHQAAAAAAGBG65kXv3Yu8a170eiXcNzdRXY+EdktL0tSUlNOaezNlXflNmZElaU45rZk0qVoPgJ4k2wEAAAAAgGGvyPOidyW0S6W+15dKqVtCu6Eh+daJrflWZmXXtPdYNzHt+VZm5ZsntKahYehjAyg6yXYAAAAAAGDYK/K86A0Nyfz51ce9E+5dy/PmpT4J7c7OvPKq2SmlskHSaKtUUkryym/Mqf/E9wAFJNkOAAAAAAAMe0WeFz1JyuVkwYJk115DxTc1VcvL5frE1dVKYSOd7lNKHVspABRcY70DAAAAAAAAeLaKPC96l3I5OWxGsv951eUbb0gOnV6nHu1durU+GLd6VZbMPXqT9QCo0rMdAAAAAAAY9oo8L3p33RPrLVPrnGhPhkcrBYCCkmwHAAAAAAD6rbMzWbQoueqq6n29p/Qu9LzoRTZcWikAFJBkOwAAAAAAFFTREtpdWluT5uZk+vTkpJOq983N1fJ6Kuy86EWmlQLAgEm2AwAAAABAARU1od3amsyalSxf3rO8vb1aXu/4yuXk3vvWL994Q7J4sUT7M+pqpTBxYs9yrRQAnpFkOwAAAAAAFExRE9qdncns2UmlsuG6rrI5c+rfA79w86IPB+VysmRJsnBhcuWV1XutFACeUWO9AwAAAAAAANbbVEK7VKomtGfOHPokclvbhg0AuqtUkmXLqvWmTRuysBgsDQ3eOIB+0LMdAAAAAAAKpD8J7aHW0bH+cWnUmkw+5/pMPuf6lEat2Wg9ABip9GwHAAAAAIAC6Z3Q3u3sm5MkSy86IpXVjX3WGyoTJgxuPQAYzvRsBwAAAACAAilyQrulJWlqqg5l35dSKZk0qVoPAEY6yXYAAAAAALZonZ3JokXJVVdV7zs76xtPkRPaDQ3J/Pnr4+gdV5LMmzf0c8kDQD1ItgMAAAAAsMVqbU2am5Pp05OTTqreNzdXy+ul6AntcjlZsCDZtVfP+qamanm5XJ+4AGCoSbYDAAAAALBFam1NZs1Kli/vWd7eXi2vZ8K96Antcjm59771yzfekCxeXP+4AGAoSbYDAAAAALDF6exMZs9OKpUN13WVzZlT3yHli57Q7t6zvmWqoeMB2PJItgMAAAAAsMVpa9uwR3t3lUqybFm1Xj1JaANAcUm2AwAAAACwxenoWP+4NGpNJp9zfSafc31Ko9ZstB7AsNN9eI7b2uo7XMdw4nVjM0m2AwAAAACwxZkwYdN1+lMPoHBaW5N9p6xfPnJG0txcLWfjvG70g2Q7AAAAAABbnJaWpKkpKZX6Xl8qJZMmVesBDDutrcmsWcmK9p7l7e3Vconjvnnd6CfJdgAAAAAAtjgNDcn8+dXHvRPuXcvz5pkjHRiGOjuT2bOTSmXDdV1lc+YYGr03rxsDINkOAAAAAMAWqVxOFixIdu01VHxTU7W8XK5PXADPSltbsnz5xtdXKsmyZdV6rOd1YwAaa/XETzzxRD7+8Y/nBz/4QR566KGsXbu2x/oHHnigVpsGAAAAAIDNUi4nh81I9j+vunzjDcmh0/VoB4axjo51D8etXpUlc4/eZD3idWNAapZsP+2003Lrrbfm5JNPzoQJE1La2MQ3AAAAAABQR90T6y1TJdqBYW7ChE3X6U+9LYXXjQGoWbL9xhtvzPXXX59XvepVtdoEAAAAAAAA0F1LS3U+jPb2vucfL5Wq61tahj62IvO6MQA1m7P9+c9/frbbbrtaPT0AAAAAAADQW0NDMn9+9XHvkae7lufNM4xHb143BqBmyfaPfOQj+eAHP5gnn3yyVpsAAAAAAAAAeiuXkwULkokTe5Y3NVXLy+X6xFV0Xjf6qWbDyH/iE5/IH/7wh+y8885pbm7OqFGjeqz/xS9+UatNAwAAAAAAwJatXE5mzkza2pKOjupc4y0temZviteNfqhZsv2YY46p1VMDAAAAAAAAm9LQkEybVu8ohh+vG5upZsn2D33oQ7V6agAAAAAAAACoq5ol27vcddddue+++1IqlTJlypS85CUvqfUmAQAAAAAAAKCmapZsf+ihh3LCCSdk0aJF2XbbbVOpVPLYY49l+vTp+cY3vpEdd9yxVpsGAAAAAAAAgJraqlZPfOaZZ2blypX59a9/nUcffTR//vOf83//939ZuXJl3vnOd9ZqswAAAAAAFFBnZ7JoUXLVVdX7zs56R9RN92BuaytYcABAUdUs2X7TTTflkksuyb777ruubMqUKfnsZz+bG2+8sVabBQAAAACgYFpbk+bmZPr05KSTqvfNzdXyumttTfadsn75yBkFCg4AKLKaJdvXrl2bUaNGbVA+atSorF27tlabBQAAAACgQFpbk1mzkuXLe5a3t1fL65rT7gpuRXvP8kIEBwAUXc2S7a95zWsye/bsrFixYl1Ze3t7zjrrrBxyyCG12iwAAAAAAAXR2ZnMnp1UKhuu6yqbM6dOo7YXOjgAYDioWbL9M5/5TB5//PE0Nzdnjz32yJ577pndd989jz/+eD796U/XarMAAAAAABREW9uGPdq7q1SSZcuq9YZcoYMDhpXujXJua9NIB7YgjbV64kmTJuUXv/hFbrnllvzmN79JpVLJlClTcuihh9ZqkwAAAAAAtdfZWU3AdnQkEyYkLS1JQ0O9oyqkjo71j0uj1mS3s29Okiy96IhUVjf2WW/IdNvouNWrsmTu0ZusB7CB1tbk7HclJ3yqunzkjGTnHZP585Nyub6xATVXs2R7l8MOOyyHHXZYrTcDAAAAAFB7ra3Voce794huaipMUqVo7QAmTBjceoOq0MEBw0JrazJrVtI4umd5e3u1fMGCQhwbgNoZ1GT7pz71qbz97W/P2LFj86lPfeoZ677zne8czE0DAAAAANRWV1Kl9xzfBUmqFLEdQEtLNYb29r7Xl0rV9S0tQxtXkp7B9TVve12DAwqvs7O60+1r/1GpVPchc+YkM2ca/QRGsEFNtn/yk5/MG97whowdOzaf/OQnN1qvVCpJtgMAAAAAw0fBkypFbQfQ0FBN9s+alTRk/RzG/5S23JmpWZuGzJtXpzxU9+BKpZ4vXqlUva9bcEDhtbX1bN3UW6WSLFtWrTdt2pCFBQytQU22L168uM/HAAAAAADDWoGTKgVvB5ByObnzP1uz46fflUNSHRH1pszIXxp2zNKz5+eV9RxiuVyutkToa0iAefMM/wxsXEfHuofjVq/KkrlHb7IeMPJsVasnPv/88/Pkk09uUP63v/0t559/fq02CwAAAABsrs7OZNGi5KqrqvednZv6iy1Xt2TJk6PGpPmc69J8znV5ctSYjdYbKv1pB1AXra155X/Pyi6dPceSn7C2Pa/871nVbvn1VC4nS5YkCxcmV15ZvV+8WKIdeGYTJgxuPWBYqlmy/bzzzstf//rXDcqffPLJnHfeebXaLAAAAAAUS1ET2q2tSXNzMn16ctJJ1fvm5vonPouqwEmV7vn90qg1mXzO9Zl8zvUpjVqz0XpDplu3+1KvVaWurvhz5tT/e9HQUB2R4MQTq/eGjgc2paWlOgpGqffe7e9KpWTSpGo9YMSqWbK9Uqmk1McO5pe//GW22267Wm0WAAAAAIqjqAntrgm+e3eH7prgu97xFVFLS57cvilrN0gZV61NKU9uX5+kSoHbAQyDbvcAA9TQkMyfX33cOx/WtTxvnsY7MMINerL9+c9/frbbbruUSqXstdde2W677dbdxo8fn8MOOyzHHXfcYG8WAAAAAIqlqAntTU3wnRSjp3HBdKYhs1NNqvROuHctz8m8dGbokyqF7lzZx5zGS+YenXGrV220HsCwUS4nCxYkEyf2LG9qqpabjgJGvMbBfsJ58+alUqnklFNOyXnnnZfx48evWzd69Og0NzfnoIMOGuzNAgAAAEBxbCqhXSpVE9ozZw59j7f+9DSeNm3Iwiq6trbki4+U80gW5ON5V491y9OUOZmXbz9Szkl1eNm6OlfOmlXAzpWF7nbPs9a9Uc5tbcn0qXrxsuUpl6vH87a2asOhCROqrZt8F2CLMOjJ9je/+c1Zs6Y6F9Chhx6apqamwd4EAAAAABRbkRPa3XoQPzlqTKacfU2S5N6Lju3Z21hP4x66Xo5vp5z/WT0zLXPbMiEdOTI3pS0tWfv3Hu31etm6OlfOPrtneVNTNdFet86VXd3u29v7bnxSKlXXm9N4+GltTc5+V3LCp6rLR85Idt6x2vJDb162NA0NGqjBFqomc7Y3NjbmjDPOSKehpgAAAADYEvVKaDefc12az7kuT44as9F6Q0ZP4wHp/nKsTUNuzbR8Iyfm1kxbl2jvXW+olcvJvfetX77xhmTx4jrnPc1pPDJ1TZOxor1neb2nyQCAIVaTZHuSvOIVr8jdd99dq6cHAAAAgOIqckK70BN8F9dwedm656xbijKitzmNR5ZNTZORVKfJ0BkPgC3AoA8j3+WMM87If/zHf2T58uU58MAD89znPrfH+he/+MW12jQAAAAA1Ff3obP7Us+hsws9wfd6nZ3Fmv6298vWPc9YoJetuMxpPHIUeZoMYHjp3ijntrZkelFaicHmq1my/fjjj0+SvPOd71xXViqVUqlUUiqVDDEPAAAAwMhV9IR2V0/js9/Vs7zuE3xXtbZWO852z+c1NdV/Kuh186L3EVsBXrbiM6fxyNBt+otxq1dlydyjN1kPYAOtrdXzkBM+VV0+ckay8471P9hDP9Us2b548eJaPTUAAADAyFW07rwMXMET2imXkxlHJed9v7p8w42F6FHWNRV07xGqu6aCrveo4zpos8Ur8jQZwPDQdbBvHN2zvCgHe+iHmiXbJ0+eXKunBgAAABiZitqdl4EraEK7S2fWx9GWlhyahtQzsk1NBV0qVaeCnjmz/kPK66DNFqv7NBl9fVnrOU0GUHzD5WAPm2mrWj75H/7wh5x55pk59NBDc9hhh+Wd73xn/vCHP9RykwAAAADDU1cPn97z4Hb18GltrU9cPHvdLxRPLU4X6NbWZMq+65dnHJk0N9f3o9afqaCBOumaJiMp5jQZQLE52DPC1CzZfvPNN2fKlCn56U9/mhe/+MXZb7/98pOf/CQvetGLcsstt9RqswAAAADDz6Z6+CTVHj6dnUMaFoOj+9vWdlsx3sauth3tK3qW17ttR/cpnkuj1mTyOddn8jnXpzRqzUbr0Uv3D9htbcX4wDHydE2TMXFiz/KmJsM/A8+s20F83OpVWTL36CyZe3TGrV610XpQZDVLtr/nPe/JWWedlZ/85Ce56KKL8slPfjI/+clPMmfOnJxzzjm12iwAAADA8KOHz4hVxN7jRW7bYSroZ6m1Ndl3yvrlI2fU/wPHyFUuJ0uWJAsXJldeWb1fvFiiHXhmDvaMMDVLtt9333059dRTNyg/5ZRTcu+999ZqswAAAADDT7eeO0+OGpPmc65L8znX5clRYzZaj+Irau/xIrft6JoKuvfI1F1KpWTSJFNB96nrA7eivWd5vT9wjGwNDcm0acmJJ1bvDR0PbIqDPSNMzZLtO+64Y+65554Nyu+5557stNNOtdosAAAAwPCjh8+IU+Te493bbFRWN+aPc4/KH+celcrqxo3WGyqmgh6gIn/gAKA7B3tGmJol29/2trfl7W9/e+bOnZu2trbcfvvt+fjHP55//dd/zdvf/vZabRYAAABg+NHDZ8Qpcu/xorft6JoKetde2zcV9DMo8gcOAHrrOthPnNiz3MGeYahx01UG5gMf+EC23nrrfOITn8i5556bJNl1113z4Q9/OO985ztrtVkAAACA4aerh8+sWXr4DFBnZzWP2NFRTRK3tNT35eqr9/im6g2VrrYd7e19d4Qularr69m2o1xODpuR7H9edfnGG5JDp/sKbFS3D9K41auyZO7Rm6wHAHVVLiczZxbrBA4GoGY920ulUs4666wsX748jz32WB577LEsX748s2fPTmljrbQ34uKLL87uu++esWPH5sADD0zbM7TAXLRoUUql0ga33/zmN8/2XwIAAACona4ePhN27Vmuh88mtbYmL5jcmQ9PX5TvnHRVPjx9UV4wubOuU1QXuff4cBm9tfv2W6bWP55CK/IHDgA2pqEhmTYtOfHE6r2DPcNQzZLtXR566KHcc889+eUvf5mHH364339/9dVXZ86cOXnf+96Xu+++Oy0tLZkxY0aWLl36jH/329/+Nh0dHetuL3zhCwf6LwAAAAAMjXI5ue/e9cs33JgsXlycRHtnZ7JoUXLVVdX7Asz/3NqafP3Y1tze3pxFmZ6rclIWZXpub2/O149trVvCvegzAxi9dYQp+gcOAGCEqlmyfeXKlTn55JOz66675tWvfnWmTp2aXXfdNW984xvz2GOPbfbzXHTRRTn11FNz2mmnZd999828efMyadKkXHLJJc/4dzvttFN22WWXdbcGrWEAAACA4aD7NYypBRpKs7U1aW5Opk9PTjqpet/cnHp2H+/sTG58e2u+lVmZmJ7zVU9Me76VWbnp7a11aRMwHHqPl8vJkiXJwoXJlVdW74vUtoN+GA4fOACAEahmyfbTTjstP/nJT3L99dfnL3/5Sx577LFcd911+fnPf563ve1tm/UcTz/9dO66664cfvjhPcoPP/zw3Hnnnc/4ty95yUsyYcKEHHLIIVm4cOEz1l21alVWrlzZ4wYAAADA37W2VueTX94zoZ329mp5nRLubYs688FHZiepbHCRa6tUJyN//yNz0raoPj3wh0PvcaO3jiDD4QMHADDCNNbqia+//vrcfPPN+ad/+qd1ZUcccUS+8IUv5LWvfe1mPcef/vSndHZ2Zuedd+5RvvPOO+fBBx/s828mTJiQSy+9NAceeGBWrVqVr371qznkkEOyaNGiTJ06tc+/ueCCC3Leeedt5n8GAAAAsAXp7Exmz04qlQ3XVSrVXrNz5iQzZw55prZzUVsm/b1H+5OjxmTK2dckSe696NiMW70qW6WS3bIsv1/UlhwybUhj61IuV1+atrako6M6ZXZLgQYsYITxgQMAGFI1S7Zvv/32GT9+/Abl48ePz/Of//x+PVep19BHlUplg7Iue++9d/bee+91ywcddFCWLVuW//7v/95osv3cc8/N2WefvW555cqVmTRpUr9iBAAAABiR2to27NHeXaWSLFtWrTdt2pCFlSQT0rHu8bjVq7Jk7tGbrFcPXb3HYUj4wAEADJmaDSP//ve/P2effXY6Otb/mHnwwQfzrne9Kx/4wAc26zl22GGHNDQ0bNCL/aGHHtqgt/szeeUrX5nf//73G10/ZsyYbLPNNj1uAAAAAKTaO/bvnhw1Js3nXJfmc67Lk6PGbLTeUNl72oRBrQcAANAfNevZfskll+T+++/P5MmTs9tuuyVJli5dmjFjxuThhx/O5z//+XV1f/GLX/T5HKNHj86BBx6YW265Jf/yL/+yrvyWW27JzJkzNzuWu+++OxMm+FEFAAAA0G+be02lDtdeGqa15MntmzL2kfZ1c7R3tzalPLV9U8ZNaxny2AAAoCY6O9c/vq0tmT7VlDF1VLNk+zHHHDMoz3P22Wfn5JNPzste9rIcdNBBufTSS7N06dKcfvrpSapDwLe3t+crX/lKkmTevHlpbm7Oi170ojz99NP52te+lmuuuSbXXHPNoMQDAAAAsCXpPLgl/6+hKbt0tve5fm1K6Whoyi4Ht2TIL/E1NGTcpfNTOXZW1qbUI+G+NqWUkoy7dJ6LjwAAjAytrcnZ70pO+FR1+cgZyc47JvPnJ+VyfWPbQtUs2f6hD31oUJ7n+OOPzyOPPJLzzz8/HR0d2W+//XLDDTdk8uTJSZKOjo4sXbp0Xf2nn346//mf/5n29vY85znPyYte9KJcf/31OfLIIwclHgAAAIAtSdudDflU5/wsSDWh3V3X8pmd8/LOOxvqM010uZzSNQuS2bN7zC1fampKaf48Fx0BABgZWluTWbOSxtE9y9vbq+ULFjj3rYOaJdu73HXXXbnvvvtSKpUyZcqUvOQlL+n3c5xxxhk544wz+lx3xRVX9Fh+97vfnXe/+90DCRUAAACAXjo6km+nnFlZkPmrZ2fJ3KPXrVuaSZmTefl2ynn90E/Zvl65nNLMmUlbWzXgCRNSamnRox0AgJGhs7PauLSy4dRJqVSSUimZMyeZOdM58BCrWbL9oYceygknnJBFixZl2223TaVSyWOPPZbp06fnG9/4RnbcccdabRoAAACAQdI1Ffu3U87/ZGZa0pYJ6UhHJqQtLVn798Hj6zBle08NDalP13oAAKixtrYeozhtoFJJli2r1nNOPKS2qtUTn3nmmVm5cmV+/etf59FHH82f//zn/N///V9WrlyZd77znbXaLAAAAACDqKUlaWqqdpZZm4bcmmn5Rk7MrZmWtWlIqZRMmlStBwAA1EDH+mGkxq1elSVzj86SuUdn3OpVG63H0KhZsv2mm27KJZdckn333Xdd2ZQpU/LZz342N954Y602CwAAAMAgamhI5s+vPi71nLJ93fK8eUarBACAmtncYaTqPtzUlqdmyfa1a9dm1KhRG5SPGjUqa9eurdVmAQAAABhk5XKyYEEycWLP8qamanm5XJ+4ALYInZ3rH9/W1nMZgC1D9+Gm+mK4qbqpWbL9Na95TWbPnp0VK1asK2tvb89ZZ52VQw45pFabBQAAAKAGyuVkyZJk4cLkyiur94sXS7QD1FRra7LvlPXLR85Impur5QBsOQw3VVg1S7Z/5jOfyeOPP57m5ubsscce2XPPPbP77rvn8ccfz6c//elabRYAAACAGmloSKZNS048sXrvWh5ADbW2JrNmJSvae5a3t1fLJdwBtiyGmyqkxlo98aRJk/KLX/wit9xyS37zm9+kUqlkypQpOfTQQ2u1SQAAAIBhr/vowG23JYdOl9QG2OJ0diazZyeVyobrKpVqL8Y5c5KZMx0kALYk5XJ139/WlnR0VOdob2lxLKijmiTb16xZk7Fjx+aee+7JYYcdlsMOO6wWmwEAAAAYUVpbk9lnJw0nVJdnHJlM3Lk6YqSOKgBbkLa2ZPnyja+vVJJly6r1pk0bsrAAKICu4aYohJok2xsbGzN58uR0dm+KDQAAAMBGdY0WnMZkt27lXaMFGxkSYAvS0bHu4bjVq7Jk7tGbrAcADL2azdn+/ve/P+eee24effTRWm0CAAAAYEA6O5NFi5Krrqre17u/wKZGC06qowXXO04AhsiECYNbDwCoiZrN2f6pT30q999/f3bddddMnjw5z33uc3us/8UvflGrTQMAAAAF0NlZzKkEW1urie3uo/M2NdV3qHajBQPQQ0tL9eDU3t53S6xSqbq+pWXoYwMA1qlZsv2YY45JqVRKpa8TAWDkKOrVMwAA2EIU9ZS8iAntrrhmzdowb1Hvodq7jwJcWd2YP849apP1ABjBGhqqB81Zs6qJ9e4HrlKpej9vXjEO+gCwBRv0ZPuTTz6Zd73rXbn22muzevXqHHLIIfn0pz+dHXbYYbA3BdRbUa+eAQDAFqKop+RFTWhvaqj2Uqk6VPvMmUOfuzBaMPSh+7wJt7Ul06dKLLJlKZerB82+Dvbz5rn+BgAFMOhztn/oQx/KFVdckaOOOionnnhivv/97+ff/u3fBnszQL11XT3rPc5h19Wz1tb6xAUAAFuIop6SF3nu8f4M1T7UukYL7uqs2FuplEyaZLRgtiCtrcm+U9YvHzkjaW52vYEtT7mcLFmSLFyYXHll9X7xYol2ACiIQe/Z3trami996Us54YQTkiRveMMb8qpXvSqdnZ1p0PIURoYidwcBAIAaKNpQ7UU+JS/y3OPdh2AvjVqT3c6+OUmy9KIjUlnd2Ge9oWK0YOimqzVR4+ie5fUeHgPqpaFh6A+aAMBmGfSe7cuWLUtLt2bWL3/5y9PY2JgVK1YM9qaAeilydxAAABhkra3VzpTTpycnnVS9r3fnyiKfkvdOaE8+5/pMPuf6lEat2Wi9oVL0odq7RgueOLFneVOT3CJbkCIPjwEAAL0Mes/2zs7OjB7ds9VpY2Nj1qxZs5G/AIadblfFnhw1JlPOviZJcu9Fx2bc6lV91gMAgE0pWu/xpLhzjxe5h3aRE9pdQ7W3t/e9vlSqrq/nUO3lcnVEgqJ9F2DIFHl4DAAA6GXQk+2VSiVvectbMmbMmHVlTz31VE4//fQ897nPXVfWan4lGL6KfPUMAIBhqbW12pGxe36lqak6rHa9evMWeaj2Ip+SFzmh3Xuo9t5xJcUYqt1owWzRurUSGrd6VZbMPXqT9QAAoF4GfRj5N7/5zdlpp50yfvz4dbc3vvGN2XXXXXuUAcNY19Wz3lenupRKyaRJ9e0OAgBAnzo7k0WLkquuqt4XYRTert7jvTsydvUer1db7SIP1V7kU/KuhHZXHL3jSuqb0O4aqn3XXg0RDNUOBVHk1kQAANDLoPdsv/zyywf7KYGiGS7dQQAA6EHv8f4p8lDtRT8l70pozz67Z3lTUzWueie0y+XksBnJ/udVl2+8ITl0up8wUAjdh8fo6+BQhPkeAADg7wa9Zzuwhei6ejZh157luoMAABSS3uP9V/TOlUXvoV0uJ/fet375xhuSxYvrH1eX7on1lqkS7VAYRR8eAwAAupFshy5FHE+z6Mrl5L571y/fcGOxrp4BAJBk073Hk2rv8XqcAvfuPT75nOsz+ZzrUxq1ZqP1hkqRh2rvIqENjEhdrYkmTuxZXpTWRAAA8HeDPow8DEtFHE9zuOh+tWxqi6tnAMCQ6eys9nbu6Kj2LG4p0KlI0WLrT+/xadOGLKwkxe49XvSh2rtIaAMjUrlcnUOkSAdUAADoRbIdusbT7N3Np2s8TS2mAYAtWNGSxl2K3FayiLEVee7x7lPz9qXeU/MWfe5xgBGtoWHoW4EBAEA/GEaeLVuRx9MEAKiz1takuTmZPj056aTqfXNz/eb27h5XEeceT4ob23DoPZ4Ut/d40YdqBwAAAOpDsp0tW3/G0wQA2IIUNWlc5LaSRY6t6HOPd/Ue37VXsr9IU/Maqh0AAADoTbKdLVu3cTKfHDUmzedcl+ZzrsuTo8ZstB4AwEhX5KRxkdtKFjk2vccBAAAABp9kO1u2Io+nCQBsMTo7k0WLkquuqt7XewabIieNe889Pvmc6zP5nOtTGrVmo/WGSpFjS/QeBwAAABhsku1s2Yo+niYAMOIVcV70IieNi9xWssixddF7HAAAAGDwSLazZRsO42kCACNWUedFL3LSuHtbya2yfgiAf0pbtkpnXdtKDpd2nHqPAwAAAAwOyXboGk9zwq49y4s0niYAMOIUeV70IieNu9pK/kulNfdmyrrymzIjS9Kcf6m01q2tpHacAAAAAFsWyXZIqgn1++5dv3zDjcbTBABqqsjzohc9aVxOaxZkVnZNe4/yiWnPgsxKOfUbg7+rHWfTLj173e82sVM7TgAAAIARRrIdunS/Wjy1RZcjAKCmijwverI+abxrr6Hi6z74z9+HBCilssGPma1SqTYGqNeQAH9XTmvuLfXsdb84zXVtBMAI1/3zfltbXT//AAAAsCWRbAcAgDoo8rzoXcrl5N771i/feEMBBv8p8pAASdLamsyaldKKnr3uS+3tyaxZ1fUwmFpbk33XN+7IkTOS5mafNQAAABgCku0AAFAHRZ4Xvbvug/20TC3A4D/duvqPW70qS+YenSVzj8641as2Wm/I/L3XfSqVDdd1ldW51z0jzN8bd6RX445o3AEAAABDQrIdAADqoOjzohdWkYcEKHqve0YWjTsAAACg7iTbAQCgTgo7L3qRFXlIgCL3umfk0bjj2TPXPQAAAM+SZDsAANRRIedFL7IiDwlQ5F73jDwadzw75roHAABgEEi2AwBAnRVuXvSi6xoSYOLEnuX1HhKgyL3uGXk07hg4c90DAAAwSCTbAQCA4adcTpYsSRYuTK68snpf7yEBitzrnpFH446BMdc9AAAAg0iyHQAAGJ4aGpJp05ITT6zeFyGJXdRe94w8GncMjLnuAQAAGESN9Q4AAABgRCmXk5kzq8m6jo7qMN4tLZKeDL6uxh2zZ/dMIDc1VRPtGndsqI+57jdVDwAAADZGsh0AAGCwdfW6h1rTuKN/zHUPAADAIJJsBwAAoBi6z5N9W1syfaqk8ebQuGPzdc11397e97ztpVJ1vbnuAQAA2AzmbAegp87OZNGi5KqrqvfdL3oDDGN2b1Bwra3JvlPWLx85I2lurpbDYDHXPQAAAINIsh2A9Vpbqxe1p09PTjqpeu8iNzAC2L1BwbW2JrNmJSvae5a3t1fLi/Bl7d3rXoud4atrrvuJE3uWNzVVy811DwDUmnNLgBFDsh2Aqq6L3MuX9ywv0kVugAGwe4OC6+xMZs/ue0jvrrI5c+p7AVKv+5GnXE6WLEkWLkyuvLJ6v3ixRDsAUHvOLQFGFMl2AIbHRW5gPeOhbza7NxgG2to2bA3TXaWSLFtWrVcPw6HXPQPTNdf9iSdW7w0dDwDUmnNLgBFHsh2A4l/kBtYzHnq/2L3BMNDRse7huNWrsmTu0Vky9+iMW71qo/WGjBY7AAAMFueWACOSZDsAPS5ePzlqTJrPuS7N51yXJ0eN2Wg9oA6Mh95v3XdbpVFrMvmc6zP5nOtTGrVmo/WAITZhwuDWG0xa7AAAMFicWwKMSI31DgCAAijyRW6galMt4Eulagv4mTMNg9uN3RsMAy0tSVNTteFQX/u4Uqm6vqVl6GPro9f9puoBAECfnFsCjEh6tgOw/iJ3qdT3+lIpmTSpPhe5gSot4AfE7g2GgYaGZP786uPeX9au5Xnz6tOQSIsdAAAGi3NLgBFJsh2AYl/kBqqGyXQPnZ3JokXJVVdV7+s91ZzdGwwT5XKyYEEycWLP8qamanm5XJ+4tNgBAGCwOLcEGJEk2wGo6rrIPWHXnuX1vsgNVA2DFvCtrUlzczJ9enLSSdX75ub6TyXftXvbtddLY/cGBVMuJ0uWJAsXJldeWb1fvLi+X1ItdgAAGCzOLQFGJMl2ANYrl5P77l2/fMON9b/IDVQVvAV8a2sya9aGI923t1fLi5Bwv/e+9cs33mD3BoXU0JBMm5aceGL1vggXGova6x4AgOHHuSXAiNNY7wAAKJjuF7WnthTjIjewvgX8rFmFawHf2ZnMnl2dNr63SqUa3pw5ycyZ9d2ldN92y1S7N6AfyuXqTqytrTpdx4QJ1cZNdiQAAPSXc0uAEUWyHQCgD52dBfzd+/cW8JWz39WjuDKxKaX58+rWAr6tbcMe7d1VKsmyZdV606YNWVgAg6ur1z0AADxbzi0BRgzDyAMA9FLUuceTpDXlTKmsn+7htbkxzZXFaU39hprr6Fj/uDRqTSafc30mn3N9SqPWbLQeAAAAAMBwJ9kOANRNZ2eyaFFy1VXV+87OekdU7LnHu2Jb1rG+i/3tacmyFQ11jW3ChMGtBwAAAAAwHEi2AwB1UcTe45uaezypzj1ej0YBRY6tpSVpatpwKvkupVIyaVK1HgAAAADASCHZDgAMuaL2Hu/P3ONDrcixNTQk8+dXH/dOuHctz5tXgDnvAQAAAAAGkWQ7ADCkitxDu8hzj3ffZmV1Y/4496j8ce5Rqaxu3Gi9oVQuJwsWJLv2Giq+qalaXq7flPIAAAAAADXRuOkqQN11dla7KnZ0VCe8bWnRPRAKpshf06LF1p8e2tOmDVlYSYo993iRY+tSLieHzUj2P6+6fOMNyaHTi/NdAAAAAAAYTHq2Q9EVcVJjoIcif02LGFuRe48Xee7xIsfWXffEesvUgiXauw+XcFtbfYZPAAAAAABGDMl2KLKiTmoMddLZmSxalFx1VfW+CHmyIn9NixpbkXtoF3nu8SLHNiy0tib7Tlm/fOSM+rc8GS40UgAAAKAI/D4FCkiyHYqqyJMaQx0UsYd2kb+mRY6t6D20izz3eFdsEyf2LC9CbIXW1fJkRXvP8nq3PBkONFIAAACgCPw+BQpqWCTbL7744uy+++4ZO3ZsDjzwwLS1tW3W391xxx1pbGzMAQccUNsAoRb6M6kxjHBF7aFd5K9pkWMbDj20y+Xk3vvWL994Q7J4cTGS2eVysmRJsnBhcuWV1fuixFZIRW55UnQaKQAAAFAEfp8CBVb4ZPvVV1+dOXPm5H3ve1/uvvvutLS0ZMaMGVm6dOkz/t1jjz2WN73pTTnkkEOGKFIYZN0mK35y1Jg0n3Ndms+5Lk+OGrPRejASFTlPVuS5x4scW1Ls3uNdijz3eENDMm1acuKJ1fsixVY4RW55UmRF3vkCAACw5fD7FCi4wifbL7roopx66qk57bTTsu+++2bevHmZNGlSLrnkkmf8u3/913/NSSedlIMOOmiIIoVBVuRJjWEIFTlPVuSvaZFj61Lk3uOMIN1alIxbvSpL5h6dJXOPzrjVqzZajxR75wsAAMCWw+9ToOAa6x3AM3n66adz11135T3veU+P8sMPPzx33nnnRv/u8ssvzx/+8Id87Wtfy3/9139tcjurVq3KqlXrL7iuXLly4EHDYOma1Li9ve/1pVJ1fb0mNYYh0ruH9m5n35wkWXrREamsbuyz3lAp8te0yLF1V+Te44wQw6HlSRH10UhhU/UAAABg0Pl9ChRcoXu2/+lPf0pnZ2d23nnnHuU777xzHnzwwT7/5ve//33e85735Otf/3oaGzevLcEFF1yQ8ePHr7tNmjTpWccOz9pwmNQYhkCR82RF/poWOTYYUl0tT3p/EbqUSsmkSfVveVI0Rd75AgAAsOXw+xQouEIn27uUel0crVQqG5QlSWdnZ0466aScd9552WuvvTb7+c8999w89thj627Lli171jHDoOia1HjCrj3LizSpMdRY0fNkRZ57vMixwZDR8mRgir7zBQAAYMvg9ylQcIVOtu+www5paGjYoBf7Qw89tEFv9yR5/PHH8/Of/zz//u//nsbGxjQ2Nub888/PL3/5yzQ2NuaHP/xhn9sZM2ZMttlmmx43KIxyObnv3vXLN9xoUmO2KMMhT1bkuceLHBsMma6WJxMn9izX8mTjhsPOFwAAgJHP71Og4AqdbB89enQOPPDA3HLLLT3Kb7nllhx88MEb1N9mm23yq1/9Kvfcc8+62+mnn569994799xzT17xilcMVegwuLqfKExtceLAFmc49NAu8tzjRY4Nhky5nCxZkixcmFx5ZfVey5NnppECAAAAReD3KVBgmzepeR2dffbZOfnkk/Oyl70sBx10UC699NIsXbo0p59+epLqEPDt7e35yle+kq222ir77bdfj7/faaedMnbs2A3KARheyuXksBnJ/udVl2+8ITl0usQx0A8NDcm0afWOYngpl5OZM5O2tqSjozoHXouGfwAAAAwxv0+Bgip8sv3444/PI488kvPPPz8dHR3Zb7/9csMNN2Ty5MlJko6OjixdurTOUQIwFPTQBqgDjRQAAAAoAr9PgQIqfLI9Sc4444ycccYZfa674oornvFvP/zhD+fDH/7w4AcFAAAAAAAAwBar0HO2AwAAAAAAAEARSbYDAAAAtdHZuf7xbW09lwEAAGCYk2wHAAAABl9ra7LvlPXLR85Impur5QAAADACSLYD0EP3zkZtt+l8BADAALS2JrNmJSvae5a3t1fLJdwBAAAYASTbAeqgszNZtCi56qrqfVES2q2tyZR91y/POFLnIwAA+qmzM5k9O6lUNlzXVTZnTnFOggEAAGCAJNsBhlhrazWBPX16ctJJ1fsiJLS7Oh+1r+hZrvMRAAD90taWLF++8fWVSrJsWbUeAAAADGOS7QBDqCuh3fvaY70T2jofAcAWpPsB/bY2B3gGX0fHuofjVq/KkrlHZ8ncozNu9aqN1gMAAIDhSLIdYIgUOaGt8xEAbCFaW5N9p6xfPnJGMYbYYWSZMGFw6wEAAEBBNdY7AIBa6Xy6M7+6uC1P/qEj4/aYkP3PaEnD6Ia6xdOfhPa0aUMWVpKenYoqqxvzx7lHbbIeADDMdA2x0zi6Z3nXEDsLFiTlcn1iY2RpaUmamqqfrb5ampZK1fUtLUMfGwAAAAwiPduBEenH727N/xvXnAPOmp6DP3NSDjhrev7fuOb8+N3167XVPVFdGrUmk8+5PpPPuT6lUWs2Wm+o6HwEACNckYfYYeRpaEjmz68+LpV6rutanjevWg8AAACGMcl2YMT58btb8/L/b1Z26ezZjXyXzva8/P+bVbeEe5ET2l2dj3pfC+1SKiWTJul8BADDljljGGrlcnW0hIkTe5Y3NRlFAQAAgBFDsh14Vrp3fmq7rf6doTqf7sxuF81OUtlgB7dVqr22Jl00J51PD32gRU5o63wEACNct6Fzxq1elSVzj86SuUdn3OpVG60Hz1q5nCxZkixcmFx5ZfV+8WKJdgAAAEYMyXZgwFpbkyn7rl+ecWTS3Fwtr5dfXdyWXTuXb3TntlUqmdi5LL+6eOh7bRU9oa3zEQCMYEUeYoeRraEhmTYtOfHE6r3WmwAAAIwgku3AgLS2JrNmJe0repa3t1fL65Vwf/IPm9cba3PrDbauhPauva5jFyWhrfMRdNN9qI7b2uo/dAfAs1HkIXYAAAAAhinJdqDfOjuT2bOrU3v21lU2Z0598lLj9ti83libW68WyuXk3vvWL994Q7ES2jofQaothvadsn75yBn1H7oD4Nko+hA7AAAAAMOQZDvQb21tyfLlG19fqSTLllXrDbX9z2jJioamrE3fvbbWppT2hknZ/4z69trqfh27Zarr2lAoXUN3rGjvWV7voTsAni1zxgAAAAAMqsZ6BwAMPx3dRmCvrG7MH+cetcl6Q6VhdEOWnj0/u/x/s7I2pWyV9d3vuxLwy86el4mjZbeBPmxq6I5SqTp0x8yZWskAw1O5XN2HtbVVT9YmTKgOHW+fBgAAANBvku1Av03YzBHYN7feYHvlheX8OAuy20Wzs2vn+i74HQ1NWXb2vLzyQr22gI3oz9Ad06YNWVgAg6przhgAAAAAnhXJdqDfWlqqo422t/fd+bNUqq5vqeNI7a+8sJzO/5qZey5uy5N/6Mi4PSZk/zNa9Ghny9TZuf7xbW3JdHMXbFS3ITnGrV6VJXOP3mQ9AAAAAAC2TOZsB/qtoSGZP7/6uNRravSu5Xnz6p/LaxjdkAPmTMvBnz4xB8yZlgaJdrZEra3JvlPWLx85I2luNu/4xhR96A4AAAAAAApDsh0YkHI5WbAgmTixZ3lTU7W8bKR2qL/W1mTWrGRFe8/y9vZquYT7hrqG7ujdkqhLqZRMmlTfoTsAAAAAACgEyXZgwMrlZMmSZOHC5Morq/eLF0u0QyF0diazZ/c910NX2Zw5PYeYZ/gM3QEAAAAAQN1JtgPPSkNDMm1acuKJ1Xv5JyiItrZk+fKNr69UkmXLqvXoydAdAAAAAABshsZ6BwCwRerem/i2tmT6VC0VGFwdHesejlu9KkvmHr3JenRTLiczZ1YbI3R0VOdob2nxPQUAAAAAYB092wGGWmtrsu+U9ctHzkiam82fzeCaMGFw622JDN0BAAAAAMAzkGwHGEqtrcmsWcmK9p7l7e3Vcgl3BktLS3XY897zjncplZJJk6r1gPrrPeJJ92UAAAAAoJAk2wGGSmdnMnt2da7s3rrK5syRYGFwNDQk8+dXH/dOuHctz5untzYUgRFPAAAAAGBYkmwHGCptbcny5RtfX6kky5ZV68FgKJeTBQuSiRN7ljc1VcvL5frEBaxnxBMAAAAAGLYa6x0AwBajo2Pdw3GrV2XJ3KM3WQ+etXI5mTmz2oijo6M6R3tLix7tUASbGvGkVKqOeDJzpu8sAAAAABSQZDvAUJkwYXDrUSy951uePrU4ybGGhmTatHpHAfTWnxFPfIcBAAAAoHAMIw8wVFpaqsN3954/u0uplEyaVK3H8GK+ZWAg+hjxZMncozNu9aqN1gMAAAAAikOyHWCoNDQk8+dXH/dOuHctz5tXnN7QbB7zLQMDZcQTAAAAABjWJNsBhlK5nCxYkEyc2LO8qalaXi7XJy4GZlPzLSfV+Za7DzEP0MWIJwAAAAAwrEm2Awy1cjlZsiRZuDC58srq/eLFEu3DUX/mWwbozYgnAAAAADCsNdY7AIAtUkNDMm1avaPg2epjvuVN1QPooWvEk9mzezbeaWqqJto1xAIAAACAwpJsB4CBMt8yMBjK5WTmzOooGB0d1X1GS4se7QAAAABQcJLtADBQXfMtt7f3PW97qVRdb75lYFOMeAIAAAAAw4452wFgoMy3DAAAAAAAWyzJdgB4NrrmW544sWd5U1O13HzLAAAAAAAwIhlGHoaBzs71j9tuSw6drqMsFIr5lgEAAAAAYIujZzsUXGtrMmXf9cszjkyam6vlQIF0zbd84onVe4l2AAAAAAAY0STbocBaW5NZs5L2FT3L29ur5RLuAAAAAAAAUB+S7VBQnZ3J7NlJpbLhuq6yOXN6DjEPAAAAAAAADA3JdiiotrZk+fKNr69UkmXLqvUAAAAAAACAodVY7wCAvnV0rH9cWd2YP849apP1AAAAAAAAgKGhZzsU1IQJg1sPAAAAAAAAGDyS7VBQLS1JU1NSKvW9vlRKJk2q1gMAAAAAAACGlmQ7FFRDQzJ/fvVx74R71/K8edV6AAAAAAAAwNCSbIcCK5eTBQuSiRN7ljc1VcvL5frEBQAAAAAAAFu6xnoHwBamszNpa0s6OqqTjbe06Jq9CeVyMnOmlw2AYaKzc/3j29qS6VMdtAAAAACAEUnPdoZOa2vS3JxMn56cdFL1vrm5Ws4zamhIpk1LTjyxei9nAUAhtbYm+05Zv3zkDMd6AAAAAGDEkmxnaLS2JrNmJcuX9yxvb6+WuwgPAMNb17F+RXvPcsd6AAAAAGCEkmyn9jo7k9mzk0plw3VdZXPm9Bx2FgAYPhzrAQAAAIAtkGQ7tdfWtmGP9u4qlWTZsmo9AGD4cawHAAAAALZAjfUOgC1AR8e6h0+OGpMpZ1+TJLn3omMzbvWqPusBAMNIt2P4uNWrsmTu0ZusBwAAAAAw3OnZTu1NmDC49QCAYnGsBwAAAAC2QJLt1F5LS9LUlJRKfa8vlZJJk6r1AIDhx7EeAAAAANgCSbZTew0Nyfz51ce9L8J3Lc+bV60HAAw/jvUAAAAAwBZIsp2hUS4nCxYkE3btWd7UVC0vl+sTFwAwOLqO9RMn9ix3rAcAAAAARijJdoZOuZzcd+/65RtuTBYvLszF987O9Y/bbuu5DABshnI5WbIkWbgwufLK6n2BjvUAAAAAAINJsp2h1X342KkthRlOtrU1mbLv+uUZRybNzdVyAKAfGhqSadOSE0+s3hfkWA8AAAAAMNgk29nitbYms2Yl7St6lre3V8sl3AEAAAAAAIDeJNvZonV2JrNnJ5XKhuu6yubMMaQ8AAAAAAAA0JNkO1u0trZk+fKNr69UkmXLqvWAAuje8uW2Ni1hAAAAAACAupFsZ4vW0bH+cWV1Y/4496j8ce5Rqaxu3Gg9oE5aW5N9p6xfPnJG0txsrgcAAAAAAKAuJNvZok2YMLj1gBppbU1mzUpWtPcsb2+vlku4AwAAAAAAQ2xYJNsvvvji7L777hk7dmwOPPDAtD3DmN633357XvWqV2X77bfPc57znOyzzz755Cc/OYTRMpy0tCRNTUmp1Pf6UimZNKlaD6iTzs5k9uzqvA69dZXNmWNIeQAAAAAAYEgVPtl+9dVXZ86cOXnf+96Xu+++Oy0tLZkxY0aWLl3aZ/3nPve5+fd///fcdtttue+++/L+978/73//+3PppZcOceQMBw0Nyfz51ce9E+5dy/PmVesBddLWlixfvvH1lUqybFm1HgAAAAAAwBApfLL9oosuyqmnnprTTjst++67b+bNm5dJkyblkksu6bP+S17ykpx44ol50YtelObm5rzxjW/MEUcc8Yy94dmylcvJggXJxIk9y5uaquXlcn3iAv6uo2Pdw3GrV2XJ3KOzZO7RGbd61UbrAQAAAAAA1Fqhk+1PP/107rrrrhx++OE9yg8//PDceeedm/Ucd999d+688868+tWv3midVatWZeXKlT1ubFnK5WTJkmThwuTKK6v3ixdLtEMhTJgwuPUAAAAAAAAGQWO9A3gmf/rTn9LZ2Zmdd965R/nOO++cBx988Bn/tqmpKQ8//HDWrFmTD3/4wznttNM2WveCCy7IeeedNygxM3w1NCTTptU7CmADLS3VoSba2/uet71Uqq5vaRn62AAAAAAAgC1WoXu2dyn1mky7UqlsUNZbW1tbfv7zn+dzn/tc5s2bl6uuumqjdc8999w89thj627Lli0blLgBGAQNDcn8+dXHvff9Xcvz5lXrAQAAAAAADJFC92zfYYcd0tDQsEEv9oceemiD3u697b777kmS/fffP//v//2/fPjDH86JJ57YZ90xY8ZkzJgxgxM0AIOvXE4WLEhmz06WL19f3tRUTbSb8wEAAAAAABhihe7ZPnr06Bx44IG55ZZbepTfcsstOfjggzf7eSqVSlatWjXY4TEAnZ3rH7fd1nMZ4BmVy8mSJcnChcmVV1bvFy+WaAcAAAAAAOqi0D3bk+Tss8/OySefnJe97GU56KCDcumll2bp0qU5/fTTk1SHgG9vb89XvvKVJMlnP/vZ7Lbbbtlnn32SJLfffnv++7//O2eeeWbd/geqWluT2WcnDSdUl2ccmUzcuTo6tFwZsFkaGpJp0+odBYOpe6ur29qS6VNNCQAAAAAAwLBQ+GT78ccfn0ceeSTnn39+Ojo6st9+++WGG27I5MmTkyQdHR1ZunTpuvpr167Nueeem8WLF6exsTF77LFHPv7xj+df//Vf6/UvkGqifdasJI3Jbt3K29ur5QsWSLgDbHFaW5Oz35Wc8Knq8pEzkp131AoLAAAAAIBhoVSpVCr1DqJoVq5cmfHjx+exxx7LNttsU+9whr3OzqS5uTrNcmnUmux29s1JkqUXHZHK6saUStVplxcv1pkRYIvx91ZYTzaOzpSzr0mS3HvRsRm35unqeq2wAAAAgGfhyafXZMoHq9ei7z3/iIwbXfi+hwAUQH/zxIWes52Roa2tmmjfmEolWbasWg+ALUBnZzJ7dvUA0FtX2Zw5PYeYBwAAAACAgtGUi5rr6Fj/uLK6MX+ce9Qm6wEwgvWnFda0aUMWFgAAAAAA9IdkOzU3YcLg1gNgmOvWumrc6lVZMvfoTdYDAAAAAICiMYw8NdfSUp2TvVTqe32plEyaVK0HwBZAKywAAAAAAEYAyXZqrqEhmT+/+rh3wr1red68aj0AtgBaYQEAAAAAMAJItjMkyuVkwYJk4sSe5U1N1fJyuT5xAVAHWmEBAAAAADACSLYzZMrlZMmSZOHC5Morq/eLF0u0A2yRtMICAAAAAGCYa6x3AGxZGhqSadPqHQUAhVAuJzNnJm1tSUdHdY72lhY92gEAAAAAGBYk2wGA+tEKCwAAAACAYcow8gAAAAAAAADQT5LtAAAAAAAAANBPku0AAAAAAAAA0E+S7QAAAAAAAADQT5LtAAAAAAAAANBPku0AAAAAAAAA0E+S7QAAAAAAAADQT5LtAAAAAAAAANBPku0AAAAAAAAA0E+S7QAAAAAAAADQT5LtAAAAAAAAANBPku0AAAAAAAAA0E+S7QAAAAAAAADQT5LtAAAAAAAAANBPku0AAAAAAAAA0E+S7QAAAAAAAADQT5LtAAAAAADAyNLZuf7xbW09lwFgkEi2AwAAAAAAI0dra7LvlPXLR85Impur5QAwiCTbAQAAAACAkaG1NZk1K1nR3rO8vb1aLuEOwCCSbAcAAAAAAIa/zs5k9uykUtlwXVfZnDmGlAdg0Ei2AwAAAAAAw19bW7J8+cbXVyrJsmXVegAwCBrrHQAAAAAAAMCz1tGx7uG41auyZO7Rm6wHAM+Gnu0AAAAAAMDwN2HC4NYDgE2QbAcAAAAAAIa/lpakqSkplfpeXyolkyZV6wHAIJBsBwAAAAAAhr+GhmT+/Orj3gn3ruV586r1AGAQSLYDAAAAAAAjQ7mcLFiQTJzYs7ypqVpeLtcnLgBGpMZ6BwAAAAAAADBoyuVk5sykrS3p6KjO0d7Sokc7AINOsh0AAAAAABhZGhqSadPqHQUAI5xh5AEAAAAAAACgnyTbAQAAAAAAAKCfJNsBAAAAAAAAoJ8k2wEAAAAAAACgnyTbAQAAAAAAAKCfJNsBAAAAAAAAoJ8k2wEAAAAAAACgnyTbAQAAAAAAAKCfJNsBAAAAAAAAoJ8k2wEAAAAAAACgnyTbAQAAAAAAAKCfJNsBAAAAAAAAoJ8a6x1AEVUqlSTJypUr6xwJAAAAAAAAAEOhKz/clS/eFMn2Pjz++ONJkkmTJtU5EgAAAAAAAACG0uOPP57x48dvsl6psrlp+S3I2rVrs2LFimy99dYplUr1DmfEWblyZSZNmpRly5Zlm222qXc4PYhtYMQ2MGIbGLENjNgGRmwDI7aBEdvAiG1gxDYwYhsYsQ2M2AZGbAMjtoER28CIbWDENjBiGxixDYzYBkZsA1Pk2Ia7SqWSxx9/PLvuumu22mrTM7Lr2d6HrbbaKk1NTfUOY8TbZpttCrsDENvAiG1gxDYwYhsYsQ2M2AZGbAMjtoER28CIbWDENjBiGxixDYzYBkZsAyO2gRHbwIhtYMQ2MGIbGLENjNgGpsixDWeb06O9y6bT8QAAAAAAAABAD5LtAAAAAAAAANBPku0MuTFjxuRDH/pQxowZU+9QNiC2gRHbwIhtYMQ2MGIbGLENjNgGRmwDI7aBEdvAiG1gxDYwYhsYsQ2M2AZGbAMjtoER28CIbWDENjBiGxixDUyRY9vSlCqVSqXeQQAAAAAAAADAcKJnOwAAAAAAAAD0k2Q7AAAAAAAAAPSTZDsAAAAAAAAA9JNkOwAAAAAAAAD0k2Q7AAAAAAAAAPSTZDs1s2zZspx66qnZddddM3r06EyePDmzZ8/OI488sq7OtGnTMmfOnB5/N3/+/IwZMyZXXnllzWJ7y1veklKplFKplFGjRuUFL3hB/vM//zNPPPHEujpvf/vb09DQkG984xs1i6OvmE4//fQN1p1xxhkplUp5y1veskH83W+vfe1rCxPXqFGjsvPOO+ewww7LZZddlrVr1w56bP2N76GHHsq//uu/ZrfddsuYMWOyyy675IgjjsiPfvSjmsSWJA8++GDOPPPMvOAFL8iYMWMyadKkvO51r8sPfvCDdXXuvPPOHHnkkXn+85+fsWPHZv/9988nPvGJdHZ21iyu7rpew49//OM9yq+99tqUSqUkyaJFi1IqlfKXv/xlSGLZnPcz2bz9zGDb1Oeoubl53ffgOc95Tpqbm3Pcccflhz/8Yc1iSvr3PpZKpWy11VYZP358XvKSl+Td7353Ojo6ahpf71iPOeaYHmV33nlnGhoaarIf68vnPve5bL311lmzZs26sr/+9a8ZNWpUWlpaetRta2tLqVTKdtttl4997GMbPNdxxx2Xf/zHf+zxXIPpwQcfzOzZs7Pnnntm7Nix2XnnnfNP//RP+dznPpcnn3yyR92PfexjaWho2OBzUAt9HcOT9Z+5adOm9Xms6ro1NzfXJK7N3Y88U2y99zW1irH37f777+/z+zGU+tr+ggULstVWW2XcuHEbnJ+tXbs2Bx98cP7lX/6lJvFs7vtUKpUyduzY/PGPf+zx98ccc0xN38vuur929Tgn2lhM/Tk29L49+OCDNYttoL8VkuSKK67ItttuW5O4Nve96368734biv3vxo6ZS5Ys6RHL+PHj88pXvjLf/e53axrPQH4vPNNncihiLZVKaWxszG677ZZ/+7d/y5///Od1dZqbmzNv3ryax9I9noGeh9c61s35/XT33Xfn9a9/fXbeeeeMHTs2e+21V972trfld7/7XU1i6s9r9vznPz9PPfVUj3o//elP130GauF1r3tdDj300D7X/ehHP9rkca1UKmXJkiU1iW0g57+/+93vhuw7sbnHha7XafTo0dljjz1y7rnnZtWqVTWPb3N+2ydDcz4+0N8y//Vf/9Xn811wwQXZYYcd8vTTT9cltq79xVD/JnymbXYdU++5554hi6XL5vweWL58eUaPHp199tlnaILqQ+9z33r+huluY7F0P54O1TWu7jE907Hrq1/9ap773Ofm/vvv77F+xYoVef7zn5/58+fXJa5rrrkmDQ0NWbp0aZ9/v88+++Sd73xnXWLrUqlUcumll+YVr3hFnve852XbbbfNy172ssybN2+D6yWDGdfmXrdM6rNv6+/5+VB9fzd2vWHs2LG58MIL88QTT+Scc87JC17wgowdOzY77rhjpk2bluuuu25I4uvPMeHxxx/PtGnTss8++2TZsmU1i2lzzi1/8YtfJBn6fBY9SbZTEw888EBe9rKX5Xe/+12uuuqq3H///fnc5z6XH/zgBznooIPy6KOP9vl3H/rQh3Luuefm29/+dk466aSaxvja1742HR0deeCBB/Jf//Vfufjii/Of//mfSZInn3wyV199dd71rnflS1/6Uk3j6G7SpEn5xje+kb/97W/ryp566qlcddVV2W233fqMv/vtqquuKkxcS5YsyY033pjp06dn9uzZOfroo2uWiNrc+I499tj88pe/zJe//OX87ne/y3e+851MmzZto5/HZ2vJkiU58MAD88Mf/jAXXnhhfvWrX+Wmm27K9OnT8453vCNJ8u1vfzuvfvWr09TUlIULF+Y3v/lNZs+enY9+9KM54YQTUqlUahJbb2PHjs3cuXN7XGisl819Pwe6n3m2NudzdP7556ejoyO//e1v85WvfCXbbrttDj300Hz0ox+tSUxdNvd9/O1vf5sVK1bkZz/7Wc4555x8//vfz3777Zdf/epXNY3vmVx22WU588wzc/vtt2/0h9xgmj59ev7617/m5z//+bqytra27LLLLvnZz37W40fZokWLsuuuu+aKK67Ieeed1+N1WrBgQb773e/mK1/5ShobGwc9zgceeCAveclL8r3vfS8f+9jHcvfdd+f73/9+zjrrrHz3u9/N97///R71L7/88rz73e/OZZddNuix9Fdra+u649NPf/rTJMn3v//9dWU/+9nParbtzdmPdD9+zps3L9tss02Pslpd0OjS13F89913r+k2B+KLX/xi3vCGN+TSSy/Nxz/+8Zx55pk9Gud84hOfyP3335/Pf/7zNdl+f96nUqmUD37wgzWJYyDqcU7Ul/4cG3p/JnfaaaeaxFSvY/jm2tz3rut43/125pln1jy+TR0zu/a1P/nJT/Lyl788xx57bP7v//6vpjH15/dCvc87u7+/X/ziF/Pd7343Z5xxRl1iSer/ejyTTZ33XnfddXnlK1+ZVatW5etf/3ruu+++fPWrX8348ePzgQ98oGZxbe5rtvXWW+fb3/52j7LLLrtsg8/kYDr11FPzwx/+cIPGX13bPuCAA3rsM5qamjbYl0yaNKkmsQ3k/HevvfaqSSy99ee48La3vS0dHR25//77c+GFF+azn/1sPvzhD9c0vs35bd9lKM7HB/JevulNb8oVV1zR5zWGyy+/PCeffHJGjx5dl9i6PmdD/ZuwXtscDFdccUWOO+64PPnkk7njjjvqHQ6b4ZmOXSeffHKOOOKIvPnNb+7RuPPtb397XvKSl9Qsob2puP75n/8522+/fb785S9vsO6OO+7Ib3/725x66ql1ia3LySefnDlz5mTmzJlZuHBh7rnnnnzgAx/I//zP/+R73/teTeLqz3lvUr/9TH/jrIeu6w2f+cxn8u53vzunn356rr322nzmM5/Jb37zm9x000059thja9qpqrvNfa8efvjhdce722+/vWbnbsnmnVu+9KUvrVs+i/Uk26mJd7zjHRk9enS+973v5dWvfnV22223zJgxI9///vfT3t6e973vfT3qVyqVnHnmmZk/f36+973v5cgjj6x5jF0t8ydNmpSTTjopb3jDG3LttdcmSb71rW9lypQpOffcc3PHHXfUrGV5by996Uuz2267pbW1dV1Za2trJk2alJe85CV9xt/99vznP78wcU2cODEvfelL8973vjf/8z//kxtvvDFXXHFF3eL7y1/+kttvvz1z587N9OnTM3ny5Lz85S/Pueeem6OOOqomcXW1FPzpT3+aWbNmZa+99sqLXvSinH322fnxj3+cJ554Im9729vyz//8z7n00ktzwAEHpLm5Oaeddlq+/OUvZ8GCBfnmN79Zk9h6O/TQQ7PLLrvkggsuGJLtPZPN/bz1dz8zGDb3c7T11ltnl112yW677ZapU6fm0ksvzQc+8IF88IMfzG9/+9tBj6vL5r6PO+20U3bZZZfstddeOeGEE3LHHXdkxx13zL/927/VLLZn8sQTT+Sb3/xm/u3f/i1HH310zfYV3e29997Zdddds2jRonVlixYtysyZM7PHHnvkzjvv7FE+ffr0/PM//3NOOumkvOlNb8rq1avz8MMP54wzzsgFF1yQfffdtyZxnnHGGWlsbMzPf/7zHHfccdl3332z//7759hjj83111+f173udevq3nrrrfnb3/6W888/P0888URuu+22msS0ubbbbrt1x6cdd9wxSbL99ttvUFYLm7Mf6X78HD9+fEql0gZltdTXcbyhoaGm2+yvCy+8MP/+7/+eK6+8MqeddlrOPPPMHHDAAXnb296WJPnNb36TD37wg7n00ktrlpTtz/t05pln5mtf+1pdGw51V49zor7099jQ/bbVVrX5uViPY3h/bO5713W873577nOfW9PYNueY2bWv3WefffLRj340q1evzsKFC2saV39+L9T7vLPr/W1qasrhhx+e448/vmYXYzdHvV+PjdnUee+TTz6Zt771rTnyyCPzne98J4ceemh23333vOIVr8h///d/16wRVrL5r9mb3/zmHgnPv/3tb/nGN76RN7/5zTWL7eijj85OO+20wXez6wLoqaeeusGxv/e+pFbnAwM5/x0q/TkujBs3bt1vrWOPPTaHHXZYzb/Dm/pt32WozscH8l6eeuqp+cMf/rBBTG1tbfn9738/aAmzgX7O6vGbsB7bHAyVSmVdA4mTTjpJUmWY2NSx6/Of/3zuv//+XHTRRUmqDSra2tpy+eWX13T0n2eKa9SoUTn55JP7bKhz2WWX5cADD8w//MM/1CW2JPnmN7+Zr3/967nqqqvy3ve+N//4j/+Y5ubmzJw5Mz/84Q9rdhzrz3lvPfcz/YmzHnpfb0iS7373u3nve9+bI488Ms3NzTnwwANz5pln1vTcrcvmvlfLli1LS0tLtt566yxcuDA77LBDTePanHPLpH75LNaTbGfQPfroo7n55ptzxhln5DnPeU6Pdbvsskve8IY35Oqrr153kF6zZk1OPvnkfOtb38qtt96af/qnf6pH2HnOc56T1atXJ0m+9KUv5Y1vfGPGjx+fI488MpdffvmQxfHWt761x/Yuu+yynHLKKUO2/Y15NnG95jWvyT/8wz/0OLgPtk3F97znPS/Pe97zcu211w7JEHOPPvpobrrpprzjHe/o86Lrtttum+9973t55JFH1o2o0N3rXve67LXXXjUbraC3hoaGfOxjH8unP/3pLF++fEi2+Uw29X72dz8zWJ7N52j27NmpVCr5n//5n0GNqbuBvo/Pec5zcvrpp+eOO+7IQw89VLP4Nubqq6/O3nvvnb333jtvfOMbc/nllw/JqA7Tpk3rkXxYuHBhpk2blle/+tXryp9++un86Ec/Wvcjbf78+Xn00UfzkY98JGeccUb222+/zJ49uybxPfLII/ne97630f1Ikh4/ur/0pS/lxBNPzKhRo3LiiSdu8Rddino8HS7e85735CMf+Uiuu+66HHvssUmqn7fLL788bW1t+cIXvpC3vOUtOf744wszZOTBBx+co48+Oueee269Q9mooTgn6q1ox/h6HcOfrXq8d33pzzFz9erV+cIXvpCkerG01jZ3v1ukz+QDDzyQm266aUhen40p0uvR3abOe2+++eb86U9/yrvf/e4+/75WUz0km/+anXzyyWlra1vXM+maa65Jc3NzXvrSl9YstsbGxj57EH/rW9/K008/nTe84Q012/bmGMj5b609m+PCL3/5y9xxxx01/Q5vzm/7LkN5Pt7f93L//ffPP/7jP25wfeuyyy7Ly1/+8uy33351iy2pz2/Cev0OfbYWLlyYJ598MoceemhOPvnkfPOb38zjjz9e77DYhE0du3bcccd8/vOfzwc+8IHccsstOeusszJ//vxMnjy5rnGdeuqpeeCBB3LrrbeuK+tKStayV/vmxPb1r389e++9d2bOnLnBuq4plWplc897672fKep1kb6uNyTV4/4NN9xQl33a5rxXv/3tb/OqV70q++yzT2666aZsvfXWNY9rc88t65nPokqynUH3+9//PpVKZaO9/Pbdd9/8+c9/zsMPP5wk+cIXvpBvfetbWbRoUU1bwz2Tn/70p7nyyitzyCGH5Pe//31+/OMf5/jjj0+SdTvXoZpf8+STT87tt9+eJUuW5I9//GPuuOOOvPGNb9yg3nXXXbfuAkjX7SMf+Ujd49qYffbZp6YtqjYVX2NjY6644op8+ctfzrbbbptXvepVee9735v//d//rUk8999/fyqVyjPOn9U1L9nGviv77LNPzeY67Mu//Mu/5IADDsiHPvShIdvmxmzq/ezvfmawPJvP0XbbbZeddtqp5i0LB/o+dn1W69HyseuEMKkO7frXv/51g7kPa2HatGm54447smbNmjz++OO5++67M3Xq1Lz61a9e1xPjxz/+cf72t7+tuwi0zTbb5PLLL8/HPvaxfO9736tpK/Ou/cjee+/do3yHHXZYt98/55xzkiQrV67MNddcs+51fOMb35gFCxZk5cqVNYltOHi2x61a630cf/3rX1/vkNa58cYbM3fu3PzP//zPBnOD7bbbbpk3b15OP/30rFixoubD7ffXBRdckJtuuiltbW31DmWjan1O1JfNOTY0NTX1+Ez23vcMlv4ewy+++OINznn7mntwKPR+784555wNYuvek68WNueYefDBB+d5z3texo4dm//4j/9Ic3NzjjvuuJrGlfRvv1vP886u/e9znvOc7LHHHrn33nvXHU/rZSDf0ec973k1HYp0U+e9v//975OkbvMFb85rttNOO2XGjBnregIN1QXmU045JUuWLOmxP7jssstSLpdrNhrd5hrI+W+tDfS4MGbMmBxwwAF5+OGH8653vatm8W3Ob/tk6M/HB/JennLKKVmwYEH++te/JqnOpf6tb31r0BNmA4mtHr8J6/U79Nn60pe+lBNOOCENDQ150YtelD333DNXX311vcMqlL6umc6YMaPeYW3y2HXMMcfkuOOOy2tf+9pMnTp1g7m/6xHXlClT8opXvKJH4u6b3/xmOjs7c+KJJ9Y1tt///vc1+82yKZt73lvv/UwRr4s80/WGSy+9NHfeeWe23377/OM//mPOOuusIZsqY3Peqze96U3ZY489cs0112TMmDFDEley6XPLeuezqJJsZ8h1tcDpSk780z/9U573vOfl/e9//5DOX9l14jV27NgcdNBBmTp1aj796U/nS1/6Uo444oh1Q4AceeSReeKJJzaYF7dWdthhhxx11FH58pe/nMsvvzxHHXVUn8ORTJ8+Pffcc0+PW++5wuoR18ZUKpWaDnu0OfEde+yxWbFiRb7zne/kiCOOyKJFi/LSl760JkP49P6cb07dvspr+Zr1Ze7cufnyl7+ce++9d0i329tgfN6SzXv9++vZfI6G6j0dyPtYy9fsmfz2t7/NT3/605xwwglJqhd2jz/++CGZc3z69Ol54okn8rOf/SxtbW3Za6+9stNOO+XVr351fvazn+WJJ57IokWLsttuu+UFL3jBur97zWtek1e+8pU5+eSTa97KPNnwPfnpT3+ae+65Jy960YvW9TS78sor84IXvGBdo7UDDjggL3jBC/KNb3yj5vEV1bPdj9Ra7+P4pz71qXqHtM6LX/ziNDc354Mf/GCfLcrf+ta3ZsKECXnnO99Z8+H2+2vKlCl505veVPfE2TOpx/E92fSxoa2trcdn8uabbx7iCKt6H4/e8IY3bHDOe/7559cttu7v3bve9a4NYnvFK15Rs+1v7jHz6quvzt13353vfOc72XPPPfPFL34x2223Xc3i6tLf/W69zju79r8/+clPcuaZZ+aII47ImWeeOaQx9KW/39F77rknu+66a01jeqbz3iL0/tycz9App5ySK664Ig888EB+9KMfDUnP8n322ScHH3zwuu/mH/7wh7S1tRWiJ9lAz3/raWPHhR/96Ec57rjjcsopp/ToFVfr7W/MUJ+PD+S9PPHEE7N27dp1idmuEQO6jiv1iq0evwnr+Tv02fjLX/6S1tbWHsmyN77xjYWPe6j1dc30i1/8Yr3DSrLpY9cHPvCBrF27Nh/4wAcKE9epp56aBQsWrPtt2JXkq+UoNpsTW71+VyWbd95bhP1MEa+LPNP1hqlTp+aBBx7ID37wgxx77LH59a9/nZaWlpp2MEw2/72aOXNmbr/99lxzzTU1jae3TZ1b1jufRZVkO4Nuzz33TKlU2uhJw29+85s8//nPX/fl33///fODH/wgixYtynHHHbduKPda6zrx+u1vf5unnnoqra2t2X777fOVr3wl119/fRobG9PY2Jhx48bl0UcfHdLheLsuCHz5y1/e6A/y5z73udlzzz173Gp9EW1z4tqY++67L7vvvnuNIqvanPjGjh2bww47LB/84Adz55135i1veUtNetS88IUvTKlUyn333bfROnvttVeSbLTOb37zm7zwhS8c9NieydSpU3PEEUfkve9975Buty/P9H72dz8z2AbyOXrkkUfy8MMP1/x7kAzsfez6HDY3N9coqr596Utfypo1azJx4sR1+91LLrkkra2t+fOf/1zTbe+5555pamrKwoULs3Dhwrz61a9OUh22avfdd88dd9yRhQsX5jWvec0Gf9sVa63jK5VK+c1vftOj/AUveEH23HPPHsNsXnbZZfn1r3+9Lq7Gxsb8+te/rumxa5tttsljjz22Qflf/vKXbLPNNjXbbn88m+NWrfU+jk+YMKHeIa0zceLE3Hrrreno6MhrX/vaPhPuQ/EdGKjzzjsvd999d6699tp6h9KnoTgn6sumjg277757j89krY4H/T2Gjx8/foNz3p122qkmsW1K7/duhx122CC23kMgD6bNPWZOmjQpL3zhC3PUUUfli1/8Yo4//vghmyamP/vdep13du1/X/ziF+dTn/pUVq1alfPOO29IY+hLf7+je+6555Dshzd23tv1W6b3ecpQ2pzP0JFHHpmnnnoqp556al73utdl++23H5LYTj311FxzzTVZuXJlLr/88kyePDmHHHLIkGz7mTyb899axjSQ48JLX/rSfO1rX8utt95a03Pezfltnwz9+fhA3svx48dn1qxZ63qoXn755Zk1a9agn7v3N7Z6/Cas5+/QZ+PKK6/MU089lVe84hXr4j7nnHPyox/9qO6dJoqkr2umEydOrHdYSTZ97Oo6tg/1b61niuuEE05IqVTK1Vdfnfvvvz+33357zYeQ35zY9tprr03um2tpU+e9RdnPFO26yKauN4waNSotLS15z3vek+9973s5//zz85GPfCRPP/10zWLa3Pfqve99bz70oQ+tm+JmKG3s3LKzs7MQ+Swk26mB7bffPocddlguvvji/O1vf+ux7sEHH8zXv/71HH/88T1anh1wwAH54Q9/mNtvvz2vf/3rhyTh3nXiNXny5HXze3XNCXL33Xf3aP34rW99K9dee20eeeSRmseVVIcqefrpp/P000/niCOOGJJtbo6BxvXDH/4wv/rVr2ra2jwZWHxTpkzJE088MeixbLfddjniiCPy2c9+ts/n/8tf/pLDDz882223XT7xiU9ssP473/lO/v/27j2kqfePA/hbTaGL/ZFFdLfcF01tEVqRmWswZ5C0SFepZJQllFqR2mXZhbSMdRFtJGXrqhUFhWhkiLgKLfJSUdkNCQqiovIWqWj1+yMUL5tu1jk78nu/YP8sx97snM7nuZznOW/evBFlS6aeDh06hIKCApSXl4v+3V31dTwHcp0RkjXnUWZmJhwdHUV7trEtx7G5uRmnTp1CUFAQxowZI0K6P9rb23HhwgUcPXq02zX3yZMnmDJlCvLy8gTPoFQqYTKZYDKZsHDhws73FQoFbt++jQcPHoi2hWZPHee5wWDo8/x6+vQpKisrYTKZuv2Od+/eRUVFBZ49eyZIPi8vL1RWVvZ6v6Kiwm5bufUk1Xo6GEyePBl37tzB58+foVarB9UjCSZNmoT4+HjodDr8/PnT3nG6EatNZIkUarzUari17H3sBlozFQoFfH19ceDAAVFy2nrdlcI5uXfvXhw5cgQfPnywW4YOUvg9+tPR7lWr1Rg9ejT0er3Zv6uvrxclT3+/mZOTE1atWgWTySTqAPPy5cvh5OSES5cu4fz581izZo1krmtSa//+TV1wdnaGTqdDSkoKfvz4IUg+a/r29mqPD+RYxsTEoKysDIWFhSgrKxNswszabPboE0qhHzpQRqMRiYmJvXIrlUqubh9EpFrvLeVydXWFVqvF2bNncebMGUybNq3b/2t7ZYuMjMTr16+Rn5/f6+9///5tdnHAv9RXu1dK1xkpjovYMt7g7e2N9vZ2tLS0CJLF1mOVkpKC1NRUREVF4fLly4JkMsdS21Iq81kESHM5Cg16BoMBAQEBCAkJQVpaGqZOnYrnz58jOTkZEyZMMDvYI5fLO+9sDQ8Px7Vr1+Di4iJqbqPRiMWLF/d6dryPjw+2bNmC3NxcbN68WfAcTk5OnXfmOTk5mf2b1tZWfPz4sdt7Q4YMEXQrGFty/fz5E58+fUJRURHS09MRGhqK6OhowbL1l+/r16/QarVYu3Yt5HI5XF1dUVlZCb1eD41GI0ieEydOICAgAHPmzMH+/fshl8vR3t6O4uJiZGdn48WLFzh58iRWrlyJ2NhYxMfHY+TIkSgpKUFycjLCw8NFeb5mTzNmzEBUVBSOHz8u+nd31d/5NpDrzN+y9jxqamrCx48f0dbWhrdv3yI3NxenT59Geno6ZDLZP89lTl/H8fPnz2hpaUFTUxOqqqqg1+vx5csXXL9+XZRsHQoLC1FXV4eYmJheW1GHh4fDaDQiPj5e0AxKpRJxcXFoa2vrXHEB/BkE2rBhA1paWuw22Q78uY7Mnz8f/v7+2LdvH+RyORwdHVFRUYGXL1/Cz88PRqMRc+bMQVBQUK/Pz5s3D0ajERkZGf8828aNG2EwGBAXF4fY2FgMHToUxcXFMBqNuHjx4j//voGwpm5JUUNDAx4/ftztvVGjRmHy5Mmi5pg4cSJMJhOUSiXUajVu374tuW3jLdm5cydycnLw9u3bzueWic2ebSJLrKkNXbm5uXXelPov2aOG28LaY9dR77saNmyYILt7WFMzQ0NDzX42MTERWq0W27ZtE3xVl63XXSm0OxcuXAgfHx8cPHgQBoPBbjkAafweHfpr9w4fPhynT5+GVqvFkiVLsGnTJshkMnz58gVXr17Fu3fvRHmcjTW/WWpqKpKTk0Vb1Q4AI0aMwIoVK6DT6dDQ0CDac3etIcX279/UhcjISOh0Opw4cQJJSUmC5Ouvbx8SEmKX9vhAjqVCoYBMJkN0dDRkMpnZzGJms0ef0Jaa+urVq16f9/b2Fny80lx/oLGxEdXV1cjLy4OXl1e3f4uIiMCuXbuQnp4uSNvNGlLpwwwGUqr3XfWVKyYmBgsWLEBNTQ2SkpJEv4HMXLbly5fjxo0biIiIwO7duxEcHIwxY8bg6dOnyMjIQEJCgqALXvpq90phvMuanPZkbrxBo9EgIiIC/v7+cHNzQ01NDXQ6HZRKpWA7KA6kn7Vjx47OGzp//folymOKLLUtpTKfRVzZTgL577//UFlZCQ8PD6xYsQIeHh6IjY2FUqnE/fv3LW537uPjg9LSUjx8+BBhYWGCbg/S06dPn3Dz5k2zq1UcHBywbNkyUbfeGDlyZJ9FpKioCOPGjev2CgwMlEwud3d3LFq0CKWlpcjKykJ+fr4oBd1SvhEjRmDu3LnIyMhAUFAQfH19sXv3bqxfv16wQbWpU6eiuroaSqUSiYmJ8PX1RXBwMEpKSpCdnQ3gT9EuLS3F+/fvERQUBE9PTxw7dgy7du3ClStX7Lb6ITU1tdtzGH/9+gVA/G2s+jrfBnqd+RvWnkd79uzBuHHjIJPJsGrVKjQ0NKCkpET0Zwj3PI4dPD09MX78ePj5+eHQoUNQqVR49uwZvL29Rc1nNBqhUqnMTt6FhYXh8ePHqK6uFjSDUqlEc3MzZDIZxo4d2/m+QqFAU1MTPDw8MGnSJEEz9MXDwwOPHj2CSqXCzp07MXPmTPj7++P48eNISkrC3r17kZuba3GlZVhYGHJzcwWpp+7u7rh37x5qa2uhVqsxe/ZsnDt3DufOnYNWq/3n3zdQ/dUtKTKZTJg1a1a31549e+ySpWOLt/r6egQHB4u2UvFvjRo1Ctu3bxfs7ndr2LtNZElftaFn27KqqkqQDPao4baw9th11Puur23btgmSyZqa+e3bN7OfDQ0Nhbu7u2g3Mdh63bV0Topp69atyMnJwfv37+2aA5DG7wFY1+7VaDQoLy+Hs7MzIiMj4eXlhYiICDQ0NCAtLU20rP39Zi4uLhg9erTofauYmBjU1dVBpVJJarJJiu3fv6kLLi4uiI+Ph16vx/fv3wXJ11ffPjMz027t8YEey7Vr16Kurk7Q3R6szWaPPqEtNXXlypW92uVi7IRirj9w+PBheHt795poB4ClS5fi27dvKCgoEDybJVLqwwwGUqn3PVnKFRgYCE9PTzQ2NmL16tV2SNY7m4ODAy5duoRjx47hxo0bUCgUkMvl2LdvHzQajSiruC21e6Uw3tWVVMdFeo43hISE4Pz581Cr1Zg+fToSEhIQEhKCq1evCpZhoP2s5ORk6PV6rF69WrQFJz3bllKbz/p/5/Bbild1IiKSlCtXrmDdunWCDV4QERERERERERERERENNtxGnoiILGptbUVtbS0MBgNUKpW94xAREREREREREREREUkGt5EnIiKLbt26hblz52L48OHIysqydxwiIiIiIiIiIiIiIiLJ4DbyRERERERERERERERERERENuLKdiIiIiIiIiIiIiIiIiIiIhtxsp2IiIiIiIiIiIiIiIiIiMhGnGwnIiIiIiIiIiIiIiIiIiKyESfbiYiIiIiIiIiIiIiIiIiIbMTJdiIiIiIiIiIiIiIiIiIiIhtxsp2IiIiIiIiIiIiIiIiIiMhGnGwnIiIiIiIiIiIiIiIiIiKyESfbiYiIiIiIiIiIiIiIiIiIbPQ/y2nSP7Q589AAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1815,7 +1902,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 22, "metadata": {}, "outputs": [ { @@ -1867,7 +1954,7 @@ "1 0.465000 0.007054 Biased Data" ] }, - "execution_count": 20, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" } @@ -1917,7 +2004,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 23, "metadata": {}, "outputs": [ { @@ -2026,7 +2113,7 @@ "4 ID White 0.5 70+ Post-grad 17 11 0.683102 West" ] }, - "execution_count": 21, + "execution_count": 23, "metadata": {}, "output_type": "execute_result" } @@ -2065,28 +2152,9 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Auto-assigning NUTS sampler...\n", - "Initializing NUTS using jitter+adapt_diag...\n", - "Initializing NUTS using jitter+adapt_diag...\n", - "Multiprocess sampling (4 chains in 4 jobs)\n", - "NUTS: [Intercept, C(state), C(eth), C(edu), male, repvote]\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 816 seconds.\n" - ] - } - ], + "outputs": [], "source": [ "formula = \"\"\" p(abortion, n) ~ C(state) + C(eth) + C(edu) + male + repvote\"\"\"\n", "\n", @@ -2110,7 +2178,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -2149,7 +2217,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -2187,7 +2255,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -2403,7 +2471,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -2422,7 +2490,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -4802,7 +4870,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -5035,7 +5103,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -5414,7 +5482,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -5446,7 +5514,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -5601,7 +5669,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -8457,7 +8525,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -8646,7 +8714,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -8764,7 +8832,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.18" + "version": "3.11.0" }, "orig_nbformat": 4 }, diff --git a/docs/notebooks/plot_predictions.ipynb b/docs/notebooks/plot_predictions.ipynb index 2f2f66831..b4542db45 100644 --- a/docs/notebooks/plot_predictions.ipynb +++ b/docs/notebooks/plot_predictions.ipynb @@ -1,986 +1,1458 @@ { - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Plot Conditional Adjusted Predictions\n", + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Plot Conditional Adjusted Predictions\n", + "\n", + "This notebook shows how to use, and the capabilities, of the `plot_predictions` function. The `plot_predictions` function is a part of Bambi's sub-package `interpret` that features a set of tools used to interpret complex regression models that is inspired by the R package [marginaleffects](https://vincentarelbundock.github.io/marginaleffects/articles/predictions.html#conditional-adjusted-predictions-plot). " + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Interpreting Generalized Linear Models\n", + "\n", + "The purpose of the _generalized linear model_ (GLM) is to unify the approaches needed to analyze data for which either: (1) the assumption of a linear relation between $x$ and $y$, or (2) the assumption of normal variation is not appropriate. GLMs are typically specified in three stages:\n", + "1. the linear predictor $\\eta = X\\beta$ where $X$ is an $n$ x $p$ matrix of explanatory variables.\n", + "2. the link function $g(\\cdot)$ that relates the linear predictor to the mean of the outcome variable $\\mu = g^{-1}(\\eta) = g^{-1}(X\\beta)$\n", + "3. the random component specifying the distribution of the outcome variable $y$ with mean $\\mathbb{E}(y|X) = \\mu$.\n", + "\n", + "Based on these three specifications, the mean of the distribution of $y$, given $X$, is determined by $X\\beta: \\mathbb{E}(y|X) = g^{-1}(X\\beta)$. \n", + "\n", + "GLMs are a broad family of models where the output $y$ is typically assumed to follow an exponential family distribution, e.g., Binomial, Poisson, Gamma, Exponential, and Normal. The job of the link function is to map the linear space of the model $X\\beta$ onto the non-linear space of a parameter like $\\mu$. Commonly used link function are the _logit_ and _log_ link. Also known as the _canonical_ link functions. This brief introduction to GLMs is not meant to be exhuastive, and another good starting point is the Bambi [Basic Building Blocks](https://bambinos.github.io/bambi/notebooks/how_bambi_works.html#Link-functions) example.\n", + "\n", + "Due to the link function, there are typically three quantities of interest to interpret in a GLM:\n", + "1. the linear predictor $\\eta$\n", + "2. the mean $\\mu = g^{-1}(\\eta)$\n", + "3. the response variable $Y \\sim \\mathcal{D}(\\mu, \\theta)$ where $\\mu$ is the mean parameter and $\\theta$ is (possibly) a vector that contains all the other \"nuissance\" parameters of the distribution.\n", + "\n", + "As modelers, we are usually more interested in interpreting (2) and (3). However, $\\mu$ is not always on the same scale of the response variable and can be more difficult to interpret. Rather, the response scale is a more interpretable scale. Additionally, it is often the case that modelers would like to analyze how a model parameter varies across a range of explanatory variable values. To achieve such an analysis, Bambi has taken inspiration from the R package marginaleffects, and implemented a `plot_predictions` function that plots the conditional adjusted predictions to aid in the interpretation of GLMs. Below, it is briefly discussed what are conditionally adjusted predictions, how they are computed, and ultimately how to use the `plot_predictions` function." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Conditionally Adjusted Predictions\n", + "\n", + "Adjusted predictions refers to the outcome predicted by a fitted model on a specified scale for a given combination of values of the predictor variables, such as their observed values, their means, or some user specified grid of values. The specification of the scale to make the predictions, the link or response scale, refers to the scale used to estimate the model. In normal linear regression, the link scale and the response scale are identical, and therefore, the adjusted prediction is expressed as the mean value of the response variable at the given values of the predictor variables. On the other hand, a logistic regression's link and response scale are not identical. An adjusted prediction on the link scale will be represented as the log-odds of a successful response given values of the predictor variables. Whereas an adjusted prediction on the response scale gives the probability that the response variable equals 1. The conditional part of conditionally adjusted predictions represents the specific predictor(s) and its values we would like to condition on when plotting predictions." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Computing Adjusted Predictions\n", + "\n", + "The objective of plotting conditional adjusted predictions is to visualize how a parameter of the (conditional) response distribution varies as a function of (some) explanatory variables. In `predictions`, there are three scenarios to create data used to compute adjusted predictions:\n", + "\n", + "1. user provided values \n", + "2. a grid of equally spaced and central values\n", + "3. empirical distribution (original data used to fit the model)\n", + "\n", + "In the case of (1) above, a dictionary is passed with the explanatory variables as keys, and the values to condition on are the values. With this dictionary, Bambi assembles all pairwise combinations (transitions) of the specified explanatory variables into a new \"hypothetical\" dataset. Covariates not existient in the dictionary are held at their mean or mode. \n", + "\n", + "In (2), a string or list is passed with the name(s) of the explanatory variable(s) to create a grid of equally spaced values. This is done by holding all other explanatory variables constant at some specified value, a _reference grid_, that may or may not correspond to actual observations in the dataset used to fit the model. By default, the `plot_predictions` function uses a grid of 200 equally spaced values between the minimum and maximum values of the specified explanatory variable as the reference grid.\n", + "\n", + "Lastly, in (3), the original data used to fit the model is used compute predictions. This is known as _unit-level_ predictions.\n", + "\n", + "Using the data, from scenario 1, 2, or 3, the `plot_predictions` function uses the fitted model to then compute the predictions. The `plot_predictions` function then uses these predictions to plot the model parameter as a function of (some) explanatory variable. " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING (pytensor.tensor.blas): Using NumPy C-API based implementation for BLAS functions.\n" + ] + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import warnings\n", + "\n", + "import bambi as bmb\n", + "\n", + "warnings.simplefilter(action=\"ignore\", category=FutureWarning)\n", + "\n", + "%load_ext autoreload\n", + "%autoreload 2" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Gaussian Linear Model\n", + "\n", + "For the first demonstration, we will use a Gaussian linear regression model with the `mtcars` dataset to better understand the `plot_predictions` function and its arguments. The `mtcars` dataset was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption and 10 aspects of automobile design and performance for 32 automobiles (1973--74 models). The following is a brief description of the variables in the dataset:\n", + "\n", + "- mpg: Miles/(US) gallon\n", + "- cyl: Number of cylinders\n", + "- disp: Displacement (cu.in.)\n", + "- hp: Gross horsepower\n", + "- drat: Rear axle ratio\n", + "- wt: Weight (1000 lbs)\n", + "- qsec: 1/4 mile time\n", + "- vs: Engine (0 = V-shaped, 1 = straight)\n", + "- am: Transmission (0 = automatic, 1 = manual)\n", + "- gear: Number of forward gear" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Auto-assigning NUTS sampler...\n", + "Initializing NUTS using jitter+adapt_diag...\n", + "Multiprocess sampling (4 chains in 4 jobs)\n", + "NUTS: [mpg_sigma, hp, wt, hp:wt, cyl, gear]\n" + ] + }, + { + "data": { + "text/html": [ "\n", - "This notebook shows how to use, and the capabilities, of the `plot_predictions` function. The `plot_predictions` function is a part of Bambi's sub-package `interpret` that features a set of tools used to interpret complex regression models that is inspired by the R package [marginaleffects](https://vincentarelbundock.github.io/marginaleffects/articles/predictions.html#conditional-adjusted-predictions-plot). " + "\n" + ], + "text/plain": [ + "" ] }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Interpreting Generalized Linear Models\n", - "\n", - "The purpose of the _generalized linear model_ (GLM) is to unify the approaches needed to analyze data for which either: (1) the assumption of a linear relation between $x$ and $y$, or (2) the assumption of normal variation is not appropriate. GLMs are typically specified in three stages:\n", - "1. the linear predictor $\\eta = X\\beta$ where $X$ is an $n$ x $p$ matrix of explanatory variables.\n", - "2. the link function $g(\\cdot)$ that relates the linear predictor to the mean of the outcome variable $\\mu = g^{-1}(\\eta) = g^{-1}(X\\beta)$\n", - "3. the random component specifying the distribution of the outcome variable $y$ with mean $\\mathbb{E}(y|X) = \\mu$.\n", - "\n", - "Based on these three specifications, the mean of the distribution of $y$, given $X$, is determined by $X\\beta: \\mathbb{E}(y|X) = g^{-1}(X\\beta)$. \n", - "\n", - "GLMs are a broad family of models where the output $y$ is typically assumed to follow an exponential family distribution, e.g., Binomial, Poisson, Gamma, Exponential, and Normal. The job of the link function is to map the linear space of the model $X\\beta$ onto the non-linear space of a parameter like $\\mu$. Commonly used link function are the _logit_ and _log_ link. Also known as the _canonical_ link functions. This brief introduction to GLMs is not meant to be exhuastive, and another good starting point is the Bambi [Basic Building Blocks](https://bambinos.github.io/bambi/notebooks/how_bambi_works.html#Link-functions) example.\n", - "\n", - "Due to the link function, there are typically three quantities of interest to interpret in a GLM:\n", - "1. the linear predictor $\\eta$\n", - "2. the mean $\\mu = g^{-1}(\\eta)$\n", - "3. the response variable $Y \\sim \\mathcal{D}(\\mu, \\theta)$ where $\\mu$ is the mean parameter and $\\theta$ is (possibly) a vector that contains all the other \"nuissance\" parameters of the distribution.\n", + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ "\n", - "As modelers, we are usually more interested in interpreting (2) and (3). However, $\\mu$ is not always on the same scale of the response variable and can be more difficult to interpret. Rather, the response scale is a more interpretable scale. Additionally, it is often the case that modelers would like to analyze how a model parameter varies across a range of explanatory variable values. To achieve such an analysis, Bambi has taken inspiration from the R package marginaleffects, and implemented a `plot_predictions` function that plots the conditional adjusted predictions to aid in the interpretation of GLMs. Below, it is briefly discussed what are conditionally adjusted predictions, how they are computed, and ultimately how to use the `plot_predictions` function." + "
\n", + " \n", + " 100.00% [8000/8000 00:17<00:00 Sampling 4 chains, 0 divergences]\n", + "
\n", + " " + ], + "text/plain": [ + "" ] }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Conditionally Adjusted Predictions\n", - "\n", - "Adjusted predictions refers to the outcome predicted by a fitted model on a specified scale for a given combination of values of the predictor variables, such as their observed values, their means, or some user specified grid of values. The specification of the scale to make the predictions, the link or response scale, refers to the scale used to estimate the model. In normal linear regression, the link scale and the response scale are identical, and therefore, the adjusted prediction is expressed as the mean value of the response variable at the given values of the predictor variables. On the other hand, a logistic regression's link and response scale are not identical. An adjusted prediction on the link scale will be represented as the log-odds of a successful response given values of the predictor variables. Whereas an adjusted prediction on the response scale gives the probability that the response variable equals 1. The conditional part of conditionally adjusted predictions represents the specific predictor(s) and its values we would like to condition on when plotting predictions." + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 18 seconds.\n", + "The rhat statistic is larger than 1.01 for some parameters. This indicates problems during sampling. See https://arxiv.org/abs/1903.08008 for details\n" + ] + } + ], + "source": [ + "# Load data\n", + "data = bmb.load_data('mtcars')\n", + "data[\"cyl\"] = data[\"cyl\"].replace({4: \"low\", 6: \"medium\", 8: \"high\"})\n", + "data[\"gear\"] = data[\"gear\"].replace({3: \"A\", 4: \"B\", 5: \"C\"})\n", + "data[\"cyl\"] = pd.Categorical(data[\"cyl\"], categories=[\"low\", \"medium\", \"high\"], ordered=True)\n", + "\n", + "# Define and fit the Bambi model\n", + "model = bmb.Model(\"mpg ~ 0 + hp * wt + cyl + gear\", data)\n", + "idata = model.fit(draws=1000, target_accept=0.95, random_seed=1234)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can print the Bambi model object to obtain the model components. Below, we see that the Gaussian linear model uses an identity link function that results in no transformation of the linear predictor to the mean of the outcome variable, and the distrbution of the likelihood is Gaussian." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Default values\n", + "\n", + "Now that we have fitted the model, we can visualize how a model parameter varies as a function of (some) interpolated covariate. For this example, we will visualize how the mean response `mpg` varies as a function of the covariate `hp`. \n", + "\n", + "The Bambi model, ArviZ inference data object (containing the posterior samples and the data used to fit the model), and a list or dictionary of covariates, in this example only `hp`, are passed to the `plot_predictions` function. The `plot_predictions` function then computes the conditional adjusted predictions for each `covariate` in the list or dictionary using the method described above. The `plot_predictions` function returns a `matplotlib` figure object that can be further customized. " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtkAAAFdCAYAAADWhHHNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABJ0AAASdAHeZh94AABUyUlEQVR4nO3deZAc5Z0n/G9mZVVlZt3V1feloyWEJCSBwJbtl+HwAYPtQWAIBiJ2x+OxPTFAmGE9Ax5shGQOx4zxMeMZPMZegp0dYtcWi/2uGYzDNkLxTtjYGIERh0AtqVt9d3XdR2ad+f6RVdnd6FZXd1VXfz8RiqazsqqfJru6v/XU7/k9gmEYBoiIiIiIqGbEeg+AiIiIiKjZMGQTEREREdUYQzYRERERUY0xZBMRERER1RhDNhERERFRjTFkExERERHVGEM2EREREVGNMWQTEREREdUYQzYRERERUY1J9R5Ao4jH49i/fz96e3vhdDrrPRwiIiIiaiC5XA4jIyO44oor4Pf7z3g+Q3bF/v37sXPnznoPg4iIiIga2E9+8hNcf/31ZzyPIbuit7cXgPk/bmBgoM6jISIiIqJGMjg4iJ07d1qZ8UwYsiuqJSIDAwPYtGlTnUdDRERERI3obMuKufCRiIiIiKjGGLKJiIiIiGqMIZuIiIiIqMYYsomIiIiIaowhm4iIiIioxhiyiYiIiIhqjCGbiIiIiKjGGLKJiIiIiGqMIZuIiIiIqMYYsomIiIiIaozbqtfZfx6egctpQ7dfQavHCUEQ6j0kIiIiIloghuw6S+oFHI9m8fZECg5JRJdPRpdfQZdfgUPiGw1EREREyxFDdgPJF8sYimQxFMlCFICQ24nugBm4fYq93sMjIiIiorPEkN2gygYwncphOpXDq8fj8CoS1ra6sabVBadkq/fwiIiIiOg0GLKXiaRWxKvH4zg4mkBfi4r17R4EXY56D4uIiIiIToIhe5kplg0cDWdwNJxByO3A+nYP+oIqRJELJomIiIgaBUP2MjaTzmMmHcGB4zGsbXVjoM0Nl5OXlIiIiKjemMiagF4o483xJN6aSKLbr2B9uwcdPrnewyIiIiJasRiym4hhAKMxDaMxDV5Fwro2D1aFVC6UJCIiIlpiDNlNKqkV8cpwDK+NxNATULG21c3ZbSIiIqIlwpDd5EplYDiSxXAkC5fTZrUBVB289ERERESLhUlrBcnkSnh9NIGDYwl0+mSsbXWj26+wMwkRERFRjTXUvt0vvPACPvOZz2DDhg1wuVzo7u7G9ddfj1deeWXeeZ/+9KchCMIJ/zZs2FCnkS8vhgGMx3X8f4dn8JPXxvDq8RiSeqHewyIiIiJqGg01k/3d734XkUgEd911FzZu3IhwOIxvfOMb2LFjB37+85/j6quvts5VFAUvvPDCvPsrirLUQ1729EIZb0+k8PZECq0eJ1aHXOgLqnBIDfX6i4iIiGhZaaiQ/S//8i9oa2ubd+zaa6/FwMAAHnnkkXkhWxRF7NixY6mH2NTCqRzCqRwODMfQE1CwKuRCp0+GILCchIiIiOhcNFTIfm/ABgC3242NGzdiZGSkDiNamYplA0ORLIYiWSgOEf0tLqwJueBXuY07ERER0dloqJB9MolEAgcOHJg3iw0Amqaho6MD4XAYnZ2d2LlzJ7761a8iGAye8TGnp6cRDofnHRscHKzpuJuFli/j0EQKhyZSCKh2rG51YVWLC7KdvbeJiIiITqXhQ/Ydd9yBTCaDL3/5y9axrVu3YuvWrdi8eTMAYP/+/fjWt76FX/3qV3j55ZfhdrtP+5iPPfYY9uzZs6jjbkaxbAGx4TheOx5Hh0/G6pALPQEVNnYnISIiIpqnoUP2/fffj6eeegrf+c53sH37duv43XffPe+8j370o7j44otx00034fvf//4Jt7/X7bffjptvvnnescHBQezcubNmY29m5Up3kvG4DqcUw5pWF9a1e+B2NvSPExEREdGSadhUtGfPHjz00EN4+OGHceedd57x/BtuuAEulwsvvfTSGc9ta2s7af03nbtc0exOcmgyhS6/gvXtbnT62OWFiIiIVraGDNl79uzB7t27sXv3btx3331nfT/DMCCKbD1XD4YBjMU0jMU0eGQJ69s9WB1ysRUgERERrUgNF7IffPBB7N69G1/5ylfwwAMPnPX9nn76aWSzWbb1awApvYhXhmP4w2gcq0MurG/zwKfa6z0sIiIioiXTUCH7G9/4Bnbt2oVrr70WH//4x08o/dixYweGh4dx22234U//9E8xMDAAQRCwf/9+fPvb38amTZvw2c9+tk6jp/cqlgwcnkrj8FQa7V5zo5veoAq7jbPbRERE1NwaKmT/9Kc/BQA8//zzeP7550+43TAMeL1etLe345vf/CampqZQKpXQ39+PL3zhC7jvvvvgcrmWeth0FqaSOUwlc/j9UAzd1Y1uvDJEdiYhIiKiJtRQIfvFF1884zmBQADPPPPM4g+GFkWxbGA4ksVwJAvZLqK/RUV/iwsht7PeQyMiIiKqmYYK2bSy6IUy3plM453JNDyyhNUhF1aFXGwFSERERMse0ww1hJRexOujCbw+mkDI7bDqt7mzJBERES1HDNnUcGbSecyk83hlOIZ2n4z+oIqegMp2gERERLRsMGRTwyobwERcx0Rch02MosOnoD+oojugsEMJERERNTSGbFoWSuXZzW4kUUCnX0Z/0IUuvwyJgZuIiIgaDEM2LTvFsoGRqIaRqBm4uwMK+oIquvwKbGwJSERERA2AIZuWtbktAe02wdxhssMDr8wdJomIiKh+GLKpaRRKBt6dSuPdqTQ6/TIuaPegy6/Ue1hERES0AjFkU1OqLpj0KhLWt3uwOuTiYkkiIiJaMgzZ1NSSWhG/H4rhDyNxrGl1YX27Bx6WkhAREdEiY8imFaFQMvDOZKWUxCfjgg4POn0sJSEiIqLFwZBNK4phAONxHeOVUpIL2j3ob3FxoxsiIiKqKYZsWrGSWhEvD8Xw6vE4eoMqBtrcaPU46z0sIiIiagIM2bTiFcsGjs1kcGwmA79qx9pWN1aHOLtNRERE548hm2iOeLaAV4bNhZI9QQUDbW60eeR6D4uIiIiWGYZsopMolg0MzWQxNJOFT7FjbZsLa0Juzm4TERHRWWHIJjqDhFbAgeE4Do4msLbNjQ0dHqgOPnWIiIjo1JgUiM5SoWTg0EQK706m0NeiYmOnF37VUe9hERERUQNiyCY6R2UDVilJp0/GhZ1edPhYt01ERESzGLKJFmAioWMioSPosmNDhxd9QRWiKNR7WERERFRnXMVFVAPRTAG/PhLBT18fx6HJJAqlcr2HRERERHXEmWyiGsrkStYiydUhF1rcTgRdDnhlCYLAGW4iIqKVgiGbaBEUSgbenUoDU2kAgGQTEFAdCLpm/zF4ExERNS+GbKIlUCwZCKdyCKdy1rGTBW+fYq/jKImIiKhWGLKJ6uRkwdtuExByO9HqcSLkdqLF7YDdxqUTREREyw1DNlEDKZQMq2MJAAgC4FPsVugOuR3wyJztJiIianQM2UQNzDCAeLaAeLaAw5X6btkuVgK3E21e8yMRERE1FoZsomVGL5QxGtMwGtMAAC6nDb1BFataXAi6uAMlERFRI2DIJlrmMrkSDk2kcGgiBbcsob8SuH0qy0qIiIjqhSGbqImk9SLeHE/izfEkfIod/S0q+lpUeFnHTUREtKQYsomaVEIr4PXRBF4fTSDosqMv6EJ/iwqXk097IiKixca/tnX2/742hplUHj1BBb0BFe1eGTaRG5RQbUUzBUQzcbw2EkdPQMGWHh/8Kuu3iYiIFgtDdp0dOB5HOJXDK8djAMw+yV1+M3D3BMyPftXOnQGpZqqLJvuCKi7q8XEDHCIiokXAkF1HhVIZLS4HkloBuWK5cszAcCSL4UjWOs/llNAbUNATUNEbVNDjV6E4bPUaNjWJ49EsRmJZ9AdVbO7xsW6biIiohhiy68huE/GFD69DNJPHTDqH0aiGkVgWozENEwkNZcM8L5Mr4tBkCocmU9Z9Q26nGbyDKnoDCjp8MiSROwPSuTEMYCiSxXA0i9UhFzZ3++BmzTYREdGC8a9pAxAFAW0eGW0eGZf0BwCYs9wTcQ0jsdngHc3krfvMpHOYSefw6kgcACCJAjp9MnqDqjnjHVAQdDlYZkJnxTCAo+EMhmYyWNPqxuZuL1QHfz0QERGdL/4VbVB2m4i+Fhf6WlzWsUyuiNFYFiMxzfwY1aAVSgCAYtmoBHINQAQAoDpsVl13b1BFj1+ByllKOo2yAQxOp3FsJo21rW6s7/CwjISIiOg8MHEtIy6nhAs6vLigwwsAMAwDkUzeCtyjsSzGEzpKlTqTbL6Ed6fSeLeyHTcAtLgcldluM3x3+mRINpaZ0HylMqyfnU6/jAvaPejyK/UeFhER0bLBkL2MCYKAkNuJkNuJbb1mmUmxVMZEQrdKTEZjWcykZ8tMIpk8Ipk8XquUmdgEAZ1+2Sox6Q2oaHGzzIRmTcR1TMR1eBUJ69s9WB1ywc4XZkRERKfFkN1kJJuI3qBZHlKVzRetwD1SWVyZzZtlJiXDsFq6vVQ5X7GbZSZWN5OAysVwhKRWxO+HYvjDSBxrWt1Y3+6Gh6UkREREJ8XktAKoDnMGcn27B4BZZhLLFiqh26zxHo9rKFbKTLRCCYen0zg8PVtmElDt8xZVdvkVzmauUIWSgXcmU3h3KoVOn4wLOjzo9LGUhIiIaC6G7BVIEAQEXQ4EXQ5s6fEDAEplA5NJfd5s90wqh0oXQcSyBcSy5hbdACAKQIdPrmyaYwbvkMcJkWUmK4ZhAONxHeNxHT7FjvXtbvS3uOCQ+OKLiIiIIZsAADZRQLdfQbdfwftXm8f0Qmm2zCSmYTSaRSpXBGB2oagGrN8eiwIAnJJoLaislpqwnGBlSGgFvDwUwyvDMbS4nejyy+j2K9y6nYiIViyGbDol2W7DQJsbA21uAGaZSUIrWIF7JJbFWFxDoWTOd+eKZRwJZ3AknLEew6/YzeBdKTXp9iuc6WxiZQMIp3IIp3L4w0gCqsOGTp+MLr+5YRJLjIiIaKVgyKazJggC/KoDftWBi7p9AMwyk+mUbrUQHIllMZ2cLTOJawXEtQLeGE8CMMtM2r3yvBnvNi/LTJpVNl+yXniJAtDmdaLTZ9b0+xS+y0FERM2LIZsWxCYK6PQp6PQpeN/qIAAgVyhhrLpbZTSL0VgWSX22zGQioWMioePloRgAwCGJ6PYr5jbxlY1zGMCaT9kAJhM5TCZyePV4HG5ZQqdPRktlfYBXtkMU+WKLiIiaA0M21ZzTbsOaVjfWtLqtYwmtUAncmlVmki+WAQD5YhnHZjI4NjNbZuKVJWtBZU9lt0qn3bbk3wstnrRexGE9jcOVzyVRgE+1I+hyIKCawduvMHgTEdHyxJBNS8Kn2OHr9mFzpcykbBiYTuUqtd1mqclkQrfKTJJ6EW9NJPHWhFlmIgBo9Tjn7VbZ7pVhYwBrGsWygUg6j8iczZNEAfCrdit0VwM4gzcRETU6hmyqC1EQ0OGV0eGVcekq81i+WMZYXLP6d4/GNMS1AgDAADCdymE6lcMrw2aZid0moMtfre02F1f6FTt3q2wiZQOIZgqIZgrWglq7TUBPQEVfi4pOr8zATUREDYkhmxqGQxKxOuTC6pDLOpbSC2aJyZxSk1ylzKRQMjAcyWI4krXOdzulOd1MFPT4VSgOlpk0k0LJsMqL7DYB3QEFfUEVnT6F72wQEVHDaKiQ/cILL+Df//3f8etf/xojIyPw+/249NJLsWvXLmzfvn3euQcOHMA999yDl156CZIk4eqrr8ajjz6KNWvW1Gn0tBg8sh0XdtpxYacXgFlmMpPOYbSyYc5oTMNEQkNls0qkc0Ucmkzh0GTKeoxWt9MK3r0BFe0+JySRreSaQaFkYGgmi6GZLCSbgB6/eZ27/AzcRERUXw0Vsr/73e8iEongrrvuwsaNGxEOh/GNb3wDO3bswM9//nNcffXVAIBDhw7hyiuvxLZt2/CjH/0Iuq5j165duPzyy/Haa6+htbW1zt8JLRZRENDmkdHmkXFJfwAAUCiVMVHtZlIJ3tHMbF1vOJ1DOJ3DqyNxAOYCuy6/YtV29wZVBFSWmSx3xZKBoUgWQxEzcFc3V+pib3YiIqqDhgrZ//Iv/4K2trZ5x6699loMDAzgkUcesUL2rl274HQ68eyzz8LrNWc4t2/fjnXr1uHRRx/F3//93y/52Kl+7DYRfS0u9LXMlpmkc0WMVXaqrJaaaIUSAHOB3fFoFsejWQARAIDqsJm13cHZGm/V0VBPDzoHxTmlRKJgLprtDpihm7uQEhHRUmioFPHegA0AbrcbGzduxMjICACgWCzi2WefxX/9r//VCtgA0N/fj6uuugo//vGPGbIJbqeECzq8uKDD/BkxDAORTH5ebfdEQkepUmeSzZfwzlQK70zNlpm0uBzzupl0+mRI3LFw2SkbwFQyh6lkDgeG4/Apditwh9wOvoNBRESLoqFC9skkEgkcOHDAmsU+cuQINE3Dli1bTjh3y5Yt+MUvfgFd1yHL8ikfc3p6GuFweN6xwcHB2g6cGoogCAi5nQi5nbi4zywzKZbKmEjoVonJSDSLyJwyk0gmj0gmj9cqZSY2QUCnX7b6d/cGVLQwpC07Ca2AhFbAW+NJOCXRKh3iiygiIqqlhg/Zd9xxBzKZDL785S8DACIR8+39YDB4wrnBYBCGYSAWi6Gzs/OUj/nYY49hz549izNgWjYkm2guhgyq1rFsvmjNdFcXV2bzZplJyTAwGtMwGtPwUuV8xW4zu5gEVPQGzY9uZ8M/ragiN2cjJJsIdPoUrA650O1X2BqQiIgWpKHTwP3334+nnnoK3/nOd07oLnK62cMzzSzefvvtuPnmm+cdGxwcxM6dO897rNQcVIeE9e0erG/3ADDLTGLZgrU9/EhMw3hcQ7FSZqIVSjg8ncbh6bT1GAHVbnUy6QmYC+/snCFteKUyrBdRDklEf4uK1SEXQm5nvYdGRETLUMOG7D179uChhx7Cww8/jDvvvNM63tLSAmB2RnuuaDQKQRDg9/tP+9htbW0nrf8mei9BEKydBrf2+gEAxXIZU4lcpcwki5GohnA6Z90nli0glk3g9dEEAHPXwk7fbDeTnqCCkNsJkWUmDStfLOPwVBqHp9LwyJLVv93FdymIiOgsNeRfjD179mD37t3YvXs37rvvvnm3rV27Foqi4ODBgyfc7+DBgxgYGDhtPTbRQkmiaC6cCygAzBd9eqFUmQU1d6sciWlI54oAzIV3Y3ENY3ENvz0WBQDIdhE9fnXexjnsetGYUnoRr4+aL5ravU6sCrnQF1T57gQREZ1Ww4XsBx98ELt378ZXvvIVPPDAAyfcLkkSPvnJT+KZZ57BP/zDP8DjMd/WP378OPbt24e77757qYdMBNluw0CbGwNtbgBmmUlCK2AkpmE0msVILIuxuIZCySwz0QtlDIbTGAzPlpn4FTt6guaiyp6Aim72d2441S4lrwzF0BNQsLrVhQ6vzMWvRER0goYK2d/4xjewa9cuXHvttfj4xz+Ol156ad7tO3bsAGDOdF922WX4xCc+gS996UvWZjShUAhf/OIX6zF0onkEQYBfdcCvOnBRtw8AUCobmE7pGIlWZrxjWUwnc6hsVom4VkB8LIE3xmbLTNq9s91MeoIq2jwsM2kExfLsxjeyXURfUEVfi4o2D99FIyIiU0OF7J/+9KcAgOeffx7PP//8CbcbhhlHNmzYgBdffBH33nsvbrrppnnbqnO3R2pUNlFAp09Bp0/B+1ab3XFyhRLGqrtVVhZXJvXZMpOJhI6JhI6Xh8zHcEgiuv3VnSrNGW+fwjKTetILZbw7lca7U2m4nDb0BVWsanEh4HLUe2hERFRHDRWyX3zxxbM+d/v27fjlL3+5eIMhWgJOuw1rWt1Y0+q2jiW0wrxNc8biGvLFMgBzQV615VyVV5YqLQTNGe9uvwKn3bbk3wsBmVwJb0+k8PZECl5FwqoWF/paVHhZb09EtOI0VMgmIsCn2OHr9mFzpcykbBiYTuUqtd1mqclkQrfKTJJ6EW9NJPHWRBIAIABo8zorLQTNGe82jwwb+z4vqaQ2u2Ay6LKjv8WF/hYVqoO/domIVgL+tidqcKIgoMMro8Mr49JV5rF8sYyxuGb17h6NZhHXCgAAA7ML9H4/HAMA2G2CVWZSXVzpU+xcsLdEopkCopk4Xj1ubuuuOmyQ7TYoDhsUe+WfY/ZzviAiIlr+GLKJliGHJFq9m6tSesHaHr66VXyuUmZSKM0u1KvyOKU5LQTNNoIyy0wWXXVb99NxSGIleItQ7BL8qh0tbgeCqoNbvxMRLRMM2URNwiPbcWGnHRd2egGYZSYzqZxV2z1SKTOpbFaJVK6ItydTeHsyBcAsMwl5nFYLwd6Aig4fy0zqIV8sI18sI6EBwOxGR4JglhO1uBxocTvR4nLAr/IdCSKiRsSQTdSkREFAm1dGm1fGJf0BAEChVMZ4pZtJdeOcWHa2zCScyiGcyuHA8TgAQBIFdPkVq4Vgb0BFgKGubgwDiGcLiGcLOBI2F79KooCAy2HNdPtVO7yyHSJfHBER1RVDNtEKYreJlQV4s2Um6VzR2h6+2r9bL5hlJsWygePRLI5Hs8CRCABAddis7eF7K2UmXMxXP8WyYb04qhIrM94+1Q6/4kDAZX5UHCwHIiJaKvzLSLTCuZ0SNnR4saHDLDMxDAORdL5SYmIG74m4jlKlT302X8I7Uym8M5WyHqPF5bC2h+8NqOj0yawdrqOyAcSyhcq7FLN1+E5JhF+1w6/a4VMcCKh2+BQ7rxUR0SJgyCaieQRBQMjjRMjjxMV9ZplJsVTGREK3FlSORLOIZPLWfSKZPCKZPF4biQOobrwjWzPdvUEVLS4Hy0zqLFcsW51nqgTBfKHlV+0IqA74FDOEe9jbm4hoQRiyieiMJJtobnYTVK1j2VwRo3Ft3sY52XwJgLmF/GhMw2hMs85X7DYrcFcXV7qc/BVUb4YBpPQiUnoRI9HZ6yXZBPgVO/xqZca7UnrikDjrTUR0NvgXjojOi+qUsL7dg/XtHgBmmUk0k7cC92hMw3hcQ7HSzkQrlHB4Oo3D02nrMYIuh1Vi0htQ0OlXYGfpQkMolgzMpPOYSefnHXfLEkIuB1o9ToTcTnY3ISI6BYZsIqoJQRDMtnJuJ7b2+gEAxXIZkwndKjEZjWkIp2dLFaKZPKKZPF4fTQAwF+x1+hQrePcEFYTcTogMcQ0jrReR1otWz3XJJiDkdiDkdqLV40SLy8nZbiIiMGQT0SKSRLGy0Y2KHWtaAABavoTReHbOxjkaMrkiAHPB3lhcw1hcw2+PRQEAsl1Ej39+NxPWCzeOYsnAZCKHyYT54qnayzvkdiLkNme83U6Js91EtOIwZBPRklIcNqxr82Bd22yZSVwrzKvtHo9rKJTMMhO9UMZgOI3B8GyZiV+xW9vD9wRUdPsVzp42iLm9vAenZ49LNgFOSYTDJsIhVf7N+W+nJMIp2eCV7XDLEjdBIqJljyGbiOpKEAQEVAcCqgNbevwAzIWTU8lKN5OoGbzDqRwqm1UirhUQH0vgjbHZMpN2r1zZqdJcXNnqYZlJIymWDBRLJWRQOuO5ggC4nBI8sgSvLMErm91OvIrEnuxEtGzwtxURNRxbZafJLr+C9682j+mFEsbiGkYrJSYjsSxS+myZyURCx0RCx8tD5vlOSUS3v7JFfKXUxKuwzGQ5MIzZ2u+J99wmiQI8smSFbsVus2bD7bbZGXKnJLJEhYjqiiGbiJYF2W7D2lY31ra6rWMJq8zEDN5jMQ35krlbZa5YxtGZDI7OZKzzvbJU2TTHnPHuDihwStwFcTkplo05G+2cnt0mnFCWItttCKgOtLgc7IxCRIuKIZuIli2fYoev24fN3T4AQNkwMJ3MWdvDj8Y0TCZ0q8wkqRfx5ngSb44nAQACgDavs7Kg0pzxbvPIrAduEoWSgcJpSlQkUYBftaPF7UCLy4mg2wHvEi6qLZUN/qwRNTGGbCJqGqIgoMMno8Mn49JVQQBAvlg2y0xiWaubSUIzZ0ENwNoB8ffDMQDm7Ge3v9pC0Jzx9imc8WxGxfLcXuDmwlq7TUDQ5TDbUbocCLocUB22877+eqGElF5EJldEOlec99/ZfAkupw1rQm6saXVxcyaiJsNnNBE1NYckYnXIhdUhl3UsqResBZUjsSzGYhpyRbPMpFAyMBTJWn2gAcDjlOZ1M+kJKJDtLDNpRoWSccLW84C5uFYUBIiiAJtY+W9BgE0UrNtsonm7ACCbLyGtF63NmE4lkyvh4FgCB8cS6PA5sSbkRm9Q5Qw3URNgyCaiFccr27Gxy46NXV4AZplJOJWb3a0ymsVkUkc1H6VyRbw9kcTbE7NlJiGPWWbSGzSDd4eXZSbNrGyYPyc4Q2heiGq/cftQFP0tLqxpdSHkdi7a1yOixcWQTUQrnigIaPfKaPfK2N4fAGCWmUwkZjfMGY1lrcV2BoBwKodwKocDx80yE0kUKt1MFGtxZYAL6+g8FEoGBqfTGJxOw6fYsabVfCeG754QLS8M2UREJ+GQRPS3uNDfMltmks4VKy0EZzfO0QtmmUmxbGA4msVwNAsciQAAXA5bJXAr1uJKxcGgRGcvoRXw6vE4/jASR5dfQd+cUhKjMqluwJjz3+YGT8ac20XB3H3VZhMgiWZZy+xHETZRgN0m8AUhUY0xZBMRnSW3U8KGTi82dM6WmUTTeau2ezSmYSKuo1RJN5l8CYcmUzg0mbIeI+R2WNvD9wZVdPhkSCJ3q6TTKxvAaEzDaExbtK8hCqgEbhGy3Wx3KNttUOw2KA4bZMkG2SGan9ttkGyn/rktlw2UK2G/bJgvAqofnZJ42vsSNQuGbCKi8yQKAkIeJ0IeJy7uM8tMCqUyJhPmbpXVreIjmbx1n2o3i1dH4gAqG+/45MrCSnNxZdDl4KwiLbmyAZQrbQ+z+RKA0/cil2zmDHi5PD9In03ZuiQKkB1mWJftYuVjJdTPOS5LNohc60DL1IJD9urVq0/5x0AURfj9flx22WX4whe+gAsvvHChX46IqKHZbSJ6gyp6gyqw1jyWzRUxGq/Wd5vB2wwxZq9kcwdLDb+BWWai2G3Wgspq8FbZ3o0aTLFkoFg6v4WgxbJh7ep5Jk5JhLMSuGW7bc5/i3BWP9ptcFY2GyJqFAv+rX3FFVdg//79GB8fx4c+9CG0t7djcnISv/71r9HV1YXe3l4888wz+Ld/+zfs378fl156aS3GTUS0bKhOCevbPVjf7gFg1sxGM3mrrnskmsVEQrfavWmFEt6dSuPdqbT1GEGXw2oh2BtU0emTYedb7rQC5Ipl5IplJHHmQC4Is+Uop6o/l2wnHhcFoGSYLxpKZQMlw/xYLJllL8WygXLZPGaXZktmFIdoldSoDgmyXeS7UGRZcMi+5ppr8NJLL2FwcBC9vb3W8ePHj+NjH/sYdu7ciSeffBJXXnklHnjgAfzHf/zHQr/kimQTgcpu0US0zAmCYG524nZia68fAFAsV8tMtMriSg0z6dlezdFMHtFMHn8YTQAAbJWNd2a7mSgIuZ0Q+QeeVjDDgLkYuVCfP5jVkK/YbXPKYWyw2wQ4bCLsNhF2SZz/uU0848LTctlAoVxGqWygUKq+ACijUDZQqryboDptcDslzuY3kAWH7Icffhi7d++eF7ABoK+vD7t27cKDDz6IP/uzP8Pdd9+Nv/7rv17ol2s6sl1E0GW3XgnLJ1lgYj5BRRiGYb6iL5SRK5agVz6ar/JLleNzjhXKZ9wIgYgagySKlY1uVGBNCwBAy5cqW8TP7liZqZaZGAbG4hrG4hp+eywKwPx90uNX0RNUKj28VbhZZkK0ZKohXy+Ugezpa9rfy24T4JBESKIIA+YserESps/lT7ndJsAjS3A77XDLEtxOCV5ZgluWoDrm/z4wKjX0Zi29YdXXV2vrjcoi7uo7Aw6byBr5c7Dg376Dg4Pw+XwnvS0QCGBoaAgAsGrVKmSz2ZOet5JdvaH9rM8VBMFaGALYz+o+xVIZ+VIZ+crbbdWPuWLphGP5YhklY/Ytsep/M6cT1YfisGFduwfr5pSZxLOF2RaC0SzG4pr1YlovlDEYTmMwPFtm4lftVl13T0BFl1+BQ2KZCVGjKVQWnQKlBT9ONFNANHNiyLeJZpYwrBB97o8viQLskjBvFt4+Z1beYROtRbGSWJm5FwUzqNsE2MXq7c3/e2jBIbu/vx9PPvkk/viP//iE25544gn09fUBACKRCILB4EK/HJ0j84dahOpY2OOUKu2Y5n80Q7xeLEPLl6AXStAKJWh586Ne+ccyF6LaEAQBAZcDAZcDW3r8AMzn5lRSr+xUadZ4h1M5VP92xrMFxLPmtt2A2aatwytXarvN4N3qYZkJ0Upg/j1e2MxZsWygmDegYWF/3AWrZaQZuKVq3fycIC5Vw3mlll4SxUrIF9HtVxb09ZfCgkP23/zN3+Av//IvMTo6iptvvhnt7e2YmprCj370I/z2t7/F448/DgDYt28fFz0uYzZRgA0CzqfUq1raUiyZM+WGYQaDE4M75n1eLBsoFMsolAzkSyXkiwYKlVn5wjm+fUbUrGyigC6/gi6/gvevNo/phRLG4rO13SOxLFKVLg5lAxhP6BhP6PjdkHm+UxLRXdkwpzegoCeowiuf3btlRETnwzBmO9ScT2C/7f19izCq2lpwyP7c5z4HwzCwe/du/Lf/9t+s4x0dHfjXf/1X/MVf/AUA4Mtf/jKcTudCvxwtQ07JBqdU+4UYxVIlgBfNkphCqXzCbPrcjwzltFLIdhvWtrqxttUNwCwzSerFeS0Ex2Ia8pW3mXLFMo6GMzgazliP4VPssztVBhV0+5VFeR4TETWrmqyI+fznP4/Pfe5zeOeddxCJRNDS0oILLrhg3krZ9vazrz0mOhtmKQzOepvqavlKNXRn86X5C0jnLBxliQs1E0EQ4FPs8HX7sLnbXENTKhuYTulWbfdoTMNUUrfeSE5oBSS0At4cT5qPAaDdK88L3u1emWUmRESnULNl54IgYMOGDbV6OKKaqy4a9Z/FuYVSJXAXSlaP1kyuiJReRFIvIK0XkSsuThKv1p6dfFHJ/P+2iYLV0qlQKqNYLiNfNFAsmzP71vGSgXzlIxFglpl0+hR0+hRctspcL5MrVstMNGvGO6GZi6cMAJNJHZNJHb8fjgEAHDYRXX5lzsY5CnyKnX2CiYhQo5A9NDSEr33ta9i3b581k33VVVfhS1/6ElavXl2LL0G0pKpB9nTtz3LFElJ6sfLPDN7Jyn8X3hNmqzuRWdsHV9s02sU5WwjblqQ9UkovVLb2ziGcyiGhFc5rhTk1H6dkw5qQG2tCbutYUitYbQRHYlmMxTTrBWa+VMZQJIOhyGyZiUeWrMBttiRU2LeXiFakBYfs1157DVdddRWy2Sw++MEPYvv27ZicnMSTTz6JH/7wh3jxxRexbdu2GgyVqLE4JRucbhtC7hPXGuiVkpTq9r+N1FfUI9vhke1YHXIBMGftZ9I5RNJ5hFM5zKRzJ7xIoJXLq9ixUfFhY5dZZlI2DIRTuUrfbrN/92RSt9Y8pPQi3p5I4u2J2TKTVo/T6mbSG1DR7pVha6DnBBHRYlhwyP7rv/5rtLa24pe//KXVrg8AhoeH8dGPfhR333039u3bt9AvQ7SszPYzb3x2m2iVDQDmIrmEVkAkk0cmV0QmV4JWqHzMl7jB0QonCgLavTLavTK295vH8sUyxuPavI1zYtnZMpPpVA7TqRwOHDfLTOw2AV2+2Z0qewMq/CrLTIiouSw4ZP/ud7/Df//v/31ewAbM/tm7d+/GZz/72YV+CSJaQoIgwK864D9Fc/XqLH0mX6x8LCGbKyKbL0Evlsxa8KLBML6COCQRq0IurKq8OwKYZUljlRKTavDWK1tdF0oGhqNZDEdnNyhzOSWrxKQ3qKDHr571omYioka04JDt8/lOueOj3++H1+td6JcgogZSnaUPuE6/w1G5bFitFasLMKs9zqufF0plGDBLCgDMm8mcPTb/cUtlw9rsSMubbRsXaxEqnT+PbMeGTjs2dJp/A8qGgUg6X5ntNktNJhM6SpUFAZlcEYcmUzg0mbIeI+R2Wn27ewMKOnwyJLH5d4kjouaw4JB922234Qc/+AGuu+66E277/ve/j1tvvXWhX4KIliFRFCCLS1M2U64E72p7xmqrxpReREIrIKUX2JaxzkRBQKvHiVaPExf3BQCY6wEmEnqlvtuc8Y5m8tZ9ZtLmGoFXR+IAzM47nT65ErrN4B10OVhmQkQNacEh+5JLLsHTTz+N973vfbj11lvR0dGByclJ/K//9b8wPT2Nm2++Gc8884x1/o033rjQL0lENI8oCnA5JbhO0Q3GMAykc2b3l0S2gKReQLLSB5qLPOvHbhPRF1TRF1SBteaxbK5odTKpLq7UCiUA5nbO5m0afoMIAEB12NBTLTOpBG/1NF2BiIiWimAYC2veJZ7hrTtBEFD9EoIgoFQqLeTLLZo333wTmzdvxhtvvIFNmzbVezhEtES0fMkK3dFMHlOpHNKVLcip/gzDQDSTnw3e0SzGEzpKp6n5D7oc6A1UF1aq6PTJsNtYZkLUTOqxrfq5ZsUFv9xn5xAiWs4Uhw2Kw4Z2r2wdy+SKmErqmE7lMJXUkck15uTASiAIAlrcTrS4ndjW6wcAFMtlTCZ0c0FlZav4mfRsmUk0k0c0k8cfRhMAAJsgoMMnWy0EewIqWtwO7lZJRItqwSH7iiuuqMU4iIgahsspYU2rG2tazU1Z0rkippM6ppI5TKcYuutNEsXKRjcqsKYFgPmORHVRZXWr+EzevE4lw8BYXMNYXMNLiAIAZLtobZpjbhOvnnbzKSKic1WT3yg/+clP8NRTT2F4eBi6rs+7TRAE/OEPf6jFlyEiqgu3U4J7TuhO6QVrlnsqqUPLc1VlvSkOG9a1e7Cu3QPALDOJZwuVTiZm8B6La1ZrSb1QxuB0GoPTaesxAqp9NngHVXT5FZaZENF5W3DI/vrXv457770Xra2tGBgYgMvlOvOdiIiWsequmWsroTuhFTCd1DFZme3Os6Vg3QmCgIDLgYDLgS09fgBm+8fJpG4tqByJZTGTyqFa3R3LFhDLJnBwzCwzEQWgwzvbzaQnoKDV42SZCRGdlQWH7Mceewyf+cxn8L3vfQ82GzcOIKKVx6fY4VPsWNfugWEYiGULmKqE7nAqhyI7mDQEmyig26+g26/g/avNY3qhhNHKZjnVMpNUzlz4WjaA8YSO8YSO3x0zy0yckojuSolJtYe3V7bX61sioga24JAdiURw2223MWATEcGcQQ26HAi6HLiw04ty2cBMJofpZA6TCR3RTJ67YTYQ2W7DQJsbA23muxKGYSChFaxdKkeiGsbiWavVY65YxtFwBkfDGesxfIrd2h6+J2iGeKfEv4lEK92CQ/aHPvQhvP3227j66qtrMR4ioqYiigLaPDLaPDI2d5u74xZLZeSK1X8l5Apz/rtYrnxeso6x5nvpCIIAv+qAX3Xgosr1KpUNTKd0jEY1a2HlVFK3ykwSlZ7rb44nzccA0O6VzeAdNMtM2r0yy0yIVpgFh+xvf/vbuOGGG9Db24trr70WDsfpt1omIlrpJJsIySbC5Ty78/VCqbL7YR6RdA6RNGfDl5JNFNDpU9DpU3DZ6iAAIFcsYSymmSUmlcWVyUp/dQPAZKVc6PfDMQCAw1YtM6lsnBNU4VNYZkLUzBYcsgcGBvCRj3wEN9xwAwRBgKqq824XBAGJROKsHy+VSuHBBx/Ea6+9hldffRUzMzN44IEHsHv37nnnffrTn8b/+B//44T7X3DBBTh06NB5fS9ERI1ItttmW9ZhtnNGNXjPpHNIcQOdJeWUbPPaPALmjPbc2u7RuGYtgs2Xyjg2k8GxmdkyE68sWd1MeoIqevwKnHaWmRA1iwWH7HvuuQf//M//jG3btuHCCy9c8Ex2JBLB448/jq1bt2Lnzp34wQ9+cMpzFUXBCy+8cMIxIqJmNrdzxrp281h1tnsqmcN0UkcsW6jvIFcgcwGsD5u6zDKTsmEgnMphJJq1arynkjqqb0Ik9SLemkjirYnZMpNWj9MqMekNqGj3yrCJLDMhWo4WHLKffPJJ3Hvvvfja175Wi/Ggv78fsVgMgiBgZmbmtCFbFEXs2LGjJl+XiGg5e+9st14oIWz18s4hoTF0LzVRENDuldHulXHpKvNYvljGeLxSYlIJ3vHKCyIDwHQqh+lUDq9UykzsNgFdfsVqIdgbVOFX7BBY303U8BYcskulEj760Y/WYiwAwF8cREQ1INtt6A2atb+AGbqnk7lKL2+d5SV14pBErAq5sCo0u6dESi9Ytd2jUQ2j8Sz0gllmUigZGI5kMRzJWue7nRJ6rNpuBT1+FYqDZSZEjWbBIftjH/sYXnrppbp0F9E0DR0dHQiHw+js7MTOnTvx1a9+FcFg8LT3m56eRjgcnndscHBwMYdKRFRXst2GvhYVfS1m6NbyJauX91SSW8XXk0e248JOOy7s9AIwy0xm0rl53UwmEppVZpLOFXFoMoVDkynrMUJup1Xb3RtQ0OGTIYncrZKonhYcsu+//37ccsstcLlc+PjHP37SgHum0Hs+tm7diq1bt2Lz5s0AgP379+Nb3/oWfvWrX+Hll1+G2+0+5X0fe+wx7Nmzp+ZjIiJaLhSHbd6MajpXNEtLEjqmUtwqvp5EYbbt4yX9AQBAoVTGRFzDSGw2eEczees+5iLYHF4diQMAJFFAp0+u1HebwTvocvDdYqIlJBiGsaA+UGLllfLpnril0vnNkMzMzKC1tfWk3UVO5v/8n/+Dm266Cd/85jdx9913n/K8U81k79y5E2+88QY2bdp0XuMlImoW1a3ip5JmXXeOW8U3nHSuiLE5td0jUQ1a4dR/b1WHzVpQ2VvpZqI6FzzXRlQXt72/b8m/5ptvvonNmzefdVZc8LNr165dDfPK+IYbboDL5cJLL7102vPa2trQ1ta2RKMiIlp+5m4VDwDxbB6TSR0TcbPEZGHTM1QLbqeECzq8uKDDLDMxDAORTN4K3COxLCYSOkqVOpNsvoR3p9J4dyptPUaLy2EtqOwNqOj0yZBsLDMhqoUFh+yzmWFeSoZhWLPrRERUG9VdEDd0eKHlSzg2k8FQJGN1xqD6EwQBIbcTIbcT23rNMpNiqYyJhG4G70r/7sicMpNIJo9IJo8/jJr7WdgEAZ1+ebZ/d0BFi9vB3SqJzkNTvU/09NNPI5vNsq0fEdEiUhw2bOzyYmOXF9FMHsdm0hiaybKkpAFJNtHqMvOByrFsvojROSUmI7EssnmzzKRkGJXbNFTfE5bt4mwLwYCKnqAKN8tMiM6oIZ8lP/vZz5DJZJBKmSun33rrLTz99NMAgOuuuw7hcBi33XYb/vRP/xQDAwMQBAH79+/Ht7/9bWzatAmf/exn6zl8IqIVI+hyIOgK4uLeAMYTGo7NZDAWm+2EQY1HdUhY3+7B+kopkGEYiGULlRaC5oz3eFxDsXIR9UIZh6fTODw9W2YSUO3WbHdvUEWXX4GdZSZE8zRkyP6rv/orDA8PW5/v3bsXe/fuBQAcO3YMPp8P7e3t+OY3v4mpqSmUSiX09/fjC1/4Au677z64XK5TPTQRES0CURSszXD0QgnHo1kcDWfmdcCgxiQIQuXFkgNbe/wAgFLZwGRSN7eHr5SahFM56z6xbAGxbAIHx8wyE1EAOrxypYWgOevd6nGyzIRWtIYM2UNDQ2c855lnnln8gRAR0TmT7TZrpjShFTAay2IyoSOcynGGe5mwiQK6/Qq6/QqAFgDmhkZWmUlMw2g0i1TO3NSobADjCR3jCR2/OxYFADglEd3VbiYBFT1BBV7ZXq9viWjJNWTIJiKi5mB2KfFhU5cPxVIZU6kcJhM6JhM6t3pfZmS7DQNtbgy0mftQGIaBhFawAvdITMNYPItCyXwllSuWcTScwdFwxnoMn2Kf10aw26/AIbHMhJoTQzYRES0JySbOmR01F+BNVAL3ZIK9uJcbQRCsrjMXdfsAmGUm0ynd2q1yJJbFdDKH6hsYCa2AhFbAm+NJ8zEAtHtlc3v4yox3m5dlJtQcGLKJiKguVIeEta1urG01Z0Yj6RzG4uaiu2iGs9zLkU0U0OlT0OlTcNlqc7fnXKGEscpulWZHkyySullmYgCYTJq9118eigEAHLZqmUkleAdV+BSWmdDyw5BNREQNocXtRIvbiS09fmj5EsbiWYzFza3eiyzmXracdhvWtLqxpvJiCoBVqz8SNYP3aFxDvvJORr5UxrGZDI7NzJaZeGVptnd3ZbdKp9225N8L0blgyCYiooajOGwYaPNgoM1jdboYr8xyZ3Kn3jqcloe5tfoAUDYMTKdyVm33aCyLqaRuLZRN6kW8NZHEWxOzZSatHqe1oLI3oKLdK8MmssyEGgdDNhERNbT5nS6AWCaPsbiGsbiGaCbPLd6bgCgI6PDK6PDKuHSVeSxfLGMsPr+bSbyyWNYAMJ3KYTqVwyvHzTITu01Al1+Z3TgnqMKv2CGwvpvqhCGbiIiWlYDLgYDLgc3dPuSKJUwnc5iq1PUmtWK9h0c14pBErA65sDo0u/dFSi9gtLI9/GjMXFxZXTBbKBkYjmQxHMla57udkhW4ewIKevwqFAfLTGhpMGQTEdGy5ZRs1rbhAKDlS+ZCuoSOqaRubRdOzcEj23Fhpx0XdnoBmGUmM+mc1c1kNKZhIjG742g6V8ShyRQOTaasx2h1O63g3RtQ0e5zQhLZRpBqjyGbiIiahuKwzZv9TOoFTCV0TFVmu9kmsLmIgoA2j4w2j4xL+gMAgEKpjIlKN5Nq8J6782g4nUM4ncOrI3EAgCSaZSZz+3cHVJaZ0MIxZBMRUdPyynZ4ZTvWtXtgGAZm0nkcnk7heCTL3SeblN0moq/Fhb6W2TKTdK6IsVh2ThtBDVrBfJejWDZwPJrF8WgWQAQAoDps8xZV9gQUqA5GJjo3/IkhIqIVQRAEtHqcaPU4cUlfCYPTaRyeTkHLc3a72bmdEi7o8OKCDrPMxDAMRDJ5K3CPxLKYSOgoVV55ZfMlvDOVwjtTs2UmLS6HVdvdG1DR6ZMh2VhmQqfGkE1ERCuObLdhc7cPGzu9GIll8c5kCjPp/JnvSE1BEASE3E6E3E5s6zXLTIqlMiYSutXNZCSaRWROmUkkk0ckk8drlTITc+Md2erf3RtU0eJysMyELAzZRES0YomigP4WF/pbXIhm8nhnMoXj0QxKnNxecSSbaC2i/UDlWDZfxOicEpORWNZaTFsqG5XbNLxUOV+x2+Z3MwmocDsZtVYqXnkiIiIAQZcDH1jbgov7/BicTmNwOs3uJCuc6pCwvt2D9e0eAGaZSSxbMBdUVjbOGY9r1o6kWqGEw9NpHJ5OW48RdDmsEpOegIIuvwI7y0xWBIZsIiKiOeaWkozGNAxHM5hM6CiUuFJypRMEAUGXA0GXA1t7/ABg7Uhq9u42g3c4lbPuE83kEc3k8fpoAgAgCkCnb7abSU9QQcjthMgyk6bDkE1ERHQSoiigr0VFX4uKctnATCaHyYSOiYTOnSbJMn9H0hYAgF4ozSkzMYN3OmdulFQ2YO1Y+ttjUQCAbBfR41fnlZp4ZHu9viWqEYZsIiKiMxDF2X7MW3qAXLGEqUQO4wkNkwluekPzyXYbBtrcGGhzAzDLTBJawdoefiSWxVhcs94d0QtlDIbTGAzPlpn4FTt6guaiyp6Aim6/AofEMpPlhCGbiIjoHDklmzXLDQCJbMEK3NMpnQsnaR5BEOBXHfCrDlzU7QNglplMp3RrQeVoLIvpZA7VN0jiWgHxsQTeGJstM2n3znYz6QmqaPOwzKSRMWQTEREtkE+1w6ea232XywbS+SLSehEpvYh0roCkbn6eyRW5CQ4BqLYAVNDpU/C+1UEAQK5Qwmjc7FhSrfFO6rNlJhOVcqWXh8zHcEgiuv2KNdvdG1ThU1hm0igYsomIiGpIFAVrp8n3KpcNZPJFpHNmAB+cTiOeLdRhlNSInHYb1ra6sbbVbR1LaIV5iyrHYhrylbdK8sUyjs1kcGwmY53vlSUrcPcGzFpxp9225N8LMWQTEREtGVEU4JHt8Mh2dPqAgVY3Xh9L4O2JJBdS0kn5FDt83T5srpSZlA0D08lcJXRnMRozy5SqPz5JvYi3JpJ4ayIJABAAtHmdlRaCKnqDCto8Mmwiy0wWG0M2ERFRnYiigG29fvQEFPzmSASpSmkA0amIgoAOn4wOn4xLV5llJvliGWPx+d1MEpr5DokBYCqZw1Qyh98PxwAAdptQKTNRrcWVPsXO3SprjCGbiIiozkJuJ/54cwf+MBrHO5PpM9+BaA6HJGJ1yIXVIZd1LKkXMBrV5s1454pmmUmhZGAoksVQJGud73ZK1vbwPZWNc2SWmSwIQzYREVEDkGwitvcH0RNQ8dLRCDI5tgWk8+eV7djYZcfGLi8As8wknMrN9u+OZTGZ0K2FuOlcEW9PpvD2ZMp6jFa3E73ByqLKgIoOH8tMzgVDNhERUQNp98q47qJOHBiO4Ug4c+Y7EJ0FURDQ7pXR7pWxvT8AACiUyhiPa2b/7kqpSWzOQtxwOodwOocDx+MAAEkU0FXtZhI0g3dAZZnJqTBkExERNRi7TcT717SgN6jid8ei3OyGFoXdJqK/xYX+ltkyk3SuWAncZvAejWnQCubPX7Fs4Hg0i+PRLHAkAgBQHTZre/jeSpmJ6mC8BBiyiYiIGlaXX8F1F3Xi98NRDM1kz3wHogVyOyVs6PBiQ4dZZmIYBiLpPEYqLQRHY1lMxHWUKu1wsvkS3plK4Z2p2TKTFpfD2h6+N6Ci0ydDsq283SoZsomIiBqYQxLxwbUh9AayeHkoCr3A7SRp6QiCgJDHiZDHiYv7zDKTYqmMiYRuLagciWYRyeSt+0QyeUQyebw2EgdQ3XhHtma6e4MqWlyOpi8zYcgmIiJaBnqDKrr8CqaSOsbjGsbiGhdHUl1INtHc7CaoWsey+eKcnSrNreKrZU6lslFZcKlZ5yt2mxW4qztWupzNFUub67shIiJqYrbKwrMuv4JLASSyBYzFNYzHNcykc9yynepGdUhY3+7B+nYPALPMJJYtVPp2m8F7PK6hWPkh1QolHJ5O4/D0bMvKoMthlZj0BhR0+hXYl3GZCUM2ERHRMuVT7fCpZpu2fLGMiYQ5wz0R162eyET1IAgCgi4Hgi4Htvb6AQDFchlTiZxZ312Z8Q6nc9Z9opk8opk8Xh9NAABEAej0KVbw7gkqCLmdEJdJmQlDNhERURNwSLOdIgzDQCSTx3jcfIs+PqctG1G9SKKI7oCC7oCCHWtaAABavoTR+Gxt90hMQyZn7nxaNoCxSmnUb49FAQCyXUSPX8UVF7Si26/U7Xs5GwzZRERETUYQBITcToTcTmzp8Vtt2Uaj5syhwbISahCKw4Z1bR6sa5stM4lrhXm13eNxDYWS+UOrF8o4OpNGQLXXc9hnhSGbiIioyc1ty6YXStYM92RCt2pkiRqBIAgIqA4EVAe29PgBmAsnp5KVbiZRDbliaVn04m78ERIREVHNyHYb1rS6sabVbbViqy5KYx03NaK5C37fv7reozl7DNlEREQr1NxWbIZhYDqVw2gsi6GZLAM30QIxZBMREREEQUC7V0a7V8bFvQGMxjQcCacxmdRZw010HhiyiYiIaB5RFNDXoqKvRUUmV8SRcBrHZjLc/IboHDBkExER0Sm5nBK29PhxUbcPEwkdR8JpjMU0bnxDdAYM2URERHRGgjC7+EwvlHA0nMHxaBbRTL7eQyNqSAzZREREdE5kuw0bu7zY2GW2BJxM6JhI6JhMatDyXDBJBDBkExER0QLIdhtWhVxYFXIBAOLZvBm4EzqmUzpKzNy0QjFkExERUc34VQf8qgMXdnpRLJUxncpZoTuhcXt3WjkYsomIiGhRSDbRquMGYHUqGZxOQy9wipuaG0M2ERERLYlqp5LNXT4cj2bx7lQKM2kunKTmxJBNRERES0oUBauOO5rJ4/BUCsORLIrsC0hNhCGbiIiI6ibocuD9a1qwrc+Po+EMDk+nkdaL9R4W0YIxZBMREVHdOSUbLuz04sJOL8bjGt6dSmEiwS3dafliyCYiIqKGUl0smdILOBLO4NhMmv23adlhyCYiIqKG5JHt2Nbrx5ZuH8YTGo6EM5iIc0t3Wh7Eeg/gvVKpFO655x587GMfQ2trKwRBwO7du0967oEDB/CRj3wEbrcbfr8fN954I44ePbq0AyYiIqJFJYoCegIqrljfiuu3dWNbrx8emfOE1NgaLmRHIhE8/vjjyOVy2Llz5ynPO3ToEK688krk83n86Ec/whNPPIF3330Xl19+OcLh8NINmIiIiJaM4jC3dP/k1i58ZGMbVodckESh3sMiOkHDvQzs7+9HLBaDIAiYmZnBD37wg5Oet2vXLjidTjz77LPwer0AgO3bt2PdunV49NFH8fd///dLOWwiIiJaYm0eGW0eGZeuCmA4ksWRcBoR9t2mBtFwM9mCIEAQTv+KtFgs4tlnn8WnPvUpK2ADZkC/6qqr8OMf/3ixh0lEREQNwm4TMdDmxjWbOnDdRR24oMMNh9RwEYdWmIabyT4bR44cgaZp2LJlywm3bdmyBb/4xS+g6zpkWT7p/aenp08oKRkcHFyUsRIREdHS8asObO8PYltvACNRc3Z7Kpmr97BoBVqWITsSiQAAgsHgCbcFg0EYhoFYLIbOzs6T3v+xxx7Dnj17FnWMREREVD+2ObtKpvQCjoYzOMpWgLSElmXIrjpdWcnpbrv99ttx8803zzs2ODh42oWWREREtDx5ZDu29vqxpceHsbjZCnA8rnGjG1pUyzJkt7S0AJid0Z4rGo1CEAT4/f5T3r+trQ1tbW2LNTwiIiJqQIJgtgLsCajQ8iUcCadxdCbDbdxpUSzLkL127VooioKDBw+ecNvBgwcxMDBwynpsIiIiIsVhw+ZuHzZ3+zCd0jEW0zAW15DUGLipNpbl0ltJkvDJT34SzzzzDFKplHX8+PHj2LdvH2688cY6jo6IiIiWkzaPjIv7AvjEli58cmsnLun3o93rBNtv00I05Ez2z372M2QyGStAv/XWW3j66acBANdddx1UVcWePXtw2WWX4ROf+AS+9KUvQdd17Nq1C6FQCF/84hfrOXwiIiJapjyyHRs67NjQ4UW+WMZEQsNYTMN4Qke+yEWTdPYaMmT/1V/9FYaHh63P9+7di7179wIAjh07hlWrVmHDhg148cUXce+99+Kmm26CJEm4+uqr8eijj6K1tbVeQyciIqIm4ZBE9Le40N/igmEYCKdyGAynMRLNosS8TWfQkCF7aGjorM7bvn07fvnLXy7uYIiIiGjFEwQBbV4ZbV4Zel8JR8MZDIbTXDRJp9SQIZuIiIioUcl2GzZ2eXFhpwcTCR3vTqUwkdDZEpDmYcgmIiIiOg+CIKDLr6DLryCdK2JwOo0j02nkWLtNYMgmIiIiWjC3U8K2Xj+2dPtwPJrFu1MpzKTz9R4W1RFDNhEREVGNiHO2c49l8jg8ncbQTAbFMmtJVhqGbCIiIqJFEHA58L7VQWzr9ePoTBqHp9JIcaHkisGQTURERLSIHJKIDR1ebOjwYjyucaHkCsGQTURERLRE5i6UfHcqhaPhDDe5aVIM2URERERLzO2UcElfAFu6fRiOZnF4KoVoplDvYVENMWQTERER1YlkE7G21Y21rW6EUzkcnkphNKZxoWQTYMgmIiIiagCtHidaPU6UygYmkzpGo1mMJzRoeZaTLEcM2UREREQNxCYK6PYr6PYrAICZdA6jMQ1jMQ0JjSUlywVDNhEREVEDC7mdCLmd2NbrR0ovWIE7nM6xQ0kDY8gmIiIiWiY8sh0XdtpxYacXuWIJ43EdQ5EMJuJ6vYdG78GQTURERLQMOSUbVodcWB1yIZrJ442xBEZjWr2HRRUM2URERETLXNDlwB+tb0U8m8cbY0kcj2brPaQVjyGbiIiIqEn4VQf+n3UhJLIFvDGewPFolnXbdcKQTURERNRkfKodHxoIYbNWwJvjCQxHGLaXmljvARARERHR4vApdnxwbQif2NKJNa0uSKJQ7yGtGJzJJiIiImpyHtmOHWtacNmqIMbjmtkGMK4hX+RGN4uFIZuIiIhohbCJAnqDKnqDKsplA9OpHEZiWYzGstxZssYYsomIiIhWIFEU0OGT0eGTcdmqIGbSOYxEsxiJaUjrxXoPb9ljyCYiIiIia2fJi/sCiGfzGI1pGI5kuZX7eWLIJiIiIqJ5/KoDftWBzd0+TCd1HJ5OYySaRZkdSs4aQzYRERERnVKbV0abV4ZeKGFwOo0j4TQyuVK9h9XwGLKJiIiI6Ixkuw2bu33Y1OXFaEzD4ekUJhO5eg+rYTFkExEREdFZE4TZDiVJvYDDU2kcDadRKLGWZC6GbCIiIiI6L17Zju39AWzt8WEoksXgdArRDBdKAgzZRERERLRAkk3EQJsbA21uTKd0vDOZwmhMW9FbuTNkExEREVHNtHlktHlkpHNFvDOZWrGlJAzZRERERFRzbqeE7f0BXNTtw9GZNN6dSq+oTW4YsomIiIho0TgkERs6vLig3YPRmIZDkymEU83flYQhm4iIiIgW3dyuJNFMHocmkzgead4NbhiyiYiIiGhJBV0OfHBtCBf3lvDuVAqD02nkiuV6D6umGLKJiIiIqC4Uhw1be/3Y1OXFsZkM3plKIak1R902QzYRERER1ZVkE7Gu3YN17R6MxTUcmkhiKrm867YZsomIiIioYXT7FXT7FcQyeRyaTGE4klmWddtivQdARERERPReAZcDH1jbguu3dWNTlxdOaXnFVs5kExEREVHDmlu3PRTJ4J3JdL2HdFYYsomIiIio4Zlbt3sw0Oap91DOyvKadyciIiIiWgYYsomIiIiIaowhm4iIiIioxhiyiYiIiIhqjCGbiIiIiKjGGLKJiIiIiGqMIZuIiIiIqMYYsomIiIiIaowhm4iIiIioxhiyiYiIiIhqjCGbiIiIiKjGpHoPoFHkcjkAwODgYJ1HQkRERESNppoRq5nxTBiyK0ZGRgAAO3furO9AiIiIiKhhjYyM4JJLLjnjeYJhGMYSjKfhxeNx7N+/H729vXA6nYvyNQYHB7Fz50785Cc/wcDAwKJ8DVoYXqPGxuvT+HiNGhuvT+PjNWpcuVwOIyMjuOKKK+D3+894PmeyK/x+P66//vol+VoDAwPYtGnTknwtOj+8Ro2N16fx8Ro1Nl6fxsdr1JjOZga7igsfiYiIiIhqjCGbiIiIiKjGGLKJiIiIiGqMIXsJtba24oEHHkBra2u9h0KnwGvU2Hh9Gh+vUWPj9Wl8vEbNg91FiIiIiIhqjDPZREREREQ1xpBNRERERFRjDNlERERERDXGkE1EREREVGMM2TX04osvQhCEk/576aWX5p174MABfOQjH4Hb7Ybf78eNN96Io0eP1mnkzSeVSuGee+7Bxz72MbS2tkIQBOzevfuk557LtfjOd76DDRs2wOl0YvXq1dizZw8KhcIififN62yv0ac//emTPqc2bNhw0sflNaqNF154AZ/5zGewYcMGuFwudHd34/rrr8crr7xywrl8DtXH2V4jPofq47XXXsPHP/5x9PX1QVEUBINBfOADH8C///u/n3Aun0PNiSF7ETzyyCP4zW9+M+/f5s2brdsPHTqEK6+8Evl8Hj/60Y/wxBNP4N1338Xll1+OcDhcx5E3j0gkgscffxy5XA47d+485Xnnci0efvhh3HXXXbjxxhvx85//HLfffjseeeQR3HHHHYv83TSns71GAKAoygnPqR/+8IcnnMdrVDvf/e53MTQ0hLvuugvPPfcc/vEf/xHT09PYsWMHXnjhBes8Pofq52yvEcDnUD3E43H09vbikUcewXPPPYd/+7d/w6pVq/Bf/st/wUMPPWSdx+dQEzOoZvbt22cAMPbu3Xva826++WYjFAoZiUTCOjY0NGTY7XbjnnvuWexhrgjlctkol8uGYRhGOBw2ABgPPPDACeed7bWYmZkxZFk2Pv/5z8+7/8MPP2wIgmC8+eabi/ONNLGzvUZ/9md/ZrhcrjM+Hq9RbU1NTZ1wLJVKGe3t7caHP/xh6xifQ/VztteIz6HG8v73v9/o7e21PudzqHlxJnuJFYtFPPvss/jUpz4Fr9drHe/v78dVV12FH//4x3UcXfOovh16OudyLZ5//nnouo4///M/n/cYf/7nfw7DMPCTn/ykpuNfCc7mGp0LXqPaamtrO+GY2+3Gxo0bMTIyAoDPoXo7m2t0LniNlkYoFIIkSQD4HGp2DNmL4I477oAkSfB6vbjmmmvwn//5n9ZtR44cgaZp2LJlywn327JlCwYHB6Hr+lIOd8U6l2vxxhtvAAAuuuiieed1dnYiFApZt9Pi0DQNHR0dsNls6OnpwZ133oloNDrvHF6jxZdIJHDgwAFs2rQJAJ9Djei916iKz6H6KZfLKBaLCIfDeOyxx/Dzn/8c9957LwA+h5qdVO8BNBOfz4e77roLV155JVpaWjA4OIivf/3ruPLKK/Ef//EfuOaaaxCJRAAAwWDwhPsHg0EYhoFYLIbOzs6lHv6Kcy7XIhKJwOl0wuVynfTc6mNR7W3duhVbt2611jXs378f3/rWt/CrX/0KL7/8MtxuNwDwGi2BO+64A5lMBl/+8pcB8DnUiN57jQA+h+rt9ttvx/e+9z0AgMPhwD/90z/hL//yLwHwOdTsGLJr6OKLL8bFF19sfX755ZfjhhtuwEUXXYR77rkH11xzjXXb6d4mr+Vb6HRmZ3steM3q4+677573+Uc/+lFcfPHFuOmmm/D9739/3u28Rovn/vvvx1NPPYXvfOc72L59+7zb+BxqDKe6RnwO1dd9992Hz372s5iensZPf/pT3HnnnchkMvibv/kb6xw+h5oTy0UWmd/vxyc+8Qm8/vrr0DQNLS0tAHDSV5zRaBSCIMDv9y/xKFemc7kWLS0t0HUd2Wz2pOeebBaCFs8NN9wAl8s1rzUmr9Hi2bNnDx566CE8/PDDuPPOO63jfA41jlNdo1Phc2jp9PX14dJLL8V1112H7373u/j85z+Pv/u7v0M4HOZzqMkxZC8BwzAAmK8y165dC0VRcPDgwRPOO3jwIAYGBiDL8lIPcUU6l2tRrYF777mTk5OYmZmZ16KRloZhGBDF2V9hvEaLY8+ePdi9ezd2796N++67b95tfA41htNdo9Phc6g+3ve+96FYLOLo0aN8DjU5huxFFovF8Oyzz2Lbtm2QZRmSJOGTn/wknnnmGaRSKeu848ePY9++fbjxxhvrONqV5VyuxbXXXgtZlvHkk0/Oe4wnn3wSgiCcsc8z1dbTTz+NbDaLHTt2WMd4jWrvwQcfxO7du/GVr3wFDzzwwAm38zlUf2e6RqfC51D97Nu3D6IoYs2aNXwONbv6dA5sTrfeeqtx7733Gnv37jX27dtnPP7448YFF1xgSJJk/OIXv7DOe/vttw2322380R/9kfHcc88ZzzzzjLF582ajq6vLmJ6eruN30Fyee+45Y+/evcYTTzxhADBuvvlmY+/evcbevXuNTCZjGMa5XYuHHnrIEATBuO+++4wXX3zR+PrXv244nU7jc5/7XD2+vaZwpms0NDRkfPCDHzT+6Z/+yXjuueeMn/3sZ8aXvvQlQ5ZlY9OmTUY6nZ73eLxGtfPoo48aAIxrr73W+M1vfnPCvyo+h+rnbK4Rn0P187nPfc744he/aPzwhz80XnzxRePpp582brnlFgOA8bd/+7fWeXwONS+G7Br62te+Zmzbts3w+XyGzWYzWltbjRtuuMH43e9+d8K5v//9740Pf/jDhqqqhtfrNXbu3GkMDg7WYdTNq7+/3wBw0n/Hjh2zzjuXa/GP//iPxvr16w2Hw2H09fUZDzzwgJHP55foO2o+Z7pG0WjUuOGGG4xVq1YZiqIYDofDWLdunXHPPfcY8Xj8pI/Ja1QbV1xxxSmvzXvnZ/gcqo+zuUZ8DtXPE088YVx++eVGKBQyJEky/H6/ccUVVxj/83/+zxPO5XOoOQmGUSkYJiIiIiKimmBNNhERERFRjTFkExERERHVGEM2EREREVGNMWQTEREREdUYQzYRERERUY0xZBMRERER1RhDNhERERFRjTFkExERERHVGEM2EREREVGNMWQTEa1Au3fvhiAImJmZqfdQiIiaEkM2EREREVGNMWQTEREREdUYQzYR0Qo2NTWFW2+9FT6fD+3t7fjMZz6DRCJh3S4IAu68805873vfw/r16+F0OrFx40b87//9v+s4aiKixifVewBERFQ/n/rUp3DLLbfgL/7iL3Dw4EH83d/9HQDgiSeesM75v//3/2Lfvn346le/CpfLhcceewy33norJEnCTTfdVK+hExE1NMEwDKPegyAioqW1e/du7NmzB//wD/+Av/3bv7WO33HHHXjiiSeQzWYhCAIEQYCiKDh27Bja29sBAKVSCZs3b0axWMThw4fr9S0QETU0losQEa1gf/InfzLv8y1btkDXdUxPT1vHPvzhD1sBGwBsNhtuueUWDA4OYnR0dMnGSkS0nDBkExGtYC0tLfM+dzqdAABN06xjHR0dJ9yveiwSiSzi6IiIli+GbCIiOq3JyclTHntvSCciIhNDNhERndavfvUrTE1NWZ+XSiX88Ic/xNq1a9HT01PHkRERNS52FyEiotMKhUK4+uqrcf/991vdRQ4dOsQ2fkREp8GQTUREp/Unf/In2LRpE77yla/g+PHjWLt2LZ566inccsst9R4aEVHDYgs/IiI6JUEQcMcdd+Cf//mf6z0UIqJlhTXZREREREQ1xpBNRERERFRjrMkmIqJTYkUhEdH54Uw2EREREVGNMWQTEREREdUYQzYRERERUY0xZBMRERER1RhDNhERERFRjTFkExERERHVGEM2EREREVGNMWQTEREREdUYQzYRERERUY0xZBMRERER1dj/D4FtiqDZHb9NAAAAAElFTkSuQmCC", + "text/plain": [ + "
" ] }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Computing Adjusted Predictions\n", - "\n", - "The objective of plotting conditional adjusted predictions is to visualize how a parameter of the (conditional) response distribution varies as a function of (some) interpolated explanatory variables. This is done by holding all other explanatory variables constant at some specified value, a _reference grid_, that may or may not correspond to actual observations in the dataset used to fit the model. By default, the `plot_predictions` function uses a grid of 200 equally spaced values between the minimum and maximum values of the specified explanatory variable as the reference grid.\n", - "\n", - "The `plot_predictions` function uses the fitted model to then compute the predicted values of the model parameter at each value of the reference grid. The `plot_predictions` function then uses these predictions to plot the model parameter as a function of (some) explanatory variable. " + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(7, 3), dpi=120)\n", + "bmb.interpret.plot_predictions(model, idata, \"hp\", ax=ax);" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The plot above shows that as `hp` increases, the mean `mpg` decreases. As stated above, this insight was obtained by creating the reference grid and then using the fitted model to compute the predicted values of the model parameter, in this example `mpg`, at each value of the reference grid.\n", + "\n", + "By default, `plot_predictions` uses the highest density interval (HDI) of the posterior distribution to compute the credible interval of the conditional adjusted predictions. The HDI is a Bayesian analog to the frequentist confidence interval. The HDI is the shortest interval that contains a specified probability of the posterior distribution. By default, `plot_predictions` uses the 94% HDI.\n", + "\n", + "`plot_predictions` uses the posterior distribution by default to visualize some mean outcome parameter . However, the posterior predictive distribution can also be plotted by specifying `pps=True` where `pps` stands for posterior predictive samples of the response variable." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtkAAAFdCAYAAADWhHHNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABJ0AAASdAHeZh94AABVyElEQVR4nO3dfXQb9Z0v/veMRprR85MtP8QPeXBISEISGmjTBy6BQmH7sE1auBTO2bvdPu25wFmWdhdYWiApDz3bltvudi9taS+Hu7uceykc2nNLKdwWktztr6WFAiUkJMQhju34SZL1LM1II83vj5FlK3YSJ5Yt2X6/zvGRPBqNvmaQ/c5X3/l8BMMwDBARERERUc2I9R4AEREREdFSw5BNRERERFRjDNlERERERDXGkE1EREREVGMM2URERERENcaQTURERERUYwzZREREREQ1xpBNRERERFRjDNlERERERDUm1XsAjSIej2P//v3o7OyELMv1Hg4RERERNRBN0zAwMIDLL78cPp/vrPszZJft378fO3furPcwiIiIiKiB/exnP8MnP/nJs+7HkF3W2dkJwPwP19PTU+fREBEREVEj6e3txc6dOyuZ8WwYsssmloj09PRg48aNdR4NERERETWi2S4r5oWPREREREQ1xpBNRERERFRjDNlERERERDXGkE1EREREVGMM2URERERENcaQTURERERUYwzZREREREQ1xpBNRERERFRjDNlERERERDXGkE1EREREVGMM2XX2+3ejGIrn6j0MIiIiIqohqd4DWO6imTyOhTMIOG3Y2O5BZ8BR7yERERER0RwxZDeI8Uwe/3E0Ap/Dik3tXnQG7BAEod7DIiIiIqLzwJDdYOLZAn7TG4HHLmFTuxfdQQfDNhEREdEiwzXZDSqZ0/HbY1E8++YwjoXTKJWMeg+JiIiIiGaJIbvBpVQdv393HM8eGMZYUq33cIiIiIhoFhiyF4m0quPFw2N4rT+GIme1iYiIiBoaQ/YiYhjA4eEUnn9rBOOZfL2HQ0RERESnwZC9CCVyBfzfgyM4MJjgWm0iIiKiBsSQvUiVDODAyQT+76ERJLKFeg+HiIiIiKZgyF7kxjMFPH9wGG8PJ2EYnNUmIiIiagQM2UtAsQS83h/Hr98eQ0rlrDYRERFRvTFkLyHhlIZfHhjB0dFUvYdCREREtKwxZC8xesnAK30x7D08hkSOs9pERERE9cC26kvUcELFL94cRsBpw6omJ7qDDihWS82OrxaKGIzlUCiWcEGLGxaRrd+JiIiIJjBkL3HjmTzGM3m83h9Di1fBqqATHX47JMu5f4iRyBUwGMviZCyHaCaPiessj46lcUm3H+0+e41HT0RERLQ4MWQvEyUDGI6rGI6rkCwCOvx2rGpyotWjQBBmnoU2DAPhtIaTsRwGYzmkVH3G/dKqjn1Hwujw27Gt2w+nzP+tiIiIaHljGlqG9KKBvkgWfZEsFKuI7qADK4NOBF0y9GIJwwkVJ+M5nIzloOmlWR93MJbDSELFhnYPLmzzcAkJERERLVsM2cucWijhyEgaR0bScCkS1HwR+hy6SOolA28OJvBuJMMlJERERLRssboIVaRVfU4B+9Rj7TsSxv97J4yMNvMyEyIiIqKlijPZNK+mLiG5oMUNm8R/1xEREdHSx5BN825iCcmhoSRWNTtxQYsbXru13sMiIiIimjcM2bRg9JKBo6NpHB1No82r4IJWN1ZwzTYREREtQQzZVBfDCRXDCRVuRcIFLW6sbnbCeh61u4mIiIgaEUM21VVK1fHHEzG8ORjH6vJSErfCpSRERES0uDFkU0MoFA0cGUnjnfJSknWtbrR5uZSEiIiIFieGbGoohgEMxVUMxVXYJBGKVYQsWSBLovllrb6vTNnG5SZERETUKBiyqWHl9RLyegnA7OpsW0Qg5FbQGXCgw2+HYrXM7wCJiIiIToMhm5aMYmnygspX+4AWDwM3ERER1QdDNi1JJWMycL/SB7R4ZHQFHOjwOxi4iYiIaN4xZNOSZxjASELDSELDK30xhNxm4O4MTA/chWLJ/NINaMUiCkUDBd3cplgt8DttcMl82xAREdGZMS3QsmIYwGhSw2hSw6snYvDardBLk0G6ZJz9GFaLAJ/DhoDTCq/dBr/DCp/DBosozP8PQERERItCQ5VjeOmll/C5z30O69evh9PpxIoVK/DJT34Sf/zjH6v2++xnPwtBEKZ9rV+/vk4jp8XIMIB4toC0qkPTZxewAbPcYDil4chIGn84Po4XDo7iJ68O4BdvDuO3vREcHEpgOJGDWijO7w9AREREDauhZrK///3vIxqN4rbbbsOGDRsQDofx8MMPY/v27XjhhRdw5ZVXVva12+146aWXqp5vt7OuMtWHYQCJXAGJXAGImttEAWjxKlgVdKLDb4fEEoNERETLRkOF7P/+3/87QqFQ1bZrr70WPT09eOihh6pCtiiK2L59+0IPkWjWSgYwHFcxHFchiQI6/HasbHKizatAELi0hIiIaClrqJB9asAGAJfLhQ0bNmBgYKAOIyKqDb1koC+aRV80C8UqojvowMqgE0GXXO+hERER0TxoqJA9k0Qigddee61qFhsAcrkcWltbEQ6H0dbWhp07d+LrX/86AoHAWY85NjaGcDhcta23t7em4yY6HbVQwpGRNI6MpOGxS1gZdGJlk5NVS4iIiJaQhv+rfssttyCTyeCrX/1qZduWLVuwZcsWbNq0CQCwf/9+fOc738GLL76IV155BS6X64zHfOSRR7Bnz555HTfRbCRzOt4cTODNwQSa3TI6/Has8NvhUaz1HhoRERHNQUOH7HvuuQdPPPEEvve972Hbtm2V7bfffnvVfldffTUuvvhiXHfddfjRj3407fFT3Xzzzbj++uurtvX29mLnzp01GzvRuQqnNIRTGl7vj8OtSGj32dHht6PZJUNkeUAiIqJFpWFD9p49e/DAAw/gwQcfxK233nrW/Xft2gWn04mXX375rPuGQqEZ138TNYqUquPISApHRlKwWgS0ee1o9ylo97FFPBER0WLQkCF7z5492L17N3bv3o2777571s8zDAOiyDJptLQUigb6x7PoH89CEICg04YVfjtW+OzwOWz1Hh4RERHNoOFC9v3334/du3fja1/7Gu67775ZP+/pp59GNptlWT9a0gwDiKTziKTz+NNAAk7Zgu6gE90BB/xOBm4iIqJG0VAh++GHH8a9996La6+9Fh/72MemLf3Yvn07Tpw4gZtuugmf+cxn0NPTA0EQsH//fnz3u9/Fxo0b8YUvfKFOoydaeBmtiENDSRwaSlYqlXQHHXDzwkkiIqK6aqiQ/fOf/xwA8Pzzz+P555+f9rhhGPB4PGhpacF/+2//DaOjoygWi+ju7sbf/M3f4O6774bT6VzoYRM1hKmVSgJOG7qDDnQHHXDYGuptTkREtCw01F/fffv2nXUfv9+PZ555Zv4HQ7SIjWfyGM/k8Xp/HCG3jO6gA50BBy+aJCIiWiANFbKJqPbGUhrGUhr+eCKGFq+CDp8drV6FS0qIiIjmEUM20TJRMoDhuIrhuAoAcMoWtHoUtHntCHlkznITERHVEEM20TKV0Yo4Fs7gWDgDAAg4rWgph+5mtwwLG+AQERGdN4ZsIgIAjGcKGM8U8PZwChYRCHkU9DS7sMJnZ8dJIiKic8SQTUTTFEuTS0vsNhGrm1xYE3LBJfNXBhER0WzwLyYRnVEuX8LBoSQODSfR6uXsNhER0WwwZBPRrBhG9ez2mmYX1jS74OTsNhER0TT860hE5yyXL+Gtk0kcHEqizaugJ2TObgsCZ7eJiIgAhmwimgPDAIbiKobiKhw2C9q8CnwOG/wOK3wOG2ySWO8hEhER1QVDNhHVRDZfLJcDzFS2OWULvHYr/A4bfOXg7VEkzngTEdGSx5BNRPMmoxWR0YoYKjfAAQBJFOCxS/A5bPDarbBaBAiCAIsgQBQECAIgihPfm/fF8n1BEOC0WSBZOENORESNjSGbiBaUXjIqNbnPhyyJuKDFjbUtLnapJCKihsWQTUSLiqaXcOBkAm8PJ7Em5MT6Vg8rnBARUcPhXyYiWpT0koEjI2kcHU2jK+DAhnYPfA5bvYdFREQEgCGbiBa5kgH0RbPoi2bR5lOwoc2DFo9S72EREdEyx5BNREvGRLOcoMuGdS1u+B02uBQJFnanJCKiBcaQTURLTjSdx2/TUQCAIAAOmwUuWYJbsZZvzS+XLLFSCRERzQuGbCJa0gxjspTgaFKb9rjdJsItW+FSJDhtEiSLAKtFgNUiQrKI5n1RhFUSIYkCbBYRImfGiYjoLBiyiWhZy+VLyOU1jKWmB/DTsYiAVA7eLtkCt2Itz46XZ8pliUGciGiZY8gmIjpHxRJQLJWg6SWkVR0jieqALgiAs7wsxaNIcMnWqiUq89HxMpLWIAAIuuSaH5uIiM4dQzYRUY0ZBpBWdaRVHcOnPCZZBDS7ZbS4FYQ8MoJO23mH7vFMHv3jWZyIZpDRirCIwAfWNKEz4Jj7D0FERHPCkE1EtID0olGpggIA1nLoDrkVtHhkBM4SuhPZAk6MZ3AimkVK1aseK5aA3/RGsK3bjwta3PP6cxAR0ZkxZBMR1VGhaGAormLolNDd4lEQcpuhO63pOBHNon88i3j2zO3oDQN4tS+GbL6IrZ2+BfgJiIhoJgzZREQN5NTQLYkC9JJxzsc5NJRELl/E+1YFeBEmEVEdsEBsnSVyBRSKpXoPg4ga1PkE7AnHIxnsfyfM3zFERHXAmew6e+w3x9E7lobXbkWTS0bQZUOTS0ZT+dbnsLFbHRGdt+GEihffHsWOdSEoVku9h0NEtGwwZNfZWEqDASCeKyCeK6A3XP24KAABpxm4Q24FrV4FbV4FTS6Z4ZuIZmU8U8ALB0dwxfoQPIq13sMhIloWGLLryDAM7Lp4BfrHs4ikNUTTeUTSGjR98qPdkgFE0nlE0nkcHklVtltEASG3jFaPGbxbvQpaPQrc/ANKRDPIaEX86uAoLl/XjCbW0iYimncM2XUkCALeuypQVWrLMAykNR2RdB7RtIZIWkMknUc4rSGa1jCxPLNYMjCcUDGcUIGByWM6ZQltU4L3Cp8dzW4Z4jw0vyCixUXTS3jp7TF8oCeIDv/51dIulQxeSElENAsM2Q1GEIRyi2YrVjU5qx4rFEsIpzSMJFSMJFWMJFQMJ3LI5IuVfTKajt5wGr3hdGWbTRKxwmdHh8+OFX47OvwO+B3Week6R0SNTS8Z+I+jEVy60o+e0My1tHP5IlJaAalyQ52UqiOlFpDSdBRLBtyKhIDDBr/ThoDTBr/DBpvE6+iJiKZiyF5ErBYR7T472n32qu0ptVAJ3RMBfCyloVie9s7rJRyPZHA8kqk8x261oMNfDt0+B1b47fDaudSEaDkwDOAPx2NIqTq8dms5ROtIawUkVR168cwVTZI5Hcmcjr5otrLNVQne1krw5oWWRLScMWQvARMz32unzEoVSwbGUioGYzkMxnI4GctiJKlWlpvkCkUcHUvj6Fh6ynEktLgVBJw2BF3mDFXAaUPQKXOWimgJens4dfadZmmijXz/+OQ2p2yB32GDw2aBTRIhS+atTRJhs4jlbeYXP1kjoqWGIXuJsogC2rx2tHntuHSlua1QLGEkoWIwljWDdzyHcLm6CYDybFYaCE8/nluWKqE74DKDd7Acxh02/m9ERNNltCIyWm5W+1otAmzlsC0KgFi+Nb+f3CYI5u+3ifvtXju6Ag6uEyeihsN0tIxYLSI6Aw50BiYveNIKRZxM5HCyHLqj6TyiGQ1qobp5RUrTkdJ0nBjPnnpYuBVpsspJ+bbZJUOycPabiGanUDRQKBbPvuMp+iJZ/GkwjrUhN3pCLn7qRkQNgyF7mZOtFqxucmF1k6tqezavI5rOYzyTRzQzcathPJNHStWr9p2YAZ+69EQUgGa3jBaPUql20uF3wCnzfzkiqq2MVsQbA3G8dTKB1c1OrGt1s5wpEdUdEw/NyGGT4AhIVbPeE/J6CePZPMbTmlntJKliNKlhLDW55rtkAKNJDaNJDW8iUXluq0fBmmYnVje7sKrJyQujiKhm9JKBd0bNf/C3++xY3+pGi0ep97CIaJliyKZzZpNEc1nIKX+89NJkicHR5GSZweSUme+R8vb/71gUAoAVfjtWN7mwptmJ7qCTH/US0ZwZBswlcLEcAk4r1rV60M1120S0wBiyqWYkUaxcbDlVVtMxlFBxPJLGu+EMBmJZlAzAACrVT/7f0TAsgoDOgB2rm11Y3exEl9/Bdd1ENCfjmQJ+dyyKNwZiWBtyY02zC3ZbbT5BMwwDKU1HIltAPFtALJtHPFeAmi+i1augO+jACp+dv8eIlimGbJp3DllCT8iFnpC57lvTizgRzeJY2AzdQ/EcDABFw0BfNIu+aBYvHQYsggC/04Yml61cyUSu3PocVnaxJKJZy+VLeHMwgTcHE5BEAYrNAru1/GUToVgtcNik8vfm9qmfrKmFIuLZAuK5vHmbLSCZK0AvzVxTfGICQRIFrPCbFVDafXZYOJtOtGwwZNOCkyULLmhxV9rJ5/JFHI9kcCySxrvhNEaTGgAzdEfKreVPdboA3upVeMETEZ2RXjIqdb3PZCKM68XStIpL5/JaJ6JZnIhmYbUI6PA7sLLJgRa3wuUrREtcQ4Xsl156Cf/+7/+O3/72txgYGIDP58Mll1yCe++9F9u2bava97XXXsMdd9yBl19+GZIk4corr8S3v/1trF69uk6jp/Nlt1mwod2DDe0eAEBa0/FuOI2TsRyimTwiabOqydQZozMFcK/dik6/HZ0BBzr85se1XOtNROdqIozXSqFoVLrvypKIrqA5u93iZslToqWooUL297//fUSjUdx2223YsGEDwuEwHn74YWzfvh0vvPACrrzySgDA4cOHsWPHDmzduhU/+clPoKoq7r33Xlx22WV444030NzcXOefhObCJUvY3OHD5g5fZVvJMJDMFRDN5Cu1vKPpmQN4IldAIlfAW0NJAGY5wVaPgo6AA51+Bzr9djS5ZS43IaK60fQSjo6mcXQ0DVEAgi4ZbV4FLR4FQaeNs9xES4BgGMbMC8rqYGxsDKFQqGpbOp1GT08PNm3ahF//+tcAgP/8n/8z9u7di2PHjsHjMWc/T5w4gbVr1+L222/HP/7jP57zax88eBCbNm3CW2+9hY0bN879h5ml5w4MI54tLNjrLUUTATySzmMonsNALIuB8WxVVZNTKVYRHT4HOvx2tPnsaPOa7eQZvImo3qwWAaFyBadWjwKvo/GWwBWKJUTSGmTJgoDTVu/hEC2Ic82KDTWTfWrABgCXy4UNGzZgYGAAAKDrOp599ln8l//yXyoBGwC6u7txxRVX4Kc//el5hWxavERBgM9hg89hq1xcCZgz2gPj2XLozuFkPItC0fw3pVoooTecRm94soGOzSKaXSu9Ctq8Ctq8drR6FC41IaIFVSgalRKEAGC3iWgpB+5mtwyLKMAoV2iamCcz75t3DJS3lfeRLALsVgusc1iSkssXEU5pCKdVhFMaYtkCJqboQm4Z69vc6PBP76tAtJw1VMieSSKRwGuvvVZZKnLs2DHkcjls3rx52r6bN2/Gr371K6iqCkVhA4Llzmu3wrvCi00rvACAYsnAWErFwPjkbHc4pWHio5x8sYT+8Sz6p7SOFwAEXTa0eu1Y4bOj02/HCr8dssQmOkS0MHL5EvoiWfRFsmff+QwmwnalgkpVhRVLucKKGcYTuYIZqlMawmntjGvTx1IaxlIaPHYJ61vdWNXkYhUVIiyCkH3LLbcgk8ngq1/9KgAgGo0CAAKBwLR9A4EADMNALBZDW1vbaY85NjaGcDhcta23t7eGo6ZGZBGFSh3v964y///J6yWMJlUMJXIYSagYTpgNdPJFs5KAASCSziOSzuOtk2bnSgFAi0dBZ8BRucCymWu8iajB6UUDqaKO1Fku5hQF4DSVCc8omdPxh+Mx/GkggQta3Fjb4ppzV1+1UEQuX4RNEiFLIi8QpUWloUP2PffcgyeeeALf+973plUXEc4QaM70GAA88sgj2LNnT03GSIubTRLNsDylfXzJMBDL5DGUUDGSyGG4HL4TOXPtvIHJzpWv9JnPkSURnX4HOgJ2dPkd6Ag44JIb+u1FRDSj8wnYU2l6CQdOJnBoOIGVQSfWt3ngtZ99XXk2ryOaziOWzWM8Y97m8tWlEy0iyoHbArl8OxHAZasIm0WE3WZhiURqCA2bAvbs2YMHHngADz74IG699dbK9mAwCGByRnuq8fFxCIIAn893xmPffPPNuP7666u29fb2YufOnXMeNy1+oiCYdbddMi4qLzUBgKRawOB4Fv3l5SYnY7nKjLemT1/j7bNb4bFb4ZIlOGUJLtlSvjW/n7jvsFk4C05ES06xBBwLZ3AsnEG7T8GFbR60eMylnGlNRyxjhumJQD2bWuTFkrl85tTwfSqnbMH6Vg/WNDtrNvtdKJbQO5ZGRtNhACiVjMpaeMNcDF/1vWGYkzZOWcIFLe5Z/UODlpaGDNl79uzB7t27sXv3btx9991Vj61ZswZ2ux0HDhyY9rwDBw6gp6fnrOuxQ6HQjBdZEp2JR7FiQ7sXG9pnt8Y7nisgnjt75RgBgMNmBvCg04YVfrPqSYffDoetId+iRETnZCiuYiiuwq1I0PQS8vr5NfeZrYxWxB9PxPDWyQTWtZpLV873WppCsYQjIykcGUlBO89xHx1No82rYH2bG21e+3kdgxafhvsLfv/992P37t342te+hvvuu2/a45Ik4ROf+ASeeeYZfPOb34TbbXYN7O/vx969e3H77bcv9JBpmZppjbdaKGIwZobu0aSKtKYjo+lIa0Vky7MfpzIAZPJFZPJFjKU0vD2SqjwWcNrKgdtc/93mZWMdIlq8zrYevNY0vYQ3BxM4NJxET8iFC1s9sNtmF7YnwvXhkVRN/lEwsfTQa7diXasLK4O1m2WnxtRQIfvhhx/Gvffei2uvvRYf+9jH8PLLL1c9vn37dgDmTPell16Kj3/847jrrrsqzWiamprwla98pR5DJwIAKFYLekKuqlKCE0qGgWy+WA7detVtRisipekYTaoYz+Qrz5n4KPXNQfOiS1EwL7o0K504sMJvR8gjQxL5i5qI6HT0ooHDwykcHU1hZdCJDe0euJWZl2/UOlyfKpErVC4Q7Qm5cEGLe9bBnxaXhgrZP//5zwEAzz//PJ5//vlpj0/UA12/fj327duHO++8E9ddd11VW3V2e6RGJQoCXOV12C1n2C+r6RiM5zAYy2IwlsNgLIe0Zs7+lIzJ2ZBXT8QAABZBQMgjT9b2Ltf55lITIqJqE+vE341k0Ol3YGO7B/5yM528XsI7o/MXrk+l6SUcHEri7eEkugIOrG/zNGRjH8MwzlpQgmbWUH+F9+3bN+t9t23bVukASbSUOMoXyVzQYi6FMgwDiVyhErgH4+ZFlxNrA4uGUQneQLxyHJ/dWg7c9nIAV+BnV0siIhgGKn0RJjr+Hh1LL0i4PlXJAPqiWfRFs2h2y1jf6kabV6n7UpJEroADgwlEMxouv6AZPkfj/QOg0TVUyCai6YQpHS0nGuuUDAORtIaTscn63kOJHLL5YuV5ExdeHp6yxluWzK6W7T6zuc4Knx1NLpmNI4ho2ZqcpKi/iQZAogAEXTJCbhkhj4xml7xgoTut6TgwmEBfNFPp6vmrQ6P40Nqmul60aRgGUpqORLaARK5Q+XvYyBiyiRYhURAQcisIuScr6RiGgZSqY3hKbe/hRA7RdL5ywaWml3AimsWJ6GTnOKvFvICz3Weu9W732RFyKwzeRER1UjImA/fBIfN6nIDThpBHQcs8he5sXsfBoSSOjaWn1UovFA3sOxLGJd1+rC1/yjqfMpqORK6AeDlQJ3J5JHM69CkDY8gmogUjCAI85drc61o9le15vYSRpBm4h+OT3S0nflkVisa0dvKSKKDFo6DZLcPvsCHgnPxyKxKXnBARLaCSMdl9+FA5dPudNrR4FITcMprdMqznGbrVQhEHh5LoHUuheIbVMoYBvNIXQ1It4D1d/pqt0y6VDByPZhBN58vBOo9CcY4dkRoEQzbREmeTRHQFHOia0tVyosb3UDyHk3HzdjiRq/xi00sGTsZzOBnPTTueJJrLVwJOKwJO2QzfU4I4SwwSEc2vkgFE03lE03kcAiAIgN9hRbNbRrPLnCA5W8USTS/i7eEU3hlJVc0Qn82RkTRSqo4P9jSdd7Cf0B/N4o3BONILXNpxoTBkEy1DU2t8b+s2txVL5jrvoXK4Hk6oiGXMmYWpv3718n6RtAYgXXVcAUCT26x00u61o81n3jrZYp6IaN4YBjCeKWA8U8CR8u9llyKh2WXOcje75UrHyYkShW8PJ897xngoruLXh0Zx+brm86pkFUlreL0/jnBKO6/XXyz4l4+IAJjBu8WjoMWj4OIuf2W7Xiohni1UanZPbYMczeSrrsY3MLmOcKK2NwB4FAntPnulzGC7zw6/w8qyUERE8ySt6kirOo5HMgDMC9+b3DIiKe28O1dOFcsW8MLBEVx+QWjWpQfTmo4/DcSrrgtayhiyieiMJFFEk0tGk0ue9phRbrAzEbxHk5OVTqZ2dkuqOpLl5g4TZElEm9deaSHf4XcweBMRzRNNL+FkbPoSwLnI5Uv49aFRvH9NEJ1TliSeKq+XcHAogXdGz7zue6lhyCai8yYIApyyBKcsTfsFm1ILZoWTeA5Dp6l00hfNoC+aqTzHYbNUAvfErYtLTYiIGpZeMvCb3gi2dvpwYZun6rFSyUBvOI0Dg4mazJ4vNvzrRUTzwq1Y4VaslaY6gHmhTaWudzxXqXQycc1NNl/EO6NpvDM6udbb77Bihd+BznLobvcpkCW2ICYiahSGAbzeH0dK1XFJtx+iKGAwlsUbA3Ekc0vzosbZYMgmogUjSxZ0B53oDjor2wrFEoYT6pQ28llE0vnK47FsAbFsAm+dNNd4iwLQ5rWjO+goH8sBj2Jd8J+FiIiq9Y6lkdYKMAxgNLm0L2qcDYZsIqorq2V6icFcvoiT8VwleA/EspU13iUDlfKCvz0WBWA2aegOTIbuZrfMWt5ERHUwkmC4nsCQTUQNx26zoCfkQk/IVdmWyBUwGDOb5pyIZnEylkOx3PN34sLL1wfi5vOtFnQHzXXd7eUulpztJiKihcSQTUSLgtduhdfuxcZ2s5VuoVjCYCyH/mgGfdEsToxnoBbMC2tyhSIOn1LNxC1L5cCtVIK3z85qJkREND8YsoloUbJaRKxqcmJVkxOXAygZBsIpDX3RDPqjWZwYz2I8M7m2O6XpODKawpHRyeBtt1qwYkrwbvUo8Dttc+5iRkRENOeQvWrVqtPOBImiCJ/Ph0svvRR/8zd/gwsvvHCuL0dENCNRmGym875VQQDm2u6hRM6sZBLPYSiuIpLWKmUEc4UiesNp9IarO1d6FAl+hw3+cqt4874VAYcNHruV672JiOis5hyyL7/8cuzfvx9DQ0P44Ac/iJaWFoyMjOC3v/0t2tvb0dnZiWeeeQb/+q//iv379+OSSy6pxbiJiM7KbrNgTbMLa5on13ZPlBE8WQ7dQ/EcxlKTZQSBcvMcVceJ8eldySyCAJ/DagZwhw1NLlu5bbECn4MBnIiITHMO2ddccw1efvll9Pb2orOzs7K9v78fH/nIR7Bz5048/vjj2LFjB+677z784he/mOtLEhGdt9OVERxJqAinNbNlfLlt/Hgmj5SqY0r+RtEwEM2YLeVPJYmC2R3TLaPZJZfDt4wml421vYmIlpk5h+wHH3wQu3fvrgrYANDV1YV7770X999/P/7yL/8St99+O/72b/92ri9HRFRzVouIzoBjxrbAerGEeLaA8XLojp1yO3GxJWB2PhtJqhhJqtOO47VbzdDtksvLWsxbxcrwTUS0FM05ZPf29sLr9c74mN/vR19fHwBg5cqVyGanf/RKRNTIJIuIJrc5O30qwzCQyRcRTmnlL3M2PJzSEM8WqmbAE7kCErkCeseq13977dZK4J74CrllXnxJRLTIzTlkd3d34/HHH8ef/dmfTXvsscceQ1dXFwAgGo0iEAjM9eWIiBqGIAhwyRJcsoRVTc6qxwrFEiJpDZF03gzfKa0SwAvFyfg9Eb6ntpIXYDbYmZjxXuGzoyvohEtmQSgiosVizr+x/+7v/g5//dd/jcHBQVx//fVoaWnB6OgofvKTn+D3v/89Hn30UQDA3r17edEjES0bVouINq8dbV47gMlP+0qGgVgmj9GkhtGUitGk+RVJ5SvNdQygsu770PDkMZtcNnQHnJWW8k0uG+t8ExE1qDmH7C9+8YswDAO7d+/Gl7/85cr21tZW/OAHP8DnP/95AMBXv/pVyPL0j1uJiJYTURAQdMkIumRsgKeyvVgyEElr5dCtVcL3eCZfWXYSSecRSefxx/4YAMBhK1/EGXCgO+jACp8dEpeZEBE1hJp89vilL30JX/ziF3HkyBFEo1EEg0GsW7euaoalpaWlFi9FRLQkWcTJOt9T5fUSBmJZnIhmcCJqtpXXdPNiy2y+iLeHk3h7OAnArG7S7rOj029HZ8CBroADXna1JCKqi5ot8BMEAevXr6/V4YiICIBNEqtqfZcMA6NJFSei2Up3y3iuAMCsbtI/bgZxHIsCANyKhE6/Gbg7A+Zst03ibDcR0XyrScju6+vDN77xDezdu7cyk33FFVfgrrvuwqpVq2rxEkREBHO5ycRa7+2rzc6W8WweJ8rhemA8i+G4WlnfnVJ1HBpO4lB5tlsUgFaPUilZuMJnR5NLhkXkbDcRUS3NOWS/8cYbuOKKK5DNZvGBD3wA27Ztw8jICB5//HE8+eST2LdvH7Zu3VqDoRIR0Ux8Dht8Dhu2dPgAmJVNhuM59MdyGCgH74nZ7pIBDCVUDCVU/P74OABzqUrILaPVo6DVq1RuXbLEpSZEROdpziH7b//2b9Hc3Ixf//rXlXJ9AHDixAlcffXVuP3227F37965vgwREc2S1SKiK+hE15SulslcAQMxM3D3j+dwMp6tlBIslgwMJ1QMJ1RgYPI4TpulKnS3euwIeVjDm4hoNuYcsv/whz/gf/yP/1EVsAGzfvbu3bvxhS98Ya4vQUREc+SxW7HR7sXGdrOcYLFkru0eTphVTEYSKoYTOWTyxcpzMvkijoUzOBbOVLYJ5WMFnDYEnTYEyl9Bp4yA0wa7jR0siYiAGoRsr9d72o6PPp8PHo9nxseIiKh+LOVKJO0+e9X2lFrASFLFaMJsDz+SUDGa0lAsTdbwnmigczySmXZcu9UyJXibt00uGSGPDIeNzXSIaPmY82+8m266CT/+8Y/x0Y9+dNpjP/rRj3DjjTfO9SWIiGiBuBUr3IoVa0PuyrapNbzHUhrGM3lE0+bt1JlvAMgVijgZz+FkPDft2C5ZQrNbRsgtI1RuHx9yy1z7TURL0pxD9nve8x48/fTTeO9734sbb7wRra2tGBkZwf/6X/8LY2NjuP766/HMM89U9v/Upz4115ckIqIFdLoa3gCgFooYz+QrX9FMHuMZM4DHswUYU/ZNazrSmj5tBtxutVTCd7NbRpPL/Ao4bax6QkSL1pxD9l/8xV8AAAYGBvDqq6/O+LhRLiUlCAKKxeK0fYiIaHFSrJYZl50AgF4qIZ4pIJzWMJbSMJZUzftJDfliqbJfrlCcrO89hSgAfoetErybXTKCbhuaXZz9JqLGN+eQzcohREQ0E0kU0eSW0eSWcWHb5PaSYSCZK5jBuxy+x1IawikNuUJxyn5AtDw7DqSqji1LIppcMlq9CrrK3S2b3TJEBm8iahBzDtmXX355LcZBRETLhCgIldreF7RMrv02DAPZfBGRtBm4I+m8eT+tYTydrzTYAQBNL1XWfv/xRAwAoFhFdPodlZbynX4Hq50QUd3U5FLvn/3sZ3jiiSdw4sQJqKpa9ZggCPjTn/5Ui5chIqIlTBAEOGUJTllC95Qa34B58WU8a4buSDqPcDmID8Vz0HRz6YlaKOHoWBpHx9Lm8QA0u+XKTHcnZ7uJaAHNOWR/61vfwp133onm5mb09PTA6XSe/UlERETnwCIKCLpkBF0y1k3ZXjIMjCW1ypru/vEsImkNgFlucGJJyqtTZrubyxdWVi6ydMsIOm1sskNENTXnkP3II4/gc5/7HH74wx/CYuHHckREtHBEQTC7UXoVvHdVAACQ1XQMxCZD90Ash/yU2e6BWA4DseoSgwIAn8NaVd1kIoh7FF5kSUTnbs4hOxqN4qabbmLAnid2m4gWt4KAy4Z3RtNIq3q9h0RE1NAcsoR1rR6sazWboZUMs7tl/3gWQ/Ecwilz2Ulam/x9agCIZQuIZQt4ZzRddTyrRUDQKSPoMhvrBJ02BF0ymlw2VjkhotOac8j+4Ac/iLfffhtXXnllLcaz7NkkESG3ecV8i0eB126tPLY25MbBoQQODSVRMs5wECIiqhAFAW1eO9q81WUGc+WLLCe+wuk8Iinzvj7ll2yhaJjdL5PqqYeGLImV0B102dDkNJeftPsUSCKXnxAtZ3MO2d/97nexa9cudHZ24tprr4XNZqvFuJYNiyigzaegxW1+3Ol3WE87K2IRBWzu8KE76MQrx8cxltIWeLREREuH3WZBZ/mCyKlKhoFErmCG73KVk2jGvI1n81WTHJpewlBCxVCiOoArVhHrWz24sM2DC1pckCV+2ku03Mw5ZPf09OCqq67Crl27IAgCHI7qX1aCICCRSMz6eKlUCvfffz/eeOMNvP7664hEIrjvvvuwe/fuqv0++9nP4n/+z/857fnr1q3D4cOHz+tnqYdrNrae83O8diuu2tCCd8NpvN4fr1xZT0REcycKAvwOG/wOW1V7eWCywU4koyFaLjEYLbeZn9rhUi2U8MZAHG8MxCGJAnpCLmxo82B9mwcuuSaFvYiowc35nX7HHXfgX/7lX7B161ZceOGFc57JjkajePTRR7Flyxbs3LkTP/7xj0+7r91ux0svvTRt23KxutmFdp8dbwzE8W44c/YnEBHRnExtsHMqvVjCeCaPoUQOh4ZTeGckhXyxBL1k4PBICodHUhBeP4nuoAMb2jzY0O5FwMlPf4mWqjmH7Mcffxx33nknvvGNb9RiPOju7kYsFoMgCIhEImcM2aIoYvv27TV53cVKsVqwfXUQq5udeOV4DIlcod5DIiJaliSLiJBHQcijYGunH4ViCcfCaRwaSuLt4SQy+SIMAH3RLPqiWTz31gj8Div8ThsCDhv8TnP2PFDexosqiRa3OYfsYrGIq6++uhZjAQD+QjlPIbeCP9vUikPDSRwaSlZdtENERAvPajHXZa9v9aBkGOiPZnFoOImDQwnEsuaEyERFk3cx/dNIq8XsjGkGcKsZwJ02tHgUBJw2NtUhanBzDtkf+chH8PLLL9elukgul0NrayvC4TDa2tqwc+dOfP3rX0cgEFjwsTQCURSwaYUX3UEHXu2LYTgx/Up4IiJaeKIgYGWTEyubnPizTa0YTWo4NJzEaFJFLJtHLJNHJl+sek6haCCcMjtbnsomiWj1KGjzKuXKKWZFKpvEiiZEjWLOIfuee+7BDTfcAKfTiY997GMzBtz5CL1btmzBli1bsGnTJgDA/v378Z3vfAcvvvgiXnnlFbhcrtM+d2xsDOFwuGpbb29vzcdYL27FiivWhzCSUNE7lsZgLMuSf0REDUKY0kBnKk0vmjPbmXwleI9P+X7qRe55vVRptlM5LoAml1kCtt2roM1nR6tXgZvLTojqYs4he8uWLQCAL3/5y/jyl7884z7FYnHG7XNx++23V31/9dVX4+KLL8Z1112HH/3oR9Men+qRRx7Bnj17aj6mRjPxS1wtFHE8ksGxcBrJHJvZEBE1IlmyoNVjQatHmfaYYRhmXe9MHiMJFcOJHIYTKkYSKvJFM3wbAMJpDeG0hgMnJ6t6OWwWBJ3mUpNguZnOxH2nzcIATjRP5hyy77333oZ5g+7atQtOpxMvv/zyGfe7+eabcf3111dt6+3txc6dO+dxdPWjWC24sM2s1zqWMme3B8azKLLyHxHRoiAIAhyyhC5ZQteUut4lw8B4Jo/hieAdN2+TU7oDZ/NFZPPTW8kDZjOdgNNWDt5mQ52g04aQR2GpQaI5mvM76NT61fVmGAbEs3TZCoVCCIVCCzSixhJyKwi5FWjdRfRFsjgWTiOerX1FEqtFgFOW4LBZ4JQl2K0WDMayGM+w+gkRUa2IgoAml4wml4yLVngr2zOaXgne4ZSG8Uwe0Ux+WgUqTS+V95t+DY9bliqfiLZ5FbR67Gh2y7CIjTGxRtToltQ/U59++mlks9llX9ZvNmTJgnWtbqxrdSOS1nBsLI0T0WxVVRKLaP4ClywCLKIIiyDAIsK8X761iubsitNmmby1STNefLNphRcjCRVvDyd5USYR0TxyyhJ6Qi70hKqvTyoUS4iVA/dEE52JAH5qN8uUpiM1lsbRsXRlm0UQEPLIaPVMhG872n0KHLYlFSeIaqIh3xW//OUvkclkkEqlAACHDh3C008/DQD46Ec/inA4jJtuugmf+cxn0NPTA0EQsH//fnz3u9/Fxo0b8YUvfKGew190JmZBtnX7UTQMWAQBkmV+rlCfmBUZz+Tx9nAS/eNZGA18UabDZkF30IFVTc7KH5HSlAEbBmDAKN+an6QY5e15vYThRA4nY7lKuS4ionqyTqnlfapiyUA8m0ckncdo0pwFH0mqCKe0SvguGsbkzPfA5HP9DivafXas8NnRXv7ichNa7gTDaLyIs3LlSpw4cWLGx44fPw6v14vPf/7zeP311zE6OopisYju7m7s2rULd999N7xe74zPPZODBw9i06ZNeOutt7Bx48a5/gg0S2lNx+HhJN4NZxqmtrckCugI2LG6yYUWj1yTaw4ymo6TcTNwjyZVVnshokVDL5YwltIwkjQvtJy48PLUkoOn8tongrdSCeBuxbpAo6al7qb3dS34a55rVmzIf2b29fWddZ9nnnlm/gdC884lS7hkZQCbVnjxzmgKR0fTVWWqTkcQzOd67Vb4HFZ47eaXXjKQVnWkNR1JtYC0qiOl6mc9piAALR4Zq5pc6PTbaz6T75QlXNDixgUtbhSKJQzHVQzGsxiKq8jP4uclIqoXySJWZqenSqkFDMVVDJU/sRuK5xCfsuY7kSsgkSvg7eFkZZtbkdDutaPNp6Ddax7T77A2TAEFolpqyJBNy49itWBzhw8b2jw4Fs7g8EgSGc2cJXHKlnKYtlXCtNduPe3FN00uedq2vF5CWtPN0K0VkFLN+3rJQGfAXrUcZL5ZLSK6gg50BR0wDLPZxGB5ljulssQiES0ObsWKda1WrGt1V7ZlNB1DcTNwn4znMJRQMZ7JVx5PqTqOqCkcGU1VtilW0VzbXa7t3e7lBZa0NDBkU0ORLCLWtbqxNuRCIleAS5FgrcGssk0SEZDM2rCNRBCEyvrI93T5USwZyBWKUAtF5PJFaHoRuXwJqm5+rxaKyBWK0AqlhlleQ0Q0wSlLWNvixtqWyeCdyxcrs90n42Z972haw8RvMLVQwvFIBscjk63lJVFAi0dBu09Bq9eOJpcNTS4ZXruV7eRp0WDIpoYkigL8DRaIF4JFFOCSpVldMFQolsqzRipOxnOIpLWGvoiUiJYnu82CNc0urGmerHSi6UWMJFQMJVQMx3MYSuQwmtRQLE8e6CXDvI4lngMQqzxPEgUEy4G7qdxYp8klo8nNxjrUeBiyiRYpq0WEz2GDz2HDhnYP1EKx8hHtcEKFXmTiJqLGJEsWdAed6A46K9v0UgnhlIahckOdidup19ToJQOjSQ2jSW3aMRWrWAnfrR4FHQHzYktZsizIz0R0KoZsoiVCsVqwutmF1c0ulEoGRlMqBssXI02sbycialSSaK7NbvPaAfgBmCVTk7kCopk8ImkNkZSGSNq8HzulrrdaKGEwlsPglM6WAoAWj4IOvx2dfgc6AnaE3ArXe9OCYMgmWoJEUZjyxwqIZfI4GTf/+KQ1HZIowCIKsJYbDU18L1kESKIIiyjAMAyciGZnVe2FiGg+iIJQ+cRu6nITwKzrHcuWw3d64tYM4hNt5Q3ALD2YVPHqCXPZidUiYIXPjg6/A50BBzr8dvjsrHBCtceQTbQM+J02+J02bFpxbjXkt3b60BfN4shIalo7ZiKierKIky3lT5XMFTAYy2IglsNALIuTscllJ4Wigb5oFn3RbGV/p82CFq+CFo+CVreCFo+MkEeBYuVSEzp/DNlEdFqSRay0Zh5JqDg8ksRQXK33sIiIzshjt2KD3YsN7ebEQskwEElpGIjlyuE7i5HEZGOwTL6Id8MZvBvOVB3HZ7eixWOG7pZyJahmlwybND9dkWlpYcgmollp9Spo9SpIqgUcHU3hWDjDiyuJaFEQp5RL3dZtrvc2G4PlMFC+dmU0pWIsqVWVR43nCojnClV1vQUAPocVIbeCZreMkFsu3yqw2zjzTZMYsononHgUK7Z1B3DRCh/ejaRxZCTFCyuJaNExG4M50TWlwknJMDCeyWMsqWIkqWE0qWI0qSKS1iqz3gaAWLaAWLY6fAOAW5bQXAnd5pKTkFtmO/lliiGbiM6LTRKxvtWDdS1uDMZyeGc0hXDKLKt16vVDAma+oMiAgSKvqySiBiEKk+u8N7RPbtdLJUTSeYwmVYRTGsZSGsaSKqLpPIpTGhSkNB0pTce7kenLTjoD5oWWXX472nz2mjRao8bGkE1EcyIIQuWPx7kyDLPmbf94FgPjrGRCRI1JEkW0ehS0epSq7cWSgVgmj7GUhnBKNcN3SkM4pSE/ZQYhnisgfjKBAycTAACLIKDNp6CzXOGkK+CA38EKJ0sNQzYR1Y0gCJW13peu9DNwE9GiYhEFNLnNjpOAp7LdMAwkcgWMpTQMJ1QMlH+vpTSztGDRMCo1vX/3bhQA4LBZ0FWesOj0m6UFWd1kcWPIJqKGwMBNREuFMKW+9wUtbgCTwbt/PIvBWA7941kMxXOVCy2z+SIOj6RweMRc5y0ACHlkdPodlfDd7JYhcrZ70WDIJqKGw8BNREvN1OC9ucMHwFzrPZJQq4L3eCYPwLzAcqKF/EQjHVkSy0tM7OX13Q44ZEa5RsUzQ0QN7dTAnVR1aHoReb2EvF6CVv6a/N58TNWLyOVrH8gdNguaXDKCLhv8DhvGUiqORzKssEJE50wSRXT4HejwT17TktZ0DI5n0R8zJxYGpzTS0fQSesNp9IbTlf2DThs6Aw60ec014y1eBW5Z4vruBsCQTUSLhiAI8NqtAGZXDqtQLCGZKyCRKyCp6kiU72c0HcYsSnxLogC/04Yml60SrB226l+brV4Fmzt8GEuqeDeSQf94lvXDiei8uWQJ69s8WN9mrvEuGQbGUlplXXf/eBZj5UpOABDN5BHN5PHGwOQxHDYLWr0K2jzlLpZeBSG3wiY6C4whm4iWLKtFRNAlI3hK2+ViyUBKLVRCdzJnBnADBoJOGU0uG4IuGT67FaI4u9mgiUYXl3T7MRDL4XgkjdGkNqswT0R0OqIgVCqbXLoyAADI5YsYjGfLwdvsYpnJT36alp2hg6UAIOgyl6s4bJbylwS7dfL+1O2yVeT67zliyCaiZcciTq6NrDXJImJVkxOrmpzI5nUcj2RwPJJBMqfX/LUAsyZ50GlDh98BVS/i8HDq7E8iokXNbrNgbciNtSF3ZVtKLWA0qWEkkcNIUsVIsrqDpQEgks4jks7P6jWE8uu4ZAmdfge6gw6sDDoRdNm4FGWWGLKJiOaJwyZhY7sXG9u9iKQ19EUyOBnPIZsvzmmG2yICLR6lvJazusyXJAp462SyBqMnosXErVjhVqzoCbkq24olA9G0VgndowkVKU1HNl9ELl9ErnD6a0kMmDPi2XwRYykNf+w3L7502izoDjorobvNp0ASuQxlJgzZREQLYKKL3CUASiUD6byOjKYjrZod4ibupzUdhRnWdFstAlb47OjwO9DmU07bLW6iagGDNhFZRKGylG3zDI+XDAO5cpDO5vWq+9l8EdlCEbFMHv1TKjtl8kUcGk7i0LD5O0YSzYZk3UEHugNOdAUcsNtY3xtgyCYiWnCiKMCjWOFRrIB3+uOaXkRa1ZHRisjkdfgcVrS4lVmvD2fQJqLZEAUBTlmCU5YAyKfdr2QYGE2q6ItmcSKawYloFolcAQCgl4zKsjggDAHmBeFrml1Y3ezEqqAT8jJtqsOQTUTUYGTJAtllQdB19n1Ph0GbiGpFFAS0ee1o89rx/tVBAEA8m68K3aNJFQbMZSbDCRXDCRW/6Y1AFIAOvwOrm51Y0+xCV8Bx2k/ilhqGbCKiJYpBm4jmi89hw1aHDVs7fQDMiif941n0Rc1Z7cFYFiUDKBlAf7n04L4jYUiigK6gAz3NLqxudmGFzw7LLD+lW2wYsomIlrDNHT4IEHDgZKLeQyGiJcxus2BdqxvrWs2KJ2qhiL6oWUbwWDiN4YQKwFxeMllecBSyJKI76IBLtkKWRMhWEYpkgU0SoVhF85M9qXxrFSv3DcNo+ConDNlEREvcRR3mwm8GbSJaKIrVgvWtHqxvNZvqZDQd70YyeDecxrFwBpG02VBH00t4ZzR9pkPN6DPv7ayqrNSIGLKJiJYBBm0iqienLOGiFV5ctML8XZTIFSqB+2Q8C7VQgqYXoRVKOFuFU4sgQF4E3SsZsomIlgkGbSJqFF67FRd3+XFxl79qu2EYKBSNSuDW9BJUvYi8XoJaKELTSyiWGn+pCMCQTUS0rMxX0JZEAW5FgsduliacuO9WJETTebwzmsLJeI5t5onojARBgE0SYJNEuJV6j2ZuGLKJiJaZizq8EATgzcFzC9qSKEC2imaNb7sEtzIZqM06uzNr9Spo9SpIazqOjqZwLJxBvtzYgohoqWLIJiJahjat8EIUBIylVNgk84p9m8W8on/iy2oRIE/ZNtcyWy5ZwsVdfly0wou+aBZHR1OIZQs1+omIiBoLQzYR0TK1od2DDfAs+OtKFhE9IRd6Qi6MpVS8M5Ku1NQlIloqGLKJiKhuQm4FIbeCbF5H/3gWKVVHWtWR1nRk8zqKXFVCRIsUQzYREdWdwyZV6ulOMAwDuUIRac0M3hmtfF/TkdF0ZPPFOo2WiOjsGLKJiKghCYIAh02CwyYh5J7+eLFk4PBIEgdPJqFzrQkRNZjGr+RNREQ0A4soYGO7F392UStavXK9h0NEVIUhm4iIFjW3YsWV61vw/jXBRdEFjoiWBy4XISKiJWFVkxNtXgWv98dxPJKp93CIaJnjP/mJiGjJUKwWvH9NEB++MAS3wnkkIqofhmwiIlpyWjwKPnpRGza2ezDHHjpEROeF/8wnIqIlySIK2NLpw8qgE78/HkUknT/rc0QBcMgSXLIFTpvZLr5kGEirOpLl+t1sCU9Es9FwITuVSuH+++/HG2+8gddffx2RSAT33Xcfdu/ePW3f1157DXfccQdefvllSJKEK6+8Et/+9rexevXqhR84ERE1JK/Dio9sbMXR0RQOnEzAahHhkiU4bBY4Zcm8L1vgkiXYrRYIwpmnvjW9WNU0J6kWkFZ1pFQdGgM4EZU1XMiORqN49NFHsWXLFuzcuRM//vGPZ9zv8OHD2LFjB7Zu3Yqf/OQnUFUV9957Ly677DK88cYbaG5uXuCRExFRI1vb4sbalhkKbp8jWbJAdlnQ5JpeNrBQLCGeLeBENIPjkQwKRdbvJlquGi5kd3d3IxaLQRAERCKR04bse++9F7Is49lnn4XHY3YJ27ZtG9auXYtvf/vb+Md//MeFHDYRERGsFhHNbhnNbhkXd/kxMJ7FsXAao0mt3kMjogXWcBc+CoJw1o/qdF3Hs88+i09/+tOVgA2YAf2KK67AT3/60/keJhER0RlZRAErm5z48IUt+MQW8yJMu63h/uwS0TxpuJns2Th27BhyuRw2b9487bHNmzfjV7/6FVRVhaIoMz5/bGwM4XC4altvb++8jJWIiMitWLGl04fNHV4MJVQcG0tjKJ4Du8ETLV2LMmRHo1EAQCAQmPZYIBCAYRiIxWJoa2ub8fmPPPII9uzZM69jJCIiOpUgCFjhs2OFzw61UMRQPIdwSkM4rSGZ0+s9PCKqoUUZsiecaVnJmR67+eabcf3111dt6+3txc6dO2s1NCIiojNSrBasbnZhdbMLAKAWioikNTN0pzTEsnkUWayEaNFalCE7GAwCmJzRnmp8fByCIMDn8532+aFQCKFQaL6GR0REdM4UqwUdfgc6/A4AQLFkIJoxA3cknUckpbFEINEisihD9po1a2C323HgwIFpjx04cAA9PT2nXY9NRES0GFhEASG3gpB78u9ZIlfAeCaP8YyG8UwBsUweOhd2EzWkRRmyJUnCJz7xCTzzzDP45je/CbfbrHva39+PvXv34vbbb6/zCImIiGrPa7fCa7diVZMTAGAYBpI5HdGMVg7fecSzBQZvogbQkCH7l7/8JTKZDFKpFADg0KFDePrppwEAH/3oR+FwOLBnzx5ceuml+PjHP4677rqr0oymqakJX/nKV+o5fCIiogUhCAK8Diu8DitWl3uwGYaBRK6AaDl0R9N5xLN5VjIhWmANGbL/63/9rzhx4kTl+6eeegpPPfUUAOD48eNYuXIl1q9fj3379uHOO+/EddddV9VWnd0eiYhouRIEAT6HDT6HDWvKfw6LJcMM3BkN0XQekbSGjFas70CJlriGDNl9fX2z2m/btm349a9/Pb+DISIiWuQsolDpRDlhoppJJJ1HNK0hmslDZxt4opppyJBNRERE8+vUaiYTy0wmQncknUdSLcBg7iY6LwzZREREVLXMpCdk1u7O6yWMZ/LlGW9zqQnLCBLNDkM2ERERzcgmiWj1Kmj1TpYRTKmTs90n4zmu7SY6DYZsIiIimjW3YoVbMcsIvqdkYDCWw9sjSUTT+XoPjaihMGQTERHReRFFAV1BB7qCDoRTGo6MpDAQy3IdNxEYsomIiKgGJqqXZDQdR0ZTODaWRoHVSmgZY8gmIiKimnHKEt7T5cdFK7x4N5zBkdEU0qp+TseQJREuRYJbllAygOFEjoGdFh2GbCIiIqo5q0XEulY3LmhxYTCWw5GRFMZSGgBAFACHbIZolyLBJU/5UiRYLWLVsUolA2MpDSfjWQzGeLElLQ4M2URERDRvBEFAZ8CBzoADiVwBFlGA02aBIAizPoYoCpUqJ9u6gUS2gMF4FidjOUQzea4Bp4bEkE1EREQLwmu31uY4Diu8Di82tnuhFooYiudwMp7DcEJl10pqGAzZREREtGgpVgtWN7uwutmFUsnAcFLFK8fHkc1zSQnVl3j2XYiIiIganygKWOGz45qNrQi6bPUeDi1zDNlERES0pNhtFlx1YQtWNjnqPRRaxhiyiYiIaMmxiAI+sKYJWzt9OIdrLIlqhiGbiIiIlqwN7R5cfkEzrBYmbVpYDNlERES0pLX77PjIxla4FdZ7oIXDkE1ERERLntduxTUbW9HmVeo9FFomGLKJiIhoWbBJInasa8a6Vne9h0LLAD83ISIiomVDEARs6/bD57DilePjKM2id43HLiHolBFw2pDN6xjP5BHN5Nn4hs6IIZuIiIiWnTXNLngUK/7jaBhqoVTZbpNEBF02NLtkBF02BJ0ybNL0D/4Nw0AypyOS0RBN5zGe0RDPFmYV2ml5YMgmIiKiZanZLeOaja04MpqC32FD0GWDR5ld63dBEMrt3a1Y02xu04slxLIFRDMaxtN5RDJ5pFV9Hn8CamQM2URERLRsOWUJ7+ny1+RYkkVEs1tGs1uubMtoOk5Es+gfz2A8U6jJ69DiwJBNRERENE+csoQN7R5saPcgkSvgRDSDE9EsUpzhXvIYsomIiIgWgNduxeYOHzZ3+DCeyaMvmkF/NItsvljvodE8YMgmIiIiWmABpw0Bpw0Xd/oQTmnoi2bRP55FXi+d/cm0KDBkExEREdWJIAgIeRSEPAou6fZjKJHDWyeTGM/k6z00miOGbCIiIqIGIIoCOvwOdPgdeDecxp8G48jlObO9WDFkExERETWY1c0udAUcODiUxOGRJIrM2osO26oTERERNSDJImJLpw8f39yOroCj3sOhc8SQTURERNTAnLKED61twlUbQgg4bfUeDs0SQzYRERHRIhByK7h2Uyu2rw7AbmOEa3Rck01ERES0iKxudqEz4MAhrtduaAzZRERERIuMtbxeuyfkwlsnExiM5aCxxnZDYcgmIiIiWqScsoT3rQ7ivYaBcFrDYCyHwVgOabZtrzuGbCIiIqJFThAEhNwKQm4F7+nyI57NVwI3G9vUB0M2ERER0RLjc9jgc9iwaYUX2byOk7EcBuM5FPQSrJIIm0WE1SLCahFgtYiQpfL3krlt4vGkWsB/HI1ALxr1/pEWHYZsIiIioiXMYZOwtsWNtS3uc36uU5Zw5foQ9h4eQ4FB+5yw/gsRERERnVaTS8ZVF7ZAlhgbzwX/axERERHRGfmdNly1oYX1uc8B/0sRERER0Vl57VZcdWELnLKl3kNZFBZtyN63bx8EQZjx6+WXX6738IiIiIiWHLdiBm23wsv6zmbR/xd66KGHcMUVV1Rt27RpU51GQ0RERLS0OWUJV13YgpcOjyGRK9R7OA1r0YfstWvXYvv27fUeBhEREdGyYbdZ8OELQ9h3ZAzjGQbtmSza5SJEREREVD+K1YIr17egyWWr91Aa0qKfyb7lllvwmc98Bg6HA+9///txzz334EMf+tAZnzM2NoZwOFy1rbe3dz6HSURERLTk2CQRV64PYf87YYwmtVk/T7IICDptCLpkeO1W5PJFpDUdaa2AtFZEVtNRWuRluRdtyPZ6vbjtttuwY8cOBINB9Pb24lvf+hZ27NiBX/ziF7jmmmtO+9xHHnkEe/bsWcDREhERES1NkkXEjnUh/MfRMIbi6oz7eOwSmlwymlw2NJWDtSAIpz1mqWQgk9eR1nRkNB0p1byfLt8uBoJhGIv83wmT4vE4LrroIgQCAfzpT3867X6nm8neuXMn3nrrLWzcuHG+h0pERES0pJRKBn57LIqRpIqgy4Ymp4wmtw1BpwzbEmhkc/DgQWzatGnWWXHRzmTPxOfz4eMf/zh+8IMfIJfLwW63z7hfKBRCKBRa4NERERERLV2iKOCDPcEzzlAvJ4v/nxWnmJiY5wkmIiIiWljMX5OWVMiOxWJ49tlnsXXrViiKUu/hEBEREdEytWiXi9x0003o6urCJZdcgqamJhw9ehQPP/wwRkdH8fjjj9d7eERERES0jC3akL1582Y8+eST+MEPfoB0Oo1AIIAPfehD+Ld/+zdceuml9R4eERERES1jizZk33XXXbjrrrvqPQwiIiIiommW1JpsIiIiIqJGwJBNRERERFRjDNlERERERDXGkE1EREREVGMM2URERERENcaQTURERERUY4u2hF+taZoGAOjt7a3zSIiIiIio0UxkxInMeDYM2WUDAwMAgJ07d9Z3IERERETUsAYGBvCe97znrPsJhmEYCzCehhePx7F//350dnZCluV5eY3e3l7s3LkTP/vZz9DT0zMvr0Fzw3PU2Hh+Gh/PUWPj+Wl8PEeNS9M0DAwM4PLLL4fP5zvr/pzJLvP5fPjkJz+5IK/V09ODjRs3Lshr0fnhOWpsPD+Nj+eosfH8ND6eo8Y0mxnsCbzwkYiIiIioxhiyiYiIiIhqjCGbiIiIiKjGGLIXUHNzM+677z40NzfXeyh0GjxHjY3np/HxHDU2np/Gx3O0dLC6CBERERFRjXEmm4iIiIioxhiyiYiIiIhqjCGbiIiIiKjGGLKJiIiIiGqMIbuG9u3bB0EQZvx6+eWXq/Z97bXXcNVVV8HlcsHn8+FTn/oU3n333TqNfOlJpVK444478JGPfATNzc0QBAG7d++ecd9zORff+973sH79esiyjFWrVmHPnj0oFArz+JMsXbM9R5/97GdnfE+tX79+xuPyHNXGSy+9hM997nNYv349nE4nVqxYgU9+8pP44x//OG1fvofqY7bniO+h+njjjTfwsY99DF1dXbDb7QgEAnj/+9+Pf//3f5+2L99DSxND9jx46KGH8Lvf/a7qa9OmTZXHDx8+jB07diCfz+MnP/kJHnvsMbzzzju47LLLEA6H6zjypSMajeLRRx+FpmnYuXPnafc7l3Px4IMP4rbbbsOnPvUpvPDCC7j55pvx0EMP4ZZbbpnnn2Zpmu05AgC73T7tPfXkk09O24/nqHa+//3vo6+vD7fddhuee+45/NM//RPGxsawfft2vPTSS5X9+B6qn9meI4DvoXqIx+Po7OzEQw89hOeeew7/+q//ipUrV+Iv/uIv8MADD1T243toCTOoZvbu3WsAMJ566qkz7nf99dcbTU1NRiKRqGzr6+szrFarcccdd8z3MJeFUqlklEolwzAMIxwOGwCM++67b9p+sz0XkUjEUBTF+NKXvlT1/AcffNAQBME4ePDg/PwgS9hsz9Ff/uVfGk6n86zH4zmqrdHR0WnbUqmU0dLSYnz4wx+ubON7qH5me474Hmos73vf+4zOzs7K93wPLV2cyV5guq7j2Wefxac//Wl4PJ7K9u7ublxxxRX46U9/WsfRLR0TH4eeybmci+effx6qquKv/uqvqo7xV3/1VzAMAz/72c9qOv7lYDbn6FzwHNVWKBSats3lcmHDhg0YGBgAwPdQvc3mHJ0LnqOF0dTUBEmSAPA9tNQxZM+DW265BZIkwePx4JprrsFvfvObymPHjh1DLpfD5s2bpz1v8+bN6O3thaqqCzncZetczsVbb70FALjooouq9mtra0NTU1PlcZofuVwOra2tsFgs6OjowK233orx8fGqfXiO5l8ikcBrr72GjRs3AuB7qBGdeo4m8D1UP6VSCbquIxwO45FHHsELL7yAO++8EwDfQ0udVO8BLCVerxe33XYbduzYgWAwiN7eXnzrW9/Cjh078Itf/ALXXHMNotEoACAQCEx7fiAQgGEYiMViaGtrW+jhLzvnci6i0ShkWYbT6Zxx34ljUe1t2bIFW7ZsqVzXsH//fnznO9/Biy++iFdeeQUulwsAeI4WwC233IJMJoOvfvWrAPgeakSnniOA76F6u/nmm/HDH/4QAGCz2fDP//zP+Ou//msAfA8tdQzZNXTxxRfj4osvrnx/2WWXYdeuXbjoootwxx134Jprrqk8dqaPyWv5ETqd3WzPBc9Zfdx+++1V31999dW4+OKLcd111+FHP/pR1eM8R/PnnnvuwRNPPIHvfe972LZtW9VjfA81htOdI76H6uvuu+/GF77wBYyNjeHnP/85br31VmQyGfzd3/1dZR++h5YmLheZZz6fDx//+Mfx5ptvIpfLIRgMAsCM/+IcHx+HIAjw+XwLPMrl6VzORTAYhKqqyGazM+470ywEzZ9du3bB6XRWlcbkOZo/e/bswQMPPIAHH3wQt956a2U730ON43Tn6HT4Hlo4XV1duOSSS/DRj34U3//+9/GlL30J//AP/4BwOMz30BLHkL0ADMMAYP4rc82aNbDb7Thw4MC0/Q4cOICenh4oirLQQ1yWzuVcTKyBO3XfkZERRCKRqhKNtDAMw4AoTv4K4zmaH3v27MHu3buxe/du3H333VWP8T3UGM50js6E76H6eO973wtd1/Huu+/yPbTEMWTPs1gshmeffRZbt26FoiiQJAmf+MQn8MwzzyCVSlX26+/vx969e/GpT32qjqNdXs7lXFx77bVQFAWPP/541TEef/xxCIJw1jrPVFtPP/00stkstm/fXtnGc1R7999/P3bv3o2vfe1ruO+++6Y9zvdQ/Z3tHJ0O30P1s3fvXoiiiNWrV/M9tNTVp3Lg0nTjjTcad955p/HUU08Ze/fuNR599FFj3bp1hiRJxq9+9avKfm+//bbhcrmM//Sf/pPx3HPPGc8884yxadMmo7293RgbG6vjT7C0PPfcc8ZTTz1lPPbYYwYA4/rrrzeeeuop46mnnjIymYxhGOd2Lh544AFDEATj7rvvNvbt22d861vfMmRZNr74xS/W48dbEs52jvr6+owPfOADxj//8z8bzz33nPHLX/7SuOuuuwxFUYyNGzca6XS66ng8R7Xz7W9/2wBgXHvttcbvfve7aV8T+B6qn9mcI76H6ueLX/yi8ZWvfMV48sknjX379hlPP/20ccMNNxgAjL//+7+v7Mf30NLFkF1D3/jGN4ytW7caXq/XsFgsRnNzs7Fr1y7jD3/4w7R9X331VePDH/6w4XA4DI/HY+zcudPo7e2tw6iXru7ubgPAjF/Hjx+v7Hcu5+Kf/umfjAsuuMCw2WxGV1eXcd999xn5fH6BfqKl52znaHx83Ni1a5excuVKw263GzabzVi7dq1xxx13GPF4fMZj8hzVxuWXX37ac3Pq/AzfQ/Uxm3PE91D9PPbYY8Zll11mNDU1GZIkGT6fz7j88suNf/u3f5u2L99DS5NgGOUFw0REREREVBNck01EREREVGMM2URERERENcaQTURERERUYwzZREREREQ1xpBNRERERFRjDNlERERERDXGkE1EREREVGMM2URERERENcaQTURERERUYwzZRETL0O7duyEIAiKRSL2HQkS0JDFkExERERHVGEM2EREREVGNMWQTES1jo6OjuPHGG+H1etHS0oLPfe5zSCQSlccFQcCtt96KH/7wh7jgggsgyzI2bNiA//2//3cdR01E1Pikeg+AiIjq59Of/jRuuOEGfP7zn8eBAwfwD//wDwCAxx57rLLP//k//wd79+7F17/+dTidTjzyyCO48cYbIUkSrrvuunoNnYiooQmGYRj1HgQRES2s3bt3Y8+ePfjmN7+Jv//7v69sv+WWW/DYY48hm81CEAQIggC73Y7jx4+jpaUFAFAsFrFp0ybouo6jR4/W60cgImpoXC5CRLSM/fmf/3nV95s3b4aqqhgbG6ts+/CHP1wJ2ABgsVhwww03oLe3F4ODgws2ViKixYQhm4hoGQsGg1Xfy7IMAMjlcpVtra2t0543sS0ajc7j6IiIFi+GbCIiOqORkZHTbjs1pBMRkYkhm4iIzujFF1/E6Oho5ftisYgnn3wSa9asQUdHRx1HRkTUuFhdhIiIzqipqQlXXnkl7rnnnkp1kcOHD7OMHxHRGTBkExHRGf35n/85Nm7ciK997Wvo7+/HmjVr8MQTT+CGG26o99CIiBoWS/gREdFpCYKAW265Bf/yL/9S76EQES0qXJNNRERERFRjDNlERERERDXGNdlERHRaXFFIRHR+OJNNRERERFRjDNlERERERDXGkE1EREREVGMM2URERERENcaQTURERERUYwzZREREREQ1xpBNRERERFRjDNlERERERDXGkE1EREREVGMM2URERERENfb/A6CrqWupi/U3AAAAAElFTkSuQmCC", + "text/plain": [ + "
" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import arviz as az\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "import pandas as pd\n", - "\n", - "import bambi as bmb" + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(7, 3), dpi=120)\n", + "bmb.interpret.plot_predictions(model, idata, \"hp\", pps=True, ax=ax);" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here, we notice that the uncertainty in the conditional adjusted predictions is much larger than the uncertainty when `pps=False`. This is because the posterior predictive distribution accounts for the uncertainty in the model parameters and the uncertainty in the data. Whereas, the posterior distribution only accounts for the uncertainty in the model parameters.\n", + "\n", + "`plot_predictions` allows up to three covariates to be plotted simultaneously where the first element in the list represents the main (x-axis) covariate, the second element the group (hue / color), and the third element the facet (panel). However, when plotting more than one covariate, it can be useful to pass specific `group` and `panel` arguments to aid in the interpretation of the plot. Therefore, `subplot_kwargs` allows the user to manipulate the plotting by passing a dictionary where the keys are `{\"main\": ..., \"group\": ..., \"panel\": ...}` and the values are the names of the covariates to be plotted. For example, passing two covariates `hp` and `wt` and specifying `subplot_kwargs={\"main\": \"hp\", \"group\": \"wt\", \"panel\": \"wt\"}`. " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB8UAAAMWCAYAAABoQVdvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXxlZ33n+c/Zz7m7rqQrqSTVrirvxmC8AMEYbAIkQJNlOslAoHucENphkpBMkoamAxOMgZ4hSU8nQF7pGEiTQNNpszSxAya2CUvFxnZhu7zVvqq0S3ffz/xxtJRcZbtcrqpbkr7v1+uxdM/dHtWVpUf3e36/xwjDMERERERERERERERERERERGQVMjs9ARERERERERERERERERERkXNFobiIiIiIiIiIiIiIiIiIiKxaCsVFRERERERERERERERERGTVUiguIiIiIiIiIiIiIiIiIiKrlkJxERERERERERERERERERFZtRSKi4iIiIiIiIiIiIiIiIjIqqVQXEREREREREREREREREREVi2F4iIiIiIiIiIiIiIiIiIismopFBcRERERERERERERERERkVVLobiIyIvwF3/xF3z+85/vyHN///vf55ZbbuEVr3gFnudhGAYHDhw47fu/7nWvwzCMk8ab3vSmk277H/7Df+Bnf/ZnGRwcxDAM3vOe95zyMf/u7/6O1772tfT19eF5HuvWreOtb30rP/zhD8/wqxQRERG5sHVqPdhqtfj0pz/Nm970JoaGhojFYlx88cX84R/+IbOzs6f1GC9mPbhnzx7e9a53sX79eoIgYMuWLXzgAx9gampq2e127drFv/t3/47rr7+eeDyOYRjcd999Jz3e6Ogo/+E//Aeuv/56enp6SKVSvOIVr+Av//IvabVay2573333nXKehmGwY8eO0/43ExEREVkJOvl+43/+z/+Z6667jp6eHjzPY/369fzSL/0Su3btOq37f+hDH+Kqq64im83i+z6bN2/m13/91zl48OCy2z300EPceuutXH755SSTSfr6+rjpppv4p3/6p5Me8yMf+cgp14G+75+Vr1lE1i670xMQEVlJ/uIv/oKenp7nDInPpe9+97vcc889XHXVVaRSqVO+2fhCNm/ezJe+9KVlxzKZzEm3+5M/+ROuuOIK3va2t/HXf/3Xz/l4U1NTvPrVr+a3fuu36OnpYXR0lE9/+tO89rWv5bvf/S433HDDi56jiIiIyIWsU+vBSqXCRz7yEX75l3+ZW265hZ6eHh5++GE+9rGP8c1vfpMf//jHBEHwgo9zOuvBiYkJrrvuOlKpFH/8x3/M+vXreeSRR/ijP/oj7r33Xh566CFMMzrH/sc//jFf+9rXuOqqq3jDG97AN7/5zVM+70MPPcQXv/hFfvVXf5UPf/jDOI7DXXfdxfve9z527NhxyjXnxz/+cW688cZlxy677LIX/BpFREREVpJOvt84NTXFm9/8Zq688kq6urrYt28fn/jEJ7j22mt56KGH2L59+/Pef3Z2ll/+5V/m4osvJplM8sQTT/Cxj32Mb3zjG+zatYvu7m4gKqx54IEH+Lf/9t9y5ZVXUiqV+OxnP8sb3vAGvvCFL/Crv/qrJz323XffTTqdXry8sP4UETlTRhiGYacnISKyUlx22WX09PScUSD9UrXb7cXF3//z//w//F//1//F/v372bhx42nd/3Wvex2Tk5M8/vjjL+q5EokEv/ALv3DaZ6zOzc3R29vLL/3SL/HFL37xtO4jIiIislJ0aj3YarWYnZ1dfGNxwf/4H/+DX/zFX+Rv/uZveOc73/m8j3G668G/+qu/4td+7de45557eMMb3rB4/Pbbb+eDH/wgDz/8MFdddRWwfN24MJd7772X173udcsec2ZmhkQigeM4y47/5m/+Jn/+53/OoUOHGB4eBqJK8RtvvJGvfvWr/MIv/MLzzlVERERkpevk+42n8uSTT3LJJZfw4Q9/mP/7//6/X/T977rrLt7ylrfwX//rf+Xf/tt/C8D4+Di5XG7Z7VqtFi9/+csplUrs2bNn8fhHPvIRPvrRjzIxMUFPT89L+2JERE6gU2tEZM3ZtWsXhmHw1a9+dfHYQw89hGEYXHrppctu+7a3vY1XvOIVAGzcuJFdu3Zx//33L7btOd1A+mw4n2dDvpTnSiaT+L6PbasZiYiIiFyYVuJ60LKskwJxgGuuuQaAw4cPn7XnWgiuT6zMgaWK8hNbV57uurGrq+ukQByW5n/kyJEzmaqIiIjIBWElri+fS29vL8AZv7d3qvs/OxCHaH37ile84qyuY0VEno9CcRFZcy699FIGBga45557Fo/dc889BEHAE088wbFjxwBoNpvcf//93HTTTQDceeedbN68mauuuoof/ehH/OhHP+LOO+983udqtVo0m80XHO12+9x9wSfYu3cv2WwW27bZsmULH/rQh6hUKi/5cVutFo1GgwMHDvC+972PMAy59dZbz8KMRURERM6+1bQeXNiH8dlvtj6X01kP/qt/9a9Yv349v/u7v8uuXbsoFot873vf4xOf+ARvfetbufjii89ors81f9u22bZt20nX3Xrrrdi2TSqV4qd/+qf5/ve/f9aeV0RERORsWunry1arRa1W46mnnuKWW24hl8vxb/7Nvznt+zebTSqVCo888gi//du/zbZt2/i5n/u5F7zPP//zPz/nOvbyyy/Hsiz6+vr41V/9VQ4dOnTa8xERORWF4iKyJr3hDW84aZH6zne+k66ursXjDzzwAPl8fnGRetVVVxEEAalUiuuuu47rrrtusW3k8z2P4zgvOBZaCZ1Lr3nNa/j0pz/N3//93/ONb3yDt7zlLXzqU5/iTW9600sO5S+99FJc12XTpk1885vf5O67714841VERETkQrQa1oNHjx7lD//wD7n66qv52Z/92Re8/emuB9PpNDt27KDRaHDZZZeRTCa54YYbuPbaa5dVP71U3/72t/mbv/kb3v/+9y+rgk+n0/zWb/0Wn/vc57j33nv5sz/7Mw4fPszrXvc6/vEf//GsPb+IiIjI2bSS15fxeBzf97n44ot58sknue+++xa3tnkhx48fx3EcYrEYL3/5y2k2m9x7770kEonnvd9HPvIR9uzZwx/90R8tO75lyxZuu+02/vqv/5p77rmHD3zgA3zrW9/immuu4ejRo6f9NYmIPJt624rImvSGN7yB//bf/hv79+9nYGCA73//+7zvfe9jamqK73znO/zqr/4q99xzD57n8ZrXvOaMn+dzn/schULhBW93PvbH+djHPrbs8lve8hY2btzI7/3e7/H1r3+dd7zjHWf82H//939PqVTi0KFDfPazn+XNb34z3/jGN07aS1JERETkQrHS14PT09O85S1vIQxDvvKVr5xWG/PTXQ/OzMzw9re/nXK5zJe+9CWGh4d5/PHH+eM//mPe9ra38a1vfeslb5Xz8MMP87/9b/8b1113Hbfffvuy66666qplbwb/1E/9FO94xzu4/PLL+f3f/31++qd/+iU9t4iIiMi5sJLXlz/84Q+p1+vs3buXP/mTP+HGG2/ku9/97ml1I+rp6eHBBx+kVqvx5JNP8qlPfYobb7yR++67j4GBgVPe56/+6q+47bbb+N3f/V3e/va3L7vuXe9617LLN954IzfeeCPXX389n/rUp/izP/uz0/66REROpFBcRNakhbMx77nnHjZt2kSj0eD1r389Y2Nj/PEf//Hida9+9asJguCMn2fr1q2EYfiCtzuf+4Wf6J3vfCe/93u/x44dO15SKL6wQL7mmmv4V//qX3HVVVfxW7/1W/zkJz85W1MVEREROatW8npwZmaGm2++maNHj/JP//RPbN68+Yznd6r14Cc/+Ul27tzJwYMHF9/I/Kmf+ikuuugiXv/61/OlL32Jd7/73Wf8nI888gg333wzIyMj/MM//AOe573gfTKZDD/7sz/LZz/7WSqVykt6TURERETOhZW8vnz5y18OwHXXXcfb3vY2tm7dygc/+EG+/vWvv+B9bdvm6quvBuDVr341b3rTm9i0aROf+MQnThlg33HHHbz3ve/l13/91/lP/+k/ndb8rrnmGrZt28aOHTtO+2sSEXk2tU8XkTVpaGiIbdu2cc899/Cd73yHq6++mkwmwxve8AZGR0f5l3/5F3bs2LG4mD1TF1L79OdzNkN527Z5+ctfzjPPPHPWHlNERETkbFup68GZmRluuukm9u/fz3e+8x2uuOKKlzS/BSeuB3fu3Mng4OBJlT2vfOUrAXj88cfP+HkeeeQRbrrpJjZs2MC3v/1t0un0ad934c1fwzDO+PlFREREzpWVur58tmQyyUUXXXTG7+0NDQ2xbt26U97/jjvu4JZbbuHd7343n/3sZ1/Uui4Mw44VFonI6qBKcRFZs2666Sb++3//7wwPD/MzP/MzAGzbto3169fzH//jf6TRaJy0SPU8j0qlctrPcSG1Tz+VL3zhC0B0FujZUq1W2bFjB1u3bj1rjykiIiJyLqy09eBCIL5v3z6+853vvOB+k6fjVOvBdevW8d3vfpejR48yODi4ePxHP/oREL3ReSZ27tzJTTfdxNDQEN/5znfo6uo67fvOzMzwv/7X/+JlL3sZvu+f0fOLiIiInGsrbX15KpOTkzz22GO8+tWvPqP779mzhyNHjvC2t71t2fHPf/7z3HLLLbzzne/kr/7qr15UIL5jxw52797N//l//p9nNCcREVAoLiJr2Bve8Ab+4i/+gsnJSf70T/902fE77riDrq4uXvGKVyy7z+WXX86Xv/xlvvKVr7B582Z83+fyyy9/zufYvn37WZvvxMQE999/PwCPPfYYAHfddRe9vb309vZyww03LN7Wtm1uuOEGvvvd7wLwz//8z9x222284x3vYPPmzVSrVe666y7+8i//kte//vW89a1vXfZc999/PxMTEwC0Wi0OHjzI//gf/wOAG264gd7eXgBe9apX8ba3vY2LL76YdDrNgQMH+MxnPsPevXu58847z9rXLiIiInIurKT1YKVS4ad/+qd55JFH+NM//VOazeay9pG9vb1s2bJl8fJLWQ/eeuutfOlLX+Lmm2/mD//wDxf3FP/Yxz5GX18f//v//r8v3rZcLvMP//APAIvzuf/++5mcnCQej/PmN78ZgKeffnrxDeDbbruN3bt3s3v37sXH2bJly+Ia81d+5VdYv349V199NT09PezevZv/9//9fxkbG+Pzn//8Wfn3FBERETkXVtL6cm5ujptvvplf+ZVfYWRkhCAIeOaZZ/izP/szarUaf/RHf7Ts9s9eXz766KP8zu/8Dr/wC7/A5s2bMU2Txx57jD/5kz+hu7ub3/u931u871e/+lX+j//j/+BlL3sZ733ve3nggQeWPfZVV121uKXOlVdeyTvf+U4uvvhifN/ngQce4D/9p/9Ef38/v//7v39WvnYRWaNCEZE1amZmJjRNM4zH42G9Xl88/qUvfSkEwp/7uZ876T4HDhwI3/jGN4bJZDIEwg0bNpy3+d57770hcMpxww03LLvts4/t3r07fMtb3hIODg6GnueFvu+Hl19+eXjbbbeF1Wr1pOe64YYbnvO57r333sXb/e7v/m545ZVXhul0OrRtO+zv7w/f8Y53hD/4wQ/O0b+CiIiIyNmzktaD+/fvf871GRC++93vXnb7l7oefPjhh8N3vOMd4dDQUOh5Xrh58+bwlltuCQ8dOnTa8zrx3+aOO+543vnfcccdi7e9/fbbw5e97GVhOp0OLcsKe3t7w3e84x3hAw88cDb+KUVERETOmZW0vqxWq+Ett9wSXnzxxWEikQht2w6HhobCd77zneGuXbtOuv2z15fHjx8P3/nOd4ZbtmwJY7FY6LpuuHnz5vA3fuM3Tlozvvvd737eteD+/fsXb/tLv/RL4datW8N4PB46jhNu2LAh/I3f+I3w2LFj5+qfQkTWCCMM5zflEhERERERERERERERERERWWXMTk9ARERERERERERERERERETkXFEoLiIiIiIiIiIiIiIiIiIiq5ZCcRERERERERERERERERERWbUUiouIiIiIiIiIiIiIiIiIyKqlUFxERERERERERERERERERFYtheIiIiIiIiIiIiIiIiIiIrJq2Z2ewLnWbrc5duwYyWQSwzA6PR0RERGRNS0MQwqFAuvWrcM0L6zzM7VuFBEREblwaN0oIiIiIqfjdNeNqz4UP3bsGMPDw52ehoiIiIic4PDhwwwNDXV6Gsto3SgiIiJy4dG6UUREREROxwutG1d9KJ5MJoHoHyKVSnV4NiIiIiJrWz6fZ3h4eHGNdiHRulFERETkwqF1o4iIiIicjtNdN676UHyhhVEqldIiVUREROQCcSG2mdS6UUREROTCo3WjiIiIiJyOF1o3Xlgb8oiIiIiIiIiIiIiIiIiIiJxFCsVFRERERERERERERERERGTVUiguIiIiIiIiIiIiIiIiIiKrlkJxERERERERERERERERERFZtRSKi4iIiIiIiIiIiIiIiIjIqqVQXEREREREREREREREREREVi2F4iIiIiIiIiIiIiIiIiIismopFBcRERERERERERERERERkVVLobiIiIiIiIiIiIiIiIiIiKxaCsVFRERERERERERERERERGTVUiguIiIiIiIiIiIiIiIiIiKrlkLxs6zVDnn86BzTpXqnpyIiIiIiIiIiIiIiIiIisubZnZ7AajNdqnPPE2OEwOWDKS4bzNCf9js9LRERERERERERERERERGRNUmh+DlQa7UxDYN/3j3JI4fm2N6f4GXDXQxnAwzD6PT0RERERERERERERERERETWDIXi50g25jKYCZirNHjk0Cy7RvNs7U3wsuEMm3ri2JY614uIiIiIiIiIiIiIiIiInGsdTWY/85nPcMUVV5BKpUilUlx//fXcddddi9e/5z3vwTCMZeO6667r4IxfvHTgMNKXpDvu8dTxAl958DBffvAQjx+do9ZsdXp6IiIiIiIiIiIiIiIiIiKrWkcrxYeGhvjEJz7B1q1bAfjCF77A29/+dh555BEuvfRSAN70pjdxxx13LN7Hdd2OzPWlSng2id4E1UaLQ1MV9k6UGMoEvGJjlov6k/iO1ekpioiIiIiIiIiIiIiIiIisOh0Nxd/61rcuu3zbbbfxmc98hh07diyG4p7n0d/f34npnRO+Y7GxJ06j1eb4XJWvPXyUwWzA1Ru6uHggpXBcREREREREREREREREROQsumA2tm61Wnz5y1+mVCpx/fXXLx6/7777yOVybNu2jV/7tV9jfHy8g7M8exzLZDgbY1NvnOlina/vPMbf7DjII4dmqDbUVl1ERERERERERERERERE5GzoaKU4wGOPPcb1119PtVolkUhw5513cskllwDw5je/mV/8xV9kw4YN7N+/nw9/+MO8/vWv56GHHsLzvFM+Xq1Wo1arLV7O5/Pn5es4UwvheKPVZixf5es7j/HjAzO8YmMXl6hyXEREROScWWnrRhERERHpDK0bRURERFa+jleKb9++nZ07d7Jjxw7e97738e53v5snnngCgH/9r/81P/MzP8Nll13GW9/6Vu666y6eeeYZvvWtbz3n491+++2k0+nFMTw8fL6+lJfEsUyGumJs7okzU67zjZ3H+OKPDvDQwRkqdVWOi4iIiJxtK3XdKCIiIiLnl9aNIiIiIiufEYZh2OlJnOimm25iy5YtfO5znzvl9SMjI9xyyy38wR/8wSmvP9WZm8PDw8zNzZFKpc7JnE80Uajx1z/YT0/cI3DPvMq72WpzPF+lXG8ykAm4ekOWSwZSL+kxRURERDotn8+TTqfP29rs+XR63SgiIiIiz03rRhERERE5Hae7bux4+/RnC8Nw2SLzRFNTUxw+fJiBgYHnvL/nec/ZWn0lsecrx5utNmP5Gt/4yVF27JvikoEUW3oTDHYFWKbR6WmKiIiIrFirZd0oIiIiIueW1o0iIiIiK19HQ/EPfvCDvPnNb2Z4eJhCocCXv/xl7rvvPu6++26KxSIf+chH+Pmf/3kGBgY4cOAAH/zgB+np6eEd73hHJ6d9XtmWyWBXQLPtMVWsc/8zE/xo3xTr0j6XDqbZ1BOnJ6FFuYiIiIiIiIiIiIiIiIjIqXQ0FB8bG+Nd73oXo6OjpNNprrjiCu6++25uvvlmKpUKjz32GF/84heZnZ1lYGCAG2+8ka985Sskk8lOTrsjbNOkL+XTl/Kp1FuM5WvsnzxGMnDY1B1je3+KTT1x4t4FV/wvIiIiIiIiIiIiIiIiItIxHU1Q/+t//a/PeV0QBPzjP/7jeZzNyhG4FsPZGGEYkq82efJ4gceP5emKuVzUn2RrLsFwNoZjmZ2eqoiIiIiIiIiIiIiIiIhIR6mseAUzDIN04JAOHFrtkOlSnR/uneKB/dP0pX1eNpzhsnVpAtfq9FRFRERERERERERERERERDpCofgqYZkGvUmP3qRHrdFislTnf/3kGI8cmuHaTd1cPJDCtVU5LiIiIiIiIiIiIiIiIiJri0LxVchzLAYzAc22x/G5Kl/beZSdh2e5ZlOWbX1JLNPo9BRFRERERERERERERERERM4LheKrmG2aDHXFqDfbHJmpcGjqCCN9Ca7ZlGVTTxzDUDguIiIiIiIiIiIiIiIiIqubQvE1wLVNNvXEqTZa7B4vsm+yxCUDKa7e2MVQV6zT0xMREREREREREREREREROWcUiq8hvmOxpTdBsdZk5+FZnhkrcMVQmpdv6CKX9Ds9PRERERERERERERERERGRs06h+BqU8Gy29SWZqzT40d4pnhjN8/LhLi4dTNOb9Do9PRERERERERERERERERGRs0ah+BqWDhxSvs10qc69T4/z44MzDHYFbO9PsiEbozuhgFxEREREREREREREREREVjaF4mucYRh0JzyycZdCtcn+iRJPH8+T8B3WZ2Ns64sC8q642+mpioiIiIiIiIiIiIiIiIi8aArFBYjC8VTgkAoc2mFIodpk91iRXUfzpAKbDd1RQL4+GyMTU0AuIiIiIiIiIiIiIiIiIiuDQnE5iWkYpAOH9HxAnq80eGq0wONH50gHLhcPJLlyOMNAOuj0VEVEREREREREREREREREnpdCcXlepmGQiblkYi7tMGSu3GDHvmkeO5LnknVROD7UFev0NEVERERERERERERERERETkmhuJw20zDoirt0xV3mKg0ePDDN48fyXNSf5KrhLoazAYZhdHqaIiIiIiIiIiIiIiIiIiKLFIrLGVlor56vNth5aJYnRvNs70vy8vVdrM/GME2F4yIiIiIiIiIiIiIiIiLSeQrF5SVJ+Q4p36FQbfD40TmeOl5gJJfg5Ru62NQdVzguIiIiIiIiIiIiIiIiIh2lUFzOiqTvkPQdSrUmT43meWaswJbeBK/Y0MXm3gSWwnERERERERERERERERER6QCF4nJWxT2bLbkk5XqTPeNF9kwU2daX5JUbs2zsjmnPcRERERERERERERERERE5rxSKyzkRc2029yao1Fs8NZpn70SRi/tTvHJTlsFM0OnpiYiIiIiIiIiIiIiIiMgaoVBczqnAtdiaS1KsNdl5eJbdY0UuH0rxig1ZepNep6cnIiIiIiIiIiIiIiIiIqucQnE5LxKezba+JLPlOj/cO8WTowVevj7Dy4a7SMecTk9PRERERERERERERERERFYpheJyXmViLunAYbpU57tPjfPo0Tmu3tDFFUMZ4p6+HUVERERERERERERERETk7FIKKeedYRh0Jzy64i7jhRp3PX6cnxyZ45pNWS4ZSOE7VqenKCIiIiIiIiIiIiIiIiKrhEJx6RjTMOhP+fQmPI7PVfnGzmM8cnCGK4czbM0lyMTcTk9RRERERERERERERERERFY4heLScZZpMNgV0Gi1GctX+eZPjpGJuWzvT3JRf5L12Ri2ZXZ6miIiIiIiIiIiIiIiIiKyAikUlwuGY5kMdcVohyGz5QYP7p/m4UMzDGUCLh9KszWXJB04nZ6miIiIiIiIiIiIiIiIiKwgCsXlgmMaBtm4SzbuUm20GMvX2L/zGF0xl4sGklzUn2I4G8MyjU5PVUREREREREREREREREQucArF5YLmOxbD2ah6fKZUZ8e+aR4+OMtQV8BlQ2m29CZUPS4iIiIiIiIiIiIiIiIiz0mhuKwIpmHQnfDoTnhU6i2OzVXZO1EiE3PoT/ts6onTn/LpT/v4jtXp6YqIiIiIiIiIiIiIiIjIBUKhuKw4gWuxfr56PF9pcHCyxNPHC9imQSpwWJ+NMZyN0Z/2ySU9HMvs9JRFREREREREREREREREpEMUisuKZRoGmZhLJuYCUG+2KVQbPH5sjkcOz+DbFunAYWNPPArKu2KkY2q1LiIiIiIiIiIiIiIiIrKWKBSXVcO1zcUW6wDVRou5SoMfH5jmgf3TpAKbDdk4W3MJ1mdjdMXdDs9YRERERERERERERERERM41heKyavmOhe9Y9KX8xVbrT47mefToLCnfYTgbY1tfkuGuYDFIFxEREREREREREREREZHVpaObLX/mM5/hiiuuIJVKkUqluP7667nrrrsWrw/DkI985COsW7eOIAh43etex65duzo4Y1mpFlqtb+5NMJJLEnNtdo8V+dojR7jjhwf4uwcO8fChGSYKNcIw7PR0RUREREREREREREREROQs6Wil+NDQEJ/4xCfYunUrAF/4whd4+9vfziOPPMKll17Kpz71KT796U/z+c9/nm3btvGxj32Mm2++maeffppkMtnJqcsKZhoG6cAhHTi0w5Bitcn+iRJPjeZJ+g7rMgEXDSTZ1pck4amZgoiIiIiIiIiIiIiIiMhK1tHE761vfeuyy7fddhuf+cxn2LFjB5dccgl/+qd/yoc+9CF+7ud+DohC876+Pv72b/+W9773vZ2YsqwypmGQChxSgUMYhhRrTQ5OlXh6LE9PwuOKwTQXDaToS/mdnqqIiIiIiIiIiIiIiIiInIELpgy21Wrx1a9+lVKpxPXXX8/+/fs5fvw4b3zjGxdv43keN9xwAz/84Q+fMxSv1WrUarXFy/l8/pzPXVYHwzBI+g5J36HVDpkq1vinp8d5YP8MI30JLhtMsbE7jm11dNcBEREROUu0bhQRERGR06F1o4iIiMjK1/F077HHHiORSOB5Hr/xG7/BnXfeySWXXMLx48cB6OvrW3b7vr6+xetO5fbbbyedTi+O4eHhczp/WZ0s0yCX8tnelyLp2zx6ZJa/e+Aw/23HQR45NEOx1uz0FEVEROQl0rpRRERERE6H1o0iIiIiK1/HQ/Ht27ezc+dOduzYwfve9z7e/e5388QTTyxebxjGstuHYXjSsRP9+3//75mbm1schw8fPmdzl7UhFThszSUZygQcz9f42s6jfP4H+7n/6XHG8tVOT09ERETOkNaNIiIiInI6tG4UERERWfk63j7ddV22bt0KwNVXX82DDz7In/3Zn/EHf/AHABw/fpyBgYHF24+Pj59UPX4iz/PwPO/cTlrWJM+xWJ+NnbK1+uVDaTZ2x7HM5z5hQ0RERC4sWjeKiIiIyOnQulFERERk5et4pfizhWFIrVZj06ZN9Pf3853vfGfxunq9zv3338+rXvWqDs7whd39+HH+6akx9k0WabbbnZ6OnGUntlZPLLRW/5dDfPmBQzx+dI5as9XpKYqIiMhKEIZw8Icw+ihUZjs9GxERERERERERkVWro5XiH/zgB3nzm9/M8PAwhUKBL3/5y9x3333cfffdGIbBb//2b/Pxj3+ckZERRkZG+PjHP04sFuNXfuVXOjnt53Vkpsz+yRL7J0v8YO8UrmWyuTfO1lyCbbkk3Qn3edu/y8qSDhzSgUOl3uLAVJk940XWZQJeviHDtr4kSd/p9BRFRETkQtWowP5/htIExLLQtRF6tkNmPcR7QGtGERERERERERGRs6KjofjY2Bjvete7GB0dJZ1Oc8UVV3D33Xdz8803A/D7v//7VCoV/t2/+3fMzMxw7bXX8u1vf5tkMtnJaT+vTODy+otyjOdr7J8sUqq3eOp4gaeOF4BRMjGHkVyCrbkkW3sTBK7V6SnLWRC4Fpt64jRabcbzNb6x8xg9SY8rhzJcsi5FT0IttkRERORUQkj0gWHC2C44thO8BKQGIXdxFJAnB8DUmlFERERERERERORMGWEYhp2exLmUz+dJp9PMzc2RSqXO+fNNFGr89Q/20xP38ByT43NVdo8X2T1e4OBUmVZ76Z/bAIa6Akb6kozkEgx1xbQn9SrRaodMFmvMVuqkfIdLBlJcNphmqCtQpwAREVnTzvfa7MU473Orl+GH/xksF4Ku6FgYQq0AlWlolMGJQaI/CsizGyE1BFZHz2sVEREROS+0bhQRERGR03G6azO9o3YOmYbBukzAukzADdt6qTfb7J8ssWe8wDPjRSYKNQ7PVDg8U+GfnhrHs0229CYY6UswkkuSjbud/hLkDFmmQV/KJ5f0mC03+Jf9U/zkyCwjuQRXDmcYzsbwbFV8iYiIyLMYBvipaADUS1CegKf3g+1FVeV9l0F2U1RNroBcRERERERERETkBeldtPPItU229yfZ3p/kZ4DZcp0940V2jxfZM16k0mjxxGieJ0bzAGTjLiO5BCO5BJt7E/iOQtSVxjAMuuIuXXGXYq3JE6MFnhwtkI45bMjGGM7G6Ev59CY9HMvs9HRFRETkQuPGowHRHuTlKXj6W2D7kOyHvkuhaxOkh9RiXURERERERERE5DkoFO+gTMzl6o1Zrt6YpR2GHJutRK3Wxwocmi4zXarzL/un+Zf905gGDGdj8yF5ksGuAFNtuFeUhGeT6E1Qb7aZqzT4yZE5Hjo0g+9YZAKHjd1xBrsC+lI+PQlPrfRFRERkOSeIwm+IWquXp+Cpf5gPyJ9VQa6AXEREREREREREZJFC8QuEaRgMdcUY6opx4/Yc1UaL/ZMldo8X2D1WZKpU5+BUmYNTZe55cpzAsdgyX0U+kkuQianV+krh2ia9SY/epAdApd4iX23w4IFpduyDmGeRiTls7o6zrisgl/TJxBxVkouIiMgSJwbpWPR5vQylKXjqf4EdQHIABq6AdS9bqjIXERERERERERFZwxSKX6B8x+LigRQXD0T7SU6X6uweL7BnvMjeiajV+uNH53j86BwAvQmPrX1RQL6pJ679qleQwLUIXIu+lE8YhlTqLeaqDX64d4oQiM1fnw4cehMeXXGXpG+T9Jzoo29jKzAXERFZu9xYNGA+IJ+AJ+6EY4/A5hsgdymYWiuIiIiIiIiIiMjapVB8hcjGXa7d1M21m7pptUOOzpR5Zn4v8sPTZSaKNSaKNX60dwrLMFjfPd9qvS/JQNpXq/UVwjAMYp5NzLMhDe0wpFxvUW20OD5X5eBUmVY7BMA2DXzHWmy/3pfyGO6OMdwVI+7pf20REZE1aSEgbzdh9jDs/DvovyIKx1MDnZ6diIiIiIiIiIhIRyg5W4Es02B9d5z13XFuuriPSr3F3okoIN89XmCm3GD/ZIn9kyW+/cQYMddi6/xe5FtzCdKB0+kvQU6TaRjRXuSnCLkbrTbVRotao82xuQp7J4qwbypqvd6TYHNvnOFsjJSv11tERGTNMe1of/F6KaoYn9kLw6+C9deopbqIiIiIiIiIiKw5CsVXgcC1uGwwzWWDacIwZKpUZ/d4kT1jBfZOlijXWzx6ZI5Hj0St1vtS3mJAvqknrr2qVyjHMnEsk6S/dKzZbjNXbrDz8CwPHZwhEzhs7ImzpTfBcDbQ3vMiIiJrjRuH3u1RS/WnvwUTT8Km10LuErVUFxERERERERGRNUOh+CpjGAY9CY+ehMf1m6NW64emy4v7kR+dqTCWrzGWr/H9PZPYpsHGnjgjuQRbcwn6Uz6GWq2vWLZp0p3w6E54tNoh+UqDx47OsfPwDEnfYX02xkhfkuGugO6E1+npioiIyPlgGJDIQSwLs4fgJ38HA1fAphsg2d/p2YmIiIiIiIiIiJxzCsVXOcs02NQTZ1NPnDdeAuVakz0TxaiSfLzIXKXBnvnPAZKeHbVa70uwpTdBUq23VyzLNOiKu3TFXdphFJA/M1Zk17E5Er7DunTApp44/Wmf/pRP4FqdnrKIiIicS6YN2c1QL8KRh2BqL2x4FQxdE+1DLiIiIiIiIiIiskopFF9jYp7NFUMZrhjKEIYhE4XaYkC+b7JIodbkkcOzPHJ4FoCBtM9ILsFIX5IN2Ri2Wq2vSKZhkIm5ZGJRQF6sNjk0VeLpsTy2aZIObIa6YmzojtGX8sklfVxbr7WIiMiq5Cag9yIojcNT34KxJ2D4Wggy4KXAS4Ljv+DDiIiIiIiIiIiIrBQKxdcwwzDIpXxyKZ9Xb+2h2WpzcLrM7rECu8eLjM5VF8f3dk/iWFHV+cJ+5Lmkp1brK5BpGKQCh1QQdQFotNrkKw2eHC3wk8OzeI5FOnDY2B1jqCtGf9qnJ+FhmXqtRUREVg3DgEQfBN0wdwge/e/RHuO2D3YAXhzivRDviYJyNxGF5V4y+lz7kYuIiIiIiIiIyAqiUFwW2ZbJlt6obfqbgGKtyZ7xIrvHov3IC7Umz4wVeWYsarWeDpyo1XouwdbeBDFP304rkWMt7UMOUG20yFcaPHxolgcPTBO4NpmYw5beBOuzMQYzAXG91iIiIquDNd9SHaDdhGYVmjWozEB+FNp1YP7EOMuLKsjtAGLd86F6Bvw0+Kn58DweBe4iIiIiIiIiIiIXECVb8pwSns3LhjO8bDhqtT6Wr7F7PKoiPzBZYq7S4KGDMzx0cAYDWJcJGOlLMJJLMpwNsFVBtCL5joXvWOSAMAyp1FvMVRv8YPckPzQgFTiL+9QPZgKycVcdA0RERFYD046qwN3EydeFbWjW50PzKkzvhfFdS9dbHjhBFIonctHw0pAZjj4XERERERERERHpIIXicloMw6A/7dOf9vmpkV4arTYHJkvsHi+ye7zAWL7G0dkKR2cr3Pf0BK5tsrknzkhfkpFcgm4FpyuSYRjEPDvqApCGZrvNXLnBo0fmeOTQLAnPZiDtszWXYLAroD/la995ERGR1cgwoyrxU+01vhiYV6BWhNIEHHskOh5kYPBqGHolxLLnfdoiIiIiIiIiIiKgUFzOkGOZUeDdlwQGyFcaUav18ajVeqne4qnjBZ46XgCgK+awNRcF5Ft6EwSu1dkvQM6IbS61Wm+HIcVak8MzFZ4ZL+A7Ft1xl225JEPZGOsyPjFXP2JERERWvRMD8+CE42EI5SnYfU8Ukg9fB4NXRe3WRUREREREREREziMlVnJWpAKHl2/o4uUbumiHIaNzVfaMRa3WD06VmSk3ePDANA8emMYAhrOxxf3Ih7piWKaqyFca0zBI+Q4p3wGgUm8xW6lz3zPjWIZJMrBZl/bZ0B0nl/LJJT3tRS4iIrKWGAbEe6IK8dIEPP2/4OiPYcOrYODKqNW6iIiIiIiIiIjIeaCESs460zAYzAQMZgJu2J6j1mxxYLLEM+NF9owVmSjWODRd5tB0mX96ahzfMdnSm5gPyZNk426nvwQ5A4FrEbgBA+mARqtNodpk70SJJ0YLWKZB0o9arW/ojtOnkFxERGTtMExI9EG8FwrHYdfX4MiDsP5V0H/5qVuyi4iIiIiIiIiInEVKpOSc82yL7f0ptvenAJgt1+dbrRfZM16k0mix61ieXcfyAHTHXbbmEmzrS7KpJ47vqNX6SuNYJtm4u3iCw0JIvm+ixBOjeWzTXAzJN/cmGMwE9KV8dQwQERFZzQwTUusgkYP8KDz21Sgc3/Aq6LsULKfTMxQRERERERERkVVKobicd5mYy9Ubs1y9MUs7DDk6U5kPyAscmi4zVaoztX+af9k/jWnA+mxscT/ywa4A01BwutKcKiQvLobkBXzHJJfw2NafZKgr2o/cs3UyhIiIyKpk2pAZhlYD8kfhJ1+G7i1ROJ7dDE7wwo8hIiIiIiIiIiLyIigUl44yDYPhbIzhbIzXX5Sj2mixb6LE7vECe8aLTJXqHJgqc2CqzD1PjhE41uJe5FtzCTIxtVpfiRzLpCvu0jUfkpfrTWbKDb775DiWaZCNuWzJxdnYE2cwE5D0VTkmIiKy6lgOdG2EZg1mDsL0PvC7IJmD9PpoP/J4L8S6wdaaT0REREREREREzpxCcbmg+I7FJetSXLIuarU+Xaqze7zA7rEieyeiVuuPHZ3jsaNzAPQmPEb6opB8U08C1zY7OX05QzHXJuZGP47qzTaz5ToPzHcLSPsOG7rjbOqNM9QV0B13MdQtQEREZPWwvahSvFmDWgGm98P4k/PX+eAlILkuqi6P9URheZAFS3/KiIiIiIiIiIjI6dE7SXJBy8Zdrt3UzbWbumm1Q47MlNk9XmT3WIEjMxUmijUmijV+uHcKyzTYkI0x0he1Wu9P+2q1vgK5tkku5ZNL+bTaIflKg13H5vjJkVkSnk1v0mUkl6Q/7TOQDghctVkXERFZFWwvGvGe6HIYQqMC9SJMPAWjj0bH3Rj4KUgPQ/fWqOW6n+rcvEVERERERERE5IKnUFxWDMs02NAdZ0N3nJsu7qNSb7F3ohiF5OMFZssN9k2W2DdZ4h93QdxdaLWeZGtfgpRacK84lmkstlkPw5BirclYvsa+iRK2ZZIOHDZ0x9jQHWcg7dOb8DBNnQghIiKyKhhGFIC7MSAXHQvb0ChDrQhHH4LDD0IsC7mLoXd71I7d9jo5axERERERERERuQApFJcVK3AtLhtMc9lgmjAMmSrV2T1WYPd4kX0TJUr1Fj85MsdPjkSt1vtT/uJ+5Bt74jiWWq2vJIZhkPSdxf3FG602+UqDR4/M8cihGQLXpifusqU3wWBXQH/a117kIiIiq41hgpuIRrIf2i2oTMPBH8ChH0EiB32XQ88IpIfAVEcZERERERERERFRKC6rhGEY9CQ8ehIe12/podluc3i6wu7xAnvGixydqXA8X+V4vsr390ximwYbe+KMzFeS96U87VO9wjiWSXfCozvhEYYh5XqLmXKD+56ZwDQg5TsMZgM298RZlwnIJX0sVZGLiIisLqYF8d5otOpQmoTd34b934PUIAxcEbVXT/Z1eqYiIiIiIiIiItJBCsVlVbJNk009cTb1xHnjJVCqNZdarY8VyFeb7Bkvsme8yF0cJ+nZURV5X4KtuSQJT/9rrCSGYRD3bOLzr1uz3aZQafLM8SKPH53Ddyx64h5bcwmGugIGMoFeYxERkdXGciG1Lhr1MhRGYXoPeMkoGM9dErVXj2U7PVMRERERERERETnPlArJmhD3bK4YynDFUIYwDBkv1Ngzvxf5/skShVqTRw7P8sjhWQAG0j4juSQjfQk2ZGPYarW+otimubgXOUCl3mK2Uuf+hSrywGE4G2NTT5zBTKC9yEVERFYbNwbuBghDqOVh/EkYfRT8VNRWvWc7ZNZHLdjVYl1EREREREREZNVTKC5rjmEY9KV8+lI+r97aQ6PV5uBUmT3j0X7ko3PVxfG93RM4lsGmnngUkucS9CbVan2lCVyLwA0YSEdV5PlKkydH8zx6ZJaYY9GTiKrIB7sCepM+6UB7kYuIiKwKhgF+OhphG6p5mNoHY7vAiUV7kOcuiQLy1CA4fqdnLCIiInJKDx5/kGa7SdpLk/EyZLwMMSfW6WmJiIiIrBgKxWXNcyyTrbkEW3MJ3gQUqo2o1fpY1F69UGvyzFiRZ8aKAKQDJ2q1nkuwtTdBTG24VxTbNMnGXbLzVeTlWpOZcoN7nx7HNAwSvk133GVjd5xcyqcn4dEdd1VJLiIistIZJgSZaADUS1CehqfvAsuGIAu926MW64l+iHWDqW5BIiIicmF4fPJxDuUP4VgOnuURWAEpL0V/rJ9skCXjZUh5KdJeGsfUyf4iIiIiz6Y0T+RZkr7Dy4a7eNlwF2EYcjxfnW+1XuTAZIm5SoOHDs7w0MEZDGCwK5gPyZMMZwNsvXm6osQ8e/7EhoBmu02p1mIsX2P/ZDm63rVIxxw2ZGP0pwN6kx69CQ/X1ussIiKyornxaAC06lCZgQM/gAPfj47HuiG7BVIDUUge71GrdREREemonlgPuViOeqtOpVlhpjbDsdIxWu0WhmEQ2AGBHTCYGGQwMUhvrJeeoAfP8jo9dREREZGO62gofvvtt/M//+f/5KmnniIIAl71qlfxyU9+ku3bty/e5j3veQ9f+MIXlt3v2muvZceOHed7urIGGYbBQDpgIB3wUyO9NFptDkyW2D2/H/lYvsaRmQpHZirc9/QErm2ypSfO1r6o1Xp33FWr9RXENk3SgbnYPr0dhpTrLYrVJg/sn6bdDvEci4RvM9QVMNQVoz/lk0t5eLbeJBcREVmxLBcSfdEI20tV5HOHoR1Ge5QHXZDdDKl1kByAeG9UYS4iIiJynrmWi2u5pL304rF22KbarFJulnli6gkenXgU13JJOAkGk4MMJYboCXrojfUqJBcREZE1qaPv4tx///3ceuutvPKVr6TZbPKhD32IN77xjTzxxBPE4/HF273pTW/ijjvuWLzsum4npiuCY5mM9CUZ6UsCA+Qrjfkq8gJ7xouU6i2ePF7gyeMFALpiDiO5JFtzCbb0JghcBacriWkYJDybhGcD0R6j1UYUkj9xrMDOQ7O4dhSib+iOM5yNQvLepIeldusiIiIrk2GCl4wGQBhCoxTtR37g+1Fo7gRRG/auzZAZjsLyhbbsIiIiIh1gGiYxJ0bMidET9ABQb9Up1As8OfUkj008hmM6JN0k6xLrFivJe4NefNvv8OxFREREzr2OhuJ33333sst33HEHuVyOhx56iNe+9rWLxz3Po7+//3xPT+QFpQKHl2/o4uUbumiHIaNzVfaMFdg9XuTgVJmZcoMHDkzzwIFpDGA4G2NrLsG2XILBrpiC0xXIdyx8x6InGZ1VXWu2yFea7Dw8y0MHpvFdi664y+buOOu6oi4DXTFHHQNERERWKsMANxENmA/Jy1ArwOEdcPAHURV5zzbIXQRdm6LKchEREZEOcy2X7qCb7qAbiELyYr3I0zNP8/jk49imTcpNMZwcZjg5zEBigKyfxTS0ZZyIiIisPhdUv7+5uTkAstnssuP33XcfuVyOTCbDDTfcwG233UYul+vEFEWek2kYDGYCBjMBN2zPUWu2ODBZ4pnxInvGikwUaxyaLnNousw/PTWO75hs6U3Mh+RJuuLqgLASebZFb9Kidz4kL9eb5CtNfrRvinYICc8mG3fZ0B2jb76KvDvuYlv6A1NERGRFMoyl/ciT/VHleGUGjjwYjXgP5C6FnhHo2gCW0+kZi4iIiABRSJ4NsmSD6L3XRqtBvp7n8anH+cnET4g5Mbr9bjanN9Of6Kc/1k/M0cl+IiIisjpcMKF4GIZ84AMf4DWveQ2XXXbZ4vE3v/nN/OIv/iIbNmxg//79fPjDH+b1r389Dz30EJ538v43tVqNWq22eDmfz5+X+Ys8m2dbbO9Psb0/BcBsuc7u8SJ75kel0WLXsTy7jkXfo91xl5G+BCO5JJt74niOWq2vRDHXJuZG7dbbYUip1mSqVOfwTJkwhMAxSfgOw10Bg10BvQmfnqQ7fx8RETmftG6Us8IwIdYdjVYTKlOw/z44+P1oj/L+K6B7C6QGwdRJcSIiIivRal03OpazWEkehiHlZpnp6jRHCkcwDZOkl2Q4Ocz65Hr64/30BD2qIhcREZEV64JJYX7zN3+TRx99lO9///vLjv/rf/2vFz+/7LLLuPrqq9mwYQPf+ta3+Lmf+7mTHuf222/nox/96Dmfr8iLlYm5vHJjllduzNIOQ47OVOZD8gKHpstMlepM7Ztmx75pTAPWZ+PzIXmCdZkAU+23VxzTMEj6Dkk/qhALw5DK/J7kPzkyx8OHZrFNg4Rv05fy2ZCN0ZP0SPo2tmniWAaWaeBYJpZpYJuG2rCLiJxFWjfKWWfZURCe6INmDUoT8PS3wIlBaggGLofMBkjkwNQJkCIiIivFWlg3GoZB3IkTd+IANNtN8vX84n7kgR2Q9bNsSm+iN9ZLt99Nl9+FbV4wby+LiIiIPC8jDMOw05N4//vfz9e+9jW+973vsWnTphe8/cjICLfccgt/8Ad/cNJ1pzpzc3h4mLm5OVKp1Fmd96lMFGr89Q/20xP3CFy90SWnp9posW+ixO7xAnvGi0yV6suuj7kWW3qjgHykL0k6UBvO1aLebFOsNSlWG1Sb7agjq21iGgaWYWCanPC5gWubuJaJaxt4toVrmaRjUfCe8GxSvk3Sd/TzR0QuWPl8nnQ6fd7WZs+n0+tG6mX47+8CO4De7VErbr2puDrVS1FA3ihHe5PHstA9AulBSK6LLuvENxERkWW0blzujsfvoNwsk4ud/y0lwzCk0qyQr+cp1UsA+LZP0k2yLrGOgXi0F3l30L0YqouIiIicL6e7buzou25hGPL+97+fO++8k/vuu++0AvGpqSkOHz7MwMDAKa/3PO+UbdVFLmS+Y3HJuhSXrIv+Z50u1dk9XmD3WJG9E0XK9RaPHZ3jsaNzAPQmPbblEmzNJdnUE8e11bpqpXJtk6ztkp3fU77VDmm22rTCkHYI7XYYfd4OabTa1Bpt2mFIqx1GH8OQVmvp3CbfMfEci7hn05tw6Un4JHyb5PxI+Q6+WvOLiAAXwLoxDOHAD6BZgae+GVUOJ9dBemh+DENyQHtSrwYLe5CHYRSMV+dg370QAl4C4rloD/LUOkgNgJ/u9IxFRETkBB1fN3aYYRjEnFi0v3h8KSQvNUo8Pvk4O8d3Yps2cSdOt9/NcHJ4sS17l9eFpQ45IiIicgHoaCh+66238rd/+7d8/etfJ5lMcvz4cQDS6TRBEFAsFvnIRz7Cz//8zzMwMMCBAwf44Ac/SE9PD+94xzs6OXWRcyobd7l2UzfXbuqm1Q45MlNm93iR3WMFjsxUmCjUmCjU+MHeKSzTYEN3jJFckpFcgv60r1brK5hlGmf8x2I7DKk12lQbLfKVBuP5Go3WHAaAEZ18ETgmW3oTbO9PsaE7hmPphAoRkY5p1WHgSiiORaNRhrnD0VhgmFEwvhCSp4ei4NRyOzdvOXOGsRSQsw7CNtQKUDwO0/ui6/1U9Bp3b41e+9Q6cIJOz1xERERk0YkheS+9QNRuvdgoMloaZd/cPgzDILADUm6KjamNDCQG6A16yfpZbQ0nIiIiHdHRUPwzn/kMAK973euWHb/jjjt4z3veg2VZPPbYY3zxi19kdnaWgYEBbrzxRr7yla+QTCY7MGOR8y8KveNs6I5z08V9VOot9k4Uo5B8vMBsucG+iRL7Jkr84y6IezYjuQRb50fKV3XZWmEaBoFrnbJ1eqsdUmu2qNRb/PjgDA8fmmVd2ueywTRbcwm6E2v3jHcRkY6xPdhyYxRw+xmoTMPsfCiePwKzR6BRgvzRaBz+l+h+hhntWZ0eXgrK04MKylciw4yqwhcqw9stqOWjgHzsiWiPcj8DPdshuyl6rWPZjk5ZRERE5FRs0ybjZch4GWCpmrxQL/Avo9E6NubEyPpZNqY30hfrIxfLkfbUIUdERETOj463T38+QRDwj//4j+dpNiIrQ+BaXDaY5rLBNGEYMlWqs3uswO7xIvsmS5RqTXYenmXn4VkA+lN+FJL3JdjYHVdl8BplmQYx1ybm2nQnPGrNFhOFGv/w2CipwGFrLsElAyk2dKsdv4hIRxgGxLqjse5l0bEwhOrsUlA+dyT6WC9CYTQaRx5YeABI9kFqvqI8MwypwSh4l5XDtCDoigZE3QQqs3DoR3Dwh1EVeWY4CsnTQ1Eluanf2yIiInLhObGavC/eRxiGlBolpqvTHC4cxjAMEk6CXCzHhtQG+uP9DMQHcHWip4iIiJwjHQ3FReSlMQyDnoRHT8Lj+i09NNttDk9XFkPyY7MVjuerHM9X+ec9k9imwaae+HxInqQv6all1Rrl2RZDXTHCMGSu0uAnh2d59PAc/fPV41tycbIxF1snUYiIdI5hLAWkA1dEx8Iw2o96ISBfCMtreSgcj8bRHy88ACR6T6gmH45Cc8fv2JckL5LlQiIXjbAdvfaTu+H4Y+DEoo4BuYshsz46CUKvrYiIiFygDMMg4SZIuAkA2mGbYr3I0eJR9s7uXaw035zZzHBymMHEIHEn3uFZi4iIyGqiUFxkFbFNk009cTb1xHnjpVCqNaNW62NRq/V8tTnfdr0Ijx8n6S+0Wk+yNZcg4elHwlpjGAaZmEsm5lJvtpks1rj78VHiXlRV3hVz6E16pAOHpO+Q9G2Svk3CsxWYi4h0gmFAkIlG/2VLx5cF5fMfq3NQHI/G0YeWbhvvfdYe5UPgxs73VyIvlmEuryKvl6A8CU/fFbVZD7LQsw26NqrNuoiIiFzwTMMk5aVIeSkAGq0Gs7VZfnz8xzx4/EHSbprh1DCbUptYl1hHl9/V4RmLiIjISqcETGQVi3s2VwxluGIoQxiGjBdq7Jnfi3z/ZIlCtcnDh2Z5+NAsAOsyPiPzAfmGbEyh5xrj2ibrMgFh6FOqt6jWWxydrbB3okRImzA0sC0D37bwHYt04NCbdOmKucRcm5CQZjuk3Q5ptUNaYUi7Dc12m0azTaMd0myFNNttPNtkQ3ec4WyMdKB970VEXrKFfan7Ll06VissheSz8/uUV2agNBGNY48s3TbWvbyiPD0EripzLmhufOk1atWj1/bgD+HAD6I26+nBKCRfaLNu6fetiIiIXLgcy6E31ktvrJdWu0W+nueJqSd4dOJRkm6S/ng/W9JbWJdYRy6WwzT0npWIiIi8OArFRdYIwzDoS/n0pXxevbWHRqvNwakye8ajVuujc1WOzUbj/mcmcCyDzT0JtuYSjOQS9KrV+pphGAYJzz5l54BGq0210aLWaDM6V2H/ZIl2GGIQwsJ/F75NQgjnj5uGgWlEj20a0GyHPHhghnTgsLE7zpZcnOGuGF1x7R0mInLWeEnIXRKNBbViFJTnj8DsfEV5ZRrKU9EY3bl026BrPiA/ISz3Euf9y5DTYLlRK/VE33yb9TxM7YOxJ6J95WNZ6LkIujZEYbmf7vSMRURERJ6TZVp0+V10+V2EYUixUeRw4TB7Zvbg2z69QS8b0xvpDXrpCXro8rsUkouIiMgLUih+jrTCsNNTEHlejmWyNReF3m8CCtUGe8aL85XkRYq1Jk+PFXh6rABAOnDmW61HI+bqx8da5FgmjmWSPAtblrbaIflKg13H5th5ZIaU7zCcjbE1l2C4K0ZPwtWJGCIiZ5uXiPagzl28dKxemm+5fkL79fJkVHlcmYHjjy7d1s8sD8kzw1H4LhcOw1xqsQ/QqEBlFvbfD/uJAvH0UBSQx3qiLgGxrCrJRURE5IJkGAZJN0nSjdac5UaZ6eo0RwpHwIDADki7adan1tMX66M76KY76MYxtbYRERGR5ZRqnWWOZZDybcbyVY61o2DcMg18x8K3TTzHwndMbFNnL8qFJek7XLW+i6vWR2fhHs9XFwPyA5Ml5ioNfnxwhh8fnMEABruCxf3I12djWKbCS3lxLNOgK+7SFXdphyGFapPdY0WeODpHwndYlwnY1pdgOBujN+Fh6ntMROTccOPQuz0aCxplmDu6fI/y0gRUZ6Mx9tjSbb00ZIaWh+WqRL5wOEE0GIB2K9prfvIZOP44GIATi74HUuvm9yLvng/LFZSLiIjIhSfmxIg5MQDCMKTcLFOsF3nw+IO0wzae5ZHyUgwmBhmID9AT9NAT9ODbZ+HsfhEREVnRFIqfZZmYyy9fs565SoNCtUmh2mS6XGOiUKNQaTJXbjDWbNFqh0CIb1vEPZu4Z+M7VqenLwJEZ+EOpAMG0gE/NdJLvdnmwFRpcT/ysXyNIzMVjsxUuPfpCTzbZHNv1GZ9JJegO+F1+kuQFcY0DNKBQzpwCMOQQq3JwakSTx/PE/NsehMum3oS9KV8cimPbMxVSC4ici45MegZicaCRhXyC0H5fFheHIfaHIzNwdiupdt6qfmAfOiEoDxzwh4b0hGmFYXdsWx0OWxHleT1Iow/Ccd+ckJQHoPU4HxQ3gPx3igw18m9IiIicoEwDIO4EyfuxIEoJK+1ahTqBR6bfIydEztxDIekm2RLZgvbs9sZTAyq1bqIiMgapVD8HMjEXDKxk/fFrTfbFKpRWF6sNZmrNDg8U2Y8X2MsX6XWbGMQErhRSJ7wbBxLizTpPNc22daXZFtfEhhgrtJYDMj3jBcp11s8OZrnydE8ANm4u7gX+ZbehE74kBfFMAxSvkPKj6rTirUmU6UGh6cnCIGEZ9MVc9jQE2cg7ZNL+nTHFZKLiJxzjg/dW6KxoFk7ISifrygvjEEtD+NPRGOBm1gKyBfC8iCroLyTDDOqEnfjS8dOCsp3Rq+RE4v2me/aGIXliV6I56LvCxEREZELgGEY+LYf7TtOLwD1Vp1CvcCDxx/kJxM/YSgxxGU9l7EpvWmx4lxERETWBoXi55Frm3QnvJOqaKuNFtOlOtOlOhOFGoeny0yX6hwulWm2Q0wD4p5N4Fg4loltGdimqXbV0jHpwOEVG7p4xYYu2mHI6FyVPWMFnhkvcmgq+v59YP80D+yfxjRgqCsWVZH3JRnMBPrelRclMX+SEEA7DCnVmsyUGxzZM0kYQsy16Iq5bOiOsS4TkEt6ZOMutk4qEhE592wPspujsaBVj4Ly2SOQPxx9LB6PQtaJp6KxwIkvryZfaN+toLxznisor5egVoBDP4J2M3rt3RSk10FmAyRyUTV50KXXT0RERC4YruUu7jNeaVQ4UjzCvrl9dPvdXNJzCVszW+mL9WFo/SIiIrLqKRS/APiOxbpMwLpMsHisVGsyVawzVYqqyI/OVChUm5RqLZrtNs12SDsMISRqcRiGmKaJbRrYVvTRdyySvo2pRZ2cQ6ZhMJgJGMwE3LA9R63ZYv9Eid0TRXaPFZks1jg0XebQdJnvPjWO75hs6U0wkksykkvQFT+5q4LIczENg6TvkJyvIm+HIeV6i3y1wY59U7TD+W4bblRNnkt6ZOIuKd8h6dukAoe4a+mPXRGRc8lyoWtTNBa0GpA/dkJF+REojEKjBJNPR2OBE0DqxKB8GOLdUVgrnWGY4CWjsaBZi0LyiWdg9NH52yQg6Ibspuj1Sw5Erdr1e1dEREQuAIETsN5ZT6vdYro6zfeOfI8fH/8xG1Mbubj7YjamN+JZ2hJQRERktVIofoFa2Gd8fXfUxiecD35qzTa1Zotao730ebNNrdGmVI/aspeqTUr1JuV6k/F8FQhJ+A5p3yHm6SWXc8uzLS4aSHHRQAqAmXI9arU+VmDPRJFqo82uY3l2HYtarXfHXUb6ooB8c08cT63W5UUwDWNZJXkYhlTqLcr1FkdnK+yZKEY3DKNuHb5jEfMsehMevUlvcR/zdBAF7epiICJyjlgOdG2IxoJWMwrGT9yjvHAsat09tTsaC2w/atmdGY4C88xwVJWsoLxzbC8a8Z7ocrsVdQMoT8LsgeiYm4wqyHtGotcv2Q9+qmNTFhEREQGwTIveWC+9sV6K9SK7Z3fz9MzT5GI5Luu5jM3pzXQH3Z2epoiIiJxlSkhXCMMw5oPy07t9GIbMVRqMzlU5Olth30SRqVKNIzNlLMsk7TukAgfX1huJcm51xVxeuTHLKzdmaYchR2cq7B4vsHu8yOHpMlOlOlP7ptixbwrTgPXZOCN90X7k6zKBOh3Ii2IYBjHPPukEoDAMqTfbVBotSrUWU4UCjx6ZA0Is0yRwLWKORW/SI5f06JqvLs/EFJaLiJwzlh2F25nhpWPtJhSOL+1PPnc4qjBvVmF6bzQW7++e0Hp9vqo80aegvFNMC/x0NCBquV4rRCc+TO0B0wQvDelByG6B1Lqoklx7kouIiEgHJdwECTdBs91ksjLJdw5+h6SbpNvvZmNqI72xXnKxHCk3pa5zIiIiK5xC8VXKMAwyMZdMzOXigRSt7TkmCjWO56scmipxcKrMkZloz3LfNkkFDoFrYRkGpmkoiJRzwjQMhrMxhrMxXn9RH9VGi30TRXaPR2O6VOfAVIkDUyW+88QYMdeab7Ue7UeeDpxOfwmyQhmGgedYp+xE0GxFYXml3mLPeJEnjuWBaEuKZ4flCd8h5lrEXTu6zrUIHAtTobmIyNlh2kshN9dFx9otKI6d0Hr9MMwdjfYun94XjQWWG4WtC/uTLwTlpjrRnHeGuTwkbzehmofJPXD88ah7gJ+eb7W+Pqo4j3VHx/S3iIiIiJxntmnTH++nL9ZHsVFkojLBwfxBDAzibpysn2VDagO5WI7eoJeMl1FILiIissIoFF8jLNOgP+3Tn/Z52XCGaqPFWL7K6FyVfRMlxvJV5ioNWu2QVjuc36o8JDSM+S3LQwzDwDINAsciMd/eXeG5vBS+Y3HJujSXrIveLJ0q1tgzvxf53oki5XqLx47O8djROQB6kx7bcgm25pJs6omr04GcFbZlkrTMxX3KF5wcls8RGgaE0c9U1zbxLBPXju7bFXNIx6LQPObaUXg+39rd17YAIiJnzrSioDu1DoavjY61W1AajwLy2SOQn9+nvFWHmQPRWLy/Mx+UDy2F5ckBBeXnm2lH+4vHstHlVh0qc3D0ETjyIBgWuIkoFM+sj1qtx7oVlIuIiMh5ZRgGSTdJ0k0C0A7blBolJiuTHM4fBgPidpwuv4sNqQ30x/sZiA+QcBMdnrmIiIi8EIXia5TvWGzojrOhO851m7uZqzQo15s0WyH1VptGq02jGdJot2k02zRaIbVmFA6N5qvMlRuM5qsQRo+1sKevQkp5KboTHt0Jj2s3ddNqhxyZKUdV5GMFjsxUmCjUmCjU+MHeKSzTYEN3jJFctB95f9rXSRpyVj1XWA7QbLepN+dHq83oXIWD0yVarfay4NyzTTzHJObadMddsnGXpG+T8Bzi3tLPTtvSz04RkRfFtKJgOzkAQ9dEx8I2lCZg9oQ9yvNHoFmD2YPRWHb/hYryE4JyS38enTeWC4neaEBUSV4vQXUWDh4B2ktBeZCJXqeFoDzeq73JRURE5LwwDfOkkLzcKDNdneZI4QgYkHJSDCQG2JjeSH+sn95YL7apdaWIiMiFRr+dBYB04Jx2a+p2O2S20mCyWGOyUOPgdJmxfJUjs2UarTa2aRL3bJJe1F5YQaWciSj0jk7cuOnivqhad6LInvECu8eKzFYa7JsosW+ixD/ugrhnM5JLsHV+pE4RZIqcLbZpYrsmMfe5b9Nst6k32tSabfKVBpOFGvVmmzBqv4FjmVFLd9sk5Tv0Jj36Uh7dcY/uhHvKMF5ERJ6HYUat0hN9MHR1dCxsQ2lqaX/yhfbrzerSscX7W5AaWN56PTkQtfmWc8+0l7dbB2g1oV6Eykx0sgNhdEKDm4AgC10bo4A83hMNN96p2YuIiMgaYRrm4j7kAK12i0KjwL65fTw5/SS+5ZPxMmxKb2JdYh398X7SXvoFHlVERETOB4Xi8qKZpkF2vuJxW1+SVwGVeovJYo2JYo3RuQqHpivMlOscnW1hEJLwHdJ+tG+59tuRMxG4FpcPprl8ME0YhkwV6+weL7B7vMi+iRKlWpOdh2fZeXgWgP6UH4XkfQk2dsdxVIkr55ltmtieScw7+bowDBc7cNSabcYLNQ5Nl2m1QyzTIOHZZOMO67NxepNRSN4d99SNQ0TkxTLMpWrkwZdHx8IQylPP2qP8CDTK85ePLL9/sn95RXlqXVTlLOeeZUdV4kFm6VirEVWUl8bn2+S3wXTBS0QBeXp99HrHe8DPREG5/v4QERGRc8QyLTJehoyXAaDarJKv53ng+AOEhCScBP3xfjamNtIf76cn6MG3/c5OWkREZI1SKC5nReBaDGdjDGdjQBetdsh0qc5Eocax2TL7JktMlWpUZluYhkk6cEgFNp6tvRzlxTMMg56kR0/S4/otPTTbbQ5Nl9kzVmT3eJFjsxWO56scz1f55z2T2KbBpp74fEiepC/p6eQM6SjDMHDtaF/y5LOua7TalGpNxvI1DkyWCDHwHJOEa9Of9hnMBMQ9e3G/8rhnEXdtTFPf0yIip8UwliqL110VHQtDqEwvD8nnDkfha/5YNA7/y/z95yvST9yjPDUI9inOgpKzz3JODsqbtaiifO4ITD4TvZ62D04QheKxbkjkwEtFbde9ZDTcJJg64UxERETOHt/28W2fXCxHO2xTrBc5VDjE7pndOKZDwk3QH+tnKDlET9BDT9Cj/chFRETOE4Xick5YpkFv0qM36XHJuhStdshkscbxuSqHp8scnCpzbLZCvdXGsyzSgUMysLH1ppScAds02dyTYHNPgjdeCqVaM2q1PlZk93iBfLUZ7U0+XoTHj5P0F1qtJ9maS5Dw9KNQLhyOZZKJuWRO6M1ebbQo1prsGS+y69gcYGAArmPi21EL9kzMIRt3SQfuYlie8Gxino1vm9q3XETk+RhGFJzGumHgyuhYGEb7Wy+G5PNBea0AhdFoHHlw4QFOCMoXwvLBKJiVc8/2ohHrXjrWqEKzArUilCbh+KPR8RCw3aXQPJaFeC4K2WM9UXh+YuAuIiIicoZMwyTlpUh5KQDqrTrFRpG9c3t5YvoJLMMi6STpDrpZn1xPTywKyTNeRsUcIiIi54CSIDkvLNOgL+XTl/K5cjhDrdliPF/jeL7KgckSR2crHJws05rfZzfmWsRci8C1FJTLixb3bK4cynDlUIYwDBkv1NgzHgXk+ydLFKpNHj40y8OHZgFYl/EZmQ/IN2RjCg/lguM7Fr5j0ZNYqkJshyH1ZrRnea3Z4vB0hT3jJdphCISYholrG3i2hW0ZxF2LuOeQ8m2SvkPgmnh29LiBa+Hb5vxHS1XnIiIQBeVBVzT6r4iOhSFU5yB/JNrjeiEsr81B8Xg0jv544QHm23mfUFGeHoqCWDn3HD8az/7nDkNo1aN95ZtVmD4A408RpeVGVEEe74WuTZDqj052iHVHe5mLiIiIvASu5ZK1smT9LADNdpNSo8RoaZR9c/swMIg7cTJ+huHkMH2xPnqCHrr8LmxTb+OLiIi8VPptKh3h2Uvt1l+5MUup1mR0rsp4ocrxuSpjhRqFWpPxQo1WO8Q0olAo5toEjoXnmJg6Y1JOg2EsnZDx6q09NFptDk6V2TO/H/noXJVjs9G4/5kJXMuMWq33JdiaS9CbUKt1uTCZhrEYloNz0vWtdhSa11ttGq02M+UG44U6jVabVruNYRiEYXRb1zKxLQPXMnEsk6Rvk445pAOHuBf93A3mT1aKOTaBa2l/cxFZmwxjqXV332VLx6v5k/cor85G+16XxuHYw0u3jfUsBeWZYUgNgRs7z1/IGmYYS5XlpJdf127NdwI4DtN7o5zcjUWvd9emqE1+IhcNtcsXERGRl8g2bdJemrQXrUnaYZtyo8xMbYZjxWOEYYhv+6TcFIPJQfrj/fQGvXQH3XiW1iIiIiIvlkJxuSDEPZutuSiEBGi3Q/LVBrPlBjPlOtOlOsdmq8yUa0wUG1QbLQAs08QxDSzLxDaNaFgm1uLnBpZhKNSURY5lLn6vvQkoVBvsGS/OV5IXKdaaPD1W4OmxAgCZwGFrLsFIX5ItvXFirn5syspgmQaBaxHw/JVt7TCk2QppzIfn9VabsUKNwzMVmq02MF87Z4BrR6G5a0VV5ekgCs6Tno2/0OFjPkAPnGio84KIrAl+CvxLoe/SpWO1wsl7lFdmoDwZjdGdS7eNdT+r9fpwtBe2nF+mtXy/8rANjTJUC3DoR9BuRm3XveTSSQ3x3mj4Ge1PLiIiIi+JaZgk3MTiHuNhGFJtVik0Cuyc2El7rI1ruSScBP3xfgYTg9qXXERE5EVQuiMXJNM0FvfU3cjSG4LVRou5ylJYPlOqU6o3qdRblOotGs021UaLVjuk0W7TbIW02lErYQDfsYktBDaupWpzIek7XLW+i6vWdxGGIcfzVXbP70V+YKrMbKXBjw/O8OODMxjAYFfASC7JSC7BcDaGpTbTssKZhoFrGy9Y+d0OQxqLlechhUqTqeJC5XmIYUQdaS3TwLGMxQA97lqkAodMzCXmWhgYhISEYXT7dhgSAq1WmzbRSVGmYZCOOWQCZ/6jq8p0EVl5vCTkLo7GgnoR5o7OB+XzYXl5ammM/mTptkHX8rbr6eHoMeX8MUxwE9FgIDrWrEYh+dguOPbI0m2CDHRtgOQAxHuioFwnNoiIiMhLYBgGgRMQOAE5csD8vuT1Intm9/DE1BNYpkXCTtAT62EgPkDSTRJzYiScBHEnTsyJ4Zgnd5cTERFZixSKy4qy0Cq4L+Wf8vpGqx21C54PbmqNNvVWi1KtxUypzvF8lYlijZlynWNzLcIw2nc3cC1iTlTl6NqmKsvXKMMwGEgHDKQDXrutl3qzzYGpEnvGizwzVmC8UOPITIUjMxXufXoczzbZ3JtgJBeN7oRaV8nqZRoGnmPhOc9fed5st2k0w8Wq85lyg7F8jUYrpB0utW03gHBh/9b5/y787F0IzYGo+ty16Il79Kd9snGXzHxQnvRt7X8uIiuLm4De7dFYUC9He5SfWFVemoiqyiszcPzRpdv6mWdVlA+Bnz7paeQcsn1I+JDojS63W9HJDtVZOHgkumy5J+xNvjH6GOuO9pO3vegxtEe5iIiInAHXcskGWbLB8n3JjxWPsW9u30JdELZp49kenumR9JJk/SwZL0PCSSyG5gk3QWAHHfxqREREzi+F4rKqOPP74cafJ5usN9vMVRrMVerMlhtMFmuMzlWZqzQ4nm9Qa0btguOeTcq3iXu2KsrXKNc22daXZFtfkrdcPsBcpbG4F/me8SLleosnR/M8OZoHIBt3o1bruQRbehPzez2LrC22aWK7vGDb9tPRDkOq9RblRotD02WeGS8QhiGWaRJzLeKezUDKpzflkfIdUr5D0rdJ+rbatovIyuHGoGdbNBY0KlE4nj8Cs/NheWkiCl6rszD2+NJtvdQJFeUnBOVav54fphX9e594ckKrHrXPnz0ME09Hr4XlgeWAaYNlgx1EleQLlehuEIXlbjx6HRdauIuIiMz79sFvM1WZoj/eT9bPLhuOpUrgterZ+5IvaLQa1Fo1aq0aE+UJjhSO0Gw3o5PRQ/BsD9/2Sbvpxe+plJci7aZJeSlVl4uIyKqkUFzWHNc26U169CaXJ+flepPZctSafTxfZd9kkelSg9G5KgZRm+1UYBM4lirJ16h04PCKDVlesSFLOwwZna2yez4kPzhVYrpU54H90zywfxrTgOGuGFv7EozkkgxmArVaF3mRTMMg5tnEvOXLlWarTbnRolxv8fixPI3D0clMlmkQzHcU6Yo59CY9MrGoojwVRIF5wlV1uYisAE4APSPRWNCsntB6fb6yvDgGtTyM74rGAjextOd1aij66GcUlJ8vlhtVhse6o8thCM0atBvRvuStBlTnopb5C5fDdvT6hECQjirMe7ZDZn3Ujl2vnYjImjdaHGWqOsVoafSk61JuaikkD7J0+91k/Sxdfhe2qbd/1yLHcnAshwQn7zXeDtvUW3UqzQoTlQkOFw7TDtuYholv+wR2QLffTV+sj4yfoS/WR0/Qo/dDRURkxTPCcKFB6eqUz+dJp9PMzc2RSqU6PR1ZQdrtkOlyneNzVY7NVtg/VWK2VKfSaGGZZhSy+I6qgQWAWqPF/skSu8ej/cgni/Vl1/uOyZbeBNtySbb2JeiKuR2aqcjq1Wy1qTbbVOstqs0W1UabcH7Pctcy8RyTmGeT9m0C1yJwLALXjvZAn+804lgmrm0sfu7M38+3Le1rfpZcyGuz8z63ehl++J+jAC3oOvfPJ6tPswb5Y8v3KC+ORQHrs7nxE6rJ5yvKg6zC1gtNuxWd6FCeisJyb/4Eh96Loj3LE/1g6veRiKwNWjcu94l/+QSj5VGa7SbT1WmmK9NMV6eptqrPe7+0lybrLwXlC6F5xstgaTsPOUE7bFNtVqk0K1SaFWqtGmEYEnNi9MX6GOkaYTAxSC6WwzS0HhERkQvH6a7NdKqgyHMwTYOehEdPwuOywTStdshkscbxuSpHZsocmCpzPF+l3mzhWhaZmEMqcNRqfY3yHIuLBlJcNBD9wJ0p1aO9yMcL7J0oUm202XUsz65jUav1noTL1lySkVyCzb1xPFt/iIq8VLZlkrBMEs+qLA/DkEYrpNpoUam3KFQatNohzXZIqx0C4WILuYUzBS3TWBy2aSyG40nXJu7bpH0H342q0v350DwTc8johBcROZ9sD7KborGgVZ8Pyo8sheWF41AvRa28J55euq0Te9Ye5cNRdbPWs51jWtFJMkFXdHJDrQDT+2H8iejEhkQf9F0aVZCnhqJW7CIisib0xftIeklysdzisTAMqTQrTFWnlgXl09VppqpT1Ft15mpzzNXm2D+3f9njGRhkvMyyyvKF0DzjZRR6rkGmYRJzYsSc2OKxMAwpN8uMlkbZP7cf3/bJxXJs69rGYGKQvlifTq4QEZEVQ39Bi5wmyzToS/n0pXyuHM5Qb7YZL1QZy1fZM17kyEyF8UINyzTIBA7pmIOtKo41qyvu8spNWV65KWq1fnSmwjPjBfaMFTk8U2ayWGeyOMWOfVNYhsH67hgjuQRbcwnWZQKdXCFyFhmGgWsbuLZJKji9fdGi0Ly9GJ43WyHlWou5coNGK6TZahMCBlGQbpkGMdeiN+mxtTdBX9qnP+UT987fUqvZajNeqDE6V2EsX1vcdz3mWsTchY/R59rOQWQVs9yo9XbXxqVjrQYURk9ovX4Y8qPQKMPkM9FYYPsn7FE+H5bHe0BvjJ9/hrl8v/J6EYrjUUhuexDvhexm8JJRYO7Eotb7i5/HVFUuIrLKGYaxGGIOJ4eXXReGIaVGaVlIfmJo3mg3mKnNMFObYS97l93XNEy6vK7FkHwhMO/2u0l5KQXma4hhGMSdOHEnDkC5UWayMsnB/EF8y6cn6GGka4Sh5BAD8QG16xcRkQua2qeLnCWz5TpHZirsmyhyYKrEbLlBGEIqcMjEHFUCy6Jqo8W+ieJ8q/Ui06XlrdZjrsXWXGI+JE+SPs0QT0Q6p9UOKdWazFUaVBotTMMgFdgMdgVs7I7Tn/LJpbyz/rtgtlxndK7K0ZkyeydKTJfrVBstbNOk3Q7BiLayNU84McC1LBK+RSZwyAQucd+mO+6yuffkvebOhQt5bab26bKmtJtRUD57ZCksLxyLjj+b7UVVyYsV5UOQyCko76RGFSrTUVDebkdnaQGYdvQzZWF4SQgy0Z7ybjz6WZPsjz7qJEwRucBp3bjcHY/fQblZXlYpfqbCMKRQLzxnYN4KW895X8uw6PK7loLyYKnKPOWmtO/0GlJtVpmpzlBqlHAtl6yfZaRrhHWJdfTH+pdVnIuIiJxLp7s2Uygucg6U602OzlQ4OBXtMT1VqtNotkl4Dl0xh8C19EeCLJoq1tg9XmTPeJG9E0VqzeX7gOaSHiO5BCN9STZ2x7WvscgK0Gy1yVeb5CsNaq0WrmWSCVzWd8cYzsboT/kk/Gg/c8c0MU+zcrvWbDE2V+PYXIW9E0WOz1Up1qIAK+k7pP3od8yztdohjVabenN+zH/eaLdptkKGuwJ+/YYtZ/Xf4LlcyGszheKy5rVb8xXlR06oKD8G7cbJt7VcSA1GIXlmCFLDUVCu9pmd1WpCqxZ1B2jVonb6rUb0caHFiZeEeA66t0JqYCkkf7HaLajMQmUmumxaYDlRMG860WXTPuGYvjdE5MXRunG5sxmKP58wDMnX8ycF5dPVaWaqM88bmNumTdZ7VnX5fGiecBJ6L2wVqzVrzNRmKNaLmIZJyksxGB9kfWo9/fF+eoIeVZGLiMg5oz3FRToo5tqM9CUZ6Uvy2m1tRucqHJ4u88xYgYlCjcpcG0IwCLEtC882o+FEnzuWQs+1pDvh0Z3wuG5zN612yJGZMs+MFdkzXlhsyz9eqPGDvVNYpsHG7hgjuSRbcwn6075arYtcgGzLJBt3ycajPcZrzRb5SpOdh2d56OA0vmPh2RaWCZZh4tpmtDf5/PHAMfFdC9s0cW0DwzAYna1wYLLMTKVOsxXiOxbpwKEv9cI/B6L90aM90J9tvFCl0V7V50iKyOkyraW26QvaLSiOnbBH+RHIH41C1pn90Vi8vwPpwaiqPLNQUd6vMPR8suzn32e83YqqywujMLU3qhb3ktFe5d1bILkQkmeW369Zg/I0lKeiCvX8segxaoXoBB+IXmfDjMbi51Y0TGOpit0OohMoYt1LVex+GlxVk4mIXAgMwyDtpUl7aTanNy+7rh22mavNLQXllenF/cxna7M0203GK+OMV8ZPelzXdE9qx74QmsfsmALzFc6zPfrtfohDs92kUC/wzOwzPD71OL7l0+V3sTG9kXXxdfTH+0l76U5PWURE1qAzqhTv6uo65ULFMAx832fr1q285z3v4d/8m3/zvI9z++238z//5//kqaeeIggCXvWqV/HJT36S7du3L94mDEM++tGP8pd/+ZfMzMxw7bXX8ud//udceumlpzXXC/msUll72u2QiWKNuUqDYq1JqdZkulRnqlijWGtRb7apNlo02+FiN0PXMufDDAPTMLAMA9M0MA0Wj5mGgW0ZCtNXoXK9yd6JEnvGC+weKzJbWV6plfDsE1qtJ0j6arUushJU6i3qrWjP8lY7pBWGS5/PjzAMo6K++RbolmmQ9G0ygXtWO0aMF6o4lsmtN249a4/5fM7m2uxsrUnPxdxOiyrFZaUK29He1nOHT9in/GhUmfxspg2pdSe0Xh+OQldVCl0Y2q0o2K7OQbMCGOCnlkLyZgPyR6A0AfVS1LYdwHajPcsX9i83jKiNe9iaH+0TLrej5wnb8583oVEhKl0n2sfeCaJgPLku2sPeTy9v+66gRGRN0rpxufNVKX6mWu0Wc7W5xZB8ITRfCMxDnvstaM/yTgrKFz5XC+6Vr9KskK/lKTaKACScBH2xPjamN9If649OjNDrLCIiL8E5rRT/j//xP3Lbbbfx5je/mWuuuYYwDHnwwQe5++67ufXWW9m/fz/ve9/7aDab/Nqv/dpzPs7999/Prbfeyitf+UqazSYf+tCHeOMb38gTTzxBPB4H4FOf+hSf/vSn+fznP8+2bdv42Mc+xs0338zTTz9NMpk8k+mLdIxpGvSlfPpS/knX1ZotSrUWpVqT4vwoVBrz+8NGrW4bzajNbSts02xBKwxpt4kuz7fGtU2TpGeTfI4WurKyxFybywfTXD6YJgxDJot1do8X2DNeZN9EiWItqjzdeXgWgP6UHwXkfQk2dsd1ooTIBSpwLQL0M/qlOltrUhF5kQwzCraT/TD0yuhY2I6C04WK8tnDUUV5swqzh6KxwLSi8DN9wj7lyXXPX+Es54ZpReHzQmV4uwW1fPR6TT4THbODKJhO5KLPnyugtkxe9FsMYTv6HmlUoDQZPW97fish25sPy1PR98hCdXmsOwrLTa1zReT0ad147lmmFVWBB9mTrmu1W8zUZpiqTC1rxz5dmWauPketVWO0NMpoafSk+/qWTzbI0u0vBeULl3375PfX5MIT2AGBHdBHH+2wTbFe5HDxMHtm92CbNgk3QY/fw3BqmG6/m+6gm4yXwTT0u15ERM6uM6oU//mf/3luvvlmfuM3fmPZ8c997nN8+9vf5u///u/5//6//4+//Mu/5LHHHjvtx52YmCCXy3H//ffz2te+ljAMWbduHb/927/NH/zBHwBQq9Xo6+vjk5/8JO9973tf8DFVKS6rTbsd0myHNNttGq2omrDZblOtt5ks1Tg6U+HQdJlCtUG10cY0ID4fksdcS622V5Fmu82hqfLifuRHZyvLrrdNg0098fmQPElf0lM7MhE5yUquFD/ba1JVioucZWEbSlMnVJMfjqqOG5WTb2uYUevu9PBSWJ5aF/3/IWtPGEadBxqV+Qr1chTYG2YU0HvJaE/71MBSUB5kdWKFyCqjdeNyF3ql+JlqtBrM1GaWVZYvVJsX6oXnvW/Mjj1nYO5qDbEiNFoNio0ipUaJarOKYRgEdkDKTTGcGCYXz9EddOskCBEReV6nuzY7o1A8kUiwc+dOtm5d/ubpnj17eNnLXkaxWGTv3r1cccUVlEql037cPXv2MDIywmOPPcZll13Gvn372LJlCw8//DBXXXXV4u3e/va3k8lk+MIXvnDSY9RqNWq1pbZ9+Xye4eFhheKypjRabaaKdcYLVY7PVTk4VWa23KBUbwIQd20Svk3ctbBVSbxqFGtN9o4X50PyAvlqc9n1Sd9mJJdgJJdkSy5BwtObhiKyskPxl7om7fi6sV6GH/4XKB6PqiFNJwoArWd91H7MspqEYbQv9eIe5fOBeaN88m0NM9qTfKGaPDMUBaF6k3vtarfmQ/JS9LHViL5PnPlq9tS6qIOBHUTHnGCpPfvCR0vbDYmsFFo3LrdaQ/HnU2/VmanOLAXllaUq84VW3M8l4SROCsoXLjv6XXDBaodtKs0KxXqRcqNMK2zhWi5xJ04ulmMwMUjGy5D20mS8jIJyEREBznH79Gw2yze/+U1+53d+Z9nxb37zm2SzUYucUqn0otqbh2HIBz7wAV7zmtdw2WWXAXD8+HEA+vr6lt22r6+PgwcPnvJxbr/9dj760Y+e9vOKrEaOZdKf9ulP+1wxFFWXT5frTBRqjM1VOTBVYqpUZ7JYo9UOMQ2DmGsR9xSUr2QJz+bK4QxXDmcIw5DxQo3d40V2jxXYP1miUG3y8KFZHj40C8C6jM9ILslILsH67hi2WlCKyArzUtekHV83OgFsfQNUZ6P9fKv5qG1xswr1QhT2tOpRK2EDFjeZXxacPytEF7nQGUa0Z3S8B9a9LDoWhlCZWV5RPncE6kUoHIvGkQcWHgCSfVFInhqCzHAUlNtep74iOZ9MK2qn7p/wJkfYjk6qqJdg/EkY3Un0Q3PhPs78z8n5YQfgJcCbfxw3EbVjX9jD3NGb6yKr0YpfN65RruXSF++jL9530nW1Vm2xunxxH/P50LzcLFNsFCk2ihwqHDrpvik3dcrAvMvvwjZVQNBJpmESd+LEnfjisXqrTrFR5ED+AM9MP0NIiGd5BE5Al9dFf7yfrJ9dDMuTblKt10VE5JTO6Lf8hz/8Yd73vvdx7733cs0112AYBg888AD/8A//wGc/+1kAvvOd73DDDTec9mP+5m/+Jo8++ijf//73T7ru2e1+wzB8zhbA//7f/3s+8IEPLF5eOHNTZC0zTYOehEdPwuPigRRhGJKvNpkp1Zkq1ZkoVDk6U2G20lgWlMc9i5iroHwlMoyl/etfs7WHRqvNgakSe8aL7B4rcjxf5dhsNO5/ZgLXMtncG2frfCV5T8JVq3URueC91DVpx9eNhgFDrzj5eLMeBTyNygkfK9CsQK24FKLXi/PH8lF43mouheemCfHeKODRz3O50BkGxLLRGLgyOhaG0ff6iSH53GGoFaBwPBo8uPAAkOidb70+3349NaRwc60wzCjYdhMnXxeG0G7Mn2TUiD6vzkX7l7cb0F7orGRE3y92LArHUwMQ6wE/vRSWu7Hz9zWJyFm34teNchLP8hiIDzAQHzjpumqzelJl+cLlaqtKvp4nX89zIH/gpPumvTRZ/4TK8iAKz7u8Lix1cOoI13LJWtHrAFE2UG/VKTfLjJXHOJg/SDtsY5kWMTtGzImRC6K26yk3RdJNknSTJNwEjqkTiUVE1rIzap8O8IMf/ID/8l/+C08//TRhGHLRRRfx/ve/n1e96lUv+rHe//7387WvfY3vfe97bNq0afH4mbRPfzbtKS5yep4vKC/XW7TabXzbIh1zSfq29iZf4fLVxmKr9d3jRUq15a3WM4ETBeR9Sbb2Jghc/eEnslqt5PbpcHbXpCtu3dhqRqH4svB8/mP+GEw8E4WKfgriOVXSyupQnVseks8egdrcqW8b711qvZ4ehvQgOAo25RTCdtSl48Sfo2E7OsnImW+77sSivcz9dFRl7gTz18WWWrM7QVSJbqvFv8jZoHXjcmuxffq5UG6Ul4LyytSy0Lzeqj/n/QwMMl5mWVDe7XeTDaIKZVUmd16r3aLcLFNpVqg0KzRaDQwMTNPEt3x8yyftpemN9ZLxMothedJNErNjKg4REVnBzume4mdLGIa8//3v58477+S+++5jZGTkpOvXrVvH7/zO7/D7v//7ANTrdXK5HJ/85Cd573vf+4LPseLe3BS5gJwYlI/lq+ydKDE6V6FQbWIAqcAhEzh4jgLTlawdhhyfq0ZV5OMFDkyVabWXfjUYwFBXwNb5VuvD2RiWqT8URFaLlR6Kn00X8tzOSHECJp+BY49EIXnYhkRO1eOy+lTzUUiePwKz8/uUV2dPfdtYzwlB+VA03PipbysStqFZi4LyZn2p6rzdOOE2gGXNt2mf38rC9qPgPMhEIboTiyrNnYUxH7Kfq/C8mofKdNRZwTDBsOY/mlEnkYXLprX8esuJKu61rZJcIC7ktZlC8dUnDENKjdJJleULlxsn/ux/FtMw6fK6lgXmC6F5ykspMO+wVrtFtVWl2qwufoy2pgLXdPEtn4yfYWNqI7lYjt5YL2kv3elpi4jIi3BO9xQHaLVa3HnnnTz55JMYhsHFF1/M29/+dmz79B/y1ltv5W//9m/5+te/TjKZXNxDPJ1OEwQBhmHw27/923z84x9nZGSEkZERPv7xjxOLxfiVX/mVM526iJwmwzBIBw7pwGFjT5xrN3czW65zbLbK4Zkye8eLjM5VqbdaqiJfwUzDYF0mYF0m4LXbeqk32+yfLLFnvMDu8SLjhRqHZyocnqlw79PjeLbJlt7EfKv1BN0JVR6KSOecjTXpqpXojcbQK2F6H4ztgomnov2Z3VQUkJ9J9Xi7dXI74lZ96TInnHMbhlH442eiinW9ISjngp8C/xLou2TpWK14QkX5fFV5ZRrKk9EY3bl021j3/P7kQ0v7lJ+qFbesPYa5VAH+fNrN5T8Ha0UoT8NkHcImYMy/+W5EP3et+QDdiS21aPeSJ1Sdx5ae1wmiY6f6G6vdgsrs/Pf2NJTGo+4J1dloj/V2Y+lHshECZvQ4xvzHZ1827ei5YlmI90GQjublJaOQ30tGcxdZobRulOdjGAYJN0HCTbA+tX7ZdWEYUmwUl1WWn7iHeTNsMlWdYqo6BbPLH9cyLLr8rqWgPOhe/DzlplSdfB5YpkXcXL5POSy1Ya+2qkxUJjiYPxh9HzgJeoIeNqQ20BfrozfWS9JNdmj2IiJyNp1Rpfjjjz/O29/+do4fP8727dsBeOaZZ+jt7eUb3/gGl19++ek9+XP80r/jjjt4z3veA0S/nD760Y/yuc99jpmZGa699lr+/M//nMsuu+y0nuNCPqtUZKWrN9uM5ascm62wZzzap7pQbWIakPQdUr6jtturwFylwe6xKCDfM16k0mgtuz4bdxcD8i29CXx1DhBZUVZypfjZWpOei7ldsEpTMPl0VD0+dxRoz++bm5kPdeYD7mcH3WEYtQ4BwFiqhlwYbhL8JHjpqOp2IcSpzkXV6oXRqGIRotsEabWxlvOvXnrWHuVHooD8VIKupYB8obLc05uh8hK1W/M/V2tLP28XRrsVBdML4fmyn7NeFEr7qShEt10ojEUnOdUKUC8D4XyIH4t+Drvx6DFOFLajn+dhO7p92D7hWBj9HmhW50eNxUTdtKMw3/aj3xfxnuhkEjceXWe588NeXjFvOfOXHXUokTOideNyqhS/MIVhSL6eP6myfLo6zUx1hlbYes772qZN1lteXb4QnCechALzDmiHbYr1IoV6gUqzgmmYJJwEuViO9an15GI5crHcSQG7iIh01jltn37dddeRy+X4whe+QFdXFwAzMzO85z3vYXx8nB/96EdnPvOzbE28uSlygZgp1Tk2V+HwdJn9kyVmKw1q9RamaZLybVKBo8B0hWuH4eJJEM+MFTk0XeKETuuYBgx3xdjal2Akl2SoK1DnAJEL3EoOxc/2mnRNrRtbDZjeD8cfh8knoVo4IXxxTwi6U1EA4saifXJPrFpc+NzyXrjVbnka8kej1taTT0N5JtoP3fKW2gubqtKSDmiUoxNE5g4vheWliVPf1k+f0HZ9/qOv1ppyDoTtZ4XmjRNOWmoCYRQ2L4TfTixqhX6utBonhOVVaFTnQ/xn3c60o1bsprX0cWFY3vJ9173ECWG6GwX9i2G6F30etqJw/qR/i3p0YkFjfj4LwbztRp+bzvxHa/66hcv28tta7vxz6ffPhUrrxuUUiq887bDNXG1uWWX5VDWqNp+tzdIO2895X9d0T2rHvhCYa//r86fVblFsRCF5tVnFNEySbpLeoJf1qfX0Br30xHpIuav870cRkQvcOQ3FgyDgxz/+MZdeeumy448//jivfOUrqVQqL37G58iaenNT5ALSbLWZKNYYy9c4OlPmwFSZfKVBtdHGtgxSvkPKt7Uf+QpXa7TYN1maryIvMFmsL7ved0y29kYB+da+BF2xc7RvooicsZUcip/tNemaXTeWpqAyA46/1LrX9s/dnrKtZlQ5nj8G03th9lDU6rf9rDcFF9/oM1jWkh0W9wBcZDrzVYzzlYy2Fx3Tm4VyJhrVaH/yEyvKi+Oc9H0IUfXu/8/en8dIft/3nf/ze9dd1fcx0zMccoaUeIoUKZKSZR22FRPr2IoVw/EiWCXBLtab2IZ/ziK78SJrKfBajoMYu0ASLXazcGTACwXBRosFnPiCLSmOI1uiKfEme+4+q/qo+z6+vz8+XdXd00NqOJzuqu5+PeyP6vhW1Xyb3+ruT9fr+35/9q1RvmCCcr335LQJe+bneNg1wX2vu3N9z2X//l7H3Hc7lr0bXoe93cfvW5pj53/6j91b8Q4733+3PN5iT1i/J7zvV7f3w3ovunOiQcQE5m5kt8V9JKMA/Yhp3rifQvGTpdvrUmwWByH53nbshWaB8Hbzjh2BExwIyvvXY+rGdKg6vQ6VVoVKuzIIyeNenPHIOOdT55mKTTEVNWuSay15EZGjc6hrij/00ENks9kDE8lcLsfFi0fzgaqIjDbXsZlLR5lLR/nQQoZWpx+SN1jernFzuz5YjzzquYzFfeK+ozNdj5nAc/jgXIoPzplfNPlqi8VchcVcmSsbFRrtHq+ulnh1tQTAZMLn4nSSB6cTXJiKE7g6KUJE7p7mpPdIfMKMo+K4piV1ZgHOPWta/5ZWzeh1TRhvOTtr3Nq7IcZgzdud2wDtOrTKO8H+tmnX3ihBtwGd9m5w3g/NB9WC3k4Q4u+8nuYfsocXgYmLZvR1GuY9WtipKC8tm/bVzRLkXjejz08cDMqjY3qfyclm2eDYmI+Zgrt/nUF43tkTkO/8Dng/+sF5b29Qv/PvtOvmd9He0H6QpO9c+jvrvMenITln1l2PZMz3diStsPwY0LxRRo1jO6YKPDp+YFu31yXfzN92DfNiq0iz22StusZade3AcyNOhPHoOBOR3aC8fzviRo7iSzvRXNslE8mQiWQAc6yq7eq+NcljboxMkOFc6txgTfKUn8K/dVkTERE5cnc1a/+1X/s1fuEXfoEvfOELPPfccwB861vf4h//43/MP/kn/4RSqTR47KmqshGRd+S7NmcyUc5kojx1boxmp0uu1GSlUOet9dJORXmXiGeTifkkI67abh9DY3Gfj1wY5yMXxun2QlYKdRZzZS5nKyzla2xWWmxWtvjW1S0cy+LcRIxL06aSfC4T0TEXkfdEc9ITIkjC1ENmvF/d9s76uhVoVswa0oPQPG+udzs7rX/bu4EIsC/86Afy/SDecm653LPd2akwVPv3k82NwPj9ZvR1mmZN58Lybvv1Sta8/zbeNKPPi+8E5HvC8tiEgnKRW/Xbrb+fYP12Bida3cXP6l7XLLXQrsP2Vci+DlYI2LcJyyd2q8oVlo8UzRvlOHFsh8noJJPRyQPbOr3OgcryfrV5uVWm0W2wWllltbJ64LkxN7avJfsgOI+OEzj3+OfuKeHYDqkgRSowPzd6YY9au0axVeTP1/6cMAyJuBEiboSEn2AiMsFYZIyklyTuxUn4CeJenKgbHfJXIiJyOtxV+3R7TyvFflVn/2X23rYsi273HVpiHZFT2wZT5Bjp9UI2Kk2W8zXezlZYKdSpNDo4tsV4zCcV9XBsfWB43NVbXa5uVljMmkryfK29b3vMd7g4neDSdIKL00nSUW9Ieypyuhzn9un3ek6qeeMpEIYmyOzUzWV757LT2L2/3dizdm/LVJz3dtbz7V+GXfNa/XV/2zVzHUxFuhfbGQrLT51uy1SU99uuF5fMcgG3WzPUi5lwPHUWMmchtWC6NqjVpsjxsDcsb9fM7w8L8z3cb8OemIbkvAnKo2M7YXnm8JYoOWE0b9xP7dPl+2l1W+Qb+d2gvL5bZV5pV971uQkvcaCyvH/bc/T5zN0Kw5B6p06z26TRbdDsNOn0OoOfOxEnQuAGgxMWJiITxP04Cc+E5QkvQcyLqRW7iMj3cajt0//kT/7krndMRORWtm0xk4owk4rw4fPjbFdbLOdrXN2ocn2zytXNChaQifpkYh6uo4ngcRT1HR6ZT/PIfBqArUpzp9V6hasbFWqtLi8vF3l5uQjAdDIwVeQzSe6biOO7Ou4isp/mpPKeWdbO2unvs3Vkb8/6uJ2GqUJvFKBeMJXDlZxp5V5eM4+zrN2w3I2A45thaxmRE8fxYew+M/q6HfO+2LtGeXnVhGibb5vR50YgdcYsL9CvKI9PKSgXGUW2Y7qdBMn99w/C8hpsLsL6q0BoTpJyYyYsDxK7a6AP7NwOwz3XdzY5/s7vr5h5bv/3iOubtc8H13duv9tSJKc0kNe8UU4D3/GZic8wE585sK3Zbe6rLt8bnNc6NSpts072zfLNA89N+skDleX9wNzVCaDvyrIsYl7stmu998IezU6TZrdJuVVms75Ju9cmJMTCwrd9Aicg4kYYi4wxHhkn5aeIe/FBYB71oqryFxF5D+6qUhyg0Wjw8ssvk8vl6PX2n/X+4z/+4/dk5+4FVfyIHG+lRpvl7TrXt6pczlUo1FqE7AbkngLyE6HbC1narrGYK7OYq7CSr7P3l5NrW9w3ETeV5DMJZlMRrT8vco8c50pxuLdzUs0b5Z7pdsxa0/W8CcrreVM9XN0wIXq3ZUa/ejgMTWDRDzn2DtdXIHoS9TpQXt8TlC+Z98ignf8eTgDpM3tary+Y6lO9L0SOl25nNyzvtTFl5e9i7987vR6EHfMa4e2qmEOwPRN8Oy7QX/5j5xJ7t4rdssDaWavdds3zghj4qd128G4A7s7lrbeP8O8wzRv3U6W4HJZGp7EblN+yjnm9U3/X56b99L6QfDwyzkR0grFgDEcngN61MAxpdVs0u819ox/luLZL4AT4jgnO00GalJ8i6SeJutF9I+bFiDj6HE1ETrZDrRT/vd/7Pf6r/+q/YnNz88C2UWiZLiInRyri8fC8x8PzKeqtLkv5Glc3TAvum9tVej1IxzzGYr4C8mPMsS3um4xz32ScH3kYaq0OVzaqLGZNSF6st7m8UeHyRoXfew0Sgbun1XqCZEStvEROI81JZWQ5LsTGzdir2zHrTQ9a7dZ3A5JG2YTnzZK53Sqb1uydJoNSQcs2lcRuYIJSN6LQ/Liy3d01xvt6XbMmeXEJCktQWobiCnSbZh3j7au7j3V8U1G+d53yxIy6D4iMMscFJwWRQwhQw3C3g0nY2V3io3/JzmWvu3O9uf8xvY4J6vvdTfpsx4TmtgfOzkjMwuM/Za4fI5o3iryziBthPjHPfGL+wLZ6uz5Ys/zWwLzZbVJsFSm2ilwrXtv3PAuLdJAehOSDwDwyQSaSUTvw78OyLAI3IHBvXwXe7rZp9Vq0ui1qnRqFZoF2r02318WyLMIwxLVdfMfHt318xx+0ZI97cWJebF+o3h++4xNxI/i2rxBdRE6ku6oUv3jxIn/lr/wV/uf/+X9mZuZgO5ZRooofkZOp3uqaFuubJjjNV9v0wpB01GMsroD8JAlDs+b85Zw5GeLqZoV2d/+vrrl0ZCckT3J+IqbjL/IeHOdK8Xs9J9W8UUZGp7UblrdqJihvVU1oXtuC2jZ0G9BumssQwDLhhRvsBuf9Vu36QOv46nVNO/7SEhSWd4LyZdNp4Fa2B6n53bbr6bOQnFNQLiJ3r7sTlnfb5rJZNr9fPvrzB9vGHwLNG/dTpbiMkjAMqXVqB4Ly7bppy97utd/xubZlkwkyuy3Z91Sap4O0AvN7pNPr0Oq2aPfag8tOr0On12FfJGSBYzm4tjsYnuWRDtKcTZwdHJ9MJINnH68TokTk9LjTudldheKpVIqXXnqJBx544H3t5FHQh5siJ1+jbQLyaxtV3s5W2K626O4E5OMKyE+cTrfHje2aCclzZVYLjX3bPcfiwmSci9NJLk0nmE4GOrtV5F0c51D8Xs9JNW+UY6PXMxXnrQo0K6aqvFkxoXl1CxrbpsK809wfntrenrB8T+Wf7So4P07CngnK+23Xizthead58LG2C8n5Pa3Xd4JyR+t/ishdqBegUz+WofhJmDcqFJfjIgxDKu3KbQPz7cY2nfA2y8XscCxnsH72YERNeJ7yU/p85xCEYUg37A4C806vQyfs0Og0aHQaWFhE3AhxL85sfJa5+Nzg2KSClE5iEJGRcKjt0//6X//rfP3rXz8WobiInHwRz+HidJKL00k+/mCX5Xyd65sV3spWuLldo9vbqSCP+fiuJmrHnevYPDCV4IGpBH/lkVkqzQ5XchUWcxUu58qUGh3ezlZ4O1sBIBVxuTSd5OJMgotTCeKBPgQWOSk0J5VTy7ZN+913asHbb9PeLO8PzqtbUN0011tV0y6329ppt8ue5W2t/aG5sxOmOxGFqaPAsiE5a8bZp819Yc8c28Ea5TuBeacBxZtmDJ7vQGpuT0X5wk5QrsofETm5NG8UOTqWZZH0kyT9JPel79u3LQxDSq3SbdcwzzfydMMum/VNNusHlzpwLXc3MN8Jyvvt2RNeQoH5XbIsC9cyFeK3E4YhjU6DaqfKW/m3eHXzVWzLJubGSPpJzibOMhWfIuklTcv3nVbsESeCp/mliIyYu6oUr9Vq/NRP/RRTU1M89thjeN7+H26/8Au/cM928P1SxY/I6WUqyHcD8u1qSwH5CReGIdlyk8s7a5Ff26zS6e3+mrOA+Ux0sB75uYkYrq33gZxux7lS/F7PSTVvlFOj0zKVfu2GCU07zf23+y3b+2F6p2XatHca0F9z1bJuadW+c12VIqMj7JlW+8Wl/WF5u3bwsf2gPb2wG5an5k37fRGRvmNcKX4S5o2qFJeTrhf2KDVLgzXM97ZjLzQL9MLeOz7Xs70DleX923EvrsD8HuuFPWrtGtV2lWqnSi/sYWHhWA6e7ZkW7LaH53jEXbOOecJPEHWj2JZNL+zRC3uDKvX+6PV6u9dDcz3pJ0n5KWJujJgX23fpaJkgEdlxqO3T/9W/+lf87M/+LNFolImJiX2/VCzL4urVq3e314dAH26KCOwPyN/OVthSQH4qtLs9rm9VuZw1leTrpf2t1n3H5v6pOBenEzw4nWQi4esPJTl1jnMofq/npJo3iryDdsNUljdLu9XnjZJp4V3fhnZ9J1zf83vW8cGLmeHHTBtvGb4wNMds0Hp9Z63ydvXgYy0bEjN7Wq8vmKDcDY5+v0VkNBzjUPwkzBsVistp1gt7FBqF3QrzxtagHXuhWSDknSMO3/H3heT9NbInIhNE3ag+B7pH+gH33rXLb71uHrjzBItBtyoLC8uyDlwCtHttwj0FL77jD0baT5OJZEj5KeJenJgb21etHjgBvuOrxbvIKXCoofjs7Cy/8Au/wP/4P/6P2CNeYacPN0XkVo12l5VCnWubVd5eL+8LyLUG+clWarS5nKvsrEdeodrcv45VJuZxaTph2vFPJYj6OuNUTr7jHIrf6zmp5o0idyEMdwLz8m7L9kYRyutmtKomcO11AQu8yG5Q7kZB1R3DF4bQKEBhb0X5kjmeB1i3BOVnzVBQLnI6HONQ/CTMGxWKi9xet9cl38zvW7e8X21ebBbf9bkRJ3IgKO/fjrrRI/oK5E71wh7tbptWr0Wz26TVbdHqtuj2umCZYN613d2KdcfFtVyiXtS0e/eSxL04vuMPAnPP8fAsU9Xer3B3bXdwXYG6yPFwqGuKt1otfvqnf3rkA3ERkduJeM5gTeqPX5rcqSCv8tZ6mZtbNXqEjMV8xmI+jq2zRU+SVMTjqXNjPHVujF4Ysl5s7ATkZa5v1SjU2nz7ep5vX89jAWfHolyaSXJpOsHZsZjeDyIjRnNSkRFgWRAkzLhVr2sC8nreBCm1bSivQjVnrrfrDMpD3Ah4UTPcqNYuP0qWBdExM+YeN/eFoTl2eyvKi8umW0Bl3YyV7/RfABJTkFqAzFlI7QTlnj5IFpHRoXmjyMnl2A6T0Ukmo5Mwtn9bp9ch38gfqC7fbmxTapVodBusVldZra4eeN2YG3vHwDxwdELgMNiWbSrBCUhy+5Ozur3ubpV62Bm8BzZ6G3R6HROgw6BSPSTEsR0cywzbss2lbQ/C9VurzvvDwcGyrX3Ps0zp++C1Q0LCMDTt4vvXMa3j+9djboyEnyDmxoh78cHwtZSRyD13V580fP7zn+ff/Jt/wy//8i/f6/0RETlSgbsbkH/s4iRL27VBSHp1s4JtWYzHfdJRD1vtlE4U27KYz0SZz0T5wQenaHV6XNuscjln1iPPlZss5ess5ev88Zs5AtfmgakEl2YSXJpOMh7XxFRk2DQnFRlxtgOxcTP26rZNSF7Pmwrl2jaU16C2aW6318x62AC2txuWezFVJB8Vy4JoxozZR3fv3xeU71w2iqaVfiUHqy/uPjY+tb+iPHXWdAgQERkCzRtFTifXdpmKTTEVmzqwrd1t765d3m/LXjcV5pV2hVqnRq1SY7myfOC5cS++G5TvhOb9oSBzuBzbwbEdAu7s74Z+YL13HfNub/d6rVOj3C7T6/V2w+ydcLvftn9wn0nCAdMSPiQctIfv33fgNtANu4PnObYzCOHjXpxMkGE8Mk7MM4F5wjNrs0fcCIETqP2/yHt0V6F4t9vlN37jN/j93/99Hn/8cTzP27f9N3/zN+/JzomIHKWI55iq4JkkH29OcWOrymK2wtXNCovZJr5rM5HwSQauJhwnkO/aPDSb5KFZc6Zpsd5mMWsC8su5CvV2l9fXSry+VgJgPO5zadoE5PdPxYl4av8qctQ0JxU5phzPVBYnbvlwstsxlciNggla94atzbJZC7vTMoGtFzfV6X7CvJ4cjUjajJlHdu9rlveE5DtBeT0P1Q0zVl/afWxs4pbW6wvgx4/+6xCRU0fzRhG5led4zMRnmInPHNjW7Db3tWPfW2le69SotqtU21WWyksHnpv0koxH91eW9wNz11Y3pFFjWabS22E0Ptfr9DqD1vD5Zp712jqdXmdQee47Pp5t2r0HTkDCTZAKUqT8FBE3QsSNEHWjgxE4AZ7t4bzHZavCMKTVa9HoNGh2m2Z0moPrnV6HwA3Mv+NEiXpRIo759/U+l1F2V+/OV155hSeffBKAV199dd82BUUichIkApdH5tM8Mp+mUGtxfavGG2sllrfrrBXqxHyXiYRPzNcv+ZMqHfV4+r5xnr5vnF4Yslqos5irsJitcHO7yna1xZ9f2+bPr21jW7AwHhuE5GfGouosIHIENCcVOWEc9/aV5f11y+vbUN00IXn+hrld24JeGyx7JyhPmpBVH8QcnSAJ0w+b0desQGknIC8sm+u1rd2x9r3dx0bH9ofk6YXbt+MXEXkfNG8UkfcicALm4nPMxecObGt0Ggcqy/uj3qlTbpcpt8vcKN048Ny0nz5QWT4RnWAsGHvPoaWcTP31zOPewRNHwzCk3Wub0W3T6DQot8rcKN/YXVedECu0zFrpO+F5vzV8/7Zv+/iOPwjY+xXnjU6DSrtCtVWl1qnR6rVMK/pum25o2tL3f2eGYWiuh2DbNr7t49ouvuOb9dv9JOkgTdyLE3Ei+I6PZVn7quQHt3d+DVv9/9u5f2+r+n0DG9veuey3srdMh4B7uQZ8L+xpTfkTyArDMBz2ThymO11cXUTk+wnDkI1KkxtbNV5bKbJWatBo9xiLeownfFytTXZqNNtdrm5Wd6rIy2xWWvu2Rz2HB6YTOyF5gkxMrbNkdOXKDTzH5u996uKR/HujPDcb5X0TkdtolEzL9eqWWeO6cNO0ZW+WGaxV3l+j3NtZs1xh+fC0qvuryYvL5vjdTiRzsKI8op/LIkNXL0CnDh/9eXNCzCEb5bnZMPbtt179LWqdGtOx6SP590Tkvau1a+8YmDe7zXd8noVFOkjftiV7JsgoMJf35NbwvN8aft+gt69tfD/c9mwP1zLBvGd7g5D+3arNu70u7V6bVre1++/u/NthGA7WWB+wdkL1nUB8cH1n295g/NaQfHB//z5sLHvncqfqv7/f/ZMAPHt3hIRmf8M23V53EPZ3e1064e5lv11+P+gP7GDQsr6/vvzg39jz32nv12Eu9rfKh/0n4/VC05K/fxxCwsF9/ePj2i5JP0nKT5H0k6rEfwd3OjfTfz0RkTtkWRbTyQjTyQgfPjfGyk7l8OurRa5uVHEdi6lEQDKiFp4nXeA5fHAuxQfnzC/Y7WprsBb9lQ3Tav3VlSKvrhQBmEwEO2uRJ7gwGSdw9ceMiIjI+xZJmTF+v7kdhqb1enVrf1he3zb3l99hrXI3Cq5vqs3l8PhxmHrIjL52DYor+9cor27stNAvQHZPNWeQ2g3JMwtmjfJI2rTTFxERERkBMS9GzItxNnl23/1hGFLr1A4E5dt105a93WtTaBYoNAtcLV7d91zbsgfrSt8amKeDtCpZ5QDLsgaV4BzBx9T9ddwjbuR9vU6/fnfvmu23XvaD473399d674U9Or0O9U593317x95Q3bbsg6H7LdsanQbVdnV3zfmdIL1vsHZ8OLhjf8i/+8DB4w98zbf+ObPntSysQVV+vzX+WDDGTHyGlJ8atM5P+SlzvOX7UiguInIXbNtiYTzGwniM5+4f5+pGlddWi9zYqrFSqJOOekwmAjxHE9PTYDzu85EL43zkwjjdXshKvmZarecqLOdrbFaabFaa/OcrWziWxbmJnVbrM0nm0hG1WhcREbkXLMu04o6OAXu6X3Tbpqp871rl1Y09a5UXoLNTuePHTPgaJEEVOYfPi8HkJTP62g0o9YPynbC8kjPrzedeM6MvSO6pJu9XlGcUlIuIiMhIsSyLuBcn7sU5lzq3b1sYhlTalX0h+d7gvNPrDK5f5vK+5zqWw1hkbF879v565ik/peUh5Fjpv1/3tlQ/7m7XqDvcUzbfD+G/n26vS6PboNFpsFJZ4UrxCoTmv1ngmLXd00Ga6dg0MS+279/dG9r3/+3ezsniIeGBlvT9ivt+ZX6/TX3//r32HbO9lzv3O5bDudS5kTp5R6G4iMj7FPNdHj2T5pH5FNlSk8u5Mq+sFLmxVcWyLCbiPqmop+DzlHBsi3MTcc5NxPmhD85Qb3W5ulnZWY+8TL7W5tpmlWubVf7g9Swx3+HizlrkF6cTpKPqNCAiInJPOR7EJ8zYq79WeT8or2Rhc3EnMM+a7X7MVCP7CYXkR8WLwMQDZvR1mnuC8p2K8nLWnNSQe92MPj9+yxrlZyE6rqBcRERERpJlWST9JEk/yfnU+X3bwjCk3CoPgvK9leb5Rp5u2GWzvslm/eCSNK7l7gbmO0F5PzhP+kkF5iJH4HbfZweqyO+AYzvE7fiBteZ7YY9mp0m9Wydby3KjdGM3EN9Ttb43iO9XoO+1t5397W6bO/d9EQdv73mtvkwkw089+FNMRiff89d8WBSKi4jcI5ZlMZuOMJuO8PR941zfqvLGapmrmxWy5QZRz2Uy7hML9KP3NIn6Do/Mp3lkPk0YhmxXW4Mq8qsbFWqtLi8vF3l52bRan0kFg4D8vok4vjs6Z9KJiIicKJYFQcKM9BmYeRju/yTU81BeN2NzEWob5joheHHTsj1Iqt36UXID0ya/3yofoNsyQXlhGUpL5rKybk502HjTjD4vdnCN8tiEgnIROZY6vQ7dsDto4bpvTdTQXL9dZRrsr07b653Wb32ny3dqXXu7VrfAoA2tbdkHru+tPnMtF8d2cG13pKrKRIbFsizTHjlIcSF9Yd+2Xtij1Cztryyv7wTmzTydsMNGfYON+gbk97+uZ3sHqsv77dnjXlyBucgxYVs2US9K1IsOe1cOaHaa5Gq5QVX6qFAyIyJyCCKewwdmU3xgNsVWpcn1rSqvrZRYKdZp5Gukoh4T8UCB5yljWRYTiYCJRMBz90/Q7YXc3K5xOVdmMVdhJV8nW2qSLTX508ubuLbFfRNxU0k+k2A2FdEfJiIiIofJsiA2bsbMw/DAp3ZD8tIqbF0xleTlNVNJHiQgSJtLfXh/tBwfxi6Y0ddtQWltT0X5sjlW7Rpsvm1Gnxs5WFEen9RxFJGR5dke5WaZWruGY5n1W/deJv0kESdC4AaD9qZ7K8H6gfbOhn3be2HvQNDeC3t06dLr7W7bibtNK1XHtFntB9j9VquD/bIcbNsE4J1eh3avTbvbphN2zO1uexCmd8MuzV5zEO53eh1CwsFaqiFmPVXXdgfBuW3Z7xj+w8ETAPrtZQMn0N/VciLYlk0mkiETyfAAD+zb1gt7FJqFQUi+3dhpy17fptAs0O61ydayZGvZA6/rO/4gLN+7hvlEZIKoG9X3j4gcawrFRUQOWT8EfXJhjLVSg6sbFV5bLbGUr9HrhYzHfTIxH8fWpPK0cWyLC5NxLkzG+ZGHodbscGWzymLWhOTFepvLGxUub1T4vdcgEbhcmk5wcWckI2q1LiIicqhuDckv/tBOSL4GxVXYumwqyUurJmDwEzvt1uMKV4fB8WHsvBl93c7O8drben0VOg3YWjSjz41A6gxkFiB11lzGp3QsRWQk/NC5H6LerePZHr7t4zm7l57tHUlldT+gvlf/Vi/s0e11B0F5q9syo9c6cL3RaVDtVKm369Q7dTq9zoG1TOHg+qb9Fq+VdoXN+ibNbpMwDHFtl6gbHQzP0d/XcnLYlj0Itm/V7XUpNAu7FeZ71jEvNou0ui3Wq+usV9cPPDfiRA5UlvdvR93Rq1QVEbmVQnERkSNi2xZnMlHOZKI8e2GCm9s1FrNl3s6VubJRwbUtJhMByYirsy5PqVjg8tiZNI+dMa3WNypNLucqLGYrXN2sUGl2eGmpwEtLBQDm0pHBeuTnJ2J4jj6wFREROVT7QvJHIPxhqG3thK4rsH3F3C6tmDXWIklTSe7H1ap7WBzXhNuZhd37et2dY7a8G5SXdoLy7StmDJ4fmPb6g4ryBUhMKygXkSM3l5gb9i7srza/B2zLVJx7HH4g3ew2KTaLg7HV2GKtskalXWG7sW1Cdix81yfqRrHZ83P+NuuvmrutfdXxeyvmj+PnOr2wRy801fu9sDeo5HdtF8/2juXXJAc5tsNEdIKJ6MSBbZ1eh3wjv6+yvF9pXmqVaHQbrFZXWa2uHnhu1I2aoDw6cSAwD5zgKL40EZHvS6G4iMgQ+K49qPb9gcYkN7ZqvLFW4sZWjfVSAwgJXIe47xILHCKeg60/Pk4Vy7KYTkaYTkb46AOTdLo9bmzXTEieK7NaaLBWNOM/Lm7iOabq/OJ0kkvTCaaTagknIiJy6CzLtNyOT8LsY9Dr3RKSX4baNpSWTUhuWeBFzRrZbhS8iKlulqNlOzsh99nd+3pdqGT3V5QXV6DbhO2rZvQ5vqko779GegESM+Z1RURkJAVOwHRsmunY9OC+MAyptCsmKG8VKTaKrNfW2apvDVqzh4SY/99zu/98Qnpd016+34K+X/0+sPfP8tDctiwLG3vfWu2D27ds27f2+i23b70vJBy0n++vMT+4vVON3+v1sCyzLrwVmst+Nb1lHVz33bIsur0urV5r8DXYto1v+/jObscC3/FxbUUNx51ru0zFppiKTR3Y1u62d9cu77dkr5sK80q7Qr1TZ6Wywkpl5cBz4178QDv2/vA1FxaRI6TfVCIiQ5aMeDx6Js2jZ9JsVppkSw3y1TZrRbO+9Fa1RaPVJQQ8xybmO8QDl6jnqOX6KeI6Ng9MJXhgKsFfeWSWSrPD5VxlsB55udHh7WyFt7MVAFIRl0vTSS7OJLg4lSAe6Fe+iIjIobNtSEyZMfe4CcmrG1DNQaME9YK5XtuCZtls67Z2qsgt8GMQnzahuRwt24HUvBkLz5r7wt4tQfnO6LYgf82MwfM989zBOuVnITmnoFxEZIRZlkXST5L0k5xl90SpfsU07AnBBxe74XgYhgdC53avTbvX3hdO9+/vt4rv9rr72sb37+sH2f013Du9zqBau91rD6q391Vz9+/r9bBtU6neX3vdtV0iToRoECXqRUm4CWJeDM/xCJwA13b3rf/uWrvrw/fXbXcsh2a3Sa1To96uU+vUKLVKFBoFiq0izU6TWrtGq9syJwNY5mQDC2vf/vRf83a3HcvRSf3HgOd4zMRnmInPHNjW6rYOBOX9UW1XB2OpvHTguUkvuS8o71eaj0fGdaKFiNxz+qkiIjJCJhMBk4ndD0FbnR6Feot8tc12tcV6qc5aoUGpbkJzgIjrMJUMiHj6wO00SQQuH1rI8KGFDGEYki01WcyVuZyrcG2zSqnR4cWbeV68mccC5jNRsx75TIJz4zFcWy0/RUREDp1tQ3LGjL26HWiVTVDeLENzJzDfvgqFm0BowvFoZgg7LQOWbYLt5Byc/Yi5L9w50aGwZDoA9C87TSjcMKPPdiA5v9t2vR+UO/ooRkRklPWrpUdBt2eqzwdh+k5o3gt7JjTfqUzvhl1sy8Z3TNW2b/sETnCoa6WHYUij26DWrlHr1Ki1a9Q7ddq9Nq1uy6z/3q3T6DSod+o0u026YZdauzYI/vuXA9bua+9tTb8vRLcdXMvddzkqx+u08h2f2fgss/HZA9sancb+CvM9a5jXO3XK7TLldpkbpRsHnpv20wcqyyeiE4wFYzg68VBE7oL+EhMRGWG+aw9aaPd1eyGFWot8rcVWpcXrayVWC3Xa3ZCJuM9Y3Fer9VPGsixm0xFm0xE+fmmKdrfH9c0qi7kKl3MV1ksNVgp1Vgp1vv72Br5rc/9knEs765FPJHydlS0iInKUHBeiY2bs1W3D1hVY+x5svgXlVYiMmcpzVcqMBss2rdITM8DT5r6wB9WtnYrynary0jK067v3DZ7vQGoOUmfNOufphZ2g/PDX0xURkePHsR0cnCNZd/29siyLqBsl6kaZ4OD61LfqhT1TSd9tD4LzVq81uK8Tdgbb2r02zU6TRrdBo9Og0W3Q7DRp9Vp0eh2avea+FvH9NveWZZnW9zst4WG3ut8yi8P37zQt5C1r8LjADYi6UWJujIgb0eck90jEjTCfmGc+MX9gW71dHwTk/cC8v555s9s0yxq0ilwrXtv3PAuLdJC+bUv2TJBRYC4i70h/VYuIHDOObTGRCJhIBFychg+fH2MpX+et9RJvrpdZzFaIejZTyQhRX5PA08hzbC7NJLk0kwSgVG9zecME5IvZMtVWlzfXy7y5XgbWyMQ8Lu2sRf7AVELvGxERkWFxPJj+gBnldci+DmsvweZlcH0TxPrxYe+l3Mra0zb/zFPmvjA0bfIH65PvhOXt2m4b9qVv7T4/Obun9fqCacWuNTZFROQEsS2bwAkInLtfJqbb65pAvdei1W3R7u5eb/V2bndbdMPu4N8EBmu3968D+9Z0r7VrrFfXB62/G50GISGu7Zqg3IsRdaNq532PRb0oZ72znE2e3Xd/GIbUOrUDleX99uztXptCs0ChWeBq8eq+59qWTSbI7KsuH4+a8DwdpNVVQOSU009xEZFjznVsLkzGuTAZ5/kHJrmyUeHV5SLLhTqtTpfxWMBY3Nf646dYKurx1Lkxnjo3Ri8MWS82WMxVWMyVubFVo1Br8+3r23z7+jYWcHYsakL16QRnx2J674iIiAxDctaMc8+ZqvHVl2D7OnQaEJ+C2LgJU2U0WRbEJ82Y/5C5Lwyhvr1nffKdsLxVhdKqGUt/vvP8nYr0/vrk6QVIndF68yIicqo5tmmfHiHy/R98F9rdNsVWkULDBK4b9Q3Wq+tU21U265v0emat+cANiLiRQcjv2Z4qy+8hy7KIe3HiXpyF5MK+bWEYUmlXbhuYbze26fQ6g+u3si2bsWBsEJLvDcxTfkrHUOQUGGoo/s1vfpN/+k//KS+++CJra2t87Wtf47Of/exg+9/6W3+Lr3zlK/ue8+yzz/Ktb33riPdUROR4SO+En0+czbCyUz3+xnqJKxtlfMdhOhkQC3Q+1GlmWxbzmSjzmSifeHCKVqfHtc0ql3NlFnMVcuUmS/k6S/k6f/xmjsC1eWAqwaUZ02p9PK6KJRERkSPlx2D+SZh9wqxXnX0V1l+FjTfBi0EkDUFS7dWPA8uC2IQZc0+Y+8IQGoXdSvJ+WN4sQ3nNjOVv918AEtP7K8rTZ8A9nGBARETktPEcj8noJJPRycF9vbBHpV2h0ChQbBbZbmyzUd+g0CxQa9fIN/K0e+1B+3bf8RWYHyLLskj6SZJ+kvOp8/u2hWFIuVXeDcrr2/sC827YZauxxVZji0UW9z3XtVzGImP7gvJ+pXnST+oYipwQQ/2ruVqt8sQTT/C3//bf5nOf+9xtH/OjP/qj/NZv/dbgtu/rw3gRke/HsS3OTcQ4NxHjuQcmuLpR5dWVIje3a3SKdRbG4/iuKovErFv/0GySh2ZNq/VCrWXarO+sR15vd3l9rcTrayUAJuI+F3fWIr9/Kk7EU6t1ERGRI2HbMH7BjPMfg423IPc6VHJmhD0TjkZSEKS0RvVxYVm768vPPm7uC0NoFM265IWlnctlaBahkjVj5Tv9FzCdAwYh+U5luRcd2pckIiJyktiWTcpPkfJT++7vh+XVVpVyu0ylVaHUKrFZ3zwYmGMCW9u28WwPz/bwbR/P8Qa3tQ72+2dZFqkgRSpIcSF9Yd+2Xtij1Czddg3zfDNPJ+ywUd9go74B+f2v69negVbs/dtxL67AXOQYGWoo/sILL/DCCy+862OCIGB2dvaI9khE5ORJRjyeWMjw2Jk0N7Zr/KfLm1zOVUhFPWaSgSZusk8m5vP0feM8fd84vTBktVA3rdazFW5uV9mqtti6ts2fX9vGtuDceIyLO+uRnxmLYuv9JCIicvhi43D+eTMaJROSltchfx1KK1C4Dt2OWZO6H5Kr7fbxYVkQzZgx8+ju/Y3SnorynctGAao5M1b/cvexsUnILEDq7O6lHzviL0REROTk2huWzzG3b9vewLzSrlDv1Kl36lTbVUqtEpVWhVq7Rq1do9Pr0Oq1TGt2y4Tnju2Y4NzxB+G5b/u4tqvP8e6SbdlkIhkykQwP8MC+bb2wR6FZ2FdZvtXYYru+TaFZoN1rk61lydayB17Xd/xBSD4WGTPXd4LzqBvV8RIZMSPfX+3rX/8609PTZDIZPvGJT/C//C//C9PT08PeLRGRY8e2LS5MxjmTifK95QL/6fImb+cqnM1EiaulutyGbVmcHYtxdizGpx6aptnucnWzymKuzGK2wla1xfWtGte3avzRG1minsMD0wku7YxMTN1dREREDl0kZcbkJbjwcbM+dXndBOX567stubtNcKOQnDFt1+X4iaQg8gjMPLJ7X7N8cI3yeh5qm2asvrT72NjE/jXK02fBTxz91yEiInLCvVN1+V6dXodGp0G9UzeX3frgerlVptgsUmwVaXab1Jo12t027V4by7IGwbnv+AROgG/vXDq+Qti7YFv2oPL7Vt1el0KzcNuW7IVmgVa3xVp1jbXq2oHnRpzIoLp8PLJ/HfOoq64+IsMw0inICy+8wE/91E9x/vx5rl27xj/6R/+IT3/607z44osEwe3Pcm82mzSbzcHtUql0VLsrInIs+K7NM/eNc99EnP90eZNXV4q4js2ZTBTH1sRZ3lngOXxwLsUH58wfddvVFou5MpdzFa5smFbrr64UeXWlCMBUIuDijAnIL0zGCVy1ApPRonmjiJxIfhwmHjDj/EehXd+pJM/C2stmXfJe27Tcjo6BpSV1jrUgCdMfNKOvVd1fTV5cgtrW7lj73u5jo2P7266nF8xrisg+mjeKyL3m2i4JP0HiXU5QC8OQZrdJvVOn1qlRb9cH18vNMvlmnkKzQL1Tp9gs0uq1IISQENd2B0H5YH1zLa/znjm2w0R0gonoxIFtnV6HfCO/r7K8H5iXWiUa3Qar1VVWq6sHnht1o7tB+U5o3r8dqMOTyKEZ6VD8p3/6pwfXH330UZ5++mnOnz/P7/7u7/KTP/mTt33Ol770Jb74xS8e1S6KiBxbU8mAH39ingdnkvyny5ss5srMpCKMqbpX7tB43OfZCxM8e2GCbi9kJV/j7Z21yJe2a2xUmmxUmvznK1s4llnn/sHpBBdnksylI2q1LkOneaOInApeFMbuM+Ps06Z6fP1VyL0KG2+a1uqJadNqXU4GPw5TD5nR16qZtcn3huXVDVNVXs/D+su7j42k9wTlO5eR9NF/HSIjRPNGERkGy7KIuBEiboQxxm77mF7Yo9auUWmbluzVdpVqp0qxWWS7sU25VabSrrBV3zKV5li4jkvEMa8bdaP4mgfeFdd2mYpNMRWbOrCt3W3vrl3eb8leN9Xm/Zb6K5UVViorB54b9+K3DczHI+M6ViLvkxWGYTjsnQDzA/5rX/san/3sZ9/1cZcuXeK//q//a/6H/+F/uO322525ubCwQLFYJJV653YlIiKnWaXZ4c+vbvHijTyNdpdz43F8V1VDcvfqrS5XNkxAvpgrk6+1922P+Q4XpxNc2lmPPBXV2crDkis38Bybv/epi0fy75VKJdLp9EjMzTRvFJFTrbplQvGVF6G0CrYNiVlVCZ8m7bpZg764BIVlKC1BZQO4zcdEQer2QblOcjxd6gXo1OGjP38kPys0bxQRef86vQ7VtlnbvNwqU2qW2KxvslHfoNqqUu/WaXfbg+ryfggfd+OqLD8krW7rQFDeH9V29V2fm/SSByrLx6PjjAVjOl4yUpqdJrlajr/58N9kOnb4S2Lf6bxxpCvFb7W1tcXS0hJzc3Pv+JggCN6xtbqIiNxeInD5oQ/OcGk6yX+8vMHlXAXXtpmI+yQjrtYjkvcs6js8eibNo2fShGHIVrXFYq7C5WyZK5tVaq0uLy8XeXnZtFqfSQWDgPy+yTieo5My5PBp3igip1p8AuIfM9Xjm4umpfbWZSgsmW2xSbDfZemTsLczQtAHcMeTF4WJi2b0dRpQXNnTen3ZtN9vliD3mhl9QRJSZyGzsHsZySgolxNJ80YROa5c2yUdpEkH+7u+hGFIrVOj1CxRapmx3dgmV8tRaVVYaazQ6XWIelHSfpq4F9fng/eI7/jMxmeZjc8e2NboNN4xMK936pTbZcrtMjdKNw48N+WnTFAendhXXT4WGcO1j1UUKHJohvqdUKlUuHz58uD2tWvX+O53v8v4+Djj4+N84Qtf4HOf+xxzc3Ncv36dX/7lX2ZycpK/9tf+2hD3WkTk5Do3EeOn0gu8uV7izfUyN7dqrBXrRH2XibhPPNAESt47y7KYTARMJgKev9+0Wr+5XRusR76Sr5MtNcmWmvzp5U1c2+K+yTiXphNcnE4wm4roDy8REZHD4gYw+yjMPGIqxrOvwdp3TVB+66/fEHNfGJq1yG3b3NHtmPudwLTu9uMmcNV65cePG9ldk76v0zTvjb1rlFey0CzDxhtm9Pnx3WryflAeHVdQLiIiMmIsyyLuxYl7cebYX4RYa9fYrG+yVl3jSuEKG/UN1qvrOLZD2k+TClIKWQ9JxI0wn5hnPjF/YFu9XTdrl/eD8p01zLcaWzS7zcHJDddL1/c9z8IiHaQZi4wNKssnIiY4zwQZnHc7EVbkhBnqT67vfOc7fOpTnxrc/qVf+iUAPv/5z/PlL3+ZV155hd/+7d+mUCgwNzfHpz71Kf7Nv/k3JJNq5yYiclh81+bxsxkeP5ths9LkxlaV11dLrBbqrBRqxAOPibhPxNOESe6OY1tcmIxzYTLOZx6GWrPD5UGr9QrFepvLO2uTAyQD17Ran0nwwFSCZETVaCIiIvecZUH6jBnnnzdV453WTvjt7Fy6O9ed3fssCxolqG+bwLS8BrUt05o77Jkqcm8nKPdj5jXkeHEDGL9gRl+3tROU99coX4LyOrSqsPGWGX1ebCcoP7sbmMcmFZSLiIiMqJgX45x3jnOpc3xk9iNsNbZYr65zs3STm+WbLJWW6IZdEn6CtJ8m6kWHvcunQtSLctY7y9nk2X3396v++0H5rcF5q9ei0CxQaBa4Vry277kWFmORsX2V5f3QPB2ksXWSq5wwQ/1r9JOf/CTvtqT57//+7x/h3oiIyK361b1PLoyRLTe4vlnj9dUi68UGrW6PVNRjPOZr/XF5X2KBOzgRIwxDNspN02o9V+HqZoVys8NLSwVeWioAMJeOcGk6waWZJOfHY7hqtS4iInJvBUmYf/LuntttQz1vgvHatgnJiyumqriyDr2OqUaOjkMkpWry48rxYew+M/q67Z3jvaeivLQG7Rpsvm1GnxvZs0b5TlAen9T7QUREZMRYlsVkdJLJ6CSPTj5KrV1jvbbOamWVK4Urpq13pY5jO8S9ODE3RsyLKUw9Qnur/heSC/u2hWFItV3dDcrru+3YtxpbdHqdwe1b2ZbNWDA2WMO8X10+Hh0n7afV1VGOJZ2iLSIi35dtW8ylo8ylozxz3xirhQbXNiu8vlZiKV+j2wuJ+Q6JwCUeuFoPWu6aZVlMpyJMpyJ87OIknW6PG9s1FrMVLufKrBYbrO2Mby5u4jmm6vzSdJKL0wmmk4Em5SIiIsPkeJCYNqOv14NGwYTllRxsvrVbVe64EBmDaEZV5Med40HmnBl93Q5U1qCwvBuWl1fN2uVbi2b0uYFpud4PydNnzftIH6qLiIiMjJgX4/70/dyfvp/n554ftFbP1rKsVFYot8rkajl6YQ/P8Yi5MeJenKgb1ec1Q2BZFgk/QcJPcD51ft+2MAwpt8rvuIZ5N+yy1dhiq7F14HUdyzlQWd6/nfSTOtYysvQXp4iIvCeuY3NuIsa5iRjPPTDB0nadpe0aS9s1tqsttqs1Or0Qx7aI+Q7xwCXuuzi2JkPy3rmOzQNTpm06zFJpdkyb9axZj7zc7PB2tsLbWdNqPR31TKv16QQXpxLEAk11REREhs62ITZuxsQDpj17dQuKN02b9q0rZgBE0hAdMwGpHH+OuxNwLwDPm/t63Z2K8uU9FeWrZu3y7StmDJ7vQ+rMnqryBROUa+1LERGRoXNsh9n4LLPxWQB6YY9is0i+kWe7sU22lmWtukahWWCtskZIiG3ZuLaLZ3u4tnvgutYqPzqWZZEKUqSCFPel79u3LQxDiq3ivnXL+5Xm+Waebthlo77BRn0D8vtf17O9A+3Y+5XmcS+uwFyGSj9hRETkrgWuw8XpBBenEwBUmx22Ki02q01ypQZL+TqleptcqUEvBNexiPsuqYhH1NcHWfLeJQKXDy1k+NCCabWeLTVZzJmA/NpmlWK9zYs38rx4I48FzGeiXJpJcGk6ycJ4FNdWpZGIiMhIiE+YMf8kNCtQuAn567DxpglJu20IEqbNuh8f9t7KvWQ7u23T+3pdqGT3rFG+DKUVs3Z5/poZg+d7kJrfDcozC5CYVVAuIiIyZLZlMxYZYywyxv3cD0Cn1xkE5flmnkqrQqVtRq1do91rU21XaffadHodur3u7gtaEHEjJL0kCT+hluxHyLIsMkGGTJAZHMu+/skPW42t/e3Y61sUmgXavTbZWpZsLXvgdX3H3xeYT0QmBqF5zI0pMJdDp1BcRETumfhO+/RzEzFg56zCeputaoutSou1Yp2VfJ31Up0wNIFlxNOHV3J3LMtiNh1hNh3h45emaHd7XN+sDtYjXy81WCnUWSnU+fpbG/iuzf2T8cF65BNxX5NtERGRURAkYOZhMy7+sAlFCzch94YJSgs3IEiZNafdyLD3Vg6D7ZigOzUPCx8x94U9025/7xrlxRXoNs17onBjz/NdSM5DZk/r9eScWvKLiIgMmWu7TEQnmIhOHNgWhiGtXotmt0mz06TRbdDqtmh0GzQ7TeqdOjdLN9lqbLFR2wBM+/akn1TF8RDtPfmBzP5t3V6XQrNw2zXMC80CrW6L9eo669X1A68bcSIHKsv7t6Nu9Gi+ODnx9NeBiIgcGsuyyMR8MjGfB6bMfZ1uj+tbNf782hZXchU8x2Y+E9U65PK+eY7NpZkkl2aSAJTqbdNqfaeSvNrq8uZ6mTfXy8AaYzGPi9NJLk2b9uzqXiAiIjICXN+0WJ94AC78oGmrvX0F1l8xwWi3Y9Yfj02YNazl5LJsSM6acfYZc1/Yg+rG/tbrxWWzRnnxphl9tmOC8vSedcqT86alu4iIiAydZVkETkDgBODf/jEfnf8opVaJXC3HenWdG6UbpjV7NQsWxL04ST+pKuMR4djOO54E0el1Bq31b13HvNQq0eg2WK2uslpdPfDcqBs9UFnevx1o2SV5D/SXgIiIHCnXsbk4neC+iRhvrpf5i2vbXNusEg9cZlMRrT0u90wq6vHU+TGeOj9GLwxZLzZY3FmP/MZWjXytzbevb/Pt69tYwMJ4bLAe+dmxmN6LIiIiw2Y7pjV2ZgHOf8xUj28uQvZV2L4KhBCbNGuQq3X26WDZkJgx48yHzX1hD2pbOx0GlqG0E5a36zuh+dL+5yfn9qxRftZUpzvv8Em8iIiIDJVlWaSDNOkgzaWxS/xA+APkm3k2ahusV9e5Xro+WLPctmxiXoyElyDmxdRufcS4tstUbIqp2NSBbe1um3wzz3Z9d/3yfmBeaVeod+qsVFZYqawceG7ci+9vyR6dGFz3NceTWygUFxGRoXAdm0fPpLk4neC11RJ/cW2LxVyZ8ZjPZDLA1tmdcg/ZlsV8Jsp8JsonHpyi1elxbbNiQvJchY1yk5vbNW5u1/jjN3NEPJsHphI7IXmS8bgm0SIiIkPleLsV5Pd/Ynf98Y23YGsRLAfiUxBJmeBTTg/LNsc+PgXzT5n7wnAnKF/e3369XTNrlZdWYGnP8xMzO0F5Pyw/o6BcRERkBFmWNQg8Hxp/iI+HH2e7sT2oJF8qL1FqlgbrWfuOT8JLEPfiCkhHmOd4TMemmY5NH9jW6rYOVJb3R7VdHYyl8tKB5ya8xIGgvD88dZ06lRSKi4jIUEU8hw+fH+Oh2STfW8rz7et5FrNlppMRxhREyiHxXZuHZlM8NJsCoFBr7bRaN+uR19tdXlst8dpqCYCJuM/F6QQPziS5MBkn4qkaTUREZGi8KEx/0IxGyVSN594wbdbLa2Yd6eiYabOuNaVPJ8sya9DHJ2H+Q+a+MIR6/pY1ypehVTHvm/IaLP9F/wUgOQOpnbbrmQVInQG15xQRERkptmUzGZ1kMjrJwxMP0wt7FJtFthvbbNY3WS4vk6vnWKus0e61sW17EJKr5frx4Ds+s/FZZuOzB7Y1O83d9ct31jDv36536lTaFSrtCjfLNw88N+WnbhuYj0XGcPU3xImlIysiIiMhEbh87OIUH5xL85c3tvnucpFctsR8OkoyojP35HBlYj5P3zfO0/eN0wtDVgv1Qav1m9s1tqottq5t8+fXtrEtODceG6xHfmYsqs4GIiIiwxJJmdBz/kNQ3TIV5FtXIH/VXBJCkDYhuRcZ7r7KcFkWxMbNmHvC3BeG0CgeDMqbJSivm7Hynf4LQGJqTzX5ggnN9b4SEREZGbZlMxYZYywyxgOZB3h27lnqnfogJN+obrBUWaLYLLJeXScMQ6JulIRvgnKFocdL4AbMJ+aZT8wf2Fbv1Nmu71SYN7b2XW92m5RaJUqtEtdL1/c9z8K07B8E5dHd9cszQQZHyzYda/oOFxGRkTIe9/nhh2d59EyGb1/f4rXVEuulBjPJCKmownE5fLZlcXYsxtmxGJ96aJpGu8u1zSqLuTKL2Qpb1RbXt2pc36rxR29kiXrOYC3yi9MJMjF1OBARERmK+IQZZz8MzbIJN7evw+abUF6FTtNUmUfHIUiozbqYoDyaMWP2sd37G8WDrdcbRajkzFh5cfex8andkLy/TrkXO+qvRERERN5B1I1yJnGGM4kzMAXdXpdCs8BmfZOt+hZL5aVBW+5ur4vneMS9OAkvQcTVyW/HVdSNciZ5hjPJM/vuD8OQWqd2oLK8f7vVa1FoFig0C1wtXt33XAuLTJBhPGpC8n5oPhGZIB2ktY79MaBQXERERtJsOsKPPT7P42czvHSzwNvZMmvFOpOJgLG4r8pcOTIRz+GDcyk+OGdarW9XWyzmylzOVbiyYVqtv7JS5JWVIgBTiYCLMwkenE5wYTKB72pCLCIicuSC5G6L9e4PQ2nVBJu5nYC8tAy2Z6qGo2MKyGW/SNqMmUd272uWd0PywpJ5D9XzUN0wY/Wl3cfGJncD8n5Y7seP/usQERGRAxzbYSI6wUR0YnBfpVVhq7HFVn2LlcoKa9U1NmobNLtNbMsm5sUGLddVKXy8WZZF3IsT9+IsJBf2bQvDkGq7uhuU17f3rWHe7rXJN/Pkm3mucGXfc23LZiwY21dZ3g/N035arfpHhEJxEREZWZZlcX4izvmJOGvFOq+tFHl1pcTb2TKZqM9UMsCxNaGQozUe93n2wgTPXpig2wtZydd4e2ct8qXtGhuVJhuVJv/5yhaOZXF+Isal6QSXZpLMpiM6oUNEROSoOR6MnTfj/MegugnFm7B5BbYvw8ab4MUhMW0qyUVuJ0jC9MNm9DUrJigvLUNhp6K8vg21TTPWvrv72Oj4/mryzAL4iSP/MkREROSghJ8g4Sc4nzrPUzNP0e62ByF5rpZjqbxEsVUkV8sRhiGO7QxC8pgXU4XwCWFZ1r73wl5hGFJulQcB+d6W7NuNbbph17xnGlsHXtexnH3rlu8NzpN+UoH5EVIoLiIix8JcOspcOsqHz4/zxlqJ7y4VuLJRJuq5zKQiqsaVoXBsi3MTcc5NxPnhD85Qb3W5smEC8sVcmXytzdXNKlc3q/z+61nifr/VepKL0wktCSAiInLUrJ11oRNTcObDUNuGzUVY/a4JNHttiE2YoQ835fsJErsdCfpa1Vtary+bgLy+bcb693YfGx0z65Jn9qxTHiSP/usQERGRfTzHYzY+y2x8lkd4hF7YGwSi+UaeXC3HanWVcqtMtpalF/bwbNN2PebFiLkxBZ0njGVZpIIUqSDFfen79m0Lw5BSq3QgKN+qb5Fv5umGXTbqG2zUNw68rmu7+wLzicjEIDRPeAm9j+4xheIiInKsjMV9Pnpxkg+dy/DWepmXbhZYylexLIvZZIRYoF9tMjxR3+HRM2kePZMmDEO2qi0WcxUuZ8tc2axSbXX53nKR7y2bVuszqYBL00kuTSe4bzKO5+jDdxERkSMVG4dzz5qAvHADcm9A9lXYeAvciKkeV9treS/8OEw9ZEZfuwbFlT1h+ZJpuV7Pm5F9ZfexkfSeivKdy0j66L8OERERGbAtm3SQJh2kuZC+AEAv7FFsFsk38mw3tsnVcqxV1yg2i6xX1wnDkMANSHgJ4l4c3/GH/FXIYbEsa/D+uD99/75t/ffJrYF5/wSLTq9DrpYjV8sdeF3f9gcB+a2BuU68uDtKDkRE5FiK+S5Pnhvjkfk0VzcrfPdmgaubVdqFOlPJgExME00ZLsuymEwETCYCnr/ftFq/uV0brEe+kq+TLTXJlpr86eVNXNvivsm4abU+nWQmFWhyKyIiclQcFyYeMOPCx031+Np3IX8TOg2IZExVrxcZ9p7KceTFYPKSGX3tBpRWdkPy4jJUctAompF9dfexQWp/SJ5eMEG55ooiIiJDY1s2Y5ExxiJj3I8JQju9DoVmYRB6rpRX2KhvsF5dp9VtaX3yU2jv+4TM/m3dXnff+2W7vj1Yz7zYLNLqtVivrrNeXT/wuoET7Fu3fG9wHtWSUO9IobiIiBxrvmvzgdkUD04nWcrX+N5SgbezFdZLJcZjPhMJrTsuo8GxLS5MxrkwGeczD0Ot2eHyRsVUkucqFOttLu9c/w+skwxc02p9JsHF6SQJdUEQERE5GpE0nH0a5p8ya4/n3oSNN6C8Ap2WWXc8OmbaXKvFutwtL7J7IkZfp7knKN+pKi9noVmC3Otm9PmJg0F5dExBuYiIyBC5tstkdJLJ6KS5Yw4ancYg9MzVcqxUVig2d9cnD9yA8cg4cU/diU4bx3aYiE4wEZ04sK1/gsVWfWtfdflWfYtSq0Sz22S1uspqdfXAc6NudH9L9ujEIDAP3OAovrSRpU9XRUTkRLBti/MTcc5PxMmVG7yxWuKVlSKXcxVivqN1x2XkxAKXx89mePxshjAM2Sg3WdxZi/zaZpVys8NLSwVeWioAMJ+OcHE6yaWZBOfHY7hqtS4iInK4bBvG7jPj4g9BadUElRtvQmnN3LYdE6JHx0AtMeX9cgMYv9+Mvk4TyqtQWIbSkrmsrEOrYt6LG2/uPtaL7wTke8Ly2ISCchERkSGKuBHmE/PMJ+aBg+tPXylcYa26xmpllZgbYywyRsyLDXmvZdgOnGCxR7vbJt/M76ss71eal9tl6p06K5UVViorB54b9+K3DczHI+OnosW/QnERETlxppMRph+K8OH7xnlrvcx3l/Jm3XEsplMRVdzKyLEs896cTkX42MVJOt0eN7ZrLGbLLOYqrBUbrO6Mby5u4DkW908mTCX5dIKppFqti4iIHCrHg7HzZtz3MahuQWkZtq/D1ttQuAndtllPOjpmqnj1u1nuBTeAsQtm9HVb5sSMQUX5sgnO21XYfMuMPi8KqZ2QPHMWUgsQn1CXAxERkSG5df3pD898mI36BjdLN3k7/zbZWpaVysogvIy4Wr5H9vMcj+nYNNOx6QPbWt3WvsryvcF5tV0djKXy0oHnJrzEgaC8PzzHO4ov7dApFRARkRMrEbh8+PwYj51Jc22zysvLBa5sVFgp1JhKRMjEPGx9WCkjyHVsHphK8MBUgh8Fyo02VzYqLGZNe/Vys8Nb2TJvZcsApKPeICC/OJUgphM/REREDld8woy5J/avDZ17y1TxFpdM1W58CnxV+sg95vi7J2n0dTsmGO+3XR8E5XXYWjSjz41A6gxkFnYryuNTCspFRESGwLKsQcD51MxT5Go5lspLvLn9Jhu1DZrdJgk/wVhkjMA53a2v5fvzHZ/Z+Cyz8dkD25qdpmnB3q8u3xOY1zt1Ku0KlXaFm+WbB56b8lO7IXl0fLCe+VhkDNc+Pp9DHp89FRERuUu+a/PQbJIHZxIs5+u8tlrkjbUyb2fLpKMeU8kA19YHQDK6khGPDy2M8aGFMcIwZL3U4HLOrEd+fbNKsd7mxRt5XryRxwLOjEV3QvIkC+NRvb9FREQO0961oe/7QahuwPZVWH8ZiismlIxmID6pFutyeBwXMufM6Ot1oLy+JyhfMm3/Ow3YvmLG4PkBpM/sab2+AIlpBeUiIiJHyLbsQaD51PRTrNfWuVm6yVvbb7FeWafda5PwE6SDNFE3OuzdlWMmcAPmEnPMJeYObKt36mzXtw+E5tuNbRrdBqVWiVKrxPXS9X3PszCdD/YG5uORcZJekl7YO6Kv7M4pFBcRkVPDsiwWxmMsjMf4yIUJ3lwr8d2lAlc3qkQ8h5lUQOA6w95NkXdlWRZz6Shz6SgfvzRFu9vj2mZ1JyQvky01Wc7XWc7X+fpbG/iuzQOTcS7OJLk0nWAi7qvVuoiIyGGxbUjOmLHwrAkhNy9D9mXI34CwB9FxiI2b9chFDpPt7q4xznPmvl4XKtk9rdeXzMkb3aY5mWP76u7zHd9UlPdfI5KBIDmMr0REROTUcWyHM4kznEmc4enZp1mvrHOjfIPL+cts1jZpdpv4jk8myJDwE9g6kU3eh6gb5UzyDGeSZ/bdH4Yh9U79QFDeD89b3RaFZoFCs8DV4tV9z/3rl/76UX4Jd0ShuIiInErjcZ+PXpzkQ+cyvJ2t8NLNPMv5OgAzWndcjhHPsXlwJsmDM0lgjmK9zZVchbdzZS7nKtRaXd5YL/PGumm1PhbzuDSd5OK0ac8uIiIih8S2d1tcX/g45K+btZ6zb8DmIjgOxKYgklI1rhwd24HUvBkLz5r7el2o5kxAXliG0s465d0W5K+ZAYAFP/D/G9qui4iInFae7bGQWmAhtcDzc8+zUd9grbrG1cJV1qprbNQ2sCyLVJAi7adPzPrPMnyWZRHzYsS8GAvJhX3bwjCk2q7uVpfvCcyLzSJxLz6kvX5n+sRfREROtZjv8qGFDI/Mp7i2WeV7S2bd8dU9646rqlaOk3TU46nzYzx1foxeGLJWbHA5W2YxV+HGVo18rc1fXN/mL65vYwHzmQh/45lz3/d1RURE5H1wfZh60Iz7P2XaVmdfN5flVbPGc2wCghRo7ilHzXYgOWfG2Y+Y+8IeVHL71yjvtkAfsouIiAyVYzuDFutPTj9JsVlkrbrGcmmZa6VrrFRW6PQ6xLwY6SBNzI3ps005FJZlkfATJPwE51L7P1tstBts1DeGtGfvTKG4iIgIu9W2l6bNuuOvrhR5fa3E29kGmZjPZCLAsTWBlOPFtizOZKKcyUT5xEPTNDtdrm9WeTtX4XK2wkalSRiCrfe2iIjI0QkSMPeEGdUtE4znXofCTbPesxuYFuuqIJdhsmxIzppx9mlzX70AnfpQd0tERET2Swdp0kGaD4x/gGa3SbaaZaWywpXCFbYaW6xV1rAtm4SfIOWniLiRYe+ynAKjeiKGQnEREZE99q47/syFcV5fLfHysqkej7g2U8kIUV/rP8rxFLgOD82meGg2BUCh1mI5XxvyXomIiJxi8Qkzzj4D1U3TYn3jDcjfhPKaWdM5NqGAXERERES+r8AJOJc6x7nUOZ6de5at+ha5eo618ho3yzfZqG3Q7DZxbIeknyTpJwmcYNi7LXJkFIqLiIi8g8lEwA8+OMVT58d4O1vm1eUiy/k6rW6PibjPWNzHHtGz3kTuRCbm0+r2hr0bIiIiYlmQmDJj4RlTQT4IyK/vBOTeTkCeVkAuIiIiIu/KtmymYlNMxaZ4ZOIROr0Om/VNNmobrFRWWCovka1maXVbuLZL1I0SdaNE3Ai+4w9790UOhUJxERGR7yMRuDx1bownzmZY2q7x5nqJN9fLXM6ViXgu08mAiKfqcRERERG5RwYV5B+G2jbkr0HuTROQV7K7jwsBC/M/lm3WhrYcc+l4EKTBU4tMERERkdPOtd3BWuSPTT1Gu9tmo75BrpZjtbJKrpaj2q5SaBZod9uEhLi2S8SNmLDcMWH5qLbFFrkTCsVFRETukGNb3DcZ577JOM8/MMnlXIVXlgusFOq0u6Gqx0VERETk3ouNm3FmJyAvrUK3Cd0O9NrQbUOnCZ2GGe2G2d6qQHnV3OdGIDoGQcoE5iIiIiJyqnmOx3xinvnEPB+a/hBhGFJtVym3ypRaJUqtEtuNbbLVLJV2hVKzRKvXIgxNWJ4JMqSCFLY6GMkxolBcRETkLqSjHh8+P8aHFvZUj6+VWcyWifkuU6oeFxEREZF7rR+Q34lOy7RdL63C1iIUl6GSg7Bn1iiPZMCPH+ruioiIiMjxYFkWCT9Bwk8wx9y+bbV2bRCUl5ol1qprLJWWuFq4qoBcjhWF4iIiIu/DO1WPLxfqdHsh08kI6ag37N0UERERkdPG9WHsvBnnn4dGEYorUFyCzbehugGFG2B7poo8kgFHHxOJiIiIyH4xL0bMizEbnx3cV2qVWC4vc7V4lRvFG7sBeSRDyldALqNJf+2IiIjcI/3q8SfOprm5XePVlSJvZyusFeuMxXwmEwGOrdbqIiIiIjIEkbQZMw/DxR82a5MXV2D7mlmzfPsKWBbEp8zj9EGmiIiIiLyDlJ/i4YmHeXji4UFAfqVwhZulm1ytXcWxHcYiYwrIZaQoFBcREbnHXMfm/qkE908lyJUavLFW4pWVIpdzFWK+w3QqIHDVWl1EREREhsR2IDVvxsIz0KpC/gZkX4XNRdN23YtBYtpcioiIiIi8g70BebFZZLmyzNXCVW6WbnKtdg3Ltkh6SRJ+gqgbHfbuyik21FD8m9/8Jv/0n/5TXnzxRdbW1vja177GZz/72cH2MAz54he/yP/xf/wf5PN5nn32Wf7Fv/gXPPLII8PbaRERkfdgOhVhOhXhw/eN83a2zHdvFljeroMF08mAZESt1UVERERkyPy4qSCfeRiqW2YN8rXvmXXIOw2IjkN8EmzVVoiIiIjIO0sHadJBmkcmHhkE5MvlZZbKS2zVt2h0GtiWTdyLk/ATxNwYlqXOmnI0hvrXTLVa5YknnuBv/+2/zec+97kD23/jN36D3/zN3+Rf/+t/zYMPPsiv/uqv8iM/8iO89dZbJJPJIeyxiIjI3UkELk+dG+OxM2mubVZ5ZbnA5Y0qq8UGE3Gf8biPrQmgiIiIiAxbfMKMs89A4SZsvAXrr8DWFVNhHp+CIGVarYuIiIiIvIO9AXm712a7vs1mfZP12jo3SzcpNousV9bBMuuWJ70kMS+mdutyaIYair/wwgu88MILt90WhiH/6//6v/I//U//Ez/5kz8JwFe+8hVmZmb4v//v/5v/9r/9b49yV0VERO4Jz7F5cCbJpekEq8UGb6wWeXW1xNvZMumox3QyonXHRURERGT4bAfGL5hx4eMmFF9/xaw9XloBPwHRMXOpgFxERERE3oVne8zEZ5iJz/AIj9Dtdck382zWN8lWsyyVl8g38mRrWcIwJO7FSfpJ4l5cleRyz4xs36tr166xvr7OZz7zmcF9QRDwiU98gj/7sz97x1C82WzSbDYHt0ul0qHvq4iIyHtlWRZnMlHOZKI8c98Eb6yX+MsbeS7nyiQiHjPJANfRWZEih0nzRhERkTvkx2HucTPKWdi6DOuvQmUdikvgBBDNQCRjwnSRE0bzRhERkXvLsR0mo5NMRif5wPgHCMOQQrNgQvJaluvF62w3tslWs1iWNQjJo25UIbnctZENxdfX1wGYmZnZd//MzAw3btx4x+d96Utf4otf/OKh7puIiMi9lI55PHf/BI+dSfPGWokXb+a5ulkl6jnMpiN4CsdFDoXmjSIiInchOWPGueehumFarG8tQv6GuQQTjkfHwA2Guqsi94rmjSIiIofLsizGImOMRca4NHaJj81/jHwzT66WY626xo3iDfKNPKudVWzLJuknSfpJIm5k2Lsux8jIhuJ9t57xEYbhu54F8g//4T/kl37plwa3S6USCwsLh7Z/IiIi90o8cHn6vnEePZPmzfUyL97Y5vpWFd+xmU1HCFxV3YjcS5o3ioiIvA+2vRuQLzwDjSIUliB/DTbfNhXk3bZprx7babMuckxp3igiInK0LMtiPDLOeGScD4x/gO6ZLtuNbROSV9a4Ub7BRm2DZreJa7uk/BRJP4nneMPedRlhIxuKz87OAqZifG5ubnB/Lpc7UD2+VxAEBIHORBYRkeMr4jl8aCHDB+eSLGYrvHgjz83tKrZlMZuKEvUVjovcC5o3ioiI3EORNMymYfZR6DShuGxC8twbUM2ZinI3CrFxCFJah1yOFc0bRUREhsuxHaZiU0zFpnhk8hHavTZb9S2ytSzL5WWWykssV5bp9rpE3SipIEXci2Nb6sApu0Y2FL9w4QKzs7P84R/+IU8++SQArVaLb3zjG/yTf/JPhrx3IiIihy9wHR49k+ah2SSXcxX+8maea5tVur2QqURAOuppDR0RERERGT1uABMPmHHhB83a44WbkHvdhOWlVXB8iE1AJAX6sFJERERE3gPP9piNzzIbn+WJqSeod+rkajmy1SxXi1fZqG+Qq+YASAZJUn5KrdZluKF4pVLh8uXLg9vXrl3ju9/9LuPj45w7d45f/MVf5Nd+7de4dOkSly5d4td+7deIxWL8l//lfznEvRYRETlanmPzwbkUD84kubFV5dWVIm/nKmTLDdJRn8mEj2vrg0QRERERGUG2Dal5Mxaeheom5K/DxpsmKC+vge2aCvJIBmx1RRIRERGR9ybqRjmfOs/51HmemX2GYrNItpZltbLKteK1Qat1C4vADYi5MWJejMAJVHR0igw1FP/Od77Dpz71qcHt/to8n//85/nX//pf8w/+wT+gXq/zd//u3yWfz/Pss8/yB3/wBySTyWHtsoiIyNA4tsX9Uwnun0qQKzd4e73M95aKXN2oErg2M6kIEU8fIoqIiIjIiLIsSEyZsfAM1LZNQL55GbavwOaiCdGjY6bFuqt21SIiIiLy3liWRSaSIRPJ8ND4Q3y893E265tsN7bJN/KsVlbZbmyzUdug1W0REu4G5W6MiBtRUH5CDTUU/+QnP0kYhu+43bIsvvCFL/CFL3zh6HZKRETkGJhORphORnjq/BiL2QrfWypwM19Ta3UREREROT5i42aceQoaRcjfMAH51mXTZr3bMkG6GwU/Dn7CBOWa54qIiIjIHXJtd9Bqva/ZbVJoFCg0C+SbedYr6+TqObYb2zS6DcIwJOpFSftp4l5cn7OeECO7priIiIh8fzHf5YmFDI+eSau1uoiIiIgcX5E0zD1uRqtq2qzXtsxlcdlclteg0wQLcAITlEczZn1yEREREZE7FDgBM/EZZuIzg/vavTbFZpF8I892Y5srhSts1DdYr67j2i7pIE3KT+FouZ9jS6G4iIjICbC3tfpGuclb6yVeXjat1V3HYioRkIx4w95NEREREZHvz4+bMXZ+97523bRbr22ZUVw2IXnhJnTbECQgOm6eJyIiIiLyHnm2x2R0ksnoJAAfmf0IW40t1ipr3CjfYKm8xI3SDcIwJOEnyAQZAi33c6woFBcRETlhppIBU8kpnjo/xtWNKq+tFrmxVWOlUCcd9ZhMBHiOqsdFRERE5BjxopA+Y0ZfuwGlFROM596Aag4KN8CNmIA8kgJL814RERERee8syxqE5I9NPUa1XWWtssZyZZmrhatka1la3RYRN0I6SJPwEmqzPuIUiouIiJxQMd/l0TNpHplPkS01uZwr88pKketbVWzLYjIRkIq4mqyJiIiIyPHkRWDiATMufMJUjheXYeNNc1lZN+uPR8YgOgaOOieJiIiIyN2Je3Eujl3k4thFPnbmY+RqOdYqa1wpXCFXz5Gr5gBIBklSfoqIGxnyHsutFIqLiIiccJZlMZuOMJuO8PR941zfqvLGapkrmxXWinWSEY/JhE/gaj0cERERETmmbHu3kvzcs6bVenEJtq/C5iLkr0Ova9Yuj09oHXIRERERuWue7XEmcYYziTN8eObDFJoFsrUsq5VVrhevs1HboNlt4touKT9F0k/i6QTNoVMoLiIicopEPIcPzKb4wGyKjXKTKxsVXlkpspKv0wtDJuIB6ZiHrepxERERETnOYuNmzD0BrZqpHM9fh9xr5jLsQSRjHqOAXERERETukmVZjEXGGIuM8YHxD9Dpddisb5KtZVkqL7FcXma5sky31yXiRkj5KRJ+AlvL/Bw5heIiIiKnlFl7POCpc2Pc3K7x5nqJt7Nl3s42SEY8phIBvqvJmYiIiIgcc34Mph404/5PmDXIt67sD8ijYxCdAEcflYmIiIjI3XNtl9n4LLPxWZ6YeoJ6p06uliNbzXK9dJ1cLcdGfYMwDIl5MZJ+krgXV0h+BDTTFxEROeV81+bidIKL0wm2qy0Ws2VeXi6ylK8CFlOJgFRU7X1ERERE5ARwA5i8ZMb9n4TCDdi8DBtvwPYVIIToTpW5rY/NREREROT9ibpRzqfOcz51no/MfYRis0i2liVXy3GjdIN8I0+uliMMQ6JelKSXVCX5IdHsXkRERAbG4z7P3j/Bk+fGuLZZ5bXVIldyVVaLdTIxn8mEj2trQiYiIiIiJ4AXgamHzHjgUzsB+SJsvGkqyQESMxDNDHU3RUREROTkSAdp0kGaB8ce5GPzH6PUKpnq8doGN0o32GpssVnfpBf2iHtxJqIT+Fru555QKC4iIiIH+K7NQ7NJHppNki01eGu9zKsrRa5tVnFtm+lkQDzQNEJERERETgg/BtMfNKP1Q6atevY1E5CXVyE2AbFJsJ1h76mIiIiInBCWZQ1C8ktjl/jomY9SbBbZrG+Sq+ZYLCyyUl4BYDI2SdJPDnmPjzd9mi0iIiLvaiYVYSYV4Zn7xrmyUeHl5SI3tqss52tMJALG4z62ZQ17N0VERERE7g0/DjOPmFFag/VXYe0l2HwLvDgkZ00bdhERERGRe6wfkj+QeYCnZ5/mRukGr2+9zrXSNdar62SCDOORcRydrPmeKRQXERGROxL1HR49k+bhuRQrhTpvrZd4dbXEYrZMPHCZTkbwXbVWFxEREZETJDVnxrlnTdX4youmzTqWCccDVeuIiIiIyOHwHI+LYxe5OHaRbDXLYmGR1zdf53rxOr7rMxWdIuJGhr2bx4ZCcREREXlPbNtiYTzGwniMZy5MsJgt892lAkv5KmAxnQxIRrxh76aIiIiIyL0TScHCR2D+Sdi6DCt/aS6Ly6atenwCLJ0gKiIiIiKHYyY+w0x8hqemn+JK4Qqvbb7GcmWZbthlPDpO2k9jqZvnu1IoLiIiInctHfV4+r5xHj+b4dpmlZeXC1zdrLJaqDMRDxhPqLW6iIiIiJwgjmfWHZ/6gAnE11+F9e+ZKnI/CckZcPxh76WIiIiInFAxL8ZjU4/x8MTDLFeWeXP7TRbzi1yuXSbmxUj5KeJeHFsnbB6gUFxERETeN9+1eWg2yYMzCdaKDd5YK/HqalGt1UVERETkZLIsyCyYcf45yL1hqsfz1wELEtMQSQ97L0VERETkhHJsh/Op85xPneeZ2We4UrjCYn6RrcYWuVoOQhOgJ/0kcS+uKnIUiouIiMg9ZFkW85ko85koz1wY322tvl0DCybiPqmop+pxERERETk5omNw/qNw5mnTUn3te7D5NpRWzLb4FNj6CE5EREREDsd4ZJzx2XGennmaYrNIrp4jW81yvXSdfCPPenUd27IHleRRN3oqQ3LNyEVERORQpCIeHz6/21r9tZUS17YqZHMNPMdmIh6QjLgKyEVERETkZHB9mHnYjNIaZF+HtZdMUO74kJgBPz7svRQRERGRE8qyLDKRDJlIhgfHHuRj4cfIN/Js1DdYq65xo3iDQrPASmUFx3JI+knSQRr/lCz/o1BcREREDpXn2Dw4k+TBmSSFWoub2zXezpa5sVUjW6rjOQ4TcZ9kxD2VZyiKiIiIyAmUmjPj/HOw8RasfRe2r0OnAbFxiGTADYa8kyIiIiJyktmWzUR0gonoBB8Y/wDdM13yzTzZWpa1yhrXitdYrazS6XWIeTEyQYaYFxv2bh8aheIiIiJyZDIxn0zM5/GzGbarJiB/a73E0nadtWKdiOcwHvdJRrxh76qIiIiIyPvnx+HMUzD3ISjcgOxrsPEGlJah2wLbh0jKrD9+Sip0RERERGQ4HNthMjrJZHSSRyYeodVtsV5dZ6WywpXCFTbrm6xUVgicgEyQIeEnsC172Lt9zygUFxERkaEYj/uMx30+tJBhs9Lk5naNN9fKLOdrrBbqzKajpKMKx0VERETkBLBtGL9gxqUfgfK6GdtXobAEhZvQbZvq8UgagjQ4+thORERERA6P7/icS53jXOocz849y0bNtFm/WrjKanWVjdoGtmWTClKkgzSufbznp8d770VEROREmEwETCYCnlzIsF5q8NLNAq+tlFgvKhwXERERkRPGDWDsvBnnnoVWDSrrZh3y7atQWoHtKxD2wItCdAyCFGipIRERERE5JLZlMxOfYSY+w4emP0SxWWS1ssrN8k2uF6+zVF6i2+sS82Kk/BRxL37slsJUKC4iIiIjw7Is5tJR5h6L8uS5DH95o8DrqyXWS3VmUwrHRUREROQE8mMwfr8Z930MmuWdSvI12FyE0qoJyt0IxCYhSCogFxEREZFDlQ7SpIM0H5z4IPVOnbXqGtlKlivFK2w1tlivruNYDskgScpP4R+DpYAUiouIiMhImktH+S8ej/LUeROOv7ZaVDguIiIiIidfkDRj8hJc+EGobED+mlmPvLhk1iN3oxCfBD+hgFxEREREDlXUjXJ/+n7uT9/Ps/PPst3YJlvLslJe4UbpBmuVNdq9NoEbmIDcHs2AXKG4iIiIjDSF4yIiIiJyqiWmzDj7DFRykL8OudfMWuTFJfBiEJswQbqIiIiIyCGyLZvJ6CST0UkemXiEVrdFtpYlW81yvXSdbDXLRmuDmBcb9q4eoFBcREREjoV+OP7kuQwv3czzmtqqi4iIiMhpYlmQnDFj4SNQyZqAPPsqFFf2B+SqIBcRERGRI+A7PgvJBRaSCzw9+zSlVon16jrFZpFMkBn27u2jUFxERESOlflMlPlMlCfPjQ3C8WypwVQyYCw2mq15RERERETuKcuC5KwZC8+aNcj7AXl5DYrLYLsQHYNoxlwXERERETlkKT9Fyk8NezduSzNiEREROZb64fhT58f43lKBV1dL5NZLTCYCxuM+lipjREREROQ0sCxIzZlx7jmobpiq8a0rsH3NXBJCkDIB+Qi2shQREREROWwKxUVERORYm0tHmUtHeercGC8vF3hlpcRb2TIT8YCJhI+tcFxERERETgvLgsS0GWc+DM2KqRov3ISNN6GchU4d3KipIo+kwLKHvdciIiIiIodOobiIiIicCNOpCD/88CxPnhvj1ZUiLy0VeDtbZizmM5kIcGyF4yIiIiJyygQJmP6AGQ98eqe1+hJsvAWlFXPbdiE+BZG01iEXERERkRNLobiIiIicKBOJgE88NM0TCxleWy3y0s0Ci7ky6ajHdDKicFxERERETifHhcyCGec/CrVtKNyA7OumzXp51bRWj0+BHx/23oqIiIiI3FMKxUVEROREysR8PnZxisfPZnh9tcSLN/JczlWIBw5TiYDAc4a9iyIiIiIiwxMbN2P+SahswNZlWH/VVJJ3GqZyPD4Jjj/sPRURERERed9GOhT/whe+wBe/+MV9983MzLC+vj6kPRIREZHjJhnxePb+CR49k+bN9RLfvVlgpVCn0wsZj/mMxX1Vj4uIiIjI6ZaYMmPhWSgtw+ZlWP8e5G9A2DPhudYeFxEREZFjbKRDcYBHHnmEP/qjPxrcdhxVdYmIiMh7Fw9cPnx+nCfOZri5XeNyrsKb6yWublRwHIvJREAq4g17N0VEREREhse2IXPOjPt+APLXYeNNyL0BlawJx0VEREREjqGRD8Vd12V2dnbYuyEiIiInhOvY3D+V4P6pBB+9OMn1zSqvr5W4sVljrVAnEfGYTPgErk7EExEREZFTzPVh6kEzHvgUbF2Bet6sOy4iIiIicsyMfCi+uLjI/Pw8QRDw7LPP8mu/9mvcf//9w94tEREROQESgcujZ9I8Mp9io9zkykaVV1eLrOR32qvHfcZiaq8uIiIiIqdckIT5Dw17L0RERERE7tpIh+LPPvssv/3bv82DDz5INpvlV3/1V/noRz/Ka6+9xsTExG2f02w2aTabg9ulUumodldERESOKcuymE5FmE5FePq+MZa2ayzutFe/vFEm5rlMpwJVj58wmjeKiIiIyJ3QvFFERETk+LOHvQPv5oUXXuBzn/scjz32GD/8wz/M7/7u7wLwla985R2f86UvfYl0Oj0YCwsLR7W7IiIicgJ4O+3V/8ojs/ydj13gJz50hqlkwPJ2nSsbFcqN9rB3Ue4RzRtFRERE5E5o3igiIiJy/FlhGIbD3on34kd+5Ee4ePEiX/7yl2+7/XZnbi4sLFAsFkmlUke1myIiInKCtLs9rm1WeXm5wJVchXq7x0TcZyzuY1vHu7V6rtzAc2z+3qcuHsm/VyqVSKfTIzE307xRREREZHRp3igiIiIid+JO540j3T79Vs1mkzfeeIOPf/zj7/iYIAgIguAI90pEREROOs+xeXAmyaXpBKvFBq+vFHlttcRitkwy4jGVDPCckW7AI7eheaOIiIiI3AnNG0VERESOv5EOxf/7//6/56/+1b/KuXPnyOVy/Oqv/iqlUonPf/7zw941EREROYUsy+JMJsqZTJRnLozz1nqZl5YKXN+qErgOZzJRHPt4V46LiIiIiIiIiIiInDQjHYovLy/zMz/zM2xubjI1NcVzzz3Ht771Lc6fPz/sXRMREZFTLhPzefb+CZ5YyLCYrfCtq1ss5spMJyOMx/1h756IiIiIiIiIiIiI7BjpUPyrX/3qsHdBRERE5F1FPIfHzqa5fyrOd65v8+3reRazZc6OxYj6zrB3T0REREREREREROTUG+lQXEREROS4iAcun3homoszSf7s8iZvrJWIeA5zabVUFxERERERERERERkme9g7ICIiInKSnMlE+WtPnuGvPXmWVNTj7WyZfLU17N0SERERERERERERObVUKS4iIiJyj7mOzWNn09w3GeMvrm3z4o08W9UmZ8diRDy1VBcRERERERERERE5SgrFRURERA5JMuLxQx+c4cGZJP/p8iZvrZeJBS5z6Qi2pZbqIiIiIiIiIiIiIkdB7dNFREREDtnCeIy//uGz/MSTZ4j7Dm9ny2xVmvTCcNi7JiIiIiIiIiIiInLiqVJcRERE5Ai4js2HFjJcmIzznWvbvLJS5O1smWTEYzoZ4Dk6V1FERERERERERETkMCgUFxERETlC6ajHDz08w9P3jfNWtsx3l/Jc36riWBazqQixQNMzERERERERERERkXtJn7qKiIiIDEE65vGRC+M8sZDmSq7K95YLXN+q0ijUmEpEyMQ8rTsuIiIiIiIiIiIicg8oFBcREREZosB1eHg+xQdmkyzn67y2WuTN9TJvZ8ukox5TiQBXrdVFRERERERERERE7ppCcREREZERYNsW5yZinJuI8ez9E7y1XuK7SwWubVVxbZuY7+DaFq5j49jWznUL11ZgLiIiIiIiIiIiIvJuFIqLiIiIjJjxuM/zD0zy5LkxLucqvL5aJF9r0+r2aLS7dHsh7V6PTjek2wsBsCwIQ3Pp2jZTyYCE1icXERERERERERERUSguIiIiMqoinsOjZ9I8eiYNQKfbo9np0ersveya690ezba5nSs3ubpRYXXP+uSW1icXERERERERERGRU0qhuIiIiMgx4To2rmMTD979cWEYspyv8+pKkdfXSryVbTAe85lIBDi2wnERERERERERERE5XRSKi4iIiJwwlmWxMB5jYTzGMxfGeW2lyPeWi1zOlUlEPKaTAZ6jtchFRERERERERETkdFAoLiIiInKCTSYCPvHQNE+dH+PN9TIv3cxzfauKZ9vMpiPD3j0RERERERERERGRQ6dQXEREROQUSEY8nrlvnMfOpLmcq+yE4zVqzQ5nx2PD3j0RERERERERERGRQ6NQXEREROQUiXgOj55J84HZJNe3qnxvqUCz0xv2bomIiIiIiIiIiIgcGoXiIiIiIqeQ69hcnE7ywFSCbi8c9u6IiIiIiIiIiIiIHBqF4iIiIiKnmGVZuI417N0QEREREREREREROTT2sHdARERERERERERERERERETksCgUFxERERERERERERERERGRE0uhuIiIiIiIiIiIiIiIiIiInFgKxUVERERERERERERERERE5MRSKC4iIiIiIiIiIiIiIiIiIieWQnERERERERERERERERERETmxFIqLiIiIiIiIiIiIiIiIiMiJpVBcREREREREREREREREREROLIXiIiIiIiIiIiIiIiIiIiJyYikUFxERERERERERERERERGRE8sd9g4ctjAMASiVSkPeExERERHpz8n6c7RRonmjiIiIyOjQvFFERERE7sSdzhtPfCheLpcBWFhYGPKeiIiIiEhfuVwmnU4Pezf20bxRREREZPRo3igiIiIid+L7zRutcBRPt7yHer0eq6urJJNJLMu6569fKpVYWFhgaWmJVCp1z19f7pyOxWjQcRgdOhajQ8didOhYDF8YhpTLZebn57Ht0VrJR/PG00PHYnToWIwGHYfRoWMxOnQshk/zRr3/RoGOxejQsRgNOg6jQ8didOhYDN+dzhtPfKW4bducPXv20P+dVCqlN/uI0LEYDToOo0PHYnToWIwOHYvhGrVKnz7NG08fHYvRoWMxGnQcRoeOxejQsRguzRv1/hsVOhajQ8diNOg4jA4di9GhYzFcdzJvHK3TLEVERERERERERERERERERO4hheIiIiIiIiIiIiIiIiIiInJiKRR/n4Ig4Fd+5VcIgmDYu3Lq6ViMBh2H0aFjMTp0LEaHjoUMk95/o0PHYnToWIwGHYfRoWMxOnQsZJj0/hsdOhajQ8diNOg4jA4di9GhY3F8WGEYhsPeCRERERERERERERERERERkcOgSnERERERERERERERERERETmxFIqLiIiIiIiIiIiIiIiIiMiJpVBcREREREREREREREREREROLIXiIiIiIiIiIiIiIiIiIiJyYikUvwNf+MIXsCxr35idnR1sD8OQL3zhC8zPzxONRvnkJz/Ja6+9NsQ9Pjm++c1v8lf/6l9lfn4ey7L4f//f/3ff9jv5b99sNvn5n/95Jicnicfj/PiP/zjLy8tH+FWcDN/vWPytv/W3DnyfPPfcc/seo2Px/n3pS1/imWeeIZlMMj09zWc/+1neeuutfY/R98XRuJNjoe+Lw/flL3+Zxx9/nFQqRSqV4vnnn+c//If/MNiu7wc5apo3Do/mjaND88bRoHnj6NC8cXRo7iijRPPG4dG8cXRo3jgaNG8cHZo3jg7NG08mheJ36JFHHmFtbW0wXnnllcG23/iN3+A3f/M3+ef//J/z7W9/m9nZWX7kR36Ecrk8xD0+GarVKk888QT//J//89tuv5P/9r/4i7/I1772Nb761a/yp3/6p1QqFX7sx36Mbrd7VF/GifD9jgXAj/7oj+77Pvn3//7f79uuY/H+feMb3+Dv/b2/x7e+9S3+8A//kE6nw2c+8xmq1ergMfq+OBp3cixA3xeH7ezZs/z6r/863/nOd/jOd77Dpz/9aX7iJ35iMAnV94MMg+aNw6F54+jQvHE0aN44OjRvHB2aO8qo0bxxODRvHB2aN44GzRtHh+aNo0PzxhMqlO/rV37lV8Innnjittt6vV44Ozsb/vqv//rgvkajEabT6fB//9//9yPaw9MBCL/2ta8Nbt/Jf/tCoRB6nhd+9atfHTxmZWUltG07/L3f+70j2/eT5tZjEYZh+PnPfz78iZ/4iXd8jo7F4cjlciEQfuMb3wjDUN8Xw3TrsQhDfV8My9jYWPiv/tW/0veDDIXmjaNB88bRoXnj6NC8cXRo3jhaNHeUYdG8cTRo3jg6NG8cHZo3jg7NG0eL5o3HnyrF79Di4iLz8/NcuHCBv/E3/gZXr14F4Nq1a6yvr/OZz3xm8NggCPjEJz7Bn/3Znw1rd0+FO/lv/+KLL9Jut/c9Zn5+nkcffVTH5xB8/etfZ3p6mgcffJD/5r/5b8jlcoNtOhaHo1gsAjA+Pg7o+2KYbj0Wffq+ODrdbpevfvWrVKtVnn/+eX0/yNBo3jh69PNg9Oj349HTvHF0aN44GjR3lFGgeePo0c+C0aPfj0dP88bRoXnjaNC88eRQKH4Hnn32WX77t3+b3//93+f//D//T9bX1/noRz/K1tYW6+vrAMzMzOx7zszMzGCbHI47+W+/vr6O7/uMjY2942Pk3njhhRf4nd/5Hf74j/+Yf/bP/hnf/va3+fSnP02z2QR0LA5DGIb80i/9Ej/wAz/Ao48+Cuj7YlhudyxA3xdH5ZVXXiGRSBAEAT/7sz/L1772NR5++GF9P8hQaN44mvTzYLTo9+PR07xxdGjeOHyaO8qo0LxxNOlnwWjR78ejp3nj6NC8cfg0bzx53GHvwHHwwgsvDK4/9thjPP/88zzwwAN85Stf4bnnngPAsqx9zwnD8MB9cjju5r+9js+999M//dOD648++ihPP/0058+f53d/93f5yZ/8yXd8no7F3fu5n/s5Xn75Zf70T//0wDZ9XxytdzoW+r44Gg899BDf/e53KRQK/D//z//D5z//eb7xjW8Mtuv7QY6S5o2jTT8PRoN+Px49zRtHh+aNw6e5o4wKzRtHm34WjAb9fjx6mjeODs0bh0/zxpNHleJ3IR6P89hjj7G4uMjs7CzAgTM7crncgbNE5N66k//2s7OztFot8vn8Oz5GDsfc3Bznz59ncXER0LG4137+53+e/+//+//4kz/5E86ePTu4X98XR++djsXt6PvicPi+z8WLF3n66af50pe+xBNPPMH/9r/9b/p+kJGgeeNo0M+D0abfj4dL88bRoXnjaNDcUUaV5o2jQT8LRpt+Px4uzRtHh+aNo0HzxpNHofhdaDabvPHGG8zNzXHhwgVmZ2f5wz/8w8H2VqvFN77xDT760Y8OcS9Pvjv5b//hD38Yz/P2PWZtbY1XX31Vx+eQbW1tsbS0xNzcHKBjca+EYcjP/dzP8e/+3b/jj//4j7lw4cK+7fq+ODrf71jcjr4vjkYYhjSbTX0/yEjQvHE06OfBaNPvx8OheePo0LxxtGnuKKNC88bRoJ8Fo02/Hw+H5o2jQ/PG0aZ54wkQyvf19//+3w+//vWvh1evXg2/9a1vhT/2Yz8WJpPJ8Pr162EYhuGv//qvh+l0Ovx3/+7fha+88kr4Mz/zM+Hc3FxYKpWGvOfHX7lcDl966aXwpZdeCoHwN3/zN8OXXnopvHHjRhiGd/bf/md/9mfDs2fPhn/0R38U/uVf/mX46U9/OnziiSfCTqczrC/rWHq3Y1Eul8O///f/fvhnf/Zn4bVr18I/+ZM/CZ9//vnwzJkzOhb32H/33/13YTqdDr/+9a+Ha2trg1Gr1QaP0ffF0fh+x0LfF0fjH/7Dfxh+85vfDK9duxa+/PLL4S//8i+Htm2Hf/AHfxCGob4f5Ohp3jg8mjeODs0bR4PmjaND88bRobmjjBLNG4dH88bRoXnjaNC8cXRo3jg6NG88mRSK34Gf/umfDufm5kLP88L5+fnwJ3/yJ8PXXnttsL3X64W/8iu/Es7OzoZBEIQ/+IM/GL7yyitD3OOT40/+5E9C4MD4/Oc/H4bhnf23r9fr4c/93M+F4+PjYTQaDX/sx34svHnz5hC+muPt3Y5FrVYLP/OZz4RTU1Oh53nhuXPnws9//vMH/jvrWLx/tzsGQPhbv/Vbg8fo++JofL9joe+Lo/F3/s7fCc+fPx/6vh9OTU2FP/RDPzSYnIahvh/k6GneODyaN44OzRtHg+aNo0PzxtGhuaOMEs0bh0fzxtGheeNo0LxxdGjeODo0bzyZrDAMw7uvMxcRERERERERERERERERERldWlNcREREREREREREREREREROLIXiIiIiIiIiIiIiIiIiIiJyYikUFxERERERERERERERERGRE0uhuIiIiIiIiIiIiIiIiIiInFgKxUVERERERERERERERERE5MRSKC4iIiIiIiIiIiIiIiIiIieWQnERERERERERERERERERETmxFIqLiIyQT37yk/ziL/7isHdDREREREac5o0iIiIicic0bxQRMRSKi4iIiIiIiIiIiIiIiIjIiaVQXERERERERERERERERERETiyF4iIiI6bX6/EP/sE/YHx8nNnZWb7whS8MtlmWxZe//GVeeOEFotEoFy5c4N/+2387vJ0VERERkaHRvFFERERE7oTmjSIiCsVFREbOV77yFeLxOH/+53/Ob/zGb/CP//E/5g//8A8H2//RP/pHfO5zn+N73/sef/Nv/k1+5md+hjfeeGOIeywiIiIiw6B5o4iIiIjcCc0bRUTACsMwHPZOiIiI8clPfpJut8t//I//cXDfRz7yET796U/z67/+61iWxc/+7M/y5S9/ebD9ueee46mnnuJf/st/OYxdFhEREZEh0LxRRERERO6E5o0iIoYqxUVERszjjz++7/bc3By5XG5w+/nnn9+3/fnnn9eZmyIiIiKnkOaNIiIiInInNG8UEVEoLiIycjzP23fbsix6vd67PseyrMPcJREREREZQZo3ioiIiMid0LxRREShuIjIsfOtb33rwO0PfOADQ9obERERERlVmjeKiIiIyJ3QvFFETgN32DsgIiLvzb/9t/+Wp59+mh/4gR/gd37nd/iLv/gL/q//6/8a9m6JiIiIyIjRvFFERERE7oTmjSJyGigUFxE5Zr74xS/y1a9+lb/7d/8us7Oz/M7v/A4PP/zwsHdLREREREaM5o0iIiIicic0bxSR08AKwzAc9k6IiMidsSyLr33ta3z2s58d9q6IiIiIyAjTvFFERERE7oTmjSJyWmhNcRERERERERERERERERERObEUiouIiIiIiIiIiIiIiIiIyIml9ukiIiIiIiIiIiIiIiIiInJiqVJcREREREREREREREREREROLIXiIiIiIiIiIiIiIiIiIiJyYikUFxERERERERERERERERGRE0uhuIiIiIiIiIiIiIiIiIiInFgKxUVERERERERERERERERE5MRSKC4iIiIiIiIiIiIiIiIiIieWQnERERERERERERERERERETmxFIqLiIiIiIiIiIiIiIiIiMiJpVBcREREREREREREREREREROLIXiIv9/9u48Sq6zvvP/57lr7b23WruFLbMY7JjVBia2AROcCXs4yTBJcBgyhDhwCJlDGAeIITEOJCFkkgMkw4wxCQxkGUPyI9gYgk0S4gFMAGMbr7IkS2pJvXd1bXf7/XGrqrdqbZZU3aX361BU1b11732qu2Rd1ed+vw8AAAAAAAAAAACAnkUoDgAAAAAAAAAAAADoWYTiAAAAAAAAAAAAAICeRSgOAAAAAAAAAAAAAOhZhOIAAAAAAAAAAAAAgJ5FKA4Ap8HHP/5xffrTn+7Ksf/H//gfuuyyyzQ8PCzf97Vjxw79/M//vO67774T3sfCwoLe//7368ILL5Tv+xoaGtJVV12lhx9+eNnr3vve9+pnfuZntHXrVhljdO21157mdwMAANAbunl+eO2118oYs+r2tKc97aT3Va1WdeGFF8oYoz/8wz9ctu6ee+7Rddddp2c961kqFovatGmTXvayl+mf/umfjrvfX/iFX5AxRj/zMz9z0mMCAAAAAOBkOd0eAAD0go9//OMaHh7uSkg8OTmpa665RpdccokGBgb02GOP6fd///f1ghe8QPfcc4+e+tSnHnP7crmsq666SgcPHtR73vMeXXzxxZqdndW3vvUtVSqVZa/94z/+Y1188cV61atepf/9v//3mXxbAAAAG1o3zw8lKZvNrgqns9nsSe/nfe97nxYWFjqu+z//5//o29/+tt785jfrkksu0cLCgj75yU/qpS99qW655Rb90i/9UsftvvzlL+uLX/yiSqXSSY8HAAAAAIBTQSgOABvcBz7wgWXPr7jiCl122WV6xjOeoc9+9rP64Ac/eMzt3/ve9+qBBx7QD3/4Qz3lKU9pL3/Vq1616rXz8/OyrLTJyF/+5V+ehtEDAADgTLAsS5dddtmT2se3v/1t/emf/qk++9nP6g1veMOq9e9+97tXVY//9E//tJ797Gfrgx/8YMdQfHZ2Vm9961v1u7/7u/qTP/mTJzU+AAAAAABOFO3TAaDpvvvukzFGf/M3f9Neds8998gYo4suumjZa1/1qlfpOc95jiTpvPPO03333ae77rqr3ZryvPPOO5tDX2VkZESS5DjHvvapUqnoU5/6lN7whjcsC8TX0grEAQAAzgW9dH54shqNht785jfruuuu03Of+9yOrxkdHV21zLZtPec5z9H+/fs7bvObv/mb2rx5s97xjnec1vECAAAAAHAspBsA0HTRRRdp8+bN+trXvtZe9rWvfU3ZbFb333+/Dh48KEkKw1B33XWXXvayl0mSbr31Vj3lKU/RpZdeqn/7t3/Tv/3bv+nWW2895rGiKFIYhse9xXF8wuOPokj1el0//vGP9Za3vEWjo6P65V/+5WNuc88992hhYUG7d+/W2972Ng0MDMjzPD33uc/Vl7/85RM+NgAAQC/ayOeH1WpVY2Njsm1b27Zt06//+q9ramrqhN/7Bz/4QS0sLOh3f/d3T3gbKf1Z/PM///Oqiwak9Gf3mc98Rp/61Kdk2/ZJ7RcAAAAAgCeDUBwAlnjpS1+66kvPX/iFX9DAwEB7+be//W3Nzc21v/S89NJLlc1mVSqVdNlll+myyy7TpZdeetzjuK573Nub3/zmEx57Pp9XJpPR05/+dD3wwAO68847tX379mNuc+DAAUnShz/8Yd177736zGc+o1tvvVWlUkmvfOUrdfvtt5/w8QEAAHrRRjw/vOSSS/SHf/iH+su//Evddtttuvbaa3XzzTfrRS96kcrl8nG3//73v6+PfOQj+uQnP6l8Pn/c1y91ww036JFHHtHv/M7vLFteLpf1K7/yK/pv/+2/6ZJLLjmpfQIAAAAA8GQxpzgALPHSl75Uf/VXf6U9e/Zo8+bN+pd/+Re97W1v0+TkpO644w790i/9kr72ta/J9329+MUvPuXj/Pmf/7nm5+eP+7rh4eET3ue3vvUtNRoNPfroo/rjP/5jXXXVVfr617/esUqnpVVp5HmevvKVr6hYLEqSrrrqKu3evVu/+7u/q5/6qZ864TEAAAD0mo14fvgbv/Eby55fffXVuvTSS/WzP/uz+p//83+uWr9UGIZ685vfrJ/7uZ876fPAT33qU7rxxhv1m7/5m3r1q1+9bN173vMeua6r97///Se1TwAAAAAATgdCcQBYolXd87WvfU27du1SEAR6yUteosOHD7dbR37ta1/Ti170ImWz2VM+zgUXXKAkSY77upOZw/vZz362JOmyyy7Tq171Kl1wwQW6/vrr9aUvfWnNbYaGhiRJL3zhC9uBuCTlcjldccUV+uIXv3jCxwcAAOhFG/n8cKnXvva1yufzuvvuu4/5uo997GN67LHH9Nd//deamZmRJM3NzUmSarWaZmZmVCwWV7U/v/nmm/XWt75V//W//lf9wR/8wbJ13/72t/Xxj39c//f//l/VajXVajVJ6QWaYRhqZmZG2WxWvu+f0nsDAAAAAOB4aJ8OAEts27ZNF154ob72ta/pjjvu0HOf+1z19/frpS99qQ4dOqT/9//+n+6+++72l6On6ky0T1+qWCzqaU97mh566KFjvu7iiy9ec12SJKf8pSsAAECv6JXzQ+nEzu9+9KMfaXZ2Vrt379bAwIAGBgba7c7f9773aWBgQPfee++ybW6++Wa95S1v0Zve9CZ98pOflDFm2fr7779fSZLota99bXufAwMD2r9/v26//XYNDAzoE5/4xCm/LwAAAAAAjodKcQBY4WUve5n++q//Wtu3b9d//I//UZJ04YUXaseOHXr/+9+vIAhWfenp+76q1eoJH+NMtE9famJiQvfee69e9KIXHfN1mzdv1uWXX65//dd/1dzcnEqlkiSpUqnorrvu0mWXXXZKxwcAAOglvXB++Ld/+7eqVCrHPb97z3veo2uvvXbZsvHxcf2n//Sf9Ku/+qv6uZ/7OV1wwQXtdZ/+9Kf1lre8Rb/wC7+gT33qU6sCcUl6xSteoW984xurlv/8z/+8du3apZtuumnZPgEAAAAAON0IxQFghZe+9KX6+Mc/romJCX3sYx9btvzmm2/WwMCAnvOc5yzb5lnPepY+//nP6wtf+IKe8pSnKJPJ6FnPetaax3jqU596WsY6Ozurq6++Wm984xu1e/duZbNZPfTQQ/qTP/kT1et1/c7v/M6y1zuOoyuuuEJf//rX28v+8A//UFdddZV+6qd+Sr/1W78lY4z+6I/+SBMTE+2WoC133XWXjh49KkmKokh79+7V3/7t30qSrrjiCo2MjJyW9wUAALCebKTzw7179+qNb3yjfv7nf14XXHCBjDG666679LGPfUwXXXSR3vKWtyx7/crzw6c97Wl62tOetuw1jz/+uCTp/PPP15VXXtle/jd/8zf6L//lv+gnfuIn9Na3vlXf/va3l2136aWXyvd9jY2NaWxsbNVYM5mMhoaGlu0TAAAAAIAzgVAcAFZ4yUteIsuylM1mdfnll7eXv+xlL9PNN9+sq666alXbyQ984AM6dOiQfuVXfkXz8/PauXNn+8vDMymTyeiSSy7RX/zFX2j//v2q1WoaGxvTlVdeqb/7u7/TM57xjGWvj6JIURQtW/bCF75QX//61/Xe975X//k//2dJ6bzkd95557L3L0m/8zu/o7vuuqv9/M4779Sdd94pSfrGN77BF5oAAKAnbaTzw1KppE2bNumjH/2oDh8+rCiKtHPnTr3jHe/Q9ddfr3w+v+z1nc4PT9SXv/xlxXGs733vex07FO3Zs0fnnXfeKe0bAAAAAIDTySRJknR7EAAAAAAAAAAAAAAAnAnW8V8CAAAAAAAAAAAAAMDGRCgOAAAAAAAAAAAAAOhZhOIAAAAAAAAAAAAAgJ5FKA4AAAAAAAAAAAAA6FmE4gAAAAAAAAAAAACAnkUoDgAAAAAAAAAAAADoWYTiAAAAAAAAAAAAAICe5XR7AGdaHMc6ePCgisWijDHdHg4AAMA5LUkSzc/Pa8uWLbKs9XV9JueNAAAA68d6Pm8EAADAxtPzofjBgwe1ffv2bg8DAAAAS+zfv1/btm3r9jCW4bwRAABg/VmP540AAADYeHo+FC8Wi5LSE+hSqdTl0QAAAJzb5ubmtH379vY52nrCeSMAAMD6sZ7PGwEAALDx9Hwo3mp9WSqV+HITAABgnViP7ck5bwQAAFh/1uN5IwAAADYeJuQBAAAAAAAAAAAAAPQsQnEAAAAAAAAAAAAAQM8iFAcAAAAAAAAAAAAA9CxCcQAAAAAAAAAAAABAzyIUBwAAAAAAAAAAAAD0LEJxAAAAAAAAAAAAAEDPIhQHAAAAAAAAAAAAAPQsQnEAAAAAAAAAAAAAQM8iFAcAAAAAAAAAAAAA9CxCcQAAAAAAAAAAAABAzyIUBwAAAAAAAAAAAAD0LEJxAAAAAAAAAAAAAEDPIhQHAAAAAAAAAAAAAPQsQnEAAAAAAAAAAAAAQM8iFAcAAAAAAAAAAAAA9KyuhuKf+MQndPHFF6tUKqlUKunyyy/XV77ylfb6a6+9VsaYZbfLLrusiyMGAAAAAAAAAAAAAGwkTjcPvm3bNv3+7/++LrjgAknSLbfcole/+tX693//d1100UWSpFe84hW6+eab29t4nteVsQIAAAAAAAAAAAAANp6uhuKvfOUrlz2/8cYb9YlPfEJ33313OxT3fV9jY2PdGB4AAAAAAAAAAAAAYIPraii+VBRF+pu/+RstLCzo8ssvby+/8847NTo6qv7+fl1xxRW68cYbNTo6uuZ+6vW66vV6+/nc3NwZHTcAAAA2Js4bAQAAAAAAgHNDV+cUl6R7771XhUJBvu/rV3/1V3XrrbfqGc94hiTpmmuu0Wc/+1n90z/9k/7oj/5I3/nOd/SSl7xk2ZeXK910003q6+tr37Zv33623goAAAA2EM4bAQAAn8vJBwAAd5RJREFUAAAAgHODSZIk6eYAGo2G9u3bp5mZGf3d3/2dPvWpT+muu+5qB+NLHTp0SDt37tTnP/95ve51r+u4v04VP9u3b9fs7KxKpdIZex8AAAA4vrm5OfX19a2LczPOGwEAANav9XTeCAAAgI2v6+3TPc/TBRdcIEl67nOfq+985zv6kz/5E/35n//5qtdu3rxZO3fu1MMPP7zm/nzfl+/7Z2y8AAAA6A2cNwIAAAAAAADnhq63T18pSZI126NPTk5q//792rx581keFQAAAAAAAAAAAABgI+pqpfj111+va665Rtu3b9f8/Lw+//nP684779Rtt92mcrmsG264Qa9//eu1efNmPf7447r++us1PDys1772td0cNgAAAAAAAAAAAABgg+hqKH748GH94i/+og4dOqS+vj5dfPHFuu2223T11VerWq3q3nvv1Wc+8xnNzMxo8+bNuuqqq/SFL3xBxWKxm8MGAAAAAAAAAAAAAGwQXQ3F/9f/+l9rrstms7r99tvP4mgAAAAAAAAAAAAAAL1m3c0pDgAAAAAAAAAAAADA6UIoDgAAAAAAAAAAAADoWYTiAAAAAAAAAAAAAICeRSgOAAAAAAAAAAAAAOhZhOIAAAAAAAAAAAAAgJ5FKA4AAAAAAAAAAAAA6FmE4gAAAAAAAAAAAACAnkUoDgAAAAAAAAAAAADoWYTiAAAAAAAAAAAAAICeRSgOAAAAAAAAAAAAAOhZhOIAAAAAAAAAAAAAgJ5FKA4AAAAAAAAAAAAA6FmE4gAAAAAAAAAAAACAnkUoDgAAAAAAAAAAAADoWYTiAAAAAAAAAAAAAICeRSgOAAAAAAAAAAAAAOhZhOIAAAAAAAAAAAAAgJ5FKA4AAAAAAAAAAAAA6FmE4gAAAAAAAAAAAACAnkUoDgAAAAAAAAAAAADoWYTiAAAAAAAAAAAAAICeRSgOAAAAAAAAAAAAAOhZhOIAAAAAAAAAAAAAgJ5FKA4AAAAAAAAAAAAA6FmE4gAAAAAAAAAAAACAnkUoDgAAAAAAAAAAAADoWYTiAAAAAAAAAAAAAICeRSgOAAAAAAAAAAAAAOhZhOIAAAAAAAAAAAAAgJ5FKA4AAAAAAAAAAAAA6FmE4gAAAAAAAAAAAACAntXVUPwTn/iELr74YpVKJZVKJV1++eX6yle+0l6fJIluuOEGbdmyRdlsVldeeaXuu+++Lo4YAAAAAAAAAAAAALCRdDUU37Ztm37/939f3/3ud/Xd735XL3nJS/TqV7+6HXx/5CMf0Uc/+lH92Z/9mb7zne9obGxMV199tebn57s5bAAAAAAAAAAAAADABtHVUPyVr3ylfvqnf1oXXnihLrzwQt14440qFAq6++67lSSJPvaxj+m3f/u39brXvU7PfOYzdcstt6hSqehzn/tcN4cNAAAAAAAAAAAAANgg1s2c4lEU6fOf/7wWFhZ0+eWXa8+ePRofH9fLX/7y9mt839cVV1yhb33rW10cKQAAAAAAAAAAAABgo3C6PYB7771Xl19+uWq1mgqFgm699VY94xnPaAffmzZtWvb6TZs2ae/evWvur16vq16vt5/Pzc2dmYEDAABgQ+O8EQAAAAAAADg3dL1S/KlPfaq+//3v6+6779bb3vY2velNb9L999/fXm+MWfb6JElWLVvqpptuUl9fX/u2ffv2MzZ2AAAAbFycNwIAAAAAAADnBpMkSdLtQSz1spe9TOeff75+67d+S+eff76+973v6dJLL22vf/WrX63+/n7dcsstHbfvVPGzfft2zc7OqlQqnfHxAwAAYG1zc3Pq6+tbF+dmnDcCAACsX+vpvBEAAAAbX9crxVdKkkT1el27du3S2NiY7rjjjva6RqOhu+66Sy984QvX3N73fZVKpWU3AAAAYCXOGwEAAAAAAIBzQ1fnFL/++ut1zTXXaPv27Zqfn9fnP/953XnnnbrttttkjNE73/lOfehDH9Lu3bu1e/dufehDH1Iul9Mb3/jGbg4bAAAAAAAAAAAAALBBdDUUP3z4sH7xF39Rhw4dUl9fny6++GLddtttuvrqqyVJ7373u1WtVvVrv/Zrmp6e1gte8AJ99atfVbFY7OawAQAAAAAAAAAAAAAbxLqbU/x0Y/4hAACA9WM9n5ut57EBAACcazg3AwAAwOm07uYUBwAAAAAAAAAAAADgdCEUBwAAAAAAAAAAAAD0LEJxAAAAAAAAAAAAAEDPIhQHAAAAAAAAAAAAAPQsQnEAAAAAAAAAAAAAQM8iFAcAAAAAAAAAAAAA9CxCcQAAAAAAAAAAAABAzyIUBwAAAAAAAAAAAAD0LEJxAAAAAAAAAAAAAEDPIhQHAAAAAAAAAAAAAPQsQnEAAAAAAAAAAAAAQM8iFAcAAAAAAAAAAAAA9CxCcQAAAAAAAAAAAABAzyIUBwAAAAAAAAAAAAD0LEJxAAAAAAAAAAAAAEDPIhQHAAAAAAAAAAAAAPQsQnEAAAAAAAAAAAAAQM8iFAcAAAAAAAAAAAAA9CxCcQAAAAAAAAAAAABAzyIUBwAAAAAAAAAAAAD0LEJxAAAAAAAAAAAAAEDPIhQHAAAAAAAAAAAAAPQsQnEAAAAAAAAAAAAAQM8iFAcAAAAAAAAAAAAA9CxCcQAAAAAAAAAAAABAzyIUBwAAAAAAAAAAAAD0LEJxAAAAAAAAAAAAAEDPIhQHAAAAAAAAAAAAAPQsQnEAAAAAAAAAAAAAQM8iFAcAAAAAAAAAAAAA9CxCcQAAAAAAAAAAAABAzyIUBwAAAAAAAAAAAAD0rK6G4jfddJOe97znqVgsanR0VK95zWv04IMPLnvNtddeK2PMsttll13WpREDAAAAAAAAAAAAADaSrobid911l6677jrdfffduuOOOxSGoV7+8pdrYWFh2ete8YpX6NChQ+3bP/7jP3ZpxAAAAAAAAAAAAACAjcTp5sFvu+22Zc9vvvlmjY6O6p577tFP/uRPtpf7vq+xsbGzPTwAAAAAAAAAAAAAwAbX1VB8pdnZWUnS4ODgsuV33nmnRkdH1d/fryuuuEI33nijRkdHO+6jXq+rXq+3n8/NzZ25AQMAAGDD4rwRAAAAAAAAODd0tX36UkmS6F3vepde/OIX65nPfGZ7+TXXXKPPfvaz+qd/+if90R/9kb7zne/oJS95ybIvMJe66aab1NfX175t3779bL0FSVJcr2v+m99U5Xv/rsb+/Yqr1bN6fAAAAJyYbp83AgAAAAAAADg7TJIkSbcHIUnXXXedvvzlL+tf/uVftG3btjVfd+jQIe3cuVOf//zn9brXvW7V+k4VP9u3b9fs7KxKpdIZGftS4cSEpj7zGcXlBRnfk1UoyhkZkbdju5zhYdlDQ7L7+2WMOeNjAQAAWG/m5ubU19d31s7NjqXb540AAABY23o6bwQAAMDGty7ap7/97W/X3//93+ub3/zmMQNxSdq8ebN27typhx9+uON63/fl+/6ZGOZJcXfskLFtReWyGvv2qf7wQ5KxZOVzsvv65e3cIWdkVM7IsJzBQRnX7faQAQAAzinr5bwRAAAAAAAAwJnV1VA8SRK9/e1v16233qo777xTu3btOu42k5OT2r9/vzZv3nwWRvjkGM+TMzgoNedIT6JIcaWiaGZGCwcPSHEiK5ORVSzK3b5d7uYxOSMjcoaHZWUyXR49AAAAAAAAAAAAAGx8XQ3Fr7vuOn3uc5/Tl770JRWLRY2Pj0uS+vr6lM1mVS6XdcMNN+j1r3+9Nm/erMcff1zXX3+9hoeH9drXvrabQz8lxrZlF4uyi0VJ6UUBSa2meH5e1R/8QNXv3SPjerIKBbmbx+Rt3y57eFjOyIjsQqHLowcAAAAAAAAAAACAjaerofgnPvEJSdKVV165bPnNN9+sa6+9VrZt695779VnPvMZzczMaPPmzbrqqqv0hS98QcVmsLyRGWNksllZ2ayc0VFJUlyvKy6XVX/kUdXuv1/GsmUKBTkjw/J27JC7aZOcTZvawToAAAAAAAAAAAAAYG1db59+LNlsVrfffvtZGs36YPm+LN+XhoYkSUkYKi6XFRw8pMajj0nGpO3WR0fl7dolZ3RE7uiorHy+yyMHAAAAAAAAAAAAgPWnq6E4js84juz+ftn9/ZKa85LPz6vxxBOqP/qIjGXJKpXkjG2Wv3OHnE2b5IyMMCc5AAAAAAAAAAAAAIhQfMMxtr08JA8CReWyGo8+qvoDD6Qheqkod9t2eTu2y926VfbwsIwx3R04AAAAAAAAAAAAAHQBofgGZ1xXzsCANDAgSUoaDUXz86o98ICqP/iBrEJB7tgm+bt3y922Tc7oqIxldXnUAAAAAAAAAAAAAHB2EIr3GON5coaGpKEhJUmiuFxW48BB1R99VFYmK2dkRN6Fu+Vt2yZ3bEzGdbs9ZAAAAAAAAAAAAAA4YwjFe5gxRnaxKLtYlCTFlYrCqSk1vvZ1Gd+TMzjUDMi3y926RZbvd3nEAAAAAAAAAAAAAHB6EYqfQ6xcTlYuJ0mKazVFMzNa+OY/q+LYsgcG5I6NyR4akl0oyFp6y+VouQ4AAAAAAAAAAABgQyIUP0dZmYyssTFpbCydh3x2VrUHH1ISNCQZSWkrduP7srIZOYODsoeGZZeK8nbuTFu0AwAAAAAAAAAAAMA6RyiOdB7ykZFly5I4VtJoKKnXldTqqu95XMmPH1QSx3IG+pV97nOVu+QSWdlsl0YNAAAAAAAAAAAAAMdHKI6OjGXJZDJSJrNseZIkiiYmVP7qHarf/4Dyl71A/lOfKmPbXRopAAAAAAAAAAAAAKyNiaJxUowxckZG5J1/vsKpKc186UuaufWLajzxRLeHBgAAAAAAAAAAAACrUCmOU2IcR9727YqrVdUfekjBvn3KXnyxcs99juz+/m4PDwAAAAAAAAAAAAAkUSmOJ8nKZuWff76sfF4L//YtTf+f/6PKPfcorte7PTQAAAAAAAAAAAAAIBTH6WH398u7YLfiINTcV76imS/8tWoPPaQkjrs9NAAAAAAAAAAAAADnMNqn47QxliV30yYlg4MKDh7U7P+9Vf7Tnyb/ggvkDI/IGRqUcfjIAQAAAAAAAAAAADh7SChx2hnXlbdzp+JKRbX771ft3h/JymRklUpyt2+Tt3mz7OEROSPDsny/28MFAAAAAAAAAAAA0MMIxXHGWLmc/KecryRJlFSristlVb//A1XvuUfG9WQXC3I2b5G3bavs4WE5IyOyC4VuDxsAAAAAAAAAAABADyEUxxlnjJHJ5WTlcnJGRyVJcb2uuFxW/eGHVbv/PhnLklUoyB4elrdjR9pufWRYdn+/jGV1+R0AAAAAAAAAAAAA2KgIxdEVlu+nrdOHhiRJSRgqLpcVHDykxmN70tfkcrL7+tKQfNMmOSPDcgYHZTyvm0MHAAAAAAAAAAAAsIEQimNdMI4ju79fdn+/JCmJY8WViqL5eS1859tSFMn4GdmlotwtW+Vu2Syn2XLdyuW6O3gAAAAAAAAAAAAA6xahONYlY1myC4Vlc4zH1arihQXV7r9f1R/8QMZxZBWL8nbtkr/rPLlbt8oulbo4agAAAAAAAAAAAADrDaE4Ngwrm5WVzUrDw5KkJAgUzc2p+oPvq/rv35NVLMnbsV3++efL3bZNzsBAl0cMAAAAAAAAAAAAoNsIxbFhGdeVMzQkZ2hISRQpnp9X7ccPqvaj+2QVC3K3bpV//vnytm2TPTwsY0y3hwwAAAAAAAAAAADgLCMUR08wtt2ekzyJY8XlshqP7VH9xw/KyuXkjIzI3bFd7uionOFh2QMDMg4ffwAAAAAAAAAAAKDXkQqi5xjLkl0qyS6VlCSJ4oUFhRMTauzfJyWSlc3IKhblbt8ub2xM9vCwnKGhtDU7AAAAAAAAAAAAgJ5CKI6eZoyRXSjILhQkSUmSKKlWFZfLqv7791WNQhnXk1UoyBnbJG/rNjnDQ3JGR2WXSl0ePQAAAAAAAAAAAIAni1Ac5xRjjEwul7ZUHx2VJMWNxmK79Qd+LFmWrEJB7tiY/F3nydm8We7oqIzndXn0AAAAAAAAAAAAAE4WoTjOeZbnyRoclAYHJUlJFKUh+b59qj/0kIznyu7rl3feeXK3bZW7eXM6J7kxXR45AAAAAAAAAAAAgOMhFAdWMLYtu69Pdl+fJCmu1xXPzanyvXuk735HVi4vZ3RE/vnny9m0Se7Y2Kr5yJMkkTrcknSlLN8/+28MAAAAAAAAAAAAOAcRigPHYfm+rJEROSMjSuJY8cKCwsNH1NjzuIxjyyqWZGX8NAiPEymJlabfkpQ0HzdD8eZyZ2RE/vlPkbt5s5zRURmHP4oAAAAAAAAAAADAmUASB5wEY1myi0XZxaIkKQkCRXNzihYqi+3UjUlvrcdLl1lGShI19u5V/cEHZTIZOQMD8i44X97WrXI2b5FdyHfhnQEAAAAAAAAAAAC9iVAceBKM68oZGjr5DZvzl8e1mqLZWS3867e0YIzsUlHu1m3yd50nZ/MWOSPDMpZ1mkcNAAAAAAAAAAAAnDtOKW0bGBjQ4ODgqtvQ0JC2bt2qK664QjfffPNx93PTTTfpec97norFokZHR/Wa17xGDz744LLXJEmiG264QVu2bFE2m9WVV16p++6771SGDaw7ViYjd9Mm+RdcIO+88yTHVf2hhzT7/31Z05/9K03/5V+p/C//qvqePYrr9W4PFwCAdeV0nZMCAAAAAAAA6G2nVCn+/ve/XzfeeKOuueYaPf/5z1eSJPrOd76j2267Tdddd5327Nmjt73tbQrDUL/yK7+y5n7uuusuXXfddXre856nMAz127/923r5y1+u+++/X/l82kL6Ix/5iD760Y/q05/+tC688EL93u/9nq6++mo9+OCDKjZbWAO9wNi2nIEBaWBASZIoqVQUTk2psX+/jGPL7u+Xt+sp8nbukLtli+xSqdtDBgCgq07XOSkAAAAAAACA3maSJElOdqPXv/71uvrqq/Wrv/qry5b/+Z//ub761a/q7/7u7/Snf/qn+ou/+Avde++9J7zfo0ePanR0VHfddZd+8id/UkmSaMuWLXrnO9+p3/qt35Ik1et1bdq0SR/+8If11re+9bj7nJubU19fn2ZnZ1U6CyFiODGhqc98RvbgkKxs9owfD+eGpNFQNDuraG5WSiSrWJS7dasy5z9FzpYtcoZpsw4A2BhO57nZ6T4nPdvnjQAAAFgb52YAAAA4nU4pRbv99tv1spe9bNXyl770pbr99tslST/90z+txx577KT2Ozs7K0kabM63vGfPHo2Pj+vlL395+zW+7+uKK67Qt771rVMZ+llRf+wxNfbvVzQ7qySOuz0c9ADjeXJGRuSff4G8Xbtk+b4ajz6atln/q7/S9Gc/p4W771b9sccUlcvdHi4AAGfFmTonBQAAAAAAANBbTql9+uDgoP7hH/5Bv/Ebv7Fs+T/8wz+0A+2FhYWTam+eJIne9a536cUvfrGe+cxnSpLGx8clSZs2bVr22k2bNmnv3r0d91Ov11VfMvfy3NzcCY/hdIgbDZW/9vXFBZYlu69Pdn9/x5tVLMrY9lkdIzY2Y9vtz0+7zfrRo6rvfVzGsmUVCnJHRuTtOk/OyIickRFarQMAetKTPSft9nkjAAAAAAAAgLPjlELx973vfXrb296mb3zjG3r+858vY4y+/e1v6x//8R/1yU9+UpJ0xx136Iorrjjhff76r/+6fvjDH+pf/uVfVq0zxix7niTJqmUtN910kz7wgQ+cxLs5veKFBTlbtiipVBTNz0tRpGh6WtH0dOcNLEt2qbQ8KF8anJdKhOZYkzFGJp+Xlc/LlZSEoeJyWY2DB1V/9FHJsmQVCnKGh+Tt3Cl306Y0JO/r6/bQAQB40p7sOWm3zxsBAAAAAAAAnB2nNKe4JP3rv/6r/uzP/kwPPvigkiTR0572NL397W/XC1/4wpPe19vf/nZ98Ytf1De/+U3t2rWrvfyxxx7T+eefr+9973u69NJL28tf/epXq7+/X7fccsuqfXWq+Nm+fXtX5hQ3vq94fl7RzEzn2+ysFEXH3qFlyWqF5q2K84EBQnOckCSKFJfLiubnlVSrkmXSkHxoSN7OZiX58JDsgQHmJAcAnBWne27IJ3NO2u3zRgAAAKyNOcUBAABwOp1SpbgkvehFL9KLXvSiJ3XwJEn09re/XbfeeqvuvPPOZYG4JO3atUtjY2O644472qF4o9HQXXfdpQ9/+MMd9+n7vnzff1LjOl1Mq3V6X5+0c+eq9Ukcp4HlWqH5zIwURYpnZhTPzCjoeBCzGJp3upVKMs4p/5qxwRnbXvwMqhmSLywoPHxEjT2PS0aycnnZfX3ydmyXs2mTnOFhOUNDMp7X3cEDAHACnsw56Xo6bwQAAAAAAABw5pxyWhpFkW699VY98MADMsbo6U9/ul796lfLOYkA9rrrrtPnPvc5felLX1KxWGzPId7X16dsNitjjN75znfqQx/6kHbv3q3du3frQx/6kHK5nN74xjee6tDXDdNqnV4qSTt2rFqfxLHihYXFkHx6enWleRgqnp1VPDuroNM868bIKhbXDs37+gjNzyHGthc/c2p+xpqt/he+/W0pjmX8jOxiQe6WrXK3bklD8uFhWfl8l0cPAMBqp+OctJvmp2ryMrb8nNvtoQAAAAAAAAA965S+LfzRj36kV7/61RofH9dTn/pUSdJDDz2kkZER/f3f/72e9axnndB+PvGJT0iSrrzyymXLb775Zl177bWSpHe/+92qVqv6tV/7NU1PT+sFL3iBvvrVr6pYLJ7K0DcUY1myi0XZxaK0ffuq9atC806V5mGoeG5O8dycgn37OhxkRWi+skU7oXlPM5Ylu1CQXSi0l8W1muJyWbUHHlD1hz+Ucexmy/Vhudu3yRkclD00JGdggGpyAEBXna5z0m4Jg0gPf+ewgkakgdGcBjbnVRrJys9y7gUAANafJEkUhbEcl2n8AAAAsPGc0pzil112mUZHR3XLLbdoYGBAkjQ9Pa1rr71WR44c0b/927+d9oGeqrM9/9DSOcWtbPaMH+9YkiQ5fmgedGzKvsxxK81dKpt6WRIEisplxQsLSmo1SYmM78vO5+Vs2iR3yxbZg4NpWN7fz0UUAIBjOp3nZqf7nPRsnzcGjUj//tV9CoNIcRgriSU/56p/LKuBsbz6hrPyCMgBAECXNWqhZo9UNfHEvBrVSBf95JazEowzpzgAAABOp1P6lu0HP/iBvvvd77a/fJSkgYEB3XjjjXre85532gaHJ8cYs1gFvG3bqvUrQ/O4Q2ieBIHi+XnF8/MK9u/veByrUFg7NO/vJzTf4IzryhkYkJp/3pMkUVKrKa5UVH/0MdXufyDtOJDNyioU5G7eLHdsU9ptoK9PVl+fLCrKAQBnQK+ck/pZR5m8qzhOVK8EOrxnTocfm5Ofd9W/KavBzXkVBzOyHEtqXs665nWtzcXGNnI9qrgAAMCpieNE85M1TR1a0MQT86rNB4rjRJmCqzhKJL7qAQAAwAZzSqH4U5/6VB0+fFgXXXTRsuVHjhzRBRdccFoGhjPvRELzpFI5ZqV50mgoLpcVl8sKnnii43GsQmGxLXvrtrQ9O4HphmKMkclm004IQ0OS0lb+SbWquFJR7f77Vf3hD9Kg3PdlMlnZgwNyR0ZlDw7K7kvnNCcsBwA8Wb12TmpZRtmCp2zBSwPyhUBHHp/X+GNz8nOOjDHt0FuSEq3d8MkyRtmip+JwRrmSp1zRU6boyrats/BOAADARlUrB5o+XNHRfXOan6orCmJli676x3IKaqGCRtztIQIAAACn5JRC8Q996EN6xzveoRtuuEGXXXaZJOnuu+/WBz/4QX34wx/W3Nxc+7W0N9q4jDEy+bysfF7u1q2r1idJoqRaPXZoXq8vhuYHDnQ8jpXPr6out5a0Z7d8/0y/VTxJxrLanxWNjEhqBuW1muJaTeGhcTX2PC4lsSQjK5uRlcnIGhiQu2WLnKFhOYMDsoeG+H0DAE5YL5+TWlYaameLaUDeqIValYEbs/hwxaM4TjQ/XdXU+IIkyfEs+RlHhcGMioN+e9/tsB0AAJyzoiDWzNGKJg+UNT1eUX0hkOvbyvd7dJ4BAABAzzilOcUta7HCpPUlWms3S58bYxRF0ekY5yk7l+cU77ZWm+12SD49rWh2dtnzpF4/7n5MLnfM9uyEqBtLOyyvVpuheVWK03nKrVxOzuiIvG3bFucpHxhgnnIA6CGn89zsdJ+TdmtOcdsxyuTPXA/SJEkUNmI1aqGCWqQoSmSM5GUc+TlHfSNZ5Uq+/JwjP+/IzzqyqCgHAKCnBfVICzN1zU1WNbG/rMpsQ5KULbry850vmqtXAgWNWJdevUNe5sz/O505xQEAAHA6ndIZ7De+8Y3TPQ70oKVttt3Nmzu+Jm5Vms/OpqH5ykrzWk1JpaKwUlF48GDn42Szxw7NM5kz+TZxkoxlyeRysnK5Zcvj5jzljb37VH/oYUlKK8rzzXnKN4+lQfnQkKy+PqraAACck54gY4xc35br21JfuiyOEgX1SLWFQPNTNSWJZFmS49lyPVvZPk/5Pl/ZgpuG5TlXftaRsfj7FwCAjSgKYy3M1rUw09DMkYrKkzXVq+k84X7WUWkkI9vhojgAAAD0rlMKxa+44grVajX98Ic/1JEjRxTHy+cTetWrXnVaBofeZ51IaL60unzpbXo6Dc2rVYXVqsJDhzruY1lo3prbvDWnOaH5umFl0pbqGhyUtKSifGFBtQceUPXeH0rGkpXPye7rk7d9h5zRUTlDg7RdB4BzFOekp86yTTPsXvznQBwlChuRgkakmfGKJvaXZSQZy8jxLHkZR9mSp0K/r0zeVbboKlv0+AIdAIB1KIkTVeYbzWrwmmYPV1SrhIrCWHbzPKA0kpVNdxgAAACcI04pFL/tttv0S7/0S5qYmFi1bj20TEfvaIfmY2Md18et9uxrVZpXq8cPzTOZY1ean+Nt8LtlWUV5a57yKFJcqSiamdXCof8nRbGM78su5OVs2iR36zY5w0NUkwPAOYJz0tPLso28rCMvu/yfCHEUK2jEChuRpg+WdXTfvIwk27XkZWzl+zMqDmWULbrKFT35eVcWFeUAAJx19Uqg8nRd5amapg9XVC0HCuqRjJH8nKPCgCfHZY5wAAAAnJtOKRT/9V//db3hDW/Q+9//fm3atOl0jwk4YVYmI2tsbO3QvF7vXGXeCs0rFSW1msLxcYXj4x33YXx/dVi+pNLcZDKEr2eJsW3ZxaLsYrG9LG5Wk9cffUy1Bx5YXk2+bbvsgX5ZhYKsfEF2IS+rUGCOcgDoEZyTnh2WbcnPWvKXhOVJkigKYjVqkaYPlTWxf16S5Pq2vKyj4lBGhYGM8n2e8gM+VWgAAJwBYZDOC16ermt6vKKF2boa1VBJInkZW5m8o+Kgz3cWAAAAgE4xFD9y5Ije9a538eUj1j3L92Vt2iR3jc9qXK8rXqs9+8yM4oUFJfW6wsOHFR4+3HEfHUPzJTeTzfIP0DOo3XZ9aEjSimryg4ekJJGUyDiuTMZPPxN9fXIGh9JOAIW87EIhDc4LBdqwA8AGwjlp9xhj5Hi2HM+WSp6ktE1r0IgU1CId3jOnQ4/MynYtZYuuBjfnVRrOqjiYSec2BwAAJy2JE1XmGipP1zU7UdHs0aoaC6GiKJHjWfJzjnKlHB1bAAAAgA5OKRT/2Z/9Wd155506//zzT/d4gLPK8n1Zo6NyRkc7rk8ajcU5zVvt2ZeE6HG5fPzQ3POOHZrncoTmp1GnanIp/V3G9Xr6+zo0rsbje6U4am9jPL/Zir0ge2hQzuBgMygvtoNzLnAAgPWFc9L1xVhGXsaRl3GUby4Lg0i1cqj9D0xJkjJ5V/2bcuofzak4mFGm4HZvwAAArHNJkqheCdNq8KmapsebLdEboSzLyM+5Kg5nZDt0ZAEAAACO55RC8T/7sz/TG97wBv3zP/+znvWsZ8l1l3+Z9Y53vOO0DA7oNuN5ckZG5DTntF5pWWjeqdK8XFbSaCg8ckThkSOdj+G6HduzW319aSVzPk8QexoYz5PtedKKsFySkjBsh+bhzIyC8XElYSAp/blbvi+TycjKZdMK8+GhtLq8WJQ9OCi7r0/G4ksIADjbOCdd/xzXVmHAluQrjmLVKqEO75nV+KOz8rK2CgMZDW7OqziUUb7Pl6GyDQBwDmtUQ1XLDVXnAy3M1DU/WVO9GqhRjZRI8rO2MgVHRZ+W6AAAAMDJOqVQ/HOf+5xuv/12ZbNZ3XnnnctOxI0xfAGJc8ZxQ/MgOHZoPj+vJAgUHj2q8OjRzgdZGpo3g/Klc5oTmj95xnFkHEdWLrdqXRLHSpoV5lF5QeHklJL7fiTJSMbIymVlF4tytm6VOzoqZ3BQ9uCgrGKR3wsAnGGck24slm0pV/SUK3pKkkSNaqjZo1VNHijL8WzlSp76RnPK93nKFFzlil7anh0AgB4UNCJV5xuqlQMtzDY0P1lNq8BrkeI4kTHpvOBuxlGuz6clOgAAAPAknVIo/t73vlcf/OAH9Z73vEcW1ZHAmozryhkeljM83HF9OzSfnV1sz966zc4qnp+XgkDR0aOK1grNHeeY7dmtfJ4q5ifBWJZMNitls1r5tXx7/vKFioJ//76qUSTj2DK5vJy+Prlbt8oZGW5Xk1uFAr8LADiNOCfduIxJW776ubS6P6hHqi0Emv/xlJIkke3Y8nxbuT5PxaGMciVP2YKnTNGVbfO7BgCsf3EUK2jECuuRgvYtVKMWaWGmrspsQ416pCiMZIyR69lyM7ay/F0HAAAAnBGnFIo3Gg393M/9HF8+Ak/ScUPzMFy70nx2VvHcnBSGiiYmFE1MdD6I4yxWmC9pz95aRlB76jrNX56EoeJKReH0tBoHnpDiJK1Ez2Vl5/NyNm2SMzIqu78v/R309cnKZrv4LgBg4+KctHe4vi3XX7z8LAxiBbVQcxNVTR0sK5GR41ryMo4Kg76KAxlliq78bDqHuevbtF4HAHRF0IhUnWuoWg5UWwhUrwSqldOW51EYt29KmhsYyXEtub6twoAvx+U8BgAAADgbTikUf9Ob3qQvfOELuv7660/3eAAsYRxHztCQnKGhjuuTMFQ0N7d2e/ZWaD45qWhysvNBbPvYleaE5ifFOI7sUkl2qdRelgSB4mpV0UJF4X33Kwl/kL7W89P26/39cjeNpRXl/X1pdb/jyLhuenMcyXFoxw4AK3BO2rsc15Ljeso2rztLkkRhI1ZQjzR5oKyje+ckY2Q7lmzXkuNYyhRcZYquMllXXjYNyt2MLS/jyPEs/h4FADxpURSrNh+oWm6oMtfQ3ERN1bm04jsOY0mS5TT/fnLS4DtTcGTbFhdvAQAAAF12SqF4FEX6yEc+ottvv10XX3yxXNddtv6jH/3oaRkcgGMzjiNncFDO4GDH9UkUHT80j6Ljh+YrK82XhubFIqH5cRjXle26y4PyJFFSryuuVhUeOarG3n1SHEuWkXE9GduWbFvGthYf+76M78vyfZlMRlYmI+N5sjxPJpNJQ/aMv+p1/H4A9CrOSc8dxph2NXmu5ElK/y6NwlhRECsMYs1NVDU9vqAkbm0kOa4t27XkepYyBU+FAV+ZvCs/5yhTcNMKc8JyAEAHSZyoVglUnUtD8PmpmspTdTVqocIglmlVfGdsFQd92Q7/7gIAAADWs1MKxe+9915deumlkqQf/ehHy9bxpRKwfhjbljMwIGdgoOP6JIoUz88vBuVL5zVvznWuKFI0NaVoaqrzQVqh+dLgfGAgve/rk1UqEcp2YIxpB9ta8vtJokhJGEpRpCSK0vs4lhqB4mpt8XlrfRJLxrRb8RnLSI7brDR3ZBxXVjYrk8/JKhRk5wtpcL40RG+F65lMGqjz+wKwQXBOem4zxshxbTmuLb/D+jhOFAVpy9pGPVK1vKCj++clSbZj5Hi2/KyjwkBGuT5PmZwrP+8ok3cJNgDgHJMkiRrVUNX5QNX5hhZm6pqfqqleDRXUIylJZDnpNB65kkcHEgAAAGADOqVQ/Bvf+MbpHgeALjBLWqd3sio07zCv+XFDc8taHpj39S2G5q1Kc9vuvO05yNj2k/p5tEP1MFQSBErCUOHMjJKJCSVBIMXpFzqSkZSkAXg7RE/vrVxWVrEou9Qnq1BIn+dysrLpvcnlZHneaXvPAHCqOCfFsViWkbVirvKWKExbsdcrgcrTNcXNa8wc15bjWfJzjrIFT5miKy/jyGu2YXczNtXlANADGrVmAF5uqDJb19xETfVKqEY9lGLJWJKbceRnHeX7fVm0PgcAAAA2vFMKxQGcG44bmsdx59B8enp5pfn0tKLp6c4HsSxZpdLa85qXSoTmJ6EdqvudauZWa4XoSRCkQXoYKpyaVnLkqJJGoxmgN/ftNec4dz1Z2Wy7Q4BVLKbBeTYrk8mmjzMZWrcDZ0ASx+lUC3G82DUiSdLnUfOilyiSpLQbRTYr43C6B6zUmutV+cWW+615y8NGpMpcQ/OTNcVRrERGxqTbOK4tx7eULXjKFdO5y72sIz+X3nsZ/rwBwHoSR7HqlVD1SqhaJVCtHGhuoqpaOVRQDxVFiYyRXN+Wl7GVK+Vk2QTgAAAAQC/iWxsAp8y0qsD7+qSdO1etXzM0X1FpHs/MKJ6ZUdDxIObYoXlfH6H5k3CiIXoSx2l43mgoaTQUlcsKp6bS4LxVXictVpx7btqSvVCUXSrK6uuTnc3KZNPw3PJ9yXGalerNe9tZPof6Ovi9LgsdkyQdNzaMJIrSz2wQKKnXlQSB4no9DY2NaX5uTfo/y1pc1lye3hnJdmT5Xjq9wClMMZBEkZJ6XXG9rqQRKGnU2+NJwkhJ2LwoJYqUBGH62kZj8XWNQEnQSLtAxOlnMYljSa3H6b3iOL1vTajsurJcTyaXlV0qLXZ/yDbD8tafx0xGJpvlIhac85bOW75SEicKW/OX1yNNlxc0sT/9s5YonVPWcZuBSr+nXMmX3wzL/VwalhuqDAHgjFkZftfLgRZm66rMBQobkYJGpCRpdgXxbHm+rUwhw3QZAAAAwDmEUBzAGXNCoXm5fOzQPAwVz84qnp1VsHdvh4M0Q/OlLdpb85o3j02V5JNnLEvG86RjtE1PkiQN9lohZCNQePiwgv3709Cv2bJdMunvxLLSgMCyJctIxkqPYxnJstL1TlqdLseWjEnb1Vr24mtM8/XGSvdhWTKWLSlpVs82A8LmfRI3K9+TNDxMomZ1bXue9jCtuA2by5aGjpLsQkHOls1yhoZlDyy5MIMwcZkkSaQgSD8HrVsjDXWTKF78+bdC3FbVc6L2uvattb9204LW73DxPoljJY1AcbWipFJRVK0qqVTTY0ZpBwQ1A+f2RQ5qTSPQnHu6FYA3l6V3rcDclhw7/Tw6jkw2IyuXl5XPpfeZjIzvpR+XRl1xtaq4vKC4sqB4oZKG22GYBt5hKEVpAL54oMWODEqUXhRiWYv3rT8PS4N7u9m+ufXnwpjl66X2zz6emVV45GjaEaLd/SGRsR0Zz5PxXLlbtqj/da87nR8DoKcYy8j1bLleh8A8SRSFscJGrHo1DWHiaE5Jsjh3uevbyha99tzlXtZuV5l32icAYG2NWqhaOVBtIVB1rqHyTF3V+dXht+1acj1bft5RfoAW6AAAAMC5jqQIQNcYy2pWL5akHTtWrU/iWPHCwuq27EuC82Wh+b59HQ5i0vmxV1SXt+c1JzQ/bYwxktsMsY8hieM0PG9VtrYD0SXhaBRLYaS4Vl9S/bokIE0fLAtGV65vz/e68n7FMrO0OnhFyNi+NcPGcHpajQMHpDhOA/xcVlY+L3dss5xNo+3PmNPfn15E0HrPzVA4rf5tVv22Lx5oPg6jtFLecdKqecfu/Ni2lgT1ybIAedmy1s/NNC9CcNz2ftLn6f1aFflJkiyvsm6Ns/0+Wu+lGUbXaoqrVSXVWrMaO2yG4FEaRIeRFEeLY0x/AcvuVi5u/25bv68l2fGSaywWPweWvfiemvfGcWX8zPLlSy5iSCuutfyztPIz1eyU0JpiIJ6ZVTgx2X6+OLjmoIy1+ufsejLZXHv5WfnvTjZ7zNWt0DycnFR49OiZHw/Qo4wxaVt1117Wjl1SOywPg0jT4ws6un++uU0a1jhus1qx6Cpf8uVmbfnNNuxe1pHjWcxfDuCclcSJ6tXFALwyV9fcZDr3d9iIFIWxjDGE3wAAAABOCEkQgHXLWJbsYlF2sSht375q/bLQfHY2Dc1XVJsrDBXPzSmem+scmkurQ/OV7dmPE/Li5BjLkjxPG/2rqiSKFFcqiqtV1e6/X8kPfyDJNFtT52QN9Kefv1otrZoOw7RVdhRKYbSkUnjVnrU88VUahBtLspvVwnGiREuqp5NmlXV7WSsob+7CstNKY9uWmvtKW+c3q5G9tDW45XppC+9qNQ24o6XjbVZZt1qPJ0vGadmLbe9b4bNtp2F0sxV+a5ms9RXwnEiV//oZ7ellmhexWAsL3R4K0LNac5f7K/7Z1W7H3qoun6vryN75dpMK27Ha7X1z/Z4K/b4yeU+ZgqtMwSXwAdCTkjhRZb6hhZm65o5WNT9VU70aptXfzRmbWtNcZAsurc8BAAAAnBRCcQAb1nFD8yRZXmm+4hbPzKRVrvPziufnFezf3/E4x600JzQ/JxnbXvz8NSVx3K6YDg8eWgyiHUfGz8jKO4vzpbdaYx9Hu6I+ihYr6qVlbbLNksfL7lvhdbzYJj5Zsq8kjqWgrrhSXXxNs7K8NW7L85pV6vYxK8sBACdueTv25ecRS+cvr1dDlWfrGn9sTkbNMChjqzCQSYPyZkieKbiybcIhABtPoxqqPF3X/FRN04cXVJ0PFNQiGUvtaSbyfb4sm4uBAAAAADw5hOIAepYxRnahILtQkLZtW7U+SZJ0/uGZGYXT04qXzGXeCs6TRuP4oXmhcOxK82PMw43ekrZUz8nK5U7fPpvzR8u2T71i2ba5eAMANohlgXl+cXkSJwoakYJ6pIkn5nXk8VklklzPkevbyvf7Kg76sl1blmVkLMmy0ylBLNvIWKa5PH2eLbiyCNIBnGVRGGthpq7yTF2zhyuan6qrXg2kJJGbcZTJOyoO+uuqsxAAAACA3kAoDuCcZYyRyefTOaG3bl21fmlovlZ79qTRUFwuKy6XFTzxRMfjWPn8mqG51d8vi9AcAAAch7FMOtd4ZvGfcEmSKGzECuqLc5a3moS04qT2ZByWZMlIzXDczzsa2JRTaTirwoAvP8fFUwBOThwniqNYcZQsua14HqfPozBRZbaumcMV1Sqh4jCW7Rj5OVf9m3JMCwEAAADgjCMUB4A1nFBoXq2u2Z49mplRUq8rXlhQvLCg4MCBjsdpheZWX99iYL6kPbvl+2f6rQIAgA3IGNOeX/dYkiRRkjSn5EikOEpUr4R64sFpJT+elp9zVOj3NTCWV2HAV37Apx07AElS2IjUqEVqVEM1aqHq1VDV+YYqcw2F9VhJnChOEiVxoiRW8z5dpuasPzKSkvS/WV7OVmHAl+Py3xgAAAAAZxehOACcImNMu1W2u2XLqvXt0HxJO/ZVoXmt1g7NtUZobnK5tduz9/cTmgMAgGMyxijtRJxWYtqOmkG6rzhO1KiGmj1a1eTBsmzHVibvaGCsVUWeUSZPFTnQy5I4Ua0SqL6Qht6NaqhqOQ2+g2qkMIgVBlEz5E5k2ZZs15LtWDK2kducmsGY5r0lWc3HAAAAALBeEIoDwBmyLDTfvLnja+KloXmn9uy1mpJKRWGlovDgwc7HyWaPHZpnMmfybQIAgA3MsowyebcdfIdBpPpCqAMPzejAgzPysrbyfRkVB31lS177tV6Wf0oCG1GSpJ0iauVA1fmGyjN1ladqqldDBfVISbO627aNHM+S7drKZlzZrk+LcwAAAAAbGt9kAEAXWdmsrGxW7thYx/VxrXbs9uzVqpJqVWG1qvDQoY77MNms7KWt2Ze2Zyc0BwAASziuLaffVr7fVxInatRCzU9VNX14QUmSyLYtOb4tP+eoOJRRrugrW0iDcj/nUBkKrDOtqu/qfKCFubrmJ2qqV9JW6EmSyLIsuRlbftZRvp/gGwAAAEDvIhQHgHXMymRkjY0dOzRfWWm+pF17Uqkshubj4x33YTKZY1eaZ7Nn8i0CAIB1ylhGfs6Vn1tsnx6FsYJ6pFo50PxkLW2nbNJ27F7GUX7AV6HfV67kKVv00qDcELIBZ1ISJ2rUI9UrgRrVSI1qoOp8oPJMXbWFQGEtUhQnMkbyMrZc31Gu5Mmy+bMJAAAA4NxBKA4AG5iVycjKZORu2tRxfVyvH7vSvFJRUqspHB9fOzT3/WOG5iab5ctuAADOEbaTziO8dJ7xOE4U1COF9UgT++Z1eM+cLGPS6tO8o76RnPJ9Xjsotx2ri+8A2JjiKL0gJajHCuqhGtVItUqgymxD1fmGgkaksBErDmNJkrEkx7Pl+rayBZc/dwAAAADOeV0Nxb/5zW/qD/7gD3TPPffo0KFDuvXWW/Wa17ymvf7aa6/VLbfcsmybF7zgBbr77rvP8khPvyRJpDiWokjJ0vs4VhJFy+7bj1uTey0Nnzo8bodTxki2LWNZx7637cUxBYGS1q3RWHwcBpKMpERKJKtUSitIff/M/7AAnDLL92Vt2rR2aN5oKD5GaB4vLCip1xUePqzw8OGO+1gWmrfatC9pz05oDgBAb7MsIz/ryF8yz3gcJwpqrYryKSWJ5LiWvIytwmBGpaGMskWqyQFpeeAdNqLm40iNWqjaQqB6JVRQCxWFiaIwVhTG7S4NtmPJ8Sy5nkX4DQAAAADH0NVQfGFhQZdccol++Zd/Wa9//es7vuYVr3iFbr755vZzz/PO1vCelMa+ve2wOQ2TpfRfrWovM7aVXr5tWzKW3Qyo02XGtmVlfBnPl/FcGd+XcZx0F0msJE4W9xnH7cA8iRMpSZ8nUaykVlMSNNJgPWgoqbUC+EiKYimOlu3LOK6M58m46THtkeE05CqWZOWyMr6v8OiE6o88rHD8kJIgkJXLpwF5LnfGf64bVRIEisplxfPzSur15gUMrW8x0gsTjG0vXqTgOMuXOU76+wdOM8vzZI2Oyhkd7bg+aTSWtWNfFZqXy8cPzT3v2JXmuRxfhAMA0GMsy8jPOfJzi+ewYSNSoxZp8kBZR/bOL1aTZx3l+psBeTbdxs+68rK2LJuAD70hDKK0tXktVFCL0rm+FwJV5xqqV4Jm2J0sBt5S85+LRpZjyXbTub8zjiPbtmSY+xsAAAAATkpXU7ZrrrlG11xzzTFf4/u+xtaYS3c9skol5Z7/AkmScVYEnbazZJkjY1syrps+dp128GkcJw1FrdPzBVCSJFIYKgnDZtV3qCQIpbD5uHkzti0rm5XJ5WRlMjKZzJpBVeFFL1QwPq7gwAHVH3pI4dGjCp54oj03sVUonLbxb0RJECian08Dw0Y9/dkWivJ2nSdv+w4Z21ISBIrrDcX1mpJqVXGtpqRaU1KvK4kixY2GFEXpRQxhmHYLaAXpkmSln59lnxnbloxJf/bNW/txa/nZ/lkkyWKXg073xiyOE+uO8Tw5IyNyRkY6rk+CYPWc5kvmNY/n55U0GgqPHFF45EjnY7ju8jnMV85pns8TmgMA0AMcz5bj2cqV0gud02ryUPVqoIXZuqIokVE6l7njWXJcW9miq1yfr0zeleNZsiwjyzYylln+2E6fL31MoI6zKYkTBY0oDbxrYTsAr5Ybqsw1FNQiRUGsMIiUpB3O08+62wq8HWUcQ+ANAAAAAGfIui89vfPOOzU6Oqr+/n5dccUVuvHGGzW6RkWjJNXrddXr9fbzubm5szHMNsvzVHjxi87qMY/HGCO5bhrAZ7OnZ5+uK2/7dnnbtyv3/OenofiBA6o/8oiCQ4fSilHHkd3Xlwa1SZK2h2+2jW+3j1/6PFlR9b4yTG3d2t8PLKnAt+zlQbBtLwatzaB46f6XHb95S5Y+lzpXcHe6Nyatpm1VgjcaMo4jq1iU95SnyN+xvR0qWvn8cX+2SZI029cHaXV/I1DSqCup1xXX6krqaXAelcuKFxYUlxfSFtdRmAbpSZx2AWh1FIibj6NY7ZIDY5oPl4TsSx+3wuqlt9by1s9p2e+hua3R4s9PS9c3P4emeezWxq1NW5+B9ji0ZH9Lx5Y0Ly5x0gsCWhcFtD7fDq03zzbjunKGh+UMD3dcvyw071RpPj+vJAgUHj2q8OjRzgdx3cW27K1bqz17X196EQ6/dwCnoNvnjcC5Lq0md+Xn3GXL4yhW2IgVBrHmJqqaOrTQmsVJUvNM0pIsY9JzgNZjS5IxzcdGtmPkZRy5WUd+1pbj2rKbYbvjWu3g3fYsOQ5BJI4vDFqh92LFd70SqFpuqFYOFTTS4DsK4yX/rDSyXUuOa8nPO8q7viybzxoAAAAAnG3rOhS/5ppr9IY3vEE7d+7Unj179L73vU8veclLdM8998hfYy7rm266SR/4wAfO8kjPbcay5DbnLM49+9kKp6YUHDigxp49aux/Ip2P3LKaX1hZzSr5ZtV8q8K5dWuG2WnYbC22mLeWtJk3WtyXpCQIlTQaiht1JfVGGiA3WmFyox0IG8s0A3Klx7dbx2+F306zVbktxXFauV2rKa7VpahZZV+rpZXbrQruKEp/BrYtq1iUv3u3vO3b0hB8dFTWKVyEYIyR8TzJ8yQdP0SXpCSO0/ccRmlL/ChKuwNE0eKyMErfRxwrCcO0Cj2O2y330znsm49bc9k3X5dEkZIkkeU46QUWS35XSy8cWHVBwopQffUy0wzxo/SYzfskDNPwvXXs1ljDqHkhQFlReb5dYa9yud0FYVWA3gpLl4b7S8e0YvmJXASBE3fc0DwMjxuaKwgUTUwompjofBDHOeac5lY+TycCAB1x3gisT5Ztycta8tY4lU6SpHkta9KcOSpREq9YFidq1GPVKqHiKFYctS68TfdhjGTblizHyLLS+3ReZluun94cz5btWOnNNYuPmzdjm7TpUatavRnGY2NL4kSNWqh6pXULVJlfWe29ZEozo3bo7biWMjkn/XzwWQAAAACAdcUkyaqyzq4wxujWW2/Va17zmjVfc+jQIe3cuVOf//zn9brXva7jazpV/Gzfvl2zs7MqlUqne9g4jrhaTcNN216s2m4F5GdBu3V8HLePfyrhWLv1/Bo3K5eTMzx8SiE4Tl0Shu3q+bhaS+/bFzPUFJcXlMRpoK44SS8OaHUnaAX/zQsBWuvjWk0Kl4TxHS6CkJTm7nGSVqn7vozvy2reM//76dMOzWdn0/bsKwL0eG6uQ3eCFWz7mHOan+vTPQDh0aMyrqPht771rBxvbm5OfX196+LcrNvnjUEj0r9/dZ9sxyiTd4+/AYDTJo4TxVHSDszbj5vLWyG7VpxmWJaRsZtt25udkKxmtbppVahbJg3b7dbNSm+WkWUrDeGbQboxaQvt9HH6ei/TDOYzjlzflkW42uwi1moitfi7SbS4vB1SNy+OaL50+euS5fuT0urvVgC+MFtXZbahoB4pDCJFQfoi21ms9m7d054f56J6JVDQiHXp1TvkZc78v3vX03kjAAAANr4Nldxs3rxZO3fu1MMPP7zma3zfX7OKHGdft0Piduv4J7uf1rzdhN7rinEc2QVHKpxYRf2JOt5FEGlr+7StfTg1rWhyQtHcvKKZmbRTQRi1yo8Wg3Lfl5XJEJifJOM4coaG5AwNdVyfhKGiubnO85q3QvMoUjQ5qWhysvNBbHt1e/aloXmxSGgO9CjOG4Fzl9Wck1zuif8dnySJ4jhREjXvl1Smq1mtHkexwlb1eqJ2gJvEybJAtzVbUfvBilmNbLdVoW7JzznK5F1lCq4832kG5ra8TNoSvh3ItzpqrTNxlFZWh41YYSNSGMSrLkaIokRxmL6uVYndakO+tBV5a2ql9gxLS2fbWnoFw5JgfHG7xZmZlq6LozjtLiDJcYycZreAbNGV7XAOCAAAAAC9YkOlM5OTk9q/f782b97c7aEA6GGnchFE3Ggobs4rH5XLissLCmemFR09qnh+XvHcnKKjR5VEYfqN29LAPJNJH7tUCZ4s4zhyBgflDA52XJ9EURqad2rPPj29GJpPTSmamup8kJWheV/f8vbshOYAAJwTjDGybSPZZ/Y4SZIoCpN2KLwwXdfs0Wqzw1HzVNKx5LhpFbqMZNL/a7ZxX6w+b4f/VlqhbrumOZ+63Wwfb8l20v10uk/Ho3aQ3LoQYNnzOFEULg+9G9VQ9WqoRjVU2IiaofdiAL48uk+UpO9Axloy9uY88a025IvTIi3OK9985+kC03zcfsHiLEnLtm+9pLmhZYmqbwAAAAA4B3Q1FC+Xy3rkkUfaz/fs2aPvf//7Ghwc1ODgoG644Qa9/vWv1+bNm/X444/r+uuv1/DwsF772td2cdQAsJrlebIGB6UO4WzSaChqzoUel8uK5tOq8nByUvHsrOL5OUUT9eac6EvmQ2/N3d68N05r3ntncY5zwthjMrYtZ2BAzsBAx/Wt0DzuVGnebNt+3NDcso5daV4q8XsCAAAnzBgjpxled9IOzcO04lpLguo4ihUuqVBPX7/4vD3/etw6mNpBexpKm8UW8c3QuV1V3axwX/a8eYDWnO2tfRqTtpC3m+3jXc+SlW3N4W7WZUU7AAAAAKC3dTUU/+53v6urrrqq/fxd73qXJOlNb3qTPvGJT+jee+/VZz7zGc3MzGjz5s266qqr9IUvfEHFYrFbQwaAk2Y8T47nSR2C2SQM06C8vKC4PJ9WmtdqSipVxZUFxdWa4kpFarZrT4IwrTYPW3OcL34BaVxPxltya1af86Xj2lqheaffjZSG5nHzIoaOt9lZKY7TMH16uvNBWqH50uB8ZaW5fYZLzgAAQM84Xmh+qlqt4OO42Qq+OUd3qxJ7WaV2c6Ex6XOCbgAAAADAetfVUPzKK69cPs/XCrfffvtZHA0AnH3Gcdrh6LEkYaikXlcSBIrrDSVBQ0kjvcXNAL1V5RyXy4oXykqmJpUEodrBue20W7Zb2axMJkMF83EY2z7m7yeJ4+OH5lF03NDcKpXWrDS3SyVCcwAAcMYZY2RsybIJtwEAAAAAvWdDzSkOAOeq9jznOv40lmlQXklvCwvt+3B2VtHUtOLZGUXTU4qrNUmJZIysTFYmm5WVyRCWnwSzpApcO3euWp/EcdoJYMk85lGrVXvzpihSPDOjeGZGQceDmOOH5g5/nQMAAAAAAAAAsBa+RQeAHmM8T7bnrVndHDca6Rzac3OKZucUTU8rOHJY8fT0YlieJJJty8rn01suR1B+CoxlyS6VZJdK0o4dq9YvC81nZ5fPad6qNA/DdO752VkFe/d2OIiRVSyuHZr39RGaAwAAAAAAAADOaXxLDgDnGMvzZI2MyBkZWbZ8eVg+q+DwYQUHDiiem1M4Pi4pkfH8xaA8k+nOG+ghy0LzDpI4VrywcOxK8zBUPDeneG5Owb59HQ6yJDTvNK85oTkAAAAAAAAAoMfxLTgAQFLnsDyJojR8nZpSODml4OABhYcPKzxyREm9ngau2Ww7KDeu28V30HuMZckuFmUXi9L27avWJ0myPDTvcFMQLIbmaxznuJXm/F4BAAAAAAAAABsYoTgAYE3GtuUMDckZGpK/O10WNxrNkHxS4cSEgieeUDQ1pWB6WkkUSpYtK5dbbLtuH28WdJwqY4zsQkF2oSBt27ZqfZIkSiqV5ZXmK0LzJAgUz88rnp9XsH9/x+NYhcLqsHxgoF15TmgOAAAAAAAAAFjPCMUBACfF8jxZY2Nyx8bay6JyWdHUVBqOHz6i4MABRXOzCo8ckZJYxvXaQbnJZmWM6eI7OHcYY2SaVfzu1q2r1ncMzVe0Z08aDcXlsuJyWcETT3Q8zqrQvK9veXt2zzvTbxUAAAAAAAAAgDURigMAnrR2tfKOHcoqnQs7mp1dDMoPHVJwaFzR1KTiWk1KJOP7aVCey8lkMjKW1e23cc45odC8Wl1dad4KzqenTyw0z+fXbM9u9ffLIjQHAAAAAAAAAJxBhOIAgNPOWJacgQE5AwPS+edLkpIgUDg9nQark5MKxscVHjmiaHpacbWabuc4MtlsGpZnszIOf011kzFGpnnhgrtly6r1y0Lz2dnO7dnrdcULC4oXFhQcONDxOFY+L6vZir1Te3bL98/0WwUAAAAAAAAA9DDSBgDAWWFcV+7oqNzR0fayJAiWhanBkSMKDo0rXigrOnJESRJLxmpXlFvZLK2415HjheaSFC+tNO9wS2q1dmgeHjzY+Ti53Nrt2QnNAQAAAAAAAADHQSgOAOga47pyhoflDA+3lyVxrHhuLq0qn5lRODGh8NAhRbOzCqanlQSBZIxMJrMYlGcyzFO+TlnZrKxsVu7mzR3Xx9Xq8nnMV8xrnlSrSioVhZXK2qF5Nrtme3a7v19WJnMm3yIAAAAAAAAAYJ0jFAcArCvGstph5lJReaEdmobTU2lQPjmpaGJCcb05T7nnpXOUN4NYY9vdeRM4Ye3QfGys4/q4Vjt2pXm1qqRaVVitKjx0qOM+TCazOixf2p49mz2TbxEAAAAAAAAA0GWE4gCADcEu5GUX8tK2re1lcb2+pMJ4RuH4uIIjh9NK88OHpTiWbHt5+3XX7eK7wMmyMhlZY2PHDs2XVpqvDM0rFSW1msLxcYXj4x33sSo0X9GenU4EAAAAAAAAALCxEYoDADYsy/dlbdokd9Om9rIkDBXNzbWryoOJCYUHDioqlxVNTioJQ8kysjLZdD7sfF4W85RvWFYmIyuTWfYZWCqu1xdD82ZL/nhJiB4vLBw/NPf9Y7ZnN9ksoTkAAAAAAAAArGOE4gCAnmIcR87goJzBwfayJEkUz8+3g9BwclLBoUOKpqYVHjyYzlNuGVnZZkiey1FR3iMs35c1Oip3dLTj+rjRUHyM9uzxwoKSel3h4cNp94EOjOcdOzTP5QjNAQAAAAAAAKCLCMUBAD3PGCO7VJJdKkk7drSXx5WKwqlpRdNTCo8eVXDggMLpGUVTU0rCoNl6Pd9uv24c/trsNZbnyRodlbNGaJ40Gqvbs09Pt5fF5bKSRkPhkSMKjxzpuI9VofnK9uyE5gAAAAAAAABwRvHtPgDgnGXlcvJyuWXzlEflsqKpKUVTUwqOHlXwxBOK5ucVHT2qJElkDw3J7uuTsawujhxni/E8OSMjckZGOq5PgmBVe/alIXo8P3/80Nx1Zff3y1qj0tzK5wnNAQAAAAAAAOBJIBQHAGAJu1CQXShIO3Yoq2br9bk5hRMTqj30kOoPP6LGIw/LKhTlDA/LMB/5Oc24rpzhYTnDwx3Xt0Pz2dnF0Lx1m51NQ/MgUHj0qHT0aOeDuG5aXb5WaF4oEJoDAACcJUmSSOn/2v+3+FhKWk+Wvaa53eKq1dsmzWcnul2i5ctXbpusGNfi4FZvu2p55/cUBbGKw9kT/2EBAAAA6wihOAAAx2CMSQPJvj7555+v8LJpNR55RNV7f6TGE/slSc7wSNqaHVjhuKF5GK5uz750TvP5eSkIFE1MKJqY6HwQx1lsy94Ky1vt2fv60tCczgYAgDPkuEGfTiEkXBbYJSv202Hblds96WMuHux4IeGa+1+ybaexLt/3Gu/zeMds73Ple1qx/45j6DzW1cfs9PM6xrYr39OqbU/kZ73i59FauWQ/x3yfa/0cj3nMTj/r1due6xzX0k+8fMfxXwgAAACsQ4TiAACcBGdgQM7znqfsJZeo/vjjqj3wgBqP7VE4fkhWqS+tHmfucZwg4zhyhobkDA11XJ+EoaK5ubVD87k5KQyPHZrb9jHnNE+SRNSZA6ffskrCdMFpCQlPOeh7MtseL0Raue2q6sRTCPtOd0h4gsc85vtuv781xnYCP7NT/1kfPyRctnzltqsCzGN8DlqvOd7vYMm2AE6BUXoO1uz40278s+Zy01zeftka25rF16y1rWm/WOYktrMszhoBAACwcfGtPQAAp8B4njIXXqjMhRcqOHJE9UceUe1H96mx93HJsuUMD6dzQVOhiyfBOI6cwUE5g4Md1ydRtDw0XzGveTw7K0WRoslJRZOTHfdh9fVp6M2/fCbfBo5h8mBZSiTXtzsEdp3Cs07B1RpBn9YIxU40JDyJoO9kQ8I1qxfbYznVY64d9K1VSXhS257g+wRwClaGdTq5oG9xM6Ols4oY02G71vJjbbvWMVduuzJcXGvbVni57L12GsPi8uMGmu19r9jfsn2u3PZE3veS8Xb4eRx7f2tst/KYpr30xEPglctXbrvsd3Ccbdf8WXf6vZ/q+16yvNO2G1C9EihoxN0eBgAAAHBKCMUBAHiS3NFRuaOjyj372Wrs2aPqffcr2LdP4eHDzVckMq4n4/syvi8rk0kfE5jjSTK2nXYvGBjouH5VaD4zo3hptfncnKx8/iyPGkvtu29KYT3q9jCwnp10cNU5PFuWwZgOQZDWCMtWhU8dQsKVr1krRDqJkLBjQHXcwGvlMTv8vDpuu2Rcx9r2RCsyW9su2+fybY8ZTB5juxN73x1Cwg6fg2XbHu9zsOrnsfpntjToW3wfnX4Hy4+5kQNCAAAAAMDGQSgOAMBpYmUyyjz96fKf9rS0MnduXnF5XnG5rHByUuHRCcXViqLJCcW1ens747oymYzsYlFWLtfFd4BecyKheXDwYPo4SQgmuqA0nFEcxrJsa3lIuFZw1XyYLl8ZXB0nYFxru+YLzmpIuDI86/h+TvCYK8e7Mjxcue1JhoSdxtr5fR7jd9R6zfFCwjW2BQAAAAAAwJNDKA4AwGlmjJEzPCxneHjVurhaVTQ/r7i8sDwwP3xE0eSkggMHJMdJ530uFmVctwvvAOcKY9uyMpn0MQFcV5x/6ahsxyiT5886AAAAAAAAcKYQigMAcBZZ2aysbFYaXb48CUOFExMKx8fV2LtXjScOKNi/T0kUy8rlZJVKzFEOAAAAAAAAAMApIBQHAGAdMI4jd2xM7tiYsj/xE4orFQXjhxWMH1Lj0cfSwPzwuGRZsvIF2YWCTC5HdS8AAAAAAAAAAMdBKA4AwDpk5XLyn7JL/lN2Kbn8ckVTUwrGxxUcPKhg3z5FMzOKDx2UjJGVy8tqzkdOJTkAAAAAAAAAAMsRigMAsM4ZY+QMDckZGlL2oouURJGiqSmFR48qOHxYjT2PK5qdVTh+SJJJ2623QnLb7vbwAQAAAAAAAADoKkJxAAA2GGPbckZG5IyMKPOMZyi5IlY0M9MOyYPHH1c4Pa3w8GEpSWQVCrJLJdqtAwAAAAAAAADOSYTiAABscMay5AwOyhkcVOapT1XyH/7DYkg+Pq7GI48qmplWfPCg5DiyS6U0JHfdbg8dAAAAAAAAAIAzjlAcAIAeY4yRMzAgZ2BAmQsvVPLiFys8OqHw8Lgae/epsW+fgv37lERx2mq9VJKVzzMfOQAAAAAAAACgJxGKAwDQ44xlyd00KnfTqLIXX6y4WlUwPq7g0CE1Hn1M4cSEwvFxybLac5FbuRwhOQAAAAAAAACgJ3T12+5vfvObeuUrX6ktW7bIGKMvfvGLy9YnSaIbbrhBW7ZsUTab1ZVXXqn77ruvO4MFAKBHWNms/F27VHjhCzXwC/9Zg7/0i+p7zWuUfc6zZWV8xXNzajz2mOoPP6zGvn0KJyYUV6tKkqTbQwcAAAAAAAAA4KR1tVJ8YWFBl1xyiX75l39Zr3/961et/8hHPqKPfvSj+vSnP60LL7xQv/d7v6err75aDz74oIrFYhdGDABAbzHGyBkakjM0pOwzL1ISRYpmZhRNTSmcnFJw6JDC8XFFExOK67V0m0xWVj6fVpT7fpffAQAAAAAAAAAAx9bVUPyaa67RNddc03FdkiT62Mc+pt/+7d/W6173OknSLbfcok2bNulzn/uc3vrWt57NoQIAcE4wtt0Oyf3d6bKk0VA4Pd0MyicVPHFA4eSEwvFDShqBZBlZmaxMs+06QTkAAAAAAAAAYD1Zt3OK79mzR+Pj43r5y1/eXub7vq644gp961vfIhQHAOAsMZ4nd9MmuZs2tZfF1arCySlF09MKpyYVHDyoaGpa4eHDSup1yUjGzyzOT57JyBjTxXcBAAAAAAAAADhXrdtQfHx8XJK0ackX8K3ne/fuXXO7er2uer3efj43N3dmBggAwDnMymblbdsqbdvaXhZXq2nr9elphVPTaVA+cVThxFEl9UZ7O6tYlFUoyFhWt4YPSOK8EQAAAAAAADhXrNtQvGVlVVmSJMesNLvpppv0gQ984EwPCwAArGBls7KyWbmbN7eXxfX6YlA+OanG43sVTkwoPHJEUiIrX0hD8lyOkBxnHeeNAAAAAAAAwLlh3YbiY2NjktKK8c1Lvlw/cuTIqurxpf77f//vete73tV+Pjc3p+3bt5+5gQIAgDVZvi9rSev15IUvVDw7q+DwEQXjh9TYsydtuz5+SDJGVqEouxmSA2ca540AAAAAAADAuWHdhuK7du3S2NiY7rjjDl166aWSpEajobvuuksf/vCH19zO9335vn+2hgkAAE6CMUZ2f7/s/n5lnnqhkv/wHxRNTSk4fFjhoUOqP/64oslJBQcOSLYtu1RKK8n5ux1nAOeNAAAAAAAAwLmhq6F4uVzWI4880n6+Z88eff/739fg4KB27Nihd77znfrQhz6k3bt3a/fu3frQhz6kXC6nN77xjV0cNQAAOF2MZckZHpYzPCxddJEKYdhur9544oCCfXsVHjqkJAhkPE9WqSS7WJRx1u11fQAA9JQkThQniZI4fbzqeZI0l6u5vLkuSZQkkjGSkubOjNJli3tPO8VYRpZtZJr36XOrvcx2zDGnUQMAAAAA4Hi6+o3yd7/7XV111VXt5632lW9605v06U9/Wu9+97tVrVb1a7/2a5qentYLXvACffWrX1WxWOzWkAEAwBlkHEfu2JjcsTFlL75YcaOh8MgRhYcPq7F3n4JDBxXs26s4imRlc2mr9UJBxra7PXQAAJ6UKIwVR2nIrCQNjxMlUitglprL07BZzfukuUzx8udJM4huR8nNcDpZfLg8sF5q6WuNZFlpOG2MkbGUhtemGWI7lmzHyHYs2a4lx7Haj23HagfeS0PuOIoVBbGiMFYYxArqkYJ6qKCePo/DWEEjUhIliqJEcRQvC9aNZWTbzWPbi2Ow7PR4AAAAAACs1NVQ/Morr0z/8b4GY4xuuOEG3XDDDWdvUAAAYN2wPE/etm3ytm1T7jnPUbywoKAVku95XMHRIwonJqQ4lmxbVjYrK5eTlc3KeF63hw8AgKQ0pI7CWFHQvA+boXCUtANquxkcGyvdxjTDXcuYNAg2kiwjy7JktYJpqxUKLw+eLTsNiZeG12morXRfWrJPabEKu70sfW2nyu3lt9MfQidJojhKloXmYSNS2Fi8r1dD1SuBGtVQYRCrUQ3TbcLF8NzYRo5ryfHs9N612j9TAAAAAMC5h96jAABgw7Dyefm7dsnftUv5yy5TNDurcGJC0cyMwolJBYcOKZ6fUzA9rSQMJEnGz6RheTYrk83KWFaX3wUAoNekoffyIDcKYsVxGnrLKK2ebt7yfb4yeVeZgivXt9s3x7PTkLlZna1lVdpqV2v3MmNMu/L8RERBWlXeCs2DeqR6NVR1vqGF2bqCaqRKraEoiNut223XkuNZclxbtrtYzQ4AAAAA6F2E4gAAYMOy+/pk9/W1nydJonihomhmRtHsjKLpGQWHxxUdPapoZkbxoUOSEplMVnaplLZeJyQHAJyAOFoMu1v3UZSWJRsj2XazZbhrqTDgK1vwlMk78rJOM/R25GbS8JsW36dP62eufOf1YSMNyRvVUPVKqPpCoIX5hqrzgYJ6pNpCoDhqXcBgmq3jl891bjVbtDvu4oUNAAAAAICNhVAcAAD0DGOM7EJediEvbdvaXp4EgaK5uXZFef3RRxQeParwyJG0eq9YktXXJ8v3uzh6AEA3tdp2t4PvRqQwiJtzd6fBqOOlAWy26ClbdJUteHIztrxm4O1lbLkZh9B7HXG8tAI/37f87/gkTtSohQrqUbu6Pw5bv/+08rxRjxQ0XxM0ItUrYdoBIFqcBq4VyrcDc5d5zQEAAABgPSIUBwAAPc+4rpyhITlDQ/LPP1+55z8vDcjHx9XYv1+NPY8rHD+kpN6QyWRk9/WlVeS23e2hAwBOszhOVrXcltLiYLtVDexaKg5llS25yuRceZm04tvL2vIyDpXCPcBYRn7OlZ9zT+j1URgrqEVq1EI1amlYnrZpD1QrNxQ0YtWraZt2JenU5lZrXvPm3OYE5gAAAADQPYTiAADgnGOMkTMwIGdgQJmnP11Jo6HgyFGF44dUf2yPgvFxhUePSpKsUknOwICMe2JfmgMA1oe06nsx+A5bc0qbVvVw2uY83+cpW/CaobdDtTc6sh1LdsFSprD6fCBJkrSyvBYuBufVUNVyoMpco/04bERpWq5EVrPd/sq5zQEAAAAAZwahOAAAOOcZz5O3bau8bVuVe+5zFc3NKTg0ruDAE6o/8oga+/ZJSmQPDMru66OCHADWmVYVb1BPb4kkY0muZ8txbZWGs8r3+8rkXfk5J60QzjrpXNTAk2SMac4bb0t9q9eHQaRGNVKjGqrRrjBvqDLbUFCLVK0FCoOofdGGbRvZnt2sME/bshtDYA4AAAAATwahOAAAwAp2qSS7VFLmqRcq/6IXqbF3r+qPPabGI4+o8dhjMq4re2gobbHOl9QAcNYkSbP1eTP8Dputqi3HkuvbyvV5advzorsYgGcdWTbhN7rHcdOLM3Ilb9W6sBGpXk0ryxvVSLVKoOp8Q9W5hhr1SPWFUGEYtc83Wu39XT+dK53qcgAAAAA4MYTiAAAAx2D5vjIXXqjMhRcqmptTY+8+1R58UMH+/QoPHZLJ5eQMDcnKZrs9VADoKVEYL7Y+b0QKw0RSGgq6vq3iUFbFQV/ZoqdMIQ3BvQz/xMXGkrbyt5Xv85ctT5JEQT2tLq+3AvOFQJXZuqrlQPVKqPJ0PW3HbtI/F45vN7sjWDKE5QAAAACwDN8YAAAAnCC7VFL2Wc9U9lnPVHj0qBp796r2wI8VjI8radQlY8nK5WTl87JyORmHUy0AOJYkSVaE37HiKA2/LcfIcdOW1MXhrAr9vjIFV9mCq0zBleMylQV6lzFGXsaRl3FUGFi+Lo5i1auh6guhapVA9XKg8kxdlfmGqvPp3OWJEhlj2pXl6b0t2zF0uQEAAABwTuKbWgAAgFPgjIzIGRlR9tJLFRwaVzRxVMHRowoOHFA0N69ockJJFBGUAzhnxVEaeEdRrDhsPg7TxzJKK1ylZmBny8+5GtzsK1vy2m3P/VwaClL1CiyybEvZgqdsYXk79iiMVa+EqlcC1RZC1coNVeYaqi0EChqxaguhojBuz11u2UtDc1u2a9GOHQAAAEDP4ltZAACAJ8HYtrxtW6VtW5VVWvUYz88rmp5WODWlcGKiGZTPNYPyWDImDclbQblNtSOAjWdZlXcQK2pEipotziXJWEa2Y8ly0vtcM+zO5Fy5mbRltOunNy/r0PoceJJaf85Wzl2exM1W7LW0DXujFiqoRc3K8oaCWqRaPVDQiNqBeWvOctdP27EDAAAAwEbHtw4AAACnkTFGdqkku1SSt3OnpA5B+dGjCp44oGhuVuGRw1KcyPh+GpIXCrJ8/zhHAYCzI46TtOI7iBQGafgdNmK1akntZpWp59vKjmSVLXrys047UHM8q/2YClSgO4xl0gtPso40sHp9GERpWF4N03nL5+qan6q35y2Pw1hSItvlzzQAAACAjYtQHAAA4AzrGJTHsaLZWUWTkwonJtU4cEDR4XGFh8eV1BuSbcnK5tKQnGpyAKdJGMRqVEPFUaw4TpREieI4rSSVtKyteSLJWJJtWbI9S45nqzCYUb7oycu58rOOvGxa5e36NvMUAxuU49pyXHtVhXlQj1RbCFQrB6otBCpP17UwW1d9IQ3LkySRl3GUybtyfc5TAAAAAKxvhOIAAABdYCxLzsCAnIEB+RdcoLykuF5PQ/LJSYVHjqqxf5+i2VmFR45IcSyTycguFmUVCsxNDuCEJEmiRi1SfSFQUI9lu0Z+1pWfd+V66RzCbrOiO211bsm2my3P7cXW517WkefbzO0NnENa0xsUBzPtZXGUzk2ehuQ1TR1cUGWuobARyfFtZfKuvAwXyQAAAABYf/g2FQAAYJ2wfF/Wli1yt2yR1Gy7PjubhuRHj6rx+F6FE0cV7NurJI5lPF9WoSC7WJRx3S6PHsB6EUWx6guh6pVAcSR52bTCe3Asr8JgRoUBX7bDHMEATp5lL85bPrg5r21PG9TCTF3zkzVNHVpQebqm8nRNtm2lAXnOoc06AAAAgHWBUBwAAGCdMsbI7u+X3d8v//zzlb/sMkXlBYVHj6Qh+f79CsfHFTzxhJIwlPG8tN16sSjL845/AAAbWpKk832HQayoOd93UItkbCmTczV6Xkn9ozkVBjLKFl0qNwGcdpZlVBzMqDiY0eYL+lSdD9KAfHxBcxNVVcYrMpaRn0unWbBsI8sydJ0AAAAAcNYRigMAAGwgdiEvu7BL/q5dyj//+YorFYUTEwqPHlWw/wkFBw8oPHBASRjKHhiQPTDAfOTABhZHcTv0jsL0cRymk34nkmzHku0YOa6lfJ+n/t05FYcyKgxm5Hr82Qdw9hhj2lXkm3aVVK8EmpusafZwRdOHK6rOB4rjWHGUpP8BM1KStLZVOzC3bCPLTqd0aE3tAAAAAABPFqE4AADABmblcvJ27JC3Y4f0nOcortcVHjqk+qOPqfbjH6ux5zEZx5U9PCy7UOj2cAEcQxSlld5BLVJQjyRJxkoDb9u15Odc9RVcZYue/GxadelmbHkZR27Glm0THAFYP/ycq5Gcq5HtRYWNSI1apChcvMindaFPFMYKG7GCepj+968RNZ9Hqs43FEVpcm7bRo5ny/EtOa4tx+W/eQAAAABOHKE4AABAD7F8X95558k77zzlXvACNfbsUe3HDyjYv1/hwQOySn1yhoaYgxzosjhOFNbTkCioh4rjtA2xm7GV6/NUHM4qX/Lk51x5mTT8dlwqvwFsTI5nyzmJ7hVJnKhRC1WvtG6BKvMNLUw31KiHqpVDRWEsKZFtW3Iztlw/PQZzmAMAAADohFAcAACgR9mFvLLPeqYyz7xI4eHDqj/2mOr336/G/n2SJGdwaLFvKYAzJkmSdtVjoxYqDmPJGLm+LT/raGhrQYUBX5mCq1zRk5fln2kAzm3pPOSu/Nzyi/iSJFFQjxbD8oVA5Zm6ytM11RdClafqSpS2Ynd9u30jKAcAAADAty0AAAA9zhgjd2xM7tiYcs99roK9e1V76GHVH31U0eSk3C2buz1EoKe02qA3mm3QjSTbteRl0gC8OJhRtuApW3KVybkyhDUAcEKMMfIyjryMo+Lg4vI4TlRfCFQtB6qVAy3M1jU/VVOjGmphpq4kSdJuHL4tx7flejZzlQMAAADnGEJxAACAc4jlefJ375a/e7fC6Wk19jyuuFbt9rCADatVtdioRQpqi23QvYyjwoCv0lBGuZKvbNFTtugSwgDAGWBZpvnfWa+9LIkT1SuhquVGGpTPNVSerKleC1UrB4rDRFIi27HaQbnj2bJsLlQCAAAAehGhOAAAwDnKGRiQMzDQ7WEAG0oUxmrUQjVqkaJGLBnJ9Wx5WUdDm/PKD2SUK7nKFj15Gf65BQDdYiyjTMFVprDYgj1JEgW1SLWFQPVKqFqz/Xpltq56NdTCbF1xOsOFHNdqzoVuMVc5AAAA0AP4lgYAAAAAOlhVBR4laRt031HfcFalkaxyzcrETMElMAGAdc4YIy/ryMsu/zosjhM1KqFqlUD1hVC1ckPlmbqq8410rvLpupKkGZY3Q3LXs+W4FlNgAAAAABsEoTgAAAAAKK0CT+cCDxU2Iknp/LNe1tHQloIKA75yJU/ZkifXs7s9XADAaWJ1qCqX0r8X6pVQ9UrQbMUeaGGmrmq5oWo5SP+uSCQZpUG5b8vPOVwkBQAAAKxDhOIAAAAAzjlRGCuoRwpqkYJmqGE5Rq7nqDiYVWkknQs8V6IKHADOVbZjKVfylCt5y5YvDctrSyvL5wLNHK5IkvysIz/vynGtbgwdAAAAwAqE4gAAAAB6WhSlFeCdAvBcn6fiUKsNelolyFzgAIBjWSssb1RDzU/VNDdR1dShBZWna4rCRK5vKZN35fq2jOEiKwAAAKAb+LYHAAAAQE8Jg0iNaqRGNVQUxrJsIy/jEoADAM4oL+toaGtBQ1sL2nHRkMrTdc1P1TR1sKzKbEPzUzVZtiU/66Rzk7uWLJtKcgAAAOBs4BsgAAAAABtWkiQK6s0QvBYqSRI5ji0va2t4e1HFoUy7mo8AHABwttiOpb6RrPpGstp6Yb8qcw2Vp+qaOVzR/FRN9UqoSiNWFCcykoxt5LhpUO54tmzXYuoOAAAA4DTiWyEAAAAAG0YUpq3QG/VIQT2SkeT6tvyco+EdBRX6myF40ZPNPK4AgHXAGKN8n698n69Nu0qKo1iNaqR6NVSjeauWA1Xm6qpXQtXKQXu6DymRZVuyXUu2s+TeMbRiBwAAAE4CoTgAAACAdSkKYwX1DnOB+47y/Z76hnPK9/vKlTxlCi4VdQCADcGyLWUKljIFd9W6KIgXw/JaqHo1Dclr5UD1SqigFqkWBArDWJLSKnPLNMPytNq8FZwTmgMAAACLCMUBAAAAdFWSJIqjtA1666ZEsuw0AG/PBV7ylC0wFzgAoHfZ/3979x9a1X3+Afy5N/fmGtMk1VZNUq247tuOVitsbhrpNnFMJti1dH90wsAxGLjNQmlHYYOhHWVKYYVBmYNtjBYEoayOwX7VUrUrxa3d3OpEhlC3tptO1u/apFGT3Hs/3z+it1jtzLc1OScnrxcEc+85Nz65j5/cx/POuadajtnV8ct+vFOz0Wy9To6ePfeaebYeI6fHzzQ/OzwWY6PNODtcj/pYM0oxfrJ5W9t4aH4+MHctcwAAZqJcH0natm1bPPjggxfct2DBgjh58mRGFQEAAP8fKaVo1FM06s1o1pvRqDdbtyOde2fYGL/2aqW9HB1d7bFgSUfM7mqPji4BOACcV24rR212OWqzLz7DPCIiNVMrMB89O35W+ejZepx5azROD47G2NlGjAzXY3isGal57hW4NH6meen856VSlEpvfx4RUTr3eX2s6dIkAABMW7k/unTLLbfE008/3brd1taWYTUAAMClNOrNqI82Ymxk/M9m4+2D7W1t5ShXxs9Sq3VUo9ZZjVmdlWifVYlKrS2q7W1RqZVjVqcAHADeq1K5FO0dlWjvqERE7aLtjbFmjI7UY/TM+dC8HiNnGtGsN6PZHH/XltRM0Wye+7ORWu/mkprp3Ot4JdoqgnEAAKaf3B9xqlQq0dvbm3UZAABAxPjbnI82oj7aiPpIIxqN1Hqr80qtLdpntcWcvtkxu7sWtY5KVNrLUa21RaW9Laq1NgfSASAjbdVydFTbo+Oq9/41UkquVQ4AwLSU+1D82LFj0d/fH7VaLVauXBnf+c534gMf+MC77j8yMhIjIyOt24ODg1NRJgAA04y58fIa9WaMnW3E2Oj4dUtTiiiVI6rnAu6uazriqqtrMauzGrXZlah1VqN9VpuD5QBQUF7jAQCYrnIdiq9cuTIef/zxuPHGG+Nf//pXPPTQQ7F69eo4cuRIXHPNNZd8zPbt2y+6DjkAALyTufFtKaWojzZb4Xd9tBmliChXylFtb4uOrvaYv7gWs7vHA/BZndVon12JctmBcQAAAADyr5RSSlkXMVHDw8Nxww03xAMPPBD33XffJfe51Bk/ixYtijfffDO6u7unqlQAAC5hcHAwenp6cjGbZT03jo024tBTr0RbpRSzOquT/ved16iPh9/1kUaMjTYjNZqRotR6m/PO7vbonDMrZne1R62z4jrfAEAm8jQ3AgAw/U2ro1udnZ2xbNmyOHbs2LvuU6vVolarTWFVAABMR0WfGy+69nd9PPxuq5Si0t4WtY5qzO2vRWdPe9RmV2PWVeNngLvmNwAAAABFM61C8ZGRkTh69Gh8/OMfz7oUAADInbGRRpweHI36aCPKbePhd7XWFt3XdkRnz9vX/p7VWY2qa38DAAAAMEPkOhT/+te/Hrfffntcf/31cerUqXjooYdicHAwNm3alHVpAACQC81mijNDozEyXI+2ajm6rpkV1y7sio6uasya7drfAAAAAJDrUPy1116LjRs3xr///e+YN29erFq1Kg4ePBiLFy/OujQAAMjU6Nl6nH5zNJqNFB1d1Vh089yY29cZXXNnRUkIDgAAAAAtuQ7Fd+/enXUJAACQG81GM04PjcXI6XpU29tiTm9nzLu+K3rmd0T7rFyP9gAAAACQGUfOAAAgh5rNFOncR73ejDODo5FSxOzu9uhbdk3M7euMzqtrrgsOAAAAAJchFAcAgAwN/e/ZOD04GhERKUWUIiJFRKkcUS6XolQqRVulHNcu6oprF3bF1fM7otLelmnNAAAAADCdCMUBACADlUo5rvufq6PZSFGulKLcVo62SinKbaUol8vn7hsPxNsq5ZjVWc26ZAAAAACYloTiAACQgVK5FNfdNCfrMgAAAACg8MpZFwAAAAAAAAAAk0UoDgAAAAAAAEBhCcUBAAAAAAAAKCyhOAAAAAAAAACFJRQHAAAAAAAAoLCE4gAAAAAAAAAUllAcAAAAAAAAgMISigMAAAAAAABQWEJxAAAAAAAAAApLKA4AAAAAAABAYQnFAQAAAAAAACgsoTgAAAAAAAAAhSUUBwAAAAAAAKCwhOIAAAAAAAAAFJZQHAAAAAAAAIDCEooDAAAAAAAAUFhCcQAAAAAAAAAKSygOAAAAAAAAQGEJxQEAAAAAAAAoLKE4AAAAAAAAAIUlFAcAAAAAAACgsITiAAAAAAAAABSWUBwAAAAAAACAwhKKAwAAAAAAAFBYQnEAAAAAAAAACquSdQGTLaUUERGDg4MZVwIAwPmZ7PyMlifmRgCA/Mjz3AgAwPRT+FB8aGgoIiIWLVqUcSUAAJw3NDQUPT09WZdxAXMjAED+5HFuBABg+imlgv+6ZbPZjH/+85/R1dUVpVLpin/9wcHBWLRoUbz66qvR3d19xb8+E6cX+aAP+aEX+aEX+aEX2UspxdDQUPT390e5nK8r+ZgbZw69yA+9yAd9yA+9yA+9yF6e50YAAKafwp8pXi6XY+HChZP+93R3d/tPUk7oRT7oQ37oRX7oRX7oRbbyeqaPuXHm0Yv80It80If80Iv80Its5XVuBABg+vFrlgAAAAAAAAAUllAcAAAAAAAAgMISir9PtVottm7dGrVaLetSZjy9yAd9yA+9yA+9yA+9IEv+/eWHXuSHXuSDPuSHXuSHXgAAQLGUUkop6yIAAAAAAAAAYDI4UxwAAAAAAACAwhKKAwAAAAAAAFBYQnEAAAAAAAAACksoPgHbtm2LUql0wUdvb29re0optm3bFv39/dHR0RFr1qyJI0eOZFhxcTz77LNx++23R39/f5RKpfjZz352wfaJPPcjIyNxzz33xLXXXhudnZ3x2c9+Nl577bUp/C6K4XK9+OIXv3jROlm1atUF++jF+7d9+/b46Ec/Gl1dXTF//vy48847469//esF+1gXU2MivbAuJt/OnTvj1ltvje7u7uju7o6BgYH41a9+1dpuPTDVzI3ZMTfmh7kxH8yN+WFuzA+zIwAAzFxC8Qm65ZZb4sSJE62Pw4cPt7Y9/PDD8cgjj8Sjjz4aL7zwQvT29sanP/3pGBoayrDiYhgeHo7ly5fHo48+esntE3nu77333tizZ0/s3r07nnvuuXjrrbdiw4YN0Wg0purbKITL9SIi4jOf+cwF6+SXv/zlBdv14v07cOBAfO1rX4uDBw/G3r17o16vx7p162J4eLi1j3UxNSbSiwjrYrItXLgwduzYES+++GK8+OKLsXbt2rjjjjtaBy+tB7JgbsyGuTE/zI35YG7MD3NjfpgdAQBgBktc1tatW9Py5csvua3ZbKbe3t60Y8eO1n1nz55NPT096Qc/+MEUVTgzRETas2dP6/ZEnvs33ngjVavVtHv37tY+//jHP1K5XE6//vWvp6z2onlnL1JKadOmTemOO+5418foxeQ4depUioh04MCBlJJ1kaV39iIl6yIrc+bMST/60Y+sBzJhbswHc2N+mBvzw9yYH+bGfDE7AgDAzOBM8Qk6duxY9Pf3x5IlS+Lzn/98vPzyyxERcfz48Th58mSsW7eutW+tVotPfvKT8fzzz2dV7owwkef+D3/4Q4yNjV2wT39/fyxdulR/JsH+/ftj/vz5ceONN8aXv/zlOHXqVGubXkyON998MyIi5s6dGxHWRZbe2YvzrIup02g0Yvfu3TE8PBwDAwPWA5kxN+aPnwf54/Vx6pkb88PcmA9mRwAAmFmE4hOwcuXKePzxx+M3v/lN/PCHP4yTJ0/G6tWr4/XXX4+TJ09GRMSCBQsueMyCBQta25gcE3nuT548Ge3t7TFnzpx33YcrY/369bFr16545pln4rvf/W688MILsXbt2hgZGYkIvZgMKaW477774rbbboulS5dGhHWRlUv1IsK6mCqHDx+Oq666Kmq1WmzevDn27NkTN998s/VAJsyN+eTnQb54fZx65sb8MDdmz+wIAAAzUyXrAqaD9evXtz5ftmxZDAwMxA033BCPPfZYrFq1KiIiSqXSBY9JKV10H5PjvTz3+nPl3X333a3Ply5dGitWrIjFixfHL37xi7jrrrve9XF68d5t2bIlXnrppXjuuecu2mZdTK1364V1MTVuuumm+NOf/hRvvPFG/PSnP41NmzbFgQMHWtutB6aSuTHf/DzIB6+PU8/cmB/mxuyZHQEAYGZypvh70NnZGcuWLYtjx45Fb29vRMRFvxF86tSpi367mCtrIs99b29vjI6Oxn/+85933YfJ0dfXF4sXL45jx45FhF5caffcc0/8/Oc/j3379sXChQtb91sXU+/denEp1sXkaG9vjw9+8IOxYsWK2L59eyxfvjy+973vWQ/kgrkxH/w8yDevj5PL3Jgf5sZ8MDsCAMDMJBR/D0ZGRuLo0aPR19cXS5Ysid7e3ti7d29r++joaBw4cCBWr16dYZXFN5Hn/iMf+UhUq9UL9jlx4kT85S9/0Z9J9vrrr8err74afX19EaEXV0pKKbZs2RJPPvlkPPPMM7FkyZILtlsXU+dyvbgU62JqpJRiZGTEeiAXzI354OdBvnl9nBzmxvwwN+ab2REAAGaIxGXdf//9af/+/enll19OBw8eTBs2bEhdXV3pb3/7W0oppR07dqSenp705JNPpsOHD6eNGzemvr6+NDg4mHHl09/Q0FA6dOhQOnToUIqI9Mgjj6RDhw6lv//97ymliT33mzdvTgsXLkxPP/10+uMf/5jWrl2bli9fnur1elbf1rT033oxNDSU7r///vT888+n48ePp3379qWBgYF03XXX6cUV9pWvfCX19PSk/fv3pxMnTrQ+Tp8+3drHupgal+uFdTE1vvGNb6Rnn302HT9+PL300kvpm9/8ZiqXy+mpp55KKVkPTD1zY3bMjflhbswHc2N+mBvzw+wIAAAzl1B8Au6+++7U19eXqtVq6u/vT3fddVc6cuRIa3uz2Uxbt25Nvb29qVarpU984hPp8OHDGVZcHPv27UsRcdHHpk2bUkoTe+7PnDmTtmzZkubOnZs6OjrShg0b0iuvvJLBdzO9/bdenD59Oq1bty7NmzcvVavVdP3116dNmzZd9Dzrxft3qR5ERPrJT37S2se6mBqX64V1MTW+9KUvpcWLF6f29vY0b9689KlPfap1UDMl64GpZ27MjrkxP8yN+WBuzA9zY36YHQEAYOYqpZTSlT//HAAAAAAAAACy55riAAAAAAAAABSWUBwAAAAAAACAwhKKAwAAAAAAAFBYQnEAAAAAAAAACksoDgAAAAAAAEBhCcUBAAAAAAAAKCyhOAAAAAAAAACFJRQHAAAAAAAAoLCE4gA5smbNmrj33nuzLgMAgJwzNwIAAMDECcUBAAAAAAAAKCyhOAAAAAAAAACFJRQHyJlmsxkPPPBAzJ07N3p7e2Pbtm2tbaVSKXbu3Bnr16+Pjo6OWLJkSTzxxBPZFQsAQGbMjQAAADAxQnGAnHnssceis7Mzfve738XDDz8c3/72t2Pv3r2t7d/61rfic5/7XPz5z3+OL3zhC7Fx48Y4evRohhUDAJAFcyMAAABMTCmllLIuAoBxa9asiUajEb/97W9b933sYx+LtWvXxo4dO6JUKsXmzZtj586dre2rVq2KD3/4w/H9738/i5IBAMiAuREAAAAmzpniADlz6623XnC7r68vTp061bo9MDBwwfaBgQFn/AAAzEDmRgAAAJgYoThAzlSr1Qtul0qlaDab//UxpVJpMksCACCHzI0AAAAwMUJxgGnm4MGDF93+0Ic+lFE1AADklbkRAAAAxlWyLgCA/58nnngiVqxYEbfddlvs2rUrfv/738ePf/zjrMsCACBnzI0AAAAwTigOMM08+OCDsXv37vjqV78avb29sWvXrrj55puzLgsAgJwxNwIAAMC4UkopZV0EABNTKpViz549ceedd2ZdCgAAOWZuBAAAgLe5pjgAAAAAAAAAhSUUBwAAAAAAAKCwvH06AAAAAAAAAIXlTHEAAAAAAAAACksoDgAAAAAAAEBhCcUBAAAAAAAAKCyhOAAAAAAAAACFJRQHAAAAAAAAoLCE4gAAAAAAAAAUllAcAAAAAAAAgMISigMAAAAAAABQWEJxAAAAAAAAAArr/wA2K7LGod4hzQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" ] }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Gaussian Linear Model\n", - "\n", - "For the first demonstration, we will use a Gaussian linear regression model with the `mtcars` dataset to better understand the `plot_predictions` function and its arguments. The `mtcars` dataset was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption and 10 aspects of automobile design and performance for 32 automobiles (1973--74 models). The following is a brief description of the variables in the dataset:\n", - "\n", - "- mpg: Miles/(US) gallon\n", - "- cyl: Number of cylinders\n", - "- disp: Displacement (cu.in.)\n", - "- hp: Gross horsepower\n", - "- drat: Rear axle ratio\n", - "- wt: Weight (1000 lbs)\n", - "- qsec: 1/4 mile time\n", - "- vs: Engine (0 = V-shaped, 1 = straight)\n", - "- am: Transmission (0 = automatic, 1 = manual)\n", - "- gear: Number of forward gear" + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bmb.interpret.plot_predictions(\n", + " model=model, \n", + " idata=idata, \n", + " conditional=[\"hp\", \"wt\"],\n", + " pps=False,\n", + " legend=False,\n", + " subplot_kwargs={\"main\": \"hp\", \"group\": \"wt\", \"panel\": \"wt\"},\n", + " fig_kwargs={\"figsize\": (20, 8), \"sharey\": True}\n", + ")\n", + "plt.tight_layout();" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Furthermore, categorical covariates can also be plotted. We plot the the mean `mpg` as a function of the two categorical covariates `gear` and `cyl` below. The `plot_predictions` function automatically plots the conditional adjusted predictions for each level of the categorical covariate. Furthermore, when passing a list of covariates into the `plot_predictions` function, the list will be converted into a dictionary object where the key is taken from (\"horizontal\", \"color\", \"panel\") and the values are the names of the variables. By default, the first element of the list is specified as the \"horizontal\" covariate, the second element of the list is specified as the \"color\" covariate, and the third element of the list is mapped to different plot panels." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtkAAAFgCAYAAABuYGW+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABJ0AAASdAHeZh94AABASUlEQVR4nO3de3zO9f/H8ee17dqBxWYnZ9Ocm0MZITGHsaJM8QudRMghSqVSMVQ6kcr5FEr5RlF8I4TiG4W+ROWwWDlkJ6NtZrtcu35/LPt22TD22XVd2x732+263fZ5v9+fz/W67Ptdz733/rw/JpvNZhMAAAAAw7g5uwAAAACgtCFkAwAAAAYjZAMAAAAGI2QDAAAABiNkAwAAAAYjZAMAAAAGI2QDAAAABiNkAwAAAAYjZAMAAAAGI2QDAAAABiNkAwAAAAZzqZC9adMmDRgwQA0aNFD58uVVrVo19ejRQ7t378431mKxaOrUqWrcuLF8fHzk5+enNm3a6LvvvnNC5QAAAMD/eDi7gH+aNWuWUlJSNGrUKDVq1EhJSUmaMmWKWrVqpa+++kodO3aUJFmtVvXs2VPbtm3TmDFj1KZNG2VkZGj37t3KyMi4rvc+c+aMvvnmG9WoUUNeXl5GfiwAAACUcFlZWTp27Jjat28vPz+/q59gcyEJCQn52tLS0mwhISG2Tp065bW9/fbbNjc3N9v27dsNe+9Vq1bZJPHixYsXL168ePHiddnXqlWrCpUtXWomOzg4OF+br6+vGjVqpGPHjuW1vfPOO2rXrp1atWpl2HvXqFFDkrRq1SrVqVPHsOsCAACg5IuLi1NMTExeZrwalwrZBTl79qx+/PHHvKUix44dU3x8vO666y6NHTtWCxYsUEpKiurXr68xY8bo4Ycfvuo1ExMTlZSUZNd2McTXqVNHN910k/EfBAAAACVeYZcVu3zIHj58uDIyMvTCCy9Ikk6cOCFJWrx4sapXr67p06erYsWKmjdvnvr376/s7GwNGjToitecOXOmJkyYUOy1AwAAoGxy6ZD90ksvaenSpXrvvffUvHlzSVJOTo4k6fz58/ryyy9Vq1YtSVJUVJQiIiI0ceLEq4bsYcOGqXfv3nZtF/8EAAAAABSVy4bsCRMm6OWXX9Yrr7yiESNG5LUHBARIkho0aJAXsCXJZDKpa9eumjx5shITEwtc331RcHDwFfsBAACAonCpfbIvmjBhgmJjYxUbG6uxY8fa9YWFhalcuXIFnmez2SRJbm4u+bEAAABQRrhcGp00aZJiY2P14osvavz48fn6PTw81KNHD/3666+Kj4/Pa7fZbFq3bp3CwsIUGBjowIoBAAAAey61XGTKlCkaN26coqOj1a1bN+3YscOu/+KWfZMmTdLatWsVHR2t2NhYVahQQfPnz9fevXv1ySefOKN0AABQwuXk5CghIUFZWVl594ChdHNzc5OXl5dCQkIMXwnhUiF79erVkqR169Zp3bp1+fovLgcJCwvT1q1b9dxzz2nw4MGyWCxq1qyZvvjiC3Xv3t2hNQMAgJIvJydHf/zxhzIzM+Xu7i53d3eZTCZnl4ViZLPZlJ2drczMTGVlZalmzZqGBm2XCtlbtmwp9Njw8HCtWbOm+IoBAABlRkJCgjIzM1WpUiUFBwcTsMsIm82mxMREnT59WgkJCapSpYph13a5NdkAAACOlpWVJXd3dwJ2GWMymRQcHCx3d3dlZWUZem1CNgAAKPNycnJYIlJGmUwmubu7G74O36WWiwAAADiLswL26YxsWaw5Mru7qVJ5T6fUUNYVx/eemWwAAAAnSj2XrYS/ziv1XLazS4GBCNkAAACAwQjZAAAAuKpFixbJZDLZPQwQl0fIBgAAAAxGyAYAAAAMRsgGAAAo5Q4cOKC+ffsqJCREXl5eqlmzph566CEdPHhQHh4emjx5cr5zvv32W5lMJi1fvtwJFZd8hGwAAIBSbO/evWrRooV27NihiRMnau3atZo8ebKysrJUtWpV3X333Zo9e7asVqvdedOnT1fVqlXVs2dPJ1VesrFPNgAAQCk2evRoeXh46IcfflBQUFBe+/333y9JGjlypDp06KDVq1crJiZGknTy5EmtXLlSL730kjw8iIvXg5lsAACAUurcuXP65ptv9H//9392AfufIiMj1bRpU82YMSOvbfbs2TKZTBo8eLCjSi11CNkAAAClVGpqqqxWq6pXr37FcSNHjtTXX3+tgwcPymKxaN68eerVq5cqV67soEpLH0I2AABAKVWpUiW5u7vr+PHjVxzXr18/BQQEaMaMGVq+fLlOnTql4cOHO6jK0omQDQAAUEr5+Pioffv2Wr58uZKTky87ztvbW4MHD9bixYs1depUNWvWTLfddpsDKy19CNkAAACl2NSpU2WxWHTrrbdq3rx52rx5s5YtW6Z+/fopLS0tb9ywYcN07tw57d69WyNGjHBixaUDIRsAAKAUa9q0qX744Qc1b95czz//vKKjo/Xss8/Ky8tLnp6eeeOqVaumtm3bqlKlSurXr58TKy4d2JMFAACglGvYsKE++eSTK45JTEzUjh079Pjjj8vHx0c6lyJdyJY8PKVyAerfv7/69+/vmIJLAUI2AABAGXb8+HEdOXJEb775ptzc3DRq1KjcjnOnpex0ydNXKhfg3CJLIJaLAAAAlGHz589XZGSkfv75Zy1dulTVqlVzdkmlAiEbAACgDIuNjVVOTo6OHDmS98RHFB0hGwAAADAYIRsAAAAwGCEbAAAAMBghGwAAADAYIRsAAAAwGCEbAAAAMBghGwAAADAYIRsAAKCYWKw52v5bitbt/1Pbf0uRxZrjlDpiY2NlMpmUnJx8xXGhoaHX/ej0yMhIhYeHX9e5pRGPVQcAADCYxZqjWVt+05Lt8UpOz85rD/L10oOta2loZJjM7q4317ly5UpVqFDB2WWUCoRsAAAAA1msORq8ZJc2H0yS6ZK+5PQsTd1wSHuOndGcB5u7XNC++eabnV1CqeFa31kAAIASbtaW37T5YJIkyXZJ38XjTQcSNXvLbw6tS5ISEhLUt29fVaxYUSEhIRowYIDOnj2b11/QcpGfDxxWly5dVK5cOQUFBWn48OH697//LZPJpC1btuR7j507d+r2229XuXLldOONN+q1115TTo5zlsk4EyEbAADAIBZrjpZsj883g30pk6Ql2393+Brte++9V/Xq1dOnn36q5557Th999JGefPLJy47/MyFJ7Xvcr4MHD2rWrFlasmSJ0tLSNGLEiALHnzp1Svfff78eeOABffHFF7rjjjv0/PPP68MPPyyuj+SyXGq5yKZNm/Thhx/qu+++07Fjx+Tn56eIiAiNGzdOzZs3L/Acm82m9u3ba+vWrRo+fLimT5/u4KoBAEBpNWH1z/rl5F+FHv9XpsVuDfbl2CQlpWfp7ve2ydPDTdYcm9zdTPI2u1/xvEZVK2j8XTcVup5LDRw4UM8884wkqXPnzoqLi9PChQu1YMECmUz5fzV4e95SnU49q2+3/keNGjWSJN1xxx2Kjo5WfHx8vvEpKSn68ssv1bJly7z32LJliz766CM99NBD1113SeRSIXvWrFlKSUnRqFGj1KhRIyUlJWnKlClq1aqVvvrqK3Xs2DHfOTNmzFBcXJwTqgUAAKXdLyf/0vdHTxfb9X89lVZs1y7I3XffbXfcpEkTnT9/XomJiQoJCck3/psdPyq8Yb28gH1R37599dVXX+UbX7ly5byA/c/32LNnT9GLL2FcKmTPmDFDwcHBdm3R0dGqU6eOXn311XwhOz4+Xs8//7yWLFmie+65x5GlAgCAMqBR1WvbaeOvTMs1BeeGlW+45pnsoggICLA79vLykiRlZmYWOD4l9Yxq16qZr72gQF7Q9S++x+WuX5q5VMi+NGBLkq+vrxo1aqRjx47l6xs8eLCioqLUs2dPR5QHAADKmGtdmmGx5qj15K+Vkp6d76bHfzJJCvT10hePt9Ufp88pI+uCynt5KCzIt0j1Gi3A308JSSn52k+dOuWEakoWlwrZBTl79qx+/PHHfLPY8+fP1w8//KBffvnlmq+ZmJiopKQkuzaWnAAAgKIyu7vpodahmrrh0BXH2SQ91LqWy23hd6n2rW7RW7M/0C+//GK3ZGTZsmVOrKpkcPmQPXz4cGVkZOiFF17Iaztx4oSefvppvfHGG6pateo1X3PmzJmaMGGCkWUCAABIkoZGhmnPsTPadCBRJtlv43fxuGODYD0WGeacAq/BE4/er4X/yt0lZOLEiQoJCdFHH32kAwcOSJLc3Fz7lwRncul/mZdeeklLly7V22+/bbe7yGOPPaamTZtq0KBB13XdYcOGaf/+/XavVatWGVQ1AAAoy8zubprzYHM9FVVPgb5edn2Bvl56KqqeSz6IpiBVKwfpm8+Xql69enrsscd0//33y9PTUxMnTpQk+fn5ObdAF2ay2WxXWjLkNBMmTFBsbKxeeeUVjR07Nq99xYoV6tu3r7Zt26b69evntfv7+2vQoEF64403VL58eZnN5mt6v59//lnh4eHav3+/brrp+rfGAQAAJc+RI0ckSTfeeKOh17VYc7QrPlVnM7NV0cdTEaH++cL1b0nprrkmO/mwlJ0uefpKgXXtugYPHqyPP/5YKSkp8vT0dFKBxinM9/9as6JLLhe5GLBjY2PtArYk7d+/XxcuXFCrVq3ynTdv3jzNmzdPK1euVExMjIOqBQAAKJjZ3U2tw/LvuFGSTHxruqrWaawbb7xR6enpWrNmjebPn68XX3yxVATs4uJyIXvSpEmKjY3Viy++qPHjx+fr79+/vyIjI/O1d+jQQTExMRo1apTCw8MdUCkAAEDpZ/bw0Jtvvqnjx4/rwoULqlu3rqZOnapRo0Y5uzSX5lIhe8qUKRo3bpyio6PVrVs37dixw66/VatWCg0NVWhoaIHnV6tWrcAADgAAgOvz/BOP6fmXpzi7jBLHpUL26tWrJUnr1q3TunXr8vW76PJxAAAAwI5LhewtW7Zc97kEcAAAALgK1987BgAAAChhCNkAAACAwQjZAAAAgMEI2QAAAIDBXOrGRwAoa5bvOqbjqZmq7u+j3hE1nF3O//x3qXTmD8mvpnTz/c6uBgBKHEI2ADjRit3H9f3R07q1diXXCtl7PpJ+3ybVakvIBorCapH+2CFlpko+/lLNVpK72dlVwQEI2QAAAEazWqRtb0s/zJUykv7X7hsstRgktX3SoWF70aJFeuSRR3T06NHLPtQPxiJkAwAAGMlqkZb1kw6vl2Sy70tPkja/Ih3fJfVZyqx2KcaNjwAAAEba9vbfAVuSLn1Y3t/Hh7+Stk1zYFFwNEI2AACAUayW3CUil85g52OSds7NHe8kCxcuVNOmTeXt7a1KlSqpZ8+e+vXXX/P6/71+s0zVbtHO//6U1/bpp5/KZDKpW7dudtdq0qSJ7r33XofVXhKwXAQAAOBy1j4nndpX+PHnz9ivwb4sm5SeKM2NVFX3G2TNscndzSSZ3a98WuXG0h2vFb6ey5g8ebLGjh2rvn37avLkyUpJSVFsbKxat26tnTt3qm7dumrfpqXMZg9t/OY7tYjKDdAbN26Uj4+PvvnmG1ksFpnNZiUmJmr//v0aOnRokesqTQjZyI+tuwAAyHVqX+5OO8UlYb98iu/qBTpz5owmTZqkO++8Ux999FFee2RkpOrWravY2FgtXbpUvr7ldevN4dr47Xd6/u8xGzdu1IgRIzRlyhRt375d7dq108aNG2Wz2dS5c2cHfxLXRshGfmzdBQBArsqNr238+TNSwv7Cjw8JV+Y/ZrJ9CjOTXUTbt29XZmam+vfvb9deo0YNdezYUV9//XVeW6e2LfXajEXKzMxUYmKi4uLi1KdPH3399dfasGFDXsiuWbOm6tatW+TaShNCNgAAwOVc69IMq0Wa2lDKSFb+mx7/yST5BkmDt+jk6SxlZF1QeS8PhQX5FqXaQklJSZEkValSJV9f1apVtWHDhrzjzrffqglT52rbtm36/fffFRgYqJtvvlmdO3fWxo0bNWnSJH399dfMYheAGx8BAACM4m6WWg7WlQO2cvtbDHbKFn4BAQGSpD///DNf38mTJxUYGJh3fOvN4fItX14bN27Uhg0b1KlTJ5lMJnXq1Ek7d+7Uzp079ccffxCyC0DIBgAAMFLbJ6W6Xf8+uHSXkb+P63aV2j7hwKL+p3Xr1vLx8dGHH35o1378+HFt2rRJnTp1ymszm81q1zpCGzZs0KZNmxQVFSVJuv322+Xh4aEXX3wxL3TDHiEbAADASO7m3AfNdHgxd0nIP/kG5bY78UE0fn5+eumll/TFF1/ooYce0tq1a/Xhhx+qQ4cO8vb21vjx4+3Gd2rXWv/973+VnJycN2Pt4+OjNm3aaP369WrcuLGCg4Od8VFcGmuyAQAAjOZulto/kztb/ccOKTNV8vGXarZyiac8Pv/88woODta7776rf/3rX/Lx8VFkZKReffXVfDcwdm7XRpJUt25d1apV63/tnTtr8+bNLBW5DEI2AABAcXE3S7Vvd3YV6t+/f77dRAYOHKiBAwde9dwmNzWQzZZ/jfnYsWM1duxYo0osdVguAgAAABiMkA0AAAAYjJANAAAAGIyQDQAAABiMGx8BAABQYqSeT5UlxyKzm1n+3v7OLueymMkGAABAiXEm64ySziXpTNYZZ5dyRYRsAAAAwGCEbAAAAMBghGwAAADAYIRsAAAAwGCEbAAAgGJiybFo56md2vj7Ru08tVOWHIuzS3IKk8mk2NjYvONFixbJZDIpPj7eaTUVN7bwAwAAMJglx6IF+xZo2YFlSjmfktce6BOo++rfp4GNB8rsZnZihc7VrVs3bd++XVWqVHF2KcWGkA0AAGAgS45FozaN0tYTW2WSya4vJTNFM/bM0L7kfZrWYVqZDdpBQUEKCgpydhnFiuUiAAAABlqwb4G2ntgqSbLJZtd38fjb499q4b6FDqspNjZWJpNJP/30k3r37q2KFSuqUqVKGj16tC5cuKCDBw8qOjpaN9xwg0JDQ/XGG2/Ynf/XX3/p6aefVu3ateXp6alq1arpiSeeUEZGRr5xgwYNUkBAgHx9fRUdHa1Dhw7lq6eg5SKhoaHq379/vrGRkZGKjIzMO96xdYfCg8L1+fLP9eyzz6pKlSry9fXVXXfdpYSEBKWlpWnw4MEKDAxUYGCgHnnkEaWnpxfp3+96uFTI3rRpkwYMGKAGDRqofPnyqlatmnr06KHdu3fnjbFarZo6daqio6NVvXp1lStXTg0bNtRzzz2nM2fOOK94AABQ5llyLFp2YFm+GexLmWTSsoPLHL5G+//+7//UtGlTffrppxo0aJDefvttPfnkk4qJiVG3bt20cuVKdezYUc8++6w+W/OVJOncuUy1b99eixcv1siRI7V27Vo9++yzWrRoke6++27ZbLm/ONhsNsXExOiDDz7QU089pZUrV6pVq1a64447iuWzvDXxLSUmJmrRokWaMmWKtmzZor59++ree+9VxYoV9fHHH2vMmDH64IMPNHbs2GKp4UpcarnIrFmzlJKSolGjRqlRo0ZKSkrSlClT1KpVK3311Vfq2LGjMjMzFRsbq759++rRRx9VYGCgfvzxR7388stavXq1du3aJR8fH2d/FAAAUAq8/sPrOnD6QKHH/5X9l90a7MuxyabkzGT1WdNHZlN55eTY5OZmko/Z/YrnNajUQM+2fLbQ9Vxq8ODBGj16tCSpc+fOWr9+vaZPn67PPvtMPXv2lJQ7c7xmzRotXbFa93S5Te/OW6KffvpJ33//vSIiIiRJnTp1UrVq1dSrVy+tW7dOd9xxh7766itt3rxZ77zzjkaOHClJioqKkqenp1544YXrrvlyGtzUQO+//37e8YEDBzRt2jSNHDlSb775Zt77b9++XUuXLtW7775reA1X4lIhe8aMGQoODrZri46OVp06dfTqq6+qY8eO8vHx0dGjRxUQEJA3JjIyUjVr1lTv3r316aef6oEHHnB06QAAoBQ6cPqAdiXsKrbrH0rNv5SiOHXv3t3uuGHDhtq7d6/dbLOHh4fq1Kmj34+flCStWb9Z4eHhatasmS5cuJA3rmvXrjKZTNqyZYvuuOMObd68WZJ0//33271Hv379iiVkd4zumO+zSLk3VV7avmrVKqWnp8vX19fwOi7HpUL2pQFbknx9fdWoUSMdO3ZMkuTu7m4XsC9q2bKlJOWNAwAAKKoGlRpc0/i/sv+6puBcz7/eNc9kF0WlSpXsjj09PVWuXDl5e3vna/8rNUuSlJCUorijv8tsLvgmzeTkZElSSkqKPDw88uW0ypUrF6nmy6noX9Hu2NPTU1LBn1GSzp8/X3ZDdkHOnj2rH3/8UR07drziuE2bNkmSbrrppqteMzExUUlJSXZtcXFx118kAAAola51aYYlx6Ko5VE6ff50vpse/8kkkwJ8ArSs+zL9kZKljKwLKu/lobAgx4XAwgoM8JePbwUtXFjwjZqBgYGSpICAAF24cEEpKSl2QfvUqVOFeh9vb29lZWXla09OTs57j5LEpW58LMjw4cOVkZFxxT8znDhxQs8995wiIiLy/RmkIDNnzlR4eLjdKyYmxsCqAQBAWWR2M6tPgz5XDNhS7prsPvX7lIgt/LpHddBvv/2mgIAARURE5HuFhoZKkjp06CBJWrp0qd35H330UaHeJzQ0VD/99JNd26FDh3Tw4MGifwgncOmZ7JdeeklLly7Ve++9p+bNmxc45vTp07rzzjtls9n0r3/9S25uV/+9YdiwYerdu7ddW1xcHEEbAAAU2cDGA7UveZ++Pf6tTDLZBe6Lx+2qt9OAxgOcWGXhPTHkYX26bovatWunJ598Uk2aNFFOTo7++OMPrV+/Xk899ZRuvfVWdenSRe3atdOYMWOUkZGhiIgI/ec//9EHH3xQqPd58MEH9cADD2jYsGG699579fvvv+uNN94osftpu2zInjBhgl5++WW98sorGjFiRIFjUlNTFRUVpRMnTmjTpk268cYbC3Xt4ODgAtd/AwAAFJXZzaxpHaZp4b6FWnZwmZIzk/P6AnwC1Kd+Hw1oPKBEzGJLUvny5bR161a99tprmjt3ro4ePSofHx/VrFlTnTt3zpvJdnNz0xdffKHRo0frjTfeUHZ2tm677TZ9+eWXatDg6mvJ+/Xrp5MnT2r27Nl6//33FR4erlmzZmnChAnF/AmLh8l2cXNDFzJhwgTFxsYqNjZW48ePL3BMamqqOnfurKNHj+rrr7/WzTffXKT3/PnnnxUeHq79+/cXal13qfZ+N+n3bVKtttIj/3Z2NUCpdt+c7fr+6GndWruS/jWktbPL+R9+DqCMOXLkiCQVesKusCw5Fu1J3KOzWWdV0auimgU3yxeuf0tKd8012cmHpex0ydNXCqzr7GryHD17VOcs51TOXE61K9Y25JqF+f5fa1Z0uZnsSZMmKTY2Vi+++OJVA/aRI0e0YcOGIgdsAACA4mB2M6tF5RbOLgNO4FIhe8qUKRo3bpyio6PVrVs37dixw66/VatWyszMVNeuXfXf//5X06ZN04ULF+zGBQUFKSwszNGlAwAAAHlcKmSvXr1akrRu3TqtW7cuX7/NZlNCQoJ27twpSRo1alS+MQ8//LAWLVpUrHUCAACUarYcKcea+3WONffY5PKb0rkUlwrZW7ZsueqY0NBQueAycgAAgJLPliOlJ0oZSVLO3093vJApJfwslQ+SfIMJ24XkUiEbAADAWcr8JJ4tRzp9VMr6K39fzgUp7U8pO0OqVLvUBW2bzSaTyWToNUvXvxAAAMB1cHNzk9VqLdtBOz2x4ID9T1l/5Y4rRWw2m6xWa6GetXItCNkAAKDM8/LyktVqVWJiYtkM2rac3CUihZGRlDu+FLDZbEpMTJTVapWXl5eh12a5CAAAKPNCQkKUlZWl06dP6+zZs3J3dzd8+cDlZGRd0AVrjjLc3XQkzUnRzGqRsrMLOThbSjssuTvnYToZlgxdyLmgHLccHUk5ct3XuTiDbbVa5ePjo5CQEAOrJGQDAADIzc1NNWvWVEJCgrKyspST47iZ2n3Hz+h0RrYqlfdU67BAh72vnYxE6dgPhR9fo6VUoVrx1XMFPyf/rNSsVPl7+atllZbXfR2TySRPT095eXkpJCTE8OUihGwAAADlBu0qVao4/H2f35Cg74+e1a21K+n+KGOfOFloR09IqyYWfnz4Gqm2c2qddGiSdiXsUkRIhPrc1scpNRQGa7IBAADKupqtcrfo09WWyJhyt/Gr2coRVZVohGwAAICyzt0stRws6Wo3fdqkFoOdth67JCFkAwAAQGr7pFS3698Hl85o/31ct6vU9gkHFlVyEbIBAACQOzvdZ6nU4UXJN8i+zzcot73PUmaxC4mQDQAAgFzuZqn9M9KTv0gh4bltIeG5x+2fIWBfA0I2AAAA7LmbJW+/3K+9/QjX14GQDQAAABiMkA0AAAAYjJANAAAAGIyQDQAA4CQWa47+Om+RJP113iKL1XGPc0fx4rHqAIASY1XcKp1MP6mqvlUVUyfG2eUA181izdGsLb9pyfZ4JadnS5J+/TNNbSZv0oOta2loZJjM7syFlmSEbABAifF53OfalbBLESERhGyUWBZrjgYv2aXNB5PyPfIlOT1LUzcc0p5jZzTnweYE7RKM7xwAAIADzdrymzYfTJKU/yHmF483HUjU7C2/ObQuGIuQDQCwZ7VI58/kfn3+TO4xAENYrDlasj0+3wz2pUySlmz/nTXaJRghGwCQy2qRvnlDmtpQStif25awX3q7UW47YRsosl3xqUpOz843g30pm6Sk9Cztik91RFkoBqzJBgDkBuhl/aTD66VL59jSk6TNr0jHd0l9lvLkN6AIzmZmF+t4uI4ih+zatWvLZCr4jx5ubm7y8/NTixYtNHLkSDVs2LCobwcAKA7b3v47YEuXXSV6+Ctp2zSp/TMOLAwoXSr6eBbreLiOIi8Xad++vWw2m06cOKHQ0FDdeuutqlWrlk6cOCGr1aoaNWros88+U0REhHbt2mVEzQAAI1kt0g9zlW8GOx+TtHMuy0aAIogI9Vegr2eh1mQH+XopItTfEWWhGBQ5ZHft2lVeXl6Ki4vTpk2b9PHHH2vz5s06fPiwvLy8FBMTo0OHDqlevXoaP368ETWXGst3HdPbGw5p+a5jzi4FQFn2xw4pI0n5Z7AvZZPSE3PHA7guZnc3PdQ6tFBrsh9qXYst/EqwIn/nXnnlFcXGxqpGjRp27TVr1tS4ceP02muvqWLFinryySe1ffv2or5dqbJi93G98/Vhrdh93NmlACjLMq/xxqprHQ/AztDIMHVsECwp/9+PLh53bBCsxyLDHFoXjFXkkB0XF6eKFSsW2Ofv76/4+HhJUmhoqM6dO1fUtwMAGM3nGv8cfa3jAdgxu7tpzoPN9VRUPQX6etn1Bfp66amoejyIphQo8nevVq1aWrRoUYF9CxcuVM2aNSVJKSkpqlSpUlHfDgBgtJqtpPJBKtSabN/g3PEAisTs7qbHO9XVd893VMMqN0iSGla5Qd8931GPd6pLwC4Firy7yNNPP60hQ4bo+PHj6t27t0JCQpSQkKBPPvlE33//vebOnStJ2rx5syIiIopcMMquVXGrdDL9pKr6VuVxyoCR3M1Sy8G52/RdkU1qMZgt/AADmd3dVME79/9TFbzNhOtSpMghe9CgQbLZbIqNjdXo0aPz2itXrqzZs2dr4MCBkqQXXnhBXl5el7sMcFWfx32uXQm7FBESQcgGjNb2ydx9sA9/pdwZ7X/elvX3cd2uUtsnnFIeAJQ0hjyMZvDgwRo0aJAOHjyolJQUBQQEqH79+nb7Z4eEhBjxVgCA4uBuzn3QzLZpudv0pSf+r883KHcGu+0TzGIDQCEZ9sRHk8mkBg0aGHU5AICjuZtzHzTT9glpbmTuI9VDwqXBWwjXAHCNDFn4Ex8fryFDhqhevXoKCAhQvXr1NGTIEB09etSIywMAHMndLHn75X7t7UfABoDrUOSQvWfPHt18881atGiRqlWrpi5duqhatWpatGiRbr75Zu3Zs6fQ19q0aZMGDBigBg0aqHz58qpWrZp69Oih3bt35xv7448/qnPnzvL19ZWfn5/uueceHTlypKgfBwAAACiyIofsJ554QkFBQTp8+LA2b96c98THQ4cOKTg4WE8++WShrzVr1izFx8dr1KhR+vLLL/XOO+8oMTFRrVq10qZNm/LGHThwQJGRkcrOztYnn3yihQsX6tChQ7r99tuVlJRU1I8EAAAAFEmR12T/8MMPWrBgQd5+2BfVqlVLsbGxevTRRwt9rRkzZig4ONiuLTo6WnXq1NGrr76qjh07SpLGjRsnLy8vrVmzRhUqVJAkNW/eXHXr1tVbb72l119/vYifCgAAALh+RZ7Jrlix4mWf+Ojn55cXggvj0oAtSb6+vmrUqJGOHTsmSbpw4YLWrFmje++91+7atWrVUocOHbRy5cpr/AQA4BwWa47+Om+RJP113iKLNcfJFQEAjFLkkN2vXz/Nnz+/wL558+apb9++Rbr+2bNn9eOPP+qmm26SJP3222/KzMxUkyZN8o1t0qSJ4uLidP78+SteMzExUT///LPdKy4urkh1AkBhWaw5evfrw2o9+Wv9+meaJOnXP9PUZvImvfv1YcI2AJQCRV4ucsstt2jFihVq2bKl+vbtq8qVK+vUqVP6+OOPlZiYqN69e+uzzz7LG3/PPfdc0/WHDx+ujIwMvfDCC5JyH88uqcBHtFeqVEk2m02pqamqUqXKZa85c+ZMTZgw4ZrqAAAjWKw5GrxklzYfTMr3EPPk9CxN3XBIe46d0ZwHm/PkNwC4hCXHorTs3MmJtOw0WXIsMru55g5IRQ7ZDz74oCTp2LFj2rVrV4H9Nlvuk8NMJpOsVmuhr/3SSy9p6dKleu+999S8eXO7vn8+6OZSV+qTpGHDhql37952bXFxcYqJiSl0bQBwPWZt+U2bD+beoG27pO/i8aYDiZq95Tc93qmuQ2sDAFdlybFowb4FWnZgmVLO5064Hkw9qC4ruui++vdpYOOBLhe2ixyyN2/ebEQd+UyYMEEvv/yyXnnlFY0YMSKvPSAgQNL/ZrT/6fTp0zKZTPLz87vitYODgwtc/w0AxclizdGS7fH5Hlp+KZOkJdt/12ORYcxmAyjzLDkWjdo0SltPbJXpkr8BpmSmaMaeGdqXvE/TOkxzqaBd5JDdvn17I+qwM2HCBMXGxio2NlZjx4616wsLC5OPj4/27duX77x9+/apTp068vb2NrwmACiqXfGpSk7Pvuo4m6Sk9Cztik9V67CA4i8MAFzYgn0LtPXEVkmS7ZIpiovH3x7/Vgv3LdSQpkMcXt/lGDJFsmrVKvXu3VstW7ZUkyZN7F5Nmza9pmtNmjRJsbGxevHFFzV+/Ph8/R4eHrrrrrv02WefKS0tLa/9jz/+0ObNm695zTcAOMrZzKsH7KKMB4DSxpJj0bIDy/LNYF/KJJOWHVwmS47FQZVdXZFnst988009++yzCgoKUp06dVS+fPnrvtaUKVM0btw4RUdHq1u3btqxY4ddf6tWrSTlznS3aNFC3bt313PPPafz589r3LhxCgwM1FNPPVWkzwMAxaWij2exjgeA0mZP4p68NdhXYpNNyZnJ2pO4Ry0qt3BAZVdX5JA9c+ZMDRgwQHPmzJG7u3uRrrV69WpJ0rp167Ru3bp8/RdvoGzQoIG2bNmiZ599Vr169ZKHh4c6duyot956S0FBQUWqAQCKS0SovwJ9PZWSnn3VNdmBvl6KCPV3VGkA4JLOZp0t1vHFqcghOyUlRf369StywJakLVu2FHps8+bNtXHjxiK/JwA4itndTQ+1DtXUDYeuOM4m6aHWtbjpEUCZV9Gr4AceGjW+OBX5J/htt92mX3/91YhaAKDUGxoZpo4Ncnc3unSF4cXjjg2C9VhkmEPrAgBX1Cy4mQK8Awq1JjvQJ1DNgps5prBCKHLInjZtmmbMmKEvvvhC2dncpAMAV2J2d9OcB5vrqah6CvT1susL9PXSU1H1eBANAPzN7GZWnwZ98u0qcimbbOpTv0/p2sKvTp066ty5s3r27CmTyaRy5crZ9ZtMJp096zrrYwDA2czubnq8U109Fhmmu6dv069/pqlhlRv0xYi2hGsAuMTAxgO1L3mfvj3+rUwy2QXui8ftqrfTgMYDnFhlfkUO2WPGjNH06dPVrFkzNWzYUJ6e3A0PAIVhdndTBe/cWZcK3mYCNgAUwOxm1rQO07Rw30ItO7hMyZnJeX0BPgHqU7+PBjQe4FKz2JIBIXvRokV69tlnNXnyZCPqgbNZLdL5M7lfnz+Te+zuWv+jBQAAZYvZzawhTYdoQOMB6rumrw6mHlR9//r6uPvHLheuLyrytInValVUVJQRtcCZrBbpmzekqQ2lhP25bQn7pbcb5bZbXWdzdwAAUDaZ3cy6wfMGSdINnje4bMCWDAjZXbp0yffQGJQwVou0rJ+0+RUpI9m+Lz0pt33Z/QRtAACAQirycpGXXnpJ9913n8qXL69u3bqpUqVK+cYU1AYXsu1t6fD6vw8uvXv37+PDX0nbpkntn3FgYQAAACVTkUN206ZNJUmjR4/W6NGjCxxjtVqL+jYoLlaL9MNc5e7Qe5Vn0O2cK7V9gjXaAAAAV1HkkD1u3DiZTFfeIBwu7I8dUkZSIQbapPTE3PG1by/2sgAAAEqyIofs2NhYA8qA02SmFu94AACAMohNWcs6H//iHQ8AAFAGEbLLupqtpPJByl2TfSUmyTc4dzwAAACuiJBd1rmbpZaDdeWbHpXb32IwNz0CcBpLjkVp2WmSpLTsNFly2FYUgOsiZENq+6RUt+vfB5fOaP99XLdr7s4iAOBglhyLZu+drajlUTqYelCSdDD1oLqs6KLZe2cTtgG4JEI2cmen+yyVOrwo+QbZ9/kG5bb3WcosNgCHs+RYNGrTKM3YM0Onz5+260vJTNGMPTP0xOYnCNoAXA4hG7nczbkPmnnyFykkPLctJDz3uP0zBGwATrFg3wJtPbFVkmS7ZFnbxeNvj3+rhfsWOrw2ALgSQjbsuZslb7/cr739CNcAnMaSY9GyA8tkusqN2SaZtOzgMmazAbgUQjYAwCXtSdyjlPMp+WawL2WTTcmZydqTuMcxhQFAIRCyAQAu6WzW2WIdDwDFiZANAHBJFb0qFut4AChOhGwnsVhz9Nf53PWDf523yGLNcXJFAOBamgU3U4B3QKHWZAf6BKpZcDPHFAYAhUDIdjCLNUfvfn1YrSd/rV//zH2owq9/pqnN5E169+vDhG0A+JvZzaw+DfoUak12n/p9ZHbjRm0AroOQ7UAWa44GL9mlqRsOKSU9264vOT1LUzcc0pAPdhO0AeBvAxsPVLvq7SQp34z2xeN21dtpQOMBDq8NAK6EkO1As7b8ps0HkyTlf4j5xeNNBxI1e8tvDq0LAFyV2c2saR2maUSzEQrwCbDrC/AJ0IhmIzStwzRmsQG4HEK2g1isOVqyPf4qKwtzH2K+ZPvvzGYDwN/MbmYNaTpE63utV33/+pKk+v71tb7Xeg1pOoSADcAlEbIdZFd8qpLTs6+ysjB3RjspPUu74lMdURYAlBhmN7Nu8LxBknSD5w2EawAujZDtIGczs68+qAjjAQAA4DoI2Q5S0cezWMcDAADAdRCyHSQi1F+Bvp6FWpMd5OuliFB/R5QFAACAYkDIdhCzu5seah1aqDXZD7WuJbM73xoAAICSiiTnQEMjw9SxQbAk5ZvRvnjcsUGwHosMc2hdAAAAMJbLhey0tDSNGTNGXbp0UVBQkEwmk2JjY/ONs9lsmjdvnpo3b64KFSooICBA7du317///W/HF11IZnc3zXmwuZ6KqqdAXy+7vkBfLz0VVU9zHmzOLDYAAEAJ53JpLiUlRXPnzlVWVpZiYmIuO278+PEaPHiwWrZsqU8//VSLFi2Sl5eXunfvrs8++8xxBV8js7ubHu9UV98931ENq+RuRdWwyg367vmOerxTXQI2AABAKeDh7AIuVatWLaWmpspkMik5OVnz588vcNzChQvVtm1bzZo1K68tKipKlStX1uLFi3XPPfc4quTrYnZ3UwXv3D1eK3ibCdcAAACliMuFbJPpavtv5DKbzapYsaJdm7e3d94LAAAAcJYSO306atQorVu3TgsWLFBqaqr+/PNPjR49WmfPntXIkSOdXR4AAADKMJebyS6sJ554Qj4+Pho+fLgeffRRSVKlSpW0evVq3XbbbVc8NzExUUlJSXZtcXFxxVYrAAAAypYSG7Lff/99jRo1SiNGjNAdd9yh7OxsLVmyRD169NBnn32mrl27XvbcmTNnasKECQ6sFgAAAGVJiQzZqampeTPYb731Vl77HXfcocjISD322GM6evToZc8fNmyYevfubdcWFxd3xd1MAAAAgMIqkSH74MGDyszMVIsWLfL1RURE6JtvvlF6erp8fX0LPD84OFjBwcHFXSYAAEDJ1ayfFNpW8qvp7EpKpBIZsqtWrSpJ2rFjhx5++OG8dpvNph07dsjf31/ly5d3VnkAAAAl3833O7uCEs0lQ/batWuVkZGhtLQ0SdIvv/yiFStWSJLuvPNO1axZU/fcc4/mzp0rLy8v3XnnncrKytLixYv1n//8R5MmTSr0VoAAAACA0VwyZA8dOlS///573vHy5cu1fPlySdLRo0cVGhqqpUuXavr06frggw+0cOFCmc1m1atXTx9++KH69evnrNIBAAAA1wzZ8fHxVx3j7e2tp59+Wk8//XTxFwSns+RYlJad+5eNtOw0WXIsMruZnVwVAABAwUrsw2hQNlhyLJq9d7ailkfpYOpBSdLB1IPqsqKLZu+dLUuOxckVAgAA5OeSM9mAlBuwR20apa0ntsok+zX2KZkpmrFnhvYl79O0DtOY1QYAAC6FmWy4rAX7Fmjria2SJJtsdn0Xj789/q0W7lvo8NoAAACuhJANl2TJsWjZgWX5ZrAvZZJJyw4uY9kIAABwKYRsuKQ9iXuUcj4l3wz2pWyyKTkzWXsS9zimMAAAgEJgTTZc0tmss8U6HsBV8KQ3ACgSQjZcUkWvisU6HsBV8KQ3ACgSlovAJTULbqYA74BCrckO9AlUs+BmjikMAACgEAjZcElmN7P6NOhTqDXZfer3YQs/AADgUgjZcFkDGw9Uu+rtJCnfjPbF43bV22lA4wEOrw0AAOBKCNlwWWY3s6Z1mKYRzUYowCfAri/AJ0Ajmo3gQTQAAMAlEbLh0sxuZg1pOkTre61Xff/6kqT6/vW1vtd6DWk6hIANAABcEiEbJYLZzawbPG+QJN3geQPhGgAAuDRCNgAAAGAwQjYAAABgMEI2AAAAYDBCNgAAAGAwQjYAAABgMEI2AAAAYDBCNgAAAGAwQjYAAABgMEI2AAAAYDBCNgAAAGAwQjYAAABgMEI2AAAAYDBCNgAAAGAwD2cXAABAYfWo00MtKrdQVd+qzi4FgJOUlJ8DhGwAQIkRUyfG2SUAcLKS8nOA5SIAAACAwQjZAAAAgMEI2QAAAIDBCNkAAACAwbjxEQCcqFfz6mp1Y4Cq+/s4uxQAgIFcbiY7LS1NY8aMUZcuXRQUFCSTyaTY2NgCx1osFk2dOlWNGzeWj4+P/Pz81KZNG3333XeOLfo69WpeXaM61VWv5tWdXQoAJ+kdUUNPRtVT74gazi4FAGAgl5vJTklJ0dy5c9W0aVPFxMRo/vz5BY6zWq3q2bOntm3bpjFjxqhNmzbKyMjQ7t27lZGR4eCqrw//UQUAACidXC5k16pVS6mpqTKZTEpOTr5syH7vvfe0du1a/ec//1GrVq3y2rt16+aoUgEAAIACuVzINplMhRr3zjvvqF27dnYBGwAAAHAFLrcmuzCOHTum+Ph4NW7cWGPHjlVISIg8PDx00003afHixc4uDwAAAGWcy81kF8aJEyckSYsXL1b16tU1ffp0VaxYUfPmzVP//v2VnZ2tQYMGXfb8xMREJSUl2bXFxcUVa80AAAAoO0pkyM7JyZEknT9/Xl9++aVq1aolSYqKilJERIQmTpx4xZA9c+ZMTZgwwSG1AgAAoOwpkctFAgICJEkNGjTIC9hS7nrurl276vjx40pMTLzs+cOGDdP+/fvtXqtWrSrusgEAAFBGlMiZ7LCwMJUrV67APpvNJklyc7v87w/BwcEKDg4ultoAAACuBQ+lKp1KZMj28PBQjx49tGLFCsXHxys0NFRSbsBet26dwsLCFBgY6NwiAQAACoHnZpROLhmy165dq4yMDKWlpUmSfvnlF61YsUKSdOedd6pcuXKaNGmS1q5dq+joaMXGxqpChQqaP3++9u7dq08++cSZ5QMAAKCMc8mQPXToUP3+++95x8uXL9fy5cslSUePHlVoaKjCwsK0detWPffccxo8eLAsFouaNWumL774Qt27d3dW6QAAAIBrhuz4+PhCjQsPD9eaNWuKtxgAAADgGpXI3UUAAAAAV0bIBgAAAAxGyAYAAAAMRsgGAAAADEbIBgAAAAxGyAYAAAAMRsgGAAAADEbIBgAAAAxGyAYAAAAMRsgGAAAADOaSj1WHkzXrJ4W2lfxqOrsSAACAEomQjfxuvt/ZFQAAAJRoLBcBAAAADEbIBgAAAAxGyAYAAAAMRsgGAAAADEbIBgAAAAxGyAYAAAAMRsgGAAAADEbIBgAAAAxGyAYAAAAMRsgGAAAADEbIBgAAAAxGyAYAAAAMRsgGAAAADObh7AKAwupRp4daVG6hqr5VnV0KAADAFRGyUWLE1IlxdgkAAACFwnIRAAAAwGCEbAAAAMBghGwAAADAYIRsAAAAwGCEbAAAAMBghGwAAADAYIRsAAAAwGCEbAAAAMBghGwAAADAYIRsAAAAwGA8Vv1vWVlZkqS4uDgnVwIAAABXczEjXsyMV0PI/tuxY8ckSTExMc4tBAAAAC7r2LFjuuWWW646zmSz2WwOqMflnTlzRt98841q1KghLy8vZ5fjVHFxcYqJidGqVatUp04dZ5cDwAn4OQCAnwP2srKydOzYMbVv315+fn5XHc9M9t/8/PzUo0cPZ5fhUurUqaObbrrJ2WUAcCJ+DgDg58D/FGYG+yJufAQAAAAMRsgGAAAADEbIBgAAAAxGyEY+QUFBGj9+vIKCgpxdCgAn4ecAAH4OFA27iwAAAAAGYyYbAAAAMBghGwAAADAYIRsAAAAwGCEbAAAAMBghG/m8++67MplMCg8Pd3YpABxo0aJFMplMdq+goCBFRkZqzZo1zi4PgAP99NNPeuSRR1S7dm15e3vL19dXt9xyi9544w2dPn3a2eWVCIRs5LNw4UJJ0s8//6zvv//eydUAcLT3339f27dv13fffae5c+fK3d1dd911l1avXu3s0gA4wLx589S8eXPt3LlTzzzzjNatW6eVK1eqd+/emj17tgYOHOjsEksED2cXANeya9cu7d27V926ddO///1vLViwQLfeequzywLgQOHh4YqIiMg7jo6Olr+/vz7++GPdddddTqwMQHHbvn27hg4dqqioKK1atUpeXl55fVFRUXrqqae0bt06J1ZYcjCTDTsLFiyQJL322mtq06aNli1bpnPnzjm5KgDO5O3tLU9PT5nNZmeXAqCYvfrqqzKZTJo7d65dwL7I09NTd999txMqK3kI2ciTmZmpjz/+WC1atFB4eLgGDBigtLQ0LV++3NmlAXAgq9WqCxcuyGKx6Pjx43riiSeUkZGhfv36Obs0AMXIarVq06ZNat68uWrUqOHscko8QjbyrFixQmfPns1ba3XffffJ19c3b3YbQNnQqlUrmc1meXp6qkaNGpozZ46mT5+url27Ors0AMUoOTlZ586dU+3atZ1dSqnAmmzkWbBggXx8fNSnTx9Jkq+vr3r37q33339fhw8fVt26dZ1cIQBHWLJkiRo2bCgp9z+6K1eu1PDhw2W1WjVixAgnVwcAJQMz2ZAkxcXF6dtvv1W3bt1ks9l05swZnTlzRr169ZL0vx1HAJR+DRs2VEREhCIiIhQdHa05c+aoS5cuGjNmjM6cOePs8gAUk8DAQJUrV05Hjx51dimlAiEbknJDtM1m04oVK+Tv75/36tatmyRp8eLFslqtTq4SgLM0adJEmZmZOnTokLNLAVBM3N3d1alTJ+3evVvHjx93djklHiEbslqtWrx4scLCwrR58+Z8r6eeekp//vmn1q5d6+xSATjJnj17JElBQUHOLQRAsXr++edls9k0aNAgZWdn5+u3WCzsmV9IrMmG1q5dq5MnT+r1119XZGRkvv7w8HBNnz5dCxYsUPfu3R1fIACH2r9/vy5cuCBJSklJ0WeffaYNGzaoZ8+e3BAFlHKtW7fWrFmzNGzYMDVv3lxDhw7VTTfdJIvFov/+97+aO3euwsPD2TO/EEw2m83m7CLgXD179tSXX36p48ePX3aWqm/fvlqxYoWOHz+ukJAQB1cIwBEWLVqkRx55xK6tYsWKql27th566CENGzaswH1zAZQ+e/fu1dtvv63Nmzfr1KlTMpvNqlevnu666y6NGDGCv2oVAiEbAAAAMBhrsgEAAACDEbIBAAAAgxGyAQAAAIMRsgEAAACDEbIBAAAAgxGyAQAAAIMRsgEAAACDEbIBAAAAgxGyAQAAAIMRsgEAAACDEbIBAAAAgxGyAQDF6ty5c84uAQAcjpANAKXU559/riZNmsjLy0s33nij3nnnHcXGxspkMuWNsdlsmjlzppo1ayYfHx/5+/urV69eOnLkiN21NmzYoB49eqh69ery9vZWnTp1NGTIECUnJ9uNu3j9H3/8Ub169ZK/v7/CwsIc8nkBwJV4OLsAAIDx1q1bp3vuuUft2rXTv/71L124cEFvvfWWEhIS7MYNGTJEixYt0siRI/X666/r9OnTmjhxotq0aaO9e/cqJCREkvTbb7+pdevWevTRR1WxYkXFx8dr6tSpatu2rfbt2yez2Wx33XvuuUd9+vTRY489poyMDId9bgBwFSabzWZzdhEAAGO1bNlSp06dUlxcnDw9PSVJ6enpCg0NVUpKimw2m3bs2KHWrVtrypQpGj16dN65x48fV7169fT444/r9ddfz3dtm80mq9WqkydPqlatWvr888919913S8qdyZ4wYYLGjRunCRMmOObDAoALYrkIAJQyGRkZ2rVrl2JiYvICtiT5+vrqrrvuyjtes2aNTCaTHnjgAV24cCHvVblyZTVt2lRbtmzJG5uYmKjHHntMNWrUkIeHh8xms2rVqiVJ+vXXX/PVcO+99xbfBwSAEoDlIgBQyqSmpspms+Ut9finf7YlJCRcdpwk3XjjjZKknJwcdenSRSdPntRLL72kxo0bq3z58srJyVGrVq2UmZmZ79wqVaoY9GkAoGQiZANAKePv7y+TyZRv/bUknTp1Ku/rwMBAmUwmbd26VV5eXvnGXmzbv3+/9u7dq0WLFunhhx/O64+Li7tsDf+8uRIAyiKWiwBAKVO+fHlFRERo1apVys7OzmtPT0/XmjVr8o67d+8um82mEydOKCIiIt+rcePGkv4XmC8N4nPmzHHApwGAkomZbAAohSZOnKhu3bqpa9euGjVqlKxWq9588035+vrq9OnTkqTbbrtNgwcP1iOPPKJdu3apXbt2Kl++vP78809t27ZNjRs31tChQ9WgQQOFhYXpueeek81mU6VKlbR69Wpt2LDByZ8SAFwXM9kAUApFR0fr008/VUpKiu677z6NHj1aPXv2VI8ePeTn55c3bs6cOZo+fbq+/fZb9enTR926ddO4ceOUkZGhli1bSpLMZrNWr16tevXqaciQIerbt68SExO1ceNGJ306AHB9bOEHAGWExWJRs2bNVK1aNa1fv97Z5QBAqcZyEQAopQYOHKioqChVqVJFp06d0uzZs/Xrr7/qnXfecXZpAFDqEbIBoJRKS0vT008/raSkJJnNZt1yyy368ssv1blzZ2eXBgClHstFAAAAAINx4yMAAABgMEI2AAAAYDBCNgAAAGAwQjYAAABgMEI2AAAAYDBCNgAAAGAwQjYAAABgMEI2AAAAYDBCNgAAAGAwQjYAAABgsP8HMweWyXVGzLgAAAAASUVORK5CYII=", + "text/plain": [ + "
" ] }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Auto-assigning NUTS sampler...\n", - "Initializing NUTS using jitter+adapt_diag...\n", - "Multiprocess sampling (4 chains in 4 jobs)\n", - "NUTS: [mpg_sigma, hp, wt, hp:wt, cyl, gear]\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - "\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - "
\n", - " \n", - " 100.00% [8000/8000 00:19<00:00 Sampling 4 chains, 0 divergences]\n", - "
\n", - " " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 20 seconds.\n" - ] - } - ], - "source": [ - "# Load data\n", - "data = bmb.load_data('mtcars')\n", - "data[\"cyl\"] = data[\"cyl\"].replace({4: \"low\", 6: \"medium\", 8: \"high\"})\n", - "data[\"gear\"] = data[\"gear\"].replace({3: \"A\", 4: \"B\", 5: \"C\"})\n", - "data[\"cyl\"] = pd.Categorical(data[\"cyl\"], categories=[\"low\", \"medium\", \"high\"], ordered=True)\n", + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(7, 3), dpi=120)\n", + "bmb.interpret.plot_predictions(model, idata, [\"gear\", \"cyl\"], ax=ax);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### User provided values" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
hpwtcylgearestimatelower_3.0%upper_97.0%
01003.325lowA20.43263217.27195223.836528
11003.325mediumA18.69408116.23461821.121714
21003.325highA19.71766116.31909722.887609
31203.325lowA19.76018116.28953723.337116
41203.325mediumA18.02163015.47718120.602577
51203.325highA19.04521016.17744121.725896
\n", + "
" ], - "source": [ - "fig, ax = plt.subplots(figsize=(7, 3), dpi=120)\n", - "bmb.interpret.plot_predictions(model, idata, \"hp\", ax=ax);" + "text/plain": [ + " hp wt cyl gear estimate lower_3.0% upper_97.0%\n", + "0 100 3.325 low A 20.432632 17.271952 23.836528\n", + "1 100 3.325 medium A 18.694081 16.234618 21.121714\n", + "2 100 3.325 high A 19.717661 16.319097 22.887609\n", + "3 120 3.325 low A 19.760181 16.289537 23.337116\n", + "4 120 3.325 medium A 18.021630 15.477181 20.602577\n", + "5 120 3.325 high A 19.045210 16.177441 21.725896" ] }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The plot above shows that as `hp` increases, the mean `mpg` decreases. As stated above, this insight was obtained by creating the reference grid and then using the fitted model to compute the predicted values of the model parameter, in this example `mpg`, at each value of the reference grid.\n", + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "wt_median = model.data.wt.median()\n", + "\n", + "summary_df = bmb.interpret.predictions(\n", + " model,\n", + " idata,\n", + " conditional={\n", + " \"hp\": [100, 120],\n", + " \"wt\": wt_median,\n", + " \"cyl\": [\"low\", \"medium\", \"high\"],\n", + " }\n", + ")\n", + "summary_df" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Unit level predictions" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
mpgcyldisphpdratwtqsecvsamgearcarb
021.0medium160.01103.902.62016.4601B4
121.0medium160.01103.902.87517.0201B4
222.8low108.0933.852.32018.6111B1
321.4medium258.01103.083.21519.4410A1
418.7high360.01753.153.44017.0200A2
\n", + "
" ], - "source": [ - "fig, ax = plt.subplots(figsize=(7, 3), dpi=120)\n", - "bmb.interpret.plot_predictions(model, idata, \"hp\", pps=True, ax=ax);" + "text/plain": [ + " mpg cyl disp hp drat wt qsec vs am gear carb\n", + "0 21.0 medium 160.0 110 3.90 2.620 16.46 0 1 B 4\n", + "1 21.0 medium 160.0 110 3.90 2.875 17.02 0 1 B 4\n", + "2 22.8 low 108.0 93 3.85 2.320 18.61 1 1 B 1\n", + "3 21.4 medium 258.0 110 3.08 3.215 19.44 1 0 A 1\n", + "4 18.7 high 360.0 175 3.15 3.440 17.02 0 0 A 2" ] }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here, we notice that the uncertainty in the conditional adjusted predictions is much larger than the uncertainty when `pps=False`. This is because the posterior predictive distribution accounts for the uncertainty in the model parameters and the uncertainty in the data. Whereas, the posterior distribution only accounts for the uncertainty in the model parameters.\n", + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model.data.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - "
\n", - " \n", - " 100.00% [8000/8000 00:02<00:00 Sampling 4 chains, 0 divergences]\n", - "
\n", - " " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 2 seconds.\n" - ] - } + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
cylgearhpwtestimatelower_3.0%upper_97.0%
0mediumB1102.62022.23342420.05196624.476544
1mediumB1102.87521.32040219.19688623.344765
2lowB932.32025.90143524.25564827.558330
3mediumA1103.21518.75170816.25973721.293185
4highA1753.44016.90835415.26148918.666662
\n", + "
" ], - "source": [ - "# Load data, define and fit Bambi model\n", - "data = pd.read_stata(\"https://stats.idre.ucla.edu/stat/stata/dae/nb_data.dta\")\n", - "data[\"prog\"] = data[\"prog\"].map({1: \"General\", 2: \"Academic\", 3: \"Vocational\"})\n", - "\n", - "model_interaction = bmb.Model(\n", - " \"daysabs ~ 0 + prog + scale(math) + prog:scale(math)\",\n", - " data,\n", - " family=\"negativebinomial\"\n", - ")\n", - "idata_interaction = model_interaction.fit(\n", - " draws=1000, target_accept=0.95, random_seed=1234, chains=4\n", - ")" + "text/plain": [ + " cyl gear hp wt estimate lower_3.0% upper_97.0%\n", + "0 medium B 110 2.620 22.233424 20.051966 24.476544\n", + "1 medium B 110 2.875 21.320402 19.196886 23.344765\n", + "2 low B 93 2.320 25.901435 24.255648 27.558330\n", + "3 medium A 110 3.215 18.751708 16.259737 21.293185\n", + "4 high A 175 3.440 16.908354 15.261489 18.666662" ] }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This model utilizes a log link function and a negative binomial distribution for the likelihood. Also note that this model also contains an interaction `prog:sale(math)`." + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "summary_df = bmb.interpret.predictions(\n", + " model,\n", + " idata,\n", + " conditional=None\n", + ")\n", + "summary_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAEmCAYAAAAqQEcCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAsY0lEQVR4nO3df1RVdb7/8dcGkR8KKCpwUCJLI0ms1DTRBA0VK7XGsptjapaVmXNddPNHTWqt/IGT5sy1samVfnMlN+/tpzWGqYmVlpLkr3DMmdSxAk+ZAoKiwvn+ceLkEVHEA5/D4fmYtVfsz/6cfd5niHjx+Xz23pbD4XAIAAAA9crPdAEAAACNESEMAADAAEIYAACAAYQwAAAAAwhhAAAABhDCAAAADCCEAQAAGEAIAwAAMKCJ6QLqWkVFhX788UeFhobKsizT5QAAAB/ncDhUXFysmJgY+flVP97l8yHsxx9/VGxsrOkyAABAI3Po0CG1a9eu2uM+H8JCQ0MlOf+PCAsLM1wNAADwdUVFRYqNjXVlkOr4fAirnIIMCwsjhAEAgHpzsWVQLMwHAAAwgBAGAABgACEMAADAAEIYAACAAYQwAAAAAwhhAAAABhDCAAAADCCEAQCA+nGqRJoV7txOlZiuxjhCGAAAgAGEMAAAAAMIYQAAAAYQwgAAAAwghAEAABhACAMAADDAaAhbsmSJunTporCwMIWFhalXr1766KOPXMcdDodmzZqlmJgYBQcHKyUlRd98843BigEAADzDaAhr166d5s2bp6+++kpfffWV+vfvr2HDhrmC1vz587Vw4UItXrxYOTk5io6O1oABA1RcXGyybAAAgMtmORwOh+kizhYREaE//elPGjdunGJiYjR58mRNnTpVklRWVqaoqChlZGTokUceqdH5ioqKFB4ersLCQoWFhdVl6QAA4EJOlUhzYpxfP/Wj1LSZ2XrqSE2zh9esCSsvL9ebb76pkpIS9erVS/v371dBQYEGDhzo6hMYGKjk5GRt3ry52vOUlZWpqKjIbQMAAPA2xkPYrl271Lx5cwUGBurRRx/Vu+++q4SEBBUUFEiSoqKi3PpHRUW5jp3P3LlzFR4e7tpiY2PrtH4AAIDaMB7C4uPjtX37dn355ZeaMGGCxowZo7y8PNdxy7Lc+jscjiptZ5s+fboKCwtd26FDh+qsdgAAgNpqYrqApk2bqkOHDpKk7t27KycnR3/+859d68AKCgpks9lc/e12e5XRsbMFBgYqMDCwbosGAAC4TMZHws7lcDhUVlam9u3bKzo6WmvXrnUdO3XqlDZu3KikpCSDFQIAAFw+oyNhTz31lAYPHqzY2FgVFxfrzTffVHZ2trKysmRZliZPnqw5c+aoY8eO6tixo+bMmaOQkBCNHDnSZNkAAACXzWgIO3z4sO6//37l5+crPDxcXbp0UVZWlgYMGCBJmjJlik6cOKHHHntMR48eVc+ePfXxxx8rNDTUZNkAAACXzevuE+Zp3CcMAAAvwX3C3HjdmjAAAIDGgBAGAABgACEMAADAAEIYAACAAYQwAAAAAwhhAAAABhDCAAAADCCEAQAAGEAIA4BznSqRZoU7t1MlpqsB4KMIYQAAoH5UlP/29YHN7vuNECEMAADUvbxV0ks3/bafebe0qLOzvZEihAEAgLqVt0r639FScYF7e1G+s72RBjFCGAAAqDsV5VLWVEmO8xz8tS1rWqOcmiSEAQCAunNws1T04wU6OKSiH5z9GhlCGAAAqDvHD3u2nw8hhAEAgLrTPMqz/XwIIQwAANSduCQpLEaSVU0HSwpr6+zXyBDCAABA3fHzl9Iyqjn4azBLm+fs18gQwgAAQN1KGCqNWC6FRru3h8U42xOGmqnLsCamCwAAAI1AwlDpqhRpXqxzf+RbUof+jXIErBIjYQAAoH6cHbiuTGrUAUwihAEAABhBCAMAADCAEAYAAGAAIQwAAMAAQhgAAIABhDAAAAADCGEAcK6K8t++PrDZfR8APIQQBgBny1slvXTTb/uZd0uLOjvbAcCDCGEAUClvlfS/o6XiAvf2onxnO0EMgAcRwhqyUyXSrHDndqrEdDVAw1ZRLmVNleQ4z8Ff27KmMTUJwGMIYQAgSQc3S0U/XqCDQyr6wdkPADyAEAYAknT8sGf7AcBFEMIAQJKaR3m2HwBcBCEMACQpLkkKi5FkVdPBksLaOvsBgAcQwgBAkvz8pbSMag7+GszS5jn7AYAHEMIAoFLCUGnEcik02r09LMbZnjDUTF0AfFIT0wUAgFdJGCpdlSLNi3Xuj3xL6tCfETAAHsdIGACc6+zAdWUSAQxAnSCEAQAAGEAIAwAAMIAQBgAAYAAhDAAAwABCGAAAgAGEMAAAAAO4TxgAAKgfTZtJswpNV+E1jI6EzZ07VzfddJNCQ0MVGRmpO++8U3v37nXrM3bsWFmW5bbdfPPNhioGAADwDKMhbOPGjZo4caK+/PJLrV27VmfOnNHAgQNVUlLi1i8tLU35+fmubfXq1YYqBgAA8Ayj05FZWVlu+8uWLVNkZKS2bdumvn37utoDAwMVHR197ssBAAAaLK9amF9Y6JwnjoiIcGvPzs5WZGSkrrnmGo0fP152u73ac5SVlamoqMhtAwAA8DZeE8IcDofS09PVp08fde7c2dU+ePBgrVixQp988okWLFignJwc9e/fX2VlZec9z9y5cxUeHu7aYmNj6+sjAAAA1JjlcDgcpouQpIkTJ+rvf/+7Pv/8c7Vr167afvn5+YqLi9Obb76p3/3ud1WOl5WVuQW0oqIixcbGqrCwUGFhYXVSuzGnSqQ5Mc6vn/rRedUJgMvHzxaAy1BUVKTw8PCLZg+vuEXFpEmTtGrVKn366acXDGCSZLPZFBcXp3379p33eGBgoAIDA+uiTAAAAI8xGsIcDocmTZqkd999V9nZ2Wrfvv1FX3PkyBEdOnRINputHioEAACoG0bXhE2cOFFvvPGGMjMzFRoaqoKCAhUUFOjEiROSpOPHj+u//uu/9MUXX+jAgQPKzs7WkCFD1Lp1a911110mSwcAALgsRkfClixZIklKSUlxa1+2bJnGjh0rf39/7dq1S8uXL9exY8dks9nUr18/rVy5UqGhoQYqBgAA8Azj05EXEhwcrDVr1tRTNQDwKx6tAqAeeM0tKgAAABoTQhgAAIABhLCGrKL8t68PbHbfBwAAXo0Q1lDlrZJeuum3/cy7pUWdne0AAMDrEcIaorxV0v+OlooL3NuL8p3tBDEAALweIayhqSiXsqZKOt+Vpb+2ZU1jahIAAC9HCGtoDm6Win68QAeHVPSDsx8AAPBahLCG5vhhz/YDAABGEMIamuZRnu0HAACMIIQ1NHFJUliMJKuaDpYU1tbZDwAAeC1CWEPj5y+lZVRz8NdgljbP2Q8AAHgtQlhDlDBUGrFcCo12bw+LcbYnDDVTFwAAqDGjD/DGZUgYKl2VIs2Lde6PfEvq0J8RMAAAGghGwhqyswPXlUkEMAAAGhBCGAAAgAGEMAAAAAMIYQAAAAYQwgAAAAwghAEAABhQq1tUtGzZUpZV9Y7tlmUpKChIHTp00NixY/XAAw9cdoEAAAC+qFYhbMaMGZo9e7YGDx6sHj16yOFwKCcnR1lZWZo4caL279+vCRMm6MyZMxo/frynawYAAGjwahXCPv/8cz3//PN69NFH3dr/9re/6eOPP9bbb7+tLl266C9/+QshDAAA4DxqtSZszZo1Sk1NrdJ+6623as2aNZKk2267Td99993lVQcAjVDp6VIlvp6oxNcTVXq61HQ5AOpIrUJYRESEPvjggyrtH3zwgSIiIiRJJSUlCg0NvbzqAAAAfFStpiOfeeYZTZgwQRs2bFCPHj1kWZa2bt2q1atX6+WXX5YkrV27VsnJyR4tFgAAoLZKT5eqZ2ZPSdKWkVsUEhBitJ5ahbDx48crISFBixcv1jvvvCOHw6Frr71WGzduVFJSkiTpiSee8GihAAAAvqRWIUySevfurd69e3uyFgAAgEaj1iGsvLxc7777rvbs2SPLstSpUycNGzZMTZrU+pQAAACNRq0S0+7duzVs2DAVFBQoPj5ekvTtt9+qTZs2WrVqlRITEz1aJAAAgK+p1dWRDz30kK677jp9//33ys3NVW5urg4dOqQuXbro4Ycf9nSNAAAAPqdWI2E7duzQV199pZYtW7raWrZsqdmzZ+umm27yWHEAAAC+qlYjYfHx8Tp8+HCVdrvdrg4dOlx2UQAAAL6uViFszpw5+sMf/qC33npL33//vb7//nu99dZbmjx5sjIyMlRUVOTaAAAAUFWtpiPvuOMOSdKIESNkWZYkyeFwSJKGDBni2rcsS+Xl5Z6oEwAAwKfUKoRt2LDB03UAAAA0KrUKYcnJyTp58qR27twpu92uiooKt+NDhw71SHEAAAC+qlYhLCsrS6NHj9bPP/9c5RhTkAAAABdXq4X5jz/+uO655x7l5+eroqLCbSOAAQAAXFytQpjdbld6erqioqI8XQ8AAECjUKvpyLvvvlvZ2dm6+uqrPV0PLkXTZtKsQtNVAACAWqhVCFu8eLHuueceffbZZ0pMTFRAQIDb8T/84Q8eKQ7erfR0qXpm9pQkbRm5RSEBIYYrAgCg4ahVCMvMzNSaNWsUHBys7Oxs173CJOfCfEIYANTe2Vec5x7OVa+YXvL38zdYEYC6UKs1YX/84x/13HPPqbCwUAcOHND+/ftd23fffefpGgGg0Vh3cJ2GvT/MtT9h/QQNenuQ1h1cZ7AqAHWhViHs1KlTuvfee+XnV6uXAwDOY93BdUrPTpf9hN2t3V5qV3p2OkEM8DG1SlFjxozRypUrPV0LADRa5RXlmrd1nhxyVDlW2ZaxNUPlFdwGCPAVtVoTVl5ervnz52vNmjXq0qVLlYX5CxcurNF55s6dq3feeUf/+Mc/FBwcrKSkJGVkZCg+Pt7Vx+Fw6Nlnn9Urr7yio0ePqmfPnnrppZd03XXX1aZ0APBKufZcHS49XO1xhxwqKC1Qrj1XN0XfVI+VAagrtRoJ27Vrl2688Ub5+flp9+7d+vrrr13b9u3ba3yejRs3auLEifryyy+1du1anTlzRgMHDlRJSYmrz/z587Vw4UItXrxYOTk5io6O1oABA1RcXFyb0gHAK/1U+pNH+wHwfkYf4J2VleW2v2zZMkVGRmrbtm3q27evHA6HFi1apKefflq/+93vJEmvv/66oqKilJmZqUceecQjdQCAaW1C2ni0H4CqvO3KY69aWV9Y6LzxaEREhCRp//79Kigo0MCBA119AgMDlZycrM2bNxupEQDqQtfIrooKiZIl67zHLVmKDolW18iu9VwZ4Bu88cpjrwlhDodD6enp6tOnjzp37ixJKigokKQqj0eKiopyHTtXWVmZioqK3DYA8Hb+fv6a1mPaeY9VBrOpPaZyvzCgFrz1yuNaTUfWhccff1w7d+7U559/XuXY2TeDlZyB7dy2SnPnztWzzz5bJzUCuLjy8nKdPn3adBkNUp+oPlrUZ5Fe2fmKfjn5i6u9dXBrPZT4kJKiknTy5Mlanz8gIED+/oQ4NC4Xu/LYkqWMrRnqF9uv3v/I8YoQNmnSJK1atUqffvqp2rVr52qPjo6W5BwRs9lsrna73V7tw8OnT5+u9PR0135RUZFiY2PrqHIAlRwOhwoKCnTs2DHTpTRoNtn0TPwzKihxjvZHBEUo0D9Q1ilL+/fvv+zzt2jRQtHR0dX+IQv4Gm++8thoCHM4HJo0aZLeffddZWdnq3379m7H27dvr+joaK1du1Y33nijJOeNYjdu3KiMjIzznjMwMFCBgYF1XjsAd5UBLDIyUiEhIfySvwzlFeWqKHQuIL4q/CqP/HXucDhUWloqu905HXP2H7aAL/PmK4+NhrCJEycqMzNT77//vkJDQ13rvMLDwxUcHCzLsjR58mTNmTNHHTt2VMeOHTVnzhyFhIRo5MiRJksHcJby8nJXAGvVqpXpchq88opy+ZU6l+wGBQV5bIokODhYknM2ITIykqlJNArefOWx0RC2ZMkSSVJKSopb+7JlyzR27FhJ0pQpU3TixAk99thjrpu1fvzxxwoNDa3nagFUp3INWEhIiOFKcDGV36PTp08TwtAoVF55bC+1n3ddmCVLUSFRRq48Nj4deTGWZWnWrFmaNWtW3RcE4LIwBen9+B6hsam88jg9O73KMdNXHnvNLSoAAADqQmpcqhamLFRkcKRbe1RIlBamLFRqXKqRughhAFALV155pRYtWmS6DAA1lBqXqveHve/aX3LrEmUNzzIWwCRCGAAAaCT8/H6LPV2juhq/+TEhDAAAwABCGIBGq6KiQhkZGerQoYMCAwN1xRVXaPbs2erfv78ef/xxt75HjhxRYGCgPvnkE0PVAvA1hDAAjdb06dOVkZGhZ555Rnl5ecrMzFRUVJQeeughZWZmqqyszNV3xYoViomJUb9+/QxWDMCXEMIANErFxcX685//rPnz52vMmDG6+uqr1adPHz300EMaPny4LMvS++//toi38v6F3OIBgKcQwlBrFRUVrq9zD+eqvKLcYDXApdmzZ4/Kysp06623VjkWGBioUaNGaenSpZKk7du3a8eOHa6bSAOAJxDCUCvrDq7TsPeHufYnrJ+gQW8P0rqD6wxWBdRc5SN8qvPQQw9p7dq1+v7777V06VLdeuutiouLq6fqADQGhDBcsnUH1yk9O132E3a3dnupXenZ6QQxNAgdO3ZUcHCw1q9ff97jiYmJ6t69u1599VVlZmZq3Lhx9VwhAF9n9LFFaHjKK8o1b+u88z5/yyGHLFnK2JqhfrH9jN9/BbiQoKAgTZ06VVOmTFHTpk3Vu3dv/fTTT/rmm2/04IMPSnKOhj3++OMKCQnRXXfdZbhiAL6GkTBcklx7rg6XHq72uEMOFZQWKNeeW49VAbXzzDPP6IknntCMGTPUqVMn3XvvvbLbfxvhve+++9SkSRONHDlSQUFBBisF4IsYCcMl+an0J4/2A0zy8/PT008/raeffvq8x48ePaqTJ0+6RsbOduDAgTquDoCvI4ThkrQJaePRfoA3On36tPLz8zVt2jTdfPPN6tq1a72+v7+fv65rfV29vicaj9JTZ5QwY40kKe+5QQppShQwhelIXJKukV0VFRIlS+e/V5IlS9Eh0eoaWb+/tABP2rRpk+Li4rRt2za9/PLLpssB4KMIYbgk/n7+mtZj2nmPVQazqT2msigfDVpKSoocDof27t2rxMRE0+UA8FGEMFyy1LhULUxZqMjgSLf2qJAoLUxZqNS4VEOVAQDQcDARjFpJjUvVzdE3q9ebvSRJS25dol4xvRgBAwCghhgJQ635+f32r0/XqK4EMAAALgEhDAAAwABCGAAAgAGEMAAAAAMIYQC8RnmFQ1/864je3/6DvvjXEZVXVH1GqSelpKRo8uTJ1R63LEvvvfdejc+XnZ0ty7J07Nixy64NgO/j6kgAXiFrd76e/SBP+YUnXW228CDNHJKgtM42IzXl5+erZcuWRt4bgO9jJAyAcVm78zXhjVy3ACZJBYUnNeGNXGXtzjdSV3R0tAIDA428NwDfRwgD4HEOh0Olp87UaCs+eVozV32j8008VrbNWpWn4pOna3Q+h+PSpjArKio0ZcoURUREKDo6WrNmzXIdO3c6cvPmzbrhhhsUFBSk7t2767333pNlWdq+fbvbObdt26bu3bsrJCRESUlJ2rt37yXVBKBxYDoSgMedOF3uekDw5XJIKig6qcRZH9eo/6U+kPj1119Xenq6tmzZoi+++EJjx45V7969NWDAALd+xcXFGjJkiG677TZlZmbq4MGD1a4ne/rpp7VgwQK1adNGjz76qMaNG6dNmzbVuCYAjQMh7DLxNHqgYevSpYtmzpwpSerYsaMWL16s9evXVwlhK1askGVZevXVVxUUFKSEhAT98MMPGj9+fJVzzp49W8nJyZKkadOm6fbbb9fJkycVFBRU9x8IQINBYgDgccEB/sp7blCN+m7d/4vGLsu5aL//98BN6tE+okbvfSm6dOnitm+z2WS326v027t3r7p06eIWpHr06HHRc9pszosK7Ha7rrjiikuqDYBnhQSEaNeYXabLcCGEAfA4y7JqPCp8S8c2soUHqaDw5HnXhVmSosODdEvHNvL3szxapyQFBAS4v59lqaKioko/h8Mhy7KqtF3snJWvOd85ATRuLMwHYJS/n6WZQxIkOQPX2Sr3Zw5JqJMAdimuvfZa7dy5U2VlZa62r776ymBFABo6QhgA49I627RkVFdFh7uvmYoOD9KSUV2N3SfsbCNHjlRFRYUefvhh7dmzR2vWrNELL7wgSVVGyACgJpiOBOAV0jrbNCAhWlv3/yJ78UlFhgapR/sI4yNglcLCwvTBBx9owoQJuuGGG5SYmKgZM2Zo5MiRLLgHUCuEMABew9/PUq+rW9Xb+2VnZ1dpO/u+YOeu+UpKStKOHTtc+ytWrFBAQIBrwX1KSkqV19xwww2XfO8yAI0DIQwAamj58uW66qqr1LZtW+3YsUNTp07ViBEjFBwcbLo0AA0QIQwAaqigoEAzZsxQQUGBbDab7rnnHs2ePdt0WQAaKEIYANTQlClTNGXKFNNlAPARXB0JAABgACEMAADAAEIYAACAAYQwAAAAA1iYj1rztgehAgAurrzit/vWbfnuF/W9pm6ey4qLYyQMAIBGImt3vlIXbnTtP/D/ctQn4xNl7c43WFXjRQgD4D0qyqX9n0m73nL+s6K8Tt8uJSVFkydPrtP3ALxF1u58TXgjV4eLytzaCwpPasIbuQQxA5iOBOAd8lZJWVOloh9/awuLkdIypISh5uoCfEB5hUPPfpCn8z1AyyHJkvTsB3kakBDN1GQ9YiTsMp07t372PoAaylsl/e9o9wAmSUX5zva8VWbqAnzE1v2/KL/wZLXHHZLyC09q6/5f6q8omA1hn376qYYMGaKYmBhZluX24FxJGjt2rCzLcttuvvlmM8WeB3PrQDUcDulUSc22k0XSR1Okav9Gl3OE7GRRzc5Xy4dlHz16VKNHj1bLli0VEhKiwYMHa9++fb9+HIfatGmjt99+29X/hhtuUGRkpGv/iy++UEBAgI4fP16r9wfqkr24+gBWm37wDKPTkSUlJbr++uv1wAMPaPjw4eftk5aWpmXLlrn2mzZtWl/lXVDl3Pq5/7mvnFtfMqqr0jrbjNQGGHe6VJoT46GTOZwjZPNia9b9qR+lps0u+V3Gjh2rffv2adWqVQoLC9PUqVN12223KS8vTwEBAerbt6+ys7M1fPhwHT16VHl5eWrWrJny8vKUkJCg7OxsdevWTc2bN7/k9wbqWmRokEf7wTOMhrDBgwdr8ODBF+wTGBio6OjoeqqoZphbB3xLZfjatGmTkpKSJEkrVqxQbGys3nvvPd1zzz1KSUnRK6+8Isk5in/99dfriiuuUHZ2tiuEpaSkGPwUQPV6tI+QLTxIBYUnz/u7y5IUHR6kHu0j6ru0Rs3rF+ZnZ2crMjJSLVq0UHJysmbPnu02BXCusrIylZX9duVHUVGRx2u6lLn1Xle38vj7A14vIMQ5IlUTBzdLK+6+eL/fvyXFJdXsvS/Rnj171KRJE/Xs2dPV1qpVK8XHx2vPnj2SnFdS/ud//qd+/vlnbdy4USkpKbriiiu0ceNGPfzww9q8eTNXWsJr+ftZmjkkQRPeyK1yrHKoYOaQBAYO6plXL8wfPHiwVqxYoU8++UQLFixQTk6O+vfv7xayzjV37lyFh4e7ttjYGk5hXALm1oGLsCznlGBNtqv7O6+CVHX/8beksLbOfjU5n3Xpv0Qc1awjczgcsn49X+fOndWqVStt3LjRFcKSk5O1ceNG5eTk6MSJE+rTp88lvzdQX9I627RkVFdFhQW6tUeHB7GExhCvDmH33nuvbr/9dnXu3FlDhgzRRx99pG+//VZ///vfq33N9OnTVVhY6NoOHTrk8bqYWwc8yM/feRsKSVWD2K/7afOc/epIQkKCzpw5oy1btrjajhw5om+//VadOnVyVmJZ6tu3r95//33t3r1bt9xyixITE3X69Gm9/PLL6tq1q0JDQ+usRsAT0jrbtC492bW/bOxN+nxqfwKYIV4dws5ls9kUFxfnumLpfAIDAxUWFua2eVrl3PoF/m6Xjbl1oOYShkojlkth5/wiCItxttfxfcI6duyoYcOGafz48fr888+1Y8cOjRo1Sm3bttWwYcNc/VJSUpSZmakuXbooLCzMFcxWrFjBejA0GGdPOfa8KoIpSIMaVAg7cuSIDh06JJvNbGKvnFs/H+bWgVpKGCpN3i2N+VAa/przn5N31duNWpctW6Zu3brpjjvuUK9eveRwOLR69WoFBAS4+vTr10/l5eVugSs5OVnl5eVKTk4+z1kBoHpGF+YfP35c//znP137+/fv1/bt2xUREaGIiAjNmjVLw4cPl81m04EDB/TUU0+pdevWuuuuuwxW7VQ5tz5z1Tduj4CIDg/SzCEJDO0CteHnL7W/pd7eLjs72/V1y5YttXz58gv279y5c5X1Y5MnT2ZBPoBaMRrCvvrqK/Xr18+1n56eLkkaM2aMlixZol27dmn58uU6duyYbDab+vXrp5UrV3rNuou0zjb17tBaibM+luScW+dp9AAAoCaMhrCUlJRqr0qSpDVr1tRjNbXD3DoAAKiNBrUmDAAAwFcQwgAAAAwghAEAABhACAMAADCAEAYAAGAAIQwAAMAAQhgAAIABhDAAXqO8olw5BTla/d1q5RTkqLyi3HRJHpGSkuJ2V/0rr7xSixYtMlYPAO9g9GatAFBp3cF1mrd1ng6XHna1RYVEaVqPaUqNSzVYmefl5OSoWbNmpssAYBgjYQCMW3dwndKz090CmCTZS+1Kz07XuoPrDFVWN9q0aaOQkBDTZQAwjBAGwOMcDodKT5fWaCsuK9bcrXPlUNVHmDl+/d+8rfNUXFZco/Nd6FFo50pJSdGkSZM0efJktWzZUlFRUXrllVdUUlKiBx54QKGhobr66qv10UcfuV6Tl5en2267Tc2bN1dUVJTuv/9+/fzzz67jJSUlGj16tJo3by6bzaYFCxZUed+zpyMPHDggy7K0fft21/Fjx47JsizXA8azs7NlWZbWrFmjG2+8UcHBwerfv7/sdrs++ugjderUSWFhYbrvvvtUWlpa488PwCymIwF43IkzJ9Qzs6fHzne49LCS3kyqUd8tI7coJKDmo0yvv/66pkyZoq1bt2rlypWaMGGC3nvvPd1111166qmn9OKLL+r+++/Xv//9bxUWFio5OVnjx4/XwoULdeLECU2dOlUjRozQJ598Ikl68skntWHDBr377ruKjo7WU089pW3btumGG26ozUd3M2vWLC1evFghISEaMWKERowYocDAQGVmZur48eO666679N///d+aOnXqZb8XgLpHCAPQqF1//fX64x//KEmaPn265s2bp9atW2v8+PGSpBkzZmjJkiXauXOnVq9era5du2rOnDmu1y9dulSxsbH69ttvFRMTo9dee03Lly/XgAEDJDlDXrt27TxS6/PPP6/evXtLkh588EFNnz5d//rXv3TVVVdJku6++25t2LCBEAY0EIQwAB4X3CRYW0ZuqVHfbYe36bH1j120319v/au6RXWr0Xtfii5duri+9vf3V6tWrZSYmOhqi4qKkiTZ7XZt27ZNGzZsUPPmzauc51//+pdOnDihU6dOqVevXq72iIgIxcfHX1JNNak1KipKISEhrgBW2bZ161aPvBeAukcIA+BxlmXVeEowKSZJUSFRspfaz7suzJKlqJAoJcUkyd/P39OlKiAgwP39LMutzbIsSVJFRYUqKio0ZMgQZWRkVDmPzWbTvn37Lvn9/fycS3PPXst2+vTpi9Z6bp2VbRUVFZdcAwAzWJh/mUKaNtGBebfrwLzbFdKUTAtcKn8/f03rMU2SM3CdrXJ/ao+pdRLALlXXrl31zTff6Morr1SHDh3ctmbNmqlDhw4KCAjQl19+6XrN0aNH9e2331Z7zjZt2kiS8vPzXW1nL9IH4LsIYQCMS41L1cKUhYoMiXRrjwqJ0sKUhV5zn7CJEyfql19+0X333aetW7fqu+++08cff6xx48apvLxczZs314MPPqgnn3xS69ev1+7duzV27FjXaNf5BAcH6+abb9a8efOUl5enTz/91LVGDYBvY+gGgFdIjUtVv9h+yrXn6qfSn9QmpI26Rnb1ihGwSjExMdq0aZOmTp2qQYMGqaysTHFxcUpLS3MFrT/96U86fvy4hg4dqtDQUD3xxBMqLCy84HmXLl2qcePGqXv37oqPj9f8+fM1cODA+vhIAAyyHJdyU50GqKioSOHh4SosLFRYWJjpcgCfdPLkSe3fv1/t27dXUFCQ6XJwAXyvUHrqjBJmrJEk5T03iKU0daCm2YPpSAAAAAMIYQAAAAYQwgAAAAxgIhgAgEak8tZKMI+RMAAe4+PX+fgEvkeA9yCEAbhslXduLy0tNVwJLqbye3Tu3fYB1D+mIwFcNn9/f7Vo0UJ2u12SFBIS4nrcD7yDw+FQaWmp7Ha7WrRoIX9/77n/GtBYEcIAeER0dLQkuYIYvFOLFi1c3ysAZhHCAHiEZVmy2WyKjIys9gHUMCsgIIARMMCLEMIAeJS/vz+/6AGgBliYDwAAYAAhDAAAwABCGAAAgAE+vyas8saERUVFhisBAACNQWXmuNjNkX0+hBUXF0uSYmNjDVcCAAAak+LiYoWHh1d73HL4+DMsKioq9OOPPyo0NNQnbx5ZVFSk2NhYHTp0SGFhYabLAXwGP1tA3WgMP1sOh0PFxcWKiYmRn1/1K798fiTMz89P7dq1M11GnQsLC/PZf5kBk/jZAuqGr/9sXWgErBIL8wEAAAwghAEAABhACGvgAgMDNXPmTAUGBpouBfAp/GwBdYOfrd/4/MJ8AAAAb8RIGAAAgAGEMAAAAAMIYQAAAAYQwgAAAAwghDVwmzdvlr+/v9LS0kyXAviEsWPHyrIs19aqVSulpaVp586dpksDGryCggJNmjRJV111lQIDAxUbG6shQ4Zo/fr1pkszghDWwC1dulSTJk3S559/rn//+9+mywF8QlpamvLz85Wfn6/169erSZMmuuOOO0yXBTRoBw4cULdu3fTJJ59o/vz52rVrl7KystSvXz9NnDjRdHlGcIuKBqykpEQ2m005OTmaOXOmEhISNGPGDNNlAQ3a2LFjdezYMb333nuuts8++0x9+/aV3W5XmzZtzBUHNGC33Xabdu7cqb1796pZs2Zux44dO6YWLVqYKcwgRsIasJUrVyo+Pl7x8fEaNWqUli1bJjI14FnHjx/XihUr1KFDB7Vq1cp0OUCD9MsvvygrK0sTJ06sEsAkNcoAJjWCB3j7stdee02jRo2S5Jw+OX78uNavX6/U1FTDlQEN24cffqjmzZtL+m3E+cMPP5SfH3+3ArXxz3/+Uw6HQ9dee63pUrwK/0VpoPbu3autW7fqP/7jPyRJTZo00b333qulS5cargxo+Pr166ft27dr+/bt2rJliwYOHKjBgwfr4MGDpksDGqTKWRrLsgxX4l0YCWugXnvtNZ05c0Zt27Z1tTkcDgUEBOjo0aNq2bKlweqAhq1Zs2bq0KGDa79bt24KDw/Xq6++queff95gZUDD1LFjR1mWpT179ujOO+80XY7XYCSsATpz5oyWL1+uBQsWuP5a3759u3bs2KG4uDitWLHCdImAT7EsS35+fjpx4oTpUoAGKSIiQoMGDdJLL72kkpKSKsePHTtW/0V5AUJYA/Thhx/q6NGjevDBB9W5c2e37e6779Zrr71mukSgQSsrK1NBQYEKCgq0Z88eTZo0ScePH9eQIUNMlwY0WH/9619VXl6uHj166O2339a+ffu0Z88e/eUvf1GvXr1Ml2cEIawBeu2115Samqrw8PAqx4YPH67t27crNzfXQGWAb8jKypLNZpPNZlPPnj2Vk5Oj//u//1NKSorp0oAGq3379srNzVW/fv30xBNPqHPnzhowYIDWr1+vJUuWmC7PCO4TBgAAYAAjYQAAAAYQwgAAAAwghAEAABhACAMAADCAEAYAAGAAIQwAAMAAQhgAAIABhDAAAAADCGEAAAAGEMIAoA6cOnXKdAkAvBwhDIDPKy4u1u9//3s1a9ZMNptNL774olJSUjR58mRJzsA0ZcoUtW3bVs2aNVPPnj2VnZ3tev2RI0d03333qV27dgoJCVFiYqL+53/+x+09UlJS9Pjjjys9PV2tW7fWgAED6vETAmiICGEAfF56ero2bdqkVatWae3atfrss8/cHnL/wAMPaNOmTXrzzTe1c+dO3XPPPUpLS9O+ffskSSdPnlS3bt304Ycfavfu3Xr44Yd1//33a8uWLW7v8/rrr6tJkybatGmT/va3v9XrZwTQ8PAAbwA+rbi4WK1atVJmZqbuvvtuSVJhYaFiYmI0fvx4TZo0SR07dtT333+vmJgY1+tSU1PVo0cPzZkz57znvf3229WpUye98MILkpwjYYWFhfr666/r/kMB8AlNTBcAAHXpu+++0+nTp9WjRw9XW3h4uOLj4yVJubm5cjgcuuaaa9xeV1ZWplatWkmSysvLNW/ePK1cuVI//PCDysrKVFZWpmbNmrm9pnv37nX8aQD4EkIYAJ9WOdhvWdZ52ysqKuTv769t27bJ39/frU/z5s0lSQsWLNCLL76oRYsWKTExUc2aNdPkyZOrLL4/N5QBwIUQwgD4tKuvvloBAQHaunWrYmNjJUlFRUXat2+fkpOTdeONN6q8vFx2u1233HLLec/x2WefadiwYRo1apQkZ3Dbt2+fOnXqVG+fA4DvYWE+AJ8WGhqqMWPG6Mknn9SGDRv0zTffaNy4cfLz85NlWbrmmmv0+9//XqNHj9Y777yj/fv3KycnRxkZGVq9erUkqUOHDlq7dq02b96sPXv26JFHHlFBQYHhTwagoSOEAfB5CxcuVK9evXTHHXcoNTVVvXv3VqdOnRQUFCRJWrZsmUaPHq0nnnhC8fHxGjp0qLZs2eIaOXvmmWfUtWtXDRo0SCkpKYqOjtadd95p8BMB8AVcHQmg0SkpKVHbtm21YMECPfjgg6bLAdBIsSYMgM/7+uuv9Y9//EM9evRQYWGhnnvuOUnSsGHDDFcGoDEjhAFoFF544QXt3btXTZs2Vbdu3fTZZ5+pdevWpssC0IgxHQkAAGAAC/MBAAAMIIQBAAAYQAgDAAAwgBAGAABgACEMAADAAEIYAACAAYQwAAAAAwhhAAAABhDCAAAADPj/yknrx1HDWVkAAAAASUVORK5CYII=", + "text/plain": [ + "
" ] }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - " Formula: daysabs ~ 0 + prog + scale(math) + prog:scale(math)\n", - " Family: negativebinomial\n", - " Link: mu = log\n", - " Observations: 314\n", - " Priors: \n", - " target = mu\n", - " Common-level effects\n", - " prog ~ Normal(mu: [0. 0. 0.], sigma: [5.0102 7.4983 5.2746])\n", - " scale(math) ~ Normal(mu: 0.0, sigma: 2.5)\n", - " prog:scale(math) ~ Normal(mu: [0. 0.], sigma: [6.1735 4.847 ])\n", - " \n", - " Auxiliary parameters\n", - " alpha ~ HalfCauchy(beta: 1.0)\n", - "------\n", - "* To see a plot of the priors call the .plot_priors() method.\n", - "* To see a summary or plot of the posterior pass the object returned by .fit() to az.summary() or az.plot_trace()" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bmb.interpret.plot_predictions(\n", + " model,\n", + " idata,\n", + " conditional=None,\n", + " average_by=[\"gear\", \"cyl\"],\n", + " fig_kwargs={\"figsize\": (7, 3)},\n", + ");" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Negative Binomial Model\n", + "\n", + "Lets move onto a model that uses a distribution that is a member of the exponential distribution family and utilizes a link function. For this, we will implement the Negative binomial model from the students absences [example](https://bambinos.github.io/bambi/notebooks/negative_binomial.html#Negative-binomial-in-GLM). School administrators study the attendance behavior of high school juniors at two schools. Predictors of the number of days of absence include the type of program in which the student is enrolled and a standardized test in math. We have attendance data on 314 high school juniors. The variables of insterest in the dataset are the following:\n", + "\n", + "- daysabs: The number of days of absence. It is our response variable.\n", + "- progr: The type of program. Can be one of ‘General’, ‘Academic’, or ‘Vocational’.\n", + "- math: Score in a standardized math test." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Auto-assigning NUTS sampler...\n", + "Initializing NUTS using jitter+adapt_diag...\n", + "Multiprocess sampling (4 chains in 4 jobs)\n", + "NUTS: [daysabs_alpha, prog, scale(math), prog:scale(math)]\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" ], - "source": [ - "model_interaction" + "text/plain": [ + "" ] }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtkAAAFdCAYAAADWhHHNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABJ0AAASdAHeZh94AABaPklEQVR4nO3deZRcZZ0//ve9dWtfu7qq9yX7TozgElH2HRMJYeIyg3BkRAVUYEDAQQgRVFRARM2MiIgMwiiC4QcCM8Ou5xuVnexJJ+mk02t17ft27++PW1Xdlc7W6equpd+vc/pU961bVU9zm/S7n/o8n0dQFEUBERERERGVjFjuARARERER1RqGbCIiIiKiEmPIJiIiIiIqMYZsIiIiIqISY8gmIiIiIioxhmwiIiIiohJjyCYiIiIiKjGGbCIiIiKiEmPIJiIiIiIqMancA6gUgUAAr7/+Otrb26HX68s9HCIiIiKqIMlkEj09PTjttNPgcDiOej5Dds7rr7+OVatWlXsYRERERFTBNmzYgIsuuuio5zFk57S3twNQ/8PNmTOnzKMhIiIiokrS1dWFVatWFTLj0TBk5+RLRObMmYPFixeXeTREREREVImOtayYCx+JiIiIiEqMIZuIiIiIqMQYsomIiIiISowhm4iIiIioxBiyiYiIiIhKjCGbiIiIiKjEGLKJiIiIiEqMIZuIiIiIqMQYsomIiIiISowhm4iIiIioxBiyy+ytbh980VS5h0FEREREJSSVewDT3VA4iZ2DEcxwmfChNgfMel4SIiIiomrHRFchuodj6PHFML/JhsUtNmg1fJOBiIiIqFoxyVWQrAxs7Qvh2ff7sGswDEVRyj0kIiIiIjoOFReyw+EwbrrpJpx77rlwu90QBAF33HFH0TnZbBb33Xcfzj//fLS1tcFkMmHhwoW45ZZbEAgEyjLuUkqkZbzZ7cefN/WjNxAv93CIiIiIaJwqLmR7vV48+OCDSCaTWLVq1SHPicfjuOOOO9DZ2Yn7778fzz//PK688ko8+OCD+OQnP4l4vDaCaSiewes7PHhl+yD8XBxJREREVDUqria7s7MTfr8fgiBgeHgYDz300JhzjEYj9u7di/r6+sKx008/HR0dHVizZg2eeuopXHrppVM57Ek1EEzixdAAZtSbsazdAaNOU+4hEREREdERVNxMtiAIEAThiOdoNJqigJ33sY99DADQ09MzKWMrJ0UB9g5H8fymfvQHa2OmnoiIiKhWVVzInohXXnkFALB48eIyj2TyJDMyXt3uwXs9AcgyF0YSERERVaKKKxc5Xr29vbjlllvwkY98BCtWrDjiuUNDQ/B4PEXHurq6JnN4Jbe1LwRPOIlPzqmHSVczl5GIiIioJtREOvP5fLjwwguhKAp+//vfQxSPPEG/fv16rFu3bopGN3k84SRe2DSA5bPr0eowlns4RERERJRT9SHb7/fjnHPOQW9vL1555RXMmjXrqI+5+uqrsWbNmqJjXV1dh+1mUsmSGRmv7/BgQbMVy9ocEMUj17MTERER0eSr6pDt9/tx9tlnY+/evXj55ZexdOnSY3pcQ0MDGhoaJnl0U2t7fxiecBKfmuPi1uxEREREZVa1Cx/zAXvPnj343//9X3z4wx8u95DKzhtJ4YXNA+jxxco9FCIiIqJprSKnPF944QVEo1GEw2EAwNatW/HHP/4RAHDhhRdCEAScd955ePfdd3H//fcjk8ngb3/7W+Hxbrcbs2fPLsvYyy2VkfGXXcOY32TBh9vrWD5CREREVAYVGbKvuuoq7Nu3r/D1k08+iSeffBIAsHfvXgDAm2++CQC49tprxzz+8ssvxyOPPDL5A61gOwYi8IRT+OScelgN2nIPh4iIiGhaqciQ3d3dfdRzFIU9oo/GF03hzx/0Y16TFYtbbNBL3CmSiIiIaCpUZMim0pEVdVHkHk8US1ptmNdgZQkJERER0SSr2oWPND6pjIx39gXw3KZ+7PdyYSQRERHRZGLInmYiiQz+2jWM/90yAE84We7hEBEREdUkhuxpajiSwv9tHcRfdnkQTqTLPRwiIiKimsKa7GmuxxdHrz+OuY0WLG6xw6Dl4kgiIiKiieJMNkFW1JZ/z77fhx0DYXZuISIiIpoghmwqSGcVvL3Pj5e2DSHEEhIiIiKi48aQTWN4wkm8uGkA2wdCnNUmIiIiOg4M2XRIGVnBO/sCeGnbEBdGEhEREY0TQzYdkSecxAubBrBjIFzuoRARERFVDYZsOqqMrNZq/9/WQc5qExERER0Dhmw6ZpzVJiIiIjo2DNk0LvlZ7Zc4q01ERER0WAzZdFyGcrPa2wdCkGV2ICEiIiIajSGbjlu+A8nzm/vRG4iXezhEREREFYMhmyYsFM/g9R0evLpjCMEYS0iIiIiIGLKpZPoDCbywuR9vdvuQSGfLPRwiIiKispHKPQCqLbIC7BqMoHs4ihPa7JjXYIUoCuUeFhEREdGU4kw2TYp0Vq3X/vOmfhzwx8o9HCIiIqIpxZBNkyqcyOCNncN4dfsQArFUuYdDRERENCVYLkJToj+YwMDmAcx2W7Cw2QqrQVvuIRERERFNGoZsmjKKAnQNRbDbE0GH04SFzTY4zbpyD4uIiIio5BiyacopCrDPG8M+bwxNdj0WNdvRZDeUe1hEREREJcOQTWU1EExiIDgEp1mLRc12tDuNEAR2IyEiIqLqxpBNFcEXTeOvXcOwGCQsbLJiltsCDVv/ERERUZViyKaKEklk8Ga3H5t6g5jXaMXcRgv0kqbcwyIiIiIaF7bwo4qUSMv44EAQz7zXh829QWSycrmHRERERHTMGLKpomWyCj44EMRzH/RjjycCRVHKPSQiIiKio2LIpqoQS2Xxtz0+vLh5AP3BeLmHQ0RERHREDNlUVfyxNF7d7uEOkkRERFTRuPCRqlJ+B8mZLjOWttlh0vFHmYiIiCoHkwlVLUUB9nii2O+NYUGzFQubbdBq+OYMERERlR8TCVW9jKxgc28Iz77fh12DYS6OJCIiorJjyKaakUjLeLPbjz9v6kdvgIsjiYiIqHwYsqnmhOIZvL7Dg1e2D8If5eJIIiIimnoM2VSzBoJJvLhlABt3exFPZcs9HCIiIppGuPCRapqiAHuHo+jxqYsjFzXbIHFxJBEREU0ypg2aFgqLIz/oQ9cQd44kIiKiycWQTdNKPCXjH3t9eIE7RxIREdEkYsimaSmQ3zlyxxCC8XS5h0NEREQ1puJCdjgcxk033YRzzz0XbrcbgiDgjjvuOOS577zzDs4++2xYLBY4HA6sXr0ae/bsmdoBU1XrDyTwwqZ+vNcTQCYrl3s4REREVCMqLmR7vV48+OCDSCaTWLVq1WHP2759O04//XSkUin84Q9/wMMPP4ydO3filFNOgcfjmboBU9WTFWBrXwh/3tSP/d5YuYdDRERENaDiuot0dnbC7/dDEAQMDw/joYceOuR5t99+O/R6PZ577jnYbDYAwEknnYS5c+finnvuwQ9/+MOpHDbVgGgyi792DaPZY8CJnXWwG7XlHhIRERFVqYqbyRYEAYIgHPGcTCaD5557DpdcckkhYANqQD/jjDPwpz/9abKHSTWsP8gSEiIiIpqYigvZx2L37t2Ix+NYunTpmPuWLl2Krq4uJBKJMoyMagVLSIiIiGgiKq5c5Fh4vV4AgNPpHHOf0+mEoijw+/1obm4+5OOHhobG1G13dXWVfqBU9VhCQkRERMejKkN23pHKSo503/r167Fu3brJGBLVqHwJyYJmGxY0WWHQaso9JCIiIqpgVRmy6+vrAYzMaI/m8/kgCAIcDsdhH3/11VdjzZo1Rce6urqO2M2EKF9CsmMghA6nGXMbLXBZ9OUeFhEREVWgqgzZs2fPhtFoxKZNm8bct2nTJsyZMwcGg+Gwj29oaEBDQ8NkDpFqWFYG9g5HsXc4CqdZi7mNVnQ6TZA0VbnEgYiIiCZBVaYCSZKwcuVKPP300wiHw4Xj+/fvx6uvvorVq1eXcXQ0nfiiafx9jw8b3uvDO/v9CCe4eyQRERFV6Ez2Cy+8gGg0WgjQW7duxR//+EcAwIUXXgiTyYR169bhox/9KFasWIFbbrkFiUQCt99+O1wuF2644YZyDp+moVRGxvb+MLb3h9FsN2BuowWtDuNR21ESERFRbarIkH3VVVdh3759ha+ffPJJPPnkkwCAvXv3YsaMGViwYAFee+013Hzzzfinf/onSJKEM888E/fccw/cbne5hk6E/mAC/cEEzHoN5jRYMMtlgVHHhZJERETTSUWG7O7u7mM676STTsJLL700uYMhOk7RZBbv9wTxwYEg3BY9ZrhMaKszsTMJERHRNFCRIZuoligKMBROYiicxFvdfjTZDeisN6OtzggtF0sSERHVJIZsoikkK0BfIIG+QAKSKKDFYURnvQktDiM0Iuu3iYiIagVDNlGZZGQF+30x7PfFoNUIaKszYYbLhCabgQsmiYiIqhxDNlEFSGeVQu9tk06D2W4L5jRwwSQREVG1YsguM0VRyj0EqjCxVBabeoPY0hdEi8OIuY0WNNuN5R4WERERjQNDdpn995s9GAgmcEKrHYtabDDpeElIJSvAAX8cB/xxWAwS5rgtmOU2szsJERFRFWCiK6N0VsY7+/yIprLYNRTBhvd6MafBgiUtDNxULJLI4L2eAD44EECH04Q5DRY02AzlHhYREREdBlNcGcWSWZzYWYd39gcQTWYgK8DOwQh2Do4E7hNa7VjUbGdtLgFQZ7e7vTF0e2OwG7WY02DBbLcZElsBEhERVRSG7DKym7T4wsc6cN7iJuwdjmJzbxCb+0JjA7fQh9kNZgZuKhKMp/H2Pj92DIbxiVn1cFv15R4SERER5TBkVwBREDDbbcFstwUrlrag2xtVF771BhFNZZFVlELg/pMwUlKysNkGs56XcLqLJDJ4adsgFjbbsLTVDpH9tomIiMqOCa3CaMSRwL0yH7gPBLG5L4hYKls0wy2+14tZLgsWt9qwuMUOCwP3tKUowNa+EPoDcXxidj0cJl25h0RERDStMZVVsKLA/aEWtaSkL4gto0pKujwRdHki+P/e68MMlxlLWu1Y3GKDzaAt9/CpDPyxNP5nywCWtjmwoMnKTW2IiIjKhCG7SmhEAXMa1A1KPvMhdYZ7c28IW/qCCCcyUIDCZibPvd+HjnoTlrTYsaTVDruRgXs6ycrAu/sD6PWrs9osKSIiIpp6/O1bhURBwCyXBbNcFqxY2oweX6ywaDIYT0MBsM8bwz5vDH/e1I/2OiMWt6gz3PUWLo6bLobCSTy/qR8nddZhlttS7uEQERFNKwzZVU4UBHTWm9FZb8YFJzSj1x/PBe4g/LE0AKDHH0ePP44XtwygyWbA4hYbFrfa0WjVs5ygxqWzCv62x4cD/jg+NtPJjWyIiIimCEN2DREFAe1OE9qdJpy/pAl9gUSuhjuI4UgKADAQSmAglMDL24dQb9ZhcYsdS1ptaHUYGbhr2AF/HMORfnxsphNtdaZyD4eIiKjmMWTXKEEQ0FpnRGudEecuasRQOIktuUWT/cEEAMAbTeGNXR68scsDu1GLRS02LGmxo7PeBJGBu+Yk0jLe2DkMp1kHu1ELm1GCzaCFzaCF1SCx9R8REVEJMWRPA4IgoNFmQKPNgDMXNMIbSWJrfwibe4Po8ccBqBubbNztxcbdXph1GixstmFRiw2z3RZouZtgTfFFU/BFU0XHRAEw6yVYDRJsRjV450M4S0yIiIjGjyF7Gqq36HHKXDdOmetGMJ7G1twM997hKBQA0VQWb+3z4619fugkEfMbrVjUYsP8RisDV42SFSCcyCCcyKAvkCi6z2aUsKDJhlkuM2e7iYiIjhFD9jRnN2rxidkufGK2C5FkBtv7Q9jaH0LXUAQZWUEqI2NTbxCbeoPQCAJmN5ixqNmOhc1WWNmLe1oIxTP4x14fNvcGMb/JijkNfHeDiIjoaBiyqcCil/CRGU58ZIYTyXQWO4ci2NIXxI6BMJIZuWh792feAzqcJixqsWFRM1sDTgexVBbv7g9gS18I8xotmMd3NoiIiA6LIZsOSa/V4IRWO05otSOTlbFnOIotfSFs6w8hklQ3v9nni2GfL4YXNg+g0aZX67ib2amk1qUyMjb3hrC9P4xZbjMWNNtg4YY3RERERfibkY5K0oiY12jFvEYrLlrWgh5fDFv61LKS/AK6wVASgyEPXtvhgc0gYWGzDQubbZjlNkMSWVpQizKy+s5G11Ck8K6Gw6Qr97CIiIgqAkM2jUvR5jdLmjAYUjuVbOsPoTegdioJJTL4+14f/r7XB72kBvRFzTbMb2J5QS2SFaDbG0O3N4YWhwELm21otBnKPSwiIqKyKnnITiQS6O7uxty5c6HRMFDVMkEQ0GQ3oMluwJkLGhCMp7EtF7h3eyKQFSB50MLJmW6zOsvdZOWsZw3qCyTQF0jAYpAw223GLJcFRh3/HSAioulnQiH7Zz/7GQKBAG677TYAwNtvv43zzz8fPp8PM2bMwGuvvYb29vaSDJQqn92oxfJZ9Vg+qx6JdBY7BsPY2hfCzsGRhZNdQ2p5wbPvA812Qy5w29DiMLCOu4ZEEhm83xPEpgNBNDuMmO02s1afiIimlQkVyz700ENwOByFr2+++WY4nU785Cc/gaIouOuuuyY6PqpSBq0GH2pz4Asf68Ctn16IL508Ax+f6YTNMPJ3XX8wgVe2D+EXr3Xhhy9ux4b3erFjIIx0Vi7jyKmUZAXo9cfxxs5hbHivF+/3BBBOpMs9LCIiokk3oZns/fv3Y8GCBQCAcDiMN954A//93/+N1atXo66uDrfffntJBknVTRJFzG20Ym6jFZ/5UAv6ggls6w9he38Ifbkt3kMJtRfzP/b6oNOImNtowYImtY6bnStqQzwlY0tfCFv6Qmi06THbbUG70wQNN7ghIqIaNKH0kkwmodWqG5Js3LgRsizj7LPPBgDMmDEDAwMDEx8h1RRBENDqMKLVYcTZCxsRiKWwfSCMbf0h7PFEkVUUpLIjYUwA0O40YWGTFfObbWi06llyUAPUbjRJ6Pb5McttxqJmGxfFEhFRTZlQyO7o6MBf/vIXnH766XjmmWewbNky2Gw2AIDH4yl8TnQ4DpOuqI5711AE2/tD2D4QRjydhQJgvy+G/b4Y/mfrIOpMWsxvUhdOznSZIXHnwaqWysjY3h9G12AE85usWNhsg07iNSUiouo3oZB96aWXYt26ddiwYQPef/993HPPPYX73nrrLcybN2/CA6TpwzBqA5ysrGC/L6aWlQyEMRxJAgD8sTT+tseLv+3xQieJmNtgwYImK+Y3cUOUapaRFWzJLZJdmGv3yK3biYiomk0oldx6662QJAn/7//9P1x88cX4xje+Ubhv8+bNuOSSSyY8QJqeNKKAmS4zZrrMuPCEZgxHktg+EMb2gRC6h6OQFXUWdKSspBdtdUbMb7JhQZMVzXZ2K6lG6ayCDw4EsWMgjEUtNsxrtLJmm4iIqpKgKIpS7kFUgi1btmDJkiXYvHkzFi9ePGWv+/ymfgRi7LYwHvFUFruGwtg+EMaOXFnJwWwGCfObrFjQZMNst4UlCFXKqBOxpMWO2W4LRIZtIiIqo/FmxZK8v55IJPDOO+/A6/Wivr4eJ554IgwG7vhGk8Oo02BpmwNL2xyQFQX7vbHCLPdQWC0rCSUyeLPbjze7/ZBys+L50O00cxOcahFPyXiz24+t/SGc0GrHTJeZ71AQEVFVmHDIvu+++3DnnXciFApBURQIggCr1YrbbrsNN9xwQynGSHRYoiBghsuMGS4zzl/SBF80hR0DIewYDGOPJ4qMrCAjK9g1FMGuoQie+6Afbose85usmN9kxYx6M8sRqkA0mcXf9viwtT+EJS12tv4jIqKKN+EdH2+88Uacc845+Od//mc0NTVhYGAAv/vd73DTTTdBq9Xim9/8ZqnGSnRUTrMOn5jtwidmu5DKyNjtiWD7QBg7B8MIxtWyHE8kCU9XEn/tGoY+t3hyfpPax9tm0Jb5O6AjCcUz+H+7vdDt86Oz3oRZLjPqLfpyD4uIiGiMCdVkz549G5/85Cfx6KOPjrnv0ksvxcaNG7F79+4JDXCqsCa7timKgoFQAjsG1FruHl8Mh/rBb3EYMK/RivmNVrQ7TRBZmlDxHCZtYZEse20TEdFkmdKa7L6+PvzLv/zLIe/74he/iKeeemoiT09UMoIgoNluRLPdiNPnNyCWzGBnbvHkrsFIYfFkXyCBvkACr+3wwKjVYG6jBfNzu1WyRWBlCsTSeHd/AO/3BNDsMGKWy4xWh5ELJYmIqKwmlBrmzZuHwcHBQ97X39+POXPmTOTpiSaNSS9hWXsdlrXXQVYUHPDFsGMwjB2DYfQF1K3e4+ksPjgQxAcHghAAtNYZC7PcrXVGznJXGFkBev1x9Prj0EsiZrjMmO02w2HiQlciIpp6EwrZ69atw/XXX48TTzwRS5YsKRz/4IMPsG7dOtx3330THiDRZBMFAR31ZnTUm3HOoiaEE2nsHIxgx2AYXUNhJNIyFAAH/HEc8MfxyvYhmHQazG2wYF6jFXMaLLCylruiJDMyduRaPNaZtGh2GNFkM8Bt1XPBJBERTYlxh+zPfOYzRV9nMhksW7YMixcvLix83LJlC1paWvDII4/g4osvLtlgiaaC1aDFSZ11OKmzrrDz5M5BNbANhNRZ7lgqi/cPBPH+gSCAkVrueQ1Wdr6oMP5YGv5YGlv7QtCIgNuqR6PNgCabAU6zji0BiYhoUow7ZH/wwQdFv5QkSUJ7eztCoRBCoRAAoL29HQCwadOmEg1zrHfffRfr1q3DP/7xDwQCAXR0dOCf//mfceONN8JkMk3a69L0MnrnyfMWNyEYT2PXoNqtpMsTQSItAyiu5TZoRcxxq7PccxutsBs5y10psjIwEExiIJjE+whCJ4losOrRbDegwWbgtSIiopIZd8ju7u6ehGGMz9atW3HyySdj/vz5uP/+++FyufDGG2/gu9/9Lt5++20888wz5R4i1Si7UYuPzHDiIzOcyMoKenKz3DuHRmq5E2kZm/tC2Nyn/tHZaNNjboMVcxstmFFvhlbD3ScrRSojF8qAAMCk06AxV1bisuhgN2o5001ERMelKtslPP7440gkEnjqqacwe/ZsAMCZZ56J/v5+PPjgg/D7/airqyvzKKnWacSRjXDOXazWcu8aimDnYHHHksFQEoMhtS+3VqPOjOdDt9uiZ4irILFUFnuHo9g7HAUAaDUCXBY96i26wq1eYptAIiI6upKFbI/Hg3g8PuZ4R0dHqV6iQKtV39K12+1Fxx0OB0RRhE7HbgI09awGLU7sqMOJHWrHkl5/HDsGw9g1GMYBfxwKgHRWwc7BCHYORoBNgMOoxdxGC+Y2WDHbbYFRxwBXSdJZBf3BBPqDicIxm1GCy6LPfXC2m4iIDm3CIfuuu+7CAw88AK/Xe8j7s9nsRF9ijMsvvxz3338/rrrqKvzwhz+E2+3G66+/jl/+8pe45pprYDabj/j4oaEheDyeomNdXV0lHydNX6IgoN1pQrvThLMXNiKWymC3J4pdg2HsGooUdp8MxNN4s9uPN7v9EAWgrc5UCN2tDiMXUFagUDyDUDyDPZ7i2W6XRQ+XVZ3xZkkQERFNKGQ//PDDuPvuu3HLLbfg9ttvx6233gpFUfBf//VfMBqNuPnmm0s1ziIzZszAxo0bcfHFFxfKRQDgm9/8Ju6///6jPn79+vVYt27dpIyN6FBMOgkntNpxQqsdiqJgKJzErqEIdg2GsXc4ioysQFaA/b4Y9vtieHnbEAxaEbPdFsxpUEO308x3aCrRwbPdgqDW7qt13epsN1s8EhFNPxPaVv2kk07CJZdcgptvvhlarRZvvfUWTjzxRMTjcZx66qn47Gc/i29961ulHC8AdfHlOeecg8bGRlx//fVwu934+9//jrvuugv/9E//hF//+tdHfPzhZrJXrVrFbdVpyqWzMrqHo4V67qFw8pDn1Zt1ucBtwSy3hVuIVxGjTizMdrutetSZdHyXgoioykzptupdXV1Yvnw5RFF9azSVSgEAjEYjbrjhBtx2222TErJvueUWhEIhvPfee4XSkFNPPRUulwtXXHEFLrvsMpx22mmHfXxDQwMaGhpKPi6i46HViJiba/d34QnNCMbT2D0Uwa6hMLqGIoim1JIrbzQF714f/r7XB1EA2utMhdDdWsfe3JUsnpLR44ujx6euWxFzs911Zh3qzTrUmXUM3kRENWZCIVuS1IcLggCbzYYDBw4U7nO5XOjt7Z3Y6A7jvffew6JFi8bUXn/0ox8FAGzevPmIIZuoktmNWpzYWYcTO9UFlAPBBLpyobvbG0M2V1qyzxfDPl8ML28fgl4SMStXWjLHbYHLwk1WKpmsjGySk6/tFgXAZtTCadbBmQvddSYtJNZ3ExFVpQmF7Llz56KnpweAGnB/9atf4aKLLoIoinjwwQcxY8aMUoxxjJaWFmzevBmRSAQWi6VwfOPGjQCAtra2SXldoqkmCgJaHEa0OIw4dZ4bqYyMbm+0ELoHQ2ppSTIjY1t/CNv61d7cdqMWc9wWzG5Qg7dFX5XdOqcVWQECsTQCo4J3vr67rc6ImS4za7uJiKrIhH7zXnjhhXjjjTdw+eWX49vf/jbOO+88OBwOSJKESCSChx9+uFTjLHLddddh1apVOOecc3D99dfD5XLhb3/7G37wgx9g0aJFuOCCCybldYnKTSeJ6vbtjVYAzQjF0+jyRLB7KIKuoQjCyQwAIBhP4+39fry93w8AaLIZ1FnuBnVDHJ3E2dFqoIwK3pt7Q2iw6jHLbUaH08QZbiKiCjehhY8He/PNN/HEE09AFEV8+tOfxhlnnFGqpx7j1Vdfxd13340PPvgAwWAQ7e3tWLlyJb797W+jvr5+3M833mL2UuHCRyqVfNeSrlzg3jscRSorjzlPIwrocJow223GHDfruauRVqNew1luC9xWfbmHQ0Q0LYw3K5Y0ZFczhmyqNRlZXWynhu6RDXEOppdEzHSZMTtXXtJo5S6U1cRmlDDLZcEst5kdZ4iIJtGUdhdJJBJIpVKw2WyFY3/4wx/wzjvv4JxzzsFZZ501kacnogmQRDU8z3SZcc6iRsRTWewdjqDLE8XuoQg8kZF67u0DYWwfCAMALHoJs3Kz3LMbLKgzsT93JQvFM3ivJ4APDgTQ7DBilsuMZruB5SRERGU2oZD9xS9+EWazGY888ggA4IEHHsB1110HAPjxj3+MZ599FhdeeOFEx0hEJWDUabCoxY5FLXYAat32Hk8Euz1qeUkoodZzR5IZfHAgiA8OBAEATrMOs91mzHJbMIuL7yqWrAC9/jh6/fHCgsk6k25UtxJ2KiEimkoTCtn/+Mc/8MMf/rDw9QMPPIBLL70UP//5z/Gv//qvuOeeexiyiSqU3ajFhzvq8OGOOiiKguFICrtzoXuPJ4p4Wu3P7Yum4Ium8Ga3uoiy0abHLLcFs10WzHSZYdSxRKHSjF4wuXe4uFNJnUmHegtbBBIRTbYJhWyPx4PW1lYAwN69e7Fnzx488cQTsNls+Nd//VdcdtllJRkkEU0uQRDgtqq7ES6fVQ9ZUdAXiGO3J4o9ngi6vVGks2pF92AoicFQEht3eyEAaHEYCzPd7FxSuQ4VvPO9uevNOtTntoC3G7WsySciKoEJhWyTyYRgUH1L+S9/+QssFgs+8pGPAAAMBgMikcjER0hEU04UBLTVmdBWZ8Jp89zIZGX0+OO58pIoenwxZBUFCoDeQBy9gTje2DVc2IlyVi50dzhN0HKmtGKN7s29O9ebW9IIhdBdb9bBbdVzQSUR0XGYUMg+4YQT8Itf/AKdnZ1Yv349zjjjjMIMyP79+9HU1FSSQRJReUmakUWUZy0EUhkZ+3xR7PFEsdsTQW+uc8nonShf3eEptAuc5TJjptuMjjr2d650maxSeLciz6zXwGXRo96iQ71ZD7tRy3csiIiOYkIh+7bbbsOKFSuwbNky6HQ6vPTSS4X7/vznP+PEE0+c8ACJqPLoJBFzG6yY22AFACTSWewdjhZmugdCCQBAVlawdziqlidsByRRQEe9CbNcFsx2m9FaZ4QkMqxVumgyi2gyhn3eWOGYIABajQidJEKnEaGXxJGvc8d0knrcpNOgzqSDyH7sRDSNTChkn3nmmdi2bRvefvttLFu2DLNmzSq6b9myZRMdHxFVAYNWg4XNNixsVtt5RpMZNXQPq4soh8LqrGhGVrDHo86Av7RN3VSls96sznS7GLqriaKo72ikMmM3PDoUSRTgNOvgsqq13y4Ly1CIqLZNKGSnUil0dnais7NzzH1f/epXJ/LURFTFzHoJS1rtWNKqtgsMJ9K5me4o9gxHMZzr0Z3OKoUdKgGG7lqWkdUdSfN/cAGA1SDBbdXDZdHDbdHDbmJ7SCKqHRMK2a2trfjyl7+Mq666Ch0dHaUaExHVGKtBi6VtDixtcwAAQvE09uTKS/YMR+GLpgAcJnQ7zZjhUoN3W52RNd01JJzIIJzIYE9u0aVOElFv0cFtUTvd1Jt1vN5EVLUmFLJXrlyJBx54APfccw9WrFiBr3/969zlkYiOymbUYlm7A8vaHQDUjXHU2m21vMQ7OnR7IujyjITudqepsAizvY7dS2pJKiOjP5BAf0Ct6RcFoC7X4SQfvFliQkTVYkIh++GHH8a9996LX/3qV/jP//xPnHvuuZg3bx6uueYaXH755bBaraUaJxHVMPtBoTuUC917cosmR5eX5Gu6AUAjCmivM2KmS53t7nSyT3ctkRXAG0nBG0lhO8IAAItBKgRut1XtdEJEVIkERVGUUjyRoih49tln8fOf/xwvv/wyzGYzLrvsMnz961/HggULSvESk2rLli1YsmQJNm/ejMWLF0/Z6z6/qR+BWHrKXo+oGoUS6UKXkr2eKDyR5CHPEwWg1TESumfUmznzWeP0kginWQeLQYJJp4FFL8Gsl2DRS7z2RFRS482KJQvZee+++y5uuOEGvPbaa+oLCAJWrVqF//iP/0BDQ0MpX6qkGLKJqkck171k73AU3cMjLQMPJgBothsKgXuGywyLfkJv4FEVkUQBJr2mELrNutxt7hhDOBGNx3izYkl+22QyGTz55JP4xS9+gY0bN6K9vR0//OEP8bnPfQ7PPPMM7rzzTlx22WV48cUXS/FyRDTNWfQSTmi144Rc95JYKoN93lghePcF1M1xFAB9wQT6ggn8v91eAIDLoseMerWue0a9GQ4TtxGvVRlZQSieQSieOeT9Wo0Aq0GCRa+FxaAGcJtBys2K848xIpqYCf0r0tvbi1/+8pf41a9+hcHBQZxyyin4wx/+gIsvvhhiru3WN77xDbS2tuLSSy8tyYCJiA5m0klFfboT6Sz2+0ZCd68/jmzuTbvhSBLDkSTe2ucHoNaDz6g3FWa7G6x6hu5pIp1V4Ium4YuOfTdRI6IwA241SNCIIkQBEAUBGlHI3RZ/LYoCNIIArUZAvUVfhu+IiCrJhEL2jBkzIEkSPv/5z+Paa6897OYzs2bNQmNj40ReiojomBm0GsxrtGJeo7r4OpWRccAfw15vFPuGY9jviyGVVTdRCcbTeP9AEO8fCAIATDoNOuvNmFFvQme9GS0OA3t1T0NZGUecBT8aq0HCnAYLZrnN0EssSyGajiYUsteuXYuvfvWrcLvdRzxv2bJl2Lt370ReiojouOkkEbPcFsxyWwCo2733BeLo9kbR7Y2heziKeDoLAIilstjWH8K2/hAAtaSgrc6kznbXm9HuNLGWl44qnMjg3f0BfHAggA6nGXMbLXBxdptoWplQyP7Od75TqnEQEU0Zjaj22253mnDKXEBWFHjCSXUhpTeKfd4YgnG1hCCdVQplJ4CnsJiyM1de0llvgs3ANnJ0aFkZhZ8fp1mLOQ1WzKg3cZMdommgJCs7gsEgdu7ciXg8Pua+U089tRQvQUQ0aURBQKPNgEabActn1QMAArGUOsvtjWKfN4rBkNo2cPRiyo25xZROsw6dThM6crPdbqseIuu66SC+aBr/2OvDu/v9mOU2Y06DlX2+iWrYhEJ2JpPB1772NTz66KPIZrOHPOdwx4mIKpnDpMMyk66wQU4slcF+XwzdwzHs80ZxIBBHVlYXU/qiKfiiKbzbEwAAGLQiOp3qLHdHvYk7U1KRdFbBjoEIdgxE0GjTY7bbArtRC6NOw1IkohoyoZD9k5/8BM8++ywefvhhXHbZZfjFL34BrVaLX/3qVwgGg3jggQdKNU4iorIy6SQsaLJhQZPawSSdldHrjxfKS/b7YoW67kRaxo7BMHYMqrsUagQBLQ4DOuvN6HCa0FlvgpUlJgRgMJQsvEsCqBsqGbQaGLQiDFoNjFoNjDr11nDQ5xqR75YQVbIJhez/+q//wq233oovfOELuOyyy/Dxj38cJ554Ir785S/jvPPOw6uvvopzzz23VGMlIqoYWo2otv1zmQGM1HXv86oz3ft8MfiiKQBAVlHQ44+jxz9SUje6xKTDaUKjzcASE4KsqItvY6ksgCNvVCZpBOglEXpJDeV6SQO9VhxzzKAVYdRqWAdONMUmFLL37NmDD33oQ4We2InEyK5rX/va13DttdfiBz/4wcRGSERUBUbXdX9sphMAEE6ki0J3XyCOXIXJmBITvSSi3WkqzHS317GLCR1ZJqsgk80imjy2sky9JMKs18CkU7egN+mkwtdmvTpDfqge8Yl0Fol0thD+E+ks4rmv46kM4uksNKIIh1ELh0kLh1EHu0kLm0Fiz3ma1iYUss1mM1KpFARBgNPpxL59+3DyyScDAIxGI7xeb0kGOd2IgjpLJmkE6DQiJI0Ibe5zBeov7lA8g0z+tzURVSSrQYslrXYsye1Mme/Xvd8XG1NikszI6BqKoGsoAkDdEr7RZijMdHc6TXCadQwtdNySGRnJjHzIzXcA9XePUaeBWSdBVhTEc+E611L+KGREEhkcGPVujUYEbAYt7Lng7TCpIZy7adJ0MaGf9AULFhT6X5988sm47777cMopp0Cn0+FHP/oR5s+fX5JB1rKPz3RCEISRQC0Kx/yWXiylbpQQSqQRiqdzt5nc24zjl9/NjOGdaHIc3K9bVhQMh5Nq6PbFsN8bgycy0sVkIJTAQCiBf+z1AVA3yunIzXZ3OE1oqzNBJ7EEgEpDVoBo8thnxo8mKwP+WBr+WBpArHBcJ4moN+vQYNOj0WZAPf94pBo1oZD9uc99Djt37gQArFu3Dqeeeio6OzsBAFqtFk8//fTER1jjJrL1rvqWn4Qmu6HoeDorI5zIIBRPI5rKQBLVWfF8gJfEgz7XCNCKIsTcIppURkY8lUUsncm9HZh/mzBT+DyZOaapDSI6AlEQ0GAzoMFmwEdmqCUmsWRmJHT7YjjgjyGdVf/wjaWy2D4QxvaBcO7xQNOo2e4Opxl1Ji0DC1W0VEZGfzCB/mACQBBajQC3VV8ot3KadeUeIlFJCIqilGzacv/+/diwYQNEUcQ555xTVTPZW7ZswZIlS7B582YsXry43MOpeFlZydXkZZDKyOpHVh75fPTXo45zkpxofLKygv5gHPtzobvHF8vNDB6aWS+pgbvOiPZ6E9ocnO2m6qKTRDTkQneTzQC7iZ14qDKMNyuWtDCqo6MD3/zmN0v5lFShNKIAi16CRT++H6FMVg3asqJAyd3KigIFgCKj8HnhuIKiRTaJ1KgFN+ksMlmmdqptGlHd1r2tzoSTZ6vHwol0IXTv98XQ648XyryiyUzRtvCioNZ2tztN6KhTd7l0Wfj2PFUude1CvFDfbdCKcJi00Gk00GoEaCUROo0IbW69klYjQicd9LVm5N1ZonIZd8gWRXFc/zhzMxoardQtpNJZeWS1eyofvjOIJLOIJTOIJDOFt9qJaoXVoMXiFjsWt6gLKjOyjP5AYmS22x9DIDfbLSsovDWfr+02ajVodxoLwbutzgSjjp1MqDIl0jIGgsmjn3gQvSQW9Rwfuc19SCO9yBnIaTKMO2TffvvtRSH7N7/5DSKRCFauXImmpib09/fjueeeg9lsxhVXXFHSwRIdTKsRYTeKR9yaOJWREUtlEE1lEU1mch9ZRFOZXJ0568upukmi2v6v3WnCJ3PHQok0Dvhi2O+Lo8dfXNsdT2exczCCnYORwnO4LXq0O41oy812N9kM3OyEqlq+m0owfvRztRoBeq0GOo04qtd4rve4NNKDfOR+bgZERzfukH3HHXcUPr/33nvR1NSEl156CRaLpXA8HA7j7LPPhslkKskgiSZCJ4nQSTo4DvPjmMrIozq0ZBCMq59HkhmUbsUC0dSyGbRY1GLHotxsd1ZWMBhKFOq6e/wxDEdShfM9kSQ8kSTe2R8AoIaOFrs6291Wp946jFxUSbUpnVWQzmbG9RhJFKDLhXFdLogXfz32uF4aXzUAVbcJ1WSvX78eP/7xj4sCNgBYrVbcdNNNuPHGG/Gtb31rQgMkmmw6SYTLoofroE4vWVkp9CQPJdKF8J3IZJHOKCVpdSgK+T8C1H+ItRoBoiAgqyjIZtXXkBX1NivLyGQVZGWFC0hp3DSigBaHES0OI5bPqgegdjLp8cfU3Sh9MRzwxwt9u9NZBftyXU7yLHoJ7XX54K2Gb26YQ9NVRlaQKezOeey0GmFU6NaM+h2g3uo0ahkLe4pXvwldvd7eXkjSoZ9CkiQMDAxM5OmJykojCnCYdHCYDt1OSlEUpLMKMrKMdEZBOheC01kZ6ayMjKx+LkAY8w9o/uvjrVFXCsFbQSieLvRYZmtFGg+TXsL8JhvmN9kAqD9X3kgqF7xj6PHF0R8c2aUyksxg20AY23ItBAG1zKStbmTGu8lugCSymwnR4aiz5vl+5IfvFASoiz7rTDrUmXVwmnSoM2thNbDbSrWYUMheuHAh7rvvPlxwwQXQakcueiqVwr333osFCxZMeIBElUoQBOgkATqIwBS3dRUEIbeKHjBoNWiwGXBSRx0GQgns8xbX3xIdK0EQ4LLq4bLq8eGOOgDq4uK+QHzUbHdxC8F8mUl+e3iNKKDFbijMdLc7TdxshOg4JdKje4qrtBoBTrM6AeTMhW+bkVvYV6IJhey77roLq1atwqxZs7B69Wo0NTVhYGAATz/9NAYGBrBhw4YSDZOIjkYcVQ6QlZ3oC8SxzxtDXyB+zKUtggBYDVJhC2S7UQu9VkQwloYvmoI/lkYwnjrGbZapFmg1IjrrzeisNxeORZIZHPDHcm3W1BnvfJlJVlbUQD5qe22DVlRDt8OItjojWutMR1ysTESHl84qGAwlMRga6bgiiQKMOg1MOk3uVlI/12pg1qufs7Rr6k0oZH/605/Giy++iFtvvRW/+MUvIMsyBEHAxz72MfzmN7/B2WefXapxEtE4aESh0G0inZXR64+j2xvFQDBReOvfrNfAblSDtMOkg8Oohc2oPeSK+QbryK6iiqIgFM/AH0vBF0shEEvBH02zVGUaseglLGiyYcGoMhNfNIWeXOg+4I8X/XGXSMvoGoqga2ikm4nVIBVmu9scRrTWGVl/SnScMrKCcCKDcOLwizdFAUUB3KA9eFFmrpMKu6eUzIT/RTvrrLNw1llnIRaLwe/3o66ujl1FiCqIViNihsuMGS4zkpksQvEM7Ebtce8CKAgC7CYt7CYtZmBkdjOWysAXTSEQUzuzRHN9ymOpLLu01DhBEFBv0aPeoseydgcAtXf3YCiJntxmOT3+GDzhJPI/CuFE8aY5AOA060aFbhNaHAboJc6+EZWCrEBtX5s8toWakiiMamd46AWaoxfu6yVuAnSwkk0bmEwmhmuiCqeXNHBbJye0qLMjEtrqio/LsoJIKoNIQg3e4WTx59y1szZJoohWhxGtDmPhWDKTRV8gUVRqMrq+2xdNwRdN4YMDQQCAAMBtVRdWtuaCd7PdAG2JN7UiorEysoJM8tgWaI4maQR1Yb8oQiMK0IgCpINvc5208udIGjWYZ+V8B63RtxhzTFYUnLmgcZK+89Lhe3NENKlEUYDNoIXtMCviY6kM+oMJ9AXi6A8mGLprmF7SYKbLjJmukXdAoskMegPxUcE7jkhSfctbATAUTmIoPNK/O79NfKtD3Tintc6IRpueHU2IKkQmqyCTzQLgjt9VHbL/+te/4vvf/z42btyIRCKBtrY2XHbZZbjtttvKPTQiOkYmnYTZbgtmuy2QZQWeSBK9AbWmNxQf3+YQVH3MegnzGq2Y12gFoNZ3B+Np9Abi6PXHcwF8ZGHl6G3i39rnB6CuQWjKBe/W3Kx3I3esJKIyq9qQ/fjjj+OLX/wiPvvZz+LRRx+FxWLB7t270dfXV+6hEdFxEkUBjTYDGm0GnNhRh3Aijb5AAn3BOIZCCXY1mQYEYaQ//eLcbpWKosAfS+OAP1YUvvOLbbOyoh4PxIFu9XkkUUCT3YAWh1rj3cLgTURTrCpDdm9vL77yla/gq1/9KtavX184fsYZZ5RxVERUalaDFvObtJjfZEUmK2MglMBAMAFvNIVgLF2SXTep8gmC2hfYadZhaZsDACDnNs7pDcQKobsvkEAq95dYRlYK5Sf/yD1PPnjna8VbHEY0sNSEiCZJVYbshx56CNFoFDfffHO5h0JEU0TS5Hot16kLrPOtBH2xVK6riXrLTXimB1EQ4Lbq4bbqsaxdXW0rKwqGw8nCrHZvII7+wwTvvHypSYtDnfXOl5pwcSURTVRVhuw33ngDTqcT27dvx0UXXYTNmzfD6XRi9erV+NGPfgSbzXbExw8NDcHj8RQd6+rqmswhE1GJjW4lOHohXTiRRiC3eU6+j3c8xTqT6UAUBDTYDGiwGQo7VsqKAk84ib5RwbsvEC/8MVZUagJ/7nnUxZUtdiNaHOrMd5PdeNxtL4loeqrKkN3b24tYLIY1a9bg29/+Nu6//368+eabWLt2LTZv3oy//OUvR9xedP369Vi3bt0UjpiIporVoIXVoEW7c6SlaFZWEEupPbujyVG36SxiySyiKbYSrFWiMFLnPzp4D4eT6Auq9d19ue42+Rrv0Ysr396vPo8AwGXVo9VhRHOu1rvFboRRxz7eRHRoVRmyZVlGIpHA2rVrccsttwAATj/9dOh0Olx33XV4+eWXj7jb5NVXX401a9YUHevq6sKqVasmc9hEVCYaUSiE78NJZWTEUhlEU1nE8kE8lUEsmc2F8QxYAl4bRs94jy418UVThZnu/G0irQZvBYAnnIQnnMR7PSPPVWfSqoE7F7pbHIYj/pwR0fRRlSG7vr4eu3btwnnnnVd0/IILLsB1112Hd95554ghu6GhAQ0NDZM9TCKqIurOZTo4jrCnVjyVHZkRz93mZ8KjyUwhkFH1EQUBLoseLoseH8otrsx3NVFru+PqzHcggWhypLWkP5aGP5bGlr6RnSutBgktdiOaHQY0241osRtQZ9ZBPMI7rERUe6oyZC9duhR/+9vfxhxXcns3i1wpTkSTwKjTwKjToP4w92dlpTD7rW4pn8ltY5xBNJVBPJXlbHgVGd3V5ITWkXaC4UQGfbnQnW8xGRi1c2U4kcGORBg7BsOFY3pJRLPdgGaHGrqb7exsQlTrqjJkX3LJJXjwwQfxwgsv4MMf/nDh+PPPPw8AWL58ebmGRkTTmOYou1sqilKoB89vLx9JZhDObTOfrwmmyiUIAmxGLWxGLRY0jyyyjyUz6Asm0B8c6WoyHEki/zdVMiOj2xtDtzdWeIxGENBg0xfNejfbDTBoWedNVAuqMmSfe+65WLlyJb773e9ClmUsX74cb731FtatW4cVK1bgU5/6VLmHSEQ0hiAIMOslmPUSDlWwlsrIiOTCdziZLoRwbyTFnuAVzqSXMKfBgjkNlsKxVEbt7d4XiOcWUsYxEEwUrmVWUQoLLLF/5LnqTFo1cDsMaLaptw6j9ogL+omo8lRlyAaA3//+91i3bh0efPBBrFu3Di0tLbj++uuxdu3acg+NiOi46CQRTkktTxgtnZXR44thnzeGgVACCvN2VdBJIjqcJnQc1OlmOJIsBO++oDrrnd82Hhip897aP1LnbdCKhfruZrsRTXYDGqx6SOznTVSxqjZkG41G3H333bj77rvLPRQiokml1YiY5bZgltuCRDqLfd4Yur1ReCOpcg+NxkkjjmopmDumKAqC8XRhtjs/u+2LjlzfRFrG3uEo9g5HC8dEAWiwGtBkN6DZnr81wqKv2l/tRDWF/ycSEVURg1aD+U1WzG+yIpxIY583hr3DUYQTmaM/mCqSIAhwmHRwmHRYOKrOO5HOYuCg4D0YGik3kRVgIJTAQChR1FbQqpfQZB8dvo1wW/TQiCw3IZpKDNlERFXKatBiSasdS1rt8EaS6PbGsN8X5Q6XNcKg1WCGy4wZo3Y0zcoKPJEkBnLBeyAXviOj2gqGkxmEhyLYNRQpHNOIAhqtejV829Tg3WQ3cNabaBLx/y4iohpQb9Gj3qLHiR0OBOPqtvL+WAq+aBr+WIo7WtYIjSioIdlmwLL2kePhRLoQuAdC6uy3J5wstIzMyoq6s2UwUfR8hVlvm6Ew++22srUgUSkwZBMR1ZDRpQejhRNp+KNp+GIp+KMp+KIptgysIfkdTec2WgvHMlkZQ+FkbsY7ngvfCcRSI4ssDzXrLQqA26ovhPnGXAi3s8MJ0bgwZBMRTQP5ENZRP9LpIpbKwB9LwxNOYjCkLrRj55LaIWnEwpbvgLp9vKIoCCczGMiVmgyE1NuhcKIw6y0rwGAoicFQEu8jWHg+g1ZEo23UrHduASf7ehMdGkM2EdE0ZdJJMOkktDqMANS+zmq9r7rAbvQuhlQbBGFkw6R5o2e9ZRmecLIofA+GEgiNWlCbSMvY51VbSY7mMGkLgTsfwl1WHUtOaNpjyCYiIgBqX+dWh7EQuhPpLIZCSQyG1eDFDia1SxLF3I6TxqLjsWSm0MEk/8fXQCiB9Kga/0AsjUAsje0DI9vIiwLgsqgLLfPBu9FmgMOkhciSE5omGLKJiOiQDFoNOupNhRKTWCqDwVASvmgSsVQWsVQW8VQW8XSWZSY1yqSXCj3a82RFgT+awmAogf5QAoPBBAZCSXhHbSMvK8BQOImhcBIYVXKik0Q0WvWFWW/1Qw+LXmK9N9UchmwiIjomJp2EmS4JM0e1lAPUOt94Wg3dsWQWsXSmEMBjqSxC8TQXWdYQURAK3WwWtdgLx9NZuVDfny83GQwlEYyPlB2lMjJ6/HH0+ONFz2nSadBoU3exHB2+TTrGFKpe/OklIqIJEQShUN8Ny9j7FUXt7dwXSKDXHy8KXVQ7tEULLUfEU1k1cIdHSk4GQ8mireRjqeyYHS0BwGaQ0GAzFGa/G3JBnIstqRowZBMR0aQSBAENVgMarAYsa3cgnEijNxBHr7+4lzPVJqNu7KY6+S4n+cA9mJv5HgolkcqOvOsRSmQQSkTQNarFIADYjVo02vRosBoKtw02PfQSwzdVDoZsIiKaUlaDFguatFjQZEMqI6M/qAbuvmACKZaVTAuju5zMbRjpciIrCoKxdCF0D+Y6nngiSWRH/TUWjKcRjKexc7A4fDtMWjTmAnc+gLutDN9UHgzZRERUNjpJRGe9GZ31ZsiyguFIEj3+OA74Y4gms0d/AqopoiCgzqxDnVmHBc22wvGsrMCXW2w5FFZnv4fCCQyHU8gqYzud7BgMFz2vw6gtBO8Gq55lJzQlGLKJiKgiiKKghh+bASd11sEXTaHHF0OPP4ZQnO0DpzONKMBtVWelgZHFlllZgTeSxGA4iaHczPdQKIHhSHEZUiCeRuAQM992o1YN3daRkhO3lQsuqTT4U0RERBXJadbBadbhQ+0OBGNp9Phj6PHF4OcmOZSjGfWHGVqLw/dwJJlrI6jWeh9q5jtfdrLroJpvi15CQy7U52e9G6xsNUjjw5BNREQVz27Swm6yY0mrHeFEGgf8cfT4YhiOpMo9NKpAGlEotAIcM/MdTeZC90gAP7jmO5LMIJLMYM9B3U4MWrFQcuLOBW+3lZvs0KExZBMRUVWxGrRY2KzFwmYb4qksegNxDEeS8EVTCMbT3BiHDksjjnS6GS2/wc5Qrtwkv5GOJ1zc7SSRlrHfF8N+X/HW8lqNAJelOHg3WPWot3B7+emMIZuIiKqWUafBnAYL5jSoDbrTWRn+aArDkRR80RS80SQXUNJRjd5gZ+GoBZeyoiAUT48K3YnCLPjoPt/prIL+YAL9wcRBzwvUmXSF4J2vK3db9DDquOiy1jFkExFRzdBqxJEa3ZxEOgtvNAVvJAlvJAVvNMVWgXRMREGAw6SDw6TDvMaRVoOKoiCaymIonIBn1Ky3J1y8w6WsQP3Zi6awbaC444lVL8E1KnTnA7jdyNKTWsGQTURENc2g1aDVYURrbidCRVHbwfUH1R0ID+5EQXQ0giDAopdg0Vswy1W8zWkynYUnUhy8h8JJ+KLFP2fhZAbhZGbMLpdajQC3Ra8G8NG3Fj10EktPqglDNhERTSvCqNKAJa12pLMyBkNq4O4PJhBOsF0gHT+9VoO2OhPa6kxFxzOyDF80heF8+B4VxJOj3llJZxX0BRPoO6j0BFD7fR8cvt1WPWwGdj2pRAzZREQ0rWk1YlEoiiQzGAjG0R9UNz1haQmVgiSKh1x0md9i3jMqfHvCSQyHkwjEi9tV5vt9H7zNvE4S4bLo4MrNeOdDuMusg54b7pQNQzYREdEoFr2EOQ1WzGmwFkpL/DG1n3Io11c5luJiSiqN0VvMz3YXl56kMjKGI0kMR0YC+HDuNp1Vis7rCyTQFxg7+20zSGr4tuYDuBrG68w61n5PMoZsIiKiwxhdWjJaKiMXNjIJxlOFz+MpznpT6egkES0OI1py6wny8l1PhiMpeMIJeCIpNYwfYvY7lMgglBjb81sjCnCa87PfI7PgLouOm+6UCEM2ERHROOkkcdQ23yOSmSx80RQ294bgCSfLNDqqdaO7nuTbV+alMjK80WQugCeLZsJH135nZaVQonIwvSQWh2+rHi6z2vfbwPKTY8aQTUREVCJ6SYNmuxHNdiN6fDG81xPgQkqaUjpJLPwMjqYoCiLJDIYj6uLLfPjO95Qfvd18MiOjNxBHbyA+5vktegn1+fBt1qE+NwNeb9FBq2H3k9EYsomIiCZBu9OEVocRu4Yi2NwbLJpFJJpqgiDAatDCatBipstcdF9WVhCIpQqhe3QADx5UfpLfcn6ft3jXSwCwG7VjAni9RQeneXrufMmQTURENElEUcD8JitmuszY0hfEzsEwsszaVGE04sjag/kH3Te6/MR7UAg/eAFwfm3CHk9x/bcAwGHSFma863OlJy6zugBTI9Zm/TdDNhER0STTSSI+3FGHeY1WvN8TQPchZgGJKtHhyk8AIJ7K5gL4SPj25m5Hv3OjAPDH0vDH0tg1VPwcogA4TDq4LDo4zWodeL1ZDeIOs7aqZ8AZsomIiKaIWS/h5DkuzG9K4p39AS6OpKpm1GnQphu78U5+2/n8zLc3klS3l48kMRxNFfWelxXAF1XrwoHi/t+jZ8Cd+fITsxrCM1kZUoXXgDNkExERTbF6ix7nLGrk4kiqSSPbzkvorC+u/x69AHN0+FZvU0hlDz0DfrBLP9EJ10GtNSsNQzYREVGZtDtNaHeaEIynC23WhiNJhOIM3VSbjrQAMx/AvZFUcfiOqmUo+RIUvSSi3qwrx/DHhSGbiIiozOxGLezGkR3/Eulsoc7VE07CF01ywSTVvNEBfMYhAni+BCWWylbFZjkM2URERBXGoNWgrW6k1lWWFfhiqcLmId5okrtL0rQyugSlWlTPSImIiKYpURQK214vbFaPqW+r53fzSyEQS0FWjvw8RDR1GLKJiIiq0MELy7KyUqhdzfcx5mw3UfkwZBMREdUAjSigwWpAg9VQOBZNZjAcSWIwlMRAKIEIu5gQTRmGbCIiohpl1kswj5rtjiQzGAgmMBBMYDCU4FbvRJOIIZuIiGiasOglzGmwYE6D2sXEF02poTsUhyfMDiZEpcSQTURENE05zTo4zTosarEhKyvwhNWykmgyA1lRkJUVKIpa7y0r+Q+MuY8z4kRj1UzIfuihh3DllVfCbDYjEokc/QFERERUoBEFNNkNaLIbjn7yQWKpDHp8cez3xbhVPFFOTYTs3t5e3HjjjWhpaUEwGCz3cIiIiKYVk07C/CYr5jdZGbiJcmoiZH/ta1/DqaeeCqfTiT/+8Y/lHg4REdG0NTpwx1NZ7PfFsN8Xw3AkCYV9vGkaqfqQ/dhjj+H111/H1q1b8Z3vfKfcwyEiIqIco05TFLh7/DHs98bgYeCmaaCqQ/bQ0BCuu+463H333WhraxvX4zweT9Gxrq6uUg+PiIiIcow6DeY1WjGv0YpIMoM9ngh2eyLcMIdqVlWH7Kuvvhrz58/HVVddNa7HrV+/HuvWrZukUREREdGRWPQSlrY5cEKrHQf8cez2RNAfTHB2m2pK1Ybsp556Cs8++yzeffddCIIwrsdeffXVWLNmTdGxrq4urFq1qoQjJCIioiMRBAHtThPanSZEkxns8USx2xNBLJUt99CIJqwqQ3YkEsE111yDb3zjG2hpaUEgEAAApFIpAEAgEIBWq4XZbD7k4xsaGtDQ0DBVwyUiIqKjMOslnNBmx5JWG/qCCXQNRdAXiHN2m6pWVYbs4eFhDA4O4t5778W999475v66ujpcdNFF2LBhw9QPjoiIiI6bIAhodRjR6jAillJntw/4YwjG09yRkqpKVYbspqYmvPrqq2OO33333Xj99dfxwgsvwOVylWFkREREVComnYQlrXYsabVDURSEEhkEY2kE4ikEYmkE4mlEEplyD5PokKoyZBsMBpx++uljjj/yyCPQaDSHvI+IiIiqlyAIsBu1sBu16ICpcDydlRGMpxGIpRHMhW9/LI0Ut3qnMqvKkE1EREQEAFqNCJdFD5dFX3Q8lEjDF0nBG01iOJJCIJZiuQlNqZoK2Y888ggeeeSRcg+DiIiIysxm0MJm0GKGS22CIMsKAvE0vJEkvNEUvJEUQok0F1bSpKmpkE1ERER0KKIowGnWwWnWYW7uWDorwxdNwRdNwR9TS01C8TRkBm8qAYZsIiIimpa0GhGNNgMabYbCMVlWEIyn4Y+l4I+lEciF7yRrvGmcGLKJiIiIckRRQJ1Zhzqzruh4LJXJLapMFW7DiQzLTeiwGLKJiIiIjsKkk2DSSWhxGAvHMlm5MNutlpyoHU64wJIAhmwiIiKi4yJpRLiteritI51NFEVBKJ6BL6bWeftz4ZstBacfhmwiIiKiEhEEAXaTFnaTFjNhLhwPJdLwRlLwRkZaCnKBZW1jyCYiIiKaZPmWgjNzLQWzsgJfVO3j7Y2kMBxJIprMlnmUVEoM2URERERTTCMKY0pNEukshnMz3Qf8MYTi3DK+mjFkExEREVUAg1aDtjoT2upMWNbuQDCexgF/DD2+OHzRVLmHR+PEkE1ERERUgexGLexGOxa32BFLZdDji+OAP4ahcJKtA6sAQzYRERFRhTPpJMxvsmJ+kxWJdBa9gTgO+OMYCMbZMrBCMWQTERERVRGDVoPZbgtmuy1IZ2UMBBMYCicwHFFbBrJrSWVgyCYiIiKqUlqNiHanCe1OE4DiriXDYfWWXUvKgyGbiIiIqEYUdS1pUo/FU2rXEk9EbRfoj6aQ4XT3pGPIJiIiIqphRp2maLZblhUE42n4ctvB+6Lq5jis7S4thmwiIiKiaUQUBdSZdagz6zDbrR6TZUXdlTKqznR7oykEY2nOeE8AQzYRERHRNCeKAhwmHRwmHXBQ8PZFU/DHUgjE0vDH0khlOOV9LBiyiYiIiGiMouA9SjSZQSCehj+aD94pRJIZ9u4+CEM2ERERER0zs16CWS+h1WEsHMtkZQTiaQRiaQRiKfhzt+ns9E3eDNlERERENCGSRoTLoofLoi86Hklmima8A/E0IolMmUY5tRiyiYiIiGhSWPQSLHoJ7c6RY+msDH9MXVjpz5ebJDJI1litN0M2EREREU0ZrUZEg9WABquh6LgsK4ins+pHKotEOotYKlt0LJ7KIlUlvQYZsomIiIio7ERRKNR7H4lcJW0FxXIPgIiIiIjoWImiUO4hHBOGbCIiIiKiEmPIJiIiIiIqMYZsIiIiIqISY8gmIiIiIioxhmwiIiIiohJjyCYiIiIiKjGGbCIiIiKiEmPIJiIiIiIqMYZsIiIiIqISY8gmIiIiIiqxI28OP40kk0kAQFdXV5lHQkRERESVJp8R85nxaBiyc3p6egAAq1atKu9AiIiIiKhi9fT04MQTTzzqeYKiKMoUjKfiBQIBvP7662hvb4dery/pc3d1dWHVqlXYsGED5syZU9LnpsrAa1z7eI1rG69v7eM1rn2TfY2TySR6enpw2mmnweFwHPV8zmTnOBwOXHTRRZP6GnPmzMHixYsn9TWovHiNax+vcW3j9a19vMa1bzKv8bHMYOdx4SMRERERUYkxZBMRERERlRhDNhERERFRiTFkTwG32421a9fC7XaXeyg0SXiNax+vcW3j9a19vMa1r9KuMbuLEBERERGVGGeyiYiIiIhKjCGbiIiIiKjEGLKJiIiIiEqMIZuIiIiIqMQYsidRJBLBddddh5aWFhgMBixbtgz//d//Xe5h0XF45ZVXcMUVV2DBggUwm81obW3FRRddhLfffnvMue+88w7OPvtsWCwWOBwOrF69Gnv27CnDqGkiHnroIQiCAIvFMuY+XuPq9de//hUXXngh6urqYDQaMXfuXNx5551F5/D6Vq93330Xq1atQktLC0wmExYsWIDvfve7iMViRefxGle+cDiMm266Ceeeey7cbjcEQcAdd9xxyHPHcz1/9rOfYcGCBdDr9Zg5cybWrVuHdDo9Kd8DQ/YkWr16NX77299i7dq1eOGFF/DRj34UX/jCF/D444+Xe2g0Tv/xH/+B7u5uXHvttXj++efx05/+FENDQ1i+fDleeeWVwnnbt2/H6aefjlQqhT/84Q94+OGHsXPnTpxyyinweDxl/A5oPHp7e3HjjTeipaVlzH28xtXr8ccfx2mnnQa73Y5HH30Uzz//PG6++WaMbrLF61u9tm7dipNPPhnd3d24//778dxzz+Hzn/88vvvd7+ILX/hC4Txe4+rg9Xrx4IMPIplMYtWqVYc9bzzX83vf+x6uvfZarF69Gv/zP/+Dq6++Gt///vdxzTXXTM43odCk+POf/6wAUB5//PGi4+ecc47S0tKiZDKZMo2Mjsfg4OCYY+FwWGlsbFTOOuuswrE1a9YoLpdLCQaDhWPd3d2KVqtVbrrppikZK03cihUrlJUrVyqXX365Yjabi+7jNa5OBw4cUMxms3LVVVcd8Txe3+p16623KgCUrq6uouNf+cpXFACKz+dTFIXXuFrIsqzIsqwoiqJ4PB4FgLJ27dox5x3r9RweHlYMBoPyla98pejx3/ve9xRBEJQtW7aU/HvgTPYk+dOf/gSLxYI1a9YUHf/Sl76Evr4+/P3vfy/TyOh4NDQ0jDlmsViwaNEi9PT0AAAymQyee+45XHLJJbDZbIXzOjs7ccYZZ+BPf/rTlI2Xjt9jjz2G119/HevXrx9zH69x9XrooYcQjUZx8803H/YcXt/qptVqAQB2u73ouMPhgCiK0Ol0vMZVRBAECIJwxHPGcz1ffPFFJBIJfOlLXyp6ji996UtQFAUbNmwo6fgBlotMms2bN2PhwoWQJKno+NKlSwv3U3ULBoN45513sHjxYgDA7t27EY/HC9d4tKVLl6KrqwuJRGKqh0njMDQ0hOuuuw5333032traxtzPa1y93njjDTidTmzfvh3Lli2DJEloaGjA1772NYRCIQC8vtXu8ssvh8PhwFVXXYU9e/YgHA7jueeewy9/+Utcc801MJvNvMY1ZjzXM5+7TjjhhKLzmpub4XK5JiWXMWRPEq/XC6fTOeZ4/pjX653qIVGJXXPNNYhGo7j11lsBjFzTw113RVHg9/undIw0PldffTXmz5+Pq6666pD38xpXr97eXsRiMaxZswaf+9zn8NJLL+Fb3/oWHn30UVx44YVQFIXXt8rNmDEDGzduxObNmzF79mzYbDasXLkSl19+OX76058C4P/DtWY819Pr9UKv18NsNh/y3MnIZdLRT6HjdaS3OY72FghVtttuuw2/+93v8LOf/QwnnXRS0X287tXpqaeewrPPPot33333qNeJ17j6yLKMRCKBtWvX4pZbbgEAnH766dDpdLjuuuvw8ssvw2QyAeD1rVbd3d1YuXIlGhsb8cc//hFutxt///vfcddddyESieDXv/514Vxe49pyrNdzqq87Q/Ykqa+vP+RfRT6fD8Ch/+qi6rBu3Trcdddd+N73voevf/3rheP19fUADv0uhc/ngyAIcDgcUzVMGodIJIJrrrkG3/jGN9DS0oJAIAAASKVSAIBAIACtVstrXMXq6+uxa9cunHfeeUXHL7jgAlx33XV45513cNFFFwHg9a1Wt9xyC0KhEN57773CbOWpp54Kl8uFK664ApdddhmampoA8BrXivH8m1xfX49EIoFYLFb4g3r0uQdPmJUCy0UmyQknnIBt27Yhk8kUHd+0aRMAYMmSJeUYFk3QunXrcMcdd+COO+7Av//7vxfdN3v2bBiNxsI1Hm3Tpk2YM2cODAbDVA2VxmF4eBiDg4O49957UVdXV/h44oknEI1GUVdXh3/5l3/hNa5ih6rZBFBo3yeKIq9vlXvvvfewaNGiMeUAH/3oRwGgUEbCa1w7xnM987XYB587MDCA4eHhScllDNmT5OKLL0YkEsFTTz1VdPy3v/0tWlpa8PGPf7xMI6Pjdeedd+KOO+7Ad77zHaxdu3bM/ZIkYeXKlXj66acRDocLx/fv349XX30Vq1evnsrh0jg0NTXh1VdfHfNx3nnnwWAw4NVXX8Vdd93Fa1zFLrnkEgDACy+8UHT8+eefBwAsX76c17fKtbS0YMuWLYhEIkXHN27cCABoa2vjNa4x47me559/PgwGAx555JGi53jkkUcgCMIRe3Eft5I3BaSCc845R6mrq1MefPBB5ZVXXlGuvPJKBYDy2GOPlXtoNE733HOPAkA5//zzlY0bN475yNu2bZtisViUU089VXn++eeVp59+WlmyZInS0tKiDA0NlfE7oONxqD7ZvMbVa+XKlYper1fuvPNO5f/+7/+UH/zgB4rBYFBWrFhROIfXt3o988wziiAIyvLly5Xf//73yssvv6x873vfUywWi7Jo0SIlmUwqisJrXE2ef/555cknn1QefvhhBYCyZs0a5cknn1SefPJJJRqNKooyvut51113KYIgKP/+7/+uvPbaa8qPf/xjRa/XK1deeeWkjJ8hexKFw2Hlm9/8ptLU1KTodDpl6dKlyhNPPFHuYdFxOO200xQAh/0Y7a233lLOOussxWQyKTabTVm1atWYzRGoOhwqZCsKr3G1isViys0336y0t7crkiQpHR0dyre//W0lkUgUncfrW71eeeUV5dxzz1WampoUo9GozJs3T7nhhhuU4eHhovN4jatDZ2fnYX/v7t27t3DeeK7nT3/6U2XevHmKTqdTOjo6lLVr1yqpVGpSxi8oyqj9ZImIiIiIaMJYk01EREREVGIM2UREREREJcaQTURERERUYgzZREREREQlxpBNRERERFRiDNlERERERCXGkE1EREREVGIM2UREREREJcaQTURERERUYgzZREQ0Lt///vexYcOGMccfeeQRCIKAt956a+oHRURUYRiyiYhoXA4XsomIaARDNhERERFRiTFkExHViDvuuAOCIOCDDz7AmjVrYLfb4XQ68W//9m/IZDLYsWMHzj//fFitVsyYMQM/+tGPCo9NJBK44YYbsGzZssLjPvGJT+CZZ54peg1BEBCNRvHb3/4WgiBAEAScfvrpReeEw2FcddVVcLlcqK+vx+rVq9HX1zcV/wmIiCoGQzYRUY357Gc/iw996EN46qmncOWVV+InP/kJrr/+eqxatQqf/vSn8ac//Qlnnnkmbr75Zjz99NMAgGQyCZ/PhxtvvBEbNmzAE088gU996lNYvXo1Hn300cJzb9y4EUajERdeeCE2btyIjRs3Yv369UWv/+UvfxlarRaPP/44fvSjH+G1117DpZdeOqX/DYiIyk0q9wCIiKi0vvKVr+Df/u3fAABnn302/vd//xc///nP8fTTT+Piiy8GAJx++ul47rnn8Lvf/Q6rV6+G3W7Hb37zm8JzZLNZnHXWWfD7/bj//vtx2WWXAQCWL18OURThdruxfPnyQ77++eefjwceeKDwtc/nw0033YSBgQE0NTVN1rdNRFRROJNNRFRjVqxYUfT1woULIQgCLrjggsIxSZIwZ84c7Nu3r3DsySefxCc/+UlYLBZIkgStVotf//rX2LZt27he/zOf+UzR10uXLgWAotciIqp1DNlERDXG6XQWfa3T6WAymWAwGMYcTyQSAICnn34an/3sZ9Ha2orHHnsMGzduxJtvvokrrriicM6xqq+vL/par9cDAOLx+Hi/FSKiqsVyESIiwmOPPYaZM2fi97//PQRBKBxPJpNlHBURUfXiTDYREUEQBOh0uqKAPTAwMKa7CKDOTHNWmojoyBiyiYgIK1aswI4dO3D11VfjlVdewW9/+1t86lOfQnNz85hzTzjhBLz22mt49tln8dZbb2HHjh1lGDERUWVjuQgREeFLX/oShoaG8J//+Z94+OGHMWvWLNxyyy04cOAA1q1bV3TuT3/6U1xzzTX4/Oc/j1gshtNOOw2vvfZaeQZORFShBEVRlHIPgoiIiIiolrBchIiIiIioxBiyiYiIiIhKjCGbiIiIiKjEGLKJiIiIiEqMIZuIiIiIqMQYsomIiIiISowhm4iIiIioxBiyiYiIiIhKjCGbiIiIiKjEGLKJiIiIiEqMIZuIiIiIqMQYsomIiIiISowhm4iIiIioxP5/+0+4jC6fk3kAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " 100.00% [8000/8000 00:02<00:00 Sampling 4 chains, 0 divergences]\n", + "
\n", + " " ], - "source": [ - "fig, ax = plt.subplots(figsize=(7, 3), dpi=120)\n", - "bmb.interpret.plot_predictions(\n", - " model_interaction, \n", - " idata_interaction, \n", - " \"math\", \n", - " ax=ax, \n", - " pps=False\n", - ");" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The plot above shows that as `math` increases, the mean `daysabs` decreases. However, as the model contains an interaction term, the effect of `math` on `daysabs` depends on the value of `prog`. Therefore, we will use `plot_predictions` to plot the conditional adjusted predictions for each level of `prog`." + "text/plain": [ + "" ] }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtkAAAFhCAYAAAClPLYbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABJ0AAASdAHeZh94AACnyUlEQVR4nOydd5wdZb3/39NO35ZNNgVSCJ2EqggiSBOkShE7IopXEFT0ooCUQGzXAoqo2AErgvywwQUvSPGqcFFRJKFIgEBI3WzfPWXq749nZs6c3bNJNrub3U2+79frycw8M2fOc07OnvOZ73ye71cLgiBAEARBEARBEIQxQ5/oAQiCIAiCIAjC9oaIbEEQBEEQBEEYY0RkC4IgCIIgCMIYIyJbEARBEARBEMYYEdmCIAiCIAiCMMaIyBYEQRAEQRCEMUZEtiAIgiAIgiCMMSKyBUEQBEEQBGGMEZEtCIIgCIIgCGOMiGxBEARBEARBGGNEZAuCIAiCIAjCGDOpRPaDDz7IBz7wAfbaay/y+Tw77bQTp512Gn//+99rjjv33HPRNG1I22uvvSZo5IIgCIIgCIJQxZzoAST59re/TUdHBxdffDH77LMP7e3tXH/99Rx66KH8/ve/55hjjomPzWazPPjggzWPz2az23rIgiAIgiAIgjAELQiCYKIHEbFhwwba2tpq+vr7+9ltt91YvHgxDzzwAKAi2XfeeSf9/f1j9tzd3d088sgjzJ07l3Q6PWbnFQRBEARBEKY+lUqFVatWceSRR9Lc3LzZ4ydVJHuwwAYoFArss88+rFq1alyf+5FHHuH0008f1+cQBEEQBEEQpja//vWvOe200zZ73KQS2fXo6enhiSeeqLGKAJRKJWbNmkV7ezuzZ8/m9NNP5zOf+QzTpk3bqueZO3cuoN643XbbbdTjFgRBEARBELYfVqxYwemnnx5rxs0x6UX2RRddxMDAAFdeeWXct//++7P//vuzePFiQEWhv/a1r/GHP/yBv/71rxQKhU2ec8OGDbS3t9f0RZHy3XbbjUWLFo3xqxAEQRAEQRC2B7bUVjypRfbVV1/Nz372M77xjW/wmte8Ju7/xCc+UXPccccdx4EHHshZZ53F97///SH7B3PTTTexdOnScRmzIAiCIAiCIExakb106VI+97nP8fnPf56PfOQjmz3+jDPOIJ/P89hjj2322AsvvJC3ve1tNX3RLQBBEARBEARBGC2TUmQvXbqUa6+9lmuvvZYrrrhiix8XBAG6vvnU321tbXUnWQqCIAiCIAjCWDCpitEAfPazn+Xaa6/lqquu4pprrtnix915550Ui0UOPfTQcRydIAiCIAiCIGyeSRXJvv7661myZAknnHACJ5988hDrx6GHHsrLL7/Mu9/9bt75zney2267oWkajzzyCDfccAOLFi3igx/84ASNXhAEQRAEQRAUk0pk/+53vwPgvvvu47777huyPwgCGhsbmTlzJl/96ldZv349nucxf/58Pvaxj3HFFVeQz+e39bAFQRAEQZgiBEFAX18fvb29OI7DJKrJJ0wAuq6TTqeZOXPmFlmOR8KkEtkPP/zwZo9paWnhrrvuGv/BCIIgCIKwXeG6LqtXr6ZYLAJgmia6rqNp2gSPTJgIgiDAtm1KpRKVSoV58+aNqdCeVCJbEARBEARhvOjq6qJYLNLU1ERbWxumKTJoRycIAjZs2EBnZyfr169n9uzZY3buSTfxURAEQRAEYTzo7+/HMAxmz54tAlsAQNM02traMAyDSqUypucWkT3RlLrB9yZ6FIIgCIKw3RMEAaZpij1EqEHTNAzDwPf9MT2viOyJxB6Af90Oy38F/e2bP14QBEEQBEEYc8bjwkvulUwkngOVPli/HPrWwfzXw+wDYYxntwqCIAiCIAjbFhHZkwErB50vQrEDulfBLm+E3LSJHpUgCIIgCIKwlUjIdDJgZWHmIrX+4iPKQrL2XyC5OwVBEARBEKYkEsmeLGg6NM+D7DRofy6Mar8CuxwBmaaJHp0gCIIgCIIwAiSSPdlIF2DmYvBseOEhePJ22PCMRLUFQRAEQRgTSqXSRA9hh0BE9mREN6BlF2ieqyZFLv81PP8/UOmf6JEJgiAIgjAJuPbaa9E0jX/84x+ceeaZNDY20tTUxNlnn017ezVj2YIFCzjllFO46667OPDAA8lkMixduhSAZcuWcdppp9HS0kImk+GAAw7gRz/60ZDnWr58Occffzy5XI4ZM2Zw0UUXcc8996Bp2hZV695REbvIZCbTBLP2ha6VsOIB6F0NC94I03eb6JEJgiAIgjAJOOOMM3j729/OBRdcwPLly7n66qt5+umn+b//+z8sywLgiSee4JlnnuGqq65il112IZ/P89xzz3HYYYfR1tbGjTfeSGtrKz/96U8599xzWb9+PZdeeikAa9eu5cgjjySfz/Ptb3+btrY2brvtNj7ykY9M5MueEojInuzoBrTuCqUuWPNPGNgIsw+AuQdDtmWiRycIgiAIwgRy5pln8uUvfxmA448/npkzZ/Ke97yHO+64g/e85z0AbNiwgaeffpo99tgjfty73vUubNvmoYceYu7cuQCcdNJJdHd3s3TpUs4//3yampr42te+RmdnJ3/84x/ZZ599ADjxxBM54YQTWLly5bZ9sVMMsYtMFbItMHNfVSHy37+Hf/wcXn4UnPJEj0wQBEEQhAkiEtIRb3/72zFNk4ceeiju22+//WoENsCDDz7IscceGwvsiHPPPZdiscijjz4KwCOPPMLixYtjgR3xrne9ayxfxnaJRLKnEoYJ03dX3uzOF6FvDbQ/CzsfDG37SBEbQRAEQdjBmDVrVs22aZq0trbS0dER982ePXvI4zo6Our2z5kzJ94fLXfZZZchx82cOXNU494REFU2FUkXYNZiyDQrC8nyu+CpO6Hr5YkemSAIgiAI25B169bVbLuuS0dHB62trXFfvZLhra2trF27dkj/mjVrAJg+fXp83Pr16zf7vMJQRGRPZfLTYfZ+gAYv/1kVsXnuPih2TvTIBEEQBEHYBvzsZz+r2b7jjjtwXZejjjpqk4879thjefDBB2NRHfHjH/+YXC7HoYceCsCRRx7JsmXLePrpp2uO+8UvfjH6wW/niF1kqqPp0LQzFNpUSfbn/wc2Pg87HQRzDoRUbqJHKAiCIAjCOHHXXXdhmibHHXdcnF1k//335+1vf/smH3fNNddw9913c/TRR7NkyRKmTZvGz372M+655x6+/OUv09SkCuF9/OMf5+abb+bEE0/kM5/5DDNnzuTnP/85zz77LAC6WFWHRd6Z7QUjpbKQTFsI3S/Ds3fDk7ep8uyeO9GjEwRBEARhHLjrrrt49tlnOfPMM1myZAmnnnoq//M//0Mqldrk4/bcc0/+8pe/sOeee3LRRRdx+umns2zZMm655RY+9alPxcfNmTOHRx55hD322IMLLriA97znPaRSKT7zmc8A0NzcPJ4vb0ojkeztjVQeZi5SZdnX/Qt6XoW1T8Ls/WHGnmCmJ3qEgiAIgiCMEfPmzeO3v/3tsPs3lWZv8eLFm3xsxKJFi7j//vtr+j70oQ9RKBTYa6+9tnisOxoisrdXcq0q7V/fenj1r9CxAprnwaz9oG1vNXlSEARBEARhM3zmM59hzpw5LFy4kP7+fu6++25+8IMfcNVVV202Yr4jIyJ7e0bToXE2NMyEgQ5Y9xR0vqBE96x9VcQ7N22iRykIgiAIwiTGsiy+8pWv8Oqrr+K6Lrvvvjtf/epXufjiiyd6aJMaEdk7ApoOhRmqlbpUju2ulbDmCWhbpNIBNsza7GkEQRAEQZgcXHvttVx77bXb5Lk+/elP8+lPf3qbPNf2hIjsHY1si2qVPuhdo3Jrr/2n8mvP2hea50OdfJqCIAiCIAjCliMie0cl3aCEtVNSYnvFA7B+ucpQMucgtRQEQRAEQRC2ChHZOzpWVglqz4a+dfDSn6DjRZWNZP7rIdM00SMUBEEQBEGYcojIFhRGSmUfaZij8myvuF/5tucdqmwkujHRIxQEQRAEQZgyiMgWajFMFdku90L7s9C/XqX/W3C4TI4UBEEQBEHYQqTio1CfTKOKYGs6rPxfePIXsPJP4JQnemSCIAiCIAiTHolkC8Oj6dC0M+Smq7R/AxuUX3v+YTB9t4kenSAIgiCMGY/8u53+sjsu5y5kTI7cY8a4nFuYvIjIFjaPlYGZ+8BAO6z+O/StlYmRgiAIwnZFf9nlgWfWk7HGdg5S2fF4094zx/ScwtRARLaw5eRnQKZFJkYKgiAI2yUZy2DfncY2ePTU6p4xOc+NN97IxRdfzKJFi1i2bNmYnHOkaJrGNddcs82K4CRZsGABRx11FLfeeus2f+6tRUS2MDLqTYxs/zfsdCBM2xV0sfkLgiAIwlhz8803A7B8+XL+7//+j0MOOWSCR7Rt+dWvfkVjY+NED2NEiCISto7kxMiX/wRP3QFP3QkbV4DvT/ToBEEQBGG74W9/+xtPPvkkJ598MgA//OEPJ3hE254DDzyQXXedWoXyRGQLW080MXLWvuB78PKf4anbYZmIbUEQBEEYKyJR/cUvfpHDDjuMX/ziFxSLxZpjVq9ezYc+9CHmzp1LKpVizpw5nHXWWaxfvx6AcrnMJZdcwgEHHEBTUxPTpk3j9a9/Pb/5zW+GPF9vby//8R//QWtrK4VCgRNOOIF///vfdcf2/PPP8+53v5u2tjbS6TR777033/rWt2qOefjhh9E0jZ///OdcdtllzJ49m0KhwKmnnsr69evp6+vjQx/6ENOnT2f69Om8//3vp7+/v+YcCxYs4Nxzz63p6+7u5pJLLmHhwoWk02na2to46aSTePbZZ0f0/o4XYhcRRo9uQtNcaJitJkWu/LPKrT19d1WivWUXsZEIgiAIk54X2/t57IWNY3rOgYqLocPJ+83eqseXSiVuu+02Dj74YBYvXswHPvABPvjBD/LLX/6S973vfYAS2AcffDCO43DFFVew33770dHRwe9//3u6urqYOXMmlUqFzs5OPvnJT7LTTjth2zYPPPAAZ555JrfccgvnnHMOAEEQcPrpp/OXv/yFJUuWcPDBB/PnP/+ZE088ccjYnn76aQ477DDmzZvH9ddfz6xZs/j973/Pxz72MTZu3Mg111xTc/wVV1zB0Ucfza233srKlSv55Cc/ybve9S5M02T//ffntttu4x//+AdXXHEFDQ0N3HjjjcO+L319fRx++OGsXLmSyy67jEMOOYT+/n7++Mc/snbtWvbaa6+ter/HEhHZwtiRFNu9a1WJ9o3PV8X2tIWgaRM9SkEQBEGoy0DF5aWO4uYPHCGd/fZWP/bOO++kp6eH8847D4B3vOMdfPzjH+eHP/xhLLKXLFnCxo0befLJJ9l7773jx7797W+P15uamrjlllvibc/zOPbYY+nq6uKGG26IRfbvf/97HnroIb7+9a/zsY99DIDjjjuOVCrFlVdeWTO2//zP/6ShoYE//elPsV/6uOOOo1Kp8MUvfpGPfexjtLS0xMfvt99+NWN49tlnueGGG/jYxz7GV77ylfjxjz76KD/72c82KbJvuOEGli9fzv3338+b3vSmuP/MM8/ckrd1myAiWxh7dBOa50KjiG1BEARh6pBPm+zSmhvTcw5UXKYVUlv9+B/+8Idks1ne+c53AlAoFHjb297GLbfcwvPPP8/uu+/Ovffey9FHH10jsOvxy1/+khtuuIEnn3ySgYGBuD+TycTrDz30EADvec97ah777ne/u0Zkl8tl/vCHP/DhD3+YXC6H61ZzjJ900kl885vf5LHHHquJgJ9yyik154zGG3nNk/2//vWv6e/vp1Ao1H0t9957L3vssUeNwJ5siMgWxo9IbDfMhr41qmLkxuehdTeYuQhadwdz6794BEEQBGEsWTijwGkH7DSm53xqdQ+vXzh9qx67YsUK/vjHP/LWt76VIAjo7u4G4KyzzuKWW27h5ptv5r/+679ob29n55133uS57rrrLt7+9rfztre9jU996lPMmjUL0zT59re/HWcuAejo6MA0TVpbW2seP2vWrJrtjo4OXNflG9/4Bt/4xjfqPufGjbXWm2nTptVsp1KpTfaXy+VhRXZ7ezvz5s0b7uVOCkRkC+OPYULzPGiYE4rtP8OGZ6BxJyW22/aCbMvmzyMIgiAIOxA333wzQRBw5513cueddw7Z/6Mf/YjPfe5zzJgxg1dffXWT5/rpT3/KLrvswu23346WuJtcqVRqjmttbcV1XTo6OmqE9rp162qOa2lpwTAM3vve93LRRRfVfc5ddtlls69xa9mS1zzRiMgWth2R2G7aGQY2wobl0PE8rJoNM/aCtr2Vp1smSQqCIAg7OJ7n8aMf/Yhdd92VH/zgB0P233333Vx//fXce++9nHjiifzkJz/hueeeY88996x7Pk3TSKVSNQJ73bp1Q7KLHH300Xz5y1/mZz/7WezJBvj5z39ec1wul+Poo4/mH//4B/vtt18cfd5WnHjiiSxZsoQHH3yQY445Zps+95YiIlvY9mg6FNpUq/SpjCRdK2HNP1Qmkpn7wPQ9VDl3QRAEQdgBuffee1mzZg1f+tKXOOqoo4bsX7x4Md/85jf54Q9/yDe/+U3uvfde3vjGN3LFFVew77770t3dzX333cd//ud/stdee3HKKadw1113ceGFF3LWWWexatUqPvvZzzJ79myef/75+LzHH388b3zjG7n00ksZGBjgta99LX/+85/5yU9+MmQMX//61zn88MM54ogj+PCHP8yCBQvo6+tjxYoV/O53v+PBBx8ct/fn4x//OLfffjunnXYal19+Oa973esolUo88sgjnHLKKRx99NHj9txbiohsYWJJN6jm2dC3Hl75C7RHVpJ9YMbekG/d/HkEQRAEYTvihz/8IalUive///1190+fPp0zzjiDO++8k+985zs8/vjjXHPNNXzxi1+ko6ODGTNmcPjhh8d+5/e///1s2LCB73znO9x8880sXLiQyy+/nFdffZWlS5fG59V1nd/+9rf853/+J1/+8pexbZs3vOEN/Pd///eQtHj77LMPTzzxBJ/97Ge56qqr2LBhA83Nzey+++6cdNJJ4/fmQJzV5Nprr+V73/seS5cupaWlhYMPPpgPfehD4/rcW4oWBEEw0YOIePDBB/npT3/KX/7yF1atWkVzczOvfe1rWbJkCa95zWtqjn3iiSe49NJLeeyxxzBNk2OOOYbrrruOhQsXbtVzL1++nMWLF7Ns2TIWLVo0Fi9n85S64a8/AHtA2SgECHwodkDfOjVxsmGWimq37gYtCyS6LQiCIGw1L774IkBdrXDPv9bypxUb2XenpjF9zqdW93D4btO3Ok+2sG3Y1GcjYqRacVJFsr/97W/T0dHBxRdfzD777EN7ezvXX389hx56KL///e9jz82zzz7LUUcdxQEHHMAdd9xBuVxmyZIlHHHEEfzzn/9kxowZE/xKhK1G0yE/QzW7X6UA7HoZVv9d2Uum7w7TdlUXJbox0aMVBEEQtiPKjsdTq3vG/JzCjsmkEtnf+ta3aGtrq+k74YQT2G233fjCF74Qi+wlS5aQTqe5++674+Tnr3nNa9h999257rrr+NKXvrTNxy6MA6mCEtW+B8VO6HgR2v8NhekqU8n0PVTO7YZZkndbEARBGBWFjMmb9p45bucWdjwm1f/6YIENKun6Pvvsw6pVqwBwXZe7776bc845JxbYAPPnz+foo4/mV7/6lYjs7Q3dgMIM1TxbZSZZ9y/Y8LSKeDfNU2K8daGkAhQEQRC2iiP3kLvgwtgyqUR2PXp6enjiiSfiKPYLL7xAqVRiv/32G3Lsfvvtx/3330+5XK6pXiRsRxgpaJyjml2EgXY1WXLdk0pwT1sYCm4pdCMIgiAIwsQx6UX2RRddxMDAQFzKs6OjAxhaHSjqC4KArq4uZs8efoLBhg0baG9vr+lbsWLFGI5a2CakcpCar/zZlV4V4e5aCWufVH2z9oW2fdRxgiAIgiAI25BJLbKvvvpqfvazn/GNb3xjSHYRbRMe3E3tA7jppptq0tUIUxxNg0yTaoGvottr/wkdK+DVvyqxPXORWEkEQRAEQdhmTFqRvXTpUj73uc/x+c9/no985CNxf1TiM4poJ+ns7ETTNJqbmzd57gsvvJC3ve1tNX0rVqzg9NNPH/W4hQlG06EwE/JtUOqCjSug6yWVnaRtkRLcDeMzsUUQBEEQBCFiUorspUuXcu2113LttddyxRVX1OzbddddyWazPPXUU0Me99RTT7Hbbrtt1o/d1tZWd5KlsB2haZCbplqlD3pXq1SAa/8JM/ZUYrt5vmQlEQRBEARhXNAnegCD+exnP8u1117LVVddxTXXXDNkv2manHrqqdx111309fXF/a+88goPPfQQZ5555rYcrjAVSDfAjL2gdVdVAGjFA/DkL2DZndD+HHjuRI9QEARBEITtjEkVyb7++utZsmQJJ5xwAieffDKPPfZYzf5DDz0UUJHugw8+mFNOOYXLL788LkYzffp0LrnkkokYujAVsHJKaHu2qij50p9gwzOquM3CI6Fp54keoSAIgjBRrHhA3fkcD9INsNubxufcwqRlUons3/3udwDcd9993HfffUP2RxXg99prLx5++GEuu+wyzjrrrJqy6lLtUdgsRkplH2ncCfrXw6rH1WTJ+W+AnQ6SSpKCIAg7IpU+eO5eMLNje163BHueOLbnFKYEk0pkP/zww1t87Gte8xoeeOCB8RuMsP2jGyrfdm6aykTy3H9D7xoV1c42T/ToBEEQhG2NmYU5B4ztOdf8c2zPJ0wZJp0nWxC2OWZG5dMGeOkReOqXsPH5iR2TIAiCICT417/+xXnnnRcngMhms+y+++6cf/75/O1vf5vo4Y0Zt956K5qmsXLlyokeyqiZVJFsQZgwNF1ZSMo9sG6ZSv8393Uw7zCpHCkIgiBMKN/97nf5yEc+wp577snFF1/MokWL0DSNZ555httuu42DDz6YFStWsOuuu070UIUEIrIFIUmmCWYuhs4V8Pz90LsWdjsWCpLyURAEQdj2/PnPf+bCCy/k5JNP5s477ySVqgZ+jjnmGC666CJ++ctfks2OsZd8jCgWi+RyO2blZbGLCMJgDFOl/EsVYNVj8K9fqlLt4cRbQRAEQdhWfOELX8AwDL773e/WCOwkb3vb25gzZ068/be//Y23vOUtTJs2jUwmw4EHHsgdd9xR85jIlvHQQw/x4Q9/mOnTp9Pa2sqZZ57JmjVrhjzH7bffzutf/3ry+TyFQoE3v/nN/OMf/6g55txzz6VQKPDUU09x/PHH09DQwLHHHgvA/fffz2mnncbOO+9MJpNht9124/zzz2fjxo2jfYsmLRLJFoThaJgF6UboeB7K3SqqvcsRkMpP9MgEQRCE8aBjBaz809ie0+4H3YRFZ4z4oZ7n8dBDD/Ha176W2bNnb9FjHnroIU444QQOOeQQvvOd79DU1MQvfvEL3vGOd1AsFjn33HNrjv/gBz/IySefzM9//nNWrVrFpz71Kc4++2wefPDB+JgvfOELXHXVVbz//e/nqquuwrZtvvKVr3DEEUfw+OOPs88++1Rfrm3zlre8hfPPP5/LL78c11W1KF544QVe//rX88EPfpCmpiZWrlzJV7/6VQ4//HCeeuopLMsa8fsz2RGRLQibIpVT9pHul+GFP0D/Olh4NLTMn+iRCYIgCGNNpV/ZBcea4tZFazdu3EipVGL+/KG/OZ7nxamNAQzDQNM0LrzwQhYtWsSDDz6IaSqZ9+Y3v5mNGzdyxRVXcM4556DrVSPDCSecwI033hhvd3Z2cumll7Ju3TpmzZrFqlWruOaaa/jIRz5Sc9xxxx3H7rvvztKlS7n99tvjfsdxWLJkCe9///trxnvBBRfE60EQcNhhh3HUUUcxf/587r33Xt7ylrds1Xs0mRGRLQibQzdg2kIodsKaf8DARpWNZNa+0Dx3okcnCIIgjBXpAkzbbWzPafdDbvrYnhOVyvjJJ5+Mt7/yla9w+umn8+yzz3LdddcBxFFkgJNOOom7776b5557jr333jvuHyxu99tvPwBefvllZs2axe9//3tc1+Wcc86pOV8mk+HII4/koYceGjK2t771rUP6NmzYwJIlS7jnnntYs2YNvu/H+5555hkR2YKwQ5ObpqwiPavg+f9RWUim7w6z94OWXUCXKQ6CIAhTmtbdYN+zxvaca/4Juxy+VQ+dPn062WyWl19+eci+n//85xSLRdauXRsL1PXr1wPwyU9+kk9+8pN1zznYA93a2lqznU6nASiVSjXnPPjgg+ueTx/025fL5WhsbKzp832f448/njVr1nD11Vez7777ks/n8X2fQw89NH6u7Q0R2YIwEsy0+hJ2K9C3Fl58GNrD0uyz91f7DPmzEgRBEEaPYRgcc8wx/M///A9r166t8WVHPuhkPunp01XE/NOf/jRnnnlm3XPuueeeIxpDdM4777yzrm1lMJqmDelbtmwZTz75JLfeeivve9/74v4VK8bBmjOJEDUgCFuDmYaWBdDoKJ/2y3+Bjc+piPbs/VV2EsmvLQiCIIyST3/609x7771ccMEF3HnnnZucILjnnnuy++678+STT/KFL3xhTJ7/zW9+M6Zp8sILL9S1gWwJkfCOouQR3/3ud0c9vsmMiGxBGA2GBU1zoWEO9G+A1X9Ts9NbFsCs/aBtbzV5UhAEQRC2gje84Q1861vf4qMf/SgHHXQQH/rQh1i0aBG6rrN27Vr+3//7fwCxReO73/0uJ554Im9+85s599xz2Wmnnejs7OSZZ57hiSee4Je//OWInn/BggV85jOf4corr+TFF1/khBNOoKWlhfXr1/P444+Tz+dZunTpJs+x1157seuuu3L55ZcTBAHTpk3jd7/7Hffff//WvSlTBBHZgjAW6AY0zoaGmWpi5Np/QscLSnTP2k9Ft0VsC4IgCFvBBRdcwOtf/3q+/vWv87WvfY01a9agaRo777wzhx12GH/4wx845phjADj66KN5/PHH+fznP8/HP/5xurq6aG1tZZ999uHtb3/7Vj3/pz/9afbZZx++/vWvc9ttt1GpVJg1axYHH3xwTdaQ4bAsi9/97ndcfPHFnH/++ZimyZve9CYeeOAB5s2bt1VjmgpoQSAVNgCWL1/O4sWLWbZsGYsWLdo2T1rqhr/+AOwBVdJb2H4IAih1Qu8aZS2ZthB2PlilAxTPtiAIwoTw4osvArBw4cKhO5f/Cp67F8wxrpzolmDPE7cqT7aw7djkZyNkpFpRfu0FYTzQNMi1qlbqgvXLlODe8AzMO0SJbkEQBGHykG5QYni8zi3scIjIFoTxJtsCmSboWw+vPAbdr8DMRTD3ECjMmOjRCYIgCAC7vWmiRyBsZ4jIFoRtgaYrz3Z+usqzveIP0PkCzDkQdnqNlGoXBEEQhO0MEdmCsC0xLGUVsYvQtRJ610L7c+LXFgRBEITtDPlFF4SJIJWDmfuEfu3l0Lsa1j9d9WvXSeYvCIIgCMLUQUS2IEwkSb/2qv+DntCvPfsAaNpZxLYgCIIgTFFEZAvCRBP7tWdU/drrn4bWXZWFREq1C4IgCMKUQ365BWGyYJgwbRdwK9C3Fl76I2x4WuVQn7kvtO0lEyQFQRAEYYogIlsQJhtmWpVlb5oLAxtgzT9g4/OwaidlJZm5GPKtEz1KQRAEQRA2gYhsQZis6AY0zIbCLDVBsvNF6HoJVv8dZuylBHfzPPFtC4IgjAF/Xv1n+p3+cTl3wSrwhp3eMC7nFiYvIrIFYbKjaZCbppo9oCpHdv8e1v0LWhbCrMUqI4mVmeiRCoIgTFn6nX4eXvUwGXNsv0vLbpmj5h41pucUpgYisgVhKpHKw/TdwbOhbx28/Gdof0YVuZm2q7KZNM9TKQIFQRCEEZExM+zTus+YnvPpjqe36nFnnHEG9913H2vXrqW5ubnuMe95z3u44447ePXVV5k5c+YoRjlybrrpJnK5HOeee25N/8qVK9lll1245ZZbhuybCK699lqWLl1KEATb/Ln1bf6MgiCMHiOlxPSsfcHMQNfL8Ny98K/b4W8/hGf/W+XfrozPrU9BEARhfDnvvPMol8v8/Oc/r7u/p6eHX/3qV5xyyinbXGCDEtm33nrrkP7Zs2fz6KOPcvLJJ2/zMU02JJItCFMZ3YBCm2q+p7zbPath4wqVfzvfCi27qAh3y3zVJwiCIEx6TjzxRObMmcPNN9/MhRdeOGT/bbfdRqlU4rzzzpuA0Q1POp3m0EMPnehhTAokki0I2wu6oWwjM/ZUEe5Mo7KUrPgDPPVL+NstsOxXKltJsXOiRysIgiBsAsMweN/73sff//53nnrqqSH7b7nlFmbPns2JJ57IsmXLOO2002hpaSGTyXDAAQfwox/9aMhjuru7ueSSS1i4cCHpdJq2tjZOOukknn322fiYpUuXcsghhzBt2jQaGxs56KCD+OEPf1hjt1iwYAHLly/nkUceQdM0NE1jwYIFgLKLaJo2JMr9pz/9iWOPPZaGhgZyuRyHHXYY99xzT80xt956K5qm8dBDD/HhD3+Y6dOn09rayplnnsmaNWtqjr399ts5/vjjmT17Ntlslr333pvLL7+cgYGBkb7V44ZEsgVhe0Q3INeqWuBDuQcGNkLnS7C6oPqb56qJky3zlTgXBEHYwVnZs5K/rv3rmJ5zwBnA0AzevODNI37sBz7wAb74xS9y880387WvfS3uf/rpp3n88ce5/PLLWbFiBYcddhhtbW3ceOONtLa28tOf/pRzzz2X9evXc+mllwLQ19fH4YcfzsqVK7nssss45JBD6O/v549//CNr165lr732ApRIPv/885k3bx4Ajz32GB/96EdZvXo1S5YsAeBXv/oVZ511Fk1NTdx0002AimAPxyOPPMJxxx3Hfvvtxw9/+EPS6TQ33XQTp556KrfddhvveMc7ao7/4Ac/yMknn8zPf/5zVq1axac+9SnOPvtsHnzwwfiY559/npNOOomPf/zj5PN5nn32Wb70pS/x+OOP1xw3kYjIFoTtHU1X5duzLUpwV/qg2AFdK2H1E0pwN+4MrQuheb6ynkhaQEEQdkCKTpGX+14e8/N2lbu26nG77bYbb3zjG/npT3/Kl7/8ZSzLAuDmm28GlAhfsmQJtm3z0EMPMXfuXABOOukkuru7Wbp0Keeffz5NTU3ccMMNLF++nPvvv583velN8XOceeaZNc95yy23xOu+73PUUUcRBAFf//rXufrqq9E0jQMPPJBsNktjY+MWWUMuv/xyWlpaePjhhykUCgCccsopHHDAAXzyk5/k7W9/O1rid+eEE07gxhtvjLc7Ozu59NJLWbduHbNmzQLgqquuivcHQcAb3vAG9t57b4488kj+9a9/sd9++23ZmzyOiMgWhB0JTVe+7EwTBAHY/Upwv/IXWPuPUHDvpFICtsxXObp1cZUJgrBjkLNyzG+YP6bnHHAGaMm0bPXjzzvvPM455xx++9vf8ta3vhXXdfnpT3/KEUccwe67786DDz7IscceGwvsiHPPPZd7772XRx99lBNOOIF7772XPfbYo0Zg1+PBBx/kC1/4An/961/p7e2t2bdhw4YRT7IcGBjg//7v//jwhz8cC2xQdpj3vve9XHbZZTz33HNxJB3gLW95S805IsH88ssvxyL7xRdf5KqrruLBBx9kw4YNNXaWZ555RkS2IAgTiKZBukG1lgWh4O6EVx+HtU8qwd0wC1p3hRl7S5VJQRC2exY0LeCkhSeN6Tmf7niag2cdvNWPP+uss/joRz/KLbfcwlvf+lb++7//m/Xr1/OlL30JgI6ODmbPnj3kcXPmzIn3A7S3t8cWkOF4/PHHOf744znqqKP4/ve/z84770wqleLXv/41n//85ymVSiMef1dXF0EQbNEYI1pba39vIitK9Pz9/f0cccQRZDIZPve5z7HHHnuQy+VYtWoVZ5555laNczwQkS0IgiJVUK15HthFKHWoSZLrl0HT32Gn18CcgyQHtyAIwjYkm83yrne9i+9///usXbuWm2++mYaGBt72trcBSpCuXbt2yOOiiYLTp6s5NzNmzODVV1/d5HP94he/wLIs7r77bjKZalGeX//611s9/paWFnRd36IxbikPPvgga9as4eGHH+bII4+M+7u7u7d6nOOB3AcWBGEoqRw0zYXZ+yufdvcqePYeePI2WLcMfH+iRygIgrDDcN555+F5Hl/5ylf47//+b975zneSy6mAx7HHHhuLziQ//vGPyeVysWf6xBNP5N///vcmJwVqmoZpmhiGEfeVSiV+8pOfDDk2nU5vUcQ4n89zyCGHcNddd9Uc7/s+P/3pT9l5553ZY489NnueweOMxpDku9/97ojOM96IyBYEYdOk8jBzkbKPrP0XLL8Llv8/JbwFQRCEcee1r30t++23HzfccAOO49Tkxr7mmmuwLIujjz6an/3sZ9x7772cffbZ3HPPPVx77bU0Nan6CB//+MdZtGgRp512Gp///Oe5//77+e1vf8sll1zCQw89BMDJJ59Mf38/7373u7n//vv5xS9+wRFHHFE3c8i+++7Lk08+ye23385f//rXumkGI/7rv/6Ljo4Ojj76aO68805++9vfctJJJ7Fs2TKuu+66mkmPW8Jhhx1GS0sLF1xwAb/61a+4++67ede73sWTTz45ovOMNyKyBUHYMnKtMHs/QIOVf4J//QKevx9K3RM9MkEQhO2e8847jyAI2GeffTjkkEPi/j333JO//OUv7Lnnnlx00UWcfvrpLFu2jFtuuYVPfepT8XENDQ386U9/4rzzzuN73/seJ598Mv/xH//Bc889F3ujjznmGG6++WaeeuopTj31VK688krOOussLr/88iHjWbp0KUceeST/8R//wete9zpOPfXUYcd+5JFH8uCDD5LP5zn33HN55zvfSU9PD7/97W+HpO/bElpbW7nnnnvI5XKcffbZfOADH6BQKHD77beP+FzjiRZMRDH3Scjy5ctZvHgxy5YtY9GiRdvmSUvd8NcfgD2gfLCCMFVwK9D9Cni2ykSy82th9gFgpiZ6ZIIgCMPy4osvArBw4cIh+36/8vc8tvYx9mndZ0yf8+mOpzl09qFblSdb2HZs6rMRMVKtKBMfBUEYOWYapu+ucm53PA99a2HDszDvUNUvebYFQZiClN0yT3c8PebnFHZMRGQLgrD1pBtg5r4w0A6r/w69r0LbPqqse36GKu0uCIIwBShYBY6ae9S4nVvY8RCRLQjC6NA0VSUyNw16XoUXH1J5ttONqr9xNuTboDBT+bqluI0gCJOQN+z0hokegrCdISJbEISxQTdVURvPhnIPlDqhOyxPHBW9yTarEu6FmUqA52eAldnUWQVBEARhSiIiWxCEscVIKfGcn6G2fRcq/cq/3f+8yrNt5SDTAKlGaJwDhRmQaYZsixLiqYL4ugVBEIRtRhAEI04luDnGXGSXy2VWrlzJ7rvvXpPMfEvp6+vjs5/9LP/85z/5xz/+wcaNG7nmmmu49tpra44799xz+dGPfjTk8XvuuSfPPvvs1g5fEISxRjeVcM42q+0gAKeoRHffGjVxUjeU8I5aplFFu7PNSnhHAlyqTQqCMAo0TcPzvIkehjAJ8X0f0xxbWTyqs33jG9+gu7ubq6++GoC///3vnHDCCXR2drJgwQIefvhh5s6dO6JzdnR08L3vfY/999+f008/nR/84AfDHpvNZodULspmsyN/IYIgbDs0TRW4SeWhYZbq811Vyt0pQqkLelcrX7duQSpbFd/ZlmqUvGW+WkrEWxCELSSdTtPT04Nt26RSknJUULiui+u6Y64hRyWyf/CDH/DBD34w3r7sssuYNm0aV199NTfccAOf+9znRlzicv78+XR1daFpGhs3btykyNZ1PS4XOmXZ+Dy4ZchNlyidsOOimyp6PTgbieco4e0Uodihqkx6thLo+VZo3Enl6W6eryLfMqlSEIRN0NjYSE9PD2vXrmX27NkitAWCIGDDhg2A+nyMJaMS2a+88gp77bUXoGwef/zjH/nFL37BmWeeSUtLC0uWLBnxOcfaDzPpeemP6pb507+BhtlKMLQuhGm7QqZpokcnCBOLYYHRNPRvodKnRPeq/4M1/1QXqY2z1N9Ny3xomCOCWxCEIeTzeaZNm0ZnZycvvPAClmWhadqOpz0EQAlsz/PwPI9cLkdDQ8OYnn9UIrtSqWBZFgCPPvoovu/zpje9CYAFCxawbt260Y9wE5RKJWbNmkV7ezuzZ8/m9NNP5zOf+QzTpk0b1+cdM9wy9K8PNwIltvvWwMt/Ul256Up0TwtFd3663BoXBKhmKwFVMbXYAaufgHVPQXaasqFMW6iynTTuBIbM8RYEQQXy2trayOfz9Pb2UqlUkMLXOy6apmFZFi0tLbS0tEyuiY/z5s3jf//3fznqqKP4zW9+wwEHHBCH2tvb28c87J5k//33Z//992fx4sUAPPLII3zta1/jD3/4A3/9618pFIZP/L5hwwba29tr+lasWDFuYx0WMwNHXKImflX6ofMFVarad9X+4kbVXn1cbacbQ8G9C7QsVFkZ9JFPLhWE7YrI3908D5ySEtzr/qWymOSnQX4mTFsQernb1MWqYU30qAVBmCA0TaNQKGxSJwjCWDAqkX322WezdOlSfv3rX/Pkk09y3XXXxfv+9re/sccee4x6gMPxiU98omb7uOOO48ADD+Sss87i+9///pD9SW666SaWLl06bmMbEWYaWnZRAgGUB7X7Feh8UYnurpfArah9lV5Y+0/VQKVKa1mgHh9F7cz0tn8NgjBZsLLQtLNqbkUJ7g3PwPplSoinG1R6wKadqxMo89PVhEq5SyQIgiCMIaMS2VdeeSWmafKXv/yFM844g49+9KPxvmXLlvHWt7511AMcCWeccQb5fJ7HHntsk8ddeOGFvO1tb6vpW7FiBaeffvo4jm4LMSxo3VU1joPAh941SnB3vAhdLyo/KqgJYBv/rRqApqvodsvCasRbfN3CjoqZVn8PjXPA95StxO5XVSk3/lv9rUWiOztNHReJ7kKbEuyCIAiCsJWMSmRrmsbll19ed99vf/vb0Zx6qwmCAH0zE57a2tpoa2vbRiMaJZpejcztcqTKMVzsUJHurpfUMvJ1B74SED2vwso/qr5cayLavYuaXKnJhDBhB0M3hmYv8Wx1wVrph7516g6RlQv93gX1t9IwS2Utyc+QaLcgCIIwIsZkNlC5XOaJJ56go6OD1tZWDjroIDKZbV8q+c4776RYLE79tH6bQtNUpC0/Hea+TvXZA1XB3fkS9LyiInegBHmxA1b/XW0baZV9oWWXUHwvkIidsGNipNRFaK5VbQe+8nRX+qBvvbpzpBuh6G6E3DQ1ibLQFgpv8XYLgiAIwzNqkf3Vr36Vz372s/T29sYlKRsaGrj66qu55JJLtuqc9957LwMDA/T1KVvE008/zZ133gnASSedRHt7O+9+97t55zvfyW677YamaTzyyCPccMMNLFq0qCZ39w5BKg8zF6sGytfds6oqurtWgjMQ7qvUWkzQVLSuZRc1OaxlF5XVRCJ2wo6Gpg8tkuM5ai5EpVfZttb8Q0W5041KfDfNVYK70KYi39a2Dy4IgiAIk5NRV3z85Cc/yXHHHce73/1uZs2axbp16/jZz37GpZdeimVZfOxjHxvxeT/84Q/z8ssvx9u//OUv+eUvfwnASy+9RFNTEzNnzuSrX/0q69evx/M85s+fz8c+9jGuuOIK8vn8aF7W1Mewqqn/QFlMBtrDaHcouvuj9IoB9K1V7ZW/qK5UQUW7mxeoSHfzPJlQKeyYGNbQaLc9oER39yuw4Vl1JyjdqOY/tMxT0e6G2Up8S+pAQRCEHRYtGEWCyF133ZU3vOEN/PjHPx6y7+yzz+bRRx/lhRdeGNUAtxXLly9n8eLFLFu2jEWLFm2bJy11w19/oH60o+wi2wq7CN0rleDufAm6X1Ye1bpo0Dg7FNwL1FLKWQuCwikp0V3uUX/LVk4J7tw0VYkymnyZa5W/GUEQhCnMSLXiqMIsa9as4T3veU/dfe9973v5f//v/43m9MJ4kspB2z6qgfJw962BzpVV8V3sCA8O1K3y3jXwchjttnJVT3fzfHWRIN5uYUfEyqpWmKnuGjlFKHfDxhWwfrmKcmebVI7u5rmhr3umumMkkW5BEITtllF9w++xxx6sX7++7r61a9ey2267jeb0wrZEN5S/tGkucITqq/RB18vKZtK1Uvm8o2i3U4QNT6sGgKZ8qc3zQ6vJfHXLXIrlCDsSmlb1dTfupOwllT4V5e75p/J0Z5qU8DbT6rhMc/iYnLp4tXLhethnZiQCLgiCMAUZlcheunQpn/jEJzjooIPiyosA//rXv1i6dClf/epXRz1AYQJJN8CsxapBGO1eqwR31Iobw4MDlUqwf321QqWRUqkHmxdUhXe2eVu/CkGYODRdiepMk7rb47lQ6VHCu7hRTaz0HHWsbqi/GSMFZrRMK5GdbQlTCoZpBdNSqU4QBGGyM2KR/Za3vKVm23VdDjjgABYtWhRPfFy+fDlz5szh1ltv5YwzzhizwQoTjG5Uc3YvOFz1VfqVnztqXS+DW1b7PDvMcPJi9RzpplBwz1OtaZ5kZBB2HAyzdiJlEt8F11Z/N15F/R2Ve9W2WwHdDHN9N4U+752U4G6YpSLhgiAIwqRixCL7X//6F1ri1qVpmsydO5fe3l56e3sBmDt3LgBPPfXUGA1TmLSkCzBzkWqgbo8PtCuxHYnuvjWqH1QUb92/VAOqNpN5VW934xwlKARhR0I3IWUCufr7PVvZTgY2KguXblaj5I07qb+bhllhKkGZHyEIgjDRjFjJrFy5chyGIWw3aHqYN3hmtViOZ6sqlF0vq0mV3a9AqSt8QNJm8lfVpRtKNDQnIt75GVKpUtixMVJh2fcZatutqEh3/wZVOMdMhakEG9Xfj5UL7Scm6Fa4bqmmh8u4L6XEuni/BUEQxgwJFwrjj5GqzdsNypPa/UpoM3lFNaeo9vletS/CTIcTM0PR3TwXstNEFAg7LmYaCjNUg9Be0qOqVXa+CFFyVg3QDBX51nS11A3VtHCph/nAW+ZBwxyVsjPTNFGvTBAEYbtgzER2e3s7pVJpSP+8eds4/7MwNUg3DLKZBGoiWFJ497yqfKqgonYdK1SLsPJKbEfe7ua5IgyEHRczA4WMuouUJPDB9yHw1N+T74XriaVTgt5XYe0/qxaUhjnQvLOynzTOEQuKIAjCCBm1yP7c5z7HjTfeSEdHR939nueN9imEHQFNq94K3+k1qi/K3d29KhTdr0Dfuqq/2xmA9mdVi0g3KWEQpSNsmqtunwvCjoqmg6Gjvu43U7k1yn5S6lL2rtWR77ulmuO7cTYUZkmOb0EQhM0wqm/Jm2++mS9+8YtcfvnlLFmyhCuvvJIgCPjJT35CNpvlsssuG6txCjsiydzd8w9TfZ4NvasTwnuV8qRG98YrPbC+RxUBicg0hecJxXfzPBVJFwShlsHZT9yKKqzTtwY6nlfR7EyzSsVZmKWK7GSaQyEeLkV8C4IgAKMU2d/61re44ooruOyyy1iyZAlnnHEGBx10EFdeeSVvfOMb2bhx4+ZPIggjwUhByy6qRThldas78nH3vJrI343yqZZ7YP2yal+N8J6nlhLxFoRazHR1IjOosvHlHuh8KbyDpCmbSlT10spBbroqKZ9pUmI8sp+I3UQQhB2MUYnsFStWcOihh6LrKuuDbatqgNlslksuuYSrr76aT33qU6MfpSBsCisDrbupFuEUldjuXqWi3VsivNON1TzgUdQ70yyTKwUhIq5mOUdtB77yczslcEvKZtKxQvXXiO+s2k41qLSfZkb93ZrZ6tJMV4+zstVsQkGQGEBQvy8IQu95WNzHj/znyW1H9XmuWmp6IsNKmGXFTNdmXDFS4/v37yfGHFULFQRhu2FUIts01cM1TaOxsZFXX3013jd9+nRWr149utEJwtZi5WD6HqpF2MUw4h0J71VQTMwlqPQOKhWPmlxZI7x3VrfSJZ2gIKi/g0h4JwkCVVAnEuD97crq5TtKWALoeiKVYCKtYLTUtEFiejBBzQL8xGROPxTd4XbgJyZ7hvvQqllWdCuRacVIZGAxQ9GfUwI8mZFFM9RrSG5H2Vui74foNXu2EvdeWGzIKalsMG6lOi5NVza2wszEXYBmtUwV5GJfEKYgoxLZu+++O6tWrQLg4IMP5vvf/z6nnXYauq7zve99jwULFozFGAVhbEhtQnj3JNpAO/EvtzMAG59TLcJMhxPAdoamnaqV96SAjiAotNBGEpWEr0cUXY5Ky/uOEp1+v9qOBHZdcTmoT9OUSNX0WvFrWKBnhvZHIth3qxlXfA8CV4nfaDve54bCPBj0/EE4vuTzh+sEifOGop5ALXUzvMgwqyI98NX3z9onVX9kv7Gy6i5boa1WfGcaq3cARIALwqRkVKrgpJNO4o9//CPve9/7+PSnP82b3/xmmpubMU2T/v5+br755rEapyCMD/WEt1uG3jVVm0nPq6pYTpTVxK0MLRevG1CYXRXdTTurW+qmlIwXhLpEUeMJ/RvZTLaVLSEIUJaVMEIeWVegGg0f6Z0vz1WWN7ekJp72rlVVcnUjtNTklM0msrjENpzsMDacnCpWVBOFN7ZcnLuVavS9ZllRY3TKKkJv5dQ4UoVw2RDe6RimiumOTBBQY2tKXtB5TvXCbpMtYZUKfPV/Gt1ZShXU0hyDz/h4EwTV152845S8wI2XidSjuqFsorox0a9gWEYlspcsWRKvH3PMMfzlL3/htttuQ9d1Tj75ZI4++uhRD1AQtjlmZmjxHM9WP3Rx1Hs19K1VX46g/uB7X1UtRoP89DDqvVO19LVU1hOE7YdkJHusMEwwGoFBk7F9N7TgFNUkVM+pWlICPwyUa/Wre0ZiP2pQtcrEFpno2FC02ANg9ykxnbzjULMe1jJIRumtNBjp8G5GWons3HRlh4kFeF7tjz3xYdPH2YrnucrK5FbUe5dc6oYagxmOP/bppzc/rijffPT/E7dEn12qWoa8SlUcx8IxqLU3xRdwYcMfpi98/zUtfN/T1XGn8qpwW7ohIcBDEW5l1f9X/PnYit+lIBj6Pkav0a1UPyOxdcqpfm6dMnhltayxdg26YI3XPfU6fV+97mwL7Pt2lV50kjKm97cPPvhgDj744LE8pSBMDowUtMxXLcL3YGCDEty9r1aXTlSUKVDWk4F2VeQjIpWvFd2NOykf5iS+GhcEYRKgm0osbSoF6bA2nIGhwiWOwAdD+6EqwiPRrlsqOp5uDMVZaqg485yq39yrQLFfpV31lqvTRsLVTIfCPuF/14zaTDVGSkXgIwEeW25I+PWD4dc9G9xQ0NpFZf9z7UT02AsnwobrmpYYU9iMcFxmRn13W9nqBFnfU+K53Kvm9Hh2VUDGS7taVE3TwzsICdtSvJ20OxmgpRLWIy1xMTdoHb3a53vV990ugdddFb2QuIBILOOxaOGFWXL/oPci+v+Nzu+GFw/JKHzUPLdaACuKRPte4v9QC+1bZvU9iD5LNe9HOHcCvXZfpVddBAaTuxbLqER2uVzGtm0aG6tX23fccQdPPPEExx13HMcee+yoBygIkxbdUNXwGmYDr1V9QQClTvWjkhTf5e7q4+wB2Phv1ZLnKoSV9SLh3ThHsg0IgjAyJtqGE0XQh7sQiCKcbkUJL7cySKCF3vhogixBNRNMRBTNJVoMk4Emsu1E4ky36ojolIq0a4Z6bFIoOqWqUIyy0gSRUEw8n5G4EDFSYQS5UL1A2FbzdQyGT5UZBNULrkh4Oz2DoulR1DicPFwzB2HQeiSKB18o6aa6EEuZ1c9idAEVieaxwHeVyJ/kjOp//r3vfS/5fJ5bb70VgBtvvJGPf/zjAHzlK1/hd7/7HSeddNJoxygIUwdNqxbzmLVftd8eUD7v3tXV1re+ehVe126CspY07lQtbd24k6qKKVFvQRCmIlFUeiQFwSIrwRDCiC4kdG9CxMn3ZJXYRjTC914YFaMS2Y8//jhf+tKX4u0bb7yRs88+m29+85ucd955XHfddSKyBQFURHr67qpF+K6aUBlHvUMR7hSrx0T5vJNpBXVTZTNpmFONfDfMUT5HQRCE7Q3dQIVpBWFqMSqR3d7ezk477QTASy+9xIsvvshtt91GY2Mj5513Huecc86YDFIQtkt0s+rN3jnsCwIlqnvXQF8kvNfUlo733WrWkyTphlB4hxaWhjnQMDP0MgqCIAiCsC0ZlcjO5XL09PQA8L//+78UCgVe+1rlTc1kMvT3949+hNs5JcfH8ANEBgmAuqWXbVZt5j7Vfs9W9pK+NVXhPTjqXemDyqCc3mjKXpIU3o2zpaCOIAiCIIwzoxLZ++67L9/61reYP38+N910E0cffTRaaGp/5ZVXmDVr1pgMcnul5Pg8vbYHzRmA/kaashaFjElD2iKbMgaXWxB2ZIyUSlOUTFUURb371oaR77VKhCe93gQqA8rABlXkInm+wsyE+A5bulHSCwqCIAjCGDAqkX311VdzyimncMABB5BKpXjggQfifffccw8HHXTQqAe4PWN7PrbjUyq69LhFNA3SlkHGNMilDJqyFg0Zk4aMST5tYoj4EZIko95te1f7o9SCvWsTAnwNlLqqx3h2tbR8EiuXEN2zqutSTEIQBEEQRsSoRPYxxxzDM888w9///ncOOOAAFi5cWLPvgAMOGO34dgiylk6+OYsXBFQcn4rr0VtyWN1dIm3qpC2drGnQlEvRkDFozKZoyljoormFetSkFkzglMJo91roWxcK8LUqd2x8TBE6X1AtSboxFN2zVKrBaH24dFGCIAiCsIMzKpFt2zbz589n/vz5Q/adf/75ozn1DomhaeRSKooNapqb7XqUHZ/Oos36vgqWoZG1DAoZi9Z8ipZciqaciTXeVbKEqY+VHVrJMgiUl7tGfK9Ry6iAAajE/5Xe2tzeAJnmhPieVV2XcvKCIAjCDs6oRPZOO+3EBz/4QT784Q8zb968sRqTEKIBadMgbRqASsTveD5F22NdT5l1PSVyKZNcyqC1oAR3Sy5F2hTBLWwhmgaZRtVm7FntD3xlL6kR3+tUysGoehmoIjvlbmh/tva82Rbl+Y7F90y1bYntRBAEQdgxGJXIPvXUU7nxxhu57rrrOOWUU/jIRz4iVR7HGcvQacrqNGUtvCCgaLt0FW029FXIpgzyKUOJ7TDKnU9JblFhK9D0alGdmYur/YEPAxtDwb2uKsAHNoQlc0NKXaoNFt/pplBwz0osZ0llS0EQBGG7Y1Qi++abb+b666/n+9//Pt/5znc4/vjj2WOPPbjooot43/veR0ODVBUaTwxNoyFt0ZC2VDVvx6Ov7LKx3yZt6uRSJk1Zk+ZcSmUtyZhkTRHdwijQdCi0qUaioqXvQXFj1evdv76++K70qDbYdpIqqEh31BpmqWWmSbKdCIIgCFOSUYlsgJaWFi699FI+9alP8bvf/Y5vfvObXHzxxVxxxRWcc845fOQjH2GvvfYai7EKm0DTiP3cAVBxPYoVj66ijdFZIm3pZCyDfNqgKZuikDYpZAwKKZlAKYwBulEVyLP3r/b7HhQ7wqj3+sRyPfhO9Ti7Hzr7h064NNOQn1m1m0Qt1yolkwVBEIRJzahFdoSmabzlLW9h7ty5XHLJJTz88MPcdNNNfPvb3+b000/n29/+Nm1tbWP1dMIm0ICMqVIBAnh+QMX1Kdke3UWbVzsTWUusMGtJ2gxzdJtYhni6hTFCN6qR72Ta/MCHYmcY8Q4j31FzK9Xj3Ar0vKJaEs1QRXYKbaHwDpf5NrBk0qUgCIIw8YyJyHZdl1/+8pd861vf4tFHH2Xu3Ll86Utf4h3veAe/+c1v+OxnP8s555zDfffdNxZPJ4wQQx+UtSRQke6y67Ox32Zdr8pakjYNMpZOczZFU86K83RLfm5hzNF0yE9Xbeaian9UYCcpuqNW6Usc56moeP+6oedONyXE98yqyM80SZVLQRAEYZsxKpG9evVqvvvd7/L973+f9evXc8QRR3DHHXdwxhlnoIcp5T760Y+y0047cfbZZ4/JgIXRo2mQsQwylgFZlbXE9nwqjkdv6OmOUgXm0gbTcmmaskp052QipTCeJAvsJLOdANjFhOjeUF0vdqASXoZEvu+O52sfb6Sq0e98W+3STI/zCxMEQRB2NEYlshcsWIBpmrzzne/k4osvHrb4zMKFC5k5c+ZonkoYZ1KGTsrQiaaq2p6yl7T32azrqZANRXlj1lS5ubMWjVnJzy1sQ1I5mLaLakk8F4rtCeGdWHoJ64lnQ+9q1QYTR7+TAnwG5KZJ9FsQBEHYKkYlsq+55hrOP/98ZsyYscnjDjjgAF566aXRPJWwjUkZOqkwVWAQQNnxKDmhp7urpKLcKYOWfIrGjLKVFNImpsyiFLY1hlm/wmXSejKwQYnuaFnqZoui37oBuelKcOfboBAu8zMg3SCZTwRBEIRhGZXIvuqqq8ZqHMIkRtMgmzLIhlYR11dR7ig/d8rUyZgqe0lz1qIha1JIK+GdkkmUwkSxKeuJZ6t831HUOynCkxMvfa9qSxmMmamK7/z0hBVluhTdEQRBEMZm4mNPTw///ve/KZVKQ/a98Y1vHIunECYRpq7TkNFpyFgEgOP6lN2q6DYNTWU3sdQxUaS7ISt5uoVJgpGCxjmqJQkCVT5+oB3625XoHgitKMWNKitKhFuGnlWqDSaVDwV4nSb+b0EQhB2CUYls13W54IIL+PGPf4zneXWPGa5f2D7QgJSpkzJ1GjNqEqXr+ZRdPy6MY2hanKe7kDZpDCdQ5lMGubRJWqLdwmRB01QWkkwTtO5Wu8/3oNRZK74jAV7urj3WHlCta+XQ50g3hoI7jH7nplfXRYALgiBsN4xKZH/ta1/jd7/7HTfffDPnnHMO3/rWt7Asi+9///v09PRw4403jtU4hSmEaegUDJ1CWn28Bufp9jtDYW7oqjJl2qAhbZFPmyrVYFrl+Ba3qzCp0I1qNJp9avdF9pNIeMdto4qMJ6n0qja48A6EAjwU3bkZCTE+XdlTBEEQhCnDqET2T37yE6688kre9a53cc4553DIIYdw0EEH8cEPfpA3v/nNPPTQQxx//PFjNVZhijIkTzdguz626zEQVqX0g1KcqztlqiI5DRmTfNogl1Il4TNiNREmK8PZT0DZSpKiO7m0+2uPjQX4i0PPkyqE4nt6YtmqxHgqL5MwBUEQJhmjEtkvvvgi+++/f5wTu1wux/suuOACLr74Yv7rv/5rdCMUtjs0UBUnzapNJEDZTKKId0/RYXV3gKlrYXXKqtUkqk6ZT5lSEl6Y/JgZaJqr2mCckhLcxS0Q4Ha/avUsKGY6jHy3JkR4uJ5tljSEgiAIE8CoRHY+n8e2bTRNY9q0abz88sscdthhAGSzWTo6OsZkkML2jwZYhq5KuidsqUnh3V20CbogbRikLY1syqA5m6IgJeGFqYqVhea5qg3GKavJlpHwLm6sLss9tce6Feh9VbXBaIbK9x2J7kiI51pVEx+4IAjCuDAqkb3XXnvF+a8PO+wwvvrVr3LEEUeQSqX48pe/zJ577rmZMwjCpjENHdPQyYc6oKYkfFgoJ1kSvilrxekDCxmTnCUWE2GKYmWgaWfVBuPZqtLlQEcYBU8sS521WVACr2pXqUe6sSq4B7dMo0TBBUEQtpJRiex3vOMd/Pvf/wZg6dKlvPGNb2T+/PkAWJbFXXfdNeJz9vX18dnPfpZ//vOf/OMf/2Djxo1cc801XHvttUOOfeKJJ7j00kt57LHHME2TY445huuuu46FCxeO5mUJk5gtKQkfZTNJmwaFtEFTLkUhbVDImBRSllhMhKmPkapfgAfCLChdSoQXN4YCfGN1PVkFE6o+8K46BcN0A7L1BHgYGbey4/P6BEEQtgNGJbIvvPDCeP3AAw9k+fLl/PrXv0bXdY477ritimR3dHTwve99j/3335/TTz+dH/zgB3WPe/bZZznqqKM44IADuOOOOyiXyyxZsoQjjjiCf/7zn5utQilsPwwuCR9lMyk7Hj0lVaFS+brVhMqmXIqGtBlXqRSLibBdoRvVjCQM+g4OApVasLgxjIRvrK4XO0MbSqISpu+F6Qo31H8uK6cEdzYhvCMRnp0GhjVer1IQBGHSMybFaCLmzZvHxz72sVGdY/78+XR1daFpGhs3bhxWZC9ZsoR0Os3dd99NY2MjAK95zWvYfffdue666/jSl740qnEIU5ch2UxCi0nF9dnYb7Oud7DFJEVT1qQhI1Uqhe0cTYN0QbWWBUP3e46ym0Siu9hRjYgXO2qrYQI4RegpQk8dLzhAuikhvkPhHS2zLeqCQBAEYTtlxCJb13W0EaSKGmkxmi05t+u63H333ZxzzjmxwAYl0I8++mh+9atficgWYpIWk6bhLCa6Rtaqiu7GrElD2qIxK6Jb2IEwLCjMVG0wQaBE9cBGKCVFeLgsdSn/d5JKj2r1rCiEhX/qCfDcNMg0iwgXBGFKM2KRvWTJkhohfMstt9Df38+pp57KrFmzWLt2LXfffTf5fJ4PfOADYzrYiBdeeIFSqcR+++03ZN9+++3H/fffT7lcJpOpX7xhw4YNtLfXTgJasWLFuIxVmJwMtpgMqVJZI7qtann4rFSoFHZQNE3l407loWX+0P2Br+wmyQh4Mio+2IpCoCpllrvrF+aJRXgi8p1cz7aIHUUQhEnNiEV2cgLi9ddfz6xZs3jggQcoFApxf19fH29605vI5XJjMsjBRKkBp02bNmTftGnTCIKArq4uZs+uMykIuOmmm1i6dOm4jE2YmgyuUrkp0d2QsSikTbIpg6xlkE2pCpUyoVLYodH0qvht3XXoft+FUncovDtrBXipE8q9DCvCqVOcB1RmlFh8h88di/BpKkOLIAjCBDEqT/ZNN93EV77ylRqBDdDQ0MCll17KJz/5ST71qU+NaoCbYlPWkk3tu/DCC3nb295W07dixQpOP/30sRqaMMUZIrp9n7KjRHdHvw2ovN4pU+X2TpsaDRmLXEqJ7mzKVKLclKi3IACgm4kJmXXwXCh3hZHwUHiXuqqifEgknGpmlO6X65/TzIT2kxbIDBbjLZBukBSFgiCMG6MS2atXr8Y065/CNE3WrVs3mtMPS2trK0DdYjednZ1omkZzc/Owj29ra6OtrW1cxiZsn5i6TiFdFd0B4Li+8na7Hv0Vn3W9FXStWlQnZepkwvLwmXA9amlTx5TQtyBUMUzIz1CtHr6notpxFDwhwktdoSfcr32MW4a+NarVQzNURcyk8M601PZJsR5BELaSUYnsvffem69+9auceOKJWFbVG2fbNtdffz177bXXqAdYj1133ZVsNstTTz01ZN9TTz3FbrvtNqwfWxDGAg1ImUpIJ/GDAMdT4jsqD7+mO0DXVHTc0nVMQ8MyVMXKXMokE2Y5iQW4pWOOYHKxIOwQ6EY1RWA9Al9ZTiLBnRTf0fbg7CiBV/WPD4eVCwV3c60AzzSHfc0yQVMQhLqMSmR/7nOf4/TTT2fhwoWceeaZzJo1i3Xr1nHXXXexbt06fv3rX4/RMGsxTZNTTz2Vu+66iy9/+cs0NKjpa6+88goPPfQQn/jEJ8bleceDh3vaKDses/U8M9MObSkbcRhMXXRNpQZMm0ZNeXg/CHA9JcAdP6DseHQOOPhBVYCnDBXdtkydfMoglzZjz3fOMsikDBHfgjAcmh4K4GZgl6H7gwDcUliop0tZU2IB3q2W9SwpTlG13tXDPXHoDW+uiu7BIlwqZwrCDsmoRPbJJ5/Mfffdx5VXXsm3vvUtfN9H0zRe97rXccstt/CmN71pq8577733MjAwQF9fHwBPP/00d955JwAnnXQSuVyOpUuXcvDBB3PKKadw+eWXx8Vopk+fziWXXDKal7VN+X3XHFZWChAGUjQCpqdcZqZtZqZtZqUdZqVtZqYdZqZtMkaw6RMKkxJd00iZ2pDIN0TR7wDX83G8gKLjsLGvQgBYhlZjPymkzTAHeFWAZywdQ8S3IGwaTVNRaSsHjTvVP8b3lNCOxHd5sAjvBqc06EFBNVXhcN5wTVeZUmqEd2I92yz+cEHYDtGCIBgT1VYsFunq6qKlpWXUWUUWLFjAyy/X/7J66aWXWLBgAQB///vfueyyy3j00Udryqrvumudme2bYfny5SxevJhly5axaNGi0Qx/i+np2siR1/0v3V5qix/TbEYC3KEtFOHRdqPpIVpr+yEAPM/H9gJsz8dxfRzfJwiU+E4Z0aRLneZ8iuasRXMuRS5lIB8DQRgn3HJVdJe6QyHeXRXhpW7wnZGfNxbioRjPNNUK8mifWFMEQeXrd0tw0Dn1C2uNEyPVimNW8TGXy41Zyr6VK1du0XGvec1reOCBB8bkOSeKm3Z9nO6yw4bMQtZXUqyrWDXLAa/2C7XbNel2TZ4bGHqujO6FEe+q8I6WrSkHU5TXlEJD2UhMA3JUPwcBxFFv2/UZsG3W91VImzq5lCoX35JL0ZxTxXQsXaJjgjBmmBlomKVaPYIAnIFQgHfXLiNLSrlbpTSseZxfjaAPi6Yi3kkxnh0kzDPNMllTECYJY1pWXRg5mgYtpk1rQ4m9GwbfhoR+V2ddJcX6ihUu1fr6ikWXU1uIoewbvFwyeLk0dNKnTsD0lENbQni3pR1mpmza0g4F0x/yGGFyohFlMCEsHW8RABXHo+R49HTZrO4qhRMrDablUzSFUe58SqJggjCuaBqkCqo17Vz/mCAAeyCMgvdUo+HlnqoIrxsRD6ppC3tWDT8GMzM0Kj64iT1FEMYdEdmTnILps5tZZrd8eci+iq+xIYx4r69ZWmywU3hBNXTto7HBTrHBTrGsLz/kXHnDY2ZaCe62hBhvSzlMTzkyGXOSo1EtHQ8qr3fJ9ugq2mzoq5AxdbIpk8asinKnTZXlxNDCpa6aqWuYui6FdQRhPNE0SBdUa5pb/5iojH25pxoNj1opIcbdob8NuGXoL0P/+k2MQVdCO11HgMetEcws4kMUhK1DRPYUJq0HzM3azM3aQ/b5AXTYJusrKTbYFhvCSPiGilrv82r/6wc8gxeLWV4sZoecSyOgNeXSFka9IyEeifIm8YJPOkxdpyGjqlMGQDmMcnd32LzaWcIwNAxNQ9dU4SZDB13T0XU1SdPQlec7ZeoYukbGNMinDXJpNelSspwIwjiTLGPfOGf449xKKL6TUfCexHaPinwPzpoS+NX9PZsYh24psZ1pUllU4kh4Y1WIZ5pU9FwQhBpEZG+n6BrMSLvMSLt19xc9vSYKvqFisd5W2xsrFl5i6lyAxkbbYqNt8XT/0HOlNJ8ZiQj4jDAVYSTG82JFmVA0UJlILANy4PkBnh/gBwF+AF7g4/ngBl64HRAEAZ6vMp+A+jylTIOUqVIUNmZM8mmTXMpU6QZTBpYhtzsEYZtjpqEwU7Xh8D2o9IWCe5AAL/eo/OLDRcV9Z/O5xAGMVEJ8N1ZFeM22RMaFHQsR2TsoOcNnQa7CglxlyL4oCr7Brka+19sWG8JIeI9b+7GxA53V5TSry/Un2+QNjxmhAG9L2/H6jJRqkpZw2xJZQxI9m32MF6hJlrbr01N0aO9T1S2jaHeUXrCQscinotSCBhnTEOuJIEw0upHIIb4J3EpVcFd61XolKcTD9XrZUzwbBtpV2+RYrFrRnW4cKsTTjSqCL55xYYojIlsYQjIKvqhh6P6yp9Eeim7l/7ZoD5cbKhZlv1a0DXgGAyWDlXUmZAI0mm6N8I4FeLhM6SLCJxpD06rR8JCoumXF9ekru3QM2BCAZeqJ9IIahYwV5/SOzpGxRHwLwqTDTENhhmrDEQQq4h3ZUIaI8t6qIK8nxrc0Mq7pkGoIRXfDIFHeUF1mGlUUXRAmISKyhRGTMYb3ggcB9HlGjeiuWbct3KA2OtHrmvS6Ji/U8YODyg0+PRLgofienqoK8bSI8AmhprplSBCgcnp7PmXXo7/is663ojKimKqsfMrUsQxNFdaJqlpaBoWMSUZm2ArC5EbTwMqqNlwaQ6iK8UpvNRIeZUap2e6rb1MJ/GqRn81hZmqFd7oRMuEy1aDWUw1qn+QZF7YhIrKFMUXToNH0aDQ9dq2TEcUPoNsxw0i4VbNst60hfnCo5gZfMVBfhDeZrhLdCQuK2lb9OUM84dsKTYO0qQrkJAkCVEl5z8cOxXd7oqpl2jRImTr5tEFjxqKQVp7vQtrElJC3IEw9kmJ8U35xUDaVSl9tNLzeuj3AkAmcoES6W968VQXAyidEd2OY5SUS54mWKoggF0aNiGxhm6JrMC3lMi3lsmdhaF5wP4BOx6yJfkeTLtvD9cEivMc16dlEJDxveDWRb7Xuxn0Nkh1l3NE0Yu92kqiwTsVVKQe7izarghIpUydj6qStquguZAwKaWU9Ed0tCNsRZlq1/PRNH+d7YPdXBXmNMB/U5w6dbwSoQkHOALBu8+Oy8gnhXUgI8MGCvAEMkVPCUORTIUwqdA2mp1ymp1z2ZngRvjHhA4/Wo2h4Mj84VD3h9Yr0AKQ1JcJb024svqM2I+UwLeViiKgbF6qFdXQI580GgO16VJzaSZZpyyBt6mQtg8asRcY0yKb0OD+4TLIUhO0c3aimENwcUXTc7oNyUoD3DRLkffW941AV5P1bIMhjy0oYBU8ua/oLkmFlB0JEtjClSIrwvQZFwnWvguH001fx2ehYbLDTtDtpNtgZ1rs5Nrg51jk5KkHtx74SGKyuGKweJvChETDNcpkRlqdXdhQlxlvDdbGkjB0aDPF6e0FAxVFWk76yy9qeMrpWFeiWoZMyNRXpTkWTK5UAz1qGWE4EYUdjS6PjQVAryCv1Wm81gu4NnYsEjMyyohlKbKfCCHmNKB/cX5CJnVMYEdnC1CQIMLwyKbcfy+3D9Er4egrHzNOUzdGQN5mvgWcYuKaJZ+h4uo+n2fR4Gu22SYdtsrFi0FXy6B6o0F326ChrQwr1BGh0OBYdg8rYJ8mFlpTpKZdWy2aGZTM9ZdNmVWhNVWhOgS63E7caQ9PIhfm4I1R2kyjDifJ5r+9VV0qWoYXiWy2j7CYp0yAV9qXDvN9RNhRDIkuCsOOhaWBlVGMTWVUiYv94JMr7ExaWqD/cdor1zxF41XSIW4KRUoI7FuGbWBdRPqmQX31hahD4WG4Ry+3Hcvsx/QqukcG2CpQyMxnIzqacnkEpPZ1KqhlPz+Dr1rC35BrDtsugfs13odhBsa+T/r5e+vr76Sq5dFR0NtoWG5wMG90sPrXe4qJn8ErJ4JWhDhcAdAJazRIzzBIzrDLTLZvWlEtr2mVaKmBaBvKmhjaeEdcgQAs89MBFC3y0wEPDD9eH3ybw8YwsFasJ18hNmtucKruJNnSSJcrnHQnwkuPSNeDghYV1akvIaxi6Ki0fWVFU9pNqFhRT17FMVQHTNHSpdikIOzJbGiGHQR7yPjVxMxbm4TK5PpxtxbOh1KnalmCkwmqhheoyKchTBUgn9ot9ZdwQkS1MDgIf3XfRAwfdd6pL38X0SuiBh2vmcMwC/fm5DGTnUE5Pp5SeQTnVij9GV+6BbkJhJtnCTLKzVVzDdAfIVDrI2J1kKh1Y5Zfp9DJssDO0Oxk2OlYcFe+oGHTaOkW39gvLR6PdzdHu5qBOtiqAlOYxwywywyozwywz3arErdVymG7Z5MyAQNMJNIMAPVzX0QMPzXfRg7D5Dlq87gEBaBqBZuBrpnq8pifOobZ9zQr71Daajo+G5ZXIlddjeiUcs0DFasK2GidlsYiqzxvqFdrx/AA3rHrp+SoKPmAHeF5QFeKahq6jBLgerms6hq4K8KSTYtzQMBNL1aeW4lIRhB2YkXjIg0CJ6ViUhxHyaDsW6OHS7lcivh6eDSUbSl1bNk5NrxXkNcth1o3h7+wKVURkC+OOFnjono3hV8KWENKBq0KPmoavmfi6ha9beLqFb2RxLIsBM08xM4tSHKluUWJ4G+GaefrNPP35eTX9aWDnsA2m7Hj0lBy6izbdJYeeoqO2Sw49RZuesoM3yMZtBwarnQZWO3UqAIVkdZfpVoUZZjkU4yo63pqyabUCWtOQMix8qxFfM/DMPI6RxzPSeHoaz0jh62k83QqFtIGvWfi6Ga4b4bqFH+4PNJ2M3Um+tIZcaQ2F0hpSdjeF0ho83cK2mqlYTWN2oQOEF11OfMEweAmEnxeTIFyqi4fq+nAXALUVL+un6PKCAD8W4qpVAq9mO0okZmgahqHOaWgaRijODV0L0xkqW0oUCY9EuBnaVkxdwzQ0sasIwo6MplWj5LnWzR8f5SGPhXj/oPWBodvDRcoDv5oqcUsZEi0fJMKtfG2/ld8hM7DseK9YGHuCAN23MfyEkPYqGL6NFngEmoGnp/BDoWdbWQLdxDFyOGYDrpnFMzJ4ehrXyOIZaVw9g2dkcY0Mvp6acreyoowXMxvrZzTxg4CBihsKcadWkIetv+wOyQhb8k1WVUxWVfLDPnfW0mnMmDTlUjRlrbg1Zi2aLLWenFS4JZTT0ymnp9PRvB+m00++vJZ8aS2F4iuk7W6aiivRAo+K1agEt5YKrSde1X6CN6w1RYlnFy1w0QBf0/F1KxTNlhLURhpXyysbECjbSxi9N70KWjBQcx498AnQ4mh/PQKG+VxpeniRYYZiPlqv9gW6ugjxgmoUPBLgtpsQ5GF0XAMlxjUtFvp6Yj2ZL1xZWUK7SijK05YukzgFQVAk85Dnt8BLnoyU2wNKeDv9YWQ8KcoTy+E85TDyaDmAkYZUrlZ416znhvYbU+/3P4mI7B2dIED3HUy/jOGVMfxybC9QftwAjaC6JEALohCsRmRD8PQUvp4KhXKOSmoattWIbTXimAVcM48TRlVdM4dnZAi0HTfRv65pNGQsGjIWO7fUP8b1ffpKbo3w7inZcVS8p+QwYA+9XVhyfEqOzfq+YWbBAxlLpzEzSIAn1zMWGUtHq/Pl5loFeqzd6WnYHd13yJbXh4J7FdlKO7lKO7rv1thQau0tYbQ8YXfxdQvHKOBa+fAzlAkj75kwCp8JL75UHxBezKkLOz2xHl/seRV038Z0SxiBrX5khly2BGixCK7u02rEuocWuBheKeFp92IrTgCg6fHYXCODZ6llMpoeAJ7n4wWE4tsPBblfEzmPRqFrxEI8inanDJ1c2iQXlahPqdSFmZRB2ph81h1BECYJI42Ug7KjOMVBAnyg/rYT9g2XnxzAq0CpMjJhrhtV0W0lBDoa7PzaLT/PBCEiewdBCzwVXfbKCUFdQQt8fD2lhIGRwU41q0gdGsR2gkQUTzdim0EkkqKsHqoVcMwcrpHfppaO7RFT12nJp2jJD2/DcDyf3hoRXm29oT2lWEeIlx2fslNhQ9/wX4gpQ6cxa8aiuzEhwKP+QtpkILczA7md2TDttaTtTvLldei+E0agjYSFw1A2lNiakrB7aOaIoxWekcUz6hcgGgvUnAB1h0b3IptTuB3fuVHrljtA2u7E9MqYXom03Y3pKfO9p6di8a0uHrIEpsFwVpUIPxLeoSh3PJ8ex6VjwMYPlABPRRlUTJ2MaZAPy9RnLD0sYx/5xDWZtCkIwsjQjWqO7y3Fc6uC2x4Auxhu12lRvzvMRCVQQn84K8u8Q0b+mrYxooKmOkGgomxJ32py4mDgxFFFL44OZqmkWqhYLdipJmyrAcdsiJeDI3DC5MUydFoLaVoL6WGPqSfEe8sOPSU37u+vuEMeZ3s+G/ttNvYPHxHXNWgII+KNmVCQZ9tojER52GdNwShrND/AZXhrThLNd7HcflJOLym3D8vpJeX0kql0YHpFTK9MrrIRwy+j+X54IyiKW2vVRRDE20EoigN0XCOLa+VwMzkl1gMNOyxVP1D26PZUBhVdA9PQh3jEo/5MWHnTNGpFeDLnuGloWLpM3BQEYYQYJhhbONkzwncTYrxYK8CTIj2Oqg8oH/kU0CkisicBWmjZUP5Vr+pZDTz0xLqGV5NFQgv8MGOEiRdGCH3dwjcsXC2nBIKRo5JqxrEasM2kmC5IpHkHYUuEeGRNUeK7GgmvinKXvrKDP8ht4QfEx2wKVaXRTIhvFQ2PIuQNGZN82kSfwpHWQDexU83YqeZBO3wsd4CU04vl9pFy+jC9Ymi7iuxYULViRX0+GgGa76P7Nmm3G9MtkauoLC8BmhLeRg43ncM1s+oOQZg/3PerPnHb82I7ih8E8f9j0pKStKYYuoY+aOJmMu+4GU7s1DTQNA0d9Xuno86BpixRuqZuUOiaTOwUBGEYdBMyjaptKf3t4G0iAj5JEJU1wQS6QcbrJzfwUiLbg5GYeGWoCWBklFUDHc9I45gNOGYu9KpmYruHuh2dib2sO7LvWdhytsSa4gcB/RUV/e5NiO+emm0Hxxvse4aS41FyvLhYTD2iqHgU/W4M1xsS641Zi7RZ3ys+adF0HKsBxxrBLdc6mG6RlNNN2u4iY3eTrnSSsTdieiWy9kbMUgkIcPUMrpGN//YDXQM0AiNUvEq6q4w+gaaEeKBT0TK4gOsHVFy//sTNUHwbeiisw/+H8CnQwj6NSIBX+0xdIzMo9WE1el4bSZcIuiAIm2SK/AaIyJ5I0o2sbTwQO7M3rU0FFZHWLZWrWDerKe3i1HZmvE8QtjW6poVi14JhJmsGQUDZ8ekpK+HdF9lSwm21dBmoDM2cUhMV7xqmqg/KK94QCu6GjFlXjDdkLFLm5L+VOBJcM4dr5ihm58R9ulchbXeRdrpJ292k7U5ylXYMr5yIivtoUaTcDycvh5OZo3Ut8DG9IgE6jlnAtgpD7nYFgOf7eD744QTNIEgsfVDPqKLwfvigIACfoRM7o6wq9VIfZswwF3lSfJs6lq6TMqsZVyTTiiAIkxlRaxOJprGuaX8GbJegJTfRoxGEUaNpGtmUynoxa5j0haAm8vWFwrsntKL0ltSyp+zE1pWK6w95rO35dAzYdAwM7xUHlUEljoxnlCBvyFSFecN2IMZ9I00pO4tSdlbcp/kOKacvTpEY204CH/DRgiCxT4ls3XfI2J1kS+vI2J2k3H7ylXVogY9j5LFNJbo1I81YvV1x6sOkrSVMfdiZiKBHlpZk6kMlxmsLA0UVPPWE7UUf9LhqUSENQ6t61QVBEMYDEdmCIGxzDF2jOZeiObfpAjYVx6Ov7CrhHQpxte7SF0bG+8ou7mCzONUMKu2byKACVTE+WHyrpUljWq2nralhvQp0i0p62lY+OMBye8lWOshW2smWNpC127GcfrLFV9B9G9fIqrScRjZO3bk1t24NTcMwN/+4IAgj6EGA56v5AxW3fmEgjdALrie94hp6aF/R9cgrHvnFlRiPouWGrmEmIurJSLuuR9NRQytMtBXNWY2XasXUNclrLgg7OCKyBUGYtKQtg7RlML1h+EmbQRBQcjw1OTMxSbM3ER3vK7v0ld04OppkS8V4ZFOpFeFWbV+Yw3pKecaTaBqO1YRjNdFbWAgoL3imspFsZSOZSjv50lpMb4CM0xWnMiQAXzdV9iI9HeY2V3nzR2tv08KsKNWzDH+xE6DmDgR+oKwrQYDvh1aXwCfwwSHAD9fVJFA1EdQf9NnQtaGCPJkEJrmMhHeSKNKeT5txasVsyiCXMslYukwEFYQdABHZgiBMaTRNI5cyyaXMTVpU/CCgZHtx9DsS39F2b8mhr+LSV6ovxrfUpmJoGoVIeKdNCkkhnq6uF9Im5hRIbeiaOfrNefTn5wGgezYZuxPL7cNyBzDdIpbbT9ruwvSKGH5F5Qp3esJCQW5YwTOVEOHRempM03BpqPcfo56AHdmdCD8IlJ88FOJBNQkMiUVM5E+P8PygJq+5ZUR5zZW/vCFt1hQWSpt6IssLse1FpLggTF1EZAuCsEOga1ocVZy9iRSuQSTGK7VR8L5B4ryv7GJ7Qz3jXhBsUVpDUKkNGzKmEuVpFQ0vpKuR8ag/mzImTXpD30hRzM4CZg3Zp3sVLLcfKxTepjcQpi/sI+V0x0WwUk6vKubjqbsHvm5UBXgYCffDtKQTlQs3SkVojIHMDQDX83E8VeGzaDts7KsQQCy8TQN0TQ9THlazshh6Na1i5EWPI+yhINdQE0e1ROQ9ts2gxeuRiDcSYn6kvvTobkFUKClKFRkEAYaucqybuqRsFAQQkT0pKNkeG/sq+ITRkjB6Es/aD6pREj9QX8CmrmMYGqamqaUefRlXvYQjoZoloJrXVhB2RDRNUxHG9KYj41D1jPdWHPpjMR4K8YpLfxgpr1d1E6qpDTdVeRPU33whIcILcZTcrOlvyJgTmuLQN9JUjDSVdJ2yzYGvot6h8FZR8P6wWmY3ltuH4duYXoW02xvWDgjrAaCp6rJx9VCVcSmqFhpVEVWpCXWVM0XTAY3JkOpLg9D3DblUNaIeoIpFOa6P6we4gadsLr7K0hL/FgRqu87Ug1CMU5s2MYyAa1roRScS4NH3e0LMa2oSqBkJ5NCbroMS0UGA61VTOrq+EtTKjhP9XvkEVMV/9BuUNqLCR9Xfptj7Hkb2U4aOZariR4KwvSEiewIxdY1MSpVCdnw//DLU0HQwNS2cuBMVdqh+cfqJCUC27+O5apa+6wd4vvqy9oIgTNulvsijn5l4XatuA/HEoAjPD9C0quhWkZJqRMRIfJnqWvXLPVqPvmw11G3P6IcgPjbpZkw8b3JsyYlF0XMJwmRiSzzjoP6e+hOR8f6yS1+lGhFP7qs3idMPoLfs0lseWplzMKauxeI7Et7ReiES46FA36aCXNNxrQKuVaBegkbds7G8SHgXMb0Sum9jemW1DIW54dtoUXXbwFHHBS5a4KEK+qjsKaoablRZE2q+CbUAXzPx9EG1BbZyEufWokEsNLeW6KWpII3ytPihtSVI2FyC0Pbi+eAGvjrerz7O9zct5Id8z4e/VXpC3Dt+gB9OUvUHFT4C4gmkURTe0CLRrXz3udA2E1UkTUc51U31HuladSKr/BwIUwER2RNIPm1y6v6zqTh+fNvPiMR1mLYqWo9EpqYRprrysT1fLd3qbUjb87DdQJVbDo8JgqpIr7mNOOjWYhT5CAIl2F3fxw3Fu+2qGf3qOaIv0ui2YdW3SBT58Ktf4H4iGh994UaRmVp/Y+LfRH8UzfGCQP1EJq4UDK36hV3vAqCaGSB5e7R6cRAtBWE8MXSNpqwqP78pgkAVgukfFB1XItylP+qrqFzj9QSR6wd0Fx26i5u3qwwW5IVEdHzwetYa3wmdvpGiYqSopIZJwh6i+w66V8HwK6H/W4lw3XfDyrjBoMq5PhrRth/3p5ye0NJSJuX2Ytjtyr6i6bh6WhX3mgKFvaLAhDFJovabYrDNxA38MG0juL4TX2BqgGloGJqKgkc51CNhXY3UV7/vo9/QGhtNGKXXdT2+UIhsNcbgY6LoflRoKVHBtF62GhH5wpYgInuCaWvY9O3o4dhM5rNxJQiqtw0dz8f3ifPc+kEirVYwfD9Ub4eq9dqJQ0FCafuBuqUaPafrqYi94wWJCw1PlZIORX+Ue9f3A5wo2h+NxVeZBqLjklkFolumSR+kqascvElbjkb1CzpKOhDfmt3ED110oTH4VnAU8YkiT1C97Qvqdi/JW8KDtq0pMIFO2DyapqoiZrYgOu4HAUXboz8RCa+K8bCFgrxYp/gPjEyQG5pGPm0khLdFIW1QCH3uUX8+bZJPmeN250kV5rJwKYz6XIZXxnL6SLl9cdn7tN1D2u7E8MqYXpm024PhldEDH08zw8wpYfYUI42vp/H1TV88CQpd09ANbbOZYqK0jW5QvUtru14cnIl+HqLv0cG/KfU+6zW2Gr36nR0JZ43q9+lwFUyTIj8KilXv8NYK9+pSifjBfUm7TrykVtDruoZlVH+DhKmHiGxhxGiaFnr3IDOJcgf7fmSZUcLa9dRFgOsHoedRCXPXq+53veodgYrrK4+s7WJ71S/3wbacSLwnv9BrvZNQ72teBeCjiUqhjSa0CEWWmujLN3kLmMRzVC9Map/b9ZVvNWPpZEyDtKUrsWYaW11sxfX9+D3Qo//z8O6KMPHomhZHmTeH5wcU7Vrh3T9IjPdXNi3IvSDYYssKKO9xLMDT5qB1I17PpyfOR66i1BnKzKjp13w39I33hpM2e9UETrublNsXRtArpEMfueY7oGlx2sJIhEcXBL5mTfoo82RC0xJpG8dQpUTVR6tznaoWmUio+0F1fxz4wK85Phgk8AcHiYa8Hur45iMrKNX0kPE6kQCvRvAj+0zaUIEgy6h63ePt8Pt5NBNbhbFFRLaw3aDrGqnw2yQ7wnRdg0mK76Qtx/b8MJJem19X+Q+rkerI3hJ9WSc9iJGlxRhUnU4LJx/pWq1w9+v8IER9oC4airZHd8mhs9+m7HiUXY+O/gqVcNx6GCFNmzppSw8jRdGdAT++OFFiPXw/NRVFMXQ9nPwUhLdz1U9JdCvXNNSkpeQXfpRdoFppT2w5E4mha2FObws2kVkFhkbII4uKWvfUdsVloKKOqZfuEKBoe2rC52YmdUJoW0mI8HxCiMd9KZN82Dfed24C3cRONWGnmhgYtE/3HWUzcasTOFVGlT7SdiKDijeA7jjK3uI7QJCYvBmJ7xReuD4WOcWFTaNNkK1mSNAkkWhgOLEehP552/Nif7vnVy2XGsTfrbEtMvbM60Mi5dWJp7XR9zgPfJ0MNTUW0+Gi7zXzsEisS/pJEJEtCHUxDTXxZiJtOVvDkAl24Xp30aFzwKbi+JRdD13TSJk6uVAQpwydbMqgkFZlxqPJR9GEIz/0Clcc5c2vuD4DoS/Yju4WeD6u51NORPw938cLbTnJOI+u1YrwaHJT8nlNyTYwIYwkQh4EAWXHr0bEw89EMkKe3K64Q1MeQmhbKTl0b0HaQ4C0qdcI8nwqGRk3QkEeNWNMP0u+blFJtdT3jgc+plcKvd6l2HJiekVlTXGLKouKV44nbkZi3PBKgE4l1UTFasYzts5KKEw+an3zcc+oCAjTJyaskdWJrdUsNfHE1qAauKk3viGRdi1hoYnsNTWR+ORjtEF9aiUW3VTnl0U2x8FiPXps0u5THXftRQkBWJVu0oHNTmWXxlG/m+OHiGxB2I7Y1AQ7zw9URNJ20TVIh1aSaAb/1hJNiq2ElpuKo/zxjleN/A9eLzseFcen5Hp4no/jB1Qcn76yQ8UNqLhe+GOgqei7GYlwIxb+piHR8YlG0zSyKVXJcMZmPOSg5lYMRFHwhCCPlwlLy4CtSqfXQ33WbDo3UxgoIm3qQwT50PUxiJRrOq6ZxzXzmzxM92wMvxQK8DKGVyZtd9Iw8DIZu5OG4ir0wKViNVKxmjd7PmHHI4pkj8Xch3qR9ihFI/XsNOFxqkxAQBCmcKxnqYHqY5NzsJKWx829TohuPlSj4xmnTKPp0SQiWxCEyYChazTlLJpyYztJK4o8N2zl411PeeEHKh4DthuLsKKt/L/dxWoEvmi7dBX9MGoexBEOU1f5fWuXVZ9idKs0Th8m4nxCsAyd5lyK5tzmj40yrVSFuKfW7VpxHgn2ol0/2wpURfnmqnVGqHLoRo34zqUGCfOUQS7cn7FG5in3jRS+kcKxar07G1pfR7a8gXxpNQ3FVWq9vA7DK2NbDVSsZhyzQfzdwpgyHpH28cbvt8CtX39gMiEiWxCECcU0dBoMXfmF6xAEASUnFFKhEI8i4WVXLQdsFf2MrCtRdb2K68ae8+jWauRpr/6WRNYVqr75hGd+iI8+4a+PhHuUelMYO5KZVloLm4+S+0FAObxYiwV44qItipIXt0CU256PXfTp2oKsK6B8qvmUSS60quQSYjyXqtpXcom+etHyQDMoZmdTzM6mveU1ZOwO8sXVFEqvkiutJeN00VBchWvkqKSasc0G8XELwiRG/joFQZjUaJpGLmWSS5lsLlzueMqyUna82LoSTf5M5n2PIuGuX80sE7UoB7wXCfNw8mmUOjK5LzkZKfacB8k8vInJn1ptjvZqqWyZJDoW6InPyZZYVyI/eT0xrvq8eN5BtF6vUBCoLBR9YXYW2PxET6hGy3PJSHkYHY+EeS6VIZfek/y0fWjSBmgqryVfWk2huIq000OuvA7QsM0GbKsBxywwUWXoBUEYiohsQRC2G1Tpan2LJu0Nh1szkTPMsx7mZ3cG7XPjVJGD0kK6YZQ9FPhxNpowR7vnKwtDPDG0ziTRIKjO1Dd1jbRphJFdlZ4xZeoixkdB0k8+nS0T5bbnx3dTIkFeTApy2wu31f6SM/zt7JFGywEylk4uNZeCNY8G06VJL9NMPy1an2r0UjB9cmmLbDpNNmVhGvIZEYSJQkS2IAhCApVZZuxywEf526M87U5iAqjj+TWTRFU+92rFVscLlBc9FHBl26On7LChrxxn6kibBhlTJ20ZZEN7hWWIfWWs0TR1oZM2DVryW5Z2yPODcL6BS9GuLouJaHnRrs5BGLBVVd3hKDs+ZcemM+6xgJaw1SerOzQYHgXTp8HyKZheuO3RkGhRf4PpkdYDsX0LwhggIlsQBGEcifK3pxjdbfyirao59pUdesNy671Fh40DFUqOR9nx6CyqPOm268fV6iyjOhnUSk4OrclvLqJ8PDD0LU+HGOF4fizEk8JcRc3DZbS/onKR297wwrzkW5R8iw0OUNqyMViaEuMFw6PB9GNBXu2rivRCKNgLpocpHyFBqEFEtiAIwhQg8hvPbKzNn+z7AQOxAA9zpFdcKo4Xi7Sy68eTQV3fp2i7tZVPfVXRzghzpqfCtI5RusRoe7xKpQtVLEOnKavXTcM5HElhHkXFYyFetqmUByiXbYqOx4Ad0O9qFP3hf/6dQKfL0elyRpaJKKsnxfdQcR5t5xNCPW/4UpFQ2G6ZsiL74Ycf5uijj66779FHH+XQQw/dxiMSBEHY9ujJao7D4HrJyZ1eWFSoOkG07Cj/cF/ZobfkhtVNVUS8v6K2Hc+Pc5enwkqgUWaVZDYWXauficUyNSkwNE6MVJgbXgmj0oNT7MEp9lEuF7FLfcqW5AQMuBp9rkGfZ9Hrpej1U/R6afo8C28Td2RKvkHJNmjfskyJMXmjNiJeCO0thVCQD+4rGB55iZwLU4ApK7IjvvCFLwwR24sXL56g0QiCIEw+ogqm+c3P78P3Qx+47VEKS6OXHOULLzmqlHpv2QknbqoJmtHETi/MtuIG1UwsUYYW2/XD1ImJAkOWUVNsSET4tsEzsni5LORmYQIFgCCgzR0g7fSQcnqw3H4Mv4Lh2Rh+N6ZbxHBLVDyffkej39XjZZ9rMOAZ9LkG3UGe3iBLr5emP+wrejrBJnIvD3jq8etHKM5V5NyPhXgsyE0/FuJq6VdFvCGec2HbMeVF9u677y5Ra0EQhDFC1xMpEzdBNKHT82ttJyrDSrieyMQSWVd6yw7dRYey62E7Pv1lh45Elc9YhCcEuGRT2QZoGq5VwLUKDLBT/WMCH8O30f0Khu/Q7FVo9Svovo3lFsmXVpMtv0La6cFy+vCMDBWriZLZRH+Qpt9VorvfMxhIrPe7Bv2ePqRvc+I8jpwzMluLoQU1IrxWqNeK9qRAzxs+lr65GoWCUGXKi2xBEARh2xNN6ATIMrJMLL4fKH/woKqNg0V4xfHDbCoVlU0lCJRX3NLJmEaNGN/qUujClqPpeEYGz8hQL/FgOwdhOT3kS+vIl9ZQKL5K2u5mWvFFpgUBttVIJdOEa+S2qGqlH0DRU5HyKFo+4Bkqip4Q44P7BlwDbxPi3As0elyTHnfkEiil+UMEeD4U6bV9gwW7CPQdkSkvsi+66CLe+c53ksvleP3rX8/VV1/N4YcfvsnHbNiwgfb29pq+FStWjOcwBUEQhBB9M1k3osmcSnw79JWr650DNn1lN/SS+/SUlHXF8aoZVZT1JMymYmhx/nQrkVlFouLjg2M10W010d24J7pnkyuvI19eS37gVbL2RnLlDZheEcfM45gFHDOPp2fqim5dI/Rh+8yuK+vrEwRQ8nUGXD0U4AkhHorw/nB78P6Sv+kLRjvQ6XR0Okc4KRSqWVvyhk8uEUHPGVXhHq3njFrhntV9sbhMQaasyG5qauLiiy/mqKOOorW1lRUrVvCVr3yFo446invuuYc3v/nNwz72pptuYunSpdtwtIIgCMKWUjuZMzNkf8VV3vCBikdfxaG/7IZpDP041WHF9ao5yF2fgSijSphlBarWlJRZm0klyqYiQnx0+EaK/vw8+vPzYNrBZOxO8qW15EpryJfWYLn9FEprMLwyvm4p4W3kccw8gT5yERuhaZAzfHKGzwzcET3WC0KPeI0Ar42SR9tFr2pzGfB0ypsR6NWsLVvxmgjiyHhuUOQ8Euf1tiPRbmniQ58ItCAItpv7F93d3ey7775MmzaNJ598ctjjhotkn3766SxbtoxFixaN91AFQRCEccTxVNYUVcDFo+JW1yMx3l9x6S46VFyVa9p2gjiriu35BICpRaJbRcENXcPSVfaUKP+4oUuu8ZFiuEUydqdqlQ5y5fVYTi+W24/lFdF8D9fIhhHvPK6RnfQl490AipG/PCHIB4aI86qAj9Y35z8fLabmxxH0vOGTS0TUo2XO8OuK9NwknCzq97eDW2b+my5gzi57bbPnXb58OYsXL95irThlI9n1aG5u5pRTTuE73/kOpVKJbDZb97i2tjba2tq28ejq4/gOGhqmvl39VwiCIEwokUWkYWggvIYom8rg/NIDYaGX3pJDb9lREzj9AM8LqLh+PMnTiyt6qug4EEfICxllicmnTYmKD8IzcwyYOQZyO6uOwCft9JCuRMJ7I7nyekxvgFxlA5ZbxNd0XCObaDmCSfTbaWrQaHk0Wh6MwN4CVf95Mjpe9EKRnhTrnk6xjnh3gk1fgLiBTo+rb5UPHcAgIGcOFt/1RHr9fVnDx9gB/wQmz6dzjIgC81MholDxKvxmxW8ouSUaU400phrJWllyZo6clatZZszN/FIIgiAII6Y2m0r9HIeer7Kf2K6ynkQ5x6OId7XfiwvDdBWVd3xDX4ViRxEz9KE3hMLblImatWg6lVQLlVQLvewKgO7ZpO1OMnYHGbuLTGUjabsL0yuRcboxy2vRfRdXT8Wi2zWyeEZ9j/dkJuk/35oQoO1rsUgfiEV6fWFerLPf3YxI99Doc036Rua+qSGt10bHB4vx7KC+wevZKVi4aLsS2V1dXdx9990ccMABZDKTX5RWvArdlW7W9K/B1E1c31VlkHWLlJ4iZaiWNtJkzAxNqSYKqQJZM0vGyKilqZbRuj7Jb6cJgiBMNYxYiG/5YxzPp6Pfpr2vwsb+Cmu6S3QXHXrKDqu7SwRBQD5t0ZA2KWRMMtbIMrTsCPhGilJ2FqXsrLhP9yphLu9u0rbK6Z0tb8ByB0Lx3YXplfE1HV+38DULXzPxdRNfMwn05LY15cT4cKT0gJTu0Wx5W/X4TYn05LLoJtYT+yr+5rVHxdep+DqdW+FJj8jqoeDW5vL5nR7b+hNtI6asyH73u9/NvHnzeO1rX8v06dN5/vnnuf7661m/fj233nrrRA9vRLRkWphTmAOoSLzjO9ierZpvM+AMxOtBEGBoBpZuYRlWvEzpKSzdIp/K05hqjEV41sxi6ia6ptdvDO0zdVMJfD01Je4ICIIgTDYsQ2dWU4ZZTSrgEwQB3UWH9v4KG/sqrOsts6GvQn/Z5eXOASqOyh5h6mFJ+9ADnjJ0rNATboUe8B35e9k30pSMNkqZRLw38LHcftJ2D2mnm5TTQ7rSheX2YfgVdN9FD1xM30HziuiBG/cR+OoUmolrpHGNpAd8x3mfRyvS3QBKNWLcqBHtRU+nFK9H+2qFuhds/v0u+QYl30DHxNL8rRrrtmTKiuz99tuP22+/ne985zv09/czbdo0Dj/8cH7yk59w8MEHT/TwthpN0+II9nB4vofjO6p5DrZvU3JLOJ6D0+fgBR5BEGDqJpZuxeJZQ305R0sdvWY76ouEtqEZsX0lY2bi6HraSGMZFmk9HY81Y2RIm2nSRlqi6YIgCIPQNI2WfIqWfIo9ZjYAULTdONLdXXTC0vYqX7jKgqLsKAMlF8cNC/v4akKmTpiq0NBIhRU9U1HKQl3fscrYazqO1YhjNdLP3JpdumerypV+BcOLlmUM3w6Xqt9y+8NKlwOhF7xEoOk4Zi4U3rlhUw0Kyo/eYPo0mFsnfIMAnECrEd6bWvecypT4r5iyIvvyyy/n8ssvn+hhTAiGbmDoBpk6qa2SuL6L4zv4gU8QBGpJQBAE8dLHj7d938fFxfM93MDF9V28wMP13djrHgnwSISbuompmXGfpVvkrBwFq0DaSJM207EAzxiZqkjXrZpovAhzQRB2NHIpk/mtJvNb8zX9nh9QdlQ5+5LtxRlRSmFfOSzk0xvmCI9SE5ZsD8f3ccK84a6v8lVEmVCSKQqTKQu350mZvpHCN1I4NGz2WMMrkba7yNhdpO1OsuV20nYXllskXVqD6ZXxdAvHyOGaeTw9RaAZYdMJNLH8bC2aBilty6PpKrvINhjYKJmyIlvYPJHwHUv8wFfiOyHEXd+l4lXod/rVdthPAAEBlm7FAjwp0A1NXSwYmhFHwzNmpmqDCVskzAcvI7G+I986FQRh+8PQNfJhVpLNUZuasCrGy4nWX3HpLbvhBE01gbO/4obrKuASFfGJhbihx5HC6DtWC/+JvnGT/ZpG4nFT8zvZM7IUs1mK2Tlxn+kOqMmXlU4ydhfZygZSdg+mVyTt9KAFHlrgqyWqKqlCI9B0/IQA9zULX0/hGSk8PY2npyZ9WkJhdIjIFkaErunKyrKFF+xBEMRC3PGdWIBX/Aqe7+EFYfM9/MCPrS6g0mBFIjwS53HTqpHzrJUlb+arwjsU6UkRb+nWkHNF+03NjPdLRF0QhKlE2jRImwZN2U0XbwmCgLKjivKUbJWeMLneV3bi6pl2mCUl0otBGDCBMElhoLbiIhsB+EEQZ17RNDWuTKLsfcYypmTU3DXzuGaegVxoQwkCLLeXjN2F4ZVjb7fuO+iBE2476J4T+sGVPUUP/PAYm5TTq+wqvg2BT6CZeHpKNSOFHwpwT09v9/YUL/Bx8LBxcQIPnwAPv9oCte0n+twgwKMbNIc2rzTRL2GTiMgWxhVN05ToNSyy1M9bPhyRxSUZHY8j50GlZtvzw9tLGhiaUZ3Uqdef3Bkdo2lavG5ohppEaqTI6NWIelLcJ6Pygy0vyQi85D0XBGEyoWka2ZRBNjV8hCQS4kVbVdAcLLLVktBiGAVtVb/rB3G1zd6SQ+eATdHxqDg+PWWHDX0VbFdZFi1DJ22qsWQt1VLmFAlwaBqO1YRjNW35Y4IAPXAxvDKmO4DlFVU2FHcAyxsgZfeScnvRPRs9qJByekIRXoEAPN3CM9J4ekZFwI1MGAWffALcj0WzhxN4OKhmB264rsR0JXAp4WDj4gVVAe0TEBpba9cDta4+gRoeRRo1gx67d6Jf8iYRJSBMWiIBbOgG6WHy1w4mEuZRVDxar2moZeRXj48PI+vJvngsaOh6KM7R46j4kGW4bulWbH+JbC1DRLphqSi6USvcoyi7pmnxxUL0XkzV27CCIEx+tkSIbylBEIQRcpf+ihMuXfrLLh0DNv0Vl7Lt0V20WesoC4up62RTBhlLJ5cyyVhKjE95NC20ilg4VgP1Yq+a72J6RSy3GItvy+3HcvrI2F2Y3gCGVyHl9mLY7SoKDnhaKhTgaVwjh2Pmx0R8+4GPm4we48dR56RodkMxXQlcyqFodhPRZ7cmKu2HMhp0TcNAr22ajolGmKYBPbmuhevha+t1wKYy6tc53ojIFrYrYmGOgcWmb5+OhMHiPbK4JNftwI7X3cCNLTCR/SUgiCPmhmbEoj3Zor44A0xoX0lmh0mKeVMzMXSDnJUja2TVMkzdmGyGvh38UAmCMGXQtKSvfOgk/ZLt0RtaVHpKDj1Fh46BapaV7pJNqScS3xoZy1ApDA2VNUUtq+uGrk05K0qSQDdxdJUhZejOAMMrkXL7Y+Gdcvsx7F5MeyOaVwS/hG6vQSsOYOspymaespnHMSyC0ILhx+I3smQEsfj18HECV0Wg8fDCGLJ6TBRZropmP2HlAPX/bar7xqFo1jA0nTQmZkJEGzuYJVNEtiBsAWMl3qOIeY1YT3jSHd+hHJRrM8BEWWGizDBBULMdif+okFE0WTRZ1CjKnx6Jbl3T4wuAyGtZk31m0HOkjBQ5MxTwYVrHrJklbaQlui4IwoiJIuYzG2sFeNlRpex7Eq2j36a7ZOO4AW7g43o+ZTfADTOoROXto+8yXQsFuKFyjlthWkMzzDUeifWJFOVBEOAFLm5g4wVOdek7ie1Q0gYufuDhBS5e4OBg4xkOXtYlyGTRPB3NMzA8DcMNsJxeNL8TrVKBwMXVTVUVU7fwNQ0/sv/UOOs1NI1QJmuDmgryGJpOKpTSJjpGIhAk1EdEtiBsQ3RNRx+ncspRIaOomJHjO/Q5fTgVB7vPxvNVPMLUTTS0xESmIM4EE0Xd0aiuh+NO6anYsx6tZ4wMjalG8la+JoqeMlIq3WMYaR+cTSbZJyJdEISIjGWQsQzaBolv2/Uph5lRKq5PxfHikvZq28f2lAe8FKY4LEepDMOc40XHx/GCcLsqyquRcR1dd9E1H0330HQXTfPQNA90DzQXz3eU2MUlSFgKAwKGEtSsBYGH69tU/BJOUI7Fsx+Ehopw6YV9ASr4ksjtEta20NE0FTOOtnXTRDNb0NKt6EGA5ZVIu0XSbh85Z4CUX8F0SuiBhm+kCfQcnp5G21FyqU8QIrIFYTshWcgob+WHPS7Kex4VIooeC8SWlMH4gR8Ld9uzqfgqZaPt2zieE58viqLHk08jT7leLXQUF0cKix9ZhhVbZHRNV5NXw/Q1uq6H3jzVH50ryhiTzDYTedujdUsLve4J73v0GIm+CMLUQX2/eKRMD9PwyaXBD8AHgkAjCPTqOgF+YOAHJrbr0G/bDNgOA3aFouNQtCuU3Aolx6HkVCi5Nv2VEl12Gdsr4zouju/iJi2BYc0Iz/fwNZ8g8NC1AE0jtPWp6LmuhdFgPfIPg574Og0Ij8dA18KGGa9bWvTdGe0z0EbxXRUAZcDxbGynl5TbR9ruxnT7sfwShtMNaPiaGWY1SeFpFoHYC8cMEdmCsIOxNZlPdE0nY2Y2WQDJD/y4Aqnne/EEUz/w8X0fJ3BqJp5GLWlNAWo87MNtRxcHQOxdT2aJ0TW9Jloee+Hr5WWPJqEOyhpTk4lGH3r+SKzHk1QHVVCNffSJSqvRxYUgbM8kLXGDJ6In+6LvC9uz4wv2aOn4DmW3TMktUXJLKr1r4m5bVEwtWo+/Q4LqdvI5a+bRhHf1ADRTI2VpzNAMAjS0wCBAB99Sy0BX4t038AONwNfxfA3HA9vz8fwA31ep6PyAcDtQfmU/wEsEuA1deccNTauu61roX9bQdW1cEoZ4RgrPmE6Z6RCA6RVJOb3VDCfuQFgBs0TK70HzPXzdxNctPE2Jb1+3QL66RoyIbEEQxgRd00mb6S3OBDNWKG9jeIvV94f8sEY/5vU88Mm87EAswuNoO1rtclDGl+T6kLsCWiyxwwIe1WOiSaumYcZ52qOsMskLhMFifvD64Amwg48RW872R1wQLKj9DA+bTSmZQSl5DOriN7rojYRn9HcU9cfzPvBr5oAMHkMkYF3fraksHJ+DQcs6j0sK4Hii96CL5eH+rpIXuFF/Wk8PnWCuj+HfQwCuX/WFOwmPuOtXrSmuH+C4PpXQ3uL5AZ6vJg7aTrStxHn0bRQJcFPXYg+5pesYujY6sauBa+ZwzVy1y/cwvRKmV1RLt4Tl9oVl6G0sp4jhOwRo+LpBoJlhkZ1q8zWTQKwnQxCRLQjClEbTNCVYMbe4SFI9kj/8cZSdqqgYLBAClAc+jqglJhMlo+816wn/++DniCP0CT98PXE/XO732EqDUfuY8CIhjtZr1pCCTfXsM8O9hmgZjSGZXjIeYx1bUL1xx3nqqXOeQZl1ou3h7hokJwvHk4KpZvepmdgbLpMCNRaqofiMIqfJdJ7xGNFqLsYG59yPxlo3mps4d70LQ8d3VIaiUHQmo72O79SI2+Rnz48yCvtBdb3OBOrBE5yj9yh5XPQZ1DQtaStW4k6lKR4ibOP/i8T/TfL/X9Nq9xu6QSq0RyQvGKfUBaEGpqFjGrCl8+H9UITbXuQXj8S5j+2qdccLqLgeFTcU6r5PpRIGC/zIR66Fz6285Jauqcmc+sjfu0A3cPQCjlVIdAYYfkUJbq+IEYpvwy+HRXU8tKgIj++h4aH7HkFY6TLQjFCQG6EgN5UQ14wdKiIuIlsQBIHaDDKThWQ0cFM53yPB5fneJm05g6OTSdtNgBJVSYEfM2gibLW7OoE22h4spmoijUnxVUekDRbWNZHKOncEIjGma/oQK0H0mmom9g6yJUXiOSk8h4hxAnxfHRfNEahnAarpIxTZ1F5EDT530i6VFOLJ9xONuoW0ku/h4IuOZBrQeu93csw150msC+ODrmukdI2Utfmor+erKpplx4srcZYdP67c6YRC3XY9imE0PBLhmlbHnqJpGEZ1e5OCXNNU0RsjQ4WW2l2+i+E76L6D4dtogRNu2+i+g+lVMPwyWuCh+y6G76JRQfPVNgS1QpwwMq4bBFTL0G8PYlxEtiAIwiRlsPic7AyOJteLHg8Rs4moaixqg2pUtp5QrlknEflPTuAdLMq16oVDUlTWCNB6kdiE6NzU6xocEQZqJvRu6tzR+nB3FYQdE0PfRHGgABxPZVypuAG2E0W+VfTb9jzKtocTecZD+0rZ9ZVVxQ/wq8mkYtFdFeBgaLpa6lXPOKic3q5uwqaqOAdBVXgHDoZnx+u672B4FUyvhB64aIGH4XtoXgXN99Hw0MILWzQI0GPhrZa6qoY5BRCRLQiCIIwJsTd9O4hACcKkRgPL1LFMnYZNHOaF1pQobaFTs1R+8SgNohNP5FQTNyuehxeE2wlRDqEo1wg979QI9CiK7msWupka/vsgQIluz8YIxbeKiruhFcUNy9Hb6H4FLfDQAh898GIbCpM8E4qI7AnG9V3lsfO92okbgiAIgiAIo8AwNLKGwZZMWPF9lBj3g9qlV932Ep7xwdlVvCDAcfw4s0oQZluJxxIL82pkXBW0yaDrGQxT+//t3X1wVNXdB/DvvfuaF0kgBOPia0VF3mTacZq2VmjxBSkpIU6sTjsyMIUppK1ULVBtJ0HAdmw7lepo6ygFBqFKCTjS2DcDdjqTcUrRqVqkpZYWdRBIBPLCbrJ7z/PH7rk592WTXbib3c3z/czsZPfcc+89m5Ps/s6555xrLouoIdmbbhJIBt6p4Lvr3EnEEv1IlE3w/pfmIQbZefbi4RfRGe10pKcbr5huskkm2x3jI7P56cE29dKtvUGRyTEApD2n4xhDHNtMczmu/RxuZR4uj/2cjuPb8qn7pyvLkM9dzmseG4OX0ImIKHfclhu1D2myD3ly5FPnFtifDzFsaqh90m6zlc9xXJmmCcCfzKMHgKAQCKS2x1OrpCQSyZ9xIzkcJS5XUEkNTUkIw5zgaaR6x424nKsgH4MTyA2zrDJIT5ZFAwBNIG7EMLFkKlDgw6sYZOeZOmnInm5ONHLPQpQVe9BtbySYeeyvbfu4vvbyOMknjmOlyzdUOSx5lfNlnO5y7mHTFfYGTtbbbe/TLY9regb5h9uWrozD5s/gmCMl3edr2vwukzszPaYlXaRJHya/Pa/jtbjA7YMnynib5bktiLSf07Gf27Fcfjdquj3NrSzDrqVvD2LdXg9zHLd9hjsvjSQN14VvQFmIw0VoCDOrZ+Js/1lcFLzI/Cd2TAjK4Ge6CUZy9nza/WGd4T5ka1bZllFamjyW8ijbKbfsXwzKBiIiooJmv1o9LVKBMeEM107MEwbZeTZ1/FSci59DpDyS76LkndtlrEwDdNfGga3nwT7z3x7gu54rXRmyeG4/vlu+dGV27Jfu8h6cvSrDrXPsdv6MXw9zvgs5Ttq0NPu7pg1zXNdj245lT0+7n3Cmu+2bdrtL2dy2u+UZKq9repr3kU7aPGmTC6/FlrZnPW1yBr37WV41SJvucpXgQq92nPf2NHkyvTqUzZWhTI8/1LFzchVNHbpnv0pmG6JnyZvm+BldPcxw6J9b+cxwM4N91HMNt/+Q5x5uSGaWeYcbTqruq+qKdiEWL/wVRhhkU8Gwj1MmIiIiKlaFPWKciIiIiKgIMcgmIiIiIvIYg2wiIiIiIo9xTDYREWVFrkgEDDPBN8P1f932kzKd1JlNeRyv00x0lhNhBQQ0WG+PLm/J7niktmWy9KH9PQw3udAt3XWiWIaTx4gotxhkExEVqHTLYVq2pQsSMwgcZR5DGOYjIRJIiIT5XKbL/czATV1NAEOsvjDUjZgA1yBQPa46CVoNMO3U4FJP3SpOT12szfYmVJqWDKh9ms8Mrg1hYMAYMH8vAgKGYcCA8rszEhgQA+aSqvbyZUKtF3u6+dyl8eK66pJtm708AsJsNMg6lc/VhoNP8zkaE25pOnT4dB+DeqIUBtlEROdBCGEJQs3A1HAGqZafxmCQpgbEMuiR1OBPT93VzLFUVmq7WyArX5v7poIeHbp1uSxo8Gk+BPRAMnDSkwGUT/Mh5Ash6Asi5A8hoAcQ0APwa374dJ95h1nZa2svm64NnkfmleWxL91lBnlD9LxaAng1XclnP7bltUua+dz+eogAUdZxXMTNuk6IhPk8bsTN+nYr/3DUnnbZsAFsPfXK3456nwP5t2h5LoSlISDLL/8eZXkHjIFkI8EYsPxdm42K1N+72pCwN8TUh2yQyfLLQFzTkn9vjkaZS31a6j3VAPDpPjPAl8/Nhz4Y+BMVAgbZRFR07IGF202Z7DdoSnfDJvWngcFjyYDYgGEGxvILXwYQ6pe6/KJXe/n8ut+RHvANBqt+Pflw6xmUgYiargagcliCPUhVg191mwyuZY+j5ViabimPfJCTrunQfToCKOybYFwIM6BOBdVxEU8G40YyKJcNDBmgq2lq4K42RgaMAQwkBtBv9JsBvdobn3ri6HGX2+X/tHrFIBqPDl55MQavwqgNEvWKSLorGfZGn6MR6/Y89f/v1/2W/52AHoBPL+y7ENLI4acoEQ1J9sh5cQlY/aK094QN9yVtCMPRe+sWLDp6MJEmr27rxVQumcveXb/uT/bk+kLJ4FgLWIJQmSegBxwBqv2LVw2oiQqZpmnJv1/4gRzFi/a7EQPOmzvZh0bFjTgGjAHz50BiwPLaTE9tk41mQyQby2YPvpFAAoOBudpbbzm37UZX9huiySFEMSOWbGikGhtxIz74e1Q+A9SrSObv2tYIUNPsn2lmY1t5bZ8jwGE6hYVBNlGRkV8a6peDWyBp7/m0HyMhEuaXlOORGOxpkh/qhjCS42OVLx71C0INUs2eZJexpbqeGruZGpqgBrQ+zYegHkSJr8S8FBz2h1HiL0HYH0ZQD5oBq9sYUXvPr9uYUfVytTlRTbdOWJPlYUBMlBvm/1aBxYTqlTF1bLv6eSavig0YA+hP9CMajyKWiCWfJ6Lmz2g8it6BXkTjUXM8P2DrrXe5y6zasy8/h82hP7KDAoY1TWlQqCzj64easJturL3L5yPgvHMmuWOQTZQj6ge120QydQyvI82WT+3dcRumID+EIWAZ8mBfBULtQfHpPnOcrRzCUOovRUAPoCxQhvJgOUr8JQj5QtA13XJJ1jFRznZZWNd1hPRk76/s1ZVBs70XWB1CEdSDCPqSgbT8yQ9xIhopcpiVlxJGArFELPlZDufkVteJrMp3h/zsjYt48qqfETc/f9U0NZ96VbDf6Ed/ot/Sw28Iw3Xibr/od3TkqIG9fZ6AOvbePpxOPpdc02yTknU9/fA7dTx+NB7NeJ5DPjHIpv9X7GMN3YLa4Sb0qGN71Q8Xt9n75uU8Zea9vbfAp/sQwOCkM7k9qAfNiWdBX9B1KIIc/2cZrzjEpCWZFvQFEfaHkw/f4E8ZVHNMIRGRN3y6D6V6ab6LAcD6HSiHuJhD9GwTet3G3wOwfAfKYTVq5448j9pzrw6/ccyFUSboyisC5ko+6vd0qhEgn1eEKgr+aiODbCoobsGiDBLVy2GWy2cu6fZZ/5LsBZYz0dXWsnwE9aDrsAO1l1UdrqDOercH1nIJMDUgdptgxklnRESUa+p4+5AvlO/ipCUD/oHEgGWsuxzSGDfi0KBhQumEfBd1SPwmJwDJ4Fb+IZ/Pyg32Vqo8JuB+Ewp7b6skLxf5NJ+l59cSvCqrJeh6cpa/fX1Xn+ZL9tb6wggHwoPDImzDI+RDDp2Qwbc6xEH+JCIiotzz6T744CvohkAmGGQXgDOxMxgwBqyrIdhWRrAvIWQfx2SfmaxuV1drMGdAK5eBZD6/Pjhu1m3inBnsqr22tjV3ZRnVskqynDr0ZI+wL4CwHjYDXhnomr2+qbG6jrFZum24hcuyaZy0RkRERPnEIDuPwr4wqsJVCOpB6zglOYNZmWRgQFnuyDbWabgeZBk4B/UgSv2l8OnJ1mGpv9QcgyuXKQv5QvDrftfhEunu+pWuYQAoN4dQGgK8WQARERGNdgyy8yjoC2LhNQstS/RYhmTAumSPffgGAMcNNNyWHvJrfksQLSfREREREVFuMNLKM3n3MCIiIiIaPRjdERERERF5jEE2EREREZHHGGQTEREREXmMQTYRERERkccYZBMREREReYxBNhERERGRxxhkExERERF5jEE2EREREZHHGGQTEREREXmMd3xMicViAIAjR47kuSREREREVGhkjChjxuEwyE45duwYAKC+vj6/BSEiIiKignXs2DF88pOfHDafJoQQI1Cegnf69Gm89tpruOyyyxAKhTw99pEjR1BfX489e/Zg0qRJnh6bCgPrePRjHY9urN/Rj3U8+uW6jmOxGI4dO4ZZs2ahsrJy2PzsyU6prKzEggULcnqOSZMmYerUqTk9B+UX63j0Yx2Pbqzf0Y91PPrlso4z6cGWOPGRiIiIiMhjDLKJiIiIiDzGIJuIiIiIyGMMskdAdXU1mpubUV1dne+iUI6wjkc/1vHoxvod/VjHo1+h1TFXFyEiIiIi8hh7somIiIiIPMYgm4iIiIjIYwyyiYiIiIg8xiCbiIiIiMhjDLJzqKenBytXrkQkEkE4HMbMmTPx61//Ot/FovPQ3t6OJUuWYPLkySgrK8PEiROxYMEC/O1vf3PkPXjwIG655RaUl5ejsrISDQ0NeO+99/JQaroQzz77LDRNQ3l5uWMb67h4/eUvf8G8efMwduxYlJSU4JprrsG6desseVi/xeuNN95AfX09IpEISktLMXnyZDzyyCPo6+uz5GMdF77u7m6sWrUKt912G6qrq6FpGlpaWlzzZlOfTzzxBCZPnoxQKISrrroKa9euxcDAQE7eA4PsHGpoaMCWLVvQ3NyMV155BTfeeCPuuecebN++Pd9Foyw9/fTTOHr0KO677z60tbVh48aNOHHiBGpra9He3m7me/fddzF79mz09/fjxRdfxKZNm/DPf/4Tn//853Hy5Mk8vgPKxgcffIAHH3wQkUjEsY11XLy2b9+OWbNmoaKiAlu3bkVbWxtWr14NdZEt1m/x+sc//oHPfvazOHr0KB5//HHs3bsXd999Nx555BHcc889Zj7WcXHo7OzEM888g1gshvr6+rT5sqnPDRs24L777kNDQwN+//vfY8WKFXj00UfR1NSUmzchKCd++9vfCgBi+/btlvRbb71VRCIREY/H81QyOh8fffSRI627u1tcfPHFYs6cOWZaY2OjGD9+vDhz5oyZdvToUREIBMSqVatGpKx04ebPny/q6urEokWLRFlZmWUb67g4vf/++6KsrEwsX758yHys3+L18MMPCwDiyJEjlvRly5YJAKKrq0sIwTouFoZhCMMwhBBCnDx5UgAQzc3NjnyZ1uepU6dEOBwWy5Yts+y/YcMGoWmaeOeddzx/D+zJzpHdu3ejvLwcjY2NlvTFixfjww8/xOuvv56nktH5mDBhgiOtvLwcU6ZMwbFjxwAA8Xgce/fuxZ133okxY8aY+a644gp84QtfwO7du0esvHT+tm3bhtdeew1PPfWUYxvruHg9++yz6O3txerVq9PmYf0Wt0AgAACoqKiwpFdWVkLXdQSDQdZxEdE0DZqmDZknm/r83e9+h2g0isWLF1uOsXjxYgghsGfPHk/LD3C4SM68/fbbuP766+H3+y3pM2bMMLdTcTtz5gwOHjyIqVOnAgD+/e9/49y5c2Ydq2bMmIEjR44gGo2OdDEpCydOnMDKlSvxox/9CJdeeqljO+u4eP35z3/GuHHj8O6772LmzJnw+/2YMGECvvGNb+Ds2bMAWL/FbtGiRaisrMTy5cvx3nvvobu7G3v37sUvf/lLNDU1oaysjHU8ymRTnzLumj59uiXfJZdcgvHjx+ckLmOQnSOdnZ0YN26cI12mdXZ2jnSRyGNNTU3o7e3Fww8/DGCwTtPVuxACH3/88YiWkbKzYsUKXHfddVi+fLnrdtZx8frggw/Q19eHxsZGfOUrX8Gf/vQnfPe738XWrVsxb948CCFYv0XuyiuvREdHB95++21cffXVGDNmDOrq6rBo0SJs3LgRAP+HR5ts6rOzsxOhUAhlZWWueXMRl/mHz0Lna6jLHMNdAqHC9oMf/ADPP/88nnjiCXzqU5+ybGO9F6ddu3bh5ZdfxhtvvDFsPbGOi49hGIhGo2hubsaaNWsAALNnz0YwGMTKlSvx6quvorS0FADrt1gdPXoUdXV1uPjii/Gb3/wG1dXVeP3117F+/Xr09PTgueeeM/OyjkeXTOtzpOudQXaOVFVVubaKurq6ALi3uqg4rF27FuvXr8eGDRvwzW9+00yvqqoC4H6VoqurC5qmobKycqSKSVno6elBU1MTvvWtbyESieD06dMAgP7+fgDA6dOnEQgEWMdFrKqqCv/6179w++23W9LvuOMOrFy5EgcPHsSCBQsAsH6L1Zo1a3D27Fm8+eabZm/lzTffjPHjx2PJkiW49957UVNTA4B1PFpk85lcVVWFaDSKvr4+s0Gt5rV3mHmBw0VyZPr06Th06BDi8bgl/a233gIATJs2LR/Fogu0du1atLS0oKWlBQ899JBl29VXX42SkhKzjlVvvfUWJk2ahHA4PFJFpSycOnUKH330EX76059i7Nix5mPHjh3o7e3F2LFj8dWvfpV1XMTcxmwCMJfv03Wd9Vvk3nzzTUyZMsUxHODGG28EAHMYCet49MimPuVYbHve48eP49SpUzmJyxhk58jChQvR09ODXbt2WdK3bNmCSCSCT3/603kqGZ2vdevWoaWlBd///vfR3Nzs2O73+1FXV4fW1lZ0d3eb6f/73/+wb98+NDQ0jGRxKQs1NTXYt2+f43H77bcjHA5j3759WL9+Peu4iN15550AgFdeecWS3tbWBgCora1l/Ra5SCSCd955Bz09PZb0jo4OAMCll17KOh5lsqnPuXPnIhwOY/PmzZZjbN68GZqmDbkW93nzfFFAMt16661i7Nix4plnnhHt7e1i6dKlAoDYtm1bvotGWfrJT34iAIi5c+eKjo4Ox0M6dOiQKC8vFzfffLNoa2sTra2tYtq0aSISiYgTJ07k8R3Q+XBbJ5t1XLzq6upEKBQS69atE3/84x/FD3/4QxEOh8X8+fPNPKzf4vXSSy8JTdNEbW2teOGFF8Srr74qNmzYIMrLy8WUKVNELBYTQrCOi0lbW5vYuXOn2LRpkwAgGhsbxc6dO8XOnTtFb2+vECK7+ly/fr3QNE089NBDYv/+/eLHP/6xCIVCYunSpTkpP4PsHOru7hbf/va3RU1NjQgGg2LGjBlix44d+S4WnYdZs2YJAGkfqgMHDog5c+aI0tJSMWbMGFFfX++4OQIVB7cgWwjWcbHq6+sTq1evFpdddpnw+/3i8ssvF9/73vdENBq15GP9Fq/29nZx2223iZqaGlFSUiKuvfZa8cADD4hTp05Z8rGOi8MVV1yR9nv3P//5j5kvm/rcuHGjuPbaa0UwGBSXX365aG5uFv39/TkpvyaEcj9ZIiIiIiK6YByTTURERETkMQbZREREREQeY5BNREREROQxBtlERERERB5jkE1ERERE5DEG2UREREREHmOQTURERETkMQbZREREREQeY5BNRERZefTRR7Fnzx5H+ubNm6FpGg4cODDyhSIiKjAMsomIKCvpgmwiIhrEIJuIiIiIyGMMsomIRomWlhZomoa///3vaGxsREVFBcaNG4f7778f8Xgchw8fxty5c3HRRRfhyiuvxGOPPWbuG41G8cADD2DmzJnmfp/5zGfw0ksvWc6haRp6e3uxZcsWaJoGTdMwe/ZsS57u7m4sX74c48ePR1VVFRoaGvDhhx+OxK+AiKhgMMgmIhpl7rrrLtxwww3YtWsXli5dip/97Gf4zne+g/r6enzpS1/C7t278cUvfhGrV69Ga2srACAWi6GrqwsPPvgg9uzZgx07duCmm25CQ0MDtm7dah67o6MDJSUlmDdvHjo6OtDR0YGnnnrKcv6vf/3rCAQC2L59Ox577DHs378fX/va10b0d0BElG/+fBeAiIi8tWzZMtx///0AgFtuuQV/+MMf8OSTT6K1tRULFy4EAMyePRt79+7F888/j4aGBlRUVOBXv/qVeYxEIoE5c+bg448/xuOPP457770XAFBbWwtd11FdXY3a2lrX88+dOxc///nPzdddXV1YtWoVjh8/jpqamly9bSKigsKebCKiUWb+/PmW19dffz00TcMdd9xhpvn9fkyaNAn//e9/zbSdO3fic5/7HMrLy+H3+xEIBPDcc8/h0KFDWZ3/y1/+suX1jBkzAMByLiKi0Y5BNhHRKDNu3DjL62AwiNLSUoTDYUd6NBoFALS2tuKuu+7CxIkTsW3bNnR0dOCvf/0rlixZYubJVFVVleV1KBQCAJw7dy7bt0JEVLQ4XISIiLBt2zZcddVVeOGFF6Bpmpkei8XyWCoiouLFnmwiIoKmaQgGg5YA+/jx447VRYBkzzR7pYmIhsYgm4iIMH/+fBw+fBgrVqxAe3s7tmzZgptuugmXXHKJI+/06dOxf/9+vPzyyzhw4AAOHz6chxITERU2DhchIiIsXrwYJ06cwC9+8Qts2rQJn/jEJ7BmzRq8//77WLt2rSXvxo0b0dTUhLvvvht9fX2YNWsW9u/fn5+CExEVKE0IIfJdCCIiIiKi0YTDRYiIiIiIPMYgm4iIiIjIYwyyiYiIiIg8xiCbiIiIiMhjDLKJiIiIiDzGIJuIiIiIyGMMsomIiIiIPMYgm4iIiIjIYwyyiYiIiIg8xiCbiIiIiMhjDLKJiIiIiDzGIJuIiIiIyGMMsomIiIiIPMYgm4iIiIjIY/8H4e1STfs5spcAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(figsize=(7, 3), dpi=120)\n", - "bmb.interpret.plot_predictions(\n", - " model_interaction, \n", - " idata_interaction, \n", - " [\"math\", \"prog\"], \n", - " ax=ax, \n", - " pps=False\n", - ");" + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 2 seconds.\n" + ] + } + ], + "source": [ + "# Load data, define and fit Bambi model\n", + "data = pd.read_stata(\"https://stats.idre.ucla.edu/stat/stata/dae/nb_data.dta\")\n", + "data[\"prog\"] = data[\"prog\"].map({1: \"General\", 2: \"Academic\", 3: \"Vocational\"})\n", + "\n", + "model_interaction = bmb.Model(\n", + " \"daysabs ~ 0 + prog + scale(math) + prog:scale(math)\",\n", + " data,\n", + " family=\"negativebinomial\"\n", + ")\n", + "idata_interaction = model_interaction.fit(\n", + " draws=1000, target_accept=0.95, random_seed=1234, chains=4\n", + ")" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This model utilizes a log link function and a negative binomial distribution for the likelihood. Also note that this model also contains an interaction `prog:sale(math)`." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + " Formula: daysabs ~ 0 + prog + scale(math) + prog:scale(math)\n", + " Family: negativebinomial\n", + " Link: mu = log\n", + " Observations: 314\n", + " Priors: \n", + " target = mu\n", + " Common-level effects\n", + " prog ~ Normal(mu: [0. 0. 0.], sigma: [5.0102 7.4983 5.2746])\n", + " scale(math) ~ Normal(mu: 0.0, sigma: 2.5)\n", + " prog:scale(math) ~ Normal(mu: [0. 0.], sigma: [6.1735 4.847 ])\n", + " \n", + " Auxiliary parameters\n", + " alpha ~ HalfCauchy(beta: 1.0)\n", + "------\n", + "* To see a plot of the priors call the .plot_priors() method.\n", + "* To see a summary or plot of the posterior pass the object returned by .fit() to az.summary() or az.plot_trace()" ] }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Passing specific `subplot_kwargs` can allow for a more interpretable plot. Especially when the posterior predictive distribution plot results in overlapping credible intervals." + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model_interaction" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtkAAAFdCAYAAADWhHHNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABJ0AAASdAHeZh94AABaPklEQVR4nO3deZRcZZ0//ve9dWtfu7qq9yX7TozgElH2HRMJYeIyg3BkRAVUYEDAQQgRVFRARM2MiIgMwiiC4QcCM8Ou5xuVnexJJ+mk02t17ft27++PW1Xdlc7W6equpd+vc/pU961bVU9zm/S7n/o8n0dQFEUBERERERGVjFjuARARERER1RqGbCIiIiKiEmPIJiIiIiIqMYZsIiIiIqISY8gmIiIiIioxhmwiIiIiohJjyCYiIiIiKjGGbCIiIiKiEmPIJiIiIiIqMancA6gUgUAAr7/+Otrb26HX68s9HCIiIiKqIMlkEj09PTjttNPgcDiOej5Dds7rr7+OVatWlXsYRERERFTBNmzYgIsuuuio5zFk57S3twNQ/8PNmTOnzKMhIiIiokrS1dWFVatWFTLj0TBk5+RLRObMmYPFixeXeTREREREVImOtayYCx+JiIiIiEqMIZuIiIiIqMQYsomIiIiISowhm4iIiIioxBiyiYiIiIhKjCGbiIiIiKjEGLKJiIiIiEqMIZuIiIiIqMQYsomIiIiISowhm4iIiIioxBiyy+ytbh980VS5h0FEREREJSSVewDT3VA4iZ2DEcxwmfChNgfMel4SIiIiomrHRFchuodj6PHFML/JhsUtNmg1fJOBiIiIqFoxyVWQrAxs7Qvh2ff7sGswDEVRyj0kIiIiIjoOFReyw+EwbrrpJpx77rlwu90QBAF33HFH0TnZbBb33Xcfzj//fLS1tcFkMmHhwoW45ZZbEAgEyjLuUkqkZbzZ7cefN/WjNxAv93CIiIiIaJwqLmR7vV48+OCDSCaTWLVq1SHPicfjuOOOO9DZ2Yn7778fzz//PK688ko8+OCD+OQnP4l4vDaCaSiewes7PHhl+yD8XBxJREREVDUqria7s7MTfr8fgiBgeHgYDz300JhzjEYj9u7di/r6+sKx008/HR0dHVizZg2eeuopXHrppVM57Ek1EEzixdAAZtSbsazdAaNOU+4hEREREdERVNxMtiAIEAThiOdoNJqigJ33sY99DADQ09MzKWMrJ0UB9g5H8fymfvQHa2OmnoiIiKhWVVzInohXXnkFALB48eIyj2TyJDMyXt3uwXs9AcgyF0YSERERVaKKKxc5Xr29vbjlllvwkY98BCtWrDjiuUNDQ/B4PEXHurq6JnN4Jbe1LwRPOIlPzqmHSVczl5GIiIioJtREOvP5fLjwwguhKAp+//vfQxSPPEG/fv16rFu3bopGN3k84SRe2DSA5bPr0eowlns4RERERJRT9SHb7/fjnHPOQW9vL1555RXMmjXrqI+5+uqrsWbNmqJjXV1dh+1mUsmSGRmv7/BgQbMVy9ocEMUj17MTERER0eSr6pDt9/tx9tlnY+/evXj55ZexdOnSY3pcQ0MDGhoaJnl0U2t7fxiecBKfmuPi1uxEREREZVa1Cx/zAXvPnj343//9X3z4wx8u95DKzhtJ4YXNA+jxxco9FCIiIqJprSKnPF944QVEo1GEw2EAwNatW/HHP/4RAHDhhRdCEAScd955ePfdd3H//fcjk8ngb3/7W+Hxbrcbs2fPLsvYyy2VkfGXXcOY32TBh9vrWD5CREREVAYVGbKvuuoq7Nu3r/D1k08+iSeffBIAsHfvXgDAm2++CQC49tprxzz+8ssvxyOPPDL5A61gOwYi8IRT+OScelgN2nIPh4iIiGhaqciQ3d3dfdRzFIU9oo/GF03hzx/0Y16TFYtbbNBL3CmSiIiIaCpUZMim0pEVdVHkHk8US1ptmNdgZQkJERER0SSr2oWPND6pjIx39gXw3KZ+7PdyYSQRERHRZGLInmYiiQz+2jWM/90yAE84We7hEBEREdUkhuxpajiSwv9tHcRfdnkQTqTLPRwiIiKimsKa7GmuxxdHrz+OuY0WLG6xw6Dl4kgiIiKiieJMNkFW1JZ/z77fhx0DYXZuISIiIpoghmwqSGcVvL3Pj5e2DSHEEhIiIiKi48aQTWN4wkm8uGkA2wdCnNUmIiIiOg4M2XRIGVnBO/sCeGnbEBdGEhEREY0TQzYdkSecxAubBrBjIFzuoRARERFVDYZsOqqMrNZq/9/WQc5qExERER0Dhmw6ZpzVJiIiIjo2DNk0LvlZ7Zc4q01ERER0WAzZdFyGcrPa2wdCkGV2ICEiIiIajSGbjlu+A8nzm/vRG4iXezhEREREFYMhmyYsFM/g9R0evLpjCMEYS0iIiIiIGLKpZPoDCbywuR9vdvuQSGfLPRwiIiKispHKPQCqLbIC7BqMoHs4ihPa7JjXYIUoCuUeFhEREdGU4kw2TYp0Vq3X/vOmfhzwx8o9HCIiIqIpxZBNkyqcyOCNncN4dfsQArFUuYdDRERENCVYLkJToj+YwMDmAcx2W7Cw2QqrQVvuIRERERFNGoZsmjKKAnQNRbDbE0GH04SFzTY4zbpyD4uIiIio5BiyacopCrDPG8M+bwxNdj0WNdvRZDeUe1hEREREJcOQTWU1EExiIDgEp1mLRc12tDuNEAR2IyEiIqLqxpBNFcEXTeOvXcOwGCQsbLJiltsCDVv/ERERUZViyKaKEklk8Ga3H5t6g5jXaMXcRgv0kqbcwyIiIiIaF7bwo4qUSMv44EAQz7zXh829QWSycrmHRERERHTMGLKpomWyCj44EMRzH/RjjycCRVHKPSQiIiKio2LIpqoQS2Xxtz0+vLh5AP3BeLmHQ0RERHREDNlUVfyxNF7d7uEOkkRERFTRuPCRqlJ+B8mZLjOWttlh0vFHmYiIiCoHkwlVLUUB9nii2O+NYUGzFQubbdBq+OYMERERlR8TCVW9jKxgc28Iz77fh12DYS6OJCIiorJjyKaakUjLeLPbjz9v6kdvgIsjiYiIqHwYsqnmhOIZvL7Dg1e2D8If5eJIIiIimnoM2VSzBoJJvLhlABt3exFPZcs9HCIiIppGuPCRapqiAHuHo+jxqYsjFzXbIHFxJBEREU0ypg2aFgqLIz/oQ9cQd44kIiKiycWQTdNKPCXjH3t9eIE7RxIREdEkYsimaSmQ3zlyxxCC8XS5h0NEREQ1puJCdjgcxk033YRzzz0XbrcbgiDgjjvuOOS577zzDs4++2xYLBY4HA6sXr0ae/bsmdoBU1XrDyTwwqZ+vNcTQCYrl3s4REREVCMqLmR7vV48+OCDSCaTWLVq1WHP2759O04//XSkUin84Q9/wMMPP4ydO3filFNOgcfjmboBU9WTFWBrXwh/3tSP/d5YuYdDRERENaDiuot0dnbC7/dDEAQMDw/joYceOuR5t99+O/R6PZ577jnYbDYAwEknnYS5c+finnvuwQ9/+MOpHDbVgGgyi792DaPZY8CJnXWwG7XlHhIRERFVqYqbyRYEAYIgHPGcTCaD5557DpdcckkhYANqQD/jjDPwpz/9abKHSTWsP8gSEiIiIpqYigvZx2L37t2Ix+NYunTpmPuWLl2Krq4uJBKJMoyMagVLSIiIiGgiKq5c5Fh4vV4AgNPpHHOf0+mEoijw+/1obm4+5OOHhobG1G13dXWVfqBU9VhCQkRERMejKkN23pHKSo503/r167Fu3brJGBLVqHwJyYJmGxY0WWHQaso9JCIiIqpgVRmy6+vrAYzMaI/m8/kgCAIcDsdhH3/11VdjzZo1Rce6urqO2M2EKF9CsmMghA6nGXMbLXBZ9OUeFhEREVWgqgzZs2fPhtFoxKZNm8bct2nTJsyZMwcGg+Gwj29oaEBDQ8NkDpFqWFYG9g5HsXc4CqdZi7mNVnQ6TZA0VbnEgYiIiCZBVaYCSZKwcuVKPP300wiHw4Xj+/fvx6uvvorVq1eXcXQ0nfiiafx9jw8b3uvDO/v9CCe4eyQRERFV6Ez2Cy+8gGg0WgjQW7duxR//+EcAwIUXXgiTyYR169bhox/9KFasWIFbbrkFiUQCt99+O1wuF2644YZyDp+moVRGxvb+MLb3h9FsN2BuowWtDuNR21ESERFRbarIkH3VVVdh3759ha+ffPJJPPnkkwCAvXv3YsaMGViwYAFee+013Hzzzfinf/onSJKEM888E/fccw/cbne5hk6E/mAC/cEEzHoN5jRYMMtlgVHHhZJERETTSUWG7O7u7mM676STTsJLL700uYMhOk7RZBbv9wTxwYEg3BY9ZrhMaKszsTMJERHRNFCRIZuoligKMBROYiicxFvdfjTZDeisN6OtzggtF0sSERHVJIZsoikkK0BfIIG+QAKSKKDFYURnvQktDiM0Iuu3iYiIagVDNlGZZGQF+30x7PfFoNUIaKszYYbLhCabgQsmiYiIqhxDNlEFSGeVQu9tk06D2W4L5jRwwSQREVG1YsguM0VRyj0EqjCxVBabeoPY0hdEi8OIuY0WNNuN5R4WERERjQNDdpn995s9GAgmcEKrHYtabDDpeElIJSvAAX8cB/xxWAwS5rgtmOU2szsJERFRFWCiK6N0VsY7+/yIprLYNRTBhvd6MafBgiUtDNxULJLI4L2eAD44EECH04Q5DRY02AzlHhYREREdBlNcGcWSWZzYWYd39gcQTWYgK8DOwQh2Do4E7hNa7VjUbGdtLgFQZ7e7vTF0e2OwG7WY02DBbLcZElsBEhERVRSG7DKym7T4wsc6cN7iJuwdjmJzbxCb+0JjA7fQh9kNZgZuKhKMp/H2Pj92DIbxiVn1cFv15R4SERER5TBkVwBREDDbbcFstwUrlrag2xtVF771BhFNZZFVlELg/pMwUlKysNkGs56XcLqLJDJ4adsgFjbbsLTVDpH9tomIiMqOCa3CaMSRwL0yH7gPBLG5L4hYKls0wy2+14tZLgsWt9qwuMUOCwP3tKUowNa+EPoDcXxidj0cJl25h0RERDStMZVVsKLA/aEWtaSkL4gto0pKujwRdHki+P/e68MMlxlLWu1Y3GKDzaAt9/CpDPyxNP5nywCWtjmwoMnKTW2IiIjKhCG7SmhEAXMa1A1KPvMhdYZ7c28IW/qCCCcyUIDCZibPvd+HjnoTlrTYsaTVDruRgXs6ycrAu/sD6PWrs9osKSIiIpp6/O1bhURBwCyXBbNcFqxY2oweX6ywaDIYT0MBsM8bwz5vDH/e1I/2OiMWt6gz3PUWLo6bLobCSTy/qR8nddZhlttS7uEQERFNKwzZVU4UBHTWm9FZb8YFJzSj1x/PBe4g/LE0AKDHH0ePP44XtwygyWbA4hYbFrfa0WjVs5ygxqWzCv62x4cD/jg+NtPJjWyIiIimCEN2DREFAe1OE9qdJpy/pAl9gUSuhjuI4UgKADAQSmAglMDL24dQb9ZhcYsdS1ptaHUYGbhr2AF/HMORfnxsphNtdaZyD4eIiKjmMWTXKEEQ0FpnRGudEecuasRQOIktuUWT/cEEAMAbTeGNXR68scsDu1GLRS02LGmxo7PeBJGBu+Yk0jLe2DkMp1kHu1ELm1GCzaCFzaCF1SCx9R8REVEJMWRPA4IgoNFmQKPNgDMXNMIbSWJrfwibe4Po8ccBqBubbNztxcbdXph1GixstmFRiw2z3RZouZtgTfFFU/BFU0XHRAEw6yVYDRJsRjV450M4S0yIiIjGjyF7Gqq36HHKXDdOmetGMJ7G1twM997hKBQA0VQWb+3z4619fugkEfMbrVjUYsP8RisDV42SFSCcyCCcyKAvkCi6z2aUsKDJhlkuM2e7iYiIjhFD9jRnN2rxidkufGK2C5FkBtv7Q9jaH0LXUAQZWUEqI2NTbxCbeoPQCAJmN5ixqNmOhc1WWNmLe1oIxTP4x14fNvcGMb/JijkNfHeDiIjoaBiyqcCil/CRGU58ZIYTyXQWO4ci2NIXxI6BMJIZuWh792feAzqcJixqsWFRM1sDTgexVBbv7g9gS18I8xotmMd3NoiIiA6LIZsOSa/V4IRWO05otSOTlbFnOIotfSFs6w8hklQ3v9nni2GfL4YXNg+g0aZX67ib2amk1qUyMjb3hrC9P4xZbjMWNNtg4YY3RERERfibkY5K0oiY12jFvEYrLlrWgh5fDFv61LKS/AK6wVASgyEPXtvhgc0gYWGzDQubbZjlNkMSWVpQizKy+s5G11Ck8K6Gw6Qr97CIiIgqAkM2jUvR5jdLmjAYUjuVbOsPoTegdioJJTL4+14f/r7XB72kBvRFzTbMb2J5QS2SFaDbG0O3N4YWhwELm21otBnKPSwiIqKyKnnITiQS6O7uxty5c6HRMFDVMkEQ0GQ3oMluwJkLGhCMp7EtF7h3eyKQFSB50MLJmW6zOsvdZOWsZw3qCyTQF0jAYpAw223GLJcFRh3/HSAioulnQiH7Zz/7GQKBAG677TYAwNtvv43zzz8fPp8PM2bMwGuvvYb29vaSDJQqn92oxfJZ9Vg+qx6JdBY7BsPY2hfCzsGRhZNdQ2p5wbPvA812Qy5w29DiMLCOu4ZEEhm83xPEpgNBNDuMmO02s1afiIimlQkVyz700ENwOByFr2+++WY4nU785Cc/gaIouOuuuyY6PqpSBq0GH2pz4Asf68Ctn16IL508Ax+f6YTNMPJ3XX8wgVe2D+EXr3Xhhy9ux4b3erFjIIx0Vi7jyKmUZAXo9cfxxs5hbHivF+/3BBBOpMs9LCIiokk3oZns/fv3Y8GCBQCAcDiMN954A//93/+N1atXo66uDrfffntJBknVTRJFzG20Ym6jFZ/5UAv6ggls6w9he38Ifbkt3kMJtRfzP/b6oNOImNtowYImtY6bnStqQzwlY0tfCFv6Qmi06THbbUG70wQNN7ghIqIaNKH0kkwmodWqG5Js3LgRsizj7LPPBgDMmDEDAwMDEx8h1RRBENDqMKLVYcTZCxsRiKWwfSCMbf0h7PFEkVUUpLIjYUwA0O40YWGTFfObbWi06llyUAPUbjRJ6Pb5McttxqJmGxfFEhFRTZlQyO7o6MBf/vIXnH766XjmmWewbNky2Gw2AIDH4yl8TnQ4DpOuqI5711AE2/tD2D4QRjydhQJgvy+G/b4Y/mfrIOpMWsxvUhdOznSZIXHnwaqWysjY3h9G12AE85usWNhsg07iNSUiouo3oZB96aWXYt26ddiwYQPef/993HPPPYX73nrrLcybN2/CA6TpwzBqA5ysrGC/L6aWlQyEMRxJAgD8sTT+tseLv+3xQieJmNtgwYImK+Y3cUOUapaRFWzJLZJdmGv3yK3biYiomk0oldx6662QJAn/7//9P1x88cX4xje+Ubhv8+bNuOSSSyY8QJqeNKKAmS4zZrrMuPCEZgxHktg+EMb2gRC6h6OQFXUWdKSspBdtdUbMb7JhQZMVzXZ2K6lG6ayCDw4EsWMgjEUtNsxrtLJmm4iIqpKgKIpS7kFUgi1btmDJkiXYvHkzFi9ePGWv+/ymfgRi7LYwHvFUFruGwtg+EMaOXFnJwWwGCfObrFjQZMNst4UlCFXKqBOxpMWO2W4LRIZtIiIqo/FmxZK8v55IJPDOO+/A6/Wivr4eJ554IgwG7vhGk8Oo02BpmwNL2xyQFQX7vbHCLPdQWC0rCSUyeLPbjze7/ZBys+L50O00cxOcahFPyXiz24+t/SGc0GrHTJeZ71AQEVFVmHDIvu+++3DnnXciFApBURQIggCr1YrbbrsNN9xwQynGSHRYoiBghsuMGS4zzl/SBF80hR0DIewYDGOPJ4qMrCAjK9g1FMGuoQie+6Afbose85usmN9kxYx6M8sRqkA0mcXf9viwtT+EJS12tv4jIqKKN+EdH2+88Uacc845+Od//mc0NTVhYGAAv/vd73DTTTdBq9Xim9/8ZqnGSnRUTrMOn5jtwidmu5DKyNjtiWD7QBg7B8MIxtWyHE8kCU9XEn/tGoY+t3hyfpPax9tm0Jb5O6AjCcUz+H+7vdDt86Oz3oRZLjPqLfpyD4uIiGiMCdVkz549G5/85Cfx6KOPjrnv0ksvxcaNG7F79+4JDXCqsCa7timKgoFQAjsG1FruHl8Mh/rBb3EYMK/RivmNVrQ7TRBZmlDxHCZtYZEse20TEdFkmdKa7L6+PvzLv/zLIe/74he/iKeeemoiT09UMoIgoNluRLPdiNPnNyCWzGBnbvHkrsFIYfFkXyCBvkACr+3wwKjVYG6jBfNzu1WyRWBlCsTSeHd/AO/3BNDsMGKWy4xWh5ELJYmIqKwmlBrmzZuHwcHBQ97X39+POXPmTOTpiSaNSS9hWXsdlrXXQVYUHPDFsGMwjB2DYfQF1K3e4+ksPjgQxAcHghAAtNYZC7PcrXVGznJXGFkBev1x9Prj0EsiZrjMmO02w2HiQlciIpp6EwrZ69atw/XXX48TTzwRS5YsKRz/4IMPsG7dOtx3330THiDRZBMFAR31ZnTUm3HOoiaEE2nsHIxgx2AYXUNhJNIyFAAH/HEc8MfxyvYhmHQazG2wYF6jFXMaLLCylruiJDMyduRaPNaZtGh2GNFkM8Bt1XPBJBERTYlxh+zPfOYzRV9nMhksW7YMixcvLix83LJlC1paWvDII4/g4osvLtlgiaaC1aDFSZ11OKmzrrDz5M5BNbANhNRZ7lgqi/cPBPH+gSCAkVrueQ1Wdr6oMP5YGv5YGlv7QtCIgNuqR6PNgCabAU6zji0BiYhoUow7ZH/wwQdFv5QkSUJ7eztCoRBCoRAAoL29HQCwadOmEg1zrHfffRfr1q3DP/7xDwQCAXR0dOCf//mfceONN8JkMk3a69L0MnrnyfMWNyEYT2PXoNqtpMsTQSItAyiu5TZoRcxxq7PccxutsBs5y10psjIwEExiIJjE+whCJ4losOrRbDegwWbgtSIiopIZd8ju7u6ehGGMz9atW3HyySdj/vz5uP/+++FyufDGG2/gu9/9Lt5++20888wz5R4i1Si7UYuPzHDiIzOcyMoKenKz3DuHRmq5E2kZm/tC2Nyn/tHZaNNjboMVcxstmFFvhlbD3ScrRSojF8qAAMCk06AxV1bisuhgN2o5001ERMelKtslPP7440gkEnjqqacwe/ZsAMCZZ56J/v5+PPjgg/D7/airqyvzKKnWacSRjXDOXazWcu8aimDnYHHHksFQEoMhtS+3VqPOjOdDt9uiZ4irILFUFnuHo9g7HAUAaDUCXBY96i26wq1eYptAIiI6upKFbI/Hg3g8PuZ4R0dHqV6iQKtV39K12+1Fxx0OB0RRhE7HbgI09awGLU7sqMOJHWrHkl5/HDsGw9g1GMYBfxwKgHRWwc7BCHYORoBNgMOoxdxGC+Y2WDHbbYFRxwBXSdJZBf3BBPqDicIxm1GCy6LPfXC2m4iIDm3CIfuuu+7CAw88AK/Xe8j7s9nsRF9ijMsvvxz3338/rrrqKvzwhz+E2+3G66+/jl/+8pe45pprYDabj/j4oaEheDyeomNdXV0lHydNX6IgoN1pQrvThLMXNiKWymC3J4pdg2HsGooUdp8MxNN4s9uPN7v9EAWgrc5UCN2tDiMXUFagUDyDUDyDPZ7i2W6XRQ+XVZ3xZkkQERFNKGQ//PDDuPvuu3HLLbfg9ttvx6233gpFUfBf//VfMBqNuPnmm0s1ziIzZszAxo0bcfHFFxfKRQDgm9/8Ju6///6jPn79+vVYt27dpIyN6FBMOgkntNpxQqsdiqJgKJzErqEIdg2GsXc4ioysQFaA/b4Y9vtieHnbEAxaEbPdFsxpUEO308x3aCrRwbPdgqDW7qt13epsN1s8EhFNPxPaVv2kk07CJZdcgptvvhlarRZvvfUWTjzxRMTjcZx66qn47Gc/i29961ulHC8AdfHlOeecg8bGRlx//fVwu934+9//jrvuugv/9E//hF//+tdHfPzhZrJXrVrFbdVpyqWzMrqHo4V67qFw8pDn1Zt1ucBtwSy3hVuIVxGjTizMdrutetSZdHyXgoioykzptupdXV1Yvnw5RFF9azSVSgEAjEYjbrjhBtx2222TErJvueUWhEIhvPfee4XSkFNPPRUulwtXXHEFLrvsMpx22mmHfXxDQwMaGhpKPi6i46HViJiba/d34QnNCMbT2D0Uwa6hMLqGIoim1JIrbzQF714f/r7XB1EA2utMhdDdWsfe3JUsnpLR44ujx6euWxFzs911Zh3qzTrUmXUM3kRENWZCIVuS1IcLggCbzYYDBw4U7nO5XOjt7Z3Y6A7jvffew6JFi8bUXn/0ox8FAGzevPmIIZuoktmNWpzYWYcTO9UFlAPBBLpyobvbG0M2V1qyzxfDPl8ML28fgl4SMStXWjLHbYHLwk1WKpmsjGySk6/tFgXAZtTCadbBmQvddSYtJNZ3ExFVpQmF7Llz56KnpweAGnB/9atf4aKLLoIoinjwwQcxY8aMUoxxjJaWFmzevBmRSAQWi6VwfOPGjQCAtra2SXldoqkmCgJaHEa0OIw4dZ4bqYyMbm+0ELoHQ2ppSTIjY1t/CNv61d7cdqMWc9wWzG5Qg7dFX5XdOqcVWQECsTQCo4J3vr67rc6ImS4za7uJiKrIhH7zXnjhhXjjjTdw+eWX49vf/jbOO+88OBwOSJKESCSChx9+uFTjLHLddddh1apVOOecc3D99dfD5XLhb3/7G37wgx9g0aJFuOCCCybldYnKTSeJ6vbtjVYAzQjF0+jyRLB7KIKuoQjCyQwAIBhP4+39fry93w8AaLIZ1FnuBnVDHJ3E2dFqoIwK3pt7Q2iw6jHLbUaH08QZbiKiCjehhY8He/PNN/HEE09AFEV8+tOfxhlnnFGqpx7j1Vdfxd13340PPvgAwWAQ7e3tWLlyJb797W+jvr5+3M833mL2UuHCRyqVfNeSrlzg3jscRSorjzlPIwrocJow223GHDfruauRVqNew1luC9xWfbmHQ0Q0LYw3K5Y0ZFczhmyqNRlZXWynhu6RDXEOppdEzHSZMTtXXtJo5S6U1cRmlDDLZcEst5kdZ4iIJtGUdhdJJBJIpVKw2WyFY3/4wx/wzjvv4JxzzsFZZ501kacnogmQRDU8z3SZcc6iRsRTWewdjqDLE8XuoQg8kZF67u0DYWwfCAMALHoJs3Kz3LMbLKgzsT93JQvFM3ivJ4APDgTQ7DBilsuMZruB5SRERGU2oZD9xS9+EWazGY888ggA4IEHHsB1110HAPjxj3+MZ599FhdeeOFEx0hEJWDUabCoxY5FLXYAat32Hk8Euz1qeUkoodZzR5IZfHAgiA8OBAEATrMOs91mzHJbMIuL7yqWrAC9/jh6/fHCgsk6k25UtxJ2KiEimkoTCtn/+Mc/8MMf/rDw9QMPPIBLL70UP//5z/Gv//qvuOeeexiyiSqU3ajFhzvq8OGOOiiKguFICrtzoXuPJ4p4Wu3P7Yum4Ium8Ga3uoiy0abHLLcFs10WzHSZYdSxRKHSjF4wuXe4uFNJnUmHegtbBBIRTbYJhWyPx4PW1lYAwN69e7Fnzx488cQTsNls+Nd//VdcdtllJRkkEU0uQRDgtqq7ES6fVQ9ZUdAXiGO3J4o9ngi6vVGks2pF92AoicFQEht3eyEAaHEYCzPd7FxSuQ4VvPO9uevNOtTntoC3G7WsySciKoEJhWyTyYRgUH1L+S9/+QssFgs+8pGPAAAMBgMikcjER0hEU04UBLTVmdBWZ8Jp89zIZGX0+OO58pIoenwxZBUFCoDeQBy9gTje2DVc2IlyVi50dzhN0HKmtGKN7s29O9ebW9IIhdBdb9bBbdVzQSUR0XGYUMg+4YQT8Itf/AKdnZ1Yv349zjjjjMIMyP79+9HU1FSSQRJReUmakUWUZy0EUhkZ+3xR7PFEsdsTQW+uc8nonShf3eEptAuc5TJjptuMjjr2d650maxSeLciz6zXwGXRo96iQ71ZD7tRy3csiIiOYkIh+7bbbsOKFSuwbNky6HQ6vPTSS4X7/vznP+PEE0+c8ACJqPLoJBFzG6yY22AFACTSWewdjhZmugdCCQBAVlawdziqlidsByRRQEe9CbNcFsx2m9FaZ4QkMqxVumgyi2gyhn3eWOGYIABajQidJEKnEaGXxJGvc8d0knrcpNOgzqSDyH7sRDSNTChkn3nmmdi2bRvefvttLFu2DLNmzSq6b9myZRMdHxFVAYNWg4XNNixsVtt5RpMZNXQPq4soh8LqrGhGVrDHo86Av7RN3VSls96sznS7GLqriaKo72ikMmM3PDoUSRTgNOvgsqq13y4Ly1CIqLZNKGSnUil0dnais7NzzH1f/epXJ/LURFTFzHoJS1rtWNKqtgsMJ9K5me4o9gxHMZzr0Z3OKoUdKgGG7lqWkdUdSfN/cAGA1SDBbdXDZdHDbdHDbmJ7SCKqHRMK2a2trfjyl7+Mq666Ch0dHaUaExHVGKtBi6VtDixtcwAAQvE09uTKS/YMR+GLpgAcJnQ7zZjhUoN3W52RNd01JJzIIJzIYE9u0aVOElFv0cFtUTvd1Jt1vN5EVLUmFLJXrlyJBx54APfccw9WrFiBr3/969zlkYiOymbUYlm7A8vaHQDUjXHU2m21vMQ7OnR7IujyjITudqepsAizvY7dS2pJKiOjP5BAf0Ct6RcFoC7X4SQfvFliQkTVYkIh++GHH8a9996LX/3qV/jP//xPnHvuuZg3bx6uueYaXH755bBaraUaJxHVMPtBoTuUC917cosmR5eX5Gu6AUAjCmivM2KmS53t7nSyT3ctkRXAG0nBG0lhO8IAAItBKgRut1XtdEJEVIkERVGUUjyRoih49tln8fOf/xwvv/wyzGYzLrvsMnz961/HggULSvESk2rLli1YsmQJNm/ejMWLF0/Z6z6/qR+BWHrKXo+oGoUS6UKXkr2eKDyR5CHPEwWg1TESumfUmznzWeP0kginWQeLQYJJp4FFL8Gsl2DRS7z2RFRS482KJQvZee+++y5uuOEGvPbaa+oLCAJWrVqF//iP/0BDQ0MpX6qkGLKJqkck171k73AU3cMjLQMPJgBothsKgXuGywyLfkJv4FEVkUQBJr2mELrNutxt7hhDOBGNx3izYkl+22QyGTz55JP4xS9+gY0bN6K9vR0//OEP8bnPfQ7PPPMM7rzzTlx22WV48cUXS/FyRDTNWfQSTmi144Rc95JYKoN93lghePcF1M1xFAB9wQT6ggn8v91eAIDLoseMerWue0a9GQ4TtxGvVRlZQSieQSieOeT9Wo0Aq0GCRa+FxaAGcJtBys2K848xIpqYCf0r0tvbi1/+8pf41a9+hcHBQZxyyin4wx/+gIsvvhhiru3WN77xDbS2tuLSSy8tyYCJiA5m0klFfboT6Sz2+0ZCd68/jmzuTbvhSBLDkSTe2ucHoNaDz6g3FWa7G6x6hu5pIp1V4Ium4YuOfTdRI6IwA241SNCIIkQBEAUBGlHI3RZ/LYoCNIIArUZAvUVfhu+IiCrJhEL2jBkzIEkSPv/5z+Paa6897OYzs2bNQmNj40ReiojomBm0GsxrtGJeo7r4OpWRccAfw15vFPuGY9jviyGVVTdRCcbTeP9AEO8fCAIATDoNOuvNmFFvQme9GS0OA3t1T0NZGUecBT8aq0HCnAYLZrnN0EssSyGajiYUsteuXYuvfvWrcLvdRzxv2bJl2Lt370ReiojouOkkEbPcFsxyWwCo2733BeLo9kbR7Y2heziKeDoLAIilstjWH8K2/hAAtaSgrc6kznbXm9HuNLGWl44qnMjg3f0BfHAggA6nGXMbLXBxdptoWplQyP7Od75TqnEQEU0Zjaj22253mnDKXEBWFHjCSXUhpTeKfd4YgnG1hCCdVQplJ4CnsJiyM1de0llvgs3ANnJ0aFkZhZ8fp1mLOQ1WzKg3cZMdommgJCs7gsEgdu7ciXg8Pua+U089tRQvQUQ0aURBQKPNgEabActn1QMAArGUOsvtjWKfN4rBkNo2cPRiyo25xZROsw6dThM6crPdbqseIuu66SC+aBr/2OvDu/v9mOU2Y06DlX2+iWrYhEJ2JpPB1772NTz66KPIZrOHPOdwx4mIKpnDpMMyk66wQU4slcF+XwzdwzHs80ZxIBBHVlYXU/qiKfiiKbzbEwAAGLQiOp3qLHdHvYk7U1KRdFbBjoEIdgxE0GjTY7bbArtRC6NOw1IkohoyoZD9k5/8BM8++ywefvhhXHbZZfjFL34BrVaLX/3qVwgGg3jggQdKNU4iorIy6SQsaLJhQZPawSSdldHrjxfKS/b7YoW67kRaxo7BMHYMqrsUagQBLQ4DOuvN6HCa0FlvgpUlJgRgMJQsvEsCqBsqGbQaGLQiDFoNjFoNjDr11nDQ5xqR75YQVbIJhez/+q//wq233oovfOELuOyyy/Dxj38cJ554Ir785S/jvPPOw6uvvopzzz23VGMlIqoYWo2otv1zmQGM1HXv86oz3ft8MfiiKQBAVlHQ44+jxz9SUje6xKTDaUKjzcASE4KsqItvY6ksgCNvVCZpBOglEXpJDeV6SQO9VhxzzKAVYdRqWAdONMUmFLL37NmDD33oQ4We2InEyK5rX/va13DttdfiBz/4wcRGSERUBUbXdX9sphMAEE6ki0J3XyCOXIXJmBITvSSi3WkqzHS317GLCR1ZJqsgk80imjy2sky9JMKs18CkU7egN+mkwtdmvTpDfqge8Yl0Fol0thD+E+ks4rmv46kM4uksNKIIh1ELh0kLh1EHu0kLm0Fiz3ma1iYUss1mM1KpFARBgNPpxL59+3DyyScDAIxGI7xeb0kGOd2IgjpLJmkE6DQiJI0Ibe5zBeov7lA8g0z+tzURVSSrQYslrXYsye1Mme/Xvd8XG1NikszI6BqKoGsoAkDdEr7RZijMdHc6TXCadQwtdNySGRnJjHzIzXcA9XePUaeBWSdBVhTEc+E611L+KGREEhkcGPVujUYEbAYt7Lng7TCpIZy7adJ0MaGf9AULFhT6X5988sm47777cMopp0Cn0+FHP/oR5s+fX5JB1rKPz3RCEISRQC0Kx/yWXiylbpQQSqQRiqdzt5nc24zjl9/NjOGdaHIc3K9bVhQMh5Nq6PbFsN8bgycy0sVkIJTAQCiBf+z1AVA3yunIzXZ3OE1oqzNBJ7EEgEpDVoBo8thnxo8mKwP+WBr+WBpArHBcJ4moN+vQYNOj0WZAPf94pBo1oZD9uc99Djt37gQArFu3Dqeeeio6OzsBAFqtFk8//fTER1jjJrL1rvqWn4Qmu6HoeDorI5zIIBRPI5rKQBLVWfF8gJfEgz7XCNCKIsTcIppURkY8lUUsncm9HZh/mzBT+DyZOaapDSI6AlEQ0GAzoMFmwEdmqCUmsWRmJHT7YjjgjyGdVf/wjaWy2D4QxvaBcO7xQNOo2e4Opxl1Ji0DC1W0VEZGfzCB/mACQBBajQC3VV8ot3KadeUeIlFJCIqilGzacv/+/diwYQNEUcQ555xTVTPZW7ZswZIlS7B582YsXry43MOpeFlZydXkZZDKyOpHVh75fPTXo45zkpxofLKygv5gHPtzobvHF8vNDB6aWS+pgbvOiPZ6E9ocnO2m6qKTRDTkQneTzQC7iZ14qDKMNyuWtDCqo6MD3/zmN0v5lFShNKIAi16CRT++H6FMVg3asqJAyd3KigIFgCKj8HnhuIKiRTaJ1KgFN+ksMlmmdqptGlHd1r2tzoSTZ6vHwol0IXTv98XQ648XyryiyUzRtvCioNZ2tztN6KhTd7l0Wfj2PFUude1CvFDfbdCKcJi00Gk00GoEaCUROo0IbW69klYjQicd9LVm5N1ZonIZd8gWRXFc/zhzMxoardQtpNJZeWS1eyofvjOIJLOIJTOIJDOFt9qJaoXVoMXiFjsWt6gLKjOyjP5AYmS22x9DIDfbLSsovDWfr+02ajVodxoLwbutzgSjjp1MqDIl0jIGgsmjn3gQvSQW9Rwfuc19SCO9yBnIaTKMO2TffvvtRSH7N7/5DSKRCFauXImmpib09/fjueeeg9lsxhVXXFHSwRIdTKsRYTeKR9yaOJWREUtlEE1lEU1mch9ZRFOZXJ0568upukmi2v6v3WnCJ3PHQok0Dvhi2O+Lo8dfXNsdT2exczCCnYORwnO4LXq0O41oy812N9kM3OyEqlq+m0owfvRztRoBeq0GOo04qtd4rve4NNKDfOR+bgZERzfukH3HHXcUPr/33nvR1NSEl156CRaLpXA8HA7j7LPPhslkKskgiSZCJ4nQSTo4DvPjmMrIozq0ZBCMq59HkhmUbsUC0dSyGbRY1GLHotxsd1ZWMBhKFOq6e/wxDEdShfM9kSQ8kSTe2R8AoIaOFrs6291Wp946jFxUSbUpnVWQzmbG9RhJFKDLhXFdLogXfz32uF4aXzUAVbcJ1WSvX78eP/7xj4sCNgBYrVbcdNNNuPHGG/Gtb31rQgMkmmw6SYTLoofroE4vWVkp9CQPJdKF8J3IZJHOKCVpdSgK+T8C1H+ItRoBoiAgqyjIZtXXkBX1NivLyGQVZGWFC0hp3DSigBaHES0OI5bPqgegdjLp8cfU3Sh9MRzwxwt9u9NZBftyXU7yLHoJ7XX54K2Gb26YQ9NVRlaQKezOeey0GmFU6NaM+h2g3uo0ahkLe4pXvwldvd7eXkjSoZ9CkiQMDAxM5OmJykojCnCYdHCYDt1OSlEUpLMKMrKMdEZBOheC01kZ6ayMjKx+LkAY8w9o/uvjrVFXCsFbQSieLvRYZmtFGg+TXsL8JhvmN9kAqD9X3kgqF7xj6PHF0R8c2aUyksxg20AY23ItBAG1zKStbmTGu8lugCSymwnR4aiz5vl+5IfvFASoiz7rTDrUmXVwmnSoM2thNbDbSrWYUMheuHAh7rvvPlxwwQXQakcueiqVwr333osFCxZMeIBElUoQBOgkATqIwBS3dRUEIbeKHjBoNWiwGXBSRx0GQgns8xbX3xIdK0EQ4LLq4bLq8eGOOgDq4uK+QHzUbHdxC8F8mUl+e3iNKKDFbijMdLc7TdxshOg4JdKje4qrtBoBTrM6AeTMhW+bkVvYV6IJhey77roLq1atwqxZs7B69Wo0NTVhYGAATz/9NAYGBrBhw4YSDZOIjkYcVQ6QlZ3oC8SxzxtDXyB+zKUtggBYDVJhC2S7UQu9VkQwloYvmoI/lkYwnjrGbZapFmg1IjrrzeisNxeORZIZHPDHcm3W1BnvfJlJVlbUQD5qe22DVlRDt8OItjojWutMR1ysTESHl84qGAwlMRga6bgiiQKMOg1MOk3uVlI/12pg1qufs7Rr6k0oZH/605/Giy++iFtvvRW/+MUvIMsyBEHAxz72MfzmN7/B2WefXapxEtE4aESh0G0inZXR64+j2xvFQDBReOvfrNfAblSDtMOkg8Oohc2oPeSK+QbryK6iiqIgFM/AH0vBF0shEEvBH02zVGUaseglLGiyYcGoMhNfNIWeXOg+4I8X/XGXSMvoGoqga2ikm4nVIBVmu9scRrTWGVl/SnScMrKCcCKDcOLwizdFAUUB3KA9eFFmrpMKu6eUzIT/RTvrrLNw1llnIRaLwe/3o66ujl1FiCqIViNihsuMGS4zkpksQvEM7Ebtce8CKAgC7CYt7CYtZmBkdjOWysAXTSEQUzuzRHN9ymOpLLu01DhBEFBv0aPeoseydgcAtXf3YCiJntxmOT3+GDzhJPI/CuFE8aY5AOA060aFbhNaHAboJc6+EZWCrEBtX5s8toWakiiMamd46AWaoxfu6yVuAnSwkk0bmEwmhmuiCqeXNHBbJye0qLMjEtrqio/LsoJIKoNIQg3e4WTx59y1szZJoohWhxGtDmPhWDKTRV8gUVRqMrq+2xdNwRdN4YMDQQCAAMBtVRdWtuaCd7PdAG2JN7UiorEysoJM8tgWaI4maQR1Yb8oQiMK0IgCpINvc5208udIGjWYZ+V8B63RtxhzTFYUnLmgcZK+89Lhe3NENKlEUYDNoIXtMCviY6kM+oMJ9AXi6A8mGLprmF7SYKbLjJmukXdAoskMegPxUcE7jkhSfctbATAUTmIoPNK/O79NfKtD3Tintc6IRpueHU2IKkQmqyCTzQLgjt9VHbL/+te/4vvf/z42btyIRCKBtrY2XHbZZbjtttvKPTQiOkYmnYTZbgtmuy2QZQWeSBK9AbWmNxQf3+YQVH3MegnzGq2Y12gFoNZ3B+Np9Abi6PXHcwF8ZGHl6G3i39rnB6CuQWjKBe/W3Kx3I3esJKIyq9qQ/fjjj+OLX/wiPvvZz+LRRx+FxWLB7t270dfXV+6hEdFxEkUBjTYDGm0GnNhRh3Aijb5AAn3BOIZCCXY1mQYEYaQ//eLcbpWKosAfS+OAP1YUvvOLbbOyoh4PxIFu9XkkUUCT3YAWh1rj3cLgTURTrCpDdm9vL77yla/gq1/9KtavX184fsYZZ5RxVERUalaDFvObtJjfZEUmK2MglMBAMAFvNIVgLF2SXTep8gmC2hfYadZhaZsDACDnNs7pDcQKobsvkEAq95dYRlYK5Sf/yD1PPnjna8VbHEY0sNSEiCZJVYbshx56CNFoFDfffHO5h0JEU0TS5Hot16kLrPOtBH2xVK6riXrLTXimB1EQ4Lbq4bbqsaxdXW0rKwqGw8nCrHZvII7+wwTvvHypSYtDnfXOl5pwcSURTVRVhuw33ngDTqcT27dvx0UXXYTNmzfD6XRi9erV+NGPfgSbzXbExw8NDcHj8RQd6+rqmswhE1GJjW4lOHohXTiRRiC3eU6+j3c8xTqT6UAUBDTYDGiwGQo7VsqKAk84ib5RwbsvEC/8MVZUagJ/7nnUxZUtdiNaHOrMd5PdeNxtL4loeqrKkN3b24tYLIY1a9bg29/+Nu6//368+eabWLt2LTZv3oy//OUvR9xedP369Vi3bt0UjpiIporVoIXVoEW7c6SlaFZWEEupPbujyVG36SxiySyiKbYSrFWiMFLnPzp4D4eT6Auq9d19ue42+Rrv0Ysr396vPo8AwGXVo9VhRHOu1rvFboRRxz7eRHRoVRmyZVlGIpHA2rVrccsttwAATj/9dOh0Olx33XV4+eWXj7jb5NVXX401a9YUHevq6sKqVasmc9hEVCYaUSiE78NJZWTEUhlEU1nE8kE8lUEsmc2F8QxYAl4bRs94jy418UVThZnu/G0irQZvBYAnnIQnnMR7PSPPVWfSqoE7F7pbHIYj/pwR0fRRlSG7vr4eu3btwnnnnVd0/IILLsB1112Hd95554ghu6GhAQ0NDZM9TCKqIurOZTo4jrCnVjyVHZkRz93mZ8KjyUwhkFH1EQUBLoseLoseH8otrsx3NVFru+PqzHcggWhypLWkP5aGP5bGlr6RnSutBgktdiOaHQY0241osRtQZ9ZBPMI7rERUe6oyZC9duhR/+9vfxhxXcns3i1wpTkSTwKjTwKjToP4w92dlpTD7rW4pn8ltY5xBNJVBPJXlbHgVGd3V5ITWkXaC4UQGfbnQnW8xGRi1c2U4kcGORBg7BsOFY3pJRLPdgGaHGrqb7exsQlTrqjJkX3LJJXjwwQfxwgsv4MMf/nDh+PPPPw8AWL58ebmGRkTTmOYou1sqilKoB89vLx9JZhDObTOfrwmmyiUIAmxGLWxGLRY0jyyyjyUz6Asm0B8c6WoyHEki/zdVMiOj2xtDtzdWeIxGENBg0xfNejfbDTBoWedNVAuqMmSfe+65WLlyJb773e9ClmUsX74cb731FtatW4cVK1bgU5/6VLmHSEQ0hiAIMOslmPUSDlWwlsrIiOTCdziZLoRwbyTFnuAVzqSXMKfBgjkNlsKxVEbt7d4XiOcWUsYxEEwUrmVWUQoLLLF/5LnqTFo1cDsMaLaptw6j9ogL+omo8lRlyAaA3//+91i3bh0efPBBrFu3Di0tLbj++uuxdu3acg+NiOi46CQRTkktTxgtnZXR44thnzeGgVACCvN2VdBJIjqcJnQc1OlmOJIsBO++oDrrnd82Hhip897aP1LnbdCKhfruZrsRTXYDGqx6SOznTVSxqjZkG41G3H333bj77rvLPRQiokml1YiY5bZgltuCRDqLfd4Yur1ReCOpcg+NxkkjjmopmDumKAqC8XRhtjs/u+2LjlzfRFrG3uEo9g5HC8dEAWiwGtBkN6DZnr81wqKv2l/tRDWF/ycSEVURg1aD+U1WzG+yIpxIY583hr3DUYQTmaM/mCqSIAhwmHRwmHRYOKrOO5HOYuCg4D0YGik3kRVgIJTAQChR1FbQqpfQZB8dvo1wW/TQiCw3IZpKDNlERFXKatBiSasdS1rt8EaS6PbGsN8X5Q6XNcKg1WCGy4wZo3Y0zcoKPJEkBnLBeyAXviOj2gqGkxmEhyLYNRQpHNOIAhqtejV829Tg3WQ3cNabaBLx/y4iohpQb9Gj3qLHiR0OBOPqtvL+WAq+aBr+WIo7WtYIjSioIdlmwLL2kePhRLoQuAdC6uy3J5wstIzMyoq6s2UwUfR8hVlvm6Ew++22srUgUSkwZBMR1ZDRpQejhRNp+KNp+GIp+KMp+KIptgysIfkdTec2WgvHMlkZQ+FkbsY7ngvfCcRSI4ssDzXrLQqA26ovhPnGXAi3s8MJ0bgwZBMRTQP5ENZRP9LpIpbKwB9LwxNOYjCkLrRj55LaIWnEwpbvgLp9vKIoCCczGMiVmgyE1NuhcKIw6y0rwGAoicFQEu8jWHg+g1ZEo23UrHduASf7ehMdGkM2EdE0ZdJJMOkktDqMANS+zmq9r7rAbvQuhlQbBGFkw6R5o2e9ZRmecLIofA+GEgiNWlCbSMvY51VbSY7mMGkLgTsfwl1WHUtOaNpjyCYiIgBqX+dWh7EQuhPpLIZCSQyG1eDFDia1SxLF3I6TxqLjsWSm0MEk/8fXQCiB9Kga/0AsjUAsje0DI9vIiwLgsqgLLfPBu9FmgMOkhciSE5omGLKJiOiQDFoNOupNhRKTWCqDwVASvmgSsVQWsVQW8VQW8XSWZSY1yqSXCj3a82RFgT+awmAogf5QAoPBBAZCSXhHbSMvK8BQOImhcBIYVXKik0Q0WvWFWW/1Qw+LXmK9N9UchmwiIjomJp2EmS4JM0e1lAPUOt94Wg3dsWQWsXSmEMBjqSxC8TQXWdYQURAK3WwWtdgLx9NZuVDfny83GQwlEYyPlB2lMjJ6/HH0+ONFz2nSadBoU3exHB2+TTrGFKpe/OklIqIJEQShUN8Ny9j7FUXt7dwXSKDXHy8KXVQ7tEULLUfEU1k1cIdHSk4GQ8mireRjqeyYHS0BwGaQ0GAzFGa/G3JBnIstqRowZBMR0aQSBAENVgMarAYsa3cgnEijNxBHr7+4lzPVJqNu7KY6+S4n+cA9mJv5HgolkcqOvOsRSmQQSkTQNarFIADYjVo02vRosBoKtw02PfQSwzdVDoZsIiKaUlaDFguatFjQZEMqI6M/qAbuvmACKZaVTAuju5zMbRjpciIrCoKxdCF0D+Y6nngiSWRH/TUWjKcRjKexc7A4fDtMWjTmAnc+gLutDN9UHgzZRERUNjpJRGe9GZ31ZsiyguFIEj3+OA74Y4gms0d/AqopoiCgzqxDnVmHBc22wvGsrMCXW2w5FFZnv4fCCQyHU8gqYzud7BgMFz2vw6gtBO8Gq55lJzQlGLKJiKgiiKKghh+bASd11sEXTaHHF0OPP4ZQnO0DpzONKMBtVWelgZHFlllZgTeSxGA4iaHczPdQKIHhSHEZUiCeRuAQM992o1YN3daRkhO3lQsuqTT4U0RERBXJadbBadbhQ+0OBGNp9Phj6PHF4OcmOZSjGfWHGVqLw/dwJJlrI6jWeh9q5jtfdrLroJpvi15CQy7U52e9G6xsNUjjw5BNREQVz27Swm6yY0mrHeFEGgf8cfT4YhiOpMo9NKpAGlEotAIcM/MdTeZC90gAP7jmO5LMIJLMYM9B3U4MWrFQcuLOBW+3lZvs0KExZBMRUVWxGrRY2KzFwmYb4qksegNxDEeS8EVTCMbT3BiHDksjjnS6GS2/wc5Qrtwkv5GOJ1zc7SSRlrHfF8N+X/HW8lqNAJelOHg3WPWot3B7+emMIZuIiKqWUafBnAYL5jSoDbrTWRn+aArDkRR80RS80SQXUNJRjd5gZ+GoBZeyoiAUT48K3YnCLPjoPt/prIL+YAL9wcRBzwvUmXSF4J2vK3db9DDquOiy1jFkExFRzdBqxJEa3ZxEOgtvNAVvJAlvJAVvNMVWgXRMREGAw6SDw6TDvMaRVoOKoiCaymIonIBn1Ky3J1y8w6WsQP3Zi6awbaC444lVL8E1KnTnA7jdyNKTWsGQTURENc2g1aDVYURrbidCRVHbwfUH1R0ID+5EQXQ0giDAopdg0Vswy1W8zWkynYUnUhy8h8JJ+KLFP2fhZAbhZGbMLpdajQC3Ra8G8NG3Fj10EktPqglDNhERTSvCqNKAJa12pLMyBkNq4O4PJhBOsF0gHT+9VoO2OhPa6kxFxzOyDF80heF8+B4VxJOj3llJZxX0BRPoO6j0BFD7fR8cvt1WPWwGdj2pRAzZREQ0rWk1YlEoiiQzGAjG0R9UNz1haQmVgiSKh1x0md9i3jMqfHvCSQyHkwjEi9tV5vt9H7zNvE4S4bLo4MrNeOdDuMusg54b7pQNQzYREdEoFr2EOQ1WzGmwFkpL/DG1n3Io11c5luJiSiqN0VvMz3YXl56kMjKGI0kMR0YC+HDuNp1Vis7rCyTQFxg7+20zSGr4tuYDuBrG68w61n5PMoZsIiKiwxhdWjJaKiMXNjIJxlOFz+MpznpT6egkES0OI1py6wny8l1PhiMpeMIJeCIpNYwfYvY7lMgglBjb81sjCnCa87PfI7PgLouOm+6UCEM2ERHROOkkcdQ23yOSmSx80RQ294bgCSfLNDqqdaO7nuTbV+alMjK80WQugCeLZsJH135nZaVQonIwvSQWh2+rHi6z2vfbwPKTY8aQTUREVCJ6SYNmuxHNdiN6fDG81xPgQkqaUjpJLPwMjqYoCiLJDIYj6uLLfPjO95Qfvd18MiOjNxBHbyA+5vktegn1+fBt1qE+NwNeb9FBq2H3k9EYsomIiCZBu9OEVocRu4Yi2NwbLJpFJJpqgiDAatDCatBipstcdF9WVhCIpQqhe3QADx5UfpLfcn6ft3jXSwCwG7VjAni9RQeneXrufMmQTURENElEUcD8JitmuszY0hfEzsEwsszaVGE04sjag/kH3Te6/MR7UAg/eAFwfm3CHk9x/bcAwGHSFma863OlJy6zugBTI9Zm/TdDNhER0STTSSI+3FGHeY1WvN8TQPchZgGJKtHhyk8AIJ7K5gL4SPj25m5Hv3OjAPDH0vDH0tg1VPwcogA4TDq4LDo4zWodeL1ZDeIOs7aqZ8AZsomIiKaIWS/h5DkuzG9K4p39AS6OpKpm1GnQphu78U5+2/n8zLc3klS3l48kMRxNFfWelxXAF1XrwoHi/t+jZ8Cd+fITsxrCM1kZUoXXgDNkExERTbF6ix7nLGrk4kiqSSPbzkvorC+u/x69AHN0+FZvU0hlDz0DfrBLP9EJ10GtNSsNQzYREVGZtDtNaHeaEIynC23WhiNJhOIM3VSbjrQAMx/AvZFUcfiOqmUo+RIUvSSi3qwrx/DHhSGbiIiozOxGLezGkR3/Eulsoc7VE07CF01ywSTVvNEBfMYhAni+BCWWylbFZjkM2URERBXGoNWgrW6k1lWWFfhiqcLmId5okrtL0rQyugSlWlTPSImIiKYpURQK214vbFaPqW+r53fzSyEQS0FWjvw8RDR1GLKJiIiq0MELy7KyUqhdzfcx5mw3UfkwZBMREdUAjSigwWpAg9VQOBZNZjAcSWIwlMRAKIEIu5gQTRmGbCIiohpl1kswj5rtjiQzGAgmMBBMYDCU4FbvRJOIIZuIiGiasOglzGmwYE6D2sXEF02poTsUhyfMDiZEpcSQTURENE05zTo4zTosarEhKyvwhNWykmgyA1lRkJUVKIpa7y0r+Q+MuY8z4kRj1UzIfuihh3DllVfCbDYjEokc/QFERERUoBEFNNkNaLIbjn7yQWKpDHp8cez3xbhVPFFOTYTs3t5e3HjjjWhpaUEwGCz3cIiIiKYVk07C/CYr5jdZGbiJcmoiZH/ta1/DqaeeCqfTiT/+8Y/lHg4REdG0NTpwx1NZ7PfFsN8Xw3AkCYV9vGkaqfqQ/dhjj+H111/H1q1b8Z3vfKfcwyEiIqIco05TFLh7/DHs98bgYeCmaaCqQ/bQ0BCuu+463H333WhraxvX4zweT9Gxrq6uUg+PiIiIcow6DeY1WjGv0YpIMoM9ngh2eyLcMIdqVlWH7Kuvvhrz58/HVVddNa7HrV+/HuvWrZukUREREdGRWPQSlrY5cEKrHQf8cez2RNAfTHB2m2pK1Ybsp556Cs8++yzeffddCIIwrsdeffXVWLNmTdGxrq4urFq1qoQjJCIioiMRBAHtThPanSZEkxns8USx2xNBLJUt99CIJqwqQ3YkEsE111yDb3zjG2hpaUEgEAAApFIpAEAgEIBWq4XZbD7k4xsaGtDQ0DBVwyUiIqKjMOslnNBmx5JWG/qCCXQNRdAXiHN2m6pWVYbs4eFhDA4O4t5778W999475v66ujpcdNFF2LBhw9QPjoiIiI6bIAhodRjR6jAillJntw/4YwjG09yRkqpKVYbspqYmvPrqq2OO33333Xj99dfxwgsvwOVylWFkREREVComnYQlrXYsabVDURSEEhkEY2kE4ikEYmkE4mlEEplyD5PokKoyZBsMBpx++uljjj/yyCPQaDSHvI+IiIiqlyAIsBu1sBu16ICpcDydlRGMpxGIpRHMhW9/LI0Ut3qnMqvKkE1EREQEAFqNCJdFD5dFX3Q8lEjDF0nBG01iOJJCIJZiuQlNqZoK2Y888ggeeeSRcg+DiIiIysxm0MJm0GKGS22CIMsKAvE0vJEkvNEUvJEUQok0F1bSpKmpkE1ERER0KKIowGnWwWnWYW7uWDorwxdNwRdNwR9TS01C8TRkBm8qAYZsIiIimpa0GhGNNgMabYbCMVlWEIyn4Y+l4I+lEciF7yRrvGmcGLKJiIiIckRRQJ1Zhzqzruh4LJXJLapMFW7DiQzLTeiwGLKJiIiIjsKkk2DSSWhxGAvHMlm5MNutlpyoHU64wJIAhmwiIiKi4yJpRLiteritI51NFEVBKJ6BL6bWeftz4ZstBacfhmwiIiKiEhEEAXaTFnaTFjNhLhwPJdLwRlLwRkZaCnKBZW1jyCYiIiKaZPmWgjNzLQWzsgJfVO3j7Y2kMBxJIprMlnmUVEoM2URERERTTCMKY0pNEukshnMz3Qf8MYTi3DK+mjFkExEREVUAg1aDtjoT2upMWNbuQDCexgF/DD2+OHzRVLmHR+PEkE1ERERUgexGLexGOxa32BFLZdDji+OAP4ahcJKtA6sAQzYRERFRhTPpJMxvsmJ+kxWJdBa9gTgO+OMYCMbZMrBCMWQTERERVRGDVoPZbgtmuy1IZ2UMBBMYCicwHFFbBrJrSWVgyCYiIiKqUlqNiHanCe1OE4DiriXDYfWWXUvKgyGbiIiIqEYUdS1pUo/FU2rXEk9EbRfoj6aQ4XT3pGPIJiIiIqphRp2maLZblhUE42n4ctvB+6Lq5jis7S4thmwiIiKiaUQUBdSZdagz6zDbrR6TZUXdlTKqznR7oykEY2nOeE8AQzYRERHRNCeKAhwmHRwmHXBQ8PZFU/DHUgjE0vDH0khlOOV9LBiyiYiIiGiMouA9SjSZQSCehj+aD94pRJIZ9u4+CEM2ERERER0zs16CWS+h1WEsHMtkZQTiaQRiaQRiKfhzt+ns9E3eDNlERERENCGSRoTLoofLoi86Hklmima8A/E0IolMmUY5tRiyiYiIiGhSWPQSLHoJ7c6RY+msDH9MXVjpz5ebJDJI1litN0M2EREREU0ZrUZEg9WABquh6LgsK4ins+pHKotEOotYKlt0LJ7KIlUlvQYZsomIiIio7ERRKNR7H4lcJW0FxXIPgIiIiIjoWImiUO4hHBOGbCIiIiKiEmPIJiIiIiIqMYZsIiIiIqISY8gmIiIiIioxhmwiIiIiohJjyCYiIiIiKjGGbCIiIiKiEmPIJiIiIiIqMYZsIiIiIqISY8gmIiIiIiqxI28OP40kk0kAQFdXV5lHQkRERESVJp8R85nxaBiyc3p6egAAq1atKu9AiIiIiKhi9fT04MQTTzzqeYKiKMoUjKfiBQIBvP7662hvb4dery/pc3d1dWHVqlXYsGED5syZU9LnpsrAa1z7eI1rG69v7eM1rn2TfY2TySR6enpw2mmnweFwHPV8zmTnOBwOXHTRRZP6GnPmzMHixYsn9TWovHiNax+vcW3j9a19vMa1bzKv8bHMYOdx4SMRERERUYkxZBMRERERlRhDNhERERFRiTFkTwG32421a9fC7XaXeyg0SXiNax+vcW3j9a19vMa1r9KuMbuLEBERERGVGGeyiYiIiIhKjCGbiIiIiKjEGLKJiIiIiEqMIZuIiIiIqMQYsidRJBLBddddh5aWFhgMBixbtgz//d//Xe5h0XF45ZVXcMUVV2DBggUwm81obW3FRRddhLfffnvMue+88w7OPvtsWCwWOBwOrF69Gnv27CnDqGkiHnroIQiCAIvFMuY+XuPq9de//hUXXngh6urqYDQaMXfuXNx5551F5/D6Vq93330Xq1atQktLC0wmExYsWIDvfve7iMViRefxGle+cDiMm266Ceeeey7cbjcEQcAdd9xxyHPHcz1/9rOfYcGCBdDr9Zg5cybWrVuHdDo9Kd8DQ/YkWr16NX77299i7dq1eOGFF/DRj34UX/jCF/D444+Xe2g0Tv/xH/+B7u5uXHvttXj++efx05/+FENDQ1i+fDleeeWVwnnbt2/H6aefjlQqhT/84Q94+OGHsXPnTpxyyinweDxl/A5oPHp7e3HjjTeipaVlzH28xtXr8ccfx2mnnQa73Y5HH30Uzz//PG6++WaMbrLF61u9tm7dipNPPhnd3d24//778dxzz+Hzn/88vvvd7+ILX/hC4Txe4+rg9Xrx4IMPIplMYtWqVYc9bzzX83vf+x6uvfZarF69Gv/zP/+Dq6++Gt///vdxzTXXTM43odCk+POf/6wAUB5//PGi4+ecc47S0tKiZDKZMo2Mjsfg4OCYY+FwWGlsbFTOOuuswrE1a9YoLpdLCQaDhWPd3d2KVqtVbrrppikZK03cihUrlJUrVyqXX365Yjabi+7jNa5OBw4cUMxms3LVVVcd8Txe3+p16623KgCUrq6uouNf+cpXFACKz+dTFIXXuFrIsqzIsqwoiqJ4PB4FgLJ27dox5x3r9RweHlYMBoPyla98pejx3/ve9xRBEJQtW7aU/HvgTPYk+dOf/gSLxYI1a9YUHf/Sl76Evr4+/P3vfy/TyOh4NDQ0jDlmsViwaNEi9PT0AAAymQyee+45XHLJJbDZbIXzOjs7ccYZZ+BPf/rTlI2Xjt9jjz2G119/HevXrx9zH69x9XrooYcQjUZx8803H/YcXt/qptVqAQB2u73ouMPhgCiK0Ol0vMZVRBAECIJwxHPGcz1ffPFFJBIJfOlLXyp6ji996UtQFAUbNmwo6fgBlotMms2bN2PhwoWQJKno+NKlSwv3U3ULBoN45513sHjxYgDA7t27EY/HC9d4tKVLl6KrqwuJRGKqh0njMDQ0hOuuuw5333032traxtzPa1y93njjDTidTmzfvh3Lli2DJEloaGjA1772NYRCIQC8vtXu8ssvh8PhwFVXXYU9e/YgHA7jueeewy9/+Utcc801MJvNvMY1ZjzXM5+7TjjhhKLzmpub4XK5JiWXMWRPEq/XC6fTOeZ4/pjX653qIVGJXXPNNYhGo7j11lsBjFzTw113RVHg9/undIw0PldffTXmz5+Pq6666pD38xpXr97eXsRiMaxZswaf+9zn8NJLL+Fb3/oWHn30UVx44YVQFIXXt8rNmDEDGzduxObNmzF79mzYbDasXLkSl19+OX76058C4P/DtWY819Pr9UKv18NsNh/y3MnIZdLRT6HjdaS3OY72FghVtttuuw2/+93v8LOf/QwnnXRS0X287tXpqaeewrPPPot33333qNeJ17j6yLKMRCKBtWvX4pZbbgEAnH766dDpdLjuuuvw8ssvw2QyAeD1rVbd3d1YuXIlGhsb8cc//hFutxt///vfcddddyESieDXv/514Vxe49pyrNdzqq87Q/Ykqa+vP+RfRT6fD8Ch/+qi6rBu3Trcdddd+N73voevf/3rheP19fUADv0uhc/ngyAIcDgcUzVMGodIJIJrrrkG3/jGN9DS0oJAIAAASKVSAIBAIACtVstrXMXq6+uxa9cunHfeeUXHL7jgAlx33XV45513cNFFFwHg9a1Wt9xyC0KhEN57773CbOWpp54Kl8uFK664ApdddhmampoA8BrXivH8m1xfX49EIoFYLFb4g3r0uQdPmJUCy0UmyQknnIBt27Yhk8kUHd+0aRMAYMmSJeUYFk3QunXrcMcdd+COO+7Av//7vxfdN3v2bBiNxsI1Hm3Tpk2YM2cODAbDVA2VxmF4eBiDg4O49957UVdXV/h44oknEI1GUVdXh3/5l3/hNa5ih6rZBFBo3yeKIq9vlXvvvfewaNGiMeUAH/3oRwGgUEbCa1w7xnM987XYB587MDCA4eHhScllDNmT5OKLL0YkEsFTTz1VdPy3v/0tWlpa8PGPf7xMI6Pjdeedd+KOO+7Ad77zHaxdu3bM/ZIkYeXKlXj66acRDocLx/fv349XX30Vq1evnsrh0jg0NTXh1VdfHfNx3nnnwWAw4NVXX8Vdd93Fa1zFLrnkEgDACy+8UHT8+eefBwAsX76c17fKtbS0YMuWLYhEIkXHN27cCABoa2vjNa4x47me559/PgwGAx555JGi53jkkUcgCMIRe3Eft5I3BaSCc845R6mrq1MefPBB5ZVXXlGuvPJKBYDy2GOPlXtoNE733HOPAkA5//zzlY0bN475yNu2bZtisViUU089VXn++eeVp59+WlmyZInS0tKiDA0NlfE7oONxqD7ZvMbVa+XKlYper1fuvPNO5f/+7/+UH/zgB4rBYFBWrFhROIfXt3o988wziiAIyvLly5Xf//73yssvv6x873vfUywWi7Jo0SIlmUwqisJrXE2ef/555cknn1QefvhhBYCyZs0a5cknn1SefPJJJRqNKooyvut51113KYIgKP/+7/+uvPbaa8qPf/xjRa/XK1deeeWkjJ8hexKFw2Hlm9/8ptLU1KTodDpl6dKlyhNPPFHuYdFxOO200xQAh/0Y7a233lLOOussxWQyKTabTVm1atWYzRGoOhwqZCsKr3G1isViys0336y0t7crkiQpHR0dyre//W0lkUgUncfrW71eeeUV5dxzz1WampoUo9GozJs3T7nhhhuU4eHhovN4jatDZ2fnYX/v7t27t3DeeK7nT3/6U2XevHmKTqdTOjo6lLVr1yqpVGpSxi8oyqj9ZImIiIiIaMJYk01EREREVGIM2UREREREJcaQTURERERUYgzZREREREQlxpBNRERERFRiDNlERERERCXGkE1EREREVGIM2UREREREJcaQTURERERUYgzZREQ0Lt///vexYcOGMccfeeQRCIKAt956a+oHRURUYRiyiYhoXA4XsomIaARDNhERERFRiTFkExHViDvuuAOCIOCDDz7AmjVrYLfb4XQ68W//9m/IZDLYsWMHzj//fFitVsyYMQM/+tGPCo9NJBK44YYbsGzZssLjPvGJT+CZZ54peg1BEBCNRvHb3/4WgiBAEAScfvrpReeEw2FcddVVcLlcqK+vx+rVq9HX1zcV/wmIiCoGQzYRUY357Gc/iw996EN46qmncOWVV+InP/kJrr/+eqxatQqf/vSn8ac//Qlnnnkmbr75Zjz99NMAgGQyCZ/PhxtvvBEbNmzAE088gU996lNYvXo1Hn300cJzb9y4EUajERdeeCE2btyIjRs3Yv369UWv/+UvfxlarRaPP/44fvSjH+G1117DpZdeOqX/DYiIyk0q9wCIiKi0vvKVr+Df/u3fAABnn302/vd//xc///nP8fTTT+Piiy8GAJx++ul47rnn8Lvf/Q6rV6+G3W7Hb37zm8JzZLNZnHXWWfD7/bj//vtx2WWXAQCWL18OURThdruxfPnyQ77++eefjwceeKDwtc/nw0033YSBgQE0NTVN1rdNRFRROJNNRFRjVqxYUfT1woULIQgCLrjggsIxSZIwZ84c7Nu3r3DsySefxCc/+UlYLBZIkgStVotf//rX2LZt27he/zOf+UzR10uXLgWAotciIqp1DNlERDXG6XQWfa3T6WAymWAwGMYcTyQSAICnn34an/3sZ9Ha2orHHnsMGzduxJtvvokrrriicM6xqq+vL/par9cDAOLx+Hi/FSKiqsVyESIiwmOPPYaZM2fi97//PQRBKBxPJpNlHBURUfXiTDYREUEQBOh0uqKAPTAwMKa7CKDOTHNWmojoyBiyiYgIK1aswI4dO3D11VfjlVdewW9/+1t86lOfQnNz85hzTzjhBLz22mt49tln8dZbb2HHjh1lGDERUWVjuQgREeFLX/oShoaG8J//+Z94+OGHMWvWLNxyyy04cOAA1q1bV3TuT3/6U1xzzTX4/Oc/j1gshtNOOw2vvfZaeQZORFShBEVRlHIPgoiIiIiolrBchIiIiIioxBiyiYiIiIhKjCGbiIiIiKjEGLKJiIiIiEqMIZuIiIiIqMQYsomIiIiISowhm4iIiIioxBiyiYiIiIhKjCGbiIiIiKjEGLKJiIiIiEqMIZuIiIiIqMQYsomIiIiISowhm4iIiIioxP5/+0+4jC6fk3kAAAAASUVORK5CYII=", + "text/plain": [ + "
" ] }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABRsAAAHUCAYAAAC6Sv/CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACUkElEQVR4nOzdd3Rc9Z3//9ed3tWrLctyxcaYFkrozSRACIGUE0g2kJBf+mZJJ0uKk28C3xQ4yTeFZLOEwBKSzWYDoRiwwWBCKK64V1mS1bs06ppyf39cS1hIskfySKPyfJxzz0h3PvfOewbjj/TypximaZoCAAAAAAAAgJNkS3UBAAAAAAAAAGYGwkYAAAAAAAAASUHYCAAAAAAAACApCBsBAAAAAAAAJAVhIwAAAAAAAICkIGwEAAAAAAAAkBSEjQAAAAAAAACSgrARAAAAAAAAQFIQNgIAAAAAAABICsJGYBp44oknZBiGsrKy1NfXl7I65s+fr9tuuy0lr33ZZZfpsssuS8lrAwAmR1lZmb74xS9q2bJl8vv98ng8mj9/vj760Y/qxRdflGmaqS4xaV566SUZhqGXXnop1aUAAE7gS1/6kgzD0L59+0Ztc9ddd8kwDG3dunUSK3vLo48+qp/97GcjPmcYhlavXj2p9YzmD3/4gwzDUHl5eapLwQQibASmgQceeECS1NLSoscffzy1xaTIr3/9a/36179OdRkAgAnyxBNP6LTTTtMTTzyhW2+9VY899piee+45ffvb31Zzc7OuuOIKrV+/PtVlAgBmodtvv12S9Pvf/37E5+PxuB5++GGdccYZOuussyaztEHHCxtfe+01ffKTn5zcgjCrETZixuvp6Ul1CSelrq5Oa9as0RVXXCGPxzMYPM42y5cv1/Lly1NdBgBMadO1zystLdXNN9+s5cuXa8eOHbrzzjt19dVX69JLL9Xtt9+uZ555Ri+++KKys7NTXeqouru7U10CAEwL07GvWrFihc4991z913/9l6LR6LDn165dq6qqqsFQcqo5//zzNXfu3FSXgVmEsBFT3urVq2UYhrZt26abbrpJoVBIaWlp+uhHP6rGxsYhbefPn6/3vOc9+tvf/qYzzzxTHo9H3/ve9yRJu3bt0g033KCMjAx5PB6dccYZeuihh4a93u7du3X11VfL5/MpJydHn//85/X000+nbKrTQw89pGg0qi996Uu66aab9MILL6iiomJYu7a2Nn3lK1/RggUL5Ha7lZubq2uvvXbIUP/vfe97Ou+885SZmalQKKSzzjpLDzzwwLBpaZFIRF//+teVn58vn8+niy66SBs3bhyxvrq6On3605/W3Llz5XK5VFJSou9973tDOuHy8nIZhqGf/OQn+tGPfqT58+fL6/Xqsssu04EDBxSJRHTnnXeqsLBQaWlpuvHGG9XQ0DDkdUaaRt3X16fvf//7WrZsmTwej7KysnT55Zfr1VdfHevHDABTwmzt8+677z51d3fr17/+tUKh0IhtLrvsMp1++ulDzh08eFC33HKLcnNz5Xa7tWzZMv3qV78a0mZguvKf/vQn3XXXXSosLFQoFNJVV12l/fv3D3ud559/XldeeaVCoZB8Pp8uvPBCvfDCC0PaDPx32rp1qz7wgQ8oIyNDCxculCRt3rxZH/7whwf7uvnz5+vmm28ese8GgOlotvZVt99+u+rq6vTMM88Me+7BBx+U2+3WRz7yEUnSkSNH9NGPfnRI/3TvvfcqHo8PuS6R32d+9atf6ZJLLlFubq78fr9OO+00/fjHP1YkEhlsc9lll+npp59WRUWFDMMYPAaMNI06kc9/LH3ounXrdMMNN2ju3LnyeDxatGiRPv3pT6upqWlsHzRmBEeqCwASdeONN+pDH/qQPvOZz2j37t369re/rT179uiNN96Q0+kcbLd161bt3btX3/rWt1RSUiK/36/9+/frggsuUG5urv7f//t/ysrK0iOPPKLbbrtN9fX1+vrXvy5Jqq2t1aWXXiq/36/7779fubm5+tOf/qQvfOELCdVomqZisVhCbR2OxP73+/3vf6+CggJdc8018nq9evTRR/WHP/xB3/3udwfbdHR06KKLLlJ5ebm+8Y1v6LzzzlNnZ6defvll1dbW6pRTTpFkhX6f/vSnNW/ePEnS66+/rn/9139VdXW1vvOd7wze7//7//4/Pfzww/rqV7+qVatWadeuXbrpppvU0dExpLa6ujqde+65stls+s53vqOFCxfqtdde0w9+8AOVl5frwQcfHNL+V7/6lVauXKlf/epXg+Ho9ddfr/POO09Op1O///3vVVFRoa9+9av65Cc/qSeeeGLUzyUajeqaa67RP/7xD91xxx264oorFI1G9frrr+vIkSO64IILEvp8AWAqmm193rp161RQUKB3vOMdCd1Pkvbs2aMLLrhA8+bN07333qv8/Hw999xz+uIXv6impqYh/aQk/fu//7suvPBC/ed//qfC4bC+8Y1v6Prrr9fevXtlt9slSY888og+9rGP6YYbbtBDDz0kp9Op3/72t3rXu96l5557TldeeeWQe95000368Ic/rM985jPq6uqSZPW1S5cu1Yc//GFlZmaqtrZW999/v8455xzt2bNnSo/OBICxmG191c0336wvfelL+v3vf6/rr79+8Hxra6v+/ve/68Ybb1RGRoYaGxt1wQUXqL+/X//n//wfzZ8/X0899ZS++tWvqrS0dHBpqER/nyktLdUtt9yikpISuVwubd++XT/84Q+1b9++wWndv/71r/WpT31KpaWleuyxx074XhP9/Ack0oeWlpbqne98pz75yU8qLS1N5eXluu+++3TRRRdp586dQ/5MYBYwgSnuu9/9rinJ/NKXvjTk/B//+EdTkvnII48MnisuLjbtdru5f//+IW0//OEPm2632zxy5MiQ89dcc43p8/nMtrY20zRN82tf+5ppGIa5e/fuIe3e9a53mZLMF1988bi1vvjii6akhI6ysrITvveXX37ZlGTeeeedpmmaZjweN0tKSszi4mIzHo8Ptvv+979vSjLXrVt3wnsOiMViZiQSMb///e+bWVlZg/fbu3fvcT/vW2+9dfDcpz/9aTMQCJgVFRVD2v70pz81JQ1+jmVlZaYk8/TTTzdjsdhgu5/97GemJPO9733vkOvvuOMOU5LZ3t4+eO7SSy81L7300sHvH374YVOS+bvf/S7h9wwAU91s7fM8Ho95/vnnDzs/0FcNHMf2Ie9617vMuXPnDukrTNM0v/CFL5gej8dsaWkZUue11147pN1f/vIXU5L52muvmaZpml1dXWZmZqZ5/fXXD6vh9NNPN88999zBcwP/nb7zne8c932ZpmlGo1Gzs7PT9Pv95s9//vPB8wN1nehzBoCpZrb2VaZpmrfeeqvpdDrN+vr6wXO/+MUvhvwuduedd5qSzDfeeGPItZ/97GdNwzAGP4vx/D4z0C8+/PDDpt1uH+zrTNM0r7vuOrO4uHjE6ySZ3/3udwe/T/TzT7QPfbt4PG5GIhGzoqLClGT+/e9/H3zuwQcfTPjzxvTFNGpMGwND0gd86EMfksPh0Isvvjjk/MqVK7VkyZIh59avX68rr7xSRUVFQ87fdttt6u7u1muvvSZJ2rBhg1asWDFsbcCbb745oRrPPvtsbdq0KaGjsLDwhPcbWJ/xE5/4hCRr+Pttt92mioqKIVO6nnnmGS1ZskRXXXXVce+3fv16XXXVVUpLS5PdbpfT6dR3vvMdNTc3D05bHvg8R/u8j/XUU0/p8ssvV2FhoaLR6OBxzTXXSLI+z2Nde+21stne+mtn2bJlkqTrrrtuSLuB80eOHBn1vTzzzDPyeDyDnw0AzCSzsc8byU033SSn0zl4fPGLX5Qk9fb26oUXXtCNN94on883pA+69tpr1dvbq9dff33Ivd773vcO+X7lypWSNDi9+dVXX1VLS4tuvfXWIfeLx+N697vfrU2bNg2OXhzw/ve/f1jNnZ2d+sY3vqFFixbJ4XDI4XAoEAioq6tLe/fuHdfnAABT0Wzsq26//XZFIhH913/91+C5Bx98UMXFxYOj39evX6/ly5fr3HPPHfbeTNMc3Ows0d9ntm3bpve+973Kysoa/B3uYx/7mGKxmA4cOJDQ5/B2iX7+A07Uh0pSQ0ODPvOZz6ioqEgOh0NOp1PFxcWSRP83CzGNGtNGfn7+kO8dDoeysrLU3Nw85HxBQcGwa5ubm0c8P9ChDNyjublZJSUlw9rl5eUlVGMgENAZZ5yRUNsTDdPv6OjQ//zP/+jcc89VTk6O2traJFnTFVavXq0HHnhgMFxsbGwcnBo9mo0bN+rqq6/WZZddpt/97neDayw+/vjj+uEPfzi4UPPAZzHa532s+vp6Pfnkk6MOiX/7+hyZmZlDvne5XMc939vbO+r7aWxsVGFh4ZDwEgBmitnW582bN2/ENQ3vvfdefetb35IknXPOOYPnm5ubFY1G9Ytf/EK/+MUvRrzn2/ugt/dhbrdb0lsbFdTX10uSPvCBD4xaZ0tLi/x+/+D3I33Ot9xyi1544QV9+9vf1jnnnKNQKCTDMHTttddOy00RAGA0s62vkqSLL75YS5Ys0YMPPqivfOUr2rFjh7Zu3Tq4juVAzfPnzx927dvfWyK/zxw5ckQXX3yxli5dqp///OeaP3++PB6PNm7cqM9//vPj7lcS/fwHnKgPjcfjuvrqq1VTU6Nvf/vbOu200+T3+xWPx3X++efT/81ChI2YNurq6jRnzpzB76PRqJqbm4f9xXfsQrgDsrKyVFtbO+x8TU2NJA2un5SVlTX4y8bbXzsRGzZs0OWXX55Q27KyshE7oQF/+tOf1N3drY0bNyojI2PY84899phaW1uVkZGhnJwcVVVVHff1/vznP8vpdOqpp56Sx+MZPP/4448PaTfweY72eR8rOztbK1eu1A9/+MMRX3O8I1kSkZOTo1deeUXxeJzAEcCMM9v6vFWrVulXv/qVNm/ePGTdxoFNV94uIyNDdrtd//Iv/6LPf/7zI7YZ6ZfT4xn4XH7xi1/o/PPPH7HN23+5ffvn397erqeeekrf/e53deeddw6e7+vrU0tLy5jqAYCpbrb1VQM+8YlP6M4779TGjRv16KOPymaz6bbbbht8PtH3lsjvM48//ri6urr0t7/9bXCUoCS9+eabCb2n0SRaY6J27dql7du36w9/+INuvfXWwfOHDh06qToxfRE2Ytr44x//qLPPPnvw+7/85S+KRqPDdigeyZVXXqnHHntMNTU1QwKwhx9+WD6fb/CXiksvvVQ//elPtWfPniFD9f/85z8nVOPAMP1EnCiIe+CBBxQMBvX4448P63w2b96sr33ta/rjH/+oL3zhC7rmmmv0ne98R+vXr9cVV1wx4v0Mw5DD4RhcwFey/iXq2CkAkgY/z9E+72O95z3v0Zo1a7Rw4cIRA9GJdM011+hPf/qT/vCHPzCVGsCMM9v6vC996Ut68MEH9fnPf17PP/+8gsHgcdv7fD5dfvnl2rZtm1auXDk4Iv5kXHjhhUpPT9eePXsS3njg7QzDkGmagyM+Bvznf/5nwhsUAMB0Mdv6qgG33nqrvvWtb+m3v/2tnnjiCV155ZVDgsArr7xS99xzj7Zu3aqzzjpr8PzDDz8swzAGw89Efp8ZCGqP7VdM09Tvfve7YW3dbnfCIwgT/fwTNVKdkvTb3/52TPfBzEHYiGnjb3/7mxwOh1atWjW429npp5+uD33oQye89rvf/e7g+oLf+c53lJmZqT/+8Y96+umn9eMf/1hpaWmSpDvuuEO///3vdc011+j73/++8vLy9Oijj2rfvn2SdMIRdMFgcEw7aY5m165d2rhxoz772c+OGB5eeOGFuvfee/XAAw/oC1/4gu644w7993//t2644QbdeeedOvfcc9XT06MNGzboPe95jy6//HJdd911uu+++3TLLbfoU5/6lJqbm/XTn/50WIewbNkyffSjH9XPfvYzOZ1OXXXVVdq1a5d++tOfKhQKDWn7/e9/X+vWrdMFF1ygL37xi1q6dKl6e3tVXl6uNWvW6De/+Y3mzp170p/HSG6++WY9+OCD+sxnPqP9+/fr8ssvVzwe1xtvvKFly5bpwx/+8IS8LgBMhtnU50nWCMY//elPuvnmm3Xaaafps5/9rM466yy53W41NDRo7dq1kjSkH/r5z3+uiy66SBdffLE++9nPav78+ero6NChQ4f05JNPDq6JlahAIKBf/OIXuvXWW9XS0qIPfOADys3NVWNjo7Zv367Gxkbdf//9x71HKBTSJZdcop/85CfKzs7W/PnztWHDBj3wwANKT08f8+cCAFPZbOurBuTn5+vaa6/Vgw8+KNM0dfvttw95/ktf+pIefvhhXXfddfr+97+v4uJiPf300/r1r3+tz372s4PrVyby+8yqVavkcrl088036+tf/7p6e3t1//33q7W1dVhdp512mv72t7/p/vvv19lnny2bzTbqe0/080/UKaecooULF+rOO++UaZrKzMzUk08+qXXr1o3pPphBUro9DZCAgd3OtmzZYl5//fVmIBAwg8GgefPNNw/ZBcw0rd3OrrvuuhHvs3PnTvP6668309LSTJfLZZ5++unmgw8+OKzdrl27zKuuusr0eDxmZmamefvtt5sPPfSQKcncvn37RLzFYQZ2Y37zzTdHbTOwy9mWLVtM0zTN1tZW89/+7d/MefPmmU6n08zNzTWvu+46c9++fYPX/P73vzeXLl1qut1uc8GCBeY999xjPvDAA8N2A+vr6zO/8pWvmLm5uYM7hL722mtmcXHxkN2oTdM0GxsbzS9+8YtmSUmJ6XQ6zczMTPPss88277rrLrOzs9M0zbd2o/7JT34y5NqB3c3+53/+Z8j5gR3KNm3aNHju7btRm6Zp9vT0mN/5znfMxYsXmy6Xy8zKyjKvuOIK89VXXz3hZwwAU9Fs7POOVVpaav7rv/6ruXTpUtPr9Zput9ssLi42P/jBD5qPPfaYGY/Hh7QvKyszP/GJT5hz5swxnU6nmZOTY15wwQXmD37wg8E2o/U1A33T2z+XDRs2mNddd52ZmZlpOp1Oc86cOeZ111035PqB/06NjY3D3kNVVZX5/ve/38zIyDCDwaD57ne/29y1a9ewPpTdqAFMV7O9rzJN0/z73/9uSjIzMzPN3t7eYc9XVFSYt9xyi5mVlWU6nU5z6dKl5k9+8hMzFosNaZfI7zNPPvmkefrpp5sej8ecM2eO+bWvfc185plnhvUhLS0t5gc+8AEzPT3dNAzDPDbu0dt2ozbNxD7/sfShe/bsMVetWmUGg0EzIyPD/OAHP2geOXJk2GuzG/XsYJimaU5etAmM3erVq/W9731PjY2NY147Ilk+9alP6U9/+pOam5uTMlULAICR0OcBAKY6+ioAJ8I0auBtvv/976uwsFALFixQZ2ennnrqKf3nf/6nvvWtb9GRAQBmFPo8AMBUR18FTD+EjcDbOJ1O/eQnP1FVVZWi0agWL16s++67T//2b/+W6tIAAEgq+jwAwFRHXwVMP0yjBgAAAAAAAJAUx9+6CQAAAAAAAAASRNgIAAAAAAAAICkIGwEAAAAAAAAkxYzfICYej6umpkbBYFCGYaS6HADAcZimqY6ODhUWFspm49/DRkK/BgDTA33aidGnAcD0MZZ+bcaHjTU1NSoqKkp1GQCAMaisrNTcuXNTXcaURL8GANMLfdro6NMAYPpJpF+b8WFjMBiUZH0YoVAoxdUAAI4nHA6rqKho8O9uDEe/BgDTA33aidGnAcD0MZZ+bcaHjQPD8UOhEB0YAEwTTKUaHf0aAEwv9Gmjo08DgOknkX6NxUMAAAAAAAAAJAVhIwAAAAAAAICkIGwEAAAAAAAAkBSEjQAAAAAAAACSgrARAAAAAAAAQFIQNgIAAAAAAABICsJGAAAAAAAAAElB2AgAAAAAAAAgKQgbAQAAAAAAACQFYSMAAAAAAACApCBsBAAAAAAAAJAUhI0AAAAAAAAAkoKwEQAAAAAAAEBSEDYCAAAAAAAASArCRgAAZpv9z0it5amuAgAAAMAM5Eh1AQAAYJK1HZEMm5QxP9WVAAAAAJhhGNkIAMBsE49JjfulWDTVlQAAAACYYQgbAQCYjbqapI7aVFcBAAAAYIYhbAQAYDbqaZXaK1NdBQAAAIAZhrARAIDZKNZvTaUGAAAAgCQibAQAYDbypEnt1VJ3S6orAQAAADCDEDYCADAbuYNSX9jamRoAAAAAkoSwEQCA2ciwSTa71FqW6koAAAAAzCCEjQAAzFaedKnpoBTpSXUlAAAAAGYIwkYAAGYrb/rRXamrU10JAAAAgBmCsBEAgNnK7pLiMam9MtWVAAAAAJghCBsBAJjN3AGpYY8Uj6e6EgAAAAAzAGEjAACzmTdT6mqUOutSXQkAAACAGYCwEQCA2czll/q7pPaqVFcCAAAAYAYgbAQAYLazu6XG/cdvE66Vjrwumebk1AQAAABgWnKkugAAAJBivkxrk5ieNmuH6rfrapZ2/a/U0yKF5kjpRZNdIQAAAIBpgpGNAADMdu6Q1Ns+8lTq3rC053GptULq65Dqdk56eQAAAACmD8JGAABmO5vdemwtH3o+0ivte0pq2CdlL5L8uVLtdqm7ZdJLBAAAADA9EDYCAADJky41HZCi/db3sah04FmpequUuUCyu6zp1t3NUv2ulJYKAAAAYOoibAQAAJI3wwoSw9VSPC6VvihVvCalF0tOj9XGsFntqjZL/d2prRcAAADAlETYCAAAJIdbikWsjWIqX5cOvygF8yR3YGi7QK7UWS817k1NnQAAAACmNHajBgAAFpdfqt0hdTVKnpA1ivHtbA4rmKzaIuWfLtn5UQIAAADAWxjZCAAALN5MqfmgtWFMIG/0dsECazOZltJJKw0AAADA9EDYCAAALO6AlLNMSis6fjvH0TUcq7dKpjnxdQEAAACYNggbAQDAWxzuxNoF86Wm/VJ71cTWAwAAAGBaIWwEAABj5w5K/V3WGo8AAAAAcBRhIwAAGB9/rlS3Q+puSXUlAAAAAKYIwkYAADA+vkypu1mq35XqSgAAAABMEYSNAABgfAyb5M2QqjZL/d2prgYAAADAFEDYCAAAxi+QK3XUSQ17U10JAAAAgCmAsBEAAIyfzSG5/FLpeqmtMtXVAAAAAEgxwkYAAHBy0oqstRv3PC51Nqa6GgAAAAApRNgIAABOjmFIWYuskY17Hpd621NdEQAAAIAUIWwEAAAnz2aXshZLjQekvU9JkZ5UVwQAAAAgBQgbAQBActgdUtZCqWabtH+NFIukuiIAAAAAk4ywEQAAJI/DLWXMl468IR16QYrHU10RAAAAgElE2AgAAJLL5ZeCBdLhl6SKV1JdDQAAAIBJ5Eh1AQAAYAbyplvTqA+ulep2S8YYr/dkSKe9X7I7J6I6AAAAABOEsBEAAEyMQI7U45B6msd2nWlKbUekgpVS3vKJqQ0AAADAhCBsBAAAE8ebYR1j1XxQqt4s5S6TjLEOiwQAAACQKqzZCAAApp5ggdR0SGqrSHUlAAAAAMZgyoSN99xzjwzD0B133DF4zjRNrV69WoWFhfJ6vbrsssu0e/fu1BUJAAAmhysgxfqkmu2prgQAAADAGEyJsHHTpk36j//4D61cuXLI+R//+Me677779Mtf/lKbNm1Sfn6+Vq1apY6OjhRVCgAAJo0/R6rfJXU2proSAAAAAAlKedjY2dmpj3zkI/rd736njIy31nQyTVM/+9nPdNddd+mmm27SihUr9NBDD6m7u1uPPvpoCisGAACTwpsp9bRJdbtSXQkAAACABKU8bPz85z+v6667TlddddWQ82VlZaqrq9PVV189eM7tduvSSy/Vq6++Our9+vr6FA6HhxwAAExXs7pfMwzJlyHVbJH6Ok/cvrddivROfF0AgHGZ1X0aAMwiKQ0b//znP2vr1q265557hj1XV1cnScrLyxtyPi8vb/C5kdxzzz1KS0sbPIqKipJbNAAAk2jW92v+XKmzXmrYe/x2XU3S1kek3X8jcASAKWrW92kAMEukLGysrKzUv/3bv+mRRx6Rx+MZtZ1hGEO+N01z2LljffOb31R7e/vgUVlZmbSaAQCYbLO+X7PZJadfqtosRftHbtMblnY/JrWWSzXbpAPPSrHopJYJADixWd+nAcAs4UjVC2/ZskUNDQ06++yzB8/FYjG9/PLL+uUvf6n9+/dLskY4FhQUDLZpaGgYNtrxWG63W263e+IKBwBgEtGvSQrmS20VUvNBKe/Uoc9FeqS9T0pNB6TsxVK0T6p4zQooF10p2VK+YgwA4Cj6NACYHVL2E/iVV16pnTt36s033xw83vGOd+gjH/mI3nzzTS1YsED5+flat27d4DX9/f3asGGDLrjgglSVDQAAJpvDba3fWL1FMs23zsei0v5npNptUuYCye6U3AEpmCcdflGqfD11NQMAAACzVMpGNgaDQa1YsWLIOb/fr6ysrMHzd9xxh+6++24tXrxYixcv1t133y2fz6dbbrklFSUDAIBUCRZITYesEY4Z86V4XCp9Qap8Q0ovlhzHLMnizZBi/dKB5ySXXyo4PWVlAwAAALNNysLGRHz9619XT0+PPve5z6m1tVXnnXee1q5dq2AwmOrSAADAZHIFpFiVVLPdChuPvCod3iAF8q3n3i6QJ7VXSvuesqZUZy+a9JIBAACA2WhKhY0vvfTSkO8Nw9Dq1au1evXqlNQDAACmEH+OVL9L8oSk0hclT5rkTR+9fVqR1Fwq7fm7dPqHpbQ5k1YqAAAAMFuxajoAAJgevJlST5tU/k9rfcZA7omvySyRuhut3ap7Wie8RAAAAGC2I2wEAADTg2FYoxMNQ0qbm+A1NilzkdRaLtVun9DyAAAAABA2AgCA6cSTJoUKx3aNzW5tGlO9Vervmpi6AAAAAEgibAQAALNBIFfqqJca9qW6EgAAAGBGI2wEAAAzn80hOT1S1SYpFkl1NQAAAMCMRdgIAABmh2CB1HZEaj6U6koAAACAGYuwEQAAzA4Ot/VYvVUyzdTWAgAAAMxQhI0AAGD2COZLTQek9sqTu49pElgCAAAAIyBsBAAAs4c7KEV6pNrt479HtE/a+T9S2T+SVxcAAAAwQxA2AgCA2cWfI9XtlLqax35tPCYdeE6qeFWqfEPq60h+fQAAAMA0RtgIAABmF1+m1NMq1e8c23WmKZW+ZAWNGfOlrgapYe9EVAgAAABMW4SNAABgdjFskifd2iimvyvx6yo3SofXWyMjPWmS0y9VbZKi/RNWKgAAADDdEDYCAIDZJ5ArddRLDfsSa1+3UzrwrOQKWCMjJSlUILVVWhvOAAAAAJBE2AgAAGYjm0NyeqyRibHI8ds2l0p7n7K+Dua/dd7ukmx2qXqLFI9PXK0AAADANELYCAAAZqdggdR2RGo+NHqbcI205+/WdOv0eSPcI98KI9sqJq5OAAAAYBpxpLoAAACAlHC4rceqzVK0b/jzZlw68rrUWS9lLxn5Hq6AFK2UardLmSUTVysAAAAwTRA2AgCA2StUKNXtkOp3jfy8YZOyFluPownmS3W7pOILrLUgAQAAgFmMsBEAAMxeLr+Uu/zk7uFJlzpqrcBx0RVJKQsAAACYrlizEQAA4GQYhuTNtDaK6etIdTUAAABAShE2AgAAnCx/jtTVIDXsTXUlAAAAQEoRNgIAAJwsm93aLKZqkxTtT3U1AAAAQMoQNgIAACRDMF9qq5SaDqS6EgAAACBlCBsBAACSwe6yRjhWb5Hi8VRXAwAAAKQEu1EDAAAkS7DAGtm4+ffWxjFv5/JLi1ZJ/qzJrw0AAACYBISNAAAAyeLyS+6gFK4e+fm+DinSLZ32QasdAAAAMMMQNgIAACRTIG/052L9Uv1eyfG0dOr7JKdn0soCAAAAJgNrNgIAAEwWu0vKLJFqtkgHnpNi0VRXBAAAACQVYSMAAMBkcnqltCKp4lXp8EuSaaa6IgAAACBpCBsBAAAmmzsoBfOk0vXSkddTXQ0AAACQNISNAAAAqeDNkDwh6eBzUu2OVFcDAAAAJAVhIwAAQKoE8iTZpH1PSU2Hxn59X4cUjye9LAAAAGC8CBsBAABSKb1IinRLe5+Q2qsTvy5cK215SKraNHG1AQAAAGNE2AgAAJBqGSVSV4O05+9SV/OJ23e3WG0b9kpVG6Vo38TXCAAAACSAsBEAACDVDJuUuUhqLZf2/t2aHj2avk5rFGTLYSlvhTUasnH/pJUKAAAAHA9hIwAAwFRgs0tZC6X6vdLep6RI7/A20T5p/9NS/W6rrdNjXVe9hbUbAQAAMCUQNgIAAEwVdpeUucAKDw88J8Wibz0Xj0kH10pVm6WM+VZbSQoWSC2lUmtZSkoGAAAAjkXYCAAAMJU4PVL6PKniVenwS5JpWsfhDVL5K1JakeT0vdXe5bdCyZo3U1UxAAAAMMiR6gIAAADwNu6gFMyTStdbYaLNLpW+IPlzrOfeLpAnNeyWOi6UgvmTXy8AAABwFGEjAADAVOTNkGL90oFnrQ1kXAHJlzVK23Spo0aq20XYCAAAgJRiGjUAAMBUFciTHB7J5jxxiOjLkqq3Sr3hyakNAAAAGAFhIwAAwFQWzJdCBSdu58uWuhulhj0TXxMAAAAwCsJGAACAmcBml1xBqWqTFO1LdTUAAACYpQgbAQAAZopgntReLTXuT3UlAAAAmKUIGwEAAGYKu8sa4Vi9WYrHU10NAAAAZiHCRgAAgJkkWCC1HJZay1JdCQAAAGYhR6oLAAAAQBK5/FIsKtW8KaUVjdzG5pBs/JszAAAAko+wEQAAYKYJ5Ek1W6WW0pGf92VKp95kPQIAAABJxD9pAwAAzDTedMmXLckY+Wg8IO15XOrrTF2NAAAAmJEY2QgAADATedNHf84Tkhr2SnufklbcKDnck1YWAAAAZjZGNgIAAMw2dpeUMd+aan3gOSkeS3VFAAAAmCEIGwEAAGYjp09KmytV/FMqfUkyzVRXBAAAgBmAsBEAAGC2cgclf450eL1UuTHV1QAAAGAGIGwEAACYzXxZkisgHXhWqtuZ6moAAAAwzbFBDAAAwGwXzJfajlgbxkT7JIdn5Hbp86zNZRIV7Zc666X0ouTUCQAAgCmPsBEAAABWkNhaJu34n1EamFLecmnFByR34MT3i8ekg89JTQels2+TfJnJrBYAAABTFGEjAAAALBkloz8X65fqdklOr7T8fZLDPXpb05QOb5DKX7G+bq8ibAQAAJglWLMRAAAAJ2Z3SZklUtVm6eBaa+TiaCo3SqUvWJvPGDappWzy6gQAAEBKETYCAAAgMU6flFZkjVg8vMEatfh2dbuszWZcAWvzGW+61HxAivROerkAAACYfISNAAAASJw7aI1YLH3BGsF4rJbD0t4nra+D+dajN0PqaZXC1ZNbJwAAAFKCsBEAAABj48uyRi4eeNYayShJ4Vpp9+NSf6e12cwAu0uKRa3drgEAADDjETYCAABg7AZGLu59Uqp5U9rzuNTZIGUuGN7WHZAa9knx+GRWCAAAgBQgbAQAAMD4pM+zRjLuf9raBCZrkbUhzNt5M6SuBqmz/uReLx6TDq6zQk0AAABMSYSNAAAAGL/MBZJpSFkLJZt95DaugBVKtled3Gu1lEkV/5SqtpzcfQAAADBhCBsBAAAwfoZNChVYazMej90tNR88udeq2Sp1NUq1b0rdLSd3LwAAAEwIwkYAAABMPG+61Foh9baP7/pwjdSwV8pcKPW0SA17kloeAAAAkiOlYeP999+vlStXKhQKKRQK6Z3vfKeeeeaZwedN09Tq1atVWFgor9eryy67TLt3705hxQAAABgXT7oVNI53KnXdTqmv01r/0R2SqjZJkZ6klggAAICTl9Kwce7cufq///f/avPmzdq8ebOuuOIK3XDDDYOB4o9//GPdd999+uUvf6lNmzYpPz9fq1atUkdHRyrLBgAAwFjZ7JJMa3TjWPW0STXbJH+29X0gXwrXWSMdAQAAMKWkNGy8/vrrde2112rJkiVasmSJfvjDHyoQCOj111+XaZr62c9+prvuuks33XSTVqxYoYceekjd3d169NFHU1k2AAAAxsOTJjXtl6L9Y7uuYY/U3fxW2Gh3SA6XVL1FikWTXycAAADGbcqs2RiLxfTnP/9ZXV1deuc736mysjLV1dXp6quvHmzjdrt16aWX6tVXXx31Pn19fQqHw0MOAACmK/o1zCjeDKmrWQpXJ35NpNeaMu0OWZvRDAgWSq1lUsvh5NcJYELQpwHA7JDysHHnzp0KBAJyu936zGc+o8cee0zLly9XXV2dJCkvL29I+7y8vMHnRnLPPfcoLS1t8CgqKprQ+gEAmEj0a5hRHB4p1j+2dRsb90nhWikw9GdCOT1SPC5Vb01ujQAmDH0aAMwOKQ8bly5dqjfffFOvv/66PvvZz+rWW2/Vnj1v7S5oGMaQ9qZpDjt3rG9+85tqb28fPCorKyesdgAAJhr9GmYcp09q2CeZ5onbxmNS9WbJ7rSOtwvmW9Oyx7vpDIBJRZ8GALODI9UFuFwuLVq0SJL0jne8Q5s2bdLPf/5zfeMb35Ak1dXVqaCgYLB9Q0PDsNGOx3K73XK73RNbNAAAk4R+DTOON0PqrJW6mqRAzvHbtpRZR6hw5Oc9aVK4RqrdKaXNTX6tAJKKPg0AZoeUj2x8O9M01dfXp5KSEuXn52vdunWDz/X392vDhg264IILUlghAAAAxs0dlPo6pPYERjTVbJXMmDUacjT+bKn2Tam7JWklAgAAYPxSOrLx3//933XNNdeoqKhIHR0d+vOf/6yXXnpJzz77rAzD0B133KG7775bixcv1uLFi3X33XfL5/PplltuSWXZAAAAGC/DkGxOqaVUmnPW6O3CNVLDXimQf/z7+bKkxr3WjtXzL0purQAAABizlIaN9fX1+pd/+RfV1tYqLS1NK1eu1LPPPqtVq1ZJkr7+9a+rp6dHn/vc59Ta2qrzzjtPa9euVTAYTGXZAAAAOBneDKn5sNTfJbn8I7ep2yn1dUrp845/L8MmedKtHavnnC05vUkvFwAAAIlLadj4wAMPHPd5wzC0evVqrV69enIKAgAAwMTzplsjG9urpJylw5/vaZNqtllTpBPhz5OaD1kjIY83WhIAAAATLuUbxEwHDR29CvdEtCiXEZUAAAAnzeawdqOu3SF1Ngx/vqdV6m6Wck5J7H52h+RwSdVbrNGSI/GmS/mnjbtkAAAAJIawMQEVzd16tbRJ16yQluQROAIAAJw0f65UtVkyRnjOlOTLsaZIJyo0xxrd2Hxo5OftbinWb021BgAAwIQhbExQdWuPnt1VK6/TrqLM4+yICAAAgBPzZVpHsjjcxx8JGa6R9q2RnH4pN8ERkwAAABizMfxz8ezmc9kV7olqzc5aNXT0procAAAAjEWoUIpFpD1PSK0Vqa4GAABgxiJsTJBhSPOz/apt79UzO+vU3hNJdUkAAAAYi4z5Um+btOfvI68VCQAAgJNG2DgGNsPQghy/Djd26pmdterpj6W6JAAAACTKMKSshVK4Wtr9uLXrNQAAAJKKsHGMHDabSrID2lMb1to9deqPxlNdEgAAABJl2KTMRVLzQWnvE1J/d6orAgAAmFHYIGYcXA6b5mX6tPVIq3xOu65cliebbaStFAEAADDl2B1S5kKpbofk9EnL3ivZkvhjsWFYBwAAwCxE2DhOPpdDBWlevXq4WT63XRcszJbBD5UAAADTg8Mtpc+XKt+QWsuTe+9ArrT8fZInlFj7/m5p/xop71Qpd1lyawEAAJhkhI0nIeRxKhoztWF/k/xup84oSk91SQAAAEiUy29tGtPXmcSbmlLdTmuk5Kk3SU7P8ZvHItL+Z6Syl63Na7KXSDZ7EusBAACYXISNJynT71J/NK7n99TL57JrSV4w1SUBAAAgUU6fdSSTO02q2Wbd95T3WNO2RxKPSweft0ZXphVJLWXWkb0oufUAAABMIjaISYL8NI+icVPP7KpVZQuLjAMAAMxqTo+UPk+qeFUqfcEKFUdS8YpUtkEKFUr+bMmMSTVbJ7dWAACAJCNsTJKiDK86eqJas7NWDR29qS4HAAAAqeQKSMF86fAG6chrw5+v3iIdXCf5siRPmnUukC817JXCNZNbKwAAQBIRNiaJYRian+1XbXuvntlZp/aeSKpLAgAAQCp5M6wg8eBaqebNt8437JP2rZEcHmtE4wBPmrV+ZN3OSS8VAAAgWQgbk8hmGFqQ49fhxk49s7NWPf2xVJcEAACAVArkWpvF7HtaajwgtVZIe56wNoYJFQ5v78+21nvsaZv0UgEAAJKBsDHJHDabSrID2lMb1nO769QfHWWNHgAAAMwOaXOlaK+09wlpz9+tXacz5o/c1p8tdTdLDXtOfN9ov9RelcxKAQAAThph4wRwOWyal+nTjqo27a/rSHU5AAAASLWMEqmnVeqolbIWSoYxcjvDJrlDUtUmKXKcdcDjMenAs9K2R5h2DQAAphTCxgnicznksNm0vapVsbiZ6nIAAACQSoYhZS2SspdYgeLxBPKkcK3UuG/k503T2nim4p9Sb7u09ympuTT5NQMAAIwDYeMEyk/zqLy5W+XNXakuBQAAANOF3Wkd1ZutEYxvV7lRKn1B8udY4WV/pzU9m12sAQDAFEDYOIE8TrvicVM7q9pTXQoAAACmk2CB1FJmHceq22VNn3YFJF+WdS5zgdRZL+1+XOpumfRSAQAAjkXYOMFygx4dqO9QbXtPqksBAADAdOH0SmZMqtn61rnmUmnvk9Y06mD+W+cNm5S1WGotk/Y8LvV1Tnq5AAAAA8YVNj777LN65ZVXBr//1a9+pTPOOEO33HKLWltbk1bcTBDyOtXVF9WemnCqSwEATDL6SwAnJZAvNey1pkeHa62p0v2dUkbx8LY2u7UmZP0eaw3HaN/k14sZj34NAJCIcYWNX/va1xQOW+HZzp079ZWvfEXXXnutDh8+rC9/+ctJLXAmyAq4tbO6Xe3dkVSXAgCYRPSXAE6KJ80apVi50Rqx2NlgTZkejd1lPV+zRTrw3MjrPQIngX4NAJAIx3guKisr0/LlyyVJ//u//6v3vOc9uvvuu7V161Zde+21SS1wJsj0u3SgvkP76sI6b0HWcdsebuzU7pqw4ubIO1ifWhjSotzgRJQJAEgy+ksAJ82fI9VskyI9ie1k7fRKaUXWTtV9HVYAmSyugLT4KmvzGsxK9GsAgESMK2x0uVzq7u6WJD3//PP62Mc+JknKzMwc/JcuvMVmGAp5nNpW2abTi9LlcdpHbFfZ0q2ndtSqubNfbsfwHyR7IjG1dvVrfpZfDjvLbQLAVEd/CeCk+bOkjogUKrSmSifCHbQ2mGncl7w6TNNaQzKjWMpbnrz7YlqhXwMAJGJcYeNFF12kL3/5y7rwwgu1ceNG/fd//7ck6cCBA5o7d25SC5wpcoNulTV36VBDp1bMSRv2fGNHn9bsqlV7T0RL8gIyDGNYm75ITFWtPSpr6tLiPEY3AsBUR38J4KQZNitoHCtPmnUkU/NBqXqLlLtMGuFnVcx89GsAgESMa3jcL3/5SzkcDv31r3/V/fffrzlz5kiSnnnmGb373e9OaoEzhcNuk9Nm05uVrYrFh06Rbu+JaM3OWtW29aok2z9i0ChJbqddpqQdVW0yR5lmDQCYOugvAcwogQKp6aDUVpHqSpAi9GsAgEQY5gxPrcLhsNLS0tTe3q5QKDSue2wqb9GanTVanDu+6wf0RmKqaevRzefN08KcgCSppz+mJ3fUaFd1uxblBE44PbqjN6K27n599J3zNSfde1L1AMBUk4y/s2e6pHxGr/1a6mkd32gpALNb4z6p+EJp+XtTXcmUR592YnxGADB9jOXv7HFNo5akWCymxx57THv37pVhGDrllFP0vve9Tw7HuG8543mcdsVNUzsq27UwJ6D+aFxr99RpV3W7SrITW4cx6HGqpq1Hu6rbCRsBYBqgvwQwo/hzpLqd0rx3SoGcVFeDFKBfAwCcyLh6hF27dum9732v6uvrtXTpUknWOh05OTl64okndNpppyW1yJkkN+jRwYYOVbf1aG9Nu7YeadW8TJ/cjgQX/JaUE/RoT01Y58zPVKY/iTsMAgCSiv4SwIzjzZQa9kr1u6XAZamuBpOMfg0AkIhxrdn4yU9+UitWrFBVVZW2bt2qrVu3qrKyUitXrtSnPvWpZNc4o4S8TnX1RbVhf4NeLW1WQcgrn2tsmW+6z6nW7n7tq524Hd9icVPRWHzC7g8AswH9JYAZxzAkX4ZUvVnq6zxx+2i/1NU88tHdktzaYlEpHkvuPTEE/RoAIBHjGtm4fft2bd68WRkZGYPnMjIy9MMf/lDnnHNO0oqbqbIDbu2sDqswzaOQ1znm622GoTSvU29WtumMeeljDitPpDcS09M7ahRwO/WuFflJvTcAzCb0lwBmJH+u1LTfGuFYdJy/y/q7pJ1/HX1DGcMulVwslVySnLoOPif1tkun3iQ5Pcm5J4agXwMAJGJcIxuXLl2q+vr6YecbGhq0aNGiky5qpssKuHVKflBZAfe475ETdKuho08H6hP4F+UxiMbiemFvg7YeadOumnY1d/Yl9f4AMJvQXwKYkWx2yemXqjZLscjIbaL90r6nrfUd3WmSN2P4Ydikg+uk6i0nX1NXk1T7plS1STrwrDXKEUlHvwYASETCYWM4HB487r77bn3xi1/UX//6V1VVVamqqkp//etfdccdd+hHP/rRRNY7YzgT2AzmeBw2mzwOm9480pq06c7xuKlXDjZpU3mLirP8CvdEtK9u4qZqA8BMRH8JYFYI5kvtR6Smg8Ofi8esELFqk5RRInlCkisw/AjmSw6PtG+N1LDv5Oqp3yX1tFmvV/GaVLpeirMkUDLQrwEAxirh+bfp6ekyDGPwe9M09aEPfWjwnGmakqTrr79esRhrpUyGvJBHVa09Kmvq0uK84Enfb3NFq/5xqEm5QbcCbofSfC69eaRdZxRlyO9mdzkASAT9JYBZweG21m+s3iLlLrO+liTTlA6/LJX/QwrNlVy+498nVCi1lEl7n5CcXimjeOy19HVKVVskT4bkDkrBPOnwS5I7IBVfMPb7YQj6NQDAWCWcIL344osTWQfGwe20y5S0o6pNi3IDQ34IGKtd1e1av69eIY9T6T5rh+ucgFuHGjt0oL5DZ87LOMEdAAAS/SWAWSRYYI1sbKuQMuZb56o2S6XPS/5sa0RjIjLmS82HpD1/l07/sBTIHVsdjfukznope4n1vTdDivVLB56TnD6p8Iyx3Q9D0K8BAMYq4bDx0ksvncg6ME55IY8ONXSquq1HczNO8C/Hozjc2Km1e+pkt9mUE3xrHUm7zZDP6dC2I21aMSftpKd+A8BsQH8JYNZwBaRYlVSz3QoM63dL+9dY6zn6shK/j2FIWQulxv3S7sellR+SvOmJXRuLWAGn02utJTkgkCe1V0r7n5Zcfil78RjeGI5FvwYAGKuTmhvb3d2tI0eOqL+/f8j5lStXnlRRSFzA7VB1W7d214THFTbWtPVozc5a9fTHVZLtH/Z8bsitqpYeHW7s0tL8k5+qDQCzEf0lgBnLn2utl5g2Vzq0TjLjUqhg7PcxbFLWYqn5gLT3SWnF+088BVuyRkS2VUjpI0y/TiuSmkvfGjGZNnfsdWFE9GsAgOMZV9jY2Nioj3/843rmmWdGfJ61OiZXTsCjPTVhpXmdstvGNpX6zco2tXT1a0FOYMTn3Q67DEPaXtWmJXnHn6odicV1oL5DC3MC8jjto7YDgNmC/hLAjOfNkBr2Wmsk9oWlzJPYkdjukDIXSrXbrZGKy2+Q7M7R25umVL3VGhnpcI/cJrPECiR3Py7NOXuU13VKeSskp2f8tc8S9GsAgESMK2y844471Nraqtdff12XX365HnvsMdXX1+sHP/iB7r333mTXiBNI9zlV3tSl53bVjflah91QSXZAtuOEiLkhj0obO1XV2qOizJH/hTkeN7Vhf4PeKGvRmfMydPXyPDmYdg1glqO/BDDjGYa1q3RvqxUUnsQa4pKs0DBjvlT5hjUde8m7JNsoP1O2HZGaDkiB44ykNGxWXa1l0p7HR25jSiqulk65zgo8MSr6NQBAIsbVm65fv15///vfdc4558hms6m4uFirVq1SKBTSPffco+uuuy7ZdeI4bIYx6sjEZAi4Happ69au6vZRw8Y3ypr1ammzAm6nNpa1yO+y65IlOSe1aQ0ATHf0lwBmBV+mdSSLyy+F5khlGyS3Xyq5ZOR2tdulSK+16/Tx2OxS1nFGXPZ1ShWvWq+76MqTD0xnMPo1AEAixjX0rKurS7m51i5xmZmZamxslCSddtpp2rp1a/Kqw5SRE/BoT21YzZ19w57bXtmmF/c3KsPnUn6aR7lBt/5xsEmbK1pTUCkATB30lwAwTp40K8A8uFaq3jL8+a4mqX6nFMg5+ddyB6RgnlS6Xjry+snfbwajXwMAJGJcYePSpUu1f/9+SdIZZ5yh3/72t6qurtZvfvMbFRSMY0FoTHnpPqfCPRHtqwsPOX+wvkPr9tTL7bApK+A+2talgMehF/bWa1d1eyrKBYApgf4SAE6CP0dyeKV9a6SGfUOfq98l9bRJ3iSNqPRmSJ6QdOBZqXZHcu45A9GvAQASMe41G2trayVJ3/3ud/Wud71Lf/zjH+VyufSHP/whmfVhijAMQ2k+l9480q4zijLkdztU2dKtZ3bVKRKLqzhr6E7WuUGPqlt7tG5PvXwu+4RO8waAqYr+EgBOUqjw6HqLT1ibxmQUW9OeqzZLnozkTnkO5EltldK+pySnT8o+ic1uZij6NQBAIgzTNM2TvUl3d7f27dunefPmKTs7Oxl1JU04HFZaWpra29sVCoXGdY9N5S1as7NGi3PHd/1MEYubOtTYofedMUdzM3z627YqNYT7tCDbP+rajOXNXUr3OnXjWXNUkOad5IoBTDfJ+Dt7KktGf5mUz+i1X0s9rdYv8QAw1ZmmtaN0MF86/cPWxjA7/iJlL7HWY0y2llIryDz9w1LanHHfZqb3adLJ92uz4TMCgJliLH9nJ2W7YLfbLZvNJrt9Ajp7TBl2myGf06FtR9q0Zmetatp6VHKcoFGS5mX61NTZp6d31Kqlq38SqwWAqYf+EgDGwTCkrIVSuFra/bg1qtHpnZigUZIySqTuRmv36q7miXmNGYJ+DQAwknFPoz7ttNN0++23KxaL6ZJLLtFrr70mn8+np556SpdddlmSy8RUkRtyq6ypS4YhLcwOyHaCqSs2w1BJdkAHGzr06BtH5LSPbaqLYUiXLMnRKfn8SyeA6Yf+EgCSxLBJmYuk5gOSKSt8nOjXatpvTak++9aJe61phn4NAJCIcY1s/Otf/6rTTz9dkvTkk0+qvLxc+/bt0x133KG77rorqQVianE77JqT7tWC7IAc9sT++NhthhblBBSNxdXdHxvTUdPWq83lLYrFT3q2PwBMOvpLAEgiu0PKWiylzZUc7ol9LZtd8mVJ3U0T+zrTDP0aACAR4wobm5qalJ+fL0las2aNPvjBD2rJkiW6/fbbtXPnzqQWiKkn6HHKmWDQOMBhtyk35FHeGI95mT6VN3WrvLlrgt4NAEwc+ksASDK709o1GilBvwYASMS4wsa8vDzt2bNHsVhMzz77rK666ipJ1gLBrNeBZPI47YqbpnZUtqe6FAAYM/pLAMBMQr8GAEjEuNZs/PjHP64PfehDKigokGEYWrVqlSTpjTfe0CmnnJLUAoHcoEcHGzpU297DjtYAphX6SwDATEK/BgBIxLjCxtWrV2vFihWqrKzUBz/4Qbnd1popdrtdd955Z1ILBEJep2rbe7SnOkzYCGBaob8EAMwk9GsAgESMK2wsKyvTBz7wgWHnb72VndowMbICbu2sadc75mcqzedMdTkAkBD6SwDATEK/BgBIxLjWbFy0aJEuv/xyPfLII+rt7U12TcAwmX6XWrr6ta8ufMK20VhcR5q7VdbUNeLR2tU/CRUDAP0lAGBmoV8DACRiXGHj9u3bdeaZZ+orX/mK8vPz9elPf1obN25Mdm3AIJthKORxaltlm3ojsVHbxeOmXj7YpEfeqNB/vTby8d+bK9UQ5ocjABOP/hIAMJPQrwEAEjGusHHFihW67777VF1drQcffFB1dXW66KKLdOqpp+q+++5TY2NjsusElBt0qz7cq4P1naO22VTeon8ealK616kFOf5hR0m2X/XtvXp6Z63auyOTWD2A2Yj+EgAwk9CvAQASMa6wcYDD4dCNN96ov/zlL/rRj36k0tJSffWrX9XcuXP1sY99TLW1tcmqE5DDbpPTZtObla2Kxc1hz++qbtf6/Q1K8ziV7nPJZhjDDrvNUEmOX2VNXVqzq1bd/dEUvBMAsw39JQBgJqFfAwAcz0mFjZs3b9bnPvc5FRQU6L777tNXv/pVlZaWav369aqurtYNN9yQrDoBSVJ+mkcVzd0qb+4acv5QQ6ee210np82m7KD7uPdw2GxakB3Q3tqw1u6uV380PpElAwD9JQBgRqFfAwAcz7h2o77vvvv04IMPav/+/br22mv18MMP69prr5XNZmWXJSUl+u1vf6tTTjklqcUCHqddcdPUjsp2LcwJSJKq23r07K5a9UXimp/tT+g+LodNxZl+bT3SKp/LriuX5cluMyaydACzEP0lAGAmoV8DACRiXGHj/fffr0984hP6+Mc/rvz8/BHbzJs3Tw888MBJFQeMJDfk0cGGDtW298hlt2nNzlq1dPUPho+J8rrsmpPu1WuHm+V12nXR4mwZBoEjgOShvwQAzCT0awCARIwrbDx48OAJ27hcLt16663juT1wXCGPU7VtPdpW0armrn5VtXRrUW5wXEFh0ONUJGZqw8FG+T0OnTUvYwIqBjBb0V8CAGYS+jUAQCLGFTYO6O7u1pEjR9Tf3z/k/MqVK0+qKOBEsgJu7aoJq7MvqoU5gZOaAp3pd6k/Ftfze+rlc9l1Sn4oiZWObHdNu7xOuxaMcTQmgOmJ/hIAMJPQrwEAjmdcYWNjY6Nuu+02PfvssyM+H4vFTqoo4EQy/S7VtveqJMsvp/2k9jmSJOWHPKps6dazu+rkczo0L8uXhCpHtrumXU/tqFVu0K2iTF9S6gcwNdFfAgBmEvo1AEAixpVy3HHHHWpra9Prr78ur9erZ599Vg899JAWL16sJ554Itk1AsPYDENz0r1yO+1Ju+fcDK86e6N6eletGsK9SbvvscqaurR2d72iMVNVrT0qa+o68UUApi36SwDATEK/BgBIxLhGNq5fv15///vfdc4558hms6m4uFirVq1SKBTSPffco+uuuy7ZdQITzjAMzc/2q7ShU0/vrNWNZ85Rus+VtPvXtvfomZ216u6PqiQ7oMONndpe2abFuQE2pgFmKPpLAMBMQr8GAEjEuEY2dnV1KTc3V5KUmZmpxsZGSdJpp52mrVu3Jnyfe+65R+ecc46CwaByc3P1vve9T/v37x/SxjRNrV69WoWFhfJ6vbrsssu0e/fu8ZQNnJDNMFSS41d5U5ee2VWn7v5oUu7b0tWvNTtr1djZp+IsvyRrV+3Sxk5Vt/Uk5TUATD3J6i8BAJgK6NcAAIkYV9i4dOnSwVDwjDPO0G9/+1tVV1frN7/5jQoKChK+z4YNG/T5z39er7/+utatW6doNKqrr75aXV1vTS398Y9/rPvuu0+//OUvtWnTJuXn52vVqlXq6OgYT+nACTlsNpVkB7S3Nqy1u+vVH42f1P06+6J6ZletjjR3a0F2QLajoxgDbod6IjHtqm5PRtkApqBk9ZcAAEwF9GsAgESMaxr1HXfcodraWknSd7/7Xb3rXe/SI488IpfLpYceeijh+7x9YeEHH3xQubm52rJliy655BKZpqmf/exnuuuuu3TTTTdJkh566CHl5eXp0Ucf1ac//enxlA+ckMthU3GmX9uOtMnnsuvKZXnj2vG6NxLT2t11OlDXoQUj7JqdE/Bob22Hzi3JUqY/eVO2AUwNyeovAQCYCujXAACJGFfY+JGPfGTw6zPPPFPl5eXat2+f5s2bp+zs7HEX095ujfDKzMyUJJWVlamurk5XX331YBu3261LL71Ur7766ohhY19fn/r6+ga/D4fD464Hs5vXZVdhukevHW6W12nX6fPSx3S9aUr/PNSk7ZVtKh5l1+wMn1P76zu0t7ZdFy7KOeE9I7E4u1cD00gy+kv6NQDAVHGy/Rp9GgDMDgmHjV/+8pcTvul999035kJM09SXv/xlXXTRRVqxYoUkqa6uTpKUl5c3pG1eXp4qKipGvM8999yj733ve2N+fWAkQY9TkZip9fsatLG8ZczXh3uimpPhk2eUXbMNw1C6z6Xtle06c16GfK7R/5c81NCpDQcadOmSXC3KDYy5FgCTI9n9Jf0aACCVktmv0acBwOyQcNi4bdu2Id9v2bJFsVhMS5culSQdOHBAdrtdZ5999rgK+cIXvqAdO3bolVdeGfbc23fqNU1z1N17v/nNbw7pEMPhsIqKisZVEyBJmX6XfC67+mNjX7sx0++S2zFy0DggJ+BWaWOHDtR36oyi9BHbVLf16Jldtapu7VFPf0w3njVXc9K9Y64HwMRLdn9JvwYASKVk9mv0aQAwOyQcNr744ouDX993330KBoN66KGHlJGRIUlqbW3Vxz/+cV188cVjLuJf//Vf9cQTT+jll1/W3LlzB8/n5+dLskY4HrvgcENDw7DRjgPcbrfcbveYawCOx+O0jzo68WTZbYY8Toe2HWnVqYWhYdOkmzr7tGZHrVq7+rViTpoON3Zqzc5a3XTmHGUF+LMOTDXJ7i/p1wAAqZTMfo0+DQBmh3Et/nbvvffqnnvuGexgJCkjI0M/+MEPdO+99yZ8H9M09YUvfEF/+9vftH79epWUlAx5vqSkRPn5+Vq3bt3guf7+fm3YsEEXXHDBeEoHpqS8kFtVrT0qa+oacj7cG9GaHbWqbutWydGdrEuyA6pq6daanbXq6I2kqGIAiUhWfwkAwFRAvwYASMS4wsZwOKz6+vph5xsaGtTR0ZHwfT7/+c/rkUce0aOPPqpgMKi6ujrV1dWpp6dHkjV9+o477tDdd9+txx57TLt27dJtt90mn8+nW265ZTylA1OS22GXIWl7ZZtM05Rk7WT93K46HWrsVEn2WztZ222GFuQEdLChQ8/uqlNvJJbCygEcT7L6SwAApgL6NQBAIsa1G/WNN96oj3/847r33nt1/vnnS5Jef/11fe1rX9NNN92U8H3uv/9+SdJll1025PyDDz6o2267TZL09a9/XT09Pfrc5z6n1tZWnXfeeVq7dq2CweB4SgemrNyQR6WNnapq7VF+mkfP763Xzup2lWQP38naabepJCugndXt8rrsevep+XKwSzUw5SSrvwQAYCqgXwMAJGJcYeNvfvMbffWrX9VHP/pRRSLWNE6Hw6Hbb79dP/nJTxK+z8AIruMxDEOrV6/W6tWrx1MqMG0E3A7VtHVrd027DtR3aHN5q+Zl+EbdYMbttKsow6fN5a3yuRy6bEmObLaRN04CkBrJ6i8BAJgK6NcAAIkwzEQSv1F0dXWptLRUpmlq0aJF8vv9yawtKcLhsNLS0tTe3q5QKDSue2wqb9GanTVanDu+64FEtXT1qy8aU3d/VNkBj9K8zhNe094TUVNnn1Ytz9P5C7ImvMbu/qjq2nu1ICcw4a+F2ScZf2dPRcnsL5PyGb32a6mnVQoVjrsOAJjxOuslu1O6+Cvjunym9mlS8vq1mfwZAcBMM5a/s8c1snGA3+/XypUrT+YWAI6R4XPqcFO/MnzuhIJGSUrzOhWJxvXi/gb5XQ6dNjdtwurrjcT07K46VbV268PnzFNuyDNhrwXMJPSXAICZhH4NAHA8LPIGTCGGYWhhTkCZfteYrssOuuW02bR2T50ONXROSG3RWFzr9zVoe2WbGjv7tLc2PCGvAwAAAAAApi/CRmCGKEz3qi8S17O7alXd1pPUe5umqX8eatKm8hbNyfApy+/W9qo2dfRGkvo6AAAAAABgeiNsBGaQ4iyfWrr6tWZnrZo6+5J2380VrfrHwSblBNwKuB3K8rvV3Nmv/XUdSXsNAAAAAAAw/RE2AjOIYRgqyQ6oqrVbz+ysTcrIw9017Vq/t14Bt0PpPmt6t91mKOB2altlm/qisZN+DQAAAAAAMDMQNgIzjN1maEF2QAcbOvXsrjr1RsYfBpY1dWnt7noZhjFsM5jckFs1bT0TtkYkAAAAAACYfggbgRnIabepJMuvndXten5vvSKx+JjvUdveo2d21qq7P6q5Gb4RX8NuM7S9sl3xuJmMsgEAAAAAwDTnSHUBACaG22lXUYZPm8tbVdfeK5vNGNP1Pf1RNXX2a2FOYNQ2+SGPypu7dKSlW/Oz/aO2i8Ti2rC/QTlBj04vSh9THQAAAAAAYPogbARmML/bobnpXrX3jH3tRpthTce2GaOHlD6XQ5Foj3ZUtY0aNsbjpv5xsEkvH2xSwO2Qy2HTsoLQmOsBAAAAAABTH2EjMMP53A753BP3v3puyKMD9Z1qCPcOW9dRkjaWt+ifhxpVkOZVuCei53bXyeeyqzhr9JGQAAAAAABgemLNRgAnJc3rVEdfRHtrw8Oe21nVrhf3NyjN61Ka16miTJ86+6Jas7NW9eHeFFQLAAAAAAAmEmEjgJOW4XNpe1WbOnrfmq59qKFTa/fUyWmzKTvgHjw/P8uvhnCf1uysVVt3fyrKBQAAAAAAE4SwEcBJy/K71dzZr/11HZKk6rYePburVn2RuArTvUPa2gxDJTl+lTd16Zldderqi6aiZAAAAAAAMAEIGwGcNLvNUMDt1LbKNtW09WjNjlq1dPWrOMs3YnuHzaaS7ID21IS1bk+9+qPxSa4YAAAAAABMBMJGAEmRG3JbQePOWlW1daskOyDjODtZuxw2zc/ya9uRVq3fV69Y3JzEagEAAAAAwEQgbASQFE67TS67TZUt3VqQHZDdNnrQOMDrsqsw3as3Drfon4eaZJoEjgAAAAAATGeOVBcAYOYozvLLNM3jjmh8u6DHqWjM1MsHGuV3O3R2ccYEVggAAAAAACYSIxsBJNVYgsYBGX6X/G6HXthbr7214QmoCgAAAAAATAbCRgBTQl7II9OUnttVp4rmrlSXAwAAAAAAxoGwEcCUUZTpU2d/VGt21qo+3JvqcgAAAAAAwBgRNgKYUuZn+dUQ7tOanbVq6+5PdTkAAAAAAGAMCBsBTCk2w9CCnIDKm7q0ZmetuvqiqS4JAAAAAAAkiN2oAUw5dpuhkuyA9tZ2yGmvVZbflbR722yGVsxJU3bAnZT7HajvkCFpcV4wKfcDAAAAAGA6I2wEMCW5HDaVZPu1r65DcdNM2n0jsbgqmrv1vjPnKM3rPKl7HWro0BPba2RIet+Zc7QwJ5CcIgEAAAAAmKYIGwFMWR6nPekBXjQe16GGTj2zs1Y3nDFHXpd9XPepau3WM7vqFInGZZrSMztrdeNZczUn3ZvUegEAAAAAmE5YsxHArOKwWSMm99SGtXZPnfqj8THfo6nz6AY2Xf2al+lTcZZPLV39WrOzVs2dfRNQNQAAAAAA0wNhI4BZx+2wa16mT1uPtGrD/gbF44lP0w73RrRmR62q23o0PzsgwzBkGNYak1Ut3Vqzs1YdvZEJrB5IgopXpco3JHPsYTsAAAAAHA9hI4BZyedyqCDk1auHm/X64eaErunpj+nZXXU61NiphdkB2W3G4HN2m7WL9sGGTj27q069kdhElQ6cnNZyaf8aqWyD9PqvpZ7WVFcEAAAAYAYhbAQwa4W8TmX6XHppf6PerGw7bttILK7n99ZpV3W7SrL9ctiH//XptNs0P8uvndXtemFvg6IxRo1hCkovlpbfINmcUvMh6eUfSzVbU10VAAAAgBmCDWIAzGpZAbciMVPP76mXx2lTcaZ/WBtTpl491KTN5a2al+GT2zH6pjIep11FGT5tKm+R12XX+QsyZcgYtX0yjXezG8wyhiHNPUfyZUoH1krtR6StD0sNe6VT3y85PamuEAAAAMA0RtgIYNbLT/PoSHOX/v5mjdwjjFiUpLbeiPLTvPK5T/zXpt/tUF7Io38cbNSOE4yYTBpDOntehi5anC3DmJxwE9OcN1O68N+kg89JB9dJVZuklsPS0mslp0+y2SWb4+hx9GtftvU1AAAAAIyCsBEAJBVl+tTZF1VslM1iitJ9Yxo5mOZ1ymW3qS86OWs39kXj2nCwUT63XWcXZ07Ka2IGsNmtcDHnFGnbI1J3s7Ttv0Zv7820pmDnr7RGSAIAAADA2xA2AoAkwzAU9DiTek+vyz6pU5vrw716YW+DfC6HlhWEJu11MQNkLpAu+Zq1cUzbEcmMSfGYFI8ePWJStFfqaZG2PChlLZZOvVEKFaa6cgAAAABTDGEjAMwQeSGPqlq79dyuOnmdds3PHr7+JDAqp1da8f7Rn4/2SaUvSKXrpeaD0ss/kYovlJZeI7n4swYAAADAwm7UADCDzM3wqas/qjU7a1Uf7k11OZhJHG5ryvVl35TyT5dkShWvSC/+UCp7WYrw5w0AAAAAIxsBYMYpzvKrtKFTT++o1U1nzVG6z5XqkjCT+LKkd3xcajoo7f6b1FFrPe5+TAoVSBkLpMwSKaNE8mawtiMAAAAwyxA2AsAMYzMMLcgJ6FBDh57eWav3nTFH/gR20QbGJHuxdPFXpcrXranV3c1SuMY6Kl6x2njSrNAxa5GUtVAK5BM+AgAAADMcv30CwAxktxkqyQ5of12HnttdpyV5wUl5XcOQFuUG5HZM3sY4SCGb3Vq3sfhCqbddaimTWsusx3CVda72TeuQrLUdMxdawWPWYimYLxms6AIAAADMJISNADBDuRw2FWf6tb2qTTur2iblNT0uhz58TpGKs9gwZNbxpEmFZ1iHZG0o03ZEajkstZRaAWR/l1S3wzokax3IYKEUmmNNwQ4VWt873Kl6FwAAAABOEmEjAMxgXpddS/NCk/Jasbip8uYumeakvBymOofbmmqdvdj6Ph6V2iql5kNSyyErfIz2WSMhW8uGXuvLljLmS7nLpJylkisw6eUDAAAAGB/CRgAAMPFsDmvjmMwSSaukeEzqbJDC1VJHzVvrPfaFpe4m66jeLMmQ0oqs4DH3FCm9ePjUazNuhZkyJLszBW8OAAAAwADCRgAAMPls9qNTpwuGnu/rtNZ7bDooNey1gsj2I9Zx8DnJ4ZHsbikesQLGeNQKGyUrhCy+SFr6bsnpm/z3BAAAAICwEQAATCHugJRzinUsu97aZKZxnxU8Nu2XIj1StHfka824VP6yVLNVWv5eac457H4NAAAATDLCRgAAMHV50qSi86wjHpM66yTTtKZl2xzWtOmBr1vLpd3/a03PfvNR6cjr0or3WxvQAAAAAJgUhI0AAGB6sNmPHxzmLJUu+bp0eIM15brlsPTyT6X5FzO1GgAAAJgkhI0AAGDmsDmkRVdKc86W9jwu1b5pTa2ueMXa1doVsKZqu/xvfe9Nt3bA9mVJntDwDWgAAAAAJIywEQAAzDzedOns26TG/dLuv0md9dZO131hqeM419mcVujoz7ICSKf36DRtp2Q/5tHhlbIWW18DAAAAGMRPyAAAYObKWSpd+g2pNyz1d0p9HVJ/l/V1f6e1+3VPq9TdZD3GI9a6kJ11J763J90aRVl0vrV2JAAAAADCRgAAMMMZNmukozf9+O3iMamnRepqkrqbrSPWJ8WiVggZi0rxo0dnvdTbJu36X+ng89KiK6R575Tsrkl4QwAAAMDURdgIAAAgWRvQ+HOs40RiEanyDenQ81bouPsx6dAL0sIrpOILCB0BAAAwaxE2AgAAjJXdKc2/yJpCXXU0dOxptTalObhOyj9VylshZS+VHO5UVwsAAABMGsJGAACA8bI7pOILpaLzpMpN0qF11lTsyo3WYXNI2UukvNOkvOWSJy3VFQMAAAATirARAADgZNkcUvE7paJzpZZSqX6XVL/bWvexYY917JTkDr3tQvOtL72ZUlqRlF5kPQbyrKndAAAAwDRC2AgAAJAsNrs1kjF7ibT8Rqmj7mjwuEtqq5D6wqNf29dhtakYuJdTChVawWPWAilrseQOTsrbAAAAAMaLsBEAAGAiGIYUKrCOxausMHFI2Gi89aUZt3a4bq+S2iutx2ivFT62VUgVr1jtAvlS1iIpe7H16PJP6lsCAAAAToSwEQAAYDK4g8cfmZg2V5pztvW1GZe6mqzgsa1Caj4khWukzjrrGAgf04qsHbALTpcM28S/BwAAAOAECBsBAACmGsMmBXKtYyCA7O+UmkulpoNW+NhZZ4WRWx+SgoXS0ndbG9EYxuj37W23rvfnSBnFk/NeAAAAMKsQNgIAAEwHroA1grHgdOv73rB05FXp8EtSR420+ffWSMcl10i5y6zQ0TSljlprzci6nVY4OSD3VOmU66x1IQEAAIAkIWwEAACYjjwhacm7pfkXW4Fj2QYrTNz0H1J6sXU0HN0Re9DRdSQ76qznGvZIhWdJS6+R/NmpeicAAACYQQgbAQAApjOX3xqhWHKpVPqCVP7KWxvLSJLNIWUvlfJXWKMZPSGps0Hav0aqfVOq2SLVbpPmvVNafLXkSUvp2wEAAMD0RtgIAAAwE7gD0vIbpAWXW6McI91SzjIpZ6nkcA9tG8iVzr7NGgm572mpcZ9U8U+pcqOUtVBKn3d0dOS8kTe1ifVbu2d31FmHGZNCc61r/NnHXzcSAAAAMxphIwAAwEziCUnLrk+sbVqRdN5nrA1n9j0ltZZbwWPjvmPul26Fjr4sqavRChe7myWZI9/T6bXumz5PSptnPXrTT+49AQAAYNogbAQAAJjtshZJF/ybNdKxrUJqOyK1VVqjF3vbpLq24dc4/VIw3zoMm3Vte7UU6ZGaDljHAHeatfv1sSMm3z7aEgAAADMCYSMAAACsqc/pR0ciDoj2Su1VVvjY0yr5c44GjAXW7thvny4dj1m7X7dVSu1HrOCyo07qa5fqdliH9WLWfQaCx/R51j1t9kl7uwAAAJgYKQ0bX375Zf3kJz/Rli1bVFtbq8cee0zve9/7Bp83TVPf+9739B//8R9qbW3Veeedp1/96lc69dRTU1c0AADAbOHwWKMesxYl1t5ml9LmWofeaZ2L9h0NLI9uWtNaYY2W7Ki1jsrXj17rtK5LL5JCc6zXNuzWPW32t772pEnejIl4twAAAEiClIaNXV1dOv300/Xxj39c73//+4c9/+Mf/1j33Xef/vCHP2jJkiX6wQ9+oFWrVmn//v0KBkdYrBwAAABTi8NtbTqTtfCtc73tR8PHY6ZtR3ul1jLrOJHsJVLxhVLeCkZDAgAATDEpDRuvueYaXXPNNSM+Z5qmfvazn+muu+7STTfdJEl66KGHlJeXp0cffVSf/vSnJ7NUAAAAJIsnTcpfaR2SZMalrqaja0UekTrrpHjUmpZtxqzHeMw619P61pqQnnSp+AKp6HxrYxwAAACk3JRds7GsrEx1dXW6+uqrB8+53W5deumlevXVV0cNG/v6+tTX1zf4fTgcnvBaAQCYKPRrmBUMmxTItY657zh+2+4W6cir0pHXrenY+9dIB56TClZa071jEeuIR475Oir5s6XMBdYO2fYp+yMwMKPRpwHA7DBlf9Kqq6uTJOXl5Q05n5eXp4qKilGvu+eee/S9731vQmsDAGCy0K8Bb+PLlE55j7T43VLtm1LFK1JruVSzzTpOxOawNqTJXGAd6fMlp3f4ZjcAko4+DQBmhykbNg4w3vaDn2maw84d65vf/Ka+/OUvD34fDodVVFQ0YfUBADCR6NeAUdgd1ijIue+wNqA58prUG5bszqOHy9p0xu60gsRwjdRyWOrvtB5bDr91L8NmrS1pdw999GVIi1ZZu3ADOGn0aQAwO0zZsDE/P1+SNcKxoKBg8HxDQ8Ow0Y7HcrvdcrvdSa3FNM2k3g8AgERNRL8GzDhpc6XTPnjidqYpdTW+FTa2HJa6m6w1IyM91nGsZknVW6XFV0sLrmD6NXCS6NMAYHaYsj8xlZSUKD8/X+vWrdOZZ54pServ79eGDRv0ox/9aFJr+eehZv3x9SNK87oU9DiOHk4FPQ4F3A55nHa5HDa57Dbr0WGT226Tx2WXjSk5AAAAU4NhvLU25LzzrXORXmsn7FifFD16xPqtc5Ubpab91rqQ1Zul0z5krQs5ms4Ga+MaSXIFJHfwrcPhYao2AACYFVIaNnZ2durQoUOD35eVlenNN99UZmam5s2bpzvuuEN33323Fi9erMWLF+vuu++Wz+fTLbfcMql1tnb3qz9mqrGzT42dfSe+4Ci/26HrTivQ6XPTjjv1GwAAACni9FjHSArPkmq2Srsfs4LE134pFZ0rLXuvFSbGolJLqdSwW6rfY42SHI3NYV3jCkgun+TyS06/9ejyWztr5yyxQkkAAIBpLKVh4+bNm3X55ZcPfj+wfsett96qP/zhD/r617+unp4efe5zn1Nra6vOO+88rV27VsFgcFLrXLU8Tx29EWX63erojaijN6qO3qjCvRF19UXVH42rLxpXfyyu/qh1ROOmuvqi+svmSu2oatMNZ8xRmtc5qXUDAADgJBiGNOdsKWeZtO8paxfsyo1S3W4pc77UdNAaBTnY3i5lLbQCw74O6+jvsEZLxqPW7tm9baO/ns0p5S6TCs+Ucpdb60YCAABMMykNGy+77LLjrodoGIZWr16t1atXT15RI/A47Ur3ObUwJ5DwNZFYXP842KQX9zVoX12Hyp4/oGtPK9A7ijMY5QgAADCduHzSyg9Jc8+Rdv5F6qiV6ndbz7lDVkCYe+roIxNj/VJfpxU+Rrqk/m5ro5rI0cf+bilcba0nWbfDOuwuKe9UqeAMKb3YmtYd6bGuOfbR4ZI8adbISE+addim7EpJAABgFuAnkQnitNt0xSm5OrUwpP/dWqWq1h49tq1aO6va9b4z5yjT70p1iQAAABiLzBLp4q9KVRutkDD7FCltjrWb9fHYXZIv0zpGY5pW4FizTap9U+putr6u2Tb2Ol0ByZshFayUii+UnL6x3wOYJqLxqMrbyxUzY6kuZcbyOryaF5o3pmsauxvldrgVcoUmqKq3NPc0q6ln5GUsbIZNRcEieSZhiYq6rjqFXCH5xvB3bl+sT43djZobnDum16rvqldbX9uIz9kNu4pDxXLaJ35mZWVHpboj3SM+57Q7NT80X7YT9ZHHaOltUWN344jPGYahomCRvA7vuGp9u/a+dkXjUWV5sxK+xjRNVYQr1BdLfHm9qSbfn680d9qEvw5h4wTLC3n0mUsX6p+HmrRuT70ONXbq5y8c0LKCkGJxU5FYXP1R6zESs6ZfBz0O5QTcyg64lRO0HjP9LtltjIgEAABIKZtdmvfO5N/XMKxdtdPmSqe8R2qvfCt47GmTnN5jDp/16PBaG9v0th892qR47OhoyU7rHoeetwLHkkutUY/ADNPU06Rny59VR3+HDPH70kTwODy6qvgqrchekVD7uq46PVn6pIKuoN6z4D0KuBKfIThWTT1NerL0SdV21cqmkUOt03JO09XFV09o+FbeXq5nyp9Rga9A7y55d0LhZiQe0YtHXtShtkO6ct6VWpa1LKHXqu6s1lOlT6mlt2XEP/M2w6az8s7S5UWXy26zj/m9JGpfyz6tLV973LDxkrmX6Jz8cxK6X3NPs54sfVI1XTUj/rc0ZerU7FP1rvnvktt+csuMtPe168nSJ9Uf69f1C69Xji8noevebHxTLx55Uf3HLqEyjZgydeW8K3VuwbkT/lqEjZPAZhi6eHGOlheE9Ldt1Spr6tKOqvZR27d09auieej/sDZDyvK7tTA3oGX5QZVk++WwJ/4vBAAAAJgmDENKn2cdy2+QzPiJR09K1ujI/i4rdAxXS4dflDrqpNL1UtkGae650sIrJP8xv1TFo1JPq9TdIvW0SDKkzIWSP5vdszEtmKap3mjvpI3kmo3qu+r14pEX5XV4tTB94XHbtvS26Lny59Tc06yG7gY9X/F8wuHbWIX7w1pbvlb1XfVamL5wxBF0vdFebW/cLrfdPWHhW11XndZVrFO4P6yW3hZ5HB5dWXylnLbR/zzGzbherX5V2xq2yWl36oUjL8jr8Gp+2vzjvlZTT5PWlq9Ve1+7FqYvHHGJts7+Tm2u3yyfw6d3Fr5zQpZxK28v1wsVL8iUqYUZI/+ZaO5p1j+q/iGf06dTs0497v06+ju0rnydartqj/vfclfTLnntXl0+73I5xrlkSHekW+sq1ulIxxHZZNNz5c/p+oXXn3C0376WfdpQuUEeh0dFoaJxvXaqlbaWytToSxkmE2HjJMoKuHX7RSXaUxNWW3e/nA6bnDab9Wg35LTbZDcMtfdE1NjZp6bOPjV19Kmps1/9sfjgbtivH26W22HT4tyATikIaWleUH43/ykBAABmpESnoBmG5A5YR9pca43Jhr3W6MbWMunIa9KR1621JWMRK2DsbZdG+sXDky5lL5GyF1uPjIoEZq08f54qOyr1fMXz8jg8mhOYM2K7zv5OrStfp+rOai1MX6hIPKI9LXsGR0aONxwaSU+0R+vK16k8XK4FaQtGnarrcXhU4C/Q5vrN8jv9Or/g/KSGb629rVpbvlYtvS0qSStRT7RH2xq2yevw6uK5F49a15a6LXqj9g3l+nIVcodUEa7Quop1un7h9cr35494zUC4WtdVpwXpC0Z9HwFXQNF4VK/WvCqf06czcs9I1tuV9Fa42hvrPe70+ixv1uDoTa/DqwVpC0Zs1xvt1QsVL6i0vVQL0o//37IwUKgtDVvkdXp1YeGFY/5vGYlF9GLlizrQemBwivfh9sN6vuJ5XVNyzahT4CvCFVpfsV6GYSQ8CnK2I6GaZDbD0Io5Y/thzTRNhXujqm7t0b66sPbXdaijL6pdNWHtqgnLkFSc5dOZRRlaMSdNXtfx/7XGNE3VtvfqQH2HbIahdJ9TGT6X0n1OBdwONrABAACYCQybtclM3qlSc6lU+oLUsEdq3D+0nc1prSfpzbQ2s2ktt0ZHVm20DkkK5ErBQsnltw7n0UeXz/ra6bHWprS7rU1rjg0VzLg14rIvLPWGrce+Dqu+/JXWKEoAU9rcwFyVt5drbflaXb/wemV7h/5/2xfr0/MVz6u0vVQlaSWyGTa57W7NCczRtoZt8jl8umjuRWNav280kVhE64+s176WfZqfNv+EoxUDroAi8YheqX5FPqdPp+ecftI1SFJXpEtry9eqqrNqcJShz+lTri9Xb9S+IZ/Dp3MKhk8h3t20W/+o/odC7pBCbmtNy3nBeSprLxv8fDM8GUOuSTRcHZDuSVckHtGGqg3yOrxamrk0Ke/57eHqieT783UkfETPlz+v6xder4JAwZDnI/GIXqp8Sbtbdmt+2vwTBtJ+p1/Z3my9VvOa/E6/zsw9M+HaY/GYNlRt0PbG7SoKFg2OhJ4fmq/9rfvlcXhGnG5f31WvdeXr1B3tVnFaccKvN9sRNk4DhmEozetUmtep5YUhxU1zMHjcV9eh2vZelTd3q7y5W0/uqNGygpDOmpehRbmBwXUeTdNUTXuvdlW3a1d1u5q7Rl5jwGEzlO5zKdPv1JK8oFbMSVPIw3QEAACAaS1roXWEq6WmQ5InaIWLvixrQ5lj/7E51i+1HJaaDkpNB6T2KqmzwToSZdgkh1sy7FbQONq0rb1PWLttzzlbKjxTcgdP6m0CmBiGYag4rViH2w5rbflavWfhewY3f4nGo9pQuUF7WvZoXnDekMBoIHx7vfZ1eZ3ehNfvG03cjOuV6leswChUJJc9sY1XMzwZg8GW1+HVkowlJ1XHQLh6qO3QsNF4IXdIkXhE/6g+OoU4+60pxIfbD+vFyhfltDuHbExiGIbmp81XaVup1pav1XULrhtc63JgNN7+lv0qTitOeCp4ji9H1R3VeuHIC/I5fCc99bcr0qV1FdbI1eONrHy7omCRytrLBqcrD7zvY6eSzw3MTfi/ZZo7zQpSK60g9ZTMU054jWma2li3UZvrN6vAXzBkWr/T7tTc4Fxtb9gur8OrS+deOvgZt/W2aW3FWjX3NicUruIthI3TkM0wVJTpU1GmT6uW56u1u187q9q19UirGjr6tLO6XTur2xV0O3R6UbpshrSrJqyWYwJGh83Q4rygnHZDbd0RtXX3q6M3qmjctKZvd/bpQH2nnt5Rq/nZfq2cm6YVhWmjTtc2TVPd/TE57IbcjolbhBYAAAAnITTHOo7H7pJyTrEOServllpKrWnXkS7r+/5OKdJtBYn9XdZGNdE+axSjZD1Geo656cAU76DkDlmPfWGp8YDUVmEdex63pmzPOVvKP00ayxpv7ZXWiM3QHClrsWTn1xwg2WyGTfPT5qusvUwvVLygd5e8W267W69Wv6ot9Vs0JzBHbsfwjTsGw7cE1+8bjWma2li7UW/UvaF8f/6YdyXO9eVa4VvFC/LaveMO3wbC1d3Nu1UcKh5xNN7AFOL1leutKcTpC1TbWavny59XX6xvxOnHNsOmkrQSHWo7pBeOWJ+v0+bUK9Wv6M2GNzU3mHggN2BOcI4q2iv0XMVzeu/C9yrXlzuu9zwYrrYe0vy0se0wPRCkHm47rHXl63TdwusUdAWHTCUfyw7ekpTtzVZNZ43139LhVXHo+CMOdzTt0CvVryjLkzXihkVeh1cFgQJtqtskr8Or8wvOV3fUWtuxsqNSC9ISD1dhoReeATJ8Ll2yJEcXL85WTVuvth5p1faqNnX0RfXKoabBdk67oaVHRysuzQ8OCwWj8bjauyNq64mo9ugoyCMt3Spr6lJZU5ee3F6jRbkBLcgOqLs/qnBvVO09EbX3RBTuiSgaN2U3DC3M9evUwjQtKwgpwFqSAAAA05vLZ4V/iYhHpWi/NToy1mftju3yW6MnRxqN0xu2dt2u3iK1H5Ea91mH3SUVnCEVnSdlLhh5sxozLtXvlg6/ZIWhAxxuKWeZVXPuMmv3bgBJ4bA5VBwq1t7mvfI4PMr2Zuv12teV48s5bmCU6Pp9x7OzaadeqX5FmZ5MBV3jGwVdGChURbhCayus6cpjDd/iZlyv1bymrfVbVRgoHDFcHTAwhXhdxTpdErtEb9S+oda+1uOOkBv4fHc375bX4VXIFdLGuo1WuOocW7g6YF5o6BTtE22E8nbReFQvV76s3U27NS80b1wbMQ0E1aVtpXqh4gXNT5s/bCr5WBUGClXRXqF15ev0noXvGXWtywOtB/RS5UvyOX1K96SPer9jp9u77W5VdVbpYOvBhKbqYzjDNM3J2YomRcLhsNLS0tTe3q5QaHx/iDeVt2jNzhotzh3f9akQjcd1oK5TO6rbJEmnFqZpaV5QLsfY1sho7erXzup27ahuU01b75iutdaS9OvUwpBOLQwp3Te2f4UBML3E4qbKm7v0L+cXa362f1z3SMbf2TNdUj6j135t7T4bKkxucQBwMjobpZotVvDY1fjWeX+OVHSuNOccyZtujaCs3GjtsN199B/WDZs1KjJcY42YHGDYpKxFVujoz7WmjfsyrTDzhPXUS3andPFXxvV26NNOLBmfUW1nrf64948qDBSyG/Uk6on0qKqzSh67Rz6nb8iU4OM5Ej4iv9M/ajA0GtM0daTjiBw2x7hH5x17r8Nth5Xvzz9u+DSSWDym0vZSZXoyEwrtTNNUWXuZAs6Awv3h426AcqyuSJfqOuvksDkUdAeV6ckcU50j1V3WXqaiYNGII/uOJxKLqLStVPmBfPmd4/sZf0BfrE8V4QoFnAHZDNuY/xy83cDnm+PNUaZ35M+ouqNakXhEc4InGNV/VEN3gyKxiLqj3SoKFk3ITuqpUtpaqsvnXa7zCs4b1/Vj+TubYWczlMNm0/LCkJYXntwPNhl+a9TkJUty1NTRpx3VbaoP9yngcSjNY60jGTq6nmTI41BLV7/21Ia1uyas6rYelTd3qby5S0/vrFWa1zlkM5qBx3SvS46ja0vKsELKAS6HTT4Xf0wBAABmvECOtOTd0uJ3WbtnV75hjXrsapT2PS3tW2MFh+Gqt6ZoO33SvHdK8y+2gkgzLrVVSvW7pLqdUmedte5k04Ghr+UOHQ0es6ydtp0eyeGVnN6jjx4p2isFT+4XYWCm8jq9KgwUqj/WP2wzk+MpChapobtBZe1lY39NhzfhUPN4Bqb1NnQ3qLWvdczXJxo0HvtaTT1NY5p+7Hf6lefPUzQeHXMgOhK7za7iULEaehrU2NN44gveJs+fd9JBoyS57W7NC85TZ6Rz2CZD42EYhvW+uhvU3t8+YhuX3ZVw0ChZ0+2be5qV6cmcUUHjZCPFQcKyg25dcUrecdvkhjzKDXl02dJctQ4Gj+2qaO4enHJd0dw9ptedk+7VqYUhLSsIKTfoZq0EAACAmcwwrKnTmQukU2+Sat+0gseWw1LzQauNP0cquVSae441bXrwWpuUUWwdp1xnBZV1O60dtrubrSPae3RH7LAVao7Gly2983MT+U6Bac3v9I85gDIMQ3n+4/9OORnsNvuwnZEnis2wjWs05lhHIJ6I0+7UnEDiodtE8Tg8SQ3xJuK/ZTJC7dmOsBETJsPv0oWLsnXhomx190XV1NWvtu5+tR7dkKa1u19t3VYAGT86m39gUv/A3P5Y3FR1W4+q23q0dk+9sgMuLS9I0/LCkOZmeGUbJXiMm6bCPRE1dfarsbNPTR3Wpjfh3oiW5Yd02dLcMU8pBwAAwCRzuK11G4vOs3bDbthtTYfOXWYFiyfiz5EWXvHW96ZpbWwzEDx2N0t9HVK0R4r0WiMmo0cfPWNb1wwAAFgIGzEpfG6H5rkdmpc5tgW6O3oj2lfboT21YR1q7FRTZ79ePtiolw82ym4YstsM2WzWDt12myG7YchmM9TRG1EkNvJypPXhRm2vatN7T5+jpfnjW1gYAAAAkyyQax0nwzCObljjl9KH7wY7RGf9yb0WAACzFGEjprSgx6lzSjJ1TkmmeiMxHai3gsf9dR3qi8YVi5lSbORrbYaU6XcrJ+BSdtCtnIBbNsPQur31au2O6KHXyrWiMKT3rCxUyMti0gAAAAAAACeLsBHThsdp18q56Vo5N13ReFydvVHFTSkeNxUzTcXipuKmqXjclM/lUIbfJbtt+DTrU+eE9MLeBr1a2qRdNWEdbOjU1cvzdN6CrFGnZQMAAAAAAODECBsxLTlsNqX7XOO61u2w69rTCnRGUboef7NaVa09enJHrTaVtyorYN3TkCTDGNwZ22Ez5HXZrcNpl+/oo9flUDQWV7g3qnBPRB29EbX3RtXRE1FHX1Qeh01Bj7Vjd8jjUMjjVMjrUJrPpTw2uwEAAAAAADMMYSNmrcJ0rz5z6UJtLGvRc7vrVBfuVV24N/kv1D7yPTP9Lp01L0NnzUsfd3AKAAAAAAAwlRA2YlazGYbOX5ClUwtD2l/XoWj86K7YkmSag7tiR2OmeiIxdffH1BOJqac/qp7+mLojMTlsxtERi04FB0cvOhVwO9QXjamjJ6r2XmvUY7gnqnBvRE2dfWrp6tfze+v1wt56LcwN6Ox5GVpeGJLTPnRnxUgsro7eqDp6IzIMQ+lepwIeB1O+AQAAAADAlEPYCMjaiOYd8zMn7fX6o3HtqmnXlopWlTV16VBDpw41dMrjtGlBdkA9kdhgwNgXjQ+73m4YCnkdSve5lO51Kt3nVHbArdyQR7lB97DAEgAAAAAAYDIQNgIp4HLYjk6hzlBLV7+2VLRq25FWtfVEtKc2PKy9w2Yo6HHINKVwb0Qx01Rrd0St3ZFhbQ1ZU7RzQx7lBd3KC3m0IMevoIcdtwEAAAAAwMQibARSLNPv0qrlebpyWa4ON3apPtwrv9uhoOfo4XbK47QNbiYTi5vq6I2orTuitp6I2rv71dodUWNnn+rDveruj6m5q1/NXf3aW2u9hiFpXqZPywtDWl4QUlbAPe56O3ojcjvscjkYPQkAAAAAAIYibASmCJthaFFuQItyA8dtZ7cZ1vTpETaVMU1TnX1RNXRYwWN9uE/Vrd2qae9VRUu3Klq69cyuOuUG3VpeGNIp+SEVpHmOO+3aNE3Vd/Rpd0279tSEVdveK6fd0IrCNJ05L0MLcvysHwkAAAAAACQRNgIzimEYCnqcCnqcWpjzVmjZ1t2vvbVh7akNq6ypSw0dfWrY36iX9jfKkJQVcCk/5FFemkf5Ievo7o9pd027dteE1dzVP+R1IjFT2yrbtK2yTWlep84oStdZ8zKUE7RGTPb0x1TT3qPath7Vtveqpr1H3f0xnVmUrgsXZTOlGwAAAACAGYqwEZgF0n0uvXNhtt65MFvd/VHtr+vQntqwDjd2qScSU1Nnv5o6+7WrZvh6kZK1ZuSi3IBOPToasrmzT1uPtGlHdZvaeyLacKBRGw40qiDNo95IbMS1JCXp5YNNerW0WefMz9TFi7NHHJ0JAAAAAACmL8JGYJbxuRw6c16GzpyXIdM01dEXVX17r+rCvapr71V9uFcNHX2y2wwtzQ9qeUFIS/OCcjvtg/fwux2al+XXdSsLtK+uQ1srWnWwoUO17b2DbTJ8ThWkeVWY7lFBmldx09TLBxpV2dqj1w43a2NZi84qTtelS3KV6Sd0BAAAAABgJiBsBGYxwzAU8jgV8ji1OC84eD5umpJ0wrUYnXabTpuTptPmpKmjN6LSxi6FPA4VpHnlddmHtV9eEFJpY5de3N+gsqYubSpv1ZaKVi0rCKkk26+iDJ8K0j1y2BLbfKY/GldjR58aOqyAtOFoUNrRF1Vxpk+n5Ad1Sn5IGYSZAAAAAABMCsJGAMOMZ8OXoMdau/F4jGM2wSlv6tJLBxp0oL5Tu2vC2n10CrfDZqgw3auiDK+KMn1yOWzq6I2qozdy9NH6OtwbVXvPyNO1JelgQ6cONnTqyR21ygu5dUp+SKfkB1WU6WNDGwAAAAAAJghhI4CUmJ/t123ZJapp69G+urAqW3pU2dqt7v6YjrR060hLt1TafML7+N0O5Qbd1hHyKDfoltdp16GGTu2rC6uiuVv14T7Vh611JT1Om+akezUn3avCo4+ZfpcMAkgAAAAAAE4aYSOAlCo8GvpJkmmaaunq15GWblW29qiqtVtx01TQ7VTQ4zh6OAcfs/wu+d0j/zVWmO7VJUty1N0f1YH6Du2r69CB+g71RuIqbexSaWPXYFuP06bCdK9yAm4FPA4F3A4F3dZjwOOU32VXfyyujt6oOvui6uyNqqMvqs7eiHoicfnddoU8TqV5nQp5rceA2yG7jQATAAAAADC7EDYCmDIMw1BWwK2sgFtnzstIyj19LofOKMrQGUUZisVN1YV7VdPao+r2HtW09aiuvVe9kbgON3bp8DEB5MkyZI269Drt8rrsg48ep/W1y2GTzZDsNkM2Y+CQbDZDo0WUNsNQht+lnIB7xDUxAQAAAABINcJGALOG3WYMTqE+5+i5WNxUfbhXNW09au3uHxy52Nn31hGJmYPhYcBtjbC0Rj1aYWJXX1TtvVGFeyLW0RtR3NTg9RMh6HYoO+hWTtCtnIBbWX6X7HZD9qPBpd1myGazAkyrZueE1AEAAAAAwLEIGwHMavajG9IMTOV+O9M0FYmZctiNhDeWiZumuvqszWx6IzH1RGLq6T/6ePTrSMxU3Dx6xE3FTeu6WNwc+vrHfB2NmWrp6lP46DTujr6oypoSG42Z5XepJNuv+dl+lWT5le5zsk4lAAAAACDpCBsB4DgMw5DLMbZQzmYYR9eWnJjRhL2RmJo6+9TY0aeGDuux/f9v796D4yrrP45/ztk9e8tlmzY0adpSUtQWKSC0XqgooP5ARR2GGURG7uhMudQWBoWhKsiI5S8GnREY0GFQdAoKIjKoFIVahLHYNlKoUoXepC21aXPdZG/n+f2x3ZM9TdKm6Uk22X2/Oju7OXv25DnfPZvP9LvP2e3LKu8a5b3mpTn4s5RK59Tem1F7b0Z/335AkpSMO2ptrNGMZEwNiYim1kTUkIhwejYAAAAA4JjQbASASSbmhDSrIaFZDYkRrd+XyWvH/l5t3ZfStvZe/fdASp19WbXt7FDbzkO3bWtqTURT4hGFQ5aMKczuNJLvdqliK9ZI+tDsKce2cwAAAACASY1mIwBUuHgkpHnN9ZrXXC9JyuRc7TyQ0rZ9vfpfT1oHejPan8qqN51Tf9bVro5+7eroH9XvOrmlPsihAwAAAAAmGZqNAFBlImFbJx5XqxOPq/UtT+fyOpDK6kBvRh19WRlT+GIcWYVvyLYsyZal4b4u2zWG07ABAAAAoMrRbAQASJKi4ZCa60Nqro+N6vF512hb+8i+sAYAAAAAUJnscg8AAAAAAAAAQGWg2QgAAAAAAAAgEDQbAQAAAAAAAASCZiMAAAAAAACAQNBsBAAAAAAAABAImo0AAAAAAAAAAkGzEQAAAAAAAEAgaDYCAAAAAAAACATNRgAAAAAAAACBCJd7AAAAAAAAjEZXukvPvP2MoqGownZYITukkBVSyA4pbIUVD8dV49SoNlKrWqfWu13j1MixHdnW0PNvMvmM2vvata9vn/b17VN7f7va+9plWZYaY42aFp+mxnijGuOF22G7vP+1zuQz6sn0KJVLqcapUX2kXiE7NKptGWOUcTNK59LKuBnZshUNR70aTxS92V7t6Nqh91LvKWJHFA/HFXfiheuDl0Q4Meo6jIe8m5ekEY0x5+bUm+1VKptSxs0UjmWnVtFQVJZljfVQK4prXHVnuhULxRQJRUZVP2OMsm7We05SuZQc21Eymjyq11/OzSnrZn3XxduSFAlFFLWjheuDr8HJ8HxPnL8UAAAAAAAchXQ+rQPpA6N+vG3ZCtthha2wwnZYju0o62bVleka9jF7evcMWjYlOkWO7cg1rv+iwnVx247teLfDdljRUFQ1To3XOKqJDNy2LVupbEp9uT715fqUyhVup7Ip9WZ71Z3pVk+2R92ZbqXzad94LFmqi9QpGU1qSnSKktGkapwaZfIZ9ef7lc6l1Z/vV3+uX+l8unDJpZV208rkM8Pue8gKKRoqNB6j4ajCVli2ZQ80ea2QV9NIKKKIHfGaJMVr27KVcTPK5A+5uBk5tqP6aL2SkaTqo/Wqj9SrLlIn27LVk+nR9q7t3uV/ff8b0XNc69R620xGBy6xUEyWZcmSNXB98LZt2YMuISskS5b33OZN3rvOm0LT0KtNKCrHdrymkDFGnelOvZd6T3tTe73r9r52GRmvrqW1cmxH/fn+QiPrYINxuOek2EyvdWoHPe/JaFK1Tu2IG1T9uX7t79+vA/0HtL9/v3oyPbJtW2Gr0MwP22HvNSMVXoPF46g/1184rvL9cl1XsgrHoiRfjQ+neOwUXy+O7SgcCitiRxQLxxQPxxULxQZuh2NybKdQZxkdvOH93JHu0L6+ffpf6n/emwf7+/d7z1nYDhdqV1LDWDjma/p5l3xW6XzaazDmTG7Y/ah1ar3GY32kXlk363sd92ULr+vDbWMolizvteU9F4dcbNmDj+2Db5SMF5qNAAAAAIBJKRlN6v+O/z9NiU2RZVnKu4XGT97NK2dySmVT6sn2qDfbq55Mj3qyhUvOLfwH3zVuodGlwY2cRDjhm704LT5NxpjCTMeSWY/9+X51pDvGec8Hc2xHiXBCvdle5UxOXZkudWW6tLN756i2Z8lSNBSVK9drQOZNXqlcYRaX0kfYQEAsWUo4hf061PT4dLXUtsg1rteULb0YGe8536Vd4zPgknEXm4f9+f7DNnF9dT0M27KVCCfk2I5SuZTS+bTyJq/OdKc6053DPi5khQoN1nDM1xQuNoktWerKdGl//3715fpGvc+TiSVLRkY5N6eOdMeoX8MhK6Qap0aJcEIZN6POdKfyJu8dd+/q3RGPp/SNiLAdliVL6Xzaa8ZLhQZq8Q2Co3XG9DOO+jGjRbMRAAAAADApRUIRtdS2qKW2RU7IGdFjjDH+UxZNzpvFlHNzsi1b02LTFHfiQz5+nub5ttWb7VV7f7tc4w6eEXdwhlHezXuzo0pnS6VzhVlSvdnegabowWtjzMApwU7hlODiz8UZbLWRwnWdU+edDlocU0e6Q53pTu86lUt5s8Ni4ZiioWjh9sFTSWOhmG92XenpmsWmbLHJUZzJ5s3uKzZ5D/6cc3Pe+sWZi8VZk65xvRmP3uXgz+l8utAkTXd5zVLXuF6jsSnRpDn1c7xLwkkc9nlO5VLqSnepM9PpNeSKl2KzxsjIGCPvnzGDZ6iWzFItnelYei3J2+fitkqbQrZl67j4cZqemK7pielqSjRpemK6nJDjq23pTM9YKKaEk1AinFCNUzPolOlsPusdMz3ZHvVketSV6fI9792ZbuVNXvv794/o9SFJNU6NGmINmhqbqvpIfeE1Y3KFJn7xtWJyMsZ4x1A0PHA8RUNR7zRiY8ygOg83u7HY/CvOIiydVZjJZ9SX6yvMnsz1qy/f5x2HhxMPx703DYqX4+LHKRlNeqdBF2tXvO7P9/tmI3uXkKNIKOI9HwknoYjtPw27eNx1pju9Y6870y3Hdgqn9jsJ36n+8XDc+0iHw80+LX68QfFYOfSU6+LfmJyb8x/TxsiVK2MKM2jHC81GAAAAAEDVsCxLTsgZcXPySNuqjRROwQxSsUEzms9mKx3TrLpZgYzHtmyvSTmeio3G7ky3GqINwzaAh2JZlneK+gzNGMNR+hU/y887PT2flmM7mhabNuzn+MXDI9+vUk7I0ZTQFE2JTRl2nbybV3emWx3pDmXcjPJuyenf7kCDuC5Sp4ZYgxpiDYqGoqMaTzkUm91Fh75mQlZo2NdRsdndEGsIbDylx11LbUug2y2eol+nulFt4+0Dbwc2niOh2QgAAAAAwAQyGb4AYjzYll2YuRkZXXOlHCzL8ppYo20KBSlkhzQldviG5GRmW7bs0NBf9ITy4RkBAAAAAAAAEAiajQAAAAAAAAACQbMRAAAAAAAAQCBoNgIAAAAAAAAIBM1GAAAAAAAAAIGg2QgAAAAAAAAgEDQbAQAAAAAAAASCZiMAAAAAAACAQNBsBAAAAAAAABAImo0AAAAAAAAAAkGzEQAAAAAAAEAgaDYCAAAAAAAACATNRgAAAAAAAACBmBTNxvvvv1+tra2KxWJauHCh1q5dW+4hAQAAAAAAADjEhG82Pv7441q+fLlWrFihjRs36hOf+IQ+97nPaceOHeUeGgAAAAAAAIASE77ZeO+99+raa6/V1772NZ100km67777NHv2bD3wwAPlHhoAAAAAAACAEuFyD+BwMpmM1q9fr9tuu823/LzzztMrr7wy5GPS6bTS6bT3c1dX15iOEQCAsUSuAQAqBZkGANVhQjcb9+3bp3w+r6amJt/ypqYm7dmzZ8jHrFy5Ut/73vcCHYclybZsbXmvO9DtAkClqY2FZVtWuYdRUcYi1xRypP5OqZ//5AHA8Iw05fhyD6KijMn/1SxL8XBc27u2B7pdAKg0lizZ1vic4GwZY8y4/KZR2LVrl2bOnKlXXnlFZ555prf87rvv1s9//nP961//GvSYod4tmz17tjo7O1VfXz+qcfSkc9rV0TeqxwJANbEtS3OmJeSERhdiXV1dSiaTx/Q3u9KMRa6p810pTaMRAI4oUitNmT2qh5Jpg41FpuXdvLZ3b5frukENEwAqVlNNk+oidaN67NHk2oSe2djY2KhQKDRoFuPevXsHzXYsikajikajgY6jNhrWB5pG92QAAHAsxiLXlJwpaWaw2wQA4AjGItNCdkhzk3MD3SYA4NhM6C+IiUQiWrhwoVavXu1bvnr1ai1evLhMowIAAAAAAAAwlAk9s1GSbr75Zl1++eVatGiRzjzzTD300EPasWOHlixZUu6hAQAAAAAAACgx4ZuNl1xyidrb23XXXXdp9+7dWrBggZ577jnNmTOn3EMDAAAAAAAAUGLCNxsl6frrr9f1119f7mEAAAAAAAAAOIwJ/ZmNAAAAAAAAACYPmo0AAAAAAAAAAkGzEQAAAAAAAEAgaDYCAAAAAAAACATNRgAAAAAAAACBoNkIAAAAAAAAIBA0GwEAAAAAAAAEgmYjAAAAAAAAgEDQbAQAAAAAAAAQCJqNAAAAAAAAAAIRLvcAxpoxRpLU1dVV5pEAAI6k+Le6+Lcbg5FrADA5kGlHRqYBwORxNLlW8c3G7u5uSdLs2bPLPBIAwEh1d3crmUyWexgTErkGAJMLmTY8Mg0AJp+R5JplKvytNtd1tWvXLtXV1cmyrBE9pqurS7Nnz9bOnTtVX18/xiOc+KiHH/UYQC38qIffaOphjFF3d7daWlpk23zSx1DItWNHPQZQCz/q4Uc9BpBpY2M0mSZxbJaiFn7Uw496DKAWfmOdaxU/s9G2bc2aNWtUj62vr+cgLEE9/KjHAGrhRz38jrYezP44PHItONRjALXwox5+1GMAmRasY8k0iWOzFLXwox5+1GMAtfAbq1zjLTYAAAAAAAAAgaDZCAAAAAAAACAQNBuHEI1GdccddygajZZ7KBMC9fCjHgOohR/18KMeEwfPhR/1GEAt/KiHH/UYQC0mFp6PAdTCj3r4UY8B1MJvrOtR8V8QAwAAAAAAAGB8MLMRAAAAAAAAQCBoNgIAAAAAAAAIBM1GAAAAAAAAAIGg2QgAAAAAAAAgEDQbh3D//fertbVVsVhMCxcu1Nq1a8s9pDG3cuVKffjDH1ZdXZ2mT5+uCy+8UG+99ZZvHWOM7rzzTrW0tCgej+ucc87Rm2++WaYRj5+VK1fKsiwtX77cW1ZttXj33Xd12WWXadq0aUokEvrQhz6k9evXe/dXUz1yuZy+/e1vq7W1VfF4XHPnztVdd90l13W9dSq5Hn/5y1/0xS9+US0tLbIsS08//bTv/pHsezqd1tKlS9XY2Kiamhp96Utf0n//+99x3IvqUo2ZJpFrh0OukWulqjnXyLTJqRpzjUw7PHKNXCuq5kyTJliuGfisWrXKOI5jHn74YbN582azbNkyU1NTY7Zv317uoY2p888/3zzyyCPmjTfeMG1tbeaCCy4wxx9/vOnp6fHWueeee0xdXZ158sknzaZNm8wll1xiZsyYYbq6uso48rG1bt06c8IJJ5hTTz3VLFu2zFteTbXYv3+/mTNnjrnqqqvM3/72N7N161bzwgsvmP/85z/eOtVUj+9///tm2rRp5tlnnzVbt241v/rVr0xtba257777vHUquR7PPfecWbFihXnyySeNJPOb3/zGd/9I9n3JkiVm5syZZvXq1WbDhg3m3HPPNaeddprJ5XLjvDeVr1ozzRhybTjkGrl2qGrONTJt8qnWXCPThkeukWulqjnTjJlYuUaz8RAf+chHzJIlS3zL5s+fb2677bYyjag89u7daySZNWvWGGOMcV3XNDc3m3vuucdbp7+/3ySTSfPggw+Wa5hjqru727z//e83q1evNmeffbYXXtVWi1tvvdWcddZZw95fbfW44IILzDXXXONbdtFFF5nLLrvMGFNd9Tg0wEay7x0dHcZxHLNq1SpvnXfffdfYtm3+8Ic/jNvYqwWZNoBcI9eKyDU/cq2ATJscyLUCMq2AXCsg1waQaQPKnWucRl0ik8lo/fr1Ou+883zLzzvvPL3yyitlGlV5dHZ2SpKmTp0qSdq6dav27Nnjq000GtXZZ59dsbW54YYbdMEFF+gzn/mMb3m11eKZZ57RokWLdPHFF2v69Ok6/fTT9fDDD3v3V1s9zjrrLP3pT3/Sli1bJEn/+Mc/9PLLL+vzn/+8pOqrR6mR7Pv69euVzWZ967S0tGjBggUVX5/xRqb5kWvkWhG55keuDY1Mm3jItQFkWgG5VkCuDSDThjfeuRYOZtiVYd++fcrn82pqavItb2pq0p49e8o0qvFnjNHNN9+ss846SwsWLJAkb/+Hqs327dvHfYxjbdWqVdqwYYNee+21QfdVWy3eeecdPfDAA7r55pt1++23a926dfrGN76haDSqK664ourqceutt6qzs1Pz589XKBRSPp/X3XffrUsvvVRS9R0fpUay73v27FEkElFDQ8Ogdarp7+x4INMGkGvkWilyzY9cGxqZNvGQawVkWgG5NoBcG0CmDW+8c41m4xAsy/L9bIwZtKyS3XjjjXr99df18ssvD7qvGmqzc+dOLVu2TM8//7xisdiw61VDLSTJdV0tWrRIP/jBDyRJp59+ut5880098MADuuKKK7z1qqUejz/+uB577DH98pe/1Mknn6y2tjYtX75cLS0tuvLKK731qqUeQxnNvldTfcZbNR+LReQauVaKXPMj1w6PTJt4qvVYLKr2TJPItUORawPItCMbr1zjNOoSjY2NCoVCgzq2e/fuHdT9rVRLly7VM888oxdffFGzZs3yljc3N0tSVdRm/fr12rt3rxYuXKhwOKxwOKw1a9boRz/6kcLhsLe/1VALSZoxY4Y++MEP+paddNJJ2rFjh6TqOjYk6Zvf/KZuu+02feUrX9Epp5yiyy+/XDfddJNWrlwpqfrqUWok+97c3KxMJqMDBw4Muw6CQaYVkGvk2qHINT9ybWhk2sRDrpFpReSaH7k2gEwb3njnGs3GEpFIRAsXLtTq1at9y1evXq3FixeXaVTjwxijG2+8UU899ZT+/Oc/q7W11Xd/a2urmpubfbXJZDJas2ZNxdXm05/+tDZt2qS2tjbvsmjRIn31q19VW1ub5s6dWzW1kKSPf/zjeuutt3zLtmzZojlz5kiqrmNDklKplGzb/6czFArJdV1J1VePUiPZ94ULF8pxHN86u3fv1htvvFHx9Rlv1ZxpErlWilzzI9f8yLWhkWkTTzXnGpnmR675kWsDyLThjXuuHdXXyVSBVatWGcdxzE9/+lOzefNms3z5clNTU2O2bdtW7qGNqeuuu84kk0nz0ksvmd27d3uXVCrlrXPPPfeYZDJpnnrqKbNp0yZz6aWXVsxXxB9J6bebGVNdtVi3bp0Jh8Pm7rvvNv/+97/NL37xC5NIJMxjjz3mrVNN9bjyyivNzJkzzbPPPmu2bt1qnnrqKdPY2Gi+9a1veetUcj26u7vNxo0bzcaNG40kc++995qNGzea7du3G2NGtu9Lliwxs2bNMi+88ILZsGGD+dSnPmVOO+00k8vlyrVbFataM80Ycu1IyDVyraiac41Mm3yqNdfItCMj18g1Y6o704yZWLlGs3EIP/7xj82cOXNMJBIxZ5xxhlmzZk25hzTmJA15eeSRR7x1XNc1d9xxh2lubjbRaNR88pOfNJs2bSrfoMfRoeFVbbX43e9+ZxYsWGCi0aiZP3++eeihh3z3V1M9urq6zLJly8zxxx9vYrGYmTt3rlmxYoVJp9PeOpVcjxdffHHIvxVXXnmlMWZk+97X12duvPFGM3XqVBOPx80XvvAFs2PHjjLsTXWoxkwzhlw7EnKNXCuq5lwj0yanasw1Mu3IyDVyzZjqzjRjJlauWcYYc3RzIQEAAAAAAABgMD6zEQAAAAAAAEAgaDYCAAAAAAAACATNRgAAAAAAAACBoNkIAAAAAAAAIBA0GwEAAAAAAAAEgmYjAAAAAAAAgEDQbAQAAAAAAAAQCJqNAAAAAAAAAAJBsxGoYNu2bZNlWWprayv3UAAAOGbkGgCgkpBrqFQ0G4EKcdVVV+nCCy8s9zAAAAgEuQYAqCTkGqoJzUYAAAAAAAAAgaDZCJTBOeeco6VLl2r58uVqaGhQU1OTHnroIfX29urqq69WXV2dTjzxRP3+97+XJOXzeV177bVqbW1VPB7XvHnz9MMf/tDb3p133qlHH31Uv/3tb2VZlizL0ksvveTd/8477+jcc89VIpHQaaedpldffXW8dxkAUMHINQBAJSHXgGNDsxEok0cffVSNjY1at26dli5dquuuu04XX3yxFi9erA0bNuj888/X5ZdfrlQqJdd1NWvWLD3xxBPavHmzvvvd7+r222/XE088IUm65ZZb9OUvf1mf/exntXv3bu3evVuLFy/2fteKFSt0yy23qK2tTR/4wAd06aWXKpfLlWvXAQAViFwDAFQScg0YPcsYY8o9CKDanHPOOcrn81q7dq2kwjthyWRSF110kX72s59Jkvbs2aMZM2bo1Vdf1cc+9rFB27jhhhv03nvv6de//rWkwmeAdHR06Omnn/bW2bZtm1pbW/WTn/xE1157rSRp8+bNOvnkk/XPf/5T8+fPH+M9BQBUA3INAFBJyDXg2DCzESiTU0891bsdCoU0bdo0nXLKKd6ypqYmSdLevXslSQ8++KAWLVqk4447TrW1tXr44Ye1Y8eOo/5dM2bM8G0XAIAgkGsAgEpCrgGjR7MRKBPHcXw/W5blW2ZZliTJdV098cQTuummm3TNNdfo+eefV1tbm66++mplMpmj/l2l2wUAICjkGgCgkpBrwOiFyz0AAEe2du1aLV68WNdff7237O233/atE4lElM/nx3toAAAcNXINAFBJyDXAj5mNwCTwvve9T3//+9/1xz/+UVu2bNF3vvMdvfbaa751TjjhBL3++ut66623tG/fPmWz2TKNFgCAwyPXAACVhFwD/Gg2ApPAkiVLdNFFF+mSSy7RRz/6UbW3t/veNZOkr3/965o3b573OSF//etfyzRaAAAOj1wDAFQScg3w49uoAQAAAAAAAASCmY0AAAAAAAAAAkGzEQAAAAAAAEAgaDYCAAAAAAAACATNRgAAAAAAAACBoNkIAAAAAAAAIBA0GwEAAAAAAAAEgmYjAAAAAAAAgEDQbAQAAAAAAAAQCJqNAAAAAAAAAAJBsxEAAAAAAABAIGg2AgAAAAAAAAjE/wOkbX3PPhWM0wAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "bmb.interpret.plot_predictions(\n", - " model_interaction, \n", - " idata_interaction, \n", - " covariates=[\"math\", \"prog\"],\n", - " pps=True,\n", - " subplot_kwargs={\"main\": \"math\", \"group\": \"prog\", \"panel\": \"prog\"},\n", - " legend=False,\n", - " fig_kwargs={\"figsize\": (16, 5), \"sharey\": True}\n", - ");" + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(7, 3), dpi=120)\n", + "bmb.interpret.plot_predictions(\n", + " model_interaction, \n", + " idata_interaction, \n", + " \"math\", \n", + " ax=ax, \n", + " pps=False\n", + ");" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The plot above shows that as `math` increases, the mean `daysabs` decreases. However, as the model contains an interaction term, the effect of `math` on `daysabs` depends on the value of `prog`. Therefore, we will use `plot_predictions` to plot the conditional adjusted predictions for each level of `prog`." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtkAAAFhCAYAAAClPLYbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABJ0AAASdAHeZh94AACnyUlEQVR4nOydd5wdZb3/39NO35ZNNgVSCJ2EqggiSBOkShE7IopXEFT0ooCUQGzXAoqo2AErgvywwQUvSPGqcFFRJKFIgEBI3WzfPWXq749nZs6c3bNJNrub3U2+79frycw8M2fOc07OnvOZ73ye71cLgiBAEARBEARBEIQxQ5/oAQiCIAiCIAjC9oaIbEEQBEEQBEEYY0RkC4IgCIIgCMIYIyJbEARBEARBEMYYEdmCIAiCIAiCMMaIyBYEQRAEQRCEMUZEtiAIgiAIgiCMMSKyBUEQBEEQBGGMEZEtCIIgCIIgCGOMiGxBEARBEARBGGNEZAuCIAiCIAjCGDOpRPaDDz7IBz7wAfbaay/y+Tw77bQTp512Gn//+99rjjv33HPRNG1I22uvvSZo5IIgCIIgCIJQxZzoAST59re/TUdHBxdffDH77LMP7e3tXH/99Rx66KH8/ve/55hjjomPzWazPPjggzWPz2az23rIgiAIgiAIgjAELQiCYKIHEbFhwwba2tpq+vr7+9ltt91YvHgxDzzwAKAi2XfeeSf9/f1j9tzd3d088sgjzJ07l3Q6PWbnFQRBEARBEKY+lUqFVatWceSRR9Lc3LzZ4ydVJHuwwAYoFArss88+rFq1alyf+5FHHuH0008f1+cQBEEQBEEQpja//vWvOe200zZ73KQS2fXo6enhiSeeqLGKAJRKJWbNmkV7ezuzZ8/m9NNP5zOf+QzTpk3bqueZO3cuoN643XbbbdTjFgRBEARBELYfVqxYwemnnx5rxs0x6UX2RRddxMDAAFdeeWXct//++7P//vuzePFiQEWhv/a1r/GHP/yBv/71rxQKhU2ec8OGDbS3t9f0RZHy3XbbjUWLFo3xqxAEQRAEQRC2B7bUVjypRfbVV1/Nz372M77xjW/wmte8Ju7/xCc+UXPccccdx4EHHshZZ53F97///SH7B3PTTTexdOnScRmzIAiCIAiCIExakb106VI+97nP8fnPf56PfOQjmz3+jDPOIJ/P89hjj2322AsvvJC3ve1tNX3RLQBBEARBEARBGC2TUmQvXbqUa6+9lmuvvZYrrrhiix8XBAG6vvnU321tbXUnWQqCIAiCIAjCWDCpitEAfPazn+Xaa6/lqquu4pprrtnix915550Ui0UOPfTQcRydIAiCIAiCIGyeSRXJvv7661myZAknnHACJ5988hDrx6GHHsrLL7/Mu9/9bt75zney2267oWkajzzyCDfccAOLFi3igx/84ASNXhAEQRAEQRAUk0pk/+53vwPgvvvu47777huyPwgCGhsbmTlzJl/96ldZv349nucxf/58Pvaxj3HFFVeQz+e39bAFQRAEQZgiBEFAX18fvb29OI7DJKrJJ0wAuq6TTqeZOXPmFlmOR8KkEtkPP/zwZo9paWnhrrvuGv/BCIIgCIKwXeG6LqtXr6ZYLAJgmia6rqNp2gSPTJgIgiDAtm1KpRKVSoV58+aNqdCeVCJbEARBEARhvOjq6qJYLNLU1ERbWxumKTJoRycIAjZs2EBnZyfr169n9uzZY3buSTfxURAEQRAEYTzo7+/HMAxmz54tAlsAQNM02traMAyDSqUypucWkT3RlLrB9yZ6FIIgCIKw3RMEAaZpij1EqEHTNAzDwPf9MT2viOyJxB6Af90Oy38F/e2bP14QBEEQBEEYc8bjwkvulUwkngOVPli/HPrWwfzXw+wDYYxntwqCIAiCIAjbFhHZkwErB50vQrEDulfBLm+E3LSJHpUgCIIgCIKwlUjIdDJgZWHmIrX+4iPKQrL2XyC5OwVBEARBEKYkEsmeLGg6NM+D7DRofy6Mar8CuxwBmaaJHp0gCIIgCIIwAiSSPdlIF2DmYvBseOEhePJ22PCMRLUFQRAEQRgTSqXSRA9hh0BE9mREN6BlF2ieqyZFLv81PP8/UOmf6JEJgiAIgjAJuPbaa9E0jX/84x+ceeaZNDY20tTUxNlnn017ezVj2YIFCzjllFO46667OPDAA8lkMixduhSAZcuWcdppp9HS0kImk+GAAw7gRz/60ZDnWr58Occffzy5XI4ZM2Zw0UUXcc8996Bp2hZV695REbvIZCbTBLP2ha6VsOIB6F0NC94I03eb6JEJgiAIgjAJOOOMM3j729/OBRdcwPLly7n66qt5+umn+b//+z8sywLgiSee4JlnnuGqq65il112IZ/P89xzz3HYYYfR1tbGjTfeSGtrKz/96U8599xzWb9+PZdeeikAa9eu5cgjjySfz/Ptb3+btrY2brvtNj7ykY9M5MueEojInuzoBrTuCqUuWPNPGNgIsw+AuQdDtmWiRycIgiAIwgRy5pln8uUvfxmA448/npkzZ/Ke97yHO+64g/e85z0AbNiwgaeffpo99tgjfty73vUubNvmoYceYu7cuQCcdNJJdHd3s3TpUs4//3yampr42te+RmdnJ3/84x/ZZ599ADjxxBM54YQTWLly5bZ9sVMMsYtMFbItMHNfVSHy37+Hf/wcXn4UnPJEj0wQBEEQhAkiEtIRb3/72zFNk4ceeiju22+//WoENsCDDz7IscceGwvsiHPPPZdiscijjz4KwCOPPMLixYtjgR3xrne9ayxfxnaJRLKnEoYJ03dX3uzOF6FvDbQ/CzsfDG37SBEbQRAEQdjBmDVrVs22aZq0trbS0dER982ePXvI4zo6Our2z5kzJ94fLXfZZZchx82cOXNU494REFU2FUkXYNZiyDQrC8nyu+CpO6Hr5YkemSAIgiAI25B169bVbLuuS0dHB62trXFfvZLhra2trF27dkj/mjVrAJg+fXp83Pr16zf7vMJQRGRPZfLTYfZ+gAYv/1kVsXnuPih2TvTIBEEQBEHYBvzsZz+r2b7jjjtwXZejjjpqk4879thjefDBB2NRHfHjH/+YXC7HoYceCsCRRx7JsmXLePrpp2uO+8UvfjH6wW/niF1kqqPp0LQzFNpUSfbn/wc2Pg87HQRzDoRUbqJHKAiCIAjCOHHXXXdhmibHHXdcnF1k//335+1vf/smH3fNNddw9913c/TRR7NkyRKmTZvGz372M+655x6+/OUv09SkCuF9/OMf5+abb+bEE0/kM5/5DDNnzuTnP/85zz77LAC6WFWHRd6Z7QUjpbKQTFsI3S/Ds3fDk7ep8uyeO9GjEwRBEARhHLjrrrt49tlnOfPMM1myZAmnnnoq//M//0Mqldrk4/bcc0/+8pe/sOeee3LRRRdx+umns2zZMm655RY+9alPxcfNmTOHRx55hD322IMLLriA97znPaRSKT7zmc8A0NzcPJ4vb0ojkeztjVQeZi5SZdnX/Qt6XoW1T8Ls/WHGnmCmJ3qEgiAIgiCMEfPmzeO3v/3tsPs3lWZv8eLFm3xsxKJFi7j//vtr+j70oQ9RKBTYa6+9tnisOxoisrdXcq0q7V/fenj1r9CxAprnwaz9oG1vNXlSEARBEARhM3zmM59hzpw5LFy4kP7+fu6++25+8IMfcNVVV202Yr4jIyJ7e0bToXE2NMyEgQ5Y9xR0vqBE96x9VcQ7N22iRykIgiAIwiTGsiy+8pWv8Oqrr+K6Lrvvvjtf/epXufjiiyd6aJMaEdk7ApoOhRmqlbpUju2ulbDmCWhbpNIBNsza7GkEQRAEQZgcXHvttVx77bXb5Lk+/elP8+lPf3qbPNf2hIjsHY1si2qVPuhdo3Jrr/2n8mvP2hea50OdfJqCIAiCIAjCliMie0cl3aCEtVNSYnvFA7B+ucpQMucgtRQEQRAEQRC2ChHZOzpWVglqz4a+dfDSn6DjRZWNZP7rIdM00SMUBEEQBEGYcojIFhRGSmUfaZij8myvuF/5tucdqmwkujHRIxQEQRAEQZgyiMgWajFMFdku90L7s9C/XqX/W3C4TI4UBEEQBEHYQqTio1CfTKOKYGs6rPxfePIXsPJP4JQnemSCIAiCIAiTHolkC8Oj6dC0M+Smq7R/AxuUX3v+YTB9t4kenSAIgiCMGY/8u53+sjsu5y5kTI7cY8a4nFuYvIjIFjaPlYGZ+8BAO6z+O/StlYmRgiAIwnZFf9nlgWfWk7HGdg5S2fF4094zx/ScwtRARLaw5eRnQKZFJkYKgiAI2yUZy2DfncY2ePTU6p4xOc+NN97IxRdfzKJFi1i2bNmYnHOkaJrGNddcs82K4CRZsGABRx11FLfeeus2f+6tRUS2MDLqTYxs/zfsdCBM2xV0sfkLgiAIwlhz8803A7B8+XL+7//+j0MOOWSCR7Rt+dWvfkVjY+NED2NEiCISto7kxMiX/wRP3QFP3QkbV4DvT/ToBEEQBGG74W9/+xtPPvkkJ598MgA//OEPJ3hE254DDzyQXXedWoXyRGQLW080MXLWvuB78PKf4anbYZmIbUEQBEEYKyJR/cUvfpHDDjuMX/ziFxSLxZpjVq9ezYc+9CHmzp1LKpVizpw5nHXWWaxfvx6AcrnMJZdcwgEHHEBTUxPTpk3j9a9/Pb/5zW+GPF9vby//8R//QWtrK4VCgRNOOIF///vfdcf2/PPP8+53v5u2tjbS6TR777033/rWt2qOefjhh9E0jZ///OdcdtllzJ49m0KhwKmnnsr69evp6+vjQx/6ENOnT2f69Om8//3vp7+/v+YcCxYs4Nxzz63p6+7u5pJLLmHhwoWk02na2to46aSTePbZZ0f0/o4XYhcRRo9uQtNcaJitJkWu/LPKrT19d1WivWUXsZEIgiAIk54X2/t57IWNY3rOgYqLocPJ+83eqseXSiVuu+02Dj74YBYvXswHPvABPvjBD/LLX/6S973vfYAS2AcffDCO43DFFVew33770dHRwe9//3u6urqYOXMmlUqFzs5OPvnJT7LTTjth2zYPPPAAZ555JrfccgvnnHMOAEEQcPrpp/OXv/yFJUuWcPDBB/PnP/+ZE088ccjYnn76aQ477DDmzZvH9ddfz6xZs/j973/Pxz72MTZu3Mg111xTc/wVV1zB0Ucfza233srKlSv55Cc/ybve9S5M02T//ffntttu4x//+AdXXHEFDQ0N3HjjjcO+L319fRx++OGsXLmSyy67jEMOOYT+/n7++Mc/snbtWvbaa6+ter/HEhHZwtiRFNu9a1WJ9o3PV8X2tIWgaRM9SkEQBEGoy0DF5aWO4uYPHCGd/fZWP/bOO++kp6eH8847D4B3vOMdfPzjH+eHP/xhLLKXLFnCxo0befLJJ9l7773jx7797W+P15uamrjlllvibc/zOPbYY+nq6uKGG26IRfbvf/97HnroIb7+9a/zsY99DIDjjjuOVCrFlVdeWTO2//zP/6ShoYE//elPsV/6uOOOo1Kp8MUvfpGPfexjtLS0xMfvt99+NWN49tlnueGGG/jYxz7GV77ylfjxjz76KD/72c82KbJvuOEGli9fzv3338+b3vSmuP/MM8/ckrd1myAiWxh7dBOa50KjiG1BEARh6pBPm+zSmhvTcw5UXKYVUlv9+B/+8Idks1ne+c53AlAoFHjb297GLbfcwvPPP8/uu+/Ovffey9FHH10jsOvxy1/+khtuuIEnn3ySgYGBuD+TycTrDz30EADvec97ah777ne/u0Zkl8tl/vCHP/DhD3+YXC6H61ZzjJ900kl885vf5LHHHquJgJ9yyik154zGG3nNk/2//vWv6e/vp1Ao1H0t9957L3vssUeNwJ5siMgWxo9IbDfMhr41qmLkxuehdTeYuQhadwdz6794BEEQBGEsWTijwGkH7DSm53xqdQ+vXzh9qx67YsUK/vjHP/LWt76VIAjo7u4G4KyzzuKWW27h5ptv5r/+679ob29n55133uS57rrrLt7+9rfztre9jU996lPMmjUL0zT59re/HWcuAejo6MA0TVpbW2seP2vWrJrtjo4OXNflG9/4Bt/4xjfqPufGjbXWm2nTptVsp1KpTfaXy+VhRXZ7ezvz5s0b7uVOCkRkC+OPYULzPGiYE4rtP8OGZ6BxJyW22/aCbMvmzyMIgiAIOxA333wzQRBw5513cueddw7Z/6Mf/YjPfe5zzJgxg1dffXWT5/rpT3/KLrvswu23346WuJtcqVRqjmttbcV1XTo6OmqE9rp162qOa2lpwTAM3vve93LRRRfVfc5ddtlls69xa9mS1zzRiMgWth2R2G7aGQY2wobl0PE8rJoNM/aCtr2Vp1smSQqCIAg7OJ7n8aMf/Yhdd92VH/zgB0P233333Vx//fXce++9nHjiifzkJz/hueeeY88996x7Pk3TSKVSNQJ73bp1Q7KLHH300Xz5y1/mZz/7WezJBvj5z39ec1wul+Poo4/mH//4B/vtt18cfd5WnHjiiSxZsoQHH3yQY445Zps+95YiIlvY9mg6FNpUq/SpjCRdK2HNP1Qmkpn7wPQ9VDl3QRAEQdgBuffee1mzZg1f+tKXOOqoo4bsX7x4Md/85jf54Q9/yDe/+U3uvfde3vjGN3LFFVew77770t3dzX333cd//ud/stdee3HKKadw1113ceGFF3LWWWexatUqPvvZzzJ79myef/75+LzHH388b3zjG7n00ksZGBjgta99LX/+85/5yU9+MmQMX//61zn88MM54ogj+PCHP8yCBQvo6+tjxYoV/O53v+PBBx8ct/fn4x//OLfffjunnXYal19+Oa973esolUo88sgjnHLKKRx99NHj9txbiohsYWJJN6jm2dC3Hl75C7RHVpJ9YMbekG/d/HkEQRAEYTvihz/8IalUive///1190+fPp0zzjiDO++8k+985zs8/vjjXHPNNXzxi1+ko6ODGTNmcPjhh8d+5/e///1s2LCB73znO9x8880sXLiQyy+/nFdffZWlS5fG59V1nd/+9rf853/+J1/+8pexbZs3vOEN/Pd///eQtHj77LMPTzzxBJ/97Ge56qqr2LBhA83Nzey+++6cdNJJ4/fmQJzV5Nprr+V73/seS5cupaWlhYMPPpgPfehD4/rcW4oWBEEw0YOIePDBB/npT3/KX/7yF1atWkVzczOvfe1rWbJkCa95zWtqjn3iiSe49NJLeeyxxzBNk2OOOYbrrruOhQsXbtVzL1++nMWLF7Ns2TIWLVo0Fi9n85S64a8/AHtA2SgECHwodkDfOjVxsmGWimq37gYtCyS6LQiCIGw1L774IkBdrXDPv9bypxUb2XenpjF9zqdW93D4btO3Ok+2sG3Y1GcjYqRacVJFsr/97W/T0dHBxRdfzD777EN7ezvXX389hx56KL///e9jz82zzz7LUUcdxQEHHMAdd9xBuVxmyZIlHHHEEfzzn/9kxowZE/xKhK1G0yE/QzW7X6UA7HoZVv9d2Uum7w7TdlUXJbox0aMVBEEQtiPKjsdTq3vG/JzCjsmkEtnf+ta3aGtrq+k74YQT2G233fjCF74Qi+wlS5aQTqe5++674+Tnr3nNa9h999257rrr+NKXvrTNxy6MA6mCEtW+B8VO6HgR2v8NhekqU8n0PVTO7YZZkndbEARBGBWFjMmb9p45bucWdjwm1f/6YIENKun6Pvvsw6pVqwBwXZe7776bc845JxbYAPPnz+foo4/mV7/6lYjs7Q3dgMIM1TxbZSZZ9y/Y8LSKeDfNU2K8daGkAhQEQRC2iiP3kLvgwtgyqUR2PXp6enjiiSfiKPYLL7xAqVRiv/32G3Lsfvvtx/3330+5XK6pXiRsRxgpaJyjml2EgXY1WXLdk0pwT1sYCm4pdCMIgiAIwsQx6UX2RRddxMDAQFzKs6OjAxhaHSjqC4KArq4uZs8efoLBhg0baG9vr+lbsWLFGI5a2CakcpCar/zZlV4V4e5aCWufVH2z9oW2fdRxgiAIgiAI25BJLbKvvvpqfvazn/GNb3xjSHYRbRMe3E3tA7jppptq0tUIUxxNg0yTaoGvottr/wkdK+DVvyqxPXORWEkEQRAEQdhmTFqRvXTpUj73uc/x+c9/no985CNxf1TiM4poJ+ns7ETTNJqbmzd57gsvvJC3ve1tNX0rVqzg9NNPH/W4hQlG06EwE/JtUOqCjSug6yWVnaRtkRLcDeMzsUUQBEEQBCFiUorspUuXcu2113LttddyxRVX1OzbddddyWazPPXUU0Me99RTT7Hbbrtt1o/d1tZWd5KlsB2haZCbplqlD3pXq1SAa/8JM/ZUYrt5vmQlEQRBEARhXNAnegCD+exnP8u1117LVVddxTXXXDNkv2manHrqqdx111309fXF/a+88goPPfQQZ5555rYcrjAVSDfAjL2gdVdVAGjFA/DkL2DZndD+HHjuRI9QEARBEITtjEkVyb7++utZsmQJJ5xwAieffDKPPfZYzf5DDz0UUJHugw8+mFNOOYXLL788LkYzffp0LrnkkokYujAVsHJKaHu2qij50p9gwzOquM3CI6Fp54keoSAIgjBRrHhA3fkcD9INsNubxufcwqRlUons3/3udwDcd9993HfffUP2RxXg99prLx5++GEuu+wyzjrrrJqy6lLtUdgsRkplH2ncCfrXw6rH1WTJ+W+AnQ6SSpKCIAg7IpU+eO5eMLNje163BHueOLbnFKYEk0pkP/zww1t87Gte8xoeeOCB8RuMsP2jGyrfdm6aykTy3H9D7xoV1c42T/ToBEEQhG2NmYU5B4ztOdf8c2zPJ0wZJp0nWxC2OWZG5dMGeOkReOqXsPH5iR2TIAiCICT417/+xXnnnRcngMhms+y+++6cf/75/O1vf5vo4Y0Zt956K5qmsXLlyokeyqiZVJFsQZgwNF1ZSMo9sG6ZSv8393Uw7zCpHCkIgiBMKN/97nf5yEc+wp577snFF1/MokWL0DSNZ555httuu42DDz6YFStWsOuuu070UIUEIrIFIUmmCWYuhs4V8Pz90LsWdjsWCpLyURAEQdj2/PnPf+bCCy/k5JNP5s477ySVqgZ+jjnmGC666CJ++ctfks2OsZd8jCgWi+RyO2blZbGLCMJgDFOl/EsVYNVj8K9fqlLt4cRbQRAEQdhWfOELX8AwDL773e/WCOwkb3vb25gzZ068/be//Y23vOUtTJs2jUwmw4EHHsgdd9xR85jIlvHQQw/x4Q9/mOnTp9Pa2sqZZ57JmjVrhjzH7bffzutf/3ry+TyFQoE3v/nN/OMf/6g55txzz6VQKPDUU09x/PHH09DQwLHHHgvA/fffz2mnncbOO+9MJpNht9124/zzz2fjxo2jfYsmLRLJFoThaJgF6UboeB7K3SqqvcsRkMpP9MgEQRCE8aBjBaz809ie0+4H3YRFZ4z4oZ7n8dBDD/Ha176W2bNnb9FjHnroIU444QQOOeQQvvOd79DU1MQvfvEL3vGOd1AsFjn33HNrjv/gBz/IySefzM9//nNWrVrFpz71Kc4++2wefPDB+JgvfOELXHXVVbz//e/nqquuwrZtvvKVr3DEEUfw+OOPs88++1Rfrm3zlre8hfPPP5/LL78c11W1KF544QVe//rX88EPfpCmpiZWrlzJV7/6VQ4//HCeeuopLMsa8fsz2RGRLQibIpVT9pHul+GFP0D/Olh4NLTMn+iRCYIgCGNNpV/ZBcea4tZFazdu3EipVGL+/KG/OZ7nxamNAQzDQNM0LrzwQhYtWsSDDz6IaSqZ9+Y3v5mNGzdyxRVXcM4556DrVSPDCSecwI033hhvd3Z2cumll7Ju3TpmzZrFqlWruOaaa/jIRz5Sc9xxxx3H7rvvztKlS7n99tvjfsdxWLJkCe9///trxnvBBRfE60EQcNhhh3HUUUcxf/587r33Xt7ylrds1Xs0mRGRLQibQzdg2kIodsKaf8DARpWNZNa+0Dx3okcnCIIgjBXpAkzbbWzPafdDbvrYnhOVyvjJJ5+Mt7/yla9w+umn8+yzz3LdddcBxFFkgJNOOom7776b5557jr333jvuHyxu99tvPwBefvllZs2axe9//3tc1+Wcc86pOV8mk+HII4/koYceGjK2t771rUP6NmzYwJIlS7jnnntYs2YNvu/H+5555hkR2YKwQ5ObpqwiPavg+f9RWUim7w6z94OWXUCXKQ6CIAhTmtbdYN+zxvaca/4Juxy+VQ+dPn062WyWl19+eci+n//85xSLRdauXRsL1PXr1wPwyU9+kk9+8pN1zznYA93a2lqznU6nASiVSjXnPPjgg+ueTx/025fL5WhsbKzp832f448/njVr1nD11Vez7777ks/n8X2fQw89NH6u7Q0R2YIwEsy0+hJ2K9C3Fl58GNrD0uyz91f7DPmzEgRBEEaPYRgcc8wx/M///A9r166t8WVHPuhkPunp01XE/NOf/jRnnnlm3XPuueeeIxpDdM4777yzrm1lMJqmDelbtmwZTz75JLfeeivve9/74v4VK8bBmjOJEDUgCFuDmYaWBdDoKJ/2y3+Bjc+piPbs/VV2EsmvLQiCIIyST3/609x7771ccMEF3HnnnZucILjnnnuy++678+STT/KFL3xhTJ7/zW9+M6Zp8sILL9S1gWwJkfCOouQR3/3ud0c9vsmMiGxBGA2GBU1zoWEO9G+A1X9Ts9NbFsCs/aBtbzV5UhAEQRC2gje84Q1861vf4qMf/SgHHXQQH/rQh1i0aBG6rrN27Vr+3//7fwCxReO73/0uJ554Im9+85s599xz2Wmnnejs7OSZZ57hiSee4Je//OWInn/BggV85jOf4corr+TFF1/khBNOoKWlhfXr1/P444+Tz+dZunTpJs+x1157seuuu3L55ZcTBAHTpk3jd7/7Hffff//WvSlTBBHZgjAW6AY0zoaGmWpi5Np/QscLSnTP2k9Ft0VsC4IgCFvBBRdcwOtf/3q+/vWv87WvfY01a9agaRo777wzhx12GH/4wx845phjADj66KN5/PHH+fznP8/HP/5xurq6aG1tZZ999uHtb3/7Vj3/pz/9afbZZx++/vWvc9ttt1GpVJg1axYHH3xwTdaQ4bAsi9/97ndcfPHFnH/++ZimyZve9CYeeOAB5s2bt1VjmgpoQSAVNgCWL1/O4sWLWbZsGYsWLdo2T1rqhr/+AOwBVdJb2H4IAih1Qu8aZS2ZthB2PlilAxTPtiAIwoTw4osvArBw4cKhO5f/Cp67F8wxrpzolmDPE7cqT7aw7djkZyNkpFpRfu0FYTzQNMi1qlbqgvXLlODe8AzMO0SJbkEQBGHykG5QYni8zi3scIjIFoTxJtsCmSboWw+vPAbdr8DMRTD3ECjMmOjRCYIgCAC7vWmiRyBsZ4jIFoRtgaYrz3Z+usqzveIP0PkCzDkQdnqNlGoXBEEQhO0MEdmCsC0xLGUVsYvQtRJ610L7c+LXFgRBEITtDPlFF4SJIJWDmfuEfu3l0Lsa1j9d9WvXSeYvCIIgCMLUQUS2IEwkSb/2qv+DntCvPfsAaNpZxLYgCIIgTFFEZAvCRBP7tWdU/drrn4bWXZWFREq1C4IgCMKUQ365BWGyYJgwbRdwK9C3Fl76I2x4WuVQn7kvtO0lEyQFQRAEYYogIlsQJhtmWpVlb5oLAxtgzT9g4/OwaidlJZm5GPKtEz1KQRAEQRA2gYhsQZis6AY0zIbCLDVBsvNF6HoJVv8dZuylBHfzPPFtC4IgjAF/Xv1n+p3+cTl3wSrwhp3eMC7nFiYvIrIFYbKjaZCbppo9oCpHdv8e1v0LWhbCrMUqI4mVmeiRCoIgTFn6nX4eXvUwGXNsv0vLbpmj5h41pucUpgYisgVhKpHKw/TdwbOhbx28/Gdof0YVuZm2q7KZNM9TKQIFQRCEEZExM+zTus+YnvPpjqe36nFnnHEG9913H2vXrqW5ubnuMe95z3u44447ePXVV5k5c+YoRjlybrrpJnK5HOeee25N/8qVK9lll1245ZZbhuybCK699lqWLl1KEATb/Ln1bf6MgiCMHiOlxPSsfcHMQNfL8Ny98K/b4W8/hGf/W+XfrozPrU9BEARhfDnvvPMol8v8/Oc/r7u/p6eHX/3qV5xyyinbXGCDEtm33nrrkP7Zs2fz6KOPcvLJJ2/zMU02JJItCFMZ3YBCm2q+p7zbPath4wqVfzvfCi27qAh3y3zVJwiCIEx6TjzxRObMmcPNN9/MhRdeOGT/bbfdRqlU4rzzzpuA0Q1POp3m0EMPnehhTAokki0I2wu6oWwjM/ZUEe5Mo7KUrPgDPPVL+NstsOxXKltJsXOiRysIgiBsAsMweN/73sff//53nnrqqSH7b7nlFmbPns2JJ57IsmXLOO2002hpaSGTyXDAAQfwox/9aMhjuru7ueSSS1i4cCHpdJq2tjZOOukknn322fiYpUuXcsghhzBt2jQaGxs56KCD+OEPf1hjt1iwYAHLly/nkUceQdM0NE1jwYIFgLKLaJo2JMr9pz/9iWOPPZaGhgZyuRyHHXYY99xzT80xt956K5qm8dBDD/HhD3+Y6dOn09rayplnnsmaNWtqjr399ts5/vjjmT17Ntlslr333pvLL7+cgYGBkb7V44ZEsgVhe0Q3INeqWuBDuQcGNkLnS7C6oPqb56qJky3zlTgXBEHYwVnZs5K/rv3rmJ5zwBnA0AzevODNI37sBz7wAb74xS9y880387WvfS3uf/rpp3n88ce5/PLLWbFiBYcddhhtbW3ceOONtLa28tOf/pRzzz2X9evXc+mllwLQ19fH4YcfzsqVK7nssss45JBD6O/v549//CNr165lr732ApRIPv/885k3bx4Ajz32GB/96EdZvXo1S5YsAeBXv/oVZ511Fk1NTdx0002AimAPxyOPPMJxxx3Hfvvtxw9/+EPS6TQ33XQTp556KrfddhvveMc7ao7/4Ac/yMknn8zPf/5zVq1axac+9SnOPvtsHnzwwfiY559/npNOOomPf/zj5PN5nn32Wb70pS/x+OOP1xw3kYjIFoTtHU1X5duzLUpwV/qg2AFdK2H1E0pwN+4MrQuheb6ynkhaQEEQdkCKTpGX+14e8/N2lbu26nG77bYbb3zjG/npT3/Kl7/8ZSzLAuDmm28GlAhfsmQJtm3z0EMPMXfuXABOOukkuru7Wbp0Keeffz5NTU3ccMMNLF++nPvvv583velN8XOceeaZNc95yy23xOu+73PUUUcRBAFf//rXufrqq9E0jQMPPJBsNktjY+MWWUMuv/xyWlpaePjhhykUCgCccsopHHDAAXzyk5/k7W9/O1rid+eEE07gxhtvjLc7Ozu59NJLWbduHbNmzQLgqquuivcHQcAb3vAG9t57b4488kj+9a9/sd9++23ZmzyOiMgWhB0JTVe+7EwTBAHY/Upwv/IXWPuPUHDvpFICtsxXObp1cZUJgrBjkLNyzG+YP6bnHHAGaMm0bPXjzzvvPM455xx++9vf8ta3vhXXdfnpT3/KEUccwe67786DDz7IscceGwvsiHPPPZd7772XRx99lBNOOIF7772XPfbYo0Zg1+PBBx/kC1/4An/961/p7e2t2bdhw4YRT7IcGBjg//7v//jwhz8cC2xQdpj3vve9XHbZZTz33HNxJB3gLW95S805IsH88ssvxyL7xRdf5KqrruLBBx9kw4YNNXaWZ555RkS2IAgTiKZBukG1lgWh4O6EVx+HtU8qwd0wC1p3hRl7S5VJQRC2exY0LeCkhSeN6Tmf7niag2cdvNWPP+uss/joRz/KLbfcwlvf+lb++7//m/Xr1/OlL30JgI6ODmbPnj3kcXPmzIn3A7S3t8cWkOF4/PHHOf744znqqKP4/ve/z84770wqleLXv/41n//85ymVSiMef1dXF0EQbNEYI1pba39vIitK9Pz9/f0cccQRZDIZPve5z7HHHnuQy+VYtWoVZ5555laNczwQkS0IgiJVUK15HthFKHWoSZLrl0HT32Gn18CcgyQHtyAIwjYkm83yrne9i+9///usXbuWm2++mYaGBt72trcBSpCuXbt2yOOiiYLTp6s5NzNmzODVV1/d5HP94he/wLIs7r77bjKZalGeX//611s9/paWFnRd36IxbikPPvgga9as4eGHH+bII4+M+7u7u7d6nOOB3AcWBGEoqRw0zYXZ+yufdvcqePYeePI2WLcMfH+iRygIgrDDcN555+F5Hl/5ylf47//+b975zneSy6mAx7HHHhuLziQ//vGPyeVysWf6xBNP5N///vcmJwVqmoZpmhiGEfeVSiV+8pOfDDk2nU5vUcQ4n89zyCGHcNddd9Uc7/s+P/3pT9l5553ZY489NnueweOMxpDku9/97ojOM96IyBYEYdOk8jBzkbKPrP0XLL8Llv8/JbwFQRCEcee1r30t++23HzfccAOO49Tkxr7mmmuwLIujjz6an/3sZ9x7772cffbZ3HPPPVx77bU0Nan6CB//+MdZtGgRp512Gp///Oe5//77+e1vf8sll1zCQw89BMDJJ59Mf38/7373u7n//vv5xS9+wRFHHFE3c8i+++7Lk08+ye23385f//rXumkGI/7rv/6Ljo4Ojj76aO68805++9vfctJJJ7Fs2TKuu+66mkmPW8Jhhx1GS0sLF1xwAb/61a+4++67ede73sWTTz45ovOMNyKyBUHYMnKtMHs/QIOVf4J//QKevx9K3RM9MkEQhO2e8847jyAI2GeffTjkkEPi/j333JO//OUv7Lnnnlx00UWcfvrpLFu2jFtuuYVPfepT8XENDQ386U9/4rzzzuN73/seJ598Mv/xH//Bc889F3ujjznmGG6++WaeeuopTj31VK688krOOussLr/88iHjWbp0KUceeST/8R//wete9zpOPfXUYcd+5JFH8uCDD5LP5zn33HN55zvfSU9PD7/97W+HpO/bElpbW7nnnnvI5XKcffbZfOADH6BQKHD77beP+FzjiRZMRDH3Scjy5ctZvHgxy5YtY9GiRdvmSUvd8NcfgD2gfLCCMFVwK9D9Cni2ykSy82th9gFgpiZ6ZIIgCMPy4osvArBw4cIh+36/8vc8tvYx9mndZ0yf8+mOpzl09qFblSdb2HZs6rMRMVKtKBMfBUEYOWYapu+ucm53PA99a2HDszDvUNUvebYFQZiClN0yT3c8PebnFHZMRGQLgrD1pBtg5r4w0A6r/w69r0LbPqqse36GKu0uCIIwBShYBY6ae9S4nVvY8RCRLQjC6NA0VSUyNw16XoUXH1J5ttONqr9xNuTboDBT+bqluI0gCJOQN+z0hokegrCdISJbEISxQTdVURvPhnIPlDqhOyxPHBW9yTarEu6FmUqA52eAldnUWQVBEARhSiIiWxCEscVIKfGcn6G2fRcq/cq/3f+8yrNt5SDTAKlGaJwDhRmQaYZsixLiqYL4ugVBEIRtRhAEI04luDnGXGSXy2VWrlzJ7rvvXpPMfEvp6+vjs5/9LP/85z/5xz/+wcaNG7nmmmu49tpra44799xz+dGPfjTk8XvuuSfPPvvs1g5fEISxRjeVcM42q+0gAKeoRHffGjVxUjeU8I5aplFFu7PNSnhHAlyqTQqCMAo0TcPzvIkehjAJ8X0f0xxbWTyqs33jG9+gu7ubq6++GoC///3vnHDCCXR2drJgwQIefvhh5s6dO6JzdnR08L3vfY/999+f008/nR/84AfDHpvNZodULspmsyN/IYIgbDs0TRW4SeWhYZbq811Vyt0pQqkLelcrX7duQSpbFd/ZlmqUvGW+WkrEWxCELSSdTtPT04Nt26RSknJUULiui+u6Y64hRyWyf/CDH/DBD34w3r7sssuYNm0aV199NTfccAOf+9znRlzicv78+XR1daFpGhs3btykyNZ1PS4XOmXZ+Dy4ZchNlyidsOOimyp6PTgbieco4e0Uodihqkx6thLo+VZo3Enl6W6eryLfMqlSEIRN0NjYSE9PD2vXrmX27NkitAWCIGDDhg2A+nyMJaMS2a+88gp77bUXoGwef/zjH/nFL37BmWeeSUtLC0uWLBnxOcfaDzPpeemP6pb507+BhtlKMLQuhGm7QqZpokcnCBOLYYHRNPRvodKnRPeq/4M1/1QXqY2z1N9Ny3xomCOCWxCEIeTzeaZNm0ZnZycvvPAClmWhadqOpz0EQAlsz/PwPI9cLkdDQ8OYnn9UIrtSqWBZFgCPPvoovu/zpje9CYAFCxawbt260Y9wE5RKJWbNmkV7ezuzZ8/m9NNP5zOf+QzTpk0b1+cdM9wy9K8PNwIltvvWwMt/Ul256Up0TwtFd3663BoXBKhmKwFVMbXYAaufgHVPQXaasqFMW6iynTTuBIbM8RYEQQXy2trayOfz9Pb2UqlUkMLXOy6apmFZFi0tLbS0tEyuiY/z5s3jf//3fznqqKP4zW9+wwEHHBCH2tvb28c87J5k//33Z//992fx4sUAPPLII3zta1/jD3/4A3/9618pFIZP/L5hwwba29tr+lasWDFuYx0WMwNHXKImflX6ofMFVarad9X+4kbVXn1cbacbQ8G9C7QsVFkZ9JFPLhWE7YrI3908D5ySEtzr/qWymOSnQX4mTFsQernb1MWqYU30qAVBmCA0TaNQKGxSJwjCWDAqkX322WezdOlSfv3rX/Pkk09y3XXXxfv+9re/sccee4x6gMPxiU98omb7uOOO48ADD+Sss87i+9///pD9SW666SaWLl06bmMbEWYaWnZRAgGUB7X7Feh8UYnurpfArah9lV5Y+0/VQKVKa1mgHh9F7cz0tn8NgjBZsLLQtLNqbkUJ7g3PwPplSoinG1R6wKadqxMo89PVhEq5SyQIgiCMIaMS2VdeeSWmafKXv/yFM844g49+9KPxvmXLlvHWt7511AMcCWeccQb5fJ7HHntsk8ddeOGFvO1tb6vpW7FiBaeffvo4jm4LMSxo3VU1joPAh941SnB3vAhdLyo/KqgJYBv/rRqApqvodsvCasRbfN3CjoqZVn8PjXPA95StxO5XVSk3/lv9rUWiOztNHReJ7kKbEuyCIAiCsJWMSmRrmsbll19ed99vf/vb0Zx6qwmCAH0zE57a2tpoa2vbRiMaJZpejcztcqTKMVzsUJHurpfUMvJ1B74SED2vwso/qr5cayLavYuaXKnJhDBhB0M3hmYv8Wx1wVrph7516g6RlQv93gX1t9IwS2Utyc+QaLcgCIIwIsZkNlC5XOaJJ56go6OD1tZWDjroIDKZbV8q+c4776RYLE79tH6bQtNUpC0/Hea+TvXZA1XB3fkS9LyiInegBHmxA1b/XW0baZV9oWWXUHwvkIidsGNipNRFaK5VbQe+8nRX+qBvvbpzpBuh6G6E3DQ1ibLQFgpv8XYLgiAIwzNqkf3Vr36Vz372s/T29sYlKRsaGrj66qu55JJLtuqc9957LwMDA/T1KVvE008/zZ133gnASSedRHt7O+9+97t55zvfyW677YamaTzyyCPccMMNLFq0qCZ39w5BKg8zF6sGytfds6oqurtWgjMQ7qvUWkzQVLSuZRc1OaxlF5XVRCJ2wo6Gpg8tkuM5ai5EpVfZttb8Q0W5041KfDfNVYK70KYi39a2Dy4IgiAIk5NRV3z85Cc/yXHHHce73/1uZs2axbp16/jZz37GpZdeimVZfOxjHxvxeT/84Q/z8ssvx9u//OUv+eUvfwnASy+9RFNTEzNnzuSrX/0q69evx/M85s+fz8c+9jGuuOIK8vn8aF7W1Mewqqn/QFlMBtrDaHcouvuj9IoB9K1V7ZW/qK5UQUW7mxeoSHfzPJlQKeyYGNbQaLc9oER39yuw4Vl1JyjdqOY/tMxT0e6G2Up8S+pAQRCEHRYtGEWCyF133ZU3vOEN/PjHPx6y7+yzz+bRRx/lhRdeGNUAtxXLly9n8eLFLFu2jEWLFm2bJy11w19/oH60o+wi2wq7CN0rleDufAm6X1Ye1bpo0Dg7FNwL1FLKWQuCwikp0V3uUX/LVk4J7tw0VYkymnyZa5W/GUEQhCnMSLXiqMIsa9as4T3veU/dfe9973v5f//v/43m9MJ4kspB2z6qgfJw962BzpVV8V3sCA8O1K3y3jXwchjttnJVT3fzfHWRIN5uYUfEyqpWmKnuGjlFKHfDxhWwfrmKcmebVI7u5rmhr3umumMkkW5BEITtllF9w++xxx6sX7++7r61a9ey2267jeb0wrZEN5S/tGkucITqq/RB18vKZtK1Uvm8o2i3U4QNT6sGgKZ8qc3zQ6vJfHXLXIrlCDsSmlb1dTfupOwllT4V5e75p/J0Z5qU8DbT6rhMc/iYnLp4tXLhethnZiQCLgiCMAUZlcheunQpn/jEJzjooIPiyosA//rXv1i6dClf/epXRz1AYQJJN8CsxapBGO1eqwR31Iobw4MDlUqwf321QqWRUqkHmxdUhXe2eVu/CkGYODRdiepMk7rb47lQ6VHCu7hRTaz0HHWsbqi/GSMFZrRMK5GdbQlTCoZpBdNSqU4QBGGyM2KR/Za3vKVm23VdDjjgABYtWhRPfFy+fDlz5szh1ltv5YwzzhizwQoTjG5Uc3YvOFz1VfqVnztqXS+DW1b7PDvMcPJi9RzpplBwz1OtaZ5kZBB2HAyzdiJlEt8F11Z/N15F/R2Ve9W2WwHdDHN9N4U+752U4G6YpSLhgiAIwqRixCL7X//6F1ri1qVpmsydO5fe3l56e3sBmDt3LgBPPfXUGA1TmLSkCzBzkWqgbo8PtCuxHYnuvjWqH1QUb92/VAOqNpN5VW934xwlKARhR0I3IWUCufr7PVvZTgY2KguXblaj5I07qb+bhllhKkGZHyEIgjDRjFjJrFy5chyGIWw3aHqYN3hmtViOZ6sqlF0vq0mV3a9AqSt8QNJm8lfVpRtKNDQnIt75GVKpUtixMVJh2fcZatutqEh3/wZVOMdMhakEG9Xfj5UL7Scm6Fa4bqmmh8u4L6XEuni/BUEQxgwJFwrjj5GqzdsNypPa/UpoM3lFNaeo9vletS/CTIcTM0PR3TwXstNEFAg7LmYaCjNUg9Be0qOqVXa+CFFyVg3QDBX51nS11A3VtHCph/nAW+ZBwxyVsjPTNFGvTBAEYbtgzER2e3s7pVJpSP+8eds4/7MwNUg3DLKZBGoiWFJ497yqfKqgonYdK1SLsPJKbEfe7ua5IgyEHRczA4WMuouUJPDB9yHw1N+T74XriaVTgt5XYe0/qxaUhjnQvLOynzTOEQuKIAjCCBm1yP7c5z7HjTfeSEdHR939nueN9imEHQFNq94K3+k1qi/K3d29KhTdr0Dfuqq/2xmA9mdVi0g3KWEQpSNsmqtunwvCjoqmg6Gjvu43U7k1yn5S6lL2rtWR77ulmuO7cTYUZkmOb0EQhM0wqm/Jm2++mS9+8YtcfvnlLFmyhCuvvJIgCPjJT35CNpvlsssuG6txCjsiydzd8w9TfZ4NvasTwnuV8qRG98YrPbC+RxUBicg0hecJxXfzPBVJFwShlsHZT9yKKqzTtwY6nlfR7EyzSsVZmKWK7GSaQyEeLkV8C4IgAKMU2d/61re44ooruOyyy1iyZAlnnHEGBx10EFdeeSVvfOMb2bhx4+ZPIggjwUhByy6qRThldas78nH3vJrI343yqZZ7YP2yal+N8J6nlhLxFoRazHR1IjOosvHlHuh8KbyDpCmbSlT10spBbroqKZ9pUmI8sp+I3UQQhB2MUYnsFStWcOihh6LrKuuDbatqgNlslksuuYSrr76aT33qU6MfpSBsCisDrbupFuEUldjuXqWi3VsivNON1TzgUdQ70yyTKwUhIq5mOUdtB77yczslcEvKZtKxQvXXiO+s2k41qLSfZkb93ZrZ6tJMV4+zstVsQkGQGEBQvy8IQu95WNzHj/znyW1H9XmuWmp6IsNKmGXFTNdmXDFS4/v37yfGHFULFQRhu2FUIts01cM1TaOxsZFXX3013jd9+nRWr149utEJwtZi5WD6HqpF2MUw4h0J71VQTMwlqPQOKhWPmlxZI7x3VrfSJZ2gIKi/g0h4JwkCVVAnEuD97crq5TtKWALoeiKVYCKtYLTUtEFiejBBzQL8xGROPxTd4XbgJyZ7hvvQqllWdCuRacVIZGAxQ9GfUwI8mZFFM9RrSG5H2Vui74foNXu2EvdeWGzIKalsMG6lOi5NVza2wszEXYBmtUwV5GJfEKYgoxLZu+++O6tWrQLg4IMP5vvf/z6nnXYauq7zve99jwULFozFGAVhbEhtQnj3JNpAO/EvtzMAG59TLcJMhxPAdoamnaqV96SAjiAotNBGEpWEr0cUXY5Ky/uOEp1+v9qOBHZdcTmoT9OUSNX0WvFrWKBnhvZHIth3qxlXfA8CV4nfaDve54bCPBj0/EE4vuTzh+sEifOGop5ALXUzvMgwqyI98NX3z9onVX9kv7Gy6i5boa1WfGcaq3cARIALwqRkVKrgpJNO4o9//CPve9/7+PSnP82b3/xmmpubMU2T/v5+br755rEapyCMD/WEt1uG3jVVm0nPq6pYTpTVxK0MLRevG1CYXRXdTTurW+qmlIwXhLpEUeMJ/RvZTLaVLSEIUJaVMEIeWVegGg0f6Z0vz1WWN7ekJp72rlVVcnUjtNTklM0msrjENpzsMDacnCpWVBOFN7ZcnLuVavS9ZllRY3TKKkJv5dQ4UoVw2RDe6RimiumOTBBQY2tKXtB5TvXCbpMtYZUKfPV/Gt1ZShXU0hyDz/h4EwTV152845S8wI2XidSjuqFsorox0a9gWEYlspcsWRKvH3PMMfzlL3/htttuQ9d1Tj75ZI4++uhRD1AQtjlmZmjxHM9WP3Rx1Hs19K1VX46g/uB7X1UtRoP89DDqvVO19LVU1hOE7YdkJHusMEwwGoFBk7F9N7TgFNUkVM+pWlICPwyUa/Wre0ZiP2pQtcrEFpno2FC02ANg9ykxnbzjULMe1jJIRumtNBjp8G5GWons3HRlh4kFeF7tjz3xYdPH2YrnucrK5FbUe5dc6oYagxmOP/bppzc/rijffPT/E7dEn12qWoa8SlUcx8IxqLU3xRdwYcMfpi98/zUtfN/T1XGn8qpwW7ohIcBDEW5l1f9X/PnYit+lIBj6Pkav0a1UPyOxdcqpfm6dMnhltayxdg26YI3XPfU6fV+97mwL7Pt2lV50kjKm97cPPvhgDj744LE8pSBMDowUtMxXLcL3YGCDEty9r1aXTlSUKVDWk4F2VeQjIpWvFd2NOykf5iS+GhcEYRKgm0osbSoF6bA2nIGhwiWOwAdD+6EqwiPRrlsqOp5uDMVZaqg485yq39yrQLFfpV31lqvTRsLVTIfCPuF/14zaTDVGSkXgIwEeW25I+PWD4dc9G9xQ0NpFZf9z7UT02AsnwobrmpYYU9iMcFxmRn13W9nqBFnfU+K53Kvm9Hh2VUDGS7taVE3TwzsICdtSvJ20OxmgpRLWIy1xMTdoHb3a53vV990ugdddFb2QuIBILOOxaOGFWXL/oPci+v+Nzu+GFw/JKHzUPLdaACuKRPte4v9QC+1bZvU9iD5LNe9HOHcCvXZfpVddBAaTuxbLqER2uVzGtm0aG6tX23fccQdPPPEExx13HMcee+yoBygIkxbdUNXwGmYDr1V9QQClTvWjkhTf5e7q4+wB2Phv1ZLnKoSV9SLh3ThHsg0IgjAyJtqGE0XQh7sQiCKcbkUJL7cySKCF3vhogixBNRNMRBTNJVoMk4Emsu1E4ky36ojolIq0a4Z6bFIoOqWqUIyy0gSRUEw8n5G4EDFSYQS5UL1A2FbzdQyGT5UZBNULrkh4Oz2DoulR1DicPFwzB2HQeiSKB18o6aa6EEuZ1c9idAEVieaxwHeVyJ/kjOp//r3vfS/5fJ5bb70VgBtvvJGPf/zjAHzlK1/hd7/7HSeddNJoxygIUwdNqxbzmLVftd8eUD7v3tXV1re+ehVe126CspY07lQtbd24k6qKKVFvQRCmIlFUeiQFwSIrwRDCiC4kdG9CxMn3ZJXYRjTC914YFaMS2Y8//jhf+tKX4u0bb7yRs88+m29+85ucd955XHfddSKyBQFURHr67qpF+K6aUBlHvUMR7hSrx0T5vJNpBXVTZTNpmFONfDfMUT5HQRCE7Q3dQIVpBWFqMSqR3d7ezk477QTASy+9xIsvvshtt91GY2Mj5513Huecc86YDFIQtkt0s+rN3jnsCwIlqnvXQF8kvNfUlo733WrWkyTphlB4hxaWhjnQMDP0MgqCIAiCsC0ZlcjO5XL09PQA8L//+78UCgVe+1rlTc1kMvT3949+hNs5JcfH8ANEBgmAuqWXbVZt5j7Vfs9W9pK+NVXhPTjqXemDyqCc3mjKXpIU3o2zpaCOIAiCIIwzoxLZ++67L9/61reYP38+N910E0cffTRaaGp/5ZVXmDVr1pgMcnul5Pg8vbYHzRmA/kaashaFjElD2iKbMgaXWxB2ZIyUSlOUTFUURb371oaR77VKhCe93gQqA8rABlXkInm+wsyE+A5bulHSCwqCIAjCGDAqkX311VdzyimncMABB5BKpXjggQfifffccw8HHXTQqAe4PWN7PrbjUyq69LhFNA3SlkHGNMilDJqyFg0Zk4aMST5tYoj4EZIko95te1f7o9SCvWsTAnwNlLqqx3h2tbR8EiuXEN2zqutSTEIQBEEQRsSoRPYxxxzDM888w9///ncOOOAAFi5cWLPvgAMOGO34dgiylk6+OYsXBFQcn4rr0VtyWN1dIm3qpC2drGnQlEvRkDFozKZoyljoormFetSkFkzglMJo91roWxcK8LUqd2x8TBE6X1AtSboxFN2zVKrBaH24dFGCIAiCsIMzKpFt2zbz589n/vz5Q/adf/75ozn1DomhaeRSKooNapqb7XqUHZ/Oos36vgqWoZG1DAoZi9Z8ipZciqaciTXeVbKEqY+VHVrJMgiUl7tGfK9Ry6iAAajE/5Xe2tzeAJnmhPieVV2XcvKCIAjCDs6oRPZOO+3EBz/4QT784Q8zb968sRqTEKIBadMgbRqASsTveD5F22NdT5l1PSVyKZNcyqC1oAR3Sy5F2hTBLWwhmgaZRtVm7FntD3xlL6kR3+tUysGoehmoIjvlbmh/tva82Rbl+Y7F90y1bYntRBAEQdgxGJXIPvXUU7nxxhu57rrrOOWUU/jIRz4iVR7HGcvQacrqNGUtvCCgaLt0FW029FXIpgzyKUOJ7TDKnU9JblFhK9D0alGdmYur/YEPAxtDwb2uKsAHNoQlc0NKXaoNFt/pplBwz0osZ0llS0EQBGG7Y1Qi++abb+b666/n+9//Pt/5znc4/vjj2WOPPbjooot43/veR0ODVBUaTwxNoyFt0ZC2VDVvx6Ov7LKx3yZt6uRSJk1Zk+ZcSmUtyZhkTRHdwijQdCi0qUaioqXvQXFj1evdv76++K70qDbYdpIqqEh31BpmqWWmSbKdCIIgCFOSUYlsgJaWFi699FI+9alP8bvf/Y5vfvObXHzxxVxxxRWcc845fOQjH2GvvfYai7EKm0DTiP3cAVBxPYoVj66ijdFZIm3pZCyDfNqgKZuikDYpZAwKKZlAKYwBulEVyLP3r/b7HhQ7wqj3+sRyPfhO9Ti7Hzr7h064NNOQn1m1m0Qt1yolkwVBEIRJzahFdoSmabzlLW9h7ty5XHLJJTz88MPcdNNNfPvb3+b000/n29/+Nm1tbWP1dMIm0ICMqVIBAnh+QMX1Kdke3UWbVzsTWUusMGtJ2gxzdJtYhni6hTFCN6qR72Ta/MCHYmcY8Q4j31FzK9Xj3Ar0vKJaEs1QRXYKbaHwDpf5NrBk0qUgCIIw8YyJyHZdl1/+8pd861vf4tFHH2Xu3Ll86Utf4h3veAe/+c1v+OxnP8s555zDfffdNxZPJ4wQQx+UtSRQke6y67Ox32Zdr8pakjYNMpZOczZFU86K83RLfm5hzNF0yE9Xbeaian9UYCcpuqNW6Usc56moeP+6oedONyXE98yqyM80SZVLQRAEYZsxKpG9evVqvvvd7/L973+f9evXc8QRR3DHHXdwxhlnoIcp5T760Y+y0047cfbZZ4/JgIXRo2mQsQwylgFZlbXE9nwqjkdv6OmOUgXm0gbTcmmaskp052QipTCeJAvsJLOdANjFhOjeUF0vdqASXoZEvu+O52sfb6Sq0e98W+3STI/zCxMEQRB2NEYlshcsWIBpmrzzne/k4osvHrb4zMKFC5k5c+ZonkoYZ1KGTsrQiaaq2p6yl7T32azrqZANRXlj1lS5ubMWjVnJzy1sQ1I5mLaLakk8F4rtCeGdWHoJ64lnQ+9q1QYTR7+TAnwG5KZJ9FsQBEHYKkYlsq+55hrOP/98ZsyYscnjDjjgAF566aXRPJWwjUkZOqkwVWAQQNnxKDmhp7urpKLcKYOWfIrGjLKVFNImpsyiFLY1hlm/wmXSejKwQYnuaFnqZoui37oBuelKcOfboBAu8zMg3SCZTwRBEIRhGZXIvuqqq8ZqHMIkRtMgmzLIhlYR11dR7ig/d8rUyZgqe0lz1qIha1JIK+GdkkmUwkSxKeuJZ6t831HUOynCkxMvfa9qSxmMmamK7/z0hBVluhTdEQRBEMZm4mNPTw///ve/KZVKQ/a98Y1vHIunECYRpq7TkNFpyFgEgOP6lN2q6DYNTWU3sdQxUaS7ISt5uoVJgpGCxjmqJQkCVT5+oB3625XoHgitKMWNKitKhFuGnlWqDSaVDwV4nSb+b0EQhB2CUYls13W54IIL+PGPf4zneXWPGa5f2D7QgJSpkzJ1GjNqEqXr+ZRdPy6MY2hanKe7kDZpDCdQ5lMGubRJWqLdwmRB01QWkkwTtO5Wu8/3oNRZK74jAV7urj3WHlCta+XQ50g3hoI7jH7nplfXRYALgiBsN4xKZH/ta1/jd7/7HTfffDPnnHMO3/rWt7Asi+9///v09PRw4403jtU4hSmEaegUDJ1CWn28Bufp9jtDYW7oqjJl2qAhbZFPmyrVYFrl+Ba3qzCp0I1qNJp9avdF9pNIeMdto4qMJ6n0qja48A6EAjwU3bkZCTE+XdlTBEEQhCnDqET2T37yE6688kre9a53cc4553DIIYdw0EEH8cEPfpA3v/nNPPTQQxx//PFjNVZhijIkTzdguz626zEQVqX0g1KcqztlqiI5DRmTfNogl1Il4TNiNREmK8PZT0DZSpKiO7m0+2uPjQX4i0PPkyqE4nt6YtmqxHgqL5MwBUEQJhmjEtkvvvgi+++/f5wTu1wux/suuOACLr74Yv7rv/5rdCMUtjs0UBUnzapNJEDZTKKId0/RYXV3gKlrYXXKqtUkqk6ZT5lSEl6Y/JgZaJqr2mCckhLcxS0Q4Ha/avUsKGY6jHy3JkR4uJ5tljSEgiAIE8CoRHY+n8e2bTRNY9q0abz88sscdthhAGSzWTo6OsZkkML2jwZYhq5KuidsqUnh3V20CbogbRikLY1syqA5m6IgJeGFqYqVhea5qg3GKavJlpHwLm6sLss9tce6Feh9VbXBaIbK9x2J7kiI51pVEx+4IAjCuDAqkb3XXnvF+a8PO+wwvvrVr3LEEUeQSqX48pe/zJ577rmZMwjCpjENHdPQyYc6oKYkfFgoJ1kSvilrxekDCxmTnCUWE2GKYmWgaWfVBuPZqtLlQEcYBU8sS521WVACr2pXqUe6sSq4B7dMo0TBBUEQtpJRiex3vOMd/Pvf/wZg6dKlvPGNb2T+/PkAWJbFXXfdNeJz9vX18dnPfpZ//vOf/OMf/2Djxo1cc801XHvttUOOfeKJJ7j00kt57LHHME2TY445huuuu46FCxeO5mUJk5gtKQkfZTNJmwaFtEFTLkUhbVDImBRSllhMhKmPkapfgAfCLChdSoQXN4YCfGN1PVkFE6o+8K46BcN0A7L1BHgYGbey4/P6BEEQtgNGJbIvvPDCeP3AAw9k+fLl/PrXv0bXdY477ritimR3dHTwve99j/3335/TTz+dH/zgB3WPe/bZZznqqKM44IADuOOOOyiXyyxZsoQjjjiCf/7zn5utQilsPwwuCR9lMyk7Hj0lVaFS+brVhMqmXIqGtBlXqRSLibBdoRvVjCQM+g4OApVasLgxjIRvrK4XO0MbSqISpu+F6Qo31H8uK6cEdzYhvCMRnp0GhjVer1IQBGHSMybFaCLmzZvHxz72sVGdY/78+XR1daFpGhs3bhxWZC9ZsoR0Os3dd99NY2MjAK95zWvYfffdue666/jSl740qnEIU5ch2UxCi0nF9dnYb7Oud7DFJEVT1qQhI1Uqhe0cTYN0QbWWBUP3e46ym0Siu9hRjYgXO2qrYQI4RegpQk8dLzhAuikhvkPhHS2zLeqCQBAEYTtlxCJb13W0EaSKGmkxmi05t+u63H333ZxzzjmxwAYl0I8++mh+9atficgWYpIWk6bhLCa6Rtaqiu7GrElD2qIxK6Jb2IEwLCjMVG0wQaBE9cBGKCVFeLgsdSn/d5JKj2r1rCiEhX/qCfDcNMg0iwgXBGFKM2KRvWTJkhohfMstt9Df38+pp57KrFmzWLt2LXfffTf5fJ4PfOADYzrYiBdeeIFSqcR+++03ZN9+++3H/fffT7lcJpOpX7xhw4YNtLfXTgJasWLFuIxVmJwMtpgMqVJZI7qtann4rFSoFHZQNE3l407loWX+0P2Br+wmyQh4Mio+2IpCoCpllrvrF+aJRXgi8p1cz7aIHUUQhEnNiEV2cgLi9ddfz6xZs3jggQcoFApxf19fH29605vI5XJjMsjBRKkBp02bNmTftGnTCIKArq4uZs+uMykIuOmmm1i6dOm4jE2YmgyuUrkp0d2QsSikTbIpg6xlkE2pCpUyoVLYodH0qvht3XXoft+FUncovDtrBXipE8q9DCvCqVOcB1RmlFh8h88di/BpKkOLIAjCBDEqT/ZNN93EV77ylRqBDdDQ0MCll17KJz/5ST71qU+NaoCbYlPWkk3tu/DCC3nb295W07dixQpOP/30sRqaMMUZIrp9n7KjRHdHvw2ovN4pU+X2TpsaDRmLXEqJ7mzKVKLclKi3IACgm4kJmXXwXCh3hZHwUHiXuqqifEgknGpmlO6X65/TzIT2kxbIDBbjLZBukBSFgiCMG6MS2atXr8Y065/CNE3WrVs3mtMPS2trK0DdYjednZ1omkZzc/Owj29ra6OtrW1cxiZsn5i6TiFdFd0B4Li+8na7Hv0Vn3W9FXStWlQnZepkwvLwmXA9amlTx5TQtyBUMUzIz1CtHr6notpxFDwhwktdoSfcr32MW4a+NarVQzNURcyk8M601PZJsR5BELaSUYnsvffem69+9auceOKJWFbVG2fbNtdffz177bXXqAdYj1133ZVsNstTTz01ZN9TTz3FbrvtNqwfWxDGAg1ImUpIJ/GDAMdT4jsqD7+mO0DXVHTc0nVMQ8MyVMXKXMokE2Y5iQW4pWOOYHKxIOwQ6EY1RWA9Al9ZTiLBnRTf0fbg7CiBV/WPD4eVCwV3c60AzzSHfc0yQVMQhLqMSmR/7nOf4/TTT2fhwoWceeaZzJo1i3Xr1nHXXXexbt06fv3rX4/RMGsxTZNTTz2Vu+66iy9/+cs0NKjpa6+88goPPfQQn/jEJ8bleceDh3vaKDses/U8M9MObSkbcRhMXXRNpQZMm0ZNeXg/CHA9JcAdP6DseHQOOPhBVYCnDBXdtkydfMoglzZjz3fOMsikDBHfgjAcmh4K4GZgl6H7gwDcUliop0tZU2IB3q2W9SwpTlG13tXDPXHoDW+uiu7BIlwqZwrCDsmoRPbJJ5/Mfffdx5VXXsm3vvUtfN9H0zRe97rXccstt/CmN71pq8577733MjAwQF9fHwBPP/00d955JwAnnXQSuVyOpUuXcvDBB3PKKadw+eWXx8Vopk+fziWXXDKal7VN+X3XHFZWChAGUjQCpqdcZqZtZqZtZqUdZqVtZqYdZqZtMkaw6RMKkxJd00iZ2pDIN0TR7wDX83G8gKLjsLGvQgBYhlZjPymkzTAHeFWAZywdQ8S3IGwaTVNRaSsHjTvVP8b3lNCOxHd5sAjvBqc06EFBNVXhcN5wTVeZUmqEd2I92yz+cEHYDtGCIBgT1VYsFunq6qKlpWXUWUUWLFjAyy/X/7J66aWXWLBgAQB///vfueyyy3j00Udryqrvumudme2bYfny5SxevJhly5axaNGi0Qx/i+np2siR1/0v3V5qix/TbEYC3KEtFOHRdqPpIVpr+yEAPM/H9gJsz8dxfRzfJwiU+E4Z0aRLneZ8iuasRXMuRS5lIB8DQRgn3HJVdJe6QyHeXRXhpW7wnZGfNxbioRjPNNUK8mifWFMEQeXrd0tw0Dn1C2uNEyPVimNW8TGXy41Zyr6VK1du0XGvec1reOCBB8bkOSeKm3Z9nO6yw4bMQtZXUqyrWDXLAa/2C7XbNel2TZ4bGHqujO6FEe+q8I6WrSkHU5TXlEJD2UhMA3JUPwcBxFFv2/UZsG3W91VImzq5lCoX35JL0ZxTxXQsXaJjgjBmmBlomKVaPYIAnIFQgHfXLiNLSrlbpTSseZxfjaAPi6Yi3kkxnh0kzDPNMllTECYJY1pWXRg5mgYtpk1rQ4m9GwbfhoR+V2ddJcX6ihUu1fr6ikWXU1uIoewbvFwyeLk0dNKnTsD0lENbQni3pR1mpmza0g4F0x/yGGFyohFlMCEsHW8RABXHo+R49HTZrO4qhRMrDablUzSFUe58SqJggjCuaBqkCqo17Vz/mCAAeyCMgvdUo+HlnqoIrxsRD6ppC3tWDT8GMzM0Kj64iT1FEMYdEdmTnILps5tZZrd8eci+iq+xIYx4r69ZWmywU3hBNXTto7HBTrHBTrGsLz/kXHnDY2ZaCe62hBhvSzlMTzkyGXOSo1EtHQ8qr3fJ9ugq2mzoq5AxdbIpk8asinKnTZXlxNDCpa6aqWuYui6FdQRhPNE0SBdUa5pb/5iojH25pxoNj1opIcbdob8NuGXoL0P/+k2MQVdCO11HgMetEcws4kMUhK1DRPYUJq0HzM3azM3aQ/b5AXTYJusrKTbYFhvCSPiGilrv82r/6wc8gxeLWV4sZoecSyOgNeXSFka9IyEeifIm8YJPOkxdpyGjqlMGQDmMcnd32LzaWcIwNAxNQ9dU4SZDB13T0XU1SdPQlec7ZeoYukbGNMinDXJpNelSspwIwjiTLGPfOGf449xKKL6TUfCexHaPinwPzpoS+NX9PZsYh24psZ1pUllU4kh4Y1WIZ5pU9FwQhBpEZG+n6BrMSLvMSLt19xc9vSYKvqFisd5W2xsrFl5i6lyAxkbbYqNt8XT/0HOlNJ8ZiQj4jDAVYSTG82JFmVA0UJlILANy4PkBnh/gBwF+AF7g4/ngBl64HRAEAZ6vMp+A+jylTIOUqVIUNmZM8mmTXMpU6QZTBpYhtzsEYZtjpqEwU7Xh8D2o9IWCe5AAL/eo/OLDRcV9Z/O5xAGMVEJ8N1ZFeM22RMaFHQsR2TsoOcNnQa7CglxlyL4oCr7Brka+19sWG8JIeI9b+7GxA53V5TSry/Un2+QNjxmhAG9L2/H6jJRqkpZw2xJZQxI9m32MF6hJlrbr01N0aO9T1S2jaHeUXrCQscinotSCBhnTEOuJIEw0upHIIb4J3EpVcFd61XolKcTD9XrZUzwbBtpV2+RYrFrRnW4cKsTTjSqCL55xYYojIlsYQjIKvqhh6P6yp9Eeim7l/7ZoD5cbKhZlv1a0DXgGAyWDlXUmZAI0mm6N8I4FeLhM6SLCJxpD06rR8JCoumXF9ekru3QM2BCAZeqJ9IIahYwV5/SOzpGxRHwLwqTDTENhhmrDEQQq4h3ZUIaI8t6qIK8nxrc0Mq7pkGoIRXfDIFHeUF1mGlUUXRAmISKyhRGTMYb3ggcB9HlGjeiuWbct3KA2OtHrmvS6Ji/U8YODyg0+PRLgofienqoK8bSI8AmhprplSBCgcnp7PmXXo7/is663ojKimKqsfMrUsQxNFdaJqlpaBoWMSUZm2ArC5EbTwMqqNlwaQ6iK8UpvNRIeZUap2e6rb1MJ/GqRn81hZmqFd7oRMuEy1aDWUw1qn+QZF7YhIrKFMUXToNH0aDQ9dq2TEcUPoNsxw0i4VbNst60hfnCo5gZfMVBfhDeZrhLdCQuK2lb9OUM84dsKTYO0qQrkJAkCVEl5z8cOxXd7oqpl2jRImTr5tEFjxqKQVp7vQtrElJC3IEw9kmJ8U35xUDaVSl9tNLzeuj3AkAmcoES6W968VQXAyidEd2OY5SUS54mWKoggF0aNiGxhm6JrMC3lMi3lsmdhaF5wP4BOx6yJfkeTLtvD9cEivMc16dlEJDxveDWRb7Xuxn0Nkh1l3NE0Yu92kqiwTsVVKQe7izarghIpUydj6qStquguZAwKaWU9Ed0tCNsRZlq1/PRNH+d7YPdXBXmNMB/U5w6dbwSoQkHOALBu8+Oy8gnhXUgI8MGCvAEMkVPCUORTIUwqdA2mp1ymp1z2ZngRvjHhA4/Wo2h4Mj84VD3h9Yr0AKQ1JcJb024svqM2I+UwLeViiKgbF6qFdXQI580GgO16VJzaSZZpyyBt6mQtg8asRcY0yKb0OD+4TLIUhO0c3aimENwcUXTc7oNyUoD3DRLkffW941AV5P1bIMhjy0oYBU8ua/oLkmFlB0JEtjClSIrwvQZFwnWvguH001fx2ehYbLDTtDtpNtgZ1rs5Nrg51jk5KkHtx74SGKyuGKweJvChETDNcpkRlqdXdhQlxlvDdbGkjB0aDPF6e0FAxVFWk76yy9qeMrpWFeiWoZMyNRXpTkWTK5UAz1qGWE4EYUdjS6PjQVAryCv1Wm81gu4NnYsEjMyyohlKbKfCCHmNKB/cX5CJnVMYEdnC1CQIMLwyKbcfy+3D9Er4egrHzNOUzdGQN5mvgWcYuKaJZ+h4uo+n2fR4Gu22SYdtsrFi0FXy6B6o0F326ChrQwr1BGh0OBYdg8rYJ8mFlpTpKZdWy2aGZTM9ZdNmVWhNVWhOgS63E7caQ9PIhfm4I1R2kyjDifJ5r+9VV0qWoYXiWy2j7CYp0yAV9qXDvN9RNhRDIkuCsOOhaWBlVGMTWVUiYv94JMr7ExaWqD/cdor1zxF41XSIW4KRUoI7FuGbWBdRPqmQX31hahD4WG4Ry+3Hcvsx/QqukcG2CpQyMxnIzqacnkEpPZ1KqhlPz+Dr1rC35BrDtsugfs13odhBsa+T/r5e+vr76Sq5dFR0NtoWG5wMG90sPrXe4qJn8ErJ4JWhDhcAdAJazRIzzBIzrDLTLZvWlEtr2mVaKmBaBvKmhjaeEdcgQAs89MBFC3y0wEPDD9eH3ybw8YwsFasJ18hNmtucKruJNnSSJcrnHQnwkuPSNeDghYV1akvIaxi6Ki0fWVFU9pNqFhRT17FMVQHTNHSpdikIOzJbGiGHQR7yPjVxMxbm4TK5PpxtxbOh1KnalmCkwmqhheoyKchTBUgn9ot9ZdwQkS1MDgIf3XfRAwfdd6pL38X0SuiBh2vmcMwC/fm5DGTnUE5Pp5SeQTnVij9GV+6BbkJhJtnCTLKzVVzDdAfIVDrI2J1kKh1Y5Zfp9DJssDO0Oxk2OlYcFe+oGHTaOkW39gvLR6PdzdHu5qBOtiqAlOYxwywywyozwywz3arErdVymG7Z5MyAQNMJNIMAPVzX0QMPzXfRg7D5Dlq87gEBaBqBZuBrpnq8pifOobZ9zQr71Daajo+G5ZXIlddjeiUcs0DFasK2GidlsYiqzxvqFdrx/AA3rHrp+SoKPmAHeF5QFeKahq6jBLgerms6hq4K8KSTYtzQMBNL1aeW4lIRhB2YkXjIg0CJ6ViUhxHyaDsW6OHS7lcivh6eDSUbSl1bNk5NrxXkNcth1o3h7+wKVURkC+OOFnjono3hV8KWENKBq0KPmoavmfi6ha9beLqFb2RxLIsBM08xM4tSHKluUWJ4G+GaefrNPP35eTX9aWDnsA2m7Hj0lBy6izbdJYeeoqO2Sw49RZuesoM3yMZtBwarnQZWO3UqAIVkdZfpVoUZZjkU4yo63pqyabUCWtOQMix8qxFfM/DMPI6RxzPSeHoaz0jh62k83QqFtIGvWfi6Ga4b4bqFH+4PNJ2M3Um+tIZcaQ2F0hpSdjeF0ho83cK2mqlYTWN2oQOEF11OfMEweAmEnxeTIFyqi4fq+nAXALUVL+un6PKCAD8W4qpVAq9mO0okZmgahqHOaWgaRijODV0L0xkqW0oUCY9EuBnaVkxdwzQ0sasIwo6MplWj5LnWzR8f5SGPhXj/oPWBodvDRcoDv5oqcUsZEi0fJMKtfG2/ld8hM7DseK9YGHuCAN23MfyEkPYqGL6NFngEmoGnp/BDoWdbWQLdxDFyOGYDrpnFMzJ4ehrXyOIZaVw9g2dkcY0Mvp6acreyoowXMxvrZzTxg4CBihsKcadWkIetv+wOyQhb8k1WVUxWVfLDPnfW0mnMmDTlUjRlrbg1Zi2aLLWenFS4JZTT0ymnp9PRvB+m00++vJZ8aS2F4iuk7W6aiivRAo+K1agEt5YKrSde1X6CN6w1RYlnFy1w0QBf0/F1KxTNlhLURhpXyysbECjbSxi9N70KWjBQcx498AnQ4mh/PQKG+VxpeniRYYZiPlqv9gW6ugjxgmoUPBLgtpsQ5GF0XAMlxjUtFvp6Yj2ZL1xZWUK7SijK05YukzgFQVAk85Dnt8BLnoyU2wNKeDv9YWQ8KcoTy+E85TDyaDmAkYZUrlZ416znhvYbU+/3P4mI7B2dIED3HUy/jOGVMfxybC9QftwAjaC6JEALohCsRmRD8PQUvp4KhXKOSmoattWIbTXimAVcM48TRlVdM4dnZAi0HTfRv65pNGQsGjIWO7fUP8b1ffpKbo3w7inZcVS8p+QwYA+9XVhyfEqOzfq+YWbBAxlLpzEzSIAn1zMWGUtHq/Pl5loFeqzd6WnYHd13yJbXh4J7FdlKO7lKO7rv1thQau0tYbQ8YXfxdQvHKOBa+fAzlAkj75kwCp8JL75UHxBezKkLOz2xHl/seRV038Z0SxiBrX5khly2BGixCK7u02rEuocWuBheKeFp92IrTgCg6fHYXCODZ6llMpoeAJ7n4wWE4tsPBblfEzmPRqFrxEI8inanDJ1c2iQXlahPqdSFmZRB2ph81h1BECYJI42Ug7KjOMVBAnyg/rYT9g2XnxzAq0CpMjJhrhtV0W0lBDoa7PzaLT/PBCEiewdBCzwVXfbKCUFdQQt8fD2lhIGRwU41q0gdGsR2gkQUTzdim0EkkqKsHqoVcMwcrpHfppaO7RFT12nJp2jJD2/DcDyf3hoRXm29oT2lWEeIlx2fslNhQ9/wX4gpQ6cxa8aiuzEhwKP+QtpkILczA7md2TDttaTtTvLldei+E0agjYSFw1A2lNiakrB7aOaIoxWekcUz6hcgGgvUnAB1h0b3IptTuB3fuVHrljtA2u7E9MqYXom03Y3pKfO9p6di8a0uHrIEpsFwVpUIPxLeoSh3PJ8ex6VjwMYPlABPRRlUTJ2MaZAPy9RnLD0sYx/5xDWZtCkIwsjQjWqO7y3Fc6uC2x4Auxhu12lRvzvMRCVQQn84K8u8Q0b+mrYxooKmOkGgomxJ32py4mDgxFFFL44OZqmkWqhYLdipJmyrAcdsiJeDI3DC5MUydFoLaVoL6WGPqSfEe8sOPSU37u+vuEMeZ3s+G/ttNvYPHxHXNWgII+KNmVCQZ9tojER52GdNwShrND/AZXhrThLNd7HcflJOLym3D8vpJeX0kql0YHpFTK9MrrIRwy+j+X54IyiKW2vVRRDE20EoigN0XCOLa+VwMzkl1gMNOyxVP1D26PZUBhVdA9PQh3jEo/5MWHnTNGpFeDLnuGloWLpM3BQEYYQYJhhbONkzwncTYrxYK8CTIj2Oqg8oH/kU0CkisicBWmjZUP5Vr+pZDTz0xLqGV5NFQgv8MGOEiRdGCH3dwjcsXC2nBIKRo5JqxrEasM2kmC5IpHkHYUuEeGRNUeK7GgmvinKXvrKDP8ht4QfEx2wKVaXRTIhvFQ2PIuQNGZN82kSfwpHWQDexU83YqeZBO3wsd4CU04vl9pFy+jC9Ymi7iuxYULViRX0+GgGa76P7Nmm3G9MtkauoLC8BmhLeRg43ncM1s+oOQZg/3PerPnHb82I7ih8E8f9j0pKStKYYuoY+aOJmMu+4GU7s1DTQNA0d9Xuno86BpixRuqZuUOiaTOwUBGEYdBMyjaptKf3t4G0iAj5JEJU1wQS6QcbrJzfwUiLbg5GYeGWoCWBklFUDHc9I45gNOGYu9KpmYruHuh2dib2sO7LvWdhytsSa4gcB/RUV/e5NiO+emm0Hxxvse4aS41FyvLhYTD2iqHgU/W4M1xsS641Zi7RZ3ys+adF0HKsBxxrBLdc6mG6RlNNN2u4iY3eTrnSSsTdieiWy9kbMUgkIcPUMrpGN//YDXQM0AiNUvEq6q4w+gaaEeKBT0TK4gOsHVFy//sTNUHwbeiisw/+H8CnQwj6NSIBX+0xdIzMo9WE1el4bSZcIuiAIm2SK/AaIyJ5I0o2sbTwQO7M3rU0FFZHWLZWrWDerKe3i1HZmvE8QtjW6poVi14JhJmsGQUDZ8ekpK+HdF9lSwm21dBmoDM2cUhMV7xqmqg/KK94QCu6GjFlXjDdkLFLm5L+VOBJcM4dr5ihm58R9ulchbXeRdrpJ292k7U5ylXYMr5yIivtoUaTcDycvh5OZo3Ut8DG9IgE6jlnAtgpD7nYFgOf7eD744QTNIEgsfVDPqKLwfvigIACfoRM7o6wq9VIfZswwF3lSfJs6lq6TMqsZVyTTiiAIkxlRaxOJprGuaX8GbJegJTfRoxGEUaNpGtmUynoxa5j0haAm8vWFwrsntKL0ltSyp+zE1pWK6w95rO35dAzYdAwM7xUHlUEljoxnlCBvyFSFecN2IMZ9I00pO4tSdlbcp/kOKacvTpEY204CH/DRgiCxT4ls3XfI2J1kS+vI2J2k3H7ylXVogY9j5LFNJbo1I81YvV1x6sOkrSVMfdiZiKBHlpZk6kMlxmsLA0UVPPWE7UUf9LhqUSENQ6t61QVBEMYDEdmCIGxzDF2jOZeiObfpAjYVx6Ov7CrhHQpxte7SF0bG+8ou7mCzONUMKu2byKACVTE+WHyrpUljWq2nralhvQp0i0p62lY+OMBye8lWOshW2smWNpC127GcfrLFV9B9G9fIqrScRjZO3bk1t24NTcMwN/+4IAgj6EGA56v5AxW3fmEgjdALrie94hp6aF/R9cgrHvnFlRiPouWGrmEmIurJSLuuR9NRQytMtBXNWY2XasXUNclrLgg7OCKyBUGYtKQtg7RlML1h+EmbQRBQcjw1OTMxSbM3ER3vK7v0ld04OppkS8V4ZFOpFeFWbV+Yw3pKecaTaBqO1YRjNdFbWAgoL3imspFsZSOZSjv50lpMb4CM0xWnMiQAXzdV9iI9HeY2V3nzR2tv08KsKNWzDH+xE6DmDgR+oKwrQYDvh1aXwCfwwSHAD9fVJFA1EdQf9NnQtaGCPJkEJrmMhHeSKNKeT5txasVsyiCXMslYukwEFYQdABHZgiBMaTRNI5cyyaXMTVpU/CCgZHtx9DsS39F2b8mhr+LSV6ovxrfUpmJoGoVIeKdNCkkhnq6uF9Im5hRIbeiaOfrNefTn5wGgezYZuxPL7cNyBzDdIpbbT9ruwvSKGH5F5Qp3esJCQW5YwTOVEOHRempM03BpqPcfo56AHdmdCD8IlJ88FOJBNQkMiUVM5E+P8PygJq+5ZUR5zZW/vCFt1hQWSpt6IssLse1FpLggTF1EZAuCsEOga1ocVZy9iRSuQSTGK7VR8L5B4ryv7GJ7Qz3jXhBsUVpDUKkNGzKmEuVpFQ0vpKuR8ag/mzImTXpD30hRzM4CZg3Zp3sVLLcfKxTepjcQpi/sI+V0x0WwUk6vKubjqbsHvm5UBXgYCffDtKQTlQs3SkVojIHMDQDX83E8VeGzaDts7KsQQCy8TQN0TQ9THlazshh6Na1i5EWPI+yhINdQE0e1ROQ9ts2gxeuRiDcSYn6kvvTobkFUKClKFRkEAYaucqybuqRsFAQQkT0pKNkeG/sq+ITRkjB6Es/aD6pREj9QX8CmrmMYGqamqaUefRlXvYQjoZoloJrXVhB2RDRNUxHG9KYj41D1jPdWHPpjMR4K8YpLfxgpr1d1E6qpDTdVeRPU33whIcILcZTcrOlvyJgTmuLQN9JUjDSVdJ2yzYGvot6h8FZR8P6wWmY3ltuH4duYXoW02xvWDgjrAaCp6rJx9VCVcSmqFhpVEVWpCXWVM0XTAY3JkOpLg9D3DblUNaIeoIpFOa6P6we4gadsLr7K0hL/FgRqu87Ug1CMU5s2MYyAa1roRScS4NH3e0LMa2oSqBkJ5NCbroMS0UGA61VTOrq+EtTKjhP9XvkEVMV/9BuUNqLCR9Xfptj7Hkb2U4aOZariR4KwvSEiewIxdY1MSpVCdnw//DLU0HQwNS2cuBMVdqh+cfqJCUC27+O5apa+6wd4vvqy9oIgTNulvsijn5l4XatuA/HEoAjPD9C0quhWkZJqRMRIfJnqWvXLPVqPvmw11G3P6IcgPjbpZkw8b3JsyYlF0XMJwmRiSzzjoP6e+hOR8f6yS1+lGhFP7qs3idMPoLfs0lseWplzMKauxeI7Et7ReiES46FA36aCXNNxrQKuVaBegkbds7G8SHgXMb0Sum9jemW1DIW54dtoUXXbwFHHBS5a4KEK+qjsKaoablRZE2q+CbUAXzPx9EG1BbZyEufWokEsNLeW6KWpII3ytPihtSVI2FyC0Pbi+eAGvjrerz7O9zct5Id8z4e/VXpC3Dt+gB9OUvUHFT4C4gmkURTe0CLRrXz3udA2E1UkTUc51U31HuladSKr/BwIUwER2RNIPm1y6v6zqTh+fNvPiMR1mLYqWo9EpqYRprrysT1fLd3qbUjb87DdQJVbDo8JgqpIr7mNOOjWYhT5CAIl2F3fxw3Fu+2qGf3qOaIv0ui2YdW3SBT58Ktf4H4iGh994UaRmVp/Y+LfRH8UzfGCQP1EJq4UDK36hV3vAqCaGSB5e7R6cRAtBWE8MXSNpqwqP78pgkAVgukfFB1XItylP+qrqFzj9QSR6wd0Fx26i5u3qwwW5IVEdHzwetYa3wmdvpGiYqSopIZJwh6i+w66V8HwK6H/W4lw3XfDyrjBoMq5PhrRth/3p5ye0NJSJuX2Ytjtyr6i6bh6WhX3mgKFvaLAhDFJovabYrDNxA38MG0juL4TX2BqgGloGJqKgkc51CNhXY3UV7/vo9/QGhtNGKXXdT2+UIhsNcbgY6LoflRoKVHBtF62GhH5wpYgInuCaWvY9O3o4dhM5rNxJQiqtw0dz8f3ifPc+kEirVYwfD9Ub4eq9dqJQ0FCafuBuqUaPafrqYi94wWJCw1PlZIORX+Ue9f3A5wo2h+NxVeZBqLjklkFolumSR+kqascvElbjkb1CzpKOhDfmt3ED110oTH4VnAU8YkiT1C97Qvqdi/JW8KDtq0pMIFO2DyapqoiZrYgOu4HAUXboz8RCa+K8bCFgrxYp/gPjEyQG5pGPm0khLdFIW1QCH3uUX8+bZJPmeN250kV5rJwKYz6XIZXxnL6SLl9cdn7tN1D2u7E8MqYXpm024PhldEDH08zw8wpYfYUI42vp/H1TV88CQpd09ANbbOZYqK0jW5QvUtru14cnIl+HqLv0cG/KfU+6zW2Gr36nR0JZ43q9+lwFUyTIj8KilXv8NYK9+pSifjBfUm7TrykVtDruoZlVH+DhKmHiGxhxGiaFnr3IDOJcgf7fmSZUcLa9dRFgOsHoedRCXPXq+53veodgYrrK4+s7WJ71S/3wbacSLwnv9BrvZNQ72teBeCjiUqhjSa0CEWWmujLN3kLmMRzVC9Map/b9ZVvNWPpZEyDtKUrsWYaW11sxfX9+D3Qo//z8O6KMPHomhZHmTeH5wcU7Vrh3T9IjPdXNi3IvSDYYssKKO9xLMDT5qB1I17PpyfOR66i1BnKzKjp13w39I33hpM2e9UETrublNsXRtArpEMfueY7oGlx2sJIhEcXBL5mTfoo82RC0xJpG8dQpUTVR6tznaoWmUio+0F1fxz4wK85Phgk8AcHiYa8Hur45iMrKNX0kPE6kQCvRvAj+0zaUIEgy6h63ePt8Pt5NBNbhbFFRLaw3aDrGqnw2yQ7wnRdg0mK76Qtx/b8MJJem19X+Q+rkerI3hJ9WSc9iJGlxRhUnU4LJx/pWq1w9+v8IER9oC4airZHd8mhs9+m7HiUXY+O/gqVcNx6GCFNmzppSw8jRdGdAT++OFFiPXw/NRVFMXQ9nPwUhLdz1U9JdCvXNNSkpeQXfpRdoFppT2w5E4mha2FObws2kVkFhkbII4uKWvfUdsVloKKOqZfuEKBoe2rC52YmdUJoW0mI8HxCiMd9KZN82Dfed24C3cRONWGnmhgYtE/3HWUzcasTOFVGlT7SdiKDijeA7jjK3uI7QJCYvBmJ7xReuD4WOcWFTaNNkK1mSNAkkWhgOLEehP552/Nif7vnVy2XGsTfrbEtMvbM60Mi5dWJp7XR9zgPfJ0MNTUW0+Gi7zXzsEisS/pJEJEtCHUxDTXxZiJtOVvDkAl24Xp30aFzwKbi+JRdD13TSJk6uVAQpwydbMqgkFZlxqPJR9GEIz/0Clcc5c2vuD4DoS/Yju4WeD6u51NORPw938cLbTnJOI+u1YrwaHJT8nlNyTYwIYwkQh4EAWXHr0bEw89EMkKe3K64Q1MeQmhbKTl0b0HaQ4C0qdcI8nwqGRk3QkEeNWNMP0u+blFJtdT3jgc+plcKvd6l2HJiekVlTXGLKouKV44nbkZi3PBKgE4l1UTFasYzts5KKEw+an3zcc+oCAjTJyaskdWJrdUsNfHE1qAauKk3viGRdi1hoYnsNTWR+ORjtEF9aiUW3VTnl0U2x8FiPXps0u5THXftRQkBWJVu0oHNTmWXxlG/m+OHiGxB2I7Y1AQ7zw9URNJ20TVIh1aSaAb/1hJNiq2ElpuKo/zxjleN/A9eLzseFcen5Hp4no/jB1Qcn76yQ8UNqLhe+GOgqei7GYlwIxb+piHR8YlG0zSyKVXJcMZmPOSg5lYMRFHwhCCPlwlLy4CtSqfXQ33WbDo3UxgoIm3qQwT50PUxiJRrOq6ZxzXzmzxM92wMvxQK8DKGVyZtd9Iw8DIZu5OG4ir0wKViNVKxmjd7PmHHI4pkj8Xch3qR9ihFI/XsNOFxqkxAQBCmcKxnqYHqY5NzsJKWx829TohuPlSj4xmnTKPp0SQiWxCEyYChazTlLJpyYztJK4o8N2zl411PeeEHKh4DthuLsKKt/L/dxWoEvmi7dBX9MGoexBEOU1f5fWuXVZ9idKs0Th8m4nxCsAyd5lyK5tzmj40yrVSFuKfW7VpxHgn2ol0/2wpURfnmqnVGqHLoRo34zqUGCfOUQS7cn7FG5in3jRS+kcKxar07G1pfR7a8gXxpNQ3FVWq9vA7DK2NbDVSsZhyzQfzdwpgyHpH28cbvt8CtX39gMiEiWxCECcU0dBoMXfmF6xAEASUnFFKhEI8i4WVXLQdsFf2MrCtRdb2K68ae8+jWauRpr/6WRNYVqr75hGd+iI8+4a+PhHuUelMYO5KZVloLm4+S+0FAObxYiwV44qItipIXt0CU256PXfTp2oKsK6B8qvmUSS60quQSYjyXqtpXcom+etHyQDMoZmdTzM6mveU1ZOwO8sXVFEqvkiutJeN00VBchWvkqKSasc0G8XELwiRG/joFQZjUaJpGLmWSS5lsLlzueMqyUna82LoSTf5M5n2PIuGuX80sE7UoB7wXCfNw8mmUOjK5LzkZKfacB8k8vInJn1ptjvZqqWyZJDoW6InPyZZYVyI/eT0xrvq8eN5BtF6vUBCoLBR9YXYW2PxET6hGy3PJSHkYHY+EeS6VIZfek/y0fWjSBmgqryVfWk2huIq000OuvA7QsM0GbKsBxywwUWXoBUEYiohsQRC2G1Tpan2LJu0Nh1szkTPMsx7mZ3cG7XPjVJGD0kK6YZQ9FPhxNpowR7vnKwtDPDG0ziTRIKjO1Dd1jbRphJFdlZ4xZeoixkdB0k8+nS0T5bbnx3dTIkFeTApy2wu31f6SM/zt7JFGywEylk4uNZeCNY8G06VJL9NMPy1an2r0UjB9cmmLbDpNNmVhGvIZEYSJQkS2IAhCApVZZuxywEf526M87U5iAqjj+TWTRFU+92rFVscLlBc9FHBl26On7LChrxxn6kibBhlTJ20ZZEN7hWWIfWWs0TR1oZM2DVryW5Z2yPODcL6BS9GuLouJaHnRrs5BGLBVVd3hKDs+ZcemM+6xgJaw1SerOzQYHgXTp8HyKZheuO3RkGhRf4PpkdYDsX0LwhggIlsQBGEcifK3pxjdbfyirao59pUdesNy671Fh40DFUqOR9nx6CyqPOm268fV6iyjOhnUSk4OrclvLqJ8PDD0LU+HGOF4fizEk8JcRc3DZbS/onKR297wwrzkW5R8iw0OUNqyMViaEuMFw6PB9GNBXu2rivRCKNgLpocpHyFBqEFEtiAIwhQg8hvPbKzNn+z7AQOxAA9zpFdcKo4Xi7Sy68eTQV3fp2i7tZVPfVXRzghzpqfCtI5RusRoe7xKpQtVLEOnKavXTcM5HElhHkXFYyFetqmUByiXbYqOx4Ad0O9qFP3hf/6dQKfL0elyRpaJKKsnxfdQcR5t5xNCPW/4UpFQ2G6ZsiL74Ycf5uijj66779FHH+XQQw/dxiMSBEHY9ujJao7D4HrJyZ1eWFSoOkG07Cj/cF/ZobfkhtVNVUS8v6K2Hc+Pc5enwkqgUWaVZDYWXauficUyNSkwNE6MVJgbXgmj0oNT7MEp9lEuF7FLfcqW5AQMuBp9rkGfZ9Hrpej1U/R6afo8C28Td2RKvkHJNmjfskyJMXmjNiJeCO0thVCQD+4rGB55iZwLU4ApK7IjvvCFLwwR24sXL56g0QiCIEw+ogqm+c3P78P3Qx+47VEKS6OXHOULLzmqlHpv2QknbqoJmtHETi/MtuIG1UwsUYYW2/XD1ImJAkOWUVNsSET4tsEzsni5LORmYQIFgCCgzR0g7fSQcnqw3H4Mv4Lh2Rh+N6ZbxHBLVDyffkej39XjZZ9rMOAZ9LkG3UGe3iBLr5emP+wrejrBJnIvD3jq8etHKM5V5NyPhXgsyE0/FuJq6VdFvCGec2HbMeVF9u677y5Ra0EQhDFC1xMpEzdBNKHT82ttJyrDSrieyMQSWVd6yw7dRYey62E7Pv1lh45Elc9YhCcEuGRT2QZoGq5VwLUKDLBT/WMCH8O30f0Khu/Q7FVo9Svovo3lFsmXVpMtv0La6cFy+vCMDBWriZLZRH+Qpt9VorvfMxhIrPe7Bv2ePqRvc+I8jpwzMluLoQU1IrxWqNeK9qRAzxs+lr65GoWCUGXKi2xBEARh2xNN6ATIMrJMLL4fKH/woKqNg0V4xfHDbCoVlU0lCJRX3NLJmEaNGN/qUujClqPpeEYGz8hQL/FgOwdhOT3kS+vIl9ZQKL5K2u5mWvFFpgUBttVIJdOEa+S2qGqlH0DRU5HyKFo+4Bkqip4Q44P7BlwDbxPi3As0elyTHnfkEiil+UMEeD4U6bV9gwW7CPQdkSkvsi+66CLe+c53ksvleP3rX8/VV1/N4YcfvsnHbNiwgfb29pq+FStWjOcwBUEQhBB9M1k3osmcSnw79JWr650DNn1lN/SS+/SUlHXF8aoZVZT1JMymYmhx/nQrkVlFouLjg2M10W010d24J7pnkyuvI19eS37gVbL2RnLlDZheEcfM45gFHDOPp2fqim5dI/Rh+8yuK+vrEwRQ8nUGXD0U4AkhHorw/nB78P6Sv+kLRjvQ6XR0Okc4KRSqWVvyhk8uEUHPGVXhHq3njFrhntV9sbhMQaasyG5qauLiiy/mqKOOorW1lRUrVvCVr3yFo446invuuYc3v/nNwz72pptuYunSpdtwtIIgCMKWUjuZMzNkf8VV3vCBikdfxaG/7IZpDP041WHF9ao5yF2fgSijSphlBarWlJRZm0klyqYiQnx0+EaK/vw8+vPzYNrBZOxO8qW15EpryJfWYLn9FEprMLwyvm4p4W3kccw8gT5yERuhaZAzfHKGzwzcET3WC0KPeI0Ar42SR9tFr2pzGfB0ypsR6NWsLVvxmgjiyHhuUOQ8Euf1tiPRbmniQ58ItCAItpv7F93d3ey7775MmzaNJ598ctjjhotkn3766SxbtoxFixaN91AFQRCEccTxVNYUVcDFo+JW1yMx3l9x6S46VFyVa9p2gjiriu35BICpRaJbRcENXcPSVfaUKP+4oUuu8ZFiuEUydqdqlQ5y5fVYTi+W24/lFdF8D9fIhhHvPK6RnfQl490AipG/PCHIB4aI86qAj9Y35z8fLabmxxH0vOGTS0TUo2XO8OuK9NwknCzq97eDW2b+my5gzi57bbPnXb58OYsXL95irThlI9n1aG5u5pRTTuE73/kOpVKJbDZb97i2tjba2tq28ejq4/gOGhqmvl39VwiCIEwokUWkYWggvIYom8rg/NIDYaGX3pJDb9lREzj9AM8LqLh+PMnTiyt6qug4EEfICxllicmnTYmKD8IzcwyYOQZyO6uOwCft9JCuRMJ7I7nyekxvgFxlA5ZbxNd0XCObaDmCSfTbaWrQaHk0Wh6MwN4CVf95Mjpe9EKRnhTrnk6xjnh3gk1fgLiBTo+rb5UPHcAgIGcOFt/1RHr9fVnDx9gB/wQmz6dzjIgC81MholDxKvxmxW8ouSUaU400phrJWllyZo6clatZZszN/FIIgiAII6Y2m0r9HIeer7Kf2K6ynkQ5x6OId7XfiwvDdBWVd3xDX4ViRxEz9KE3hMLblImatWg6lVQLlVQLvewKgO7ZpO1OMnYHGbuLTGUjabsL0yuRcboxy2vRfRdXT8Wi2zWyeEZ9j/dkJuk/35oQoO1rsUgfiEV6fWFerLPf3YxI99Doc036Rua+qSGt10bHB4vx7KC+wevZKVi4aLsS2V1dXdx9990ccMABZDKTX5RWvArdlW7W9K/B1E1c31VlkHWLlJ4iZaiWNtJkzAxNqSYKqQJZM0vGyKilqZbRuj7Jb6cJgiBMNYxYiG/5YxzPp6Pfpr2vwsb+Cmu6S3QXHXrKDqu7SwRBQD5t0ZA2KWRMMtbIMrTsCPhGilJ2FqXsrLhP9yphLu9u0rbK6Z0tb8ByB0Lx3YXplfE1HV+38DULXzPxdRNfMwn05LY15cT4cKT0gJTu0Wx5W/X4TYn05LLoJtYT+yr+5rVHxdep+DqdW+FJj8jqoeDW5vL5nR7b+hNtI6asyH73u9/NvHnzeO1rX8v06dN5/vnnuf7661m/fj233nrrRA9vRLRkWphTmAOoSLzjO9ierZpvM+AMxOtBEGBoBpZuYRlWvEzpKSzdIp/K05hqjEV41sxi6ia6ptdvDO0zdVMJfD01Je4ICIIgTDYsQ2dWU4ZZTSrgEwQB3UWH9v4KG/sqrOsts6GvQn/Z5eXOASqOyh5h6mFJ+9ADnjJ0rNATboUe8B35e9k30pSMNkqZRLw38LHcftJ2D2mnm5TTQ7rSheX2YfgVdN9FD1xM30HziuiBG/cR+OoUmolrpHGNpAd8x3mfRyvS3QBKNWLcqBHtRU+nFK9H+2qFuhds/v0u+QYl30DHxNL8rRrrtmTKiuz99tuP22+/ne985zv09/czbdo0Dj/8cH7yk59w8MEHT/TwthpN0+II9nB4vofjO6p5DrZvU3JLOJ6D0+fgBR5BEGDqJpZuxeJZQ305R0sdvWY76ouEtqEZsX0lY2bi6HraSGMZFmk9HY81Y2RIm2nSRlqi6YIgCIPQNI2WfIqWfIo9ZjYAULTdONLdXXTC0vYqX7jKgqLsKAMlF8cNC/v4akKmTpiq0NBIhRU9U1HKQl3fscrYazqO1YhjNdLP3JpdumerypV+BcOLlmUM3w6Xqt9y+8NKlwOhF7xEoOk4Zi4U3rlhUw0Kyo/eYPo0mFsnfIMAnECrEd6bWvecypT4r5iyIvvyyy/n8ssvn+hhTAiGbmDoBpk6qa2SuL6L4zv4gU8QBGpJQBAE8dLHj7d938fFxfM93MDF9V28wMP13djrHgnwSISbuompmXGfpVvkrBwFq0DaSJM207EAzxiZqkjXrZpovAhzQRB2NHIpk/mtJvNb8zX9nh9QdlQ5+5LtxRlRSmFfOSzk0xvmCI9SE5ZsD8f3ccK84a6v8lVEmVCSKQqTKQu350mZvpHCN1I4NGz2WMMrkba7yNhdpO1OsuV20nYXllskXVqD6ZXxdAvHyOGaeTw9RaAZYdMJNLH8bC2aBilty6PpKrvINhjYKJmyIlvYPJHwHUv8wFfiOyHEXd+l4lXod/rVdthPAAEBlm7FAjwp0A1NXSwYmhFHwzNmpmqDCVskzAcvI7G+I986FQRh+8PQNfJhVpLNUZuasCrGy4nWX3HpLbvhBE01gbO/4obrKuASFfGJhbihx5HC6DtWC/+JvnGT/ZpG4nFT8zvZM7IUs1mK2Tlxn+kOqMmXlU4ydhfZygZSdg+mVyTt9KAFHlrgqyWqKqlCI9B0/IQA9zULX0/hGSk8PY2npyZ9WkJhdIjIFkaErunKyrKFF+xBEMRC3PGdWIBX/Aqe7+EFYfM9/MCPrS6g0mBFIjwS53HTqpHzrJUlb+arwjsU6UkRb+nWkHNF+03NjPdLRF0QhKlE2jRImwZN2U0XbwmCgLKjivKUbJWeMLneV3bi6pl2mCUl0otBGDCBMElhoLbiIhsB+EEQZ17RNDWuTKLsfcYypmTU3DXzuGaegVxoQwkCLLeXjN2F4ZVjb7fuO+iBE2476J4T+sGVPUUP/PAYm5TTq+wqvg2BT6CZeHpKNSOFHwpwT09v9/YUL/Bx8LBxcQIPnwAPv9oCte0n+twgwKMbNIc2rzTRL2GTiMgWxhVN05ToNSyy1M9bPhyRxSUZHY8j50GlZtvzw9tLGhiaUZ3Uqdef3Bkdo2lavG5ohppEaqTI6NWIelLcJ6Pygy0vyQi85D0XBGEyoWka2ZRBNjV8hCQS4kVbVdAcLLLVktBiGAVtVb/rB3G1zd6SQ+eATdHxqDg+PWWHDX0VbFdZFi1DJ22qsWQt1VLmFAlwaBqO1YRjNW35Y4IAPXAxvDKmO4DlFVU2FHcAyxsgZfeScnvRPRs9qJByekIRXoEAPN3CM9J4ekZFwI1MGAWffALcj0WzhxN4OKhmB264rsR0JXAp4WDj4gVVAe0TEBpba9cDta4+gRoeRRo1gx67d6Jf8iYRJSBMWiIBbOgG6WHy1w4mEuZRVDxar2moZeRXj48PI+vJvngsaOh6KM7R46j4kGW4bulWbH+JbC1DRLphqSi6USvcoyi7pmnxxUL0XkzV27CCIEx+tkSIbylBEIQRcpf+ihMuXfrLLh0DNv0Vl7Lt0V20WesoC4up62RTBhlLJ5cyyVhKjE95NC20ilg4VgP1Yq+a72J6RSy3GItvy+3HcvrI2F2Y3gCGVyHl9mLY7SoKDnhaKhTgaVwjh2Pmx0R8+4GPm4we48dR56RodkMxXQlcyqFodhPRZ7cmKu2HMhp0TcNAr22ajolGmKYBPbmuhevha+t1wKYy6tc53ojIFrYrYmGOgcWmb5+OhMHiPbK4JNftwI7X3cCNLTCR/SUgiCPmhmbEoj3Zor44A0xoX0lmh0mKeVMzMXSDnJUja2TVMkzdmGyGvh38UAmCMGXQtKSvfOgk/ZLt0RtaVHpKDj1Fh46BapaV7pJNqScS3xoZy1ApDA2VNUUtq+uGrk05K0qSQDdxdJUhZejOAMMrkXL7Y+Gdcvsx7F5MeyOaVwS/hG6vQSsOYOspymaespnHMSyC0ILhx+I3smQEsfj18HECV0Wg8fDCGLJ6TBRZropmP2HlAPX/bar7xqFo1jA0nTQmZkJEGzuYJVNEtiBsAWMl3qOIeY1YT3jSHd+hHJRrM8BEWWGizDBBULMdif+okFE0WTRZ1CjKnx6Jbl3T4wuAyGtZk31m0HOkjBQ5MxTwYVrHrJklbaQlui4IwoiJIuYzG2sFeNlRpex7Eq2j36a7ZOO4AW7g43o+ZTfADTOoROXto+8yXQsFuKFyjlthWkMzzDUeifWJFOVBEOAFLm5g4wVOdek7ie1Q0gYufuDhBS5e4OBg4xkOXtYlyGTRPB3NMzA8DcMNsJxeNL8TrVKBwMXVTVUVU7fwNQ0/sv/UOOs1NI1QJmuDmgryGJpOKpTSJjpGIhAk1EdEtiBsQ3RNRx+ncspRIaOomJHjO/Q5fTgVB7vPxvNVPMLUTTS0xESmIM4EE0Xd0aiuh+NO6anYsx6tZ4wMjalG8la+JoqeMlIq3WMYaR+cTSbZJyJdEISIjGWQsQzaBolv2/Uph5lRKq5PxfHikvZq28f2lAe8FKY4LEepDMOc40XHx/GCcLsqyquRcR1dd9E1H0330HQXTfPQNA90DzQXz3eU2MUlSFgKAwKGEtSsBYGH69tU/BJOUI7Fsx+Ehopw6YV9ASr4ksjtEta20NE0FTOOtnXTRDNb0NKt6EGA5ZVIu0XSbh85Z4CUX8F0SuiBhm+kCfQcnp5G21FyqU8QIrIFYTshWcgob+WHPS7Kex4VIooeC8SWlMH4gR8Ld9uzqfgqZaPt2zieE58viqLHk08jT7leLXQUF0cKix9ZhhVbZHRNV5NXw/Q1uq6H3jzVH50ryhiTzDYTedujdUsLve4J73v0GIm+CMLUQX2/eKRMD9PwyaXBD8AHgkAjCPTqOgF+YOAHJrbr0G/bDNgOA3aFouNQtCuU3Aolx6HkVCi5Nv2VEl12Gdsr4zouju/iJi2BYc0Iz/fwNZ8g8NC1AE0jtPWp6LmuhdFgPfIPg574Og0Ij8dA18KGGa9bWvTdGe0z0EbxXRUAZcDxbGynl5TbR9ruxnT7sfwShtMNaPiaGWY1SeFpFoHYC8cMEdmCsIOxNZlPdE0nY2Y2WQDJD/y4Aqnne/EEUz/w8X0fJ3BqJp5GLWlNAWo87MNtRxcHQOxdT2aJ0TW9Jloee+Hr5WWPJqEOyhpTk4lGH3r+SKzHk1QHVVCNffSJSqvRxYUgbM8kLXGDJ6In+6LvC9uz4wv2aOn4DmW3TMktUXJLKr1r4m5bVEwtWo+/Q4LqdvI5a+bRhHf1ADRTI2VpzNAMAjS0wCBAB99Sy0BX4t038AONwNfxfA3HA9vz8fwA31ep6PyAcDtQfmU/wEsEuA1deccNTauu61roX9bQdW1cEoZ4RgrPmE6Z6RCA6RVJOb3VDCfuQFgBs0TK70HzPXzdxNctPE2Jb1+3QL66RoyIbEEQxgRd00mb6S3OBDNWKG9jeIvV94f8sEY/5vU88Mm87EAswuNoO1rtclDGl+T6kLsCWiyxwwIe1WOiSaumYcZ52qOsMskLhMFifvD64Amwg48RW872R1wQLKj9DA+bTSmZQSl5DOriN7rojYRn9HcU9cfzPvBr5oAMHkMkYF3fraksHJ+DQcs6j0sK4Hii96CL5eH+rpIXuFF/Wk8PnWCuj+HfQwCuX/WFOwmPuOtXrSmuH+C4PpXQ3uL5AZ6vJg7aTrStxHn0bRQJcFPXYg+5pesYujY6sauBa+ZwzVy1y/cwvRKmV1RLt4Tl9oVl6G0sp4jhOwRo+LpBoJlhkZ1q8zWTQKwnQxCRLQjClEbTNCVYMbe4SFI9kj/8cZSdqqgYLBAClAc+jqglJhMlo+816wn/++DniCP0CT98PXE/XO732EqDUfuY8CIhjtZr1pCCTfXsM8O9hmgZjSGZXjIeYx1bUL1xx3nqqXOeQZl1ou3h7hokJwvHk4KpZvepmdgbLpMCNRaqofiMIqfJdJ7xGNFqLsYG59yPxlo3mps4d70LQ8d3VIaiUHQmo72O79SI2+Rnz48yCvtBdb3OBOrBE5yj9yh5XPQZ1DQtaStW4k6lKR4ibOP/i8T/TfL/X9Nq9xu6QSq0RyQvGKfUBaEGpqFjGrCl8+H9UITbXuQXj8S5j+2qdccLqLgeFTcU6r5PpRIGC/zIR66Fz6285Jauqcmc+sjfu0A3cPQCjlVIdAYYfkUJbq+IEYpvwy+HRXU8tKgIj++h4aH7HkFY6TLQjFCQG6EgN5UQ14wdKiIuIlsQBIHaDDKThWQ0cFM53yPB5fneJm05g6OTSdtNgBJVSYEfM2gibLW7OoE22h4spmoijUnxVUekDRbWNZHKOncEIjGma/oQK0H0mmom9g6yJUXiOSk8h4hxAnxfHRfNEahnAarpIxTZ1F5EDT530i6VFOLJ9xONuoW0ku/h4IuOZBrQeu93csw150msC+ODrmukdI2Utfmor+erKpplx4srcZYdP67c6YRC3XY9imE0PBLhmlbHnqJpGEZ1e5OCXNNU0RsjQ4WW2l2+i+E76L6D4dtogRNu2+i+g+lVMPwyWuCh+y6G76JRQfPVNgS1QpwwMq4bBFTL0G8PYlxEtiAIwiRlsPic7AyOJteLHg8Rs4moaixqg2pUtp5QrlknEflPTuAdLMq16oVDUlTWCNB6kdiE6NzU6xocEQZqJvRu6tzR+nB3FYQdE0PfRHGgABxPZVypuAG2E0W+VfTb9jzKtocTecZD+0rZ9ZVVxQ/wq8mkYtFdFeBgaLpa6lXPOKic3q5uwqaqOAdBVXgHDoZnx+u672B4FUyvhB64aIGH4XtoXgXN99Hw0MILWzQI0GPhrZa6qoY5BRCRLQiCIIwJsTd9O4hACcKkRgPL1LFMnYZNHOaF1pQobaFTs1R+8SgNohNP5FQTNyuehxeE2wlRDqEo1wg979QI9CiK7msWupka/vsgQIluz8YIxbeKiruhFcUNy9Hb6H4FLfDQAh898GIbCpM8E4qI7AnG9V3lsfO92okbgiAIgiAIo8AwNLKGwZZMWPF9lBj3g9qlV932Ep7xwdlVvCDAcfw4s0oQZluJxxIL82pkXBW0yaDrGQxT+//t3X1wVNXdB/DvvfuaF0kgBOPia0VF3mTacZq2VmjxBSkpIU6sTjsyMIUppK1ULVBtJ0HAdmw7lepo6ygFBqFKCTjS2DcDdjqTcUrRqVqkpZYWdRBIBPLCbrJ7z/PH7rk592WTXbib3c3z/czsZPfcc+89m5Ps/s6555xrLouoIdmbbhJIBt6p4Lvr3EnEEv1IlE3w/pfmIQbZefbi4RfRGe10pKcbr5huskkm2x3jI7P56cE29dKtvUGRyTEApD2n4xhDHNtMczmu/RxuZR4uj/2cjuPb8qn7pyvLkM9dzmseG4OX0ImIKHfclhu1D2myD3ly5FPnFtifDzFsaqh90m6zlc9xXJmmCcCfzKMHgKAQCKS2x1OrpCQSyZ9xIzkcJS5XUEkNTUkIw5zgaaR6x424nKsgH4MTyA2zrDJIT5ZFAwBNIG7EMLFkKlDgw6sYZOeZOmnInm5ONHLPQpQVe9BtbySYeeyvbfu4vvbyOMknjmOlyzdUOSx5lfNlnO5y7mHTFfYGTtbbbe/TLY9regb5h9uWrozD5s/gmCMl3edr2vwukzszPaYlXaRJHya/Pa/jtbjA7YMnynib5bktiLSf07Gf27Fcfjdquj3NrSzDrqVvD2LdXg9zHLd9hjsvjSQN14VvQFmIw0VoCDOrZ+Js/1lcFLzI/Cd2TAjK4Ge6CUZy9nza/WGd4T5ka1bZllFamjyW8ijbKbfsXwzKBiIiooJmv1o9LVKBMeEM107MEwbZeTZ1/FSci59DpDyS76LkndtlrEwDdNfGga3nwT7z3x7gu54rXRmyeG4/vlu+dGV27Jfu8h6cvSrDrXPsdv6MXw9zvgs5Ttq0NPu7pg1zXNdj245lT0+7n3Cmu+2bdrtL2dy2u+UZKq9repr3kU7aPGmTC6/FlrZnPW1yBr37WV41SJvucpXgQq92nPf2NHkyvTqUzZWhTI8/1LFzchVNHbpnv0pmG6JnyZvm+BldPcxw6J9b+cxwM4N91HMNt/+Q5x5uSGaWeYcbTqruq+qKdiEWL/wVRhhkU8Gwj1MmIiIiKlaFPWKciIiIiKgIMcgmIiIiIvIYg2wiIiIiIo9xTDYREWVFrkgEDDPBN8P1f932kzKd1JlNeRyv00x0lhNhBQQ0WG+PLm/J7niktmWy9KH9PQw3udAt3XWiWIaTx4gotxhkExEVqHTLYVq2pQsSMwgcZR5DGOYjIRJIiIT5XKbL/czATV1NAEOsvjDUjZgA1yBQPa46CVoNMO3U4FJP3SpOT12szfYmVJqWDKh9ms8Mrg1hYMAYMH8vAgKGYcCA8rszEhgQA+aSqvbyZUKtF3u6+dyl8eK66pJtm708AsJsNMg6lc/VhoNP8zkaE25pOnT4dB+DeqIUBtlEROdBCGEJQs3A1HAGqZafxmCQpgbEMuiR1OBPT93VzLFUVmq7WyArX5v7poIeHbp1uSxo8Gk+BPRAMnDSkwGUT/Mh5Ash6Asi5A8hoAcQ0APwa374dJ95h1nZa2svm64NnkfmleWxL91lBnlD9LxaAng1XclnP7bltUua+dz+eogAUdZxXMTNuk6IhPk8bsTN+nYr/3DUnnbZsAFsPfXK3456nwP5t2h5LoSlISDLL/8eZXkHjIFkI8EYsPxdm42K1N+72pCwN8TUh2yQyfLLQFzTkn9vjkaZS31a6j3VAPDpPjPAl8/Nhz4Y+BMVAgbZRFR07IGF202Z7DdoSnfDJvWngcFjyYDYgGEGxvILXwYQ6pe6/KJXe/n8ut+RHvANBqt+Pflw6xmUgYiargagcliCPUhVg191mwyuZY+j5ViabimPfJCTrunQfToCKOybYFwIM6BOBdVxEU8G40YyKJcNDBmgq2lq4K42RgaMAQwkBtBv9JsBvdobn3ri6HGX2+X/tHrFIBqPDl55MQavwqgNEvWKSLorGfZGn6MR6/Y89f/v1/2W/52AHoBPL+y7ENLI4acoEQ1J9sh5cQlY/aK094QN9yVtCMPRe+sWLDp6MJEmr27rxVQumcveXb/uT/bk+kLJ4FgLWIJQmSegBxwBqv2LVw2oiQqZpmnJv1/4gRzFi/a7EQPOmzvZh0bFjTgGjAHz50BiwPLaTE9tk41mQyQby2YPvpFAAoOBudpbbzm37UZX9huiySFEMSOWbGikGhtxIz74e1Q+A9SrSObv2tYIUNPsn2lmY1t5bZ8jwGE6hYVBNlGRkV8a6peDWyBp7/m0HyMhEuaXlOORGOxpkh/qhjCS42OVLx71C0INUs2eZJexpbqeGruZGpqgBrQ+zYegHkSJr8S8FBz2h1HiL0HYH0ZQD5oBq9sYUXvPr9uYUfVytTlRTbdOWJPlYUBMlBvm/1aBxYTqlTF1bLv6eSavig0YA+hP9CMajyKWiCWfJ6Lmz2g8it6BXkTjUXM8P2DrrXe5y6zasy8/h82hP7KDAoY1TWlQqCzj64easJturL3L5yPgvHMmuWOQTZQj6ge120QydQyvI82WT+3dcRumID+EIWAZ8mBfBULtQfHpPnOcrRzCUOovRUAPoCxQhvJgOUr8JQj5QtA13XJJ1jFRznZZWNd1hPRk76/s1ZVBs70XWB1CEdSDCPqSgbT8yQ9xIhopcpiVlxJGArFELPlZDufkVteJrMp3h/zsjYt48qqfETc/f9U0NZ96VbDf6Ed/ot/Sw28Iw3Xibr/od3TkqIG9fZ6AOvbePpxOPpdc02yTknU9/fA7dTx+NB7NeJ5DPjHIpv9X7GMN3YLa4Sb0qGN71Q8Xt9n75uU8Zea9vbfAp/sQwOCkM7k9qAfNiWdBX9B1KIIc/2cZrzjEpCWZFvQFEfaHkw/f4E8ZVHNMIRGRN3y6D6V6ab6LAcD6HSiHuJhD9GwTet3G3wOwfAfKYTVq5448j9pzrw6/ccyFUSboyisC5ko+6vd0qhEgn1eEKgr+aiODbCoobsGiDBLVy2GWy2cu6fZZ/5LsBZYz0dXWsnwE9aDrsAO1l1UdrqDOercH1nIJMDUgdptgxklnRESUa+p4+5AvlO/ipCUD/oHEgGWsuxzSGDfi0KBhQumEfBd1SPwmJwDJ4Fb+IZ/Pyg32Vqo8JuB+Ewp7b6skLxf5NJ+l59cSvCqrJeh6cpa/fX1Xn+ZL9tb6wggHwoPDImzDI+RDDp2Qwbc6xEH+JCIiotzz6T744CvohkAmGGQXgDOxMxgwBqyrIdhWRrAvIWQfx2SfmaxuV1drMGdAK5eBZD6/Pjhu1m3inBnsqr22tjV3ZRnVskqynDr0ZI+wL4CwHjYDXhnomr2+qbG6jrFZum24hcuyaZy0RkRERPnEIDuPwr4wqsJVCOpB6zglOYNZmWRgQFnuyDbWabgeZBk4B/UgSv2l8OnJ1mGpv9QcgyuXKQv5QvDrftfhEunu+pWuYQAoN4dQGgK8WQARERGNdgyy8yjoC2LhNQstS/RYhmTAumSPffgGAMcNNNyWHvJrfksQLSfREREREVFuMNLKM3n3MCIiIiIaPRjdERERERF5jEE2EREREZHHGGQTEREREXmMQTYRERERkccYZBMREREReYxBNhERERGRxxhkExERERF5jEE2EREREZHHGGQTEREREXmMd3xMicViAIAjR47kuSREREREVGhkjChjxuEwyE45duwYAKC+vj6/BSEiIiKignXs2DF88pOfHDafJoQQI1Cegnf69Gm89tpruOyyyxAKhTw99pEjR1BfX489e/Zg0qRJnh6bCgPrePRjHY9urN/Rj3U8+uW6jmOxGI4dO4ZZs2ahsrJy2PzsyU6prKzEggULcnqOSZMmYerUqTk9B+UX63j0Yx2Pbqzf0Y91PPrlso4z6cGWOPGRiIiIiMhjDLKJiIiIiDzGIJuIiIiIyGMMskdAdXU1mpubUV1dne+iUI6wjkc/1vHoxvod/VjHo1+h1TFXFyEiIiIi8hh7somIiIiIPMYgm4iIiIjIYwyyiYiIiIg8xiCbiIiIiMhjDLJzqKenBytXrkQkEkE4HMbMmTPx61//Ot/FovPQ3t6OJUuWYPLkySgrK8PEiROxYMEC/O1vf3PkPXjwIG655RaUl5ejsrISDQ0NeO+99/JQaroQzz77LDRNQ3l5uWMb67h4/eUvf8G8efMwduxYlJSU4JprrsG6desseVi/xeuNN95AfX09IpEISktLMXnyZDzyyCPo6+uz5GMdF77u7m6sWrUKt912G6qrq6FpGlpaWlzzZlOfTzzxBCZPnoxQKISrrroKa9euxcDAQE7eA4PsHGpoaMCWLVvQ3NyMV155BTfeeCPuuecebN++Pd9Foyw9/fTTOHr0KO677z60tbVh48aNOHHiBGpra9He3m7me/fddzF79mz09/fjxRdfxKZNm/DPf/4Tn//853Hy5Mk8vgPKxgcffIAHH3wQkUjEsY11XLy2b9+OWbNmoaKiAlu3bkVbWxtWr14NdZEt1m/x+sc//oHPfvazOHr0KB5//HHs3bsXd999Nx555BHcc889Zj7WcXHo7OzEM888g1gshvr6+rT5sqnPDRs24L777kNDQwN+//vfY8WKFXj00UfR1NSUmzchKCd++9vfCgBi+/btlvRbb71VRCIREY/H81QyOh8fffSRI627u1tcfPHFYs6cOWZaY2OjGD9+vDhz5oyZdvToUREIBMSqVatGpKx04ebPny/q6urEokWLRFlZmWUb67g4vf/++6KsrEwsX758yHys3+L18MMPCwDiyJEjlvRly5YJAKKrq0sIwTouFoZhCMMwhBBCnDx5UgAQzc3NjnyZ1uepU6dEOBwWy5Yts+y/YcMGoWmaeOeddzx/D+zJzpHdu3ejvLwcjY2NlvTFixfjww8/xOuvv56nktH5mDBhgiOtvLwcU6ZMwbFjxwAA8Xgce/fuxZ133okxY8aY+a644gp84QtfwO7du0esvHT+tm3bhtdeew1PPfWUYxvruHg9++yz6O3txerVq9PmYf0Wt0AgAACoqKiwpFdWVkLXdQSDQdZxEdE0DZqmDZknm/r83e9+h2g0isWLF1uOsXjxYgghsGfPHk/LD3C4SM68/fbbuP766+H3+y3pM2bMMLdTcTtz5gwOHjyIqVOnAgD+/e9/49y5c2Ydq2bMmIEjR44gGo2OdDEpCydOnMDKlSvxox/9CJdeeqljO+u4eP35z3/GuHHj8O6772LmzJnw+/2YMGECvvGNb+Ds2bMAWL/FbtGiRaisrMTy5cvx3nvvobu7G3v37sUvf/lLNDU1oaysjHU8ymRTnzLumj59uiXfJZdcgvHjx+ckLmOQnSOdnZ0YN26cI12mdXZ2jnSRyGNNTU3o7e3Fww8/DGCwTtPVuxACH3/88YiWkbKzYsUKXHfddVi+fLnrdtZx8frggw/Q19eHxsZGfOUrX8Gf/vQnfPe738XWrVsxb948CCFYv0XuyiuvREdHB95++21cffXVGDNmDOrq6rBo0SJs3LgRAP+HR5ts6rOzsxOhUAhlZWWueXMRl/mHz0Lna6jLHMNdAqHC9oMf/ADPP/88nnjiCXzqU5+ybGO9F6ddu3bh5ZdfxhtvvDFsPbGOi49hGIhGo2hubsaaNWsAALNnz0YwGMTKlSvx6quvorS0FADrt1gdPXoUdXV1uPjii/Gb3/wG1dXVeP3117F+/Xr09PTgueeeM/OyjkeXTOtzpOudQXaOVFVVubaKurq6ALi3uqg4rF27FuvXr8eGDRvwzW9+00yvqqoC4H6VoqurC5qmobKycqSKSVno6elBU1MTvvWtbyESieD06dMAgP7+fgDA6dOnEQgEWMdFrKqqCv/6179w++23W9LvuOMOrFy5EgcPHsSCBQsAsH6L1Zo1a3D27Fm8+eabZm/lzTffjPHjx2PJkiW49957UVNTA4B1PFpk85lcVVWFaDSKvr4+s0Gt5rV3mHmBw0VyZPr06Th06BDi8bgl/a233gIATJs2LR/Fogu0du1atLS0oKWlBQ899JBl29VXX42SkhKzjlVvvfUWJk2ahHA4PFJFpSycOnUKH330EX76059i7Nix5mPHjh3o7e3F2LFj8dWvfpV1XMTcxmwCMJfv03Wd9Vvk3nzzTUyZMsUxHODGG28EAHMYCet49MimPuVYbHve48eP49SpUzmJyxhk58jChQvR09ODXbt2WdK3bNmCSCSCT3/603kqGZ2vdevWoaWlBd///vfR3Nzs2O73+1FXV4fW1lZ0d3eb6f/73/+wb98+NDQ0jGRxKQs1NTXYt2+f43H77bcjHA5j3759WL9+Peu4iN15550AgFdeecWS3tbWBgCora1l/Ra5SCSCd955Bz09PZb0jo4OAMCll17KOh5lsqnPuXPnIhwOY/PmzZZjbN68GZqmDbkW93nzfFFAMt16661i7Nix4plnnhHt7e1i6dKlAoDYtm1bvotGWfrJT34iAIi5c+eKjo4Ox0M6dOiQKC8vFzfffLNoa2sTra2tYtq0aSISiYgTJ07k8R3Q+XBbJ5t1XLzq6upEKBQS69atE3/84x/FD3/4QxEOh8X8+fPNPKzf4vXSSy8JTdNEbW2teOGFF8Srr74qNmzYIMrLy8WUKVNELBYTQrCOi0lbW5vYuXOn2LRpkwAgGhsbxc6dO8XOnTtFb2+vECK7+ly/fr3QNE089NBDYv/+/eLHP/6xCIVCYunSpTkpP4PsHOru7hbf/va3RU1NjQgGg2LGjBlix44d+S4WnYdZs2YJAGkfqgMHDog5c+aI0tJSMWbMGFFfX++4OQIVB7cgWwjWcbHq6+sTq1evFpdddpnw+/3i8ssvF9/73vdENBq15GP9Fq/29nZx2223iZqaGlFSUiKuvfZa8cADD4hTp05Z8rGOi8MVV1yR9nv3P//5j5kvm/rcuHGjuPbaa0UwGBSXX365aG5uFv39/TkpvyaEcj9ZIiIiIiK6YByTTURERETkMQbZREREREQeY5BNREREROQxBtlERERERB5jkE1ERERE5DEG2UREREREHmOQTURERETkMQbZREREREQeY5BNRERZefTRR7Fnzx5H+ubNm6FpGg4cODDyhSIiKjAMsomIKCvpgmwiIhrEIJuIiIiIyGMMsomIRomWlhZomoa///3vaGxsREVFBcaNG4f7778f8Xgchw8fxty5c3HRRRfhyiuvxGOPPWbuG41G8cADD2DmzJnmfp/5zGfw0ksvWc6haRp6e3uxZcsWaJoGTdMwe/ZsS57u7m4sX74c48ePR1VVFRoaGvDhhx+OxK+AiKhgMMgmIhpl7rrrLtxwww3YtWsXli5dip/97Gf4zne+g/r6enzpS1/C7t278cUvfhGrV69Ga2srACAWi6GrqwsPPvgg9uzZgx07duCmm25CQ0MDtm7dah67o6MDJSUlmDdvHjo6OtDR0YGnnnrKcv6vf/3rCAQC2L59Ox577DHs378fX/va10b0d0BElG/+fBeAiIi8tWzZMtx///0AgFtuuQV/+MMf8OSTT6K1tRULFy4EAMyePRt79+7F888/j4aGBlRUVOBXv/qVeYxEIoE5c+bg448/xuOPP457770XAFBbWwtd11FdXY3a2lrX88+dOxc///nPzdddXV1YtWoVjh8/jpqamly9bSKigsKebCKiUWb+/PmW19dffz00TcMdd9xhpvn9fkyaNAn//e9/zbSdO3fic5/7HMrLy+H3+xEIBPDcc8/h0KFDWZ3/y1/+suX1jBkzAMByLiKi0Y5BNhHRKDNu3DjL62AwiNLSUoTDYUd6NBoFALS2tuKuu+7CxIkTsW3bNnR0dOCvf/0rlixZYubJVFVVleV1KBQCAJw7dy7bt0JEVLQ4XISIiLBt2zZcddVVeOGFF6Bpmpkei8XyWCoiouLFnmwiIoKmaQgGg5YA+/jx447VRYBkzzR7pYmIhsYgm4iIMH/+fBw+fBgrVqxAe3s7tmzZgptuugmXXHKJI+/06dOxf/9+vPzyyzhw4AAOHz6chxITERU2DhchIiIsXrwYJ06cwC9+8Qts2rQJn/jEJ7BmzRq8//77WLt2rSXvxo0b0dTUhLvvvht9fX2YNWsW9u/fn5+CExEVKE0IIfJdCCIiIiKi0YTDRYiIiIiIPMYgm4iIiIjIYwyyiYiIiIg8xiCbiIiIiMhjDLKJiIiIiDzGIJuIiIiIyGMMsomIiIiIPMYgm4iIiIjIYwyyiYiIiIg8xiCbiIiIiMhjDLKJiIiIiDzGIJuIiIiIyGMMsomIiIiIPMYgm4iIiIjIY/8H4e1STfs5spcAAAAASUVORK5CYII=", + "text/plain": [ + "
" ] }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Logistic Regression\n", - "\n", - "To further demonstrate the `plot_predictions` function, we will implement a logistic regression model. This example is taken from the marginaleffects `plot_predictions` [documentation](https://vincentarelbundock.github.io/marginaleffects/articles/predictions.html#prediction-type-or-scale). The internet movie database, http://imdb.com/, is a website devoted to collecting movie data supplied by studios and fans. It claims to be the biggest movie database on the web and is run by Amazon. The movies in this dataset were selected for inclusion if they had a known length and had been rated by at least one imdb user. The dataset below contains 28,819 rows and 24 columns. The variables of interest in the dataset are the following:\n", - "- title. Title of the movie.\n", - "- year. Year of release.\n", - "- budget. Total budget (if known) in US dollars\n", - "- length. Length in minutes.\n", - "- rating. Average IMDB user rating.\n", - "- votes. Number of IMDB users who rated this movie.\n", - "- r1-10. Multiplying by ten gives percentile (to nearest 10%) of users who rated this movie a 1.\n", - "- mpaa. MPAA rating.\n", - "- action, animation, comedy, drama, documentary, romance, short. Binary variables represent- ing if movie was classified as belonging to that genre." + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(7, 3), dpi=120)\n", + "bmb.interpret.plot_predictions(\n", + " model_interaction, \n", + " idata_interaction, \n", + " [\"math\", \"prog\"], \n", + " ax=ax, \n", + " pps=False\n", + ");" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Passing specific `subplot_kwargs` can allow for a more interpretable plot. Especially when the posterior predictive distribution plot results in overlapping credible intervals." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABRsAAAHUCAYAAAC6Sv/CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACUD0lEQVR4nOzdd5ycZb3///c9vW+vyWY3nUAKHQSUjtJUsPwEPYLiEfvBzvliCX4VvhZ46LGgRxHhIHqOHukEEggElEQSUshm07M123vf2Zm5f3/c2U2WLZndTHa2vJ4P78dk7/ueaz4zkVy7772KYZqmKQAAAAAAAAA4QbZkFwAAAAAAAABgZiBsBAAAAAAAAJAQhI0AAAAAAAAAEoKwEQAAAAAAAEBCEDYCAAAAAAAASAjCRgAAAAAAAAAJQdgIAAAAAAAAICEIGwEAAAAAAAAkBGEjAAAAAAAAgIQgbASmgaeeekqGYSgjI0N9fX1Jq6OoqEi33nprUl77kksu0SWXXJKU1wYATI7S0lJ96Utf0rJly+T3++XxeFRUVKSPfexjevnll2WaZrJLTJhXXnlFhmHolVdeSXYpAIDj+PKXvyzDMLRnz55R77nrrrtkGIa2bt06iZUd9dhjj+mnP/3piNcMw9Dq1asntZ7R/OEPf5BhGCorK0t2KTiJCBuBaeDBBx+UJDU3N+uJJ55IbjFJ8qtf/Uq/+tWvkl0GAOAkeeqpp7RixQo99dRTuuWWW/T444/rhRde0Le//W01NTXpsssu0/r165NdJgBgFrrtttskSb///e9HvB6LxfTII4/o9NNP15lnnjmZpQ0aK2zcuHGjPvWpT01uQZjVCBsx4/X09CS7hBNSW1ur5557Tpdddpk8Hs9g8DjbnHrqqTr11FOTXQYATGnTtc87ePCgbrrpJp166ql66623dOedd+qqq67SxRdfrNtuu01r1qzRyy+/rMzMzGSXOqru7u5klwAA08J07KuWL1+uc889V//1X/+lSCQy7PratWtVVVU1GEpONeeff77mzp2b7DIwixA2YspbvXq1DMPQtm3bdOONNyoUCiklJUUf+9jH1NDQMOTeoqIiXXfddfrb3/6mM844Qx6PR3fffbckqbi4WO973/uUlpYmj8ej008/XQ8//PCw19u1a5euuuoq+Xw+ZWVl6fOf/7yeffbZpE11evjhhxWJRPTlL39ZN954o1566SWVl5cPu6+1tVVf/epXtWDBArndbmVnZ+uaa64ZMtT/7rvv1nnnnaf09HSFQiGdeeaZevDBB4dNS+vv79c3vvEN5ebmyufz6aKLLtIbb7wxYn21tbW6/fbbNXfuXLlcLs2fP1933333kE64rKxMhmHoxz/+sX74wx+qqKhIXq9Xl1xyifbt26f+/n7deeedys/PV0pKim644QbV19cPeZ2RplH39fXpe9/7npYtWyaPx6OMjAxdeumlev3118f7MQPAlDBb+7z7779f3d3d+tWvfqVQKDTiPZdccolWrVo15Nz+/ft18803Kzs7W263W8uWLdMvf/nLIfcMTFf+05/+pLvuukv5+fkKhUK64oortHfv3mGv8+KLL+ryyy9XKBSSz+fThRdeqJdeemnIPQN/T1u3btUHP/hBpaWlaeHChZKkLVu26CMf+chgX1dUVKSbbrppxL4bAKaj2dpX3XbbbaqtrdWaNWuGXXvooYfkdrv10Y9+VJJUUVGhj33sY0P6p/vuu0+xWGzI8+L5eeaXv/yl3vWudyk7O1t+v18rVqzQj370I/X39w/ec8kll+jZZ59VeXm5DMMYPAaMNI06ns9/PH3ounXr9L73vU9z586Vx+PRokWLdPvtt6uxsXF8HzRmBEeyCwDidcMNN+jDH/6wPvOZz2jXrl369re/rZKSEv3zn/+U0+kcvG/r1q3avXu3vvWtb2n+/Pny+/3au3evLrjgAmVnZ+s//uM/lJGRoUcffVS33nqr6urq9I1vfEOSVFNTo4svvlh+v18PPPCAsrOz9ac//Ulf+MIX4qrRNE1Fo9G47nU44vvP7/e//73y8vJ09dVXy+v16rHHHtMf/vAHffe73x28p6OjQxdddJHKysr0zW9+U+edd546Ozv16quvqqamRqeccookK/S7/fbbNW/ePEnSpk2b9MUvflGHDx/Wd77zncH2/vVf/1WPPPKIvva1r+nKK69UcXGxbrzxRnV0dAyprba2Vueee65sNpu+853vaOHChdq4caO+//3vq6ysTA899NCQ+3/5y19q5cqV+uUvfzkYjl5//fU677zz5HQ69fvf/17l5eX62te+pk996lN66qmnRv1cIpGIrr76ar322mu64447dNlllykSiWjTpk2qqKjQBRdcENfnCwBT0Wzr89atW6e8vDydffbZcbUnSSUlJbrgggs0b9483XfffcrNzdULL7ygL33pS2psbBzST0rS//k//0cXXnihfve736m9vV3f/OY3df3112v37t2y2+2SpEcffVQf//jH9b73vU8PP/ywnE6nfvOb3+jd7363XnjhBV1++eVD2rzxxhv1kY98RJ/5zGfU1dUlyeprly5dqo985CNKT09XTU2NHnjgAZ1zzjkqKSmZ0qMzAWA8ZltfddNNN+nLX/6yfv/73+v6668fPN/S0qInn3xSN9xwg9LS0tTQ0KALLrhA4XBY//f//l8VFRXpmWee0de+9jUdPHhwcGmoeH+eOXjwoG6++WbNnz9fLpdLO3bs0A9+8APt2bNncFr3r371K33605/WwYMH9fjjjx/3vcb7+Q+Ipw89ePCg3vGOd+hTn/qUUlJSVFZWpvvvv18XXXSRdu7cOeT/E5gFTGCK++53v2tKMr/85S8POf/HP/7RlGQ++uijg+cKCwtNu91u7t27d8i9H/nIR0y3221WVFQMOX/11VebPp/PbG1tNU3TNL/+9a+bhmGYu3btGnLfu9/9blOS+fLLL49Z68svv2xKiusoLS097nt/9dVXTUnmnXfeaZqmacZiMXP+/PlmYWGhGYvFBu/73ve+Z0oy161bd9w2B0SjUbO/v9/83ve+Z2ZkZAy2t3v37jE/71tuuWXw3O23324GAgGzvLx8yL0/+clPTEmDn2NpaakpyVy1apUZjUYH7/vpT39qSjLf+973Dnn+HXfcYUoy29raBs9dfPHF5sUXXzz49SOPPGJKMn/729/G/Z4BYKqbrX2ex+Mxzz///GHnB/qqgePYPuTd7363OXfu3CF9hWma5he+8AXT4/GYzc3NQ+q85pprhtz3P//zP6Ykc+PGjaZpmmZXV5eZnp5uXn/99cNqWLVqlXnuuecOnhv4e/rOd74z5vsyTdOMRCJmZ2en6ff7zZ/97GeD5wfqOt7nDABTzWztq0zTNG+55RbT6XSadXV1g+d+/vOfD/lZ7M477zQlmf/85z+HPPezn/2saRjG4GcxkZ9nBvrFRx55xLTb7YN9nWma5rXXXmsWFhaO+DxJ5ne/+93Br+P9/OPtQ98uFouZ/f39Znl5uSnJfPLJJwevPfTQQ3F/3pi+mEaNaWNgSPqAD3/4w3I4HHr55ZeHnF+5cqWWLFky5Nz69et1+eWXq6CgYMj5W2+9Vd3d3dq4caMkacOGDVq+fPmwtQFvuummuGo866yztHnz5riO/Pz847Y3sD7jJz/5SUnW8Pdbb71V5eXlQ6Z0rVmzRkuWLNEVV1wxZnvr16/XFVdcoZSUFNntdjmdTn3nO99RU1PT4LTlgc9ztM/7WM8884wuvfRS5efnKxKJDB5XX321JOvzPNY111wjm+3oPzvLli2TJF177bVD7hs4X1FRMep7WbNmjTwez+BnAwAzyWzs80Zy4403yul0Dh5f+tKXJEm9vb166aWXdMMNN8jn8w3pg6655hr19vZq06ZNQ9p673vfO+TrlStXStLg9ObXX39dzc3NuuWWW4a0F4vF9J73vEebN28eHL044AMf+MCwmjs7O/XNb35TixYtksPhkMPhUCAQUFdXl3bv3j2hzwEApqLZ2Ffddttt6u/v13/9138NnnvooYdUWFg4OPp9/fr1OvXUU3XuuecOe2+maQ5udhbvzzPbtm3Te9/7XmVkZAz+DPfxj39c0WhU+/bti+tzeLt4P/8Bx+tDJam+vl6f+cxnVFBQIIfDIafTqcLCQkmi/5uFmEaNaSM3N3fI1w6HQxkZGWpqahpyPi8vb9hzm5qaRjw/0KEMtNHU1KT58+cPuy8nJyeuGgOBgE4//fS47j3eMP2Ojg795S9/0bnnnqusrCy1trZKsqYrrF69Wg8++OBguNjQ0DA4NXo0b7zxhq666ipdcskl+u1vfzu4xuITTzyhH/zgB4MLNQ98FqN93seqq6vT008/PeqQ+Levz5Genj7ka5fLNeb53t7eUd9PQ0OD8vPzh4SXADBTzLY+b968eSOuaXjffffpW9/6liTpnHPOGTzf1NSkSCSin//85/r5z38+Yptv74Pe3oe53W5JRzcqqKurkyR98IMfHLXO5uZm+f3+wa9H+pxvvvlmvfTSS/r2t7+tc845R6FQSIZh6JprrpmWmyIAwGhmW18lSe985zu1ZMkSPfTQQ/rqV7+qt956S1u3bh1cx3Kg5qKiomHPfft7i+fnmYqKCr3zne/U0qVL9bOf/UxFRUXyeDx644039PnPf37C/Uq8n/+A4/WhsVhMV111laqrq/Xtb39bK1askN/vVywW0/nnn0//NwsRNmLaqK2t1Zw5cwa/jkQiampqGvYP37EL4Q7IyMhQTU3NsPPV1dWSNLh+UkZGxuAPG29/7Xhs2LBBl156aVz3lpaWjtgJDfjTn/6k7u5uvfHGG0pLSxt2/fHHH1dLS4vS0tKUlZWlqqqqMV/vz3/+s5xOp5555hl5PJ7B80888cSQ+wY+z9E+72NlZmZq5cqV+sEPfjDia050JEs8srKy9Pe//12xWIzAEcCMM9v6vCuvvFK//OUvtWXLliHrNg5suvJ2aWlpstvt+pd/+Rd9/vOfH/GekX44HcvA5/Lzn/9c559//oj3vP2H27d//m1tbXrmmWf03e9+V3feeefg+b6+PjU3N4+rHgCY6mZbXzXgk5/8pO6880698cYbeuyxx2Sz2XTrrbcOXo/3vcXz88wTTzyhrq4u/e1vfxscJShJ27dvj+s9jSbeGuNVXFysHTt26A9/+INuueWWwfMHDhw4oToxfRE2Ytr44x//qLPOOmvw6//5n/9RJBIZtkPxSC6//HI9/vjjqq6uHhKAPfLII/L5fIM/VFx88cX6yU9+opKSkiFD9f/85z/HVePAMP14HC+Ie/DBBxUMBvXEE08M63y2bNmir3/96/rjH/+oL3zhC7r66qv1ne98R+vXr9dll102YnuGYcjhcAwu4CtZv4k6dgqApMHPc7TP+1jXXXednnvuOS1cuHDEQPRkuvrqq/WnP/1Jf/jDH5hKDWDGmW193pe//GU99NBD+vznP68XX3xRwWBwzPt9Pp8uvfRSbdu2TStXrhwcEX8iLrzwQqWmpqqkpCTujQfezjAMmaY5OOJjwO9+97u4NygAgOlitvVVA2655RZ961vf0m9+8xs99dRTuvzyy4cEgZdffrnuvfdebd26VWeeeebg+UceeUSGYQyGn/H8PDMQ1B7br5imqd/+9rfD7nW73XGPIIz384/XSHVK0m9+85txtYOZg7AR08bf/vY3ORwOXXnllYO7na1atUof/vCHj/vc7373u4PrC37nO99Renq6/vjHP+rZZ5/Vj370I6WkpEiS7rjjDv3+97/X1Vdfre9973vKycnRY489pj179kjScUfQBYPBce2kOZri4mK98cYb+uxnPztieHjhhRfqvvvu04MPPqgvfOELuuOOO/Tf//3fet/73qc777xT5557rnp6erRhwwZdd911uvTSS3Xttdfq/vvv180336xPf/rTampq0k9+8pNhHcKyZcv0sY99TD/96U/ldDp1xRVXqLi4WD/5yU8UCoWG3Pu9731P69at0wUXXKAvfelLWrp0qXp7e1VWVqbnnntOv/71rzV37twT/jxGctNNN+mhhx7SZz7zGe3du1eXXnqpYrGY/vnPf2rZsmX6yEc+clJeFwAmw2zq8yRrBOOf/vQn3XTTTVqxYoU++9nP6swzz5Tb7VZ9fb3Wrl0rSUP6oZ/97Ge66KKL9M53vlOf/exnVVRUpI6ODh04cEBPP/304JpY8QoEAvr5z3+uW265Rc3NzfrgBz+o7OxsNTQ0aMeOHWpoaNADDzwwZhuhUEjvete79OMf/1iZmZkqKirShg0b9OCDDyo1NXXcnwsATGWzra8akJubq2uuuUYPPfSQTNPUbbfdNuT6l7/8ZT3yyCO69tpr9b3vfU+FhYV69tln9atf/Uqf/exnB9evjOfnmSuvvFIul0s33XSTvvGNb6i3t1cPPPCAWlpahtW1YsUK/e1vf9MDDzygs846SzabbdT3Hu/nH69TTjlFCxcu1J133inTNJWenq6nn35a69atG1c7mEGSuj0NEIeB3c7efPNN8/rrrzcDgYAZDAbNm266acguYKZp7XZ27bXXjtjOzp07zeuvv95MSUkxXS6XuWrVKvOhhx4adl9xcbF5xRVXmB6Px0xPTzdvu+028+GHHzYlmTt27DgZb3GYgd2Yt2/fPuo9A7ucvfnmm6ZpmmZLS4v5b//2b+a8efNMp9NpZmdnm9dee625Z8+ewef8/ve/N5cuXWq63W5zwYIF5r333ms++OCDw3YD6+vrM7/61a+a2dnZgzuEbty40SwsLByyG7VpmmZDQ4P5pS99yZw/f77pdDrN9PR086yzzjLvuusus7Oz0zTNo7tR//jHPx7y3IHdzf7yl78MOT+wQ9nmzZsHz719N2rTNM2enh7zO9/5jrl48WLT5XKZGRkZ5mWXXWa+/vrrx/2MAWAqmo193rEOHjxofvGLXzSXLl1qer1e0+12m4WFheaHPvQh8/HHHzdjsdiQ+0tLS81PfvKT5pw5c0yn02lmZWWZF1xwgfn9739/8J7R+pqBvuntn8uGDRvMa6+91kxPTzedTqc5Z84c89prrx3y/IG/p4aGhmHvoaqqyvzABz5gpqWlmcFg0HzPe95jFhcXD+tD2Y0awHQ12/sq0zTNJ5980pRkpqenm729vcOul5eXmzfffLOZkZFhOp1Oc+nSpeaPf/xjMxqNDrkvnp9nnn76aXPVqlWmx+Mx58yZY379618316xZM6wPaW5uNj/4wQ+aqamppmEY5rFxj962G7Vpxvf5j6cPLSkpMa+88kozGAyaaWlp5oc+9CGzoqJi2GuzG/XsYJimaU5etAmM3+rVq3X33XeroaFh3GtHJMqnP/1p/elPf1JTU1NCpmoBADAS+jwAwFRHXwXgeJhGDbzN9773PeXn52vBggXq7OzUM888o9/97nf61re+RUcGAJhR6PMAAFMdfRUw/RA2Am/jdDr14x//WFVVVYpEIlq8eLHuv/9+/du//VuySwMAIKHo8wAAUx19FTD9MI0aAAAAAAAAQEKMvXUTAAAAAAAAAMSJsBEAAAAAAABAQhA2AgAAAAAAAEiIGb9BTCwWU3V1tYLBoAzDSHY5AIAxmKapjo4O5efny2bj92EjoV8DgOmBPu346NMAYPoYT78248PG6upqFRQUJLsMAMA4VFZWau7cuckuY0qiXwOA6YU+bXT0aQAw/cTTr834sDEYDEqyPoxQKJTkagAAY2lvb1dBQcHgv90Yjn4NAKYH+rTjo08DgOljPP3ajA8bB4bjh0IhOjAAmCaYSjU6+jUAmF7o00ZHnwYA0088/RqLhwAAAAAAAABICMJGAAAAAAAAAAlB2AgAAAAAAAAgIQgbAQAAAAAAACQEYSMAAAAAAACAhCBsBAAAAAAAAJAQhI0AAAAAAAAAEoKwEQAAAAAAAEBCEDYCAAAAAAAASAjCRgAAAAAAAAAJQdgIAAAAAAAAICEIGwEAAAAAAAAkBGEjAAAAAAAAgIQgbAQAAAAAAACQEISNAADMNrufkWp3JrsKAAAAADOQI9kFAACASdZaIdXukBxeKXNRsqsBAAAAMIMwshEAgNmo7bBU8oTUVpXsSgAAAADMIISNAADMRqF8qbtJ2vWE1NWU7GoAAAAAzBCEjQAAzEqGlL5Qai2XSh6XetuTXRAAAACAGYCwEQCA2cpmlzIWSw17pT3PSP29ya4IAAAAwDRH2AgAwGxmd0ppC6TqbdK+56VoJNkVAQAAAJjGCBsBAJjtnB4pdZ5UvlE6+JJkmsmuCAAAAMA0RdgIAAAkV0AK5khl/5CaDyW7GgAAAADTFGEjAACweNOkaFiq3p7sSgAAAABMU4SNAADgqECOVF8iddQmuxIAAAAA0xBhIwAAOMqbKvW1S7XFya4EAAAAwDRE2AgAAIbyZUiHt0q97cmuBAAAAMA0Q9gIAACG8mdJ3Q3WdGoAAAAAGAfCRgAAMJRhk1xBqWqzFOlLdjUAAAAAphFHsgsAAABTUDBHai6VGvZKeSvHvrd+t9R4YORrhqT8M6WUOQkvEQAAAMDUQ9gIAACGs7skm0M6/KaUs1yyjTIZomGfVPw3qbfNuv/t+ruttggbAQAAgFmBsBEAAIwsmCc1H5RaSqWMhcOvt1ZKu5+SIr1S9rKR22ivtkZHLrxcsvNtBwAAADDTsWYjAAAYmcsnRSNS9fbh17oapZInrce0+aO34U2z7umoPmllAgAAAJg6CBsBAMDoAjlS/S6po/boud52adfjUmu5lLFIMozRn+/0WiMf26pOfq0AAAAAko6wEQAAjM6bKvV1SLXF1tf9PdLup6XGfVLGYslmP34bTo81lRoAAADAjEfYCAAAxubLkA5vlbqbpb3PSzXbpLQFkt0Z3/O96VLbYev5AAAAAGY0wkYAADA2f5bU3SDteUaq2CilFlqjFePlDkp97VJrxcmrEQAAAMCUQNgIAADGZtiswLB6uxTMlVyB8T/fZrd2tQYAAAAwozmSXQAAAJgGQnMlf7bkcE/s+Z5UqXG/teaj05vQ0gAAAABMHYxsBAAAx2cYEw8aJWujmZ4Wa+1GAAAAADMWYSMAADj57C4pFmXdRgAAAGCGI2wEAACTwx2UGnZLsViyKwEAAABwkhA2AgCAyeFNk7oapM7aZFcCAAAA4CQhbAQAAJPD5ZfCXVJbVbIrAQAAAHCSEDYCAIDJY3dLDXuTXQUAAACAk4SwEQAATB5futRWKfW0JrsSAAAAACcBYSMAAJg87pDU28ZUagAAAGCGImwEAACTx2a3HlvKkloGAAAAgJODsBEAAEwuT6rUuFeKhJNdCQAAAIAEI2wEAACTy5smdTdL7UylBgAAAGYawkYAADC5HG4pGmbdRgAAAGAGImwEAACTzxWQ6vdIppnsSgAAAAAkkCPZBQAAgFnImya1VUibfi0Z43xuWpG06ErJzrcxAAAAwFTDd+kAAGDyuYNSf7fU0zS+55kxqblMsjmlRZdLxniTSgAAAAAnE2EjAABIjkDOxJ7X0yIdXC+5/FLhOxJbEwAAAIATwpqNAABgevGmSZ6QtO95qWZHsqsBAAAAcIwpEzbee++9MgxDd9xxx+A50zS1evVq5efny+v16pJLLtGuXbuSVyQAAJgaAjmSzS7teVZqPJDsagAAAAAcMSXCxs2bN+s///M/tXLlyiHnf/SjH+n+++/XL37xC23evFm5ubm68sor1dHRkaRKAQDAlJFSYK37WPKk1HY42dUAAAAA0BQIGzs7O/XRj35Uv/3tb5WWljZ43jRN/fSnP9Vdd92lG2+8UcuXL9fDDz+s7u5uPfbYY0msGAAATBlp86XuBmnX41LXODebAQAAAJBwSQ8bP//5z+vaa6/VFVdcMeR8aWmpamtrddVVVw2ec7vduvjii/X666+P2l5fX5/a29uHHAAATFf0a8dh2KT0RVJruVTyhNTH7AcAmKro0wBgdkhq2PjnP/9ZW7du1b333jvsWm1trSQpJ2foTpU5OTmD10Zy7733KiUlZfAoKChIbNEAAEwi+rU42OxSxmKpfo+0+2mpvzfZFQEARkCfBgCzQ9LCxsrKSv3bv/2bHn30UXk8nlHvMwxjyNemaQ47d6x///d/V1tb2+BRWVmZsJoBAJhs9Gtxsjul9AVS9TZrl+poJNkVAQDehj4NAGYHR7Je+M0331R9fb3OOuuswXPRaFSvvvqqfvGLX2jv3r2SrBGOeXl5g/fU19cPG+14LLfbLbfbffIKBwBgEtGvjYPTI6XMk8o3Sk6/tOhyyZb0FWMAAEfQpwHA7JC078Avv/xy7dy5U9u3bx88zj77bH30ox/V9u3btWDBAuXm5mrdunWDzwmHw9qwYYMuuOCCZJUNAACmMndACuZIh16WKjcluxoAAABg1knayMZgMKjly5cPOef3+5WRkTF4/o477tA999yjxYsXa/Hixbrnnnvk8/l08803J6NkAAAwHXjTpGhY2veC5PJLeauSXREAAAAwayQtbIzHN77xDfX09Ohzn/ucWlpadN5552nt2rUKBoPJLg0AAExlgRyprVLa84w1pTpzUbIrAgAAAGaFKRU2vvLKK0O+NgxDq1ev1urVq5NSDwAAmMZSCqSmg1LJE9Kqj0gpc5NdEQAAADDjsWo6AACYudLnS91N0q4npK6mZFcDAAAAzHiEjQAAYOYybFL6Qqm13Brh2Nue7IoAAACAGY2wEQAAzGw2u5SxWGrYY63h2N+b7IoAAACAGYuwEQAAzHx2p5S2QKreJu17XopGkl0RAAAAMCMRNgIAgNnB6ZFS5knlG6WDL0uxWLIrAgAAAGYcwkYAADB7uANSMEc69LJUuSnZ1QAAAAAzDmEjAACYXbxpkidF2veCVL092dUAAAAAMwphIwAAmH0C2dbGMXuflRr3J7saAAAAYMYgbAQAALNTSoEU7pFKnpTaqpJdDQAAADAjEDYCAIDZK32+1N0k7XpC6mpMdjUAAADAtEfYCAAAZi/DJqUvlFrLpZInpN72ZFcEAAAATGuEjQAAYHaz2aWMxVLDXmnPM1J/b7IrAgAAAKYtwkYAAAC7U0pbIFVvk/Y9L0Ujya4IAAAAmJYIGwEAACTJ6ZFS50nlr0sH10uxWLIrAgAAAKYdwkYAAIABroAUzJUOvSJVbkp2NQAAAMC040h2AQAAAFOKN02K9kv7XpBiUckdHPm+lLmSP3NyawMAAACmOMJGAACAtwtkS+3V0u6nJcMYfj0WleacLa36/0a+DgAAAMxShI0AAAAjCeVbx0h626XGvVL7YWuEIwAAAABJrNkIAAAwfp6QFO6Sat5KdiUAAADAlELYCAAAMBH+TKlmh9TdnOxKAAAAgCmDsBEAAGAifBlST5NUX5LsSgAAAIApg7ARAABgIgyb5EmVqjZL4e5kVwMAAABMCYSNAAAAExXIkdprpYY9ya4EAAAAmBIIGwEAACbK5pAcbqnqTSkaSXY1AAAAQNIRNgIAAJyIYJ7UWio1H0x2JQAAAEDSETYCAACcCKdHisWkw9sk00x2NQAAAEBSETYCAACcqGCe1LhXaqtKdiUAAABAUhE2AgAAnChPSAp3SbU7k10JAAAAkFSEjQAAAIngz5JqdkjdzcmuBAAAAEgawkYAAIBE8KVLPc1S3a5kVwIAAAAkjSPZBQAAAMwIhk3ypEqHt0ip8yTbCN9m2V1SIGt87Ub6rI1nnJ6ElAkAAACcTISNAAAAiRLIlup3S5t/N/J1p1c65Vopb1V87YW7pJ1/lVwBacUHElcnAAAAcJIQNgIAACSKzSFlL5Ni0ZGvd9ZJe56RnH4pc9HYbUXC0p5npept1hTt9gukUF7iawYAAAASiDUbAQAAEsnmkBzukY/UeVK4Ryp5QmqrGr2NWFTav06q2ixlLJb6OqTatybtLQAAAAATRdgIAAAwmdLnS92N0q4npK6m4ddNUzr0qlT2mhSaK7l8ki9Dqt4u9bZNdrUAAADAuBA2AgAATCbDJqUvklrLpZLHpd72odertkgHX5T8mZInZJ3zZ1kBZV3J5NcLAAAAjANhIwAAwGSz2a3p0Q17rTUc+3ut83W7pL3PSS6/NZpxgGGT3EFrWvXAvQAAAMAURNgIAACQDHanlLbA2gBm3/NS4wFp99PWNOrgCBvBBHKl9sNS497JrxUAAACIE7tRAwAAJIvTI6XMk8o3Sk37pb52a4r1SOxOyeaUDr8p5Sy3RkeOpr/Xui8aHvm6yy/NPUcyjBN/DwAAAMAxCBsBAACSyR2QQnlSd7OUvnDsADCYJzUdkppLpcxRQsloRNr3glT+d0kjtWVKroAUypdS5ibiHQAAAACDCBsBAACSzZNiHcfj8kmxfqlm+8hho2lKh16Ryl+XUgqsdR5HUr9bqtlJ2AgAAICEY81GAACA6SSQK9WXSO01w69VbJIOrpeCOaMHjZK103XNdms0JQAAAJBAhI0AAADTiTdV6uuQat8aer5mh7XRjCckedPGbsOXIfU0WaElAAAAkECEjQAAANONL0Oq3i71tFpfNx6Q9jwrGXYpkHP85xs2yZMqVW2Wwt0nsVAAAADMNoSNAAAA040/S+putNZebDsslTwp9XdLqQXjaCNHaq+VGvacvDoBAAAw6xA2AgAATDeGzVqTsWqzVPKE1N0gpc0fXxt2h+RwS4fftHawBgAAABKAsBEAAGA6CuRKLeXWkb7ICiDHK5gntZRKzYcSX58ktVZKWx+R+ntPTvsAAACYcggbAQAApiO7U8pYIGUukWz2ibXh9EixmHR4a2JrG3B4q7WeZPvhk9M+AAAAphzCRgAAgOnK6Zt40DggmCc17pXaqhJT04DOBqmuWOpptkY4AgAAYFYgbAQAAJjNPCEp3CXV7Exsu3XF1m7Z/iypYbc1ghIAAAAzHmEjAADAbOfPlGq2S93NiWmvr9PaeMaXJnnTpc56qas+MW0DAABgSiNsBAAAmO18GVJPk1Rfkpj26ndbAaM/W3L5pXAnU6kBAABmCcJGAACA2c6wSZ5UqWqzFO4+sbYiYalqy9H1JA1Dsrulpv0JKRUAAABTG2EjAAAApECO1F4rNew5sXaa9kttFVIw9+g5b6rUUi71tp9Y2wAAAJjyCBsBAAAg2RyS0yMdekVqr55YG7GYtVajYUgO99HznlSpty3xO14DAABgyiFsBAAAgCV1ntRZJ+16cmKbxbSWS40HpGDe0PM2uyRTailLRJUAAACYwggbAQAAYDFsUsZiqeWQVPKEtav0eNS8JUX7JFdg+DV3itS4V4r2J6RUAAAATE2EjQAAADjKZpcyFkl1JdLuZ6RIX3zP62yQ6oqtHahH4k2Tupuk9sOJqxUAAABTDmEjAAAAhrK7pPQFUvWb0r4XpFj0+M+p3Sn1tFqh4kicHmunatZtBAAAmNEIGwEAADCc0yulFEjlr0sHX5FMc/R7+zql6q2SL83aHGasNuv3jN0WAAAApjXCRgAAAIzMHZT8WdKh9VLlG6PfV7/b2lhmtCnUA7zpUke11NWY2DoBAAAwZTiSXQAAAACmMF+6FA1Le5+TGveNPHKxs0Fy+o/sOj0Gd8Bas7GtUgpknZx6AQAAkFSEjQAAABhbMFfqapCaDoxygyGF8o/fjmGT7A6p+ZA058yElggAAICpgbARAAAAx+fPso4T5UmVmg5J4S7J5T/x9gAAADClsGYjAAAAJo8nTeptZldqAACAGSqpYeMDDzyglStXKhQKKRQK6R3veIfWrFkzeN00Ta1evVr5+fnyer265JJLtGvXriRWDAAAgBNid1i7UbdUJLsSAAAAnARJDRvnzp2r//f//p+2bNmiLVu26LLLLtP73ve+wUDxRz/6ke6//3794he/0ObNm5Wbm6srr7xSHR0dySwbAAAAJ8IdlBr3SNFIsisBAABAgiU1bLz++ut1zTXXaMmSJVqyZIl+8IMfKBAIaNOmTTJNUz/96U9111136cYbb9Ty5cv18MMPq7u7W4899lgyywYAAMCJ8KRZO1h31ia7EgAAACTYlNkgJhqN6i9/+Yu6urr0jne8Q6WlpaqtrdVVV101eI/b7dbFF1+s119/XbfffvuI7fT19amvr2/w6/b29pNeOwAAJwv9GmYkl0+K9Fi7W9uciWvX7pR86YlrD0BC0acBwOyQ9LBx586desc73qHe3l4FAgE9/vjjOvXUU/X6669LknJycobcn5OTo/Ly8lHbu/fee3X33Xef1JoBAJgs9GuYsZw+6cB66dAriWvTHZTO+LgUSMCu2QASjj4NAGYHwzRNM5kFhMNhVVRUqLW1Vf/7v/+r3/3ud9qwYYNaW1t14YUXqrq6Wnl5eYP3/+u//qsqKyv1/PPPj9jeSL8tKygoUFtbm0Kh0El/PwCAiWtvb1dKSgr/Zh/jpPRrG38l9bRIofwEVQlMgBmTIr2JbbOlTFpytbTossS2C0wAfdpw/KwGANPXePq1pI9sdLlcWrRokSTp7LPP1ubNm/Wzn/1M3/zmNyVJtbW1Q8LG+vr6YaMdj+V2u+V2u09u0QAATBL6NcxYhs0a3ZhI3nTp8JtSwTnWKEcAUwp9GgDMDkndIGYkpmmqr69P8+fPV25urtatWzd4LRwOa8OGDbrggguSWCEAAACmJH+W1FUv1e9JdiUAAACzVlJHNv6f//N/dPXVV6ugoEAdHR3685//rFdeeUXPP/+8DMPQHXfcoXvuuUeLFy/W4sWLdc8998jn8+nmm29OZtkAAACYimx2yemXqjZLeaskhyvZFQEAAMw6SQ0b6+rq9C//8i+qqalRSkqKVq5cqeeff15XXnmlJOkb3/iGenp69LnPfU4tLS0677zztHbtWgWDTIsBAADACEJ5UnOp1LRfyjkt2dUAAADMOkkNGx988MExrxuGodWrV2v16tWTUxAAAACmN7vLGuFYtUXKWibZptyqQQAAADMa330BAABgZgnmSk0Hpdby49/bXCq1VZ38mgAAAGYJwkYAAADMLK6AFO2TanaMfV/zIemt/5b2r5Vi0cmpDQAAYIYjbAQAAMDM48+W6oqlzvqRr7fXSLuekLqbpaZD1ghHAAAAnDDCRgAAAMw83jSpt02qLR5+rbtZKnnCCiKzlkpmRKrZNuklAgAAzESEjQAAAJh5DEPypkuH35T6Oo6e7+uUSp60RjJmLJIMmxTIlep3W6MdAQAAcEIIGwEAADAz+bOkrnorSJSkSJ+051mpvkTKWGjtWi1JnhQrhKx9K3m1AgAAzBCEjQAAAJiZbHbJ6Zeqtkj9PdK+F6TDW6S0IsnuGnqvL0Oq3ib1tCajUgAAgBmDsDFOsZg56gEAAIApKpQntVZYU6fL/yGlFEhO3/D7/JlSd5M16jEepinFYiMfJt8fAgCA2cuR7AKmg5Lqdr2yr15mbOTrZxWl6fwFGZNbFAAAAI7P7rJGOFZvs6ZVu4Mj32fYJHfIGgWZf6bk9IzeZluVtPtpKdw18vVAtnTq+yVP6ITLBwAAmG4Y2RiHrnBE1a09isbMYUd3f1Trd9dre2VrsssEAADASNKKpNBca6r0WAI5Unu11LBn9Hu6GqVdT0gtZVIsOsIRkWp3Snuekfp7E/gmAAAApgdGNsbJaTeUGXSPeK22rVcvltTJ57JrSc4ovy0HAABActgckjtw/PvsTus4/KaUu+LoBjIDetulkiek1nIpc+nw6wPcKdZISqdPOuU6yc633AAAYPZgZGMC5KZ4FImZWlNco8rm7mSXAwAAgIkK5krNpdZxrP5ea+p0w14pY/HoQaNkTcFOnSeVvy4dfMlaxxEAAGCWIGxMkII0rzp6InpuZ43qO5gyAwAAMC05fZIZkaq3Hj0XjUj7npdqtktpC6zRj8fjCljB5aENUsXGk1YuAADAVEPYmCCGYago06+atl6t2Vmrtp7+ZJcEAACAiQjkWus2tldboxIPvmSNUkydN/bGMW/nTZM8KdL+tVL19pNWLgAAwFRC2JhANsPQgiy/DjV0as3OGvWEo8kuCQAAAOPlSZH6OqWat6xRiYdesUYpuuJY9/HtAtnWmpF7npUa9ye8VAAAgKmGsDHBHDab5mcGVFLTrhd21SocYY0eAACAaceXYU2b3r9W8qRaoxQnKmWuFOmVSp6UWisTVaEUCUttVYlrDwAAIAEIG08Cl8OmwnS/tlW2aMPeesViZrJLAgAAwHj4M6XuJmt9xkD2ibeXNl/qarQCx67GE28vFpX2vyBte1Sq3Xni7QEAACQIYeNJ4nXZlZfi1euHmrTxUKNMk8ARAABg2jBsUvapUmhOgtozpIxFUmuFtOtxqbd94m2ZprXxTNnfpd42afczUtPBxNQJAABwgggbT6KQx6kMv1sb9jZqe2VrsssBAABAMtnsVuDYuE/a/bTU3zuxdirfsDat8WdJmUukcKc1YrK9OrH1AgAATABh40mW7nfJ47Lrpd312lvbkexyAAAAkEx2p5S+QKrZJu1bI0Uj43t+bbG073lrsxpfhnUufYHUWSftekLqbk54yQAAAONB2DgJckMeRWKmnt9Vo8rm7mSXAwAAgGRyeKTUQqlikzVCMRbnhoJNB60RkaZp7Y49wLBJGYulllKp5AlrJ20AAIAkmVDY+Pzzz+vvf//74Ne//OUvdfrpp+vmm29WS0tLwoqbSQrSvOroiejZnTWq75jglBkAwLRCfwlgVK6AFMi11l6seP3497fXWFOlw51SWuHw6wNTtOtKrDUcI32JrxmzHv0aACAeEwobv/71r6u93VrUeufOnfrqV7+qa665RocOHdJXvvKVhBY4UxiGoaJMv2rbevXcWzVq6+5PdkkAgJOM/hLAmLypkidF2rdWqt42+n3dzdaIxc56a8r0aOwu63r1m9K+F6wdq4EEol8DAMTDMZEnlZaW6tRTT5Uk/e///q+uu+463XPPPdq6dauuueaahBY4k9gMQwuy/DpQ36k1xTV63+lz5HXZ43quaZraVtEir8uhZXmhk1wpACAR6C8BHFcgW2qrknY/KzXul2QMv6enWWoutTaDMY4zVsDplVIKpPJ/SH0dVgA5kryVUtbSEy4fswv9GgAgHhMKG10ul7q7rbUHX3zxRX384x+XJKWnpw/+pgsjc9hsWpAZUElNuzxOu65ZkSeX4/gDTHdUtWlNca3cTrscNkOLc4KTUC0A4ETQXwKIS8pcqaNGqt058nXDJmUstKZKx8MdlIJ5UsOeka9H+qSmA9LKD1vtAnGiXwMAxGNCYeNFF12kr3zlK7rwwgv1xhtv6L//+78lSfv27dPcuXMTWuBM5HLYVJju19aKFvlcdl2xLEc22wi/xT5iX12HXiypk9fpUF8kqjXFtfI47SpI901i1QCA8aK/BBC3YF5i2/OkWMdomg5Ya0CuukkKJfi1MWPRrwEA4jGhNRt/8YtfyOFw6K9//aseeOABzZkzR5K0Zs0avec970logTOV12VXfqpXGw81aeOhRpmmOeJ9lc3dWlNco0jMVG6KR/PSfWrrDmtNcY0aOlj4GwCmMvpLAFNW+gJrDciSJ6w1IYE40K8BAOJhmKOlXDNEe3u7UlJS1NbWplBoYmsdbi5r1nM7q7U4O/FrJTZ3hdXWE9Y1K/J0xry0IdfqO3r1+NbDaujo0/xMvwzDGv0YM03tr+/QwsyA3n/mHIU8zoTXBQDJkIh/s2e6hHxGG38l9bRIofzEFgdgeolFpcZ9UvYp0ooPS+5AsiuaUejTjo/PCACmj/H8mz2hadSSFI1G9fjjj2v37t0yDEOnnHKK3v/+98vhmHCTs1K636VwNKYXS+rlczm0NNdai7Gtp1/PvVWjmrZeLcoODAaNkrXRzMLMgA40dOr54lpdvzI/7o1mAACTi/4SwJRls1trNtbvlnY/Iy2/QXK4k10Vpjj6NQDA8UyoRyguLtZ73/te1dXVaelSaxe7ffv2KSsrS0899ZRWrFiR0CJnutyQRxVHpkt7nXZlBd1as7NGpY1dWpgdkM0Yvp6jw27T/Ey/ig+3yeOw6eoVeXLaJzQrHgBwktBfApjy7C4prUiq3iq5fNIp18a/EQ1mHfo1AEA8JhQ2fupTn9Ly5cv15ptvKi3Nmvrb0tKiW2+9VZ/+9Ke1cePGhBY5GxSkeVXa2KXnimuUHXRrV027FmYG5LCNHiC6HXbNS/cNbjRz2SljbzQzHtGYKdM05SDABIAJo78EMC04fdaO2OX/kJx+Kf/0ke9zuMc/1ToStsLL8QaYvW1SNDLyNZdPcnrH195YIn2M6IwT/RoAIB4TCht37NihLVu2DHYwkpSWlqYf/OAHOueccxJW3GxiGIaKMv06UN+pwy09Ksrwy+U4ftDnczmUG/Lq9YNN8rsdesfCzBOupbc/qmffqlbA7dS7l+eecHsAMFvRXwKYNtxByZ8lHVgrVfxj5HucfmuqdfqC+NoMd0k7/yq5/NKy90oOV3zPqy2W9jwnRXtHvu7LkFb+f5L/xL/vVcM+6cCL0qnvtQJXjIl+DQAQjwkNW1u6dKnq6uqGna+vr9eiRYtOuKjZymYYWpQd0KLswLjWYAx5nUrzufTy3gbtqGw9oRoi0Zhe2l2vrRWtKq5uU1MnO14DwETRXwKYVnwZUtp8yZs28tHTJJU8KbXXHL+tSFja86xUu1Oq/KcV6MVix39e00Fp99NSf9fINXjSpJZyadfjUm/7ib3f1krr/dTtkqp3nFhbswT9GgAgHnGHje3t7YPHPffcoy996Uv661//qqqqKlVVVemvf/2r7rjjDv3whz88mfXOeDbDmNDaixkBt9wOm9aV1Gl/XceEXjsWM/X3/Y3aXNaswgy/2nv6taf2BL+JA4BZhv4SwLTmcEuuwMhH+kKpo9YK6LqbR28jFpX2r5OqNlvhZWiOVPqqVPaqZJqjP6+92mo73GmtIzlSDe6AlLFIath7JJTsmdj77GyQSp6QupuktEKp9q2x39MsRr8GABivuKdRp6amDtkR2TRNffjDHx48Zx75xuH6669XNBpNcJmIR16KV+VNXVpTXCuP066CdN+4nr+lvEWvHWhUdtCtgNuhFJ9L2yvadHpBmvxudpcDgHjQXwKYsQzbkaBvn7T7KWn5B4ev4Wia0qFXpbLXpNBca31FSYr2W6MbXUFp7lnD2+5utoLGzjopc8nYddid1i7aNdustRuXvVeyj+N71d42K2hsrZIyF0uGYe3IXVcszX9X/O3MEvRrAIDxirtXfvnll09mHUiQeek+HTqy0cyNZ8xVVjC+xa6LD7dp/Z46hTxOpfqs9XSyAm4daOjQvroOnTEv7TgtAAAk+ksAM5zNIWUustZVdHqlU28YuhZj1Rbp4IvWeoqe0NHz/kwpGpb2PmsFkNnLjl7r67TCv+ZDUuZSK9Q8HodHSi2UKjZZa0IuulIaY2PFQf090u5nrMA0c/HRjWu8aVbtc84+GpBCEv0aAGD84g4bL7744pNZBxLEMAzNz/Rrf32HnttZo/efMUcpXueYzznU0Km1JbWy22xDwkm7zZDP6dC2ilYtn5MyoendADDb0F8CmPHsLil9vhXOOX3S0mus0K5ul7T3OWsjGV/G8OeF8qWWMqnkKSuoTCuydoLe/Yw1sjBj0fh2rXYFpGCedGiDFTgWXTT2/dF+q77qbdZr2Y/5HjmQLTUdkBp2S3NGGHk5i9GvAQDG64TmxnZ3d6uiokLhcHjI+ZUrV55QUTgxNsPQwsyADjZ26oVdtbp+Zf6oG85Ut/bouZ016gnHND/TP+x6dsitquYeHWro0tLc4MkuHQBmJPpLADOO02dNky77hxUuphdZayiaMSmUN/rzUgutUK/kSWnFh6zAsnqrtbajPc7dqo/lTbVGTO5bawWO+WeMfF8sJh14Sar4pxVyOt42+8fmsM5VvSnlrhrftOxZiH4NADCWCfWiDQ0N+sQnPqE1a9aMeJ21OpLPYbepKMOv4sNtctltmpPmHfG+7ZWtau4Ka0FWYMTrboddhiHtqGrVkpzAkPVaAABjo78EMKN5QlKsXzr4klSTLvW1S+nH2ZHYMKz1Fhv2Sjv/am0KkzLXGuk4UYFsqa3K2v26t33k0LK3TSrdYI2EdA3/Bbsk61pLmRWGZp8y8XpmMPo1AEA8JhQ23nHHHWppadGmTZt06aWX6vHHH1ddXZ2+//3v67777kt0jZggt8Oueek+ba9s0Y7K1hHvcdgNzc8MyDZGiJgd8uhgQ6eqWnrGvekMAMxm9JcAZjxfhrX7dHeLtVt1PL+YNmzWeonNh6yg0J2A2TMpc6XWCmua9EhMU/JnWSMhR+PwSDKtkZZZS+N7L7MM/RoAIB4TChvXr1+vJ598Uuecc45sNpsKCwt15ZVXKhQK6d5779W1116b6DoxQT6XQ0tyQse/cQwBt0PVrd0qPtxG2AgA40B/CWBWCGRbx3jYHMffdXq8UuedeBvBPKlxnzVSMrXgxNubYejXAADxmNCOH11dXcrOtr6hSE9PV0NDgyRpxYoV2rp1a+Kqw5SRFfCopKZdTZ19yS4FAKYN+ksAmGbcQSncJdW8lexKpiT6NQBAPCYUNi5dulR79+6VJJ1++un6zW9+o8OHD+vXv/618vLGWBAa01aqz6n2nn7tqW1PdikAMG3QXwLANOTPlmp3SN3Nya5kyqFfAwDEY8JrNtbU1EiSvvvd7+rd7363/vjHP8rlcukPf/hDIuvDFGEYhlJ8Lm2vaNPpBWnyu9mhDwCOh/4SAKYhX7pUv1uqK5bmvyvZ1Uwp9GsAgHhMKDH66Ec/OvjnM844Q2VlZdqzZ4/mzZunzMzMhBWHqSUr4NaBhg7tq+vQGfPSkl0OAEx59JcAMA0ZNsmbJlVtkeacLblYs3wA/RoAIB4Tmkb9dm63WzabTXa7PRHNYYqy2wz5nA5tq2hVfzSW7HIAYNqhvwSAaSKQLXXUSg27k13JlEa/BgAYyYSnUa9YsUK33XabotGo3vWud2njxo3y+Xx65plndMkllyS4TEwV2SG3ypu69fu/l477uel+l65ekacAU7ABzBL0lwAwTdkcksMjHd4qzTkr2dVMGfRrAIB4TGhk41//+letWrVKkvT0008PDp+/4447dNdddyW0QEwtboddOSGPusPRcR/Fh9v0QnGNevujyX4bADAp6C8BYBpz+aQ+Nkc8Fv0aACAeEwobGxsblZubK0l67rnn9KEPfUhLlizRbbfdpp07dya0QEw9KV6nckKecR+FGX7tqGrT+j31ijANG8AsQH8JAJhJ6NcAAPGYUNiYk5OjkpISRaNRPf/887riiiskSd3d3azXgVF5nHbNTfPpjdJm/X1/o2IxM9klAcBJRX8JAJhJ6NcAAPGY0OJ5n/jEJ/ThD39YeXl5MgxDV155pSTpn//8p0455ZSEFoiZJeB2KDvo1t8PNMrvceicovRklwQAJw39JQBgJqFfAwDEY0Jh4+rVq7V8+XJVVlbqQx/6kNxutyTJbrfrzjvvTGiBmHlSfS6FozG9tLtOXqddy+ekJLskADgp6C8BADMJ/RoAIB4TChtLS0v1wQ9+cNj5W2655YQLwuyQHfTocGuP1pXUyeeya0FWINklAUDC0V8CAGYS+jUAQDwmtGbjokWLdOmll+rRRx9Vb29vomvCLDEn1aue/qjW7KzV7pp2lTZ2jXiMd/fqSDSm+nb+fwkg+egvAQAzCf0aACAeEwobd+zYoTPOOENf/epXlZubq9tvv11vvPFGomvDLDAv3aeW7rD+sqVK/7WxfNjx6KZyPbezJu7AMRYz9er+Rv15c4V217Sf5OoBYGz0lwCAmYR+DQAQjwmFjcuXL9f999+vw4cP66GHHlJtba0uuuginXbaabr//vvV0NCQ6DoxQ9kMQwuyAlqQ5R/xyE/xantlq9bvqVckGjtue5vLmvWPA41q6e7XC7tqVd7UNQnvAgBGRn8JAJhJ6NcAAPGYUNg4wOFw6IYbbtD//M//6Ic//KEOHjyor33ta5o7d64+/vGPq6amJlF1YoazGcaIh9dl19w0n94otUJE0zRHbaP4cJvW761XisepxdlBdfZF9NzOGtUxpRpAktFfAgBmEvo1AMBYTihs3LJliz73uc8pLy9P999/v772ta/p4MGDWr9+vQ4fPqz3ve99iaoTs1jA7VB20K3X9jdqS3nLiPccqO/UC7tq5bTZlBm0dsUryvCrvr1Pz+2sUWt3eDJLBoAh6C8BADMJ/RoAYCwT2o36/vvv10MPPaS9e/fqmmuu0SOPPKJrrrlGNpuVXc6fP1+/+c1vdMoppyS0WMxeqT6XwtGY1u+2dq8+LT9l8Nrh1h49X1yjvv6YijL9g+cHpmgfqO/QmuJavXdVvvzuCf1fHgAmhP4SADCT0K8BAOIxoeTlgQce0Cc/+Ul94hOfUG5u7oj3zJs3Tw8++OAJFQccKzvo0eGWHq3dVSev064FWQE1dVojF5u7wlqYFRj2HLvN0PzMgEqq2+V12nX1ily5HfYkVA9gNqK/BADMJPRrAIB4TChs3L9//3HvcblcuuWWWybSPDCqOWlelTV16fniWl11Wo42HmxSVXO3FmUHZRjGiM9xOWwqyvBrW0WLPE6brjw1V3bbyPcCQCLRXwIAZhL6NQBAPE5oTml3d7cqKioUDg9dD2/lypUnVBQwlnnpPh1q6NSanbVq6OzTwqzAccNDr8uu/FSv/nmoWT39UXmd4xvdaDcMnT4vTVlH1oMEgPGgvwQAzCT0awCAsUwobGxoaNCtt96q559/fsTr0Wj0hIoCxmIzrKnRNW09mp/hl9Me3z5HQY9TMVPadbhdo+9pPbJwJKaq1h7deMZcpfic4y8awKxEfwkAmEno1wAA8ZjQbtR33HGHWltbtWnTJnm9Xj3//PN6+OGHtXjxYj311FOJrhEYxm4zNDfNJ/c4RyimeJ1akBXQwnEei3MCKmvs0priGnWHIyfpXQGYaegvAQAzCf0aACAeExrZuH79ej355JM655xzZLPZVFhYqCuvvFKhUEj33nuvrr322kTXCSSVw2azNpqpaZfHadc1K/Lkckwoqwcwi9BfAgBmEvo1AEA8JpSWdHV1KTs7W5KUnp6uhoYGSdKKFSu0devWuNu59957dc455ygYDCo7O1vvf//7tXfv3iH3mKap1atXKz8/X16vV5dccol27do1kbKBE+Jy2FSY7te2yha9srdesdh4J2MDmG0S1V8CADAV0K8BAOIxobBx6dKlg6Hg6aefrt/85jc6fPiwfv3rXysvLy/udjZs2KDPf/7z2rRpk9atW6dIJKKrrrpKXV1dg/f86Ec/0v33369f/OIX2rx5s3Jzc3XllVeqo6NjIqUDJ8TrsisvxauNh5q08VCjTJPAEcDoEtVfAgAwFdCvAQDiMaFp1HfccYdqamokSd/97nf17ne/W48++qhcLpcefvjhuNt5+8LCDz30kLKzs/Xmm2/qXe96l0zT1E9/+lPddddduvHGGyVJDz/8sHJycvTYY4/p9ttvn0j5wAkJeZyKRE29srdBPpdDZ8xLS3ZJAKaoRPWXAABMBfRrAIB4TChs/OhHPzr45zPOOENlZWXas2eP5s2bp8zMzAkX09bWJskaki9JpaWlqq2t1VVXXTV4j9vt1sUXX6zXX399xLCxr69PfX19g1+3t7dPuB5gNOl+l8LRmF4sqZfbYdfcdO+42wi4HLLZjJNQHYCpIhH9Jf0aAGCqONF+jT4NAGaHuMPGr3zlK3E3ev/994+7ENM09ZWvfEUXXXSRli9fLkmqra2VJOXk5Ay5NycnR+Xl5SO2c++99+ruu+8e9+sD45Ub8qiiuVtP7jgsl338KxIszg7o6hV5ck7guQCmrkT3l/RrAIBkSmS/Rp8GALND3GHjtm3bhnz95ptvKhqNaunSpZKkffv2yW6366yzzppQIV/4whf01ltv6e9///uwa4YxdPSXaZrDzg3493//9yEdYnt7uwoKCiZUE3A889J96uyLKDbOtRujUVNbK1rkc9l12Sk5jHAEZpBE95f0awCAZEpkv0afBgCzQ9xh48svvzz45/vvv1/BYFAPP/yw0tKs9epaWlr0iU98Qu985zvHXcQXv/hFPfXUU3r11Vc1d+7cwfO5ubmSrBGOxy44XF9fP2y04wC32y232z3uGoCJCrgntBqB7DZDrx9skt/t0DsWTnz5AQBTS6L7S/o1AEAyJbJfo08DgNlhQvM377vvPt17772DHYwkpaWl6fvf/77uu+++uNsxTVNf+MIX9Le//U3r16/X/Pnzh1yfP3++cnNztW7dusFz4XBYGzZs0AUXXDCR0oEpI+R1Ks3n0st7G7SjsjXZ5QA4CRLVXwIAMBXQrwEA4jGhsLG9vV11dXXDztfX16ujoyPudj7/+c/r0Ucf1WOPPaZgMKja2lrV1taqp6dHkjV9+o477tA999yjxx9/XMXFxbr11lvl8/l08803T6R0YErJCLjldti0rqRO++vi/28HwPSQqP4SAICpgH4NABCPCc3/vOGGG/SJT3xC9913n84//3xJ0qZNm/T1r39dN954Y9ztPPDAA5KkSy65ZMj5hx56SLfeeqsk6Rvf+IZ6enr0uc99Ti0tLTrvvPO0du1aBYPBiZQOTDl5KV6VN3VpTXGtPE67CtJ9yS4JQIIkqr8EAGAqoF8DAMRjQmHjr3/9a33ta1/Txz72MfX391sNORy67bbb9OMf/zjudsw4NtUwDEOrV6/W6tWrJ1IqMC3MS/fpUGOXniuu0Y1nzFVWkLVsgJkgUf0lAABTAf0aACAehhlP4jeKrq4uHTx4UKZpatGiRfL7/YmsLSHa29uVkpKitrY2hUKhCbWxuaxZz+2s1uLsiT0fiEfMNLW/vkMLMgNaMTdFidyfOjfFo7wUb/y1xEyV1LSrPxob8brP5dCSnMCou8IDE5WIf7OnokT2lwn5jDb+SuppkUL5E64DAGa8zjrJ7pTe+dUJPX2m9mlS4vq1mfwZAcBMM55/sye2je4Rfr9fK1euPJEmABxhMwwtzAyotKlLZU1dCWs3GjO1KCugj55fKLstvnCworlbz+6sUU84qpHyRJfdpqtOy9FZhekJqxOYyegvAQAzCf0aAGAsJxQ2Akgsh92mxdmJXY+0tz+qiuZulTZ2aVF2IK7nvFXVqt5wVEtyRq6lrr1XL+2ul8/l0LI8fgsNAAAAAAAsE9qNGsD04XHaFTNN7axqi+v++o5e7avrHHPdyJyQR5L0QnGtyhoTNwoTAAAAAABMb4SNwCyQHfJof32Hatp6jnvv7up2dfT1K9XnGvO+uWk+dYUjem5njeraexNVKgAAAAAAmMYIG4FZIORxqqsvol2Hxx7d2NHbrx1VrUo7TtA4oDDDr4aOPj37Vo1au8OJKBUAAAAAAExjhI3ALJERcKv4cPuYoeDe2g41dYaV4R99CvWxbIahBVkBlTd16dmdNerqiySqXAAAAAAAMA0RNgKzRLrfpebusPbWdox4vS8S1bbKVgXczrh3rZYku83Q/MyA9tZ26IVdteqLRBNVMgAAAAAAmGbYjRqYJWyGoZDHqW2VrVpVkCqP0z7k+oH6TlW39qgowz/utl0OmwrT/XqrqlXNXWHZRggrDUlnzkvTqoLUCb4DAAAAAAAw1RE2ArNIdtCtQ41d2l/XqRVzUwbPx2KmdlS2yW4z5LRPbMCz12VXQZpfrT0jT9MOR2J6YVetXA6bluWFJvQaAAAAAABgaiNsBGYRh90mt8OmbRUtOjU/NDhduqK5W2WNXcoNeU6ofa/LLq/LO+r1yuZuvbCrVj6XXYUTGEEJAAAAAACmNtZsBGaZnJBHFc3dKm3sGjz3VlWr+qMx+Vwn9/cPBek+dfZF9NzOGtW1957U1wIAAAAAAJOPsBGYZTxOu2KmqZ1VbZKk+vZe7avrVPYJjmqMV1GGX/XtfXpuZ82YO2MDAAAAAIDph7ARmIWyQx7tr+9QTVuPdte0q6OvXyle56S8ts0wND/Lr7LGLq0prlVXX2RSXhcAAAAAAJx8hI3ALBTyONXVF9GWsmbtqGpVms81qa/vsNk0PzOgkup2rSupU18kOqmvDwAAAAAATg42iAFmqcyAWwfru9TSHdbinOCkv77LYVNRhl/bKlrkcdp0Wn7KiPe5nTZlB8c3xbujt19Ou00epz0RpQIAAAAAgDgRNgKzVJrfpd017UrzuWQzjKTU4HXZlZ/q1esHm7SlrGXEe/xuh65ekatTckNxtdnaHdbj2w7L73bo+pX58roIHAEAAAAAmCyEjcAsZTMMnZoXkpGkoHFA0OPU4myHTNMc8Xp1W6+eL66Vz+nQvAzfmG11HdnpuqyxS6Ykj8Omq1fkyWlnxQgAAAAAACYDP4EDs1iyg8YBdpshh9024lGQ5lVnb0TPFteovr131Db6IlGt3VWnPbUdmp8Z0Lx0n96saNGGvfWKxUYOMgEAAAAAQGIRNgKY0gzDUFGmX3VtvXp2Z41au8PD7onGTL28p17bK1tUmO6Xy2GTz+VQXsiaor3pUFMSKgcAAAAAYPYhbAQw5dkMQwuy/Cpt7NKa4lp1hyOD10zT1D8ONOqfh5qVn+odskZjyOtUms+lV/Y2aHtlaxIqBwAAAABgdiFsBDAtOGw2LcgMaHdNu9buqlM4EpMkba1o0av7G5QZcCvocQ57XkbALbfTphdL6rS/rmOyywYAAAAAYFZhgxgA04bLYVNhul9bK1rkO7KT9Uu76+V3OZTmd436vLwUryqaurSmuEYep10F6WNvNAMAAAAAACaGsBHAtOJ12TUn1auNh5oUOjKSMSfkOe7zCtJ9OtTYped21mhxdiBh9RiGNDfNp8U5wYS1CQAAAADAdEXYCGDaCXqciplSV19Ec9PiG6VoGIbmZ/pV1dyt1w40JqyWaMxUitep958xRwuzEhdiAgAAAAAwHRE2ApiWUrxOpXiHr9E4FpthaF6GP+G1lDV2ac3OGt1w5lzNSfUmvH0AAAAAAKYLNogBgBNUmOFTc1dYz+2sUVNnX7LLAQAAAAAgaQgbAeAEWVO0A6pq7tZzO2vU0duf7JIAAAAAAEgKwkYASAC7zdCCrID213fq+eJa9fZHk10SMLqKjVLpa9LhN6X2ailKQA4AAAAgMVizEQASxGm3qSjDr52H2+RzOfTu03LksPM7HUxB1duktkqpcuORE4bkz5SCeVLGQmnehZKdbxEAAAAAjB8/SQBAAnmcdhWk+bS5rFlel13nL0iXISNh7bsdNtlsiWtvImIxU4ZhTR/HNDXnbMmbJvV1SB01UqRX6mqwjtq3rFGPp71fyj5N4u8ZAAAAwDgQNgJAgvndDuWEPHptf4PeqmxNaNuFGX5dszJXboc9oe3Gqycc1bM7qzU/06+zCtOTUgMSoOBcKXOxFMqXTFPqa5c6aqX2w9KhV6TuRmnz76SsU6TTbpACOSO3E41ILYek1nLJ4ZHcIcmTYh3uoGTj2wwAAABgtuGnAAA4CVK8TrnsNvVFErd2Y8yUtle2yOuy6Yplkz9Fuz8a07qSWr1Z3qLGzrBOy0+Rx5mc0BMJZBhHA8KspVLhBdL+dVbo2LBH2vBDqeid0pL3WIFiV711vmGv1HRAioZHb9vll/zZ0qnvl9IKJ+sdAQAAAEgiwkYAOEm8Lru8rsSGcS6HTf8sbZbXade7lmRN2lTmWMzUhr312lrRosJ0v2rberW/rlMr5qZMyutjEjk80rLrpYLzpZInpPpdUukGazMZu1PqaRl6vztkrfMYi1ojJHvbpN52yYxK4S4pXCpt/A/ptA9Khe9IylsCAAAAMHkIGwFgGgm4HcoMuPXagUb53Q6dXTQ5U5n/Wdqk1w82KTfkVcjrVHNXWNsqWnRqfkj2JK8hiZMkkCWd+69S/W5p1+PWiEZJstml9IXWFOusU6xNZd4eepum1N9lhY5710h1O6Wd/21Nt17+ASu0BAAAADAjETYCwDST5nOpPxLTS3vq5XM5dGp+6KS+3o7KVr28t0FpPpdCXiskyk3xqKK5W6WNXVqUHTipr48ky15mre9Yt8sKCTMWSXbX2M8xDMkVsI6zPyEdfEna85xUuUlqr7bOedMmp34AAAAAk2pyF/wCACREdsgjQ9ILu2pV1th10l5nf12H1pXUye2wKSPgHjzvcdoVM03trGo7aa+NKcTmkPJWSdmnHj9ofDvDJi26UjrvM5LTJ7VVSK/9RGrcd3JqBQAAAJBUhI0AME3NTfOpOxzRcztrVNvWm/D2K5u7taa4Vv3RmPJSvMOuZ4c82l/foZq2noS/NmagrKXSO78qpcy11nLc9IC073lrqjUAAACAGYNp1AAwjRVm+HWwoVPP7qzWOUXpsiVow5hozNSm0ia19fRrQaZ/xHtCHqdqWnu063DbiGEkMIwvQ7rgS9LOv0pVb1hh474XpPQFUv7pUu4qyXNylwUAAAAAcHIRNgLANGYzDC3IDKi0sVNVzVUJbdtus2l+pn/MHa8zAm4VH27X2UXpSvWNc3otZie7S1p1k7UOZNnfrU1jmg9aR/HfrOAx73QpZY41BdtmlwyHZLNJht1aN9IdGr4pDQAAAIApgbARAKY5u83QouxgUl473e/SvroO7a3t0HkLMpJSA6Yhw5DmnmMdPS1SzXapevvQ4HEs7pCUucSamp25RPKkTEbVAAAAAOJA2AgAmDCbYSjkcWpbZatWFaTK47QnuyRMN940acGl1tHTItXskGp3Sn3tUiwqmdGhj9F+69rhLdYhScE8K3jMWmaFj4x6BAAAAJKGsBEAcEKyg24dauzS/rpOrZjLCDOcAG+atOAS6xhNNCK1lEoNe6wdrduqpI4a6zj0ipSzXFp1s+TyTVLRAAAAAI5F2AgAOCEOu01uh03bKlp0an5IdhujynAS2R3Weo+Zi62vw51W6Niw1xrpWFcsvfYT6axbpdR5SS0VAAAAmI1syS4AADD95YQ8qmjuVmljV7JLwWzjCkj5Z1qbzlx4h7XjdU+z9I+fSaUbJNMc+XmmaY2K3POstVFNLDqpZQMAAAAzFSMbAQAnzOO0K2aa2lnVpkXZgWSXg9kqpUB659ekHX+WandIux6Xmg5Jqz4iOb3WPT2t0uE3pcObpY7ao88t/4e08sNS2vyklA4AAADMFISNAICEyA55tL++Q3XtvcoJeZJdDmYrp9eaQl32mlTypBU6th+WFlws1RZbU651ZLSjzWFtKtN8yFrz8R//IRW+QzrlOsnJmo8AAADARBA2AgASwu9yqKGjTz1hpqMiyQxDmv8uKbVQ2voHqbtRKv7fo9fTF0hzzpHyV1mhYrhT2v2UVPmGVP66tRv2aTdIeWewszUAAAAwToSNAABgZkortKZVF//VmjKdt0qac7bkzxx6nytg7WA95xxp51+krnpp6yNS1htS7krJZpcM+9BHu0sKzWHXawAAAOBtCBsBAMDM5fJLZ94S372Zi6V3fUM6+KJ0YJ3UsMc6xhLIldLnW2s9ps+XfJmMhgQAAMCsRtgIAAAwwO6QlrxHyj9DOviyFO6SzKi1W3UsIpkx68/9XVJ3k9RZax0VG63nu4NS2gIpa4mUdYq1OzYAAAAwixA2AgAAvF0gx9rFeix9nVJLqdRcaj22VUh9HdamNLU7rHv8WVLmUin7FCljkeRg8yQAAADMbISNAAAAE+EOSLkrrEOSov1SW6XUdMCaft1SJnU1WEf53yXDZgWOeadLeSuttSIBAACAGYawEQAAIBHsTmun6/QF0uKrpP7eo8Fjwx5rV+zGfdZR/Fcpc4k1XTt3hbUrNgAAADADEDYCAACcDE6PlLvcOiSpq1Gq2SHVbJPaqo6GkDv/x1rfMesUKWWetcu1nW/RAAAAMD3xnSwAAMBk8GdKiy63js56qXqbFTx21Ep1u6xDkgy7FMqXUgqk1HlSaoG1y7XDfeI1mDFrYxtPGoEmAAAATgq+ywQAAJhsgWxpybuto73G2lCmpUxqrbR2um6rtI6K148+x+mTvOmSN/XIY5p1+NKtw+mXDGPo65imtVt24wGpab81rbu/W/KkSmd/0gozAQAAgAQibAQAAEimUJ51SFY42NNshY5tFdZje5XU32OFhP3d1tcjsbus0NF75OjvssLFvo7h9/a2Sq//h7Tyw9Lcc0/aWwMAAMDsQ9gIAAAwVRiG5MuwjvzTj57v75F6Wo45mq3H7iOPfe1SNGxNye6oHdqmzSmlz5cyFkuZiyV/lrTjMWva9vbHpLbD0rL3Sjb7pL5VAAAAzEyEjQAAAFOd02sdofyRr0f7jwaR3c1WGGlzSBmLpNTC4esznn2btO95af9aqXSD1F4tnXWL5Aqc/PcCAACAGY2wEQAAYLqzO611IAPZ8d1v2KSl11g7X2//o7We42v3WSFkytyTWysAAABmNMJGAACA2SpvleTPlrY8KHU3Sv/4mbVpjN1prQFpdx39s9MrpS+0pmTb+BYSAAAAI+M7RQAAgNkslCdd9BVp2yNSwx6p+eDY99td1vTszKVS1lIpkDN8F2wAAADMWoSNAAAAs53LJ537aanpoBTusjabiYattSAH/tzTKjXulcKdUn2JdUiSJ8Wajh2LWEc0IsX6j/y539qQJm+VdbiDSX2bAAAAOPkIGwEAAGCt45i5eOx7zJjUUSM17LWO5oNSb5t1jKa31VoTsvh/pfQF1i7buaskT+joPf3dUlej1NVgPYY7rRGTKXOtTXHsrkS8QwAAAEyCpIaNr776qn784x/rzTffVE1NjR5//HG9//3vH7xumqbuvvtu/ed//qdaWlp03nnn6Ze//KVOO+205BUNAAAwWxk2axRjaI608DJrxGNzqbULts1hre9ocxz9s2GTmg9J1dultgornGw+KBX/TUorssLLrkapv2usF5WCOVJorhU+phZKaYVW2wAAAJhykho2dnV1adWqVfrEJz6hD3zgA8Ou/+hHP9L999+vP/zhD1qyZIm+//3v68orr9TevXsVDDINBwAAIKnsLmvdxrGkFVnBZHezVLNDqtkutZZLLaVD73OnSP5M63D6pc5aqa1S6uuQOmqt4/AW615XQMpdIeWutEZjsmENAADAlJHU78yuvvpqXX311SNeM01TP/3pT3XXXXfpxhtvlCQ9/PDDysnJ0WOPPabbb799MksFAADAifClSwsvtY6eFmsattNrrenoy5Ac7pGf19smtVUdOSqtkZHhTqlio3U4PFL2aVLeSinrlNHbAQAAwKSYsr8GLi0tVW1tra666qrBc263WxdffLFef/31UcPGvr4+9fX1DX7d3t5+0msFAOBkoV/DjORNk+adH9+9nhTryDmyjE4sKjUdkGp3SLXFUl+7VP2mdRg2KXWelL7Q2jE7fQHhIzCF0KcBwOwwZcPG2tpaSVJOTs6Q8zk5OSovLx/1effee6/uvvvuk1obAACThX4NeBub3Zq6nbVUWv5BqaVcqn3LOrqbpJYy6zj4khU+phRIGQslT5q1jqTdaU3/Hnh0eKRgLmtAApOAPg0AZocpGzYOMAxjyNemaQ47d6x///d/11e+8pXBr9vb21VQUHBCNfzzUJP+sqVKaT6Xgh6ngh6Hgh6nQh6HUrxOzUn1yuee8h8lAGAaOhn9GjBjGDYpfb51nPo+K2xsOiA1HbQee5qt9SFbR/9FtSRr5+sFl0pzzrJCyPGKRaVYvxTtl2IRayQm4SUwDH0aAMwOUzYhy83NlWSNcMzLyxs8X19fP2y047Hcbrfc7sROl2nsDKuzL6rOvh5JPSPek+F3aV66TwVHjtyQR3bb6KEoAADxOBn9GjBj+TKso+A86+vuZqn5gLVjdn+3FQZG+61dtAfCwd42qbNOeuvP0p5npKJ3SkUXWpvQHCvSZ+2s3bTfCjK7m4+2YcaG3uvPkk67UcpeNjnvG5gm6NMAYHaYsmHj/PnzlZubq3Xr1umMM86QJIXDYW3YsEE//OEPJ7WWdy3JVENHr1K8LnX0RdTR06+O3og6+vrV1BlWU9fRY1tlqyTJaTc0P9Ovq5fnKSfkmdR6AQAAIGtTGt+50txzR7+nv0eq2CSVbpB6W6V9a6QDL0oF50rZp1qjIhv3W49vDxVHZEhdDdIbv5Fylkun3WAFoAAAALNEUsPGzs5OHThwYPDr0tJSbd++Xenp6Zo3b57uuOMO3XPPPVq8eLEWL16se+65Rz6fTzfffPOk1hn0OJUdcmtxdmjE693hiKpaelTR3K3K5m5VtnSrtz+mfXWdOlh/QBcvzdIlS7LksDOdBgAAYEpxeq0dsue/S6rZLh162dr5uvwf1nEsb5qUuVjKWCKF8iSb65h1IJ2SzWGNgNz/glT6qlRXLDXskRZeLi263FojEgAAYIZLati4ZcsWXXrppYNfD6zfccstt+gPf/iDvvGNb6inp0ef+9zn1NLSovPOO09r165VMBhMVskj8rkcWpIT1JIcq66Yaaq+o09rd9VqT22H1u+p11tVbbrhjDman+lPcrUAAAAYxma31mzMP9OaJl36itRRJ6UWWgFj5uL4Rig6vdKp75cKzpd2/U1q3GeFj1VvWOdzlluvBQAAMEMlNWy85JJLZJrmqNcNw9Dq1au1evXqySsqAWyGodyQR/9yfqGKq9v19I5qNXb26bevHdI5Rel6z2m58rr4JhMAAGDKMYyj4eKJCOZK531WqtkhlTwh9bRIbz5kbRzjTZf8mZIv01rf0Z8puUPWupLhriNH59HHWOTo7tm2Y3fTdlqjLYN5UiDbGlkJAACQZHxHchIZhqEVc1K0KCug53fVaHNZizaXNWtPTbtOL0iVKSkaM63DtB5N09S8DL9WzUlhh2sAAIDpzDCk/NOlnFOtdSBLX5UivVJ3o3Uk9LXsVuAYzLemeAfzrE1uHG7J4Tny6GaXbMw4kVhEZW1liprRZJcyqXxOnwqC49vJu7arVm19bSNec9gcmheaJ6fNmYjy1NDdoObe5hGv2QybCkOFck3DpSVae1sVU0zpnvS4nxMzYzrccVh5gTw5EvRLobquOrX2tY54zW7YVRgqlNMe/99lZ7hThzsPj3o915+rFHdK3O1FYhGVt5crEouMeD3kCikvkDfitfEa+HzzA/myj2PmQFtfmyKxiDK88a+rbJqmytvL1Rftm0ipU8J4/y4nijRrEnhddt1wxlytKkjVE9sOq7EzrNcOjP4N5o6qNj33Vo1OyQvqzHlpWpITZGdrAACA6crukpZeIy25WuprtzaQ6Woc+hjulFz+tx0ByemX7A5r1+uB3a8Hjz7r+R01VojZUWMd1cepxRWQ5pwpFV5ojYwEprHGnkY9X/a8OsIdMjR7fmbyO/26qugqLU1fGtf9le2Veqb0GbX2to74OdkMm87JPUcXF1ws2wn+UqK2q1ZPH3xajT2NI76WYRg6I/sMXTbvsoSFb5OhpbdFzxx6RtFYVNctvE6Z3sy4nre1bqs21mzUqsxVumjuRSf8+R7uPKxnDj6j5t7mUf8uz8w5U5cWXBpX+Nbd3601pWt0oPXAiO2ZMlUYKtR1C69TyDXyPhbHipkxbazeqE01mxSNjfxLgJArpKsXXK35KfOP295YTNPUGzVvaHPtZp2Vc5bekf8OGcbx/x1o62vT0wefVjga1vULr1eWLyuu19vesF0vV7yscDR8QnUniylTl8+7XOfmjbFxXoJMn/+yZ4AFmQF98bLFeqO0Wa3dYdlthmw2Q3bDkN1mHf1RU7uq21TT1qtd1e3aVd0uv9uh0+em6PSCNKX5nXI77ISPAAAA041hSJ4U68hYlLh2TdOapt1RI3VUS+3VUmedtdN2pM8KIgd20o6GpZ5ma6TlgZesNSSLLpIyl1j1AdOMaZrqjfSOeyTXdHe487BeqnhJXodX80Lzxry3vrtea8vXqjPcqUVpI//b0xHu0Bu1b8jn9Om8vPMmXFdzb7NeKHtBzb3NWpi6cMTgp6u/S1vrtsrr8OrCOReecPg2Gbr6u7SufJ2qOqokSevK1unahdceN3wraSrRq1WvypSpTTWb5HV6dU7uOROuo7GnUWvL1qqtr23Uz7cz3KktdVvkc/iOG76Fo2G9VPGS9rXs0/yU+SP+NxSJRVTaVqoXy1/U1fOvltfhHbPGbfXbtLFmo9I96aOOoCtvL9eLZS/quoXXndAIx+LGYv2j2trM7R/V/5DP6dPp2aeP+Zzu/m6tK1+nio4K2WTTC2Uv6PqF1x93tN+e5j3aULlBHodHBaHxjSqeKg62HJSp0ZcyTCTCxknmtNt04aKxfwNy2SnZqmnr0dbyFm2valNXX0T/ONikfxxsGrzH5bDJ47DJ47TL67TL5bDJZhgyDOs3RbZjHrOCbp1blK6gJ/7ONxozCTQBAACmA8OQfOnWkXPa8Oumaa37OBA8th+2dtpu3CfV7bQOf7YVOuafaW1ywyY2wJQ2JzBH5W3lWlu+Vu9d+F5l+7JHvK+tr01ry9aqobtBC1IXjNpe0BVUJBbR3w//XT6HTyuyVoy7ps5wp9aVrdPhzsOjBmGSNSoz05epjTUb5XP6dFbOWeN+rcnUF+3TSxUv6UDLARWlFMkwDB1qPaSXyl/Se+a/Z9TwrbStVOsr1sthdyjPn6emnia9VvWa/E6/Ts04ddx1tIfbtbZsrWq7arUgdcGon2/AFVAkFtHr1a+PGb5FY1G9WvWqdjbutKbQjxLWO2wOFYYKtadpjzwOj66cd+Wo95Y0lWhD5QYFXcExw7t5wXkqbSvV2vK1un7h9eOalj7gQMsBvVz5stx2t3L8OWrobtArla/I6/COOuK3P9qv9RXrta9ln4pCRbIZNh1qOzQYpPqcvhGfV95ervXl62UYRtyjIGc7wsYpKi/Fq2tXevWe5XnaV9ehrRUtOlDfqb6I9VvpcCSmcCSm9t6R10B4u1f2NmjV3BRduChTeSkj/2PY3tuvHZWt2l7Zqtq2Xi3LC+m6lXlK9U2/tTQAAABwhGEc3VDGHbA2pMlbJXXUWqFj1RtSV721e/auv1nPsTmObETjkhwuye62NrHxH9nUJpBtPXpSWAcSSJJ5oSOBTdnaEUdmHTuCa0HK6OHUgDRPmsLRsF6ufFleh3fUUZAj6Yv26cXyF3Ww7aDmp8w/7mjFFHeK+mP92lC5QV6Hd0Lh22SIxCJ6tfJVFTcUDwnkilKKVNJcIo/DoysKrxi21mVNZ41eLHtRfdG+wZGnGd4MhWNhra9YL4/DowUpo4e/b9cT6dG6snUqay/TgpQFx/18Uz2p1udbtWHE8M00Tf2z5p/aUrdFef48eRyeMdtz2V2aG5yr7fXb5XV4dfHc4dPty9rKrHDV5jjuFHPDMFSUUqSDrQe1tmytrltwnQKuwJjPOVZVR5XWVaxT1IwOjozM8mWNOeI3GotqQ9UGvdX4lgqCBUf/LkNF2tuyVx6HR1cVXjUsSK3rqtO6snXqjnSrMKUw7hpnO8LGKc5uM7QsL6Rledbw7GjMVG9/9MgRU8+RP4ejMZmmaf3i2pRipjU4NhqNqbi6XRXN3dpa0aqtFa1akOXXRQsztSQ3qP5oTCXV7dpe2aoD9Z1DBtSW1LTrQH2nLl+WrQsWZjLSEQAAYCYJ5krLPyCdcq1UtUUq/7sVQErWSMhYxNoheyw2p+TPsB4lSaasbyhj1qPNIWUskLJPk9IXjD1iMtwlNe6VGvZa0709aZIvzVpXcuBweJnuDRxhGIYKQ4U61HZIa8vW6toF1w6OzBoYwbW3ea/mp8yPe+OMHH/OYJDjdXo1JzDnuM+JxCLaULlBJc0lmhecF/c6jJneTNVEa7S+Yr18Dp+KUoriet5kMU1r6vObdW8qP5gvt8M9eM1ld6kgUKDt9dvlcXiGhG/Nvc1aW75WzX3Nw9YkzPPnqaK9Qi+WvajrF14f1xTi/mi/Xq58WXub96owpTDuv8ssX5YOd1jhm8/hGzL1d0fDDr1e/boyPBlxh3xep1e5/ly9UfOGfI6h0+1ru2q1rmydeqPWkgbxsBk2zU+Zf3Rk4YKr5ba7j/u8xp5GrStfp85w57DXGm3E71jhqtPu1NzgXO2o3zEYpA58xq29rVpbvlZNvU0nvL7kbEPYOM3YbYb8bof849ip+qLFWaps7tbfDzRqV3WbDjV06VBDl9J8TnX1WUHlgHnpPp0xL1W5IY+eL65VeXO31hTXaltFq953er4KM/wn420BAAAgWRweawp10UVHNp4JW1Ouo+Ghf+5ttTaz6WywHrsbrU1rBgLK0bRVSIdesV4ne5kVPGYvs6Zrt1ZKDbulhj1SS7l0vLWkHB4pc6k0/51S+kKCR8x6dptdRaEi7W/ZrxcrXtR7it4ju2EfHME11vTY0cwJzFF5e/ngiMmxRqnFzJheP/y63qx7U3MCc4YEcvHIC+SpvL1c68rW6fpF1yvXnzuu559M2+q3aWP1RmX6MuV3Dv852Ov0Ksefo801m+V3+HVu3rnqDHdqbdnaMaeSFwQL4p5CHDNj+vvhv2t7/XbNDc4d9w7ec4JW+PZC+QuD4dve5r3aULVBPqdPqZ7UcbUXdAXVH+sfMt1+YJ3Olr6WcQfGDptD84LzVNJcIp/Td9xNgwamktd11Wl+6vwRP99jR/xet+A6pXpStaNhh/5R/Y9Rw1Wvw6u8QJ42126W1+HV+XnnqztijQyu7KiMa2QwhiJsnCUK0n266dx5au0Oa+OhJm0ua1ZLd78kKd3v0hkFqTq9IFUZgaOdw7++a4G2lrdoTXGtatt79ZtXD+nswjS9+7Rc2W2Guvoi1hGODj667IYKM/zKCXkYCQkAADDdDEy3dsXxC+ZY1NqYprvR+rMMWRuZGkdCQMMardiwW6ovsf5cvc06ZEhOj7WJzbGCuVLWMskTstruabU2tOlpsZ4f6ZVqd1hHMN8KHeecZU33PpYZs9amrN9tHV31ktM3dLdvZ8B6DOVLWUuZDo5py2l3qiBUoF2Nu+Rz+ORz+OKeHjsSwzCswKb1SGAzxi7EW+u2alPNJmX5skZd7+545gXnqaytbHCjjoms35doe5r3aEPVBgVcgTHXHgy6guqP9uu1w6/JZXeprK1Mh9oOjTmVfGAK8aHWQ8edQry5drPeqH1Duf5ceZ1jb8wymmPDtzNzztQrla/IlDnhtQfTPemDoy0Nw9Cuxl3HXadzLG6HW3MCc7S1bqs8ds+oO3bHO5X82BG/68rX6ZT0U+IKVwOuwGCQ6ra7VdVZpf0t+1WUUhT3aFIcRdg4y6T6XLp6eZ4uW5qtffWdSvE4VJDuG/EfBZth6OyidC3LC+n5XbV6s7xFW44cx+Ny2DQv3afCdJ8KM/wqSPfK7eA/UAAAgBnDZj+yhuPYa3NpzplW+NdaLtXtso6OGitodHisnbCzlknZp1hTpUcTDVujKCs2SVWbrZ233/pvaffT0rzzpTnnSJ01VrjYsEfq6xj6/HCXNSJzJIFsacFl0pyzJTs/ImH68Tg8yvXnakvdFtkN+7imx47EZtisQKztkJ468NSIbcXMmMrayhRyh467k+9YDMNQYUqhDrYe1DMHn1HIPfYOz5OhqqNKNsN23LUHJSndm67+WL9eqXxF3ZFuzQsdfyr5wOd7sPWgnjz45IgjJ6OxqErbSpXqSVXQFZzoWxkM30rbStXa12rt3n6Caw/m+HNU2VGplytfVke4I651Osfic/qU5cvSpppNauhpGDHc64306lDrobimkg+M+N3Xsk+1XbUyTXPUTZSOleZJU3+sX69WvaruSLcKQgWzapf7RKInnaXcTrtWzImvQ/C7HfrAmXN11rw0PbnjsOra+yRJLrtNfrfdmtbtcsjnsqsrHFF5U7f6IjEdqO/UgfpOSZLNkNL9bmX4XcoMuJQRsP6cEXAr1eeUjSHJAAAAM5dhk9LmW8cp10ndzVYYmDI3/p2v7S4pdZ51nHKdVPlPqew1a+TjwfXW8fb7M5dYU7ZTC63p4OFOK3Ts77Ie+zqs8LOzXnrrz9Le56T5F0uFFyT+MwBOsoFAMGJGlOpOPeH2BgKb+p56NfSMHNT7Xf6EjEQcWL+vvrteTb1NJ9zeiRrY4TheOf4cNfU0Kd2bHte6g5I1hbgopUgN3Q2qV/2I96S4U8Y91XkkdptdhaFCtfS1DNs4ZaLmBuaqsadRhaHCuNfpHMtAyFzRUTHqPQWhgrinkjvtThWmFKq9r125vvin52f7sq2/S0/6hEYGw0LYiLgVZfr1xcsWq7MvIq/TLqd95N9cxExTde29Km/qVnlTl8qbutXa06/Gzj41dvZpb93Q++02Q9lBt3JDHuWmeJSX4lVuikeBt61LaZqm+qOmusMRdYejkqSgx1q/krASAABgGvGlW8dEuXzSwkulBRdLdSVS2atS476j07Czlx3ZkCaOH3f6e6WKjVLpK1Jvm7TnaenAWinvdGnBJROvEUiCExnNOBKn3RnXJjGJ4LA5lB/In5TXOhkyvBnjfo7L7tKc4OR8vk67M67RffEyDGPCU7FHE3KHEjqy1W13T6jGifxdYijCRoyLzTAU8ow9jNhmGMpL8SovxavzF1j/kbb19Kuho09NXX1q6gyrsbNPTV1hNXeFFY2ZqmnrVU1br1R5tJ2gx6F0n0t9kdhgwBiJDV803GZIAbdDIa9TQY9TQY9DuSGPFmUFlBFwsZArAADATGXYpNzl1mHGJrbuotNjBZfz3ykd3mqNkOystUY8Lroi8TUDADDDETZiUqR4nUrxOrVIQ3/TFjNNtXb3q7atVzXtPapt61VtW6+ausLq6I2oozcyrC2bIflc1v91u/oiiplSe29E7b0RSUMXGU/xOrUwK6CFWX4tzA4cNygFAADANHWiG7zYHFLBudLcs49sKtMQ/xRvAAAwiLARSWUzDKX7XUr3u3Rq/tHh0n2RqOraetXa0y+v0y6fyyGvyy6fyy63wzY4WjEaM9XZF1FHb786eiNq7+1XW3e/Kpq7Vd7crbaefm2taNHWCmtTm6wj07XTfE6l+lzHPLrkcrADIQAAwKxn2KSc06TOuuPfCwAAhiFsxJTkdtg1L8Ov4y1da7cZg6Mm3y4ciam8uUsH67t0sKFT1a09aujoU0NH34hteZ1WkOmw2+S0G3Ie8xjyOHVqfkgLswKy25iWDQAAAAAAMBLCRsxYLodNi7ODWpwdlCR1H9kpu7krrJbusFq6+9Xaba0b2ReJqac/qp7+6KjtvVHWLK/TrtPyQ1oxN0ULMgkeAQAAAAAAjkXYiFnD53JoWd7IO1v1hKNq7+1XfzSm/qh55PHIETFV3daj4up2dfVFtKW8RVvKW+Rz2XVaformpnllMyRDhgzD2pXLMKwp4h6HTT6XQz63NQXcZbexYQ0AAAAAAJixCBsBSV6XXV7X2AuAX7cyX2VNXdpZ1abi6jZ1h6PaXNaszWXxv47dZsjvstagTPE6lXpkzchUn1NpXuvPAY9DtnEGkqZpEmICAAAAAICkI2wE4mS3GUd2tg7o+lX5Km3sUnF1m9p7+mWakilTpmntsD3w2NsfU3c4ou5wVJGYqWjMHNw5u7a9d8TXsRka3BTHd2RTnIHRkTKl7nBUXUfa7A5H1NUXVW9/VH63QzkhawOcnCNHdsgtt4NdFAEAAAAAwOQgbAQmwG4ztCg7oEXZgbjuN01T/VFzMCTs6ouo9ciaka09Rx67+9Xe26+YKXWFo+oKj75+5Eg6+yLqbIjoYEPXkPPpfpfOX5ChdyzIiHuNyXAkpr5IVEHP8I13AAAAAAAARkPYCEwCwzDkchhyOVxK841+XzRmqqvv6KjFgVGMPeGouo+Ejz6XXX6XQ16XXX63NfrR67Srradfde29R44+1bb3qrMvouausJ7bWaPNpc26bmWeFucER339jt5+/eNAozaVNisciSnkcWhumk9z07yDjx4nIyUBAAAAAMDICBuBKcRuMxTyOhXyjn9EYcjrVEH60CSzsy+i3dXtWltSq4bOPj30epmW5QZ1zYo8ZQTcg/e19fTrtf0N2lzWrP6oOXi+vTeikpp2ldS0D57LCrg1J82rvBSP8lKsR7+bf0oAAAAAAABhIzCjBdwOnTM/XcvnpGj9njptPNSk3bUd2lffqYsWZer0glRtPNikNytaFI1ZIePcNK8uW5qt+Vl+1bT2qqqlW5UtPapq6VZLd78aOvvU0Nmn7ZVHXyfF6zwSPno0J9WnuelehZiCDQAAAADArEPYCMwCXpdd167M19lF6Xr2rRodaOjUhn0N2rCvYfCeogy/LjslWwuz/IM7Wxdl+lWU6R+8p7MvosMt3apu61VNa49q2nrV1BVWW0+/2nr6tae2Y/DeFK9zyPTrvJBHdrvVrqGja0cahjWic7w7cAMAAAAAgKmHsBGYRXJCHn3iwiLtrmnXsztr1NLdr8XZAV2yNFvzjwkVRxNwO7Q0N6SluaHBc739UdW29aqmrUfVrb063NqjuvbewQByV3X7GC1aHDZDuUemZeenepSf4lVOyCOXw3ZC7xcAAAAAAEwuwkZgljEMQ6fmp2hJblAdvRGl+Vwn1J7HaR82ArIvElX126Zgt3b3j9pGJGaqqqVHVS09R+uUlBV0KzfFo9yQRzlHjlSfc8RRkD3hqFq6w2rtDqs7HFVeqrWeJCMmAQAAAACYPISNwCzlsNlOOGgcjdth1/xM/5DRkv3RmCTJPLr/jExZX3T2RlTd1qvq1h7raOtVV19E9R19qu/o01tqG3yO024oJ+RRVsCt3khMrd1htXSH1dsfG6EOmwozfCrK8Ksow6+5aV457IyWBAAAAADgZCFsBDApnGOEfO6AXRkBt1bMSZEkmaapjt6Iqtt6VNfep7r2XtW196qho0/90eGjIAf43Q6l+ZxyOWw63NKjvkhM++o6ta+uU9LR6dpBj1MBt11+t0MBt2PwMcXjVKrfKYeNQBIAAAAAgIkgbAQw5RiGoZDXqZDXqVNyj56Pxkw1d4VV196rxs4+eZx2pfmcSvW5lOZzDVnjMWaaqm3rVVlTl0obu1TW1K2uvsiRkHJ4UDn42pJSfE6l+13K8LuU7ncrzedUf9RUW0+/2nv71T74GFFvf1SFGT6dlp+iU/NDx92FOxKLqbatVzbDCj6Z5g0AAAAAmEkIGwFMG3aboaygW1lB93HvtRmG8lO9yk/16oKFmTJNU42dVlDZFY6osy+irr6IOvui1mNvRK09YfVHTbV296u1u1+HGrriqutgQ5cONnTp6R3VKkj36bT8kE7LT1Gaz6nW7n5VtnSrsrlbFc3dqmnrVSRmTR8Puh1amhvU0tygFmUF5HbaT+jzAQAAAAAg2QgbAcwKhnH8oNI0TXX2RdTcFVZTV1jNR46WrrBcDptCHueREZfWlOuQ1ym7zdDe2g7tqm5TZUuPKo6EimuKa+Vx2kZcS9LrtCtqmuroi2hLeYu2lLfIbjM0P9OvpTlBBT0O9UVi1tEfHfxzJBpTmt+l3JBHuSkepftdjIwEAAAAAEwphI0AcIRhGAp6nAp6nCrM8B//CUfkhDx615IstfX0q6S6Tbuq21Xa2KXe/phshpSX4lVBuk8FaV7NS/cp3e9SNGaqrKlbe2rbtae2Q81dYR2o79SB+s64X3dgs5zckEcZfpciMVPhSEzhaEzhIwFlOBpTJGpam/FY/5NpDmzNI/ldDuWE3MoOepQdssJYt4MRlgAAAACAiSFsBIAESfE69Y6FmXrHwkx19kXU1t2v7JB7xM1xHHZDi7IDWpQd0LUrrCnee2rbdaC+U5GYKbfDduSwy+20/mw3DDV2hlV7ZMOcsTbLGY+9dR1Dvk71OZUddMvrtMtptx05jME/e512FWX6lRlwyWBkJQAAAADgGISNAHASBI7scB2Po1O8s/TOxVlxPScaM9XU1ae69j7VtvWotbtfTodNbrtNLscxh90mh90mQ5Jh6Mjj0YCwradf9R29qm/vU31Hnzr7IoNrVh5Pqs+pxdlBLckJaGFWYMwdxwEAAAAAswNhIwBMQ3abYU19Dnq0Yk5Kwtrt7ouo/v9v796D4yrrP45/zmV3s5ukadpK0hslVaFIoWLqhVqlqAMqyjDMYO1IuepMKa0tHZQOVUHGWv5i0BkpAzoMik5BQUQGlaJQi2Usto0Uiq1KLwgN+bXQJJvL3s7z+2O7Z3NI0qbtSTbZfb9mzpzN2bO7z/nuST6T7z6725nS/yVTSmU9ZXJHl6ynjGeUyXpq781o/+FuHenO6KV97+ilfe/ItqTp9QnNmT4+tLEAAAAAAMYemo0AAF8i5uqMmKszJh37MyvTWU97DyW15+2k/t3WqUPJtPa/0625Z9SP0EgBAAAAAKMRzUYAwAmLurbOahynsxrHSZLe6Urrv21J1cUjJR4ZAAAAAKCU+IAtAMApm1Ad1Udm1POFMQAAAABQ4Wg2AgAAAAAAAAgFzUYAAAAAAAAAoaDZCAAAAAAAACAUNBsBAAAAAAAAhIJmIwAAAAAAAIBQ0GwEAAAAAAAAEAqajQAAAAAAAABCQbMRAAAAAAAAQCjcUg8AAAAAAIBTZYxRzuSUzqWV8TJK59LqSHeoPdXuL0dSR9Seald3tls1kRrVxeqKSzS/ro5Uy7IsWbL8tSRZlqWYE1PCTciyrCGNKetl1ZXpkm3Zci1Xru3KsR3ZVnHeT2HcmVxGaa849qyXVc7k8ouXk2c8/3I8Etf42HiNj41X1ImedM1yXk5dmS7lTE4JN6GoEx3ysQ3GM56S6aQSkYRcu7JbDjkvp95cr1zLVcyNhXKfhfPFtuzAeXQqPOP55ztGL2OMujJdOtx7WMYY1UZrVROpCeX3NmyV/ZsPAAAAABiz2rrb9MjuR/LNOi9zQrd9N/Wu3k29e8KPaVu2aiO1qo0Wl5pojdK5tJLppDrTnfkl06mebM+g9+FarizLUjqXlpE54XEUJNxEvvFYNV510TrZti1jjIyMv5aRsibf+OzKdKk7062uTJd6c739xhV340q4CcXduOJuXLXR2sD9j68a7zdcs15Wbd1tau1qVWtXqw52HdTbXW8ra7KSlL99JF+fQq0SbkKO7ci18o1Xx3LyTVjLkax842ugxbEcRZyIIvbRpc9lY4w8efn10f2NjHJeTmkvrXTu6NLncs7kBq1p1ssq42WUyWXyzV8vrUwuo6yXlWVZcizHbxo7Vv4YjIx6s73qzfaqJ9ujnmyP0l7av8/6WL0aqxs1uWayGhONaqxuVE20RlK+idSb61UynVQyk1RXpkvJdNJ/vpKZpLoz3f51hbFbsvzaFRrZMTum6mi1aiO1qo5WqyaSr311pFoZLxNouhcud2W65FquqqPVqo7kb1MdyV+Ou3G/AZ7Kpfx1Kpfy62HL7tegd21XMSemmBNT1In6l2NOTPFI/hwrPMZQGuZZL6uOVIeOpI/k16n8uj3dLs94+fMrEvydrI3UKmuy+bqli7XsynSpJ9sjx3IUdaKK2JHA2rEc/1wpHHvh/JFR/jjc/HFVOVX+ceVMTj3Znvx5kOstXs72Dvo7bsnK/85FEkq4ifz66GXPeDrce1iHe44uvYeVyqX63UfEjqgmUqOaaI1qIjXyjBc8748+Z+dOOlcXnX7RcWsdBpqNAAAAAIAxKWJH+jXMJOUbU3ZEtdHawOzF8bHx+dmLbrWSmaTfbOlIF5sXXZkuSfKbdX0vp720POOpPd2u9nT7kMZoW8XmX4FnPKVNesB9o3ZUESdSnAl5tLHlN7hkqyvbpSO9R9Sb61V3tlvd2W691fXWyZQwP0NOtrImK894foPrWFzbVW2k1m/0DKbQdGvraTupsZWTQnP7tXde87fVRGrkWI6SmeQxm5+DMTL5pqgyUt+bD9zjPqasyfoNyJEWsSNKRPINbmOMsl5WWZPNz+71cv7PyDcn62J1si1byUzSb4gO5cWTE31B5lTQbAQAAAAAjEnjouN02czLNKVmihKRhD/jbShvL50Qn3DCj5fzckpm+sxeTHeqI92hZCapmB0LzOArLFVOlSzLkme8fNPk6JIz+bdG951V5djOCY2nN9urI6kjOtJ7JD9bLd0uGUlWvilhW7Y/28y2bH8mmb+41apy8+PL5DLqznarJ9uTX2fy6850Z/4xjs6G60x3Kutl/cZG3I3nZ+xVT9bk6slqrG5UfVW9UtmUOjP5GiXTSXVm8uvubHe+gWTyjaScyfn1kCRbtmw73wAtNFcty/Lfap7xMv6sw7SX7je7rnDMhVmHUSdaXOziZccavNau7QZmT/oNYNv138ZcGHvh7e2SVOVU+TNCq9wqf92b7VVrd6tak8UZoId7DyuZSQYet8qpUk20xp9dWBOpUSKSCKyrI/nnrHA+9a1f1ssqlUspmUn6syT7zpZ0LTfQdC9cHhcbp3QuHZhJWZhZ2ZvtVcSJBGYnFi67tqv8xNniTNrCrNLCWAqLPyMym1JPtsd/rKzJ+jMuj9fodG03P/ZoXeBFBEtWv9/Lws+u7frne98Zm4lIfuZgYeZf4bwqzHotPOd9z5monZ+B2fe4/CWbkmM7+efdyT/vhXMg5sQGPd9yJqfe7NEXDTLdgbWR0cSqiZoYn+ivJ1RNCHw8QWFGdTJTfL4d2+k37qgT1aHuQ8f+gxIimo0AAAAAgDHJsR3VV9WrvqpeEScyIo9XaHCcKNuy/X/+w1LlVqnRzb8l91RFnIjqnOMfW+HtrB3pDv+t1QN9Xlw8Elc8EtdpidNOeWxjXSKS0My6mZpZN9Pfls6l9Xb327Jk+W9/LeVnXFZHqlVfVT+ij1mYLVx4W39Ptif/EQO267/NvnA56kQVd+Oj7rMJSy3qRDUhPmFIL550pDpGYER5NBsBAAAAAMCQuLY75OYGBhd1oppeO73UwyipwpcuxZzYiDc6MbzC+eoiAAAAAAAAABWPZiMAAAAAAACAUNBsBAAAAAAAABAKmo0AAAAAAAAAQkGzEQAAAAAAAEAoaDYCAAAAAAAACAXNRgAAAAAAAAChoNkIAAAAAAAAIBQ0GwEAAAAAAACEgmYjAAAAAAAAgFDQbAQAAAAAAAAQCpqNAAAAAAAAAEJBsxEAAAAAAABAKMZEs/Hee+9VU1OTqqqq1NzcrM2bN5d6SAAAAAAAAADeY9Q3Gx955BGtXLlSa9as0Y4dO/SpT31KX/jCF3TgwIFSDw0AAAAAAABAH6O+2Xj33Xfrhhtu0Ne//nWdffbZuueeezR9+nStX7++1EMDAAAAAAAA0Idb6gEcSzqd1rZt27R69erA9osvvlhbtmwZ8DapVEqpVMr/uaOjY1jHCADAcCLXAADlgkwDgMowqpuNhw4dUi6XU0NDQ2B7Q0ODWltbB7zNunXr9P3vfz/UcViSbMvWnrc7Q71fACg3NVWubMsq9TDKynDkmpyI1Nsu9fJPHgAMzkjjTy/1IMrKsPyvZlmKu3Ht79gf6v0CQLmxZMm2RuYNzpYxxozII52Et956S1OnTtWWLVt0wQUX+NvXrl2rX/ziF/rXv/7V7zYDvVo2ffp0tbe3a9y4cSc1jmQqq7eO9JzUbQGgktiWpRkTE4o4JxdiHR0dqqurO6W/2eVmOHJN7W9KKRqNAHBc0Rpp/PSTuimZ1t9wZFrOy2l/5355nhfWMAGgbDVUN6g2WntStz2RXBvVMxsnTZokx3H6zWJsa2vrN9uxIBaLKRaLhTqOmpirMxtO7skAAOBUDEeuqW6qpKnh3icAAMcxHJnm2I5m1s0M9T4BAKdmVH9BTDQaVXNzszZu3BjYvnHjRs2bN69EowIAAAAAAAAwkFE9s1GSVq1apcWLF2vu3Lm64IILdP/99+vAgQNasmRJqYcGAAAAAAAAoI9R32xcuHChDh8+rDvvvFMHDx7U7Nmz9fTTT2vGjBmlHhoAAAAAAACAPkZ9s1GSli5dqqVLl5Z6GAAAAAAAAACOYVR/ZiMAAAAAAACAsYNmIwAAAAAAAIBQ0GwEAAAAAAAAEAqajQAAAAAAAABCQbMRAAAAAAAAQChoNgIAAAAAAAAIBc1GAAAAAAAAAKGg2QgAAAAAAAAgFDQbAQAAAAAAAISCZiMAAAAAAACAULilHsBwM8ZIkjo6Oko8EgDA8RT+Vhf+dqM/cg0AxgYy7fjINAAYO04k18q+2djZ2SlJmj59eolHAgAYqs7OTtXV1ZV6GKMSuQYAYwuZNjgyDQDGnqHkmmXK/KU2z/P01ltvqba2VpZlDek2HR0dmj59ut544w2NGzdumEc4+lGPIOpRRC2CqEfQydTDGKPOzk5NmTJFts0nfQyEXDt11KOIWgRRjyDqUUSmDY+TyTSJc7MvahFEPYKoRxG1CBruXCv7mY22bWvatGknddtx48ZxEvZBPYKoRxG1CKIeQSdaD2Z/HBu5Fh7qUUQtgqhHEPUoItPCdSqZJnFu9kUtgqhHEPUoohZBw5VrvMQGAAAAAAAAIBQ0GwEAAAAAAACEgmbjAGKxmG6//XbFYrFSD2VUoB5B1KOIWgRRjyDqMXrwXARRjyJqEUQ9gqhHEbUYXXg+iqhFEPUIoh5F1CJouOtR9l8QAwAAAAAAAGBkMLMRAAAAAAAAQChoNgIAAAAAAAAIBc1GAAAAAAAAAKGg2QgAAAAAAAAgFDQbB3DvvfeqqalJVVVVam5u1ubNm0s9pGG3bt06ffSjH1Vtba1OO+00XX755dq9e3dgH2OM7rjjDk2ZMkXxeFwLFizQq6++WqIRj5x169bJsiytXLnS31ZptXjzzTd11VVXaeLEiUokEvrwhz+sbdu2+ddXUj2y2ay+853vqKmpSfF4XDNnztSdd94pz/P8fcq5Hn/961/15S9/WVOmTJFlWXriiScC1w/l2FOplJYvX65Jkyapurpal112mf73v/+N4FFUlkrMNIlcOxZyjVzrq5JzjUwbmyox18i0YyPXyLWCSs40aZTlmkHAhg0bTCQSMQ888IDZtWuXWbFihamurjb79+8v9dCG1SWXXGIefPBB88orr5iWlhZz6aWXmtNPP90kk0l/n7vuusvU1taaxx57zOzcudMsXLjQTJ482XR0dJRw5MNr69at5owzzjDnnXeeWbFihb+9kmrxzjvvmBkzZphrr73W/P3vfzd79+41zz77rPnPf/7j71NJ9fjBD35gJk6caJ566imzd+9e8+tf/9rU1NSYe+65x9+nnOvx9NNPmzVr1pjHHnvMSDK//e1vA9cP5diXLFlipk6dajZu3Gi2b99uLrroIjNnzhyTzWZH+GjKX6VmmjHk2mDINXLtvSo518i0sadSc41MGxy5Rq71VcmZZszoyjWaje/xsY99zCxZsiSwbdasWWb16tUlGlFptLW1GUlm06ZNxhhjPM8zjY2N5q677vL36e3tNXV1dea+++4r1TCHVWdnp/ngBz9oNm7caC688EI/vCqtFrfeequZP3/+oNdXWj0uvfRSc/311we2XXHFFeaqq64yxlRWPd4bYEM59iNHjphIJGI2bNjg7/Pmm28a27bNH//4xxEbe6Ug04rINXKtgFwLItfyyLSxgVzLI9PyyLU8cq2ITCsqda7xNuo+0um0tm3bposvvjiw/eKLL9aWLVtKNKrSaG9vlyRNmDBBkrR37161trYGahOLxXThhReWbW1uuukmXXrppfrc5z4X2F5ptXjyySc1d+5cXXnllTrttNN0/vnn64EHHvCvr7R6zJ8/X3/+85+1Z88eSdI///lPvfDCC/riF78oqfLq0ddQjn3btm3KZDKBfaZMmaLZs2eXfX1GGpkWRK6RawXkWhC5NjAybfQh14rItDxyLY9cKyLTBjfSueaGM+zycOjQIeVyOTU0NAS2NzQ0qLW1tUSjGnnGGK1atUrz58/X7NmzJck//oFqs3///hEf43DbsGGDtm/frpdeeqnfdZVWi9dff13r16/XqlWrdNttt2nr1q365je/qVgspquvvrri6nHrrbeqvb1ds2bNkuM4yuVyWrt2rRYtWiSp8s6PvoZy7K2trYpGo6qvr++3TyX9nR0JZFoRuUau9UWuBZFrAyPTRh9yLY9MyyPXisi1IjJtcCOdazQbB2BZVuBnY0y/beVs2bJlevnll/XCCy/0u64SavPGG29oxYoVeuaZZ1RVVTXofpVQC0nyPE9z587VD3/4Q0nS+eefr1dffVXr16/X1Vdf7e9XKfV45JFH9PDDD+tXv/qVzjnnHLW0tGjlypWaMmWKrrnmGn+/SqnHQE7m2CupPiOtks/FAnKNXOuLXAsi146NTBt9KvVcLKj0TJPItfci14rItOMbqVzjbdR9TJo0SY7j9OvYtrW19ev+lqvly5frySef1HPPPadp06b52xsbGyWpImqzbds2tbW1qbm5Wa7rynVdbdq0ST/+8Y/luq5/vJVQC0maPHmyPvShDwW2nX322Tpw4ICkyjo3JOlb3/qWVq9era9+9as699xztXjxYt18881at26dpMqrR19DOfbGxkal02m9++67g+6DcJBpeeQaufZe5FoQuTYwMm30IdfItAJyLYhcKyLTBjfSuUazsY9oNKrm5mZt3LgxsH3jxo2aN29eiUY1MowxWrZsmR5//HH95S9/UVNTU+D6pqYmNTY2BmqTTqe1adOmsqvNZz/7We3cuVMtLS3+MnfuXH3ta19TS0uLZs6cWTG1kKRPfvKT2r17d2Dbnj17NGPGDEmVdW5IUnd3t2w7+KfTcRx5niep8urR11COvbm5WZFIJLDPwYMH9corr5R9fUZaJWeaRK71Ra4FkWtB5NrAyLTRp5JzjUwLIteCyLUiMm1wI55rJ/R1MhVgw4YNJhKJmJ/97Gdm165dZuXKlaa6utrs27ev1EMbVjfeeKOpq6szzz//vDl48KC/dHd3+/vcddddpq6uzjz++ONm586dZtGiRWXzFfHH0/fbzYyprFps3brVuK5r1q5da/7973+bX/7ylyaRSJiHH37Y36eS6nHNNdeYqVOnmqeeesrs3bvXPP7442bSpEnm29/+tr9POdejs7PT7Nixw+zYscNIMnfffbfZsWOH2b9/vzFmaMe+ZMkSM23aNPPss8+a7du3m8985jNmzpw5JpvNluqwylalZpox5NrxkGvkWkEl5xqZNvZUaq6RacdHrpFrxlR2phkzunKNZuMAfvKTn5gZM2aYaDRqPvKRj5hNmzaVekjDTtKAy4MPPujv43meuf32201jY6OJxWLm05/+tNm5c2fpBj2C3htelVaL3//+92b27NkmFouZWbNmmfvvvz9wfSXVo6Ojw6xYscKcfvrppqqqysycOdOsWbPGpFIpf59yrsdzzz034N+Ka665xhgztGPv6ekxy5YtMxMmTDDxeNx86UtfMgcOHCjB0VSGSsw0Y8i14yHXyLWCSs41Mm1sqsRcI9OOj1wj14yp7EwzZnTlmmWMMSc2FxIAAAAAAAAA+uMzGwEAAAAAAACEgmYjAAAAAAAAgFDQbAQAAAAAAAAQCpqNAAAAAAAAAEJBsxEAAAAAAABAKGg2AgAAAAAAAAgFzUYAAAAAAAAAoaDZCAAAAAAAACAUNBuBMrZv3z5ZlqWWlpZSDwUAgFNGrgEAygm5hnJFsxEoE9dee60uv/zyUg8DAIBQkGsAgHJCrqGS0GwEAAAAAAAAEAqajUAJLFiwQMuXL9fKlStVX1+vhoYG3X///erq6tJ1112n2tpavf/979cf/vAHSVIul9MNN9ygpqYmxeNxnXXWWfrRj37k398dd9yhhx56SL/73e9kWZYsy9Lzzz/vX//666/roosuUiKR0Jw5c/Tiiy+O9CEDAMoYuQYAKCfkGnBqaDYCJfLQQw9p0qRJ2rp1q5YvX64bb7xRV155pebNm6ft27frkksu0eLFi9Xd3S3P8zRt2jQ9+uij2rVrl773ve/ptttu06OPPipJuuWWW/SVr3xFn//853Xw4EEdPHhQ8+bN8x9rzZo1uuWWW9TS0qIzzzxTixYtUjabLdWhAwDKELkGACgn5Bpw8ixjjCn1IIBKs2DBAuVyOW3evFlS/pWwuro6XXHFFfr5z38uSWptbdXkyZP14osv6hOf+ES/+7jpppv09ttv6ze/+Y2k/GeAHDlyRE888YS/z759+9TU1KSf/vSnuuGGGyRJu3bt0jnnnKPXXntNs2bNGuYjBQBUAnINAFBOyDXg1DCzESiR8847z7/sOI4mTpyoc88919/W0NAgSWpra5Mk3XfffZo7d67e9773qaamRg888IAOHDhwwo81efLkwP0CABAGcg0AUE7INeDk0WwESiQSiQR+tiwrsM2yLEmS53l69NFHdfPNN+v666/XM888o5aWFl133XVKp9Mn/Fh97xcAgLCQawCAckKuASfPLfUAABzf5s2bNW/ePC1dutTf9t///jewTzQaVS6XG+mhAQBwwsg1AEA5IdeAIGY2AmPABz7wAf3jH//Qn/70J+3Zs0ff/e539dJLLwX2OeOMM/Tyyy9r9+7dOnTokDKZTIlGCwDAsZFrAIByQq4BQTQbgTFgyZIluuKKK7Rw4UJ9/OMf1+HDhwOvmknSN77xDZ111ln+54T87W9/K9FoAQA4NnINAFBOyDUgiG+jBgAAAAAAABAKZjYCAAAAAAAACAXNRgAAAAAAAAChoNkIAAAAAAAAIBQ0GwEAAAAAAACEgmYjAAAAAAAAgFDQbAQAAAAAAAAQCpqNAAAAAAAAAEJBsxEAAAAAAABAKGg2AgAAAAAAAAgFzUYAAAAAAAAAoaDZCAAAAAAAACAU/w9C3BhEe3VuegAAAABJRU5ErkJggg==", + "text/plain": [ + "
" ] }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Modeling the probability that certified_fresh==1\n", - "Auto-assigning NUTS sampler...\n", - "Initializing NUTS using adapt_diag...\n", - "Multiprocess sampling (4 chains in 4 jobs)\n", - "NUTS: [length, style, length:style]\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - "\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - "
\n", - " \n", - " 43.56% [3485/8000 04:04<05:16 Sampling 4 chains, 0 divergences]\n", - "
\n", - " " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "data = pd.read_csv(\"https://vincentarelbundock.github.io/Rdatasets/csv/ggplot2movies/movies.csv\")\n", - "\n", - "data[\"style\"] = \"Other\"\n", - "data.loc[data[\"Action\"] == 1, \"style\"] = \"Action\"\n", - "data.loc[data[\"Comedy\"] == 1, \"style\"] = \"Comedy\"\n", - "data.loc[data[\"Drama\"] == 1, \"style\"] = \"Drama\"\n", - "data[\"certified_fresh\"] = (data[\"rating\"] >= 8) * 1\n", - "data = data[data[\"length\"] < 240]\n", + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bmb.interpret.plot_predictions(\n", + " model_interaction, \n", + " idata_interaction, \n", + " conditional=[\"math\", \"prog\"],\n", + " pps=True,\n", + " subplot_kwargs={\"main\": \"math\", \"group\": \"prog\", \"panel\": \"prog\"},\n", + " legend=False,\n", + " fig_kwargs={\"figsize\": (16, 5), \"sharey\": True}\n", + ");" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Logistic Regression\n", + "\n", + "To further demonstrate the `plot_predictions` function, we will implement a logistic regression model. This example is taken from the marginaleffects `plot_predictions` [documentation](https://vincentarelbundock.github.io/marginaleffects/articles/predictions.html#prediction-type-or-scale). The internet movie database, http://imdb.com/, is a website devoted to collecting movie data supplied by studios and fans. It claims to be the biggest movie database on the web and is run by Amazon. The movies in this dataset were selected for inclusion if they had a known length and had been rated by at least one imdb user. The dataset below contains 28,819 rows and 24 columns. The variables of interest in the dataset are the following:\n", + "- title. Title of the movie.\n", + "- year. Year of release.\n", + "- budget. Total budget (if known) in US dollars\n", + "- length. Length in minutes.\n", + "- rating. Average IMDB user rating.\n", + "- votes. Number of IMDB users who rated this movie.\n", + "- r1-10. Multiplying by ten gives percentile (to nearest 10%) of users who rated this movie a 1.\n", + "- mpaa. MPAA rating.\n", + "- action, animation, comedy, drama, documentary, romance, short. Binary variables represent- ing if movie was classified as belonging to that genre." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Modeling the probability that certified_fresh==1\n", + "Auto-assigning NUTS sampler...\n", + "Initializing NUTS using adapt_diag...\n", + "Multiprocess sampling (4 chains in 4 jobs)\n", + "NUTS: [length, style, length:style]\n" + ] + }, + { + "data": { + "text/html": [ "\n", - "priors = {\"style\": bmb.Prior(\"Normal\", mu=0, sigma=2)}\n", - "model = bmb.Model(\"certified_fresh ~ 0 + length * style\", data=data, priors=priors, family=\"bernoulli\")\n", - "idata = model.fit(random_seed=1234, target_accept=0.9, init=\"adapt_diag\")" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The logistic regression model uses a logit link function and a Bernoulli likelihood. Therefore, the link scale is the log-odds of a successful response and the response scale is the probability of a successful response." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - " Formula: certified_fresh ~ 0 + length * style\n", - " Family: bernoulli\n", - " Link: p = logit\n", - " Observations: 58662\n", - " Priors: \n", - " target = p\n", - " Common-level effects\n", - " length ~ Normal(mu: 0.0, sigma: 0.0708)\n", - " style ~ Normal(mu: 0.0, sigma: 2.0)\n", - " length:style ~ Normal(mu: [0. 0. 0.], sigma: [0.0702 0.0509 0.0611])\n", - "------\n", - "* To see a plot of the priors call the .plot_priors() method.\n", - "* To see a summary or plot of the posterior pass the object returned by .fit() to az.summary() or az.plot_trace()" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } + "\n" ], - "source": [ - "model" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Again, by default, the `plot_predictions` function plots the mean outcome on the response scale. Therefore, the plot below shows the probability of a successful response `certified_fresh` as a function of `length`." + "text/plain": [ + "" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvgAAAFdCAYAAAB2GxkjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABJ0AAASdAHeZh94AABz2klEQVR4nO3deXiU5b038O8z+55JJpkkk4SwBAgQNi0ieBCRouAKtLyC9VSR054jtke6SBUriktLqz09Hl/ouerRSovEUxfsWwu0gmitIKK2QiIgCVv2TDKZfZ953j9mMklICIQsM5l8P9fFhXnmeWbuYRz4zj2/+3cLoiiKICIiIiKitCBJ9gCIiIiIiGjgMOATEREREaURBnwiIiIiojTCgE9ERERElEYY8ImIiIiI0ggDPhERERFRGmHAJyIiIiJKIwz4RERERERphAGfiIiIiCiNyJI9gHRit9vx/vvvo6ioCEqlMtnDISIiIqIUEggEUFNTg/nz58NoNA7a4zDgD6D3338fS5cuTfYwiIiIiCiFvfXWW7j99tsH7f4Z8AdQUVERgNiLVlJSkuTREBEREVEqqaqqwtKlSxOZcbAw4A+g9rKckpISTJkyJcmjISIiIqJUNNil3FxkS0RERESURhjwiYiIiIjSSEoGfLfbjXXr1sFisUClUmHGjBl49dVXL3pdbW0t1q1bl1iZLAgCXn755R7Pffvtt/HNb34TU6dOhVwuhyAIA/wsiIiIiIiGXkoG/OXLl2Pbtm147LHHsHv3bsyaNQurVq3Cjh07er2uqqoKr7zyChQKBW666aZez925cyc++ugjTJ48GdOnTx/I4RMRERERJU3KLbLdtWsX3nnnHezYsQOrVq0CACxYsABnz57Fgw8+iDvuuANSqbTHa6+99lpYrVYAwCeffILy8vILPs4LL7wAiST2+eY73/kOPv300wF+JkREREREQy/lZvB37twJnU6HFStWdDm+evVq1NfX49ChQxe8tj2wX4q+nEtERERENFyk3Ax+RUUFJk2aBJms69CmTZuWuH3u3LnJGFoXzc3NiW8L2lVVVSVpNEREREREMSkX8FtbWzF27Nhux7OyshK3p4KtW7di06ZNyR4GEREREVEXKRfwAfTa0SZVut2sXbu2WxlR++5kRERERETJknIB32Qy9ThLb7PZAHTM5Ceb2WyG2WxO9jCIiIiIiLpIuZWmU6dOxbFjxxAOh7scP3r0KACgrKwsGcNKaf+oscPmCSZ7GERERESUAlIu4C9btgxutxtvvPFGl+Pbtm2DxWLB7NmzkzSy1NXqDuDPlY04fMaGQDiS7OEQERERURKlXInOkiVLsGjRItx3331wOp0oKSlBeXk59uzZg+3btyd64K9Zswbbtm1DdXU1iouLE9e//vrrAIBTp04BiPXD1+l0AICvf/3rifPOnj2Lw4cPAwCqq6u7XDt69Gh85StfGeRnOrBEETjZ5Ma5Vi+mFxlRYtYle0hERERElAQpF/AB4M0338QjjzyCjRs3wmazobS0FOXl5Vi5cmXinEgkgkgkAlEUu1x7/sLXLVu2YMuWLQDQ5dz9+/dj9erVPV5799134+WXXx7IpzRkAuEoPj5tQ7XVja8UZ8KkUyZ7SEREREQ0hATx/IRMl62yshJlZWWoqKjAlClThuxx9x1rQpMz0O24IADjcnSYXpQBpazn3X+JiIiIaGgMVVZMyRl8GhiiCFQ1u1Fj82J6UQbG5ehSps0oEREREQ2OlFtkSwMvVrbThj9XNsLq6j7TT0RERETpgwF/BLF5QnjniyYcqG6BL8huO0RERETpiCU6I9CZFi9q23yYYjGgNM8AqYRlO0RERETpgjP4I1Q4IuLzGgf+dLQBtW3eZA+HiIiIiAYIA/4I5/aH8dcvW7D/eDMcvlCyh0NERERE/cSATwCABocfu4824NOzbQiGo8keDhERERFdJgZ8SoiKwIlGF94+Uo+qZne3TcSIiIiIKPUx4FM3/lBsN9w/VzbB4WXZDhEREdFwwoBPF2TzBLGnsgFf1Ds5m09EREQ0TDDgU68iUeAfNXa880UTXH7O5hMRERGlOgZ8uiQt7iB2H23El02uZA+FiIiIiHrBgE+XLBwV8cmZNrx7vAmeQDjZwyEiIiKiHjDgU581OgLYdbQB1VZ3sodCREREROdhwKfLEoqIOHTKhve/tMIXjCR7OEREREQUx4BP/VLX5sOuow041+pN9lCIiIiICAz4NAAC4Sj+VtWCv51sgT/E2XwiIiKiZJIlewCUPs7ZvGh0+jG9MAMlZh0EQUj2kIiIiIhGHM7g04AKhqM4fKYNf65sQqs7kOzhEBEREY04DPg0KGyeIP7yRRMOnWpFIMyyHSIiIqKhwhIdGjSiCFRbPaht82F6kRElZl2yh0RERESU9jiDT4MuEI7i49M2/LmyETZPMNnDISIiIkprDPg0ZFrdQfy5shGHz9hYtkNEREQ0SFIy4Lvdbqxbtw4WiwUqlQozZszAq6++etHramtrsW7dOsyfPx9GoxGCIODll1++4Pl79+7FnDlzoNFokJ2djXvuuQfNzc0D+EzofKIInGxy4+3PuRMuERER0WBIyYC/fPlybNu2DY899hh2796NWbNmYdWqVdixY0ev11VVVeGVV16BQqHATTfd1Ou577//PpYsWYLc3Fz84Q9/wHPPPYe9e/di4cKFCATY/WWwBcJRHDplw18qG9lth4iIiGgApdwi2127duGdd97Bjh07sGrVKgDAggULcPbsWTz44IO44447IJVKe7z22muvhdVqBQB88sknKC8vv+DjPPjgg5gwYQJef/11yGSxP4YxY8bgmmuuwUsvvYT77rtvgJ8Z9aTFHcSfK5swOluDmUWZUCt6fm2JiIiI6NKk3Az+zp07odPpsGLFii7HV69ejfr6ehw6dOiC10okl/Z06urqcPjwYfzzP/9zItwDwNy5czFhwgTs3Lnz8gZPl+1Mixd//LweFXUOhCPRZA+HiIiIaNhKuRn8iooKTJo0qUvwBoBp06Ylbp87d26/H6PzfZ7/OB9++OFF76O5uTnxbUG7qqqqfo1rpAtHRRypdaDa6saMIiOKTdpkD4mIiIho2Em5gN/a2oqxY8d2O56VlZW4fSAeo/N9nv84l/IYW7duxaZNm/o9FurOE4jgw6pWnGh04criTJh0ymQPiYiIiGjYSLmADwCCIFzWbQP1OJfyGGvXru1WRlRVVYWlS5cOxNAIHfX5Y7K1mFFkZH0+ERER0SVIuYBvMpl6nEG32WwAep51v5zHAHr+NsBms13SY5jNZpjN5n6PhS7udIsHNTYvJlsMmJRvgFQycB/yiIiIiNJNyi2ynTp1Ko4dO4ZwONzl+NGjRwEAZWVl/X6M9vtov8/zH2cgHoMGVnt9/ttH6lFZ74AnEL74RUREREQjUMoF/GXLlsHtduONN97ocnzbtm2wWCyYPXt2vx+joKAAV111FbZv345IpGNH1Y8++ggnTpzA8uXL+/0YNDg8gQg+r3HgD/+oxztfNKGq2cVdcYmIiIg6SbkSnSVLlmDRokW477774HQ6UVJSgvLycuzZswfbt29P9MBfs2YNtm3bhurqahQXFyeuf/311wEAp06dAhDrh6/T6QAAX//61xPn/exnP8OiRYuwYsUKrF27Fs3NzXjooYdQVlaG1atXD9XTpX6wugKwugL45Ewb8o1qjDZpUGBUQyZNuc+tREREREMm5QI+ALz55pt45JFHsHHjRthsNpSWlqK8vBwrV65MnBOJRBCJRCCKYpdrz1/4umXLFmzZsgUAupx73XXXYdeuXdi4cSNuvfVWaDQa3HLLLXjmmWegVLJry3ASFYG6Nh/q2nyQSQUUZWowOluDPINqQBdlExEREQ0Hgnh+QqbLVllZibKyMlRUVGDKlClD9rj7jjWhyRkYsscbLlRyCYpNGozL0cGoUSR7OERERDTCDVVWTMkZfKKB4A9FcaLRjRONbow2aTC9yAitkv/LExERUXpj2qER4UyrFzVtXozP1WOKxQCljD31iYiIKD0x4NOIEYkCxxtcOGX1YIrFgAm5evbUJyIiorTDdiM04gTDUfz9nB1vH6nH6RZPsodDRERENKAY8GnE8gQiOFjdij0VDWh0+JM9HCIiIqIBwYBPI57NE8K7x5ux/3gz7N5gsodDRERE1C+swSeKa3D40VjRiNEmLaYVZrDjDhEREQ1LTDBEnYgicLrFg3M2DzvuEBER0bDEgE/Ug84ddybnGzAxjx13iIiIaHhgDX4aqKx34B81bQiEI8keStoJhqP4R02s40611Q1u/ExERESpjjP4aWB3RSOONbgglwqYlG/A9EIjxufqIJPw89tA8QQiOHTKhhONLkwvMqLAqE72kIiIiIh6xIA/zHmDYdS2+QAAoYiII7UOHKl1QC2XoqwgFvZHZ2shEVheMhDs3hDeP2GFWa/EjFFGZOuUyR4SERERURcM+MOcRiHDs1+fhg+rWvGPWjuONTgRiojwhSI4fKYNh8+0waCSYVqhEdMLjbAYVRAY9vut2RXAXyqbkG9UocySgRw9gz4RERGlBgb8NCCTSlCab0BpvgGBcATHGlz4vMaOk80uREXA6Q/jb1Ut+FtVC7J1CkwrNGJaYQbMelWyhz7sNdj9aLD7kWtQoqwgA7kG/pkSERFRcjHgpxmlTIoZRUbMKDLCGwjjaL0Dn9c4cKbVAwBocQfx7vFmvHu8GfkZKkyPh32jRpHkkQ9vTc4AmpzNyNErMcVigIU1+kRERJQkDPhpTKOUYfYYE2aPMcHuDcbr8+2od/gBxDZ2anA0Yk9lI4qzNJhWZMTUggzouMHTZbO6AnjvhBVZWjmmWDJQlKVJ9pCIiIhohGGSGyGMGgWunZCDayfkwOoK4EitHZ/XOtDiDgAAztq8OGvz4k9H6jEuR4dphUZMsRigknOTp8th84TwwckWGDVyTLEYMCpLw7UPRERENCQY8EegHL0SCyfl4vpSMxocfnxea8eRWgccvhCiInCy2Y2TzW689Q8BE3P1mFaYgdI8AxQytt3sK7s3hA+rWnFU7cDkfANGm7SQcMMsIiIiGkQM+COYIAiwGNWwGNW4cUoeamxefF5rx9FaBzzBCCJREV80OPFFgxNyqYDSPAOmF2ZgfK4ecinDfl84fWF8FO+jP3usCVlarnkgIiKiwcGATwAAiSCg2KRFsUmLm6dacMrqxue1DnzR4IA/FEUoIuJonQNH6xxQyiSYnG/AtEIjSsw6SDkjfcnavCH8pbIRpfkGTC3I4J8dERERDTgGfOpGKhEwPleP8bl6hCMWnGx240itHccaXAhGogiEo/h7jR1/r7EnNtSaVmjEGG6odUmiIvBFvRO1bV7MHmNiD30iIiIaUAz41CuZVIJJ+QZMyjcgGI7iRJMLR2rtONHoQjjadUMtnVKGsoIMTCvIwCiThmH/Ipy+MPYea8KEXB2mFxohY9kTERERDQAGfLpkCpkEUwsyMLUgA/5QBMcanDha58DJJjciogh3IIyPTrXio1OtMKhksXMLjSjKVLODzAWIInCi0Y06ux+zx2RxoywiIiLqt5ScMnS73Vi3bh0sFgtUKhVmzJiBV1999ZKubW5uxj333IPs7GxoNBrMmTMH+/bt63ZeMBjExo0bMWbMGCgUChQXF+Phhx+Gz+cb6KeTllRyKWaOysQ354zGwzeVYvnMApTk6NAe453+MD6sbsV/v1+NZ/58AruPNqC2zQtRFJM67lTl9oex71gzDp1qRTAcTfZwiIiIaBhLyRn85cuX4/Dhw9i8eTMmTJiAHTt2YNWqVYhGo7jzzjsveF0gEMDChQtht9vx3HPPwWw2Y8uWLVi8eDH27t2L+fPnJ85dtWoVdu3ahY0bN2LWrFk4ePAgnnrqKVRWVuL//b//NxRPM21oFDJ8ZXQWvjI6C+5AGJX1DhypdeBMiwciALsvhA+qWvBBVQuytIrEtwD5GSrO7J+n2upBg8OPWWOyUMDdcImIiOgyCGKKTanu2rULN998cyLUt7vhhhtQWVmJc+fOQSrtefOlrVu34v7778eBAwcwZ84cAEA4HMb06dOh0+lw6NAhAMBHH32EOXPm4Be/+AW+//3vJ67/6U9/ig0bNuAvf/kLFi1a1OexV1ZWoqysDBUVFZgyZUqfr79c+441ockZGLLHu1ROfwiVdQ4cqXPgbKu32+0mrQLTCjMwtcCIXIOSYf88o00aXFGcyc3GiIiI0sRQZcWUK9HZuXMndDodVqxY0eX46tWrUV9fnwjpF7p24sSJiXAPADKZDHfddRc+/vhj1NXVAQA+/PBDAMBNN93U5fpbbrkFAPDGG28MyHMZ6QwqOeaMy8a/XjsOP1pcipun5qMos2NWutUTxP4TVvzXuyfxy70n8c4XTWh0+FnGE3em1Yu3jzTgaK0DgXAk2cMhIiKiYSLlSnQqKiowadIkyGRdhzZt2rTE7XPnzr3gtfPmzet2vP3ayspKFBQUIBgMAgCUyq7tCdt/PnLkyEXH2dzcDKvV2uVYVVXVRa8bqTLUclxTko1rSrLR5g2ioi5WxlNnj615aHEHsP9EM/afaEaOTomphRkoK8hArn5kz+wHw1EcrXPgWIMT48w6TMrXQ6NIubctERERpZCUSwqtra0YO3Zst+NZWVmJ23u7tv283q6dPHkygNhM/pgxYxLn/e1vf7voY7TbunUrNm3adNHzqLtMjQLzxudg3vgc2DxBHK1zoKKuI+xb3QG8e7wZ7x5vRo5emajZH8kdZsJREScaXTjZ5MLobC0mWwwwqOTJHhYRERGloH4H/O3bt2PHjh04e/Zstw40giCgurq6z/fZ24ztxWZzL+XaJUuWoKSkBD/60Y+Qm5uLWbNm4aOPPsKGDRsglUohkVy8cmnt2rXdyoiqqqqwdOnSi15LHbK0CsyfkIP5EzrC/tE6O+rtfgCA1cWw31lUBE5ZPTjd4kFhphpTLBnI0iqSPSwiIiJKIf0K+D/72c/w8MMPY/LkyZg+fXq3kpfLYTKZepxBt9lsANDjDH1fr1UoFNi9ezf++Z//GTfccAMAQKvV4ic/+QmefPJJFBQUXHScZrMZZrP54k+ILlnnsN/qDqCizoGj9Y4Lhv0yS3vYH3llPKII1Nh8qLH5kJ+hwmSLYcR+6CEiIqKu+hXwf/3rX+P+++/H888/P1DjwdSpU1FeXo5wONylDv/o0aMAgLKysl6vbT+vs56uLSkpwcGDB1FXVwebzYZx48bB4XDggQcewLXXXjtQT4cuk0mnxPyJZsyfaO4I+3UO1Ds6wn57zX62ToGyggyUWUZm680Ghx8NDj9MOgUm5xtQyI3FiIiIRrR+ddFpbGzEsmXLBmosAIBly5bB7XZ362Szbds2WCwWzJ49u9drjx8/3qXTTjgcxvbt2zF79mxYLJZu1xQUFGDq1KnQaDR45plnoNVqsWbNmoF7QtRv7WH/O9ePxw8WTcCNk3O79IhvcQfx3gkr/u/+KvzHO1/iz5WNqGvzjbhuPK3uID442YK3/lGHT8/a0OzyJ3tIRERElAT9msG/8sorUV1djeuvv36gxoMlS5Zg0aJFuO++++B0OlFSUoLy8nLs2bMH27dvT/TAX7NmDbZt24bq6moUFxcDAO69915s2bIFK1aswObNm2E2m7F161acOHECe/fu7fI4P//5z5GXl4dRo0ahqakJv//97/HWW2/hd7/73SWV6FBydJ7Zt3li3Xgq6h2obYut/2j1BPH+l1a8/6UVmRo5yuI1+wXGkTOr7QtGcaLRjRONbmiVUhRmalBs0iBb1/8SOiIiIkp9/Qr4//Ef/4G77roLV1xxBa688sqBGhPefPNNPPLII9i4cSNsNhtKS0tRXl6OlStXJs6JRCKIRCJdZmmVSiX27duH9evX47vf/S68Xi9mzJiB3bt3d9nFFgD8fj+eeOIJ1NbWQq1W4+qrr8Z7773XY5tNSk1ZWgWunZCDayfkJFpvVtQ5UBMP+23eED442YIPTrbAqJZjisWAsoIMFGVpIBkhYd8TiOBEowsnGl3QKqUYlaXBqCwNTAz7REREaavPO9m295Rv19DQAJvNhry8PJhMpq53Lgj4/PPP+z/KYYI72aYGuzeIynonKuocOGvrvoOuQSXDZIsBZZYMjM7Wjpiw35lOJUuEfXbhISIiGhpDlRX7PIOflZXVpdTh/FBPlGxGjSKxqZbDF8IX9Q5U1DtxpsUDEYDTH8ZHp2z46JQNWoUUky0ZKLMYMDZHB6lkZIR9tz+ML+qd+KLeCaNGjqnxbzaIiIho+OtzwH/vvfcGYRhEgyNDLceccdmYMy4bLn8IXzQ4UVnvxCmrG1ER8AQjOHzGhsNnbFDLpZiUb0CZxYASsw4yab/WoA8b9ngpU7ZOgRmjjDDr2W6TiIhoOEu5nWyJBoteJcfsMSbMHmOCNxDGsUYnKuqcqGp2IyKK8IUi+OxcGz471walTIKJeXqUWTIwIVcPhSz9w36LO4i9XzTDYlRhRpERRg1Ld4iIiIajfgX8d999F62trYkdXZuamrB69Wp89tlnuOGGG/DrX/8aKhVnAyn1aJQyXFmchSuLs+ALRnC8MTaz/2WTC+GoiEA4iiO1DhypdUAmETAhV48pFgNK8wxQK6TJHv6gqrf70eBoxGiTFtMKM6BVch6AiIhoOOnXv9wbN27EokWLEj+vX78eH3zwARYtWoTXX38d48ePx6OPPtrvQRINJrVCipmjMjFzVCYC4VjXmcp6J040uRAMRxGOiviiwYkvGpyQCgLGmbWYkp+BSRYDdGkafkURON3iwTmbByXm2IcblTy9P9gQERGli37VHXz55Ze44oorAMQ2lNq5cyd+9rOf4c0338QTTzyB8vLyARkk0VBRyqSYVmjEqqtG4ZGbJuGfry7GFaOMUMfDbUQU8WWTGzv/UYef7jqGFz44hQ+rWmD3BpM88sERiQInGl344+f1qKhzIByJJntIREREdBH9mn50Op0wGo0AgE8//RQejwe33XYbAOCqq67C448/3t/xESWNXCrBpHwDJuUbEImKON3iQUW9A1/UO+EOhCEiNst9usWDPx1tQIFRjSkWAybnG2A2pFdpWigi4kitAyebXSizZIyojkNERETDTb8CvtlsxsmTJzFv3jzs3bsXxcXFKCwsBAC4XC7I5fIBGSRRskklAkrMOpSYdbhtugXnWr2orHfgiwYn2rwhAECd3Yc6uw9/+aIJOTolJlsMmGIxpNUuur5gFIfPtOFIrQNjcrQYb9ZBr+L7nIiIKJX0K+AvXrwYGzZsQGVlJV5++WXcfffdiduOHz+O0aNH93d8RClHIggYna3F6GwtbpqajwaHH5X1DlTWO9Hsim04ZnUH8P6XVrz/pRUZanki7I82pcfGWoFwFMcbXDje4EJehhIlOXoUZqoh4aw+ERFR0vUr4P/kJz/BuXPn8MILL+Cqq67Cj3/848RtO3bswNy5c/s9QKJUJggCLEY1LEY1Fk3OQ4srgMoGJyrrHaht8wEAHL4QDla34mB1KzQKKSblGTA53mtfnga99hsdATQ6AlArJBibHfuWg513iIiIkqdf/wpnZ2djz549Pd62f/9+tsikESdbr8R8fQ7mT8hJ7KJb2RDbRTcqAt5gBJ+ea8On59qgkEowPleHyfnp0X7TF4yisj7WbSg/Q4XxuXpYMlRpU55EREQ0XAzYNJvP54PNZkNubi5kMhkMBsNA3TXRsNR5F932jbW+qHfiZLMb4aiIYCQWiCvrnZAIwNhsHSZbYot6M9TDt65dFGO99OvtfmiVUozL0WFcjm7Yf4AhIiIaLvod8Pfv348NGzbg8OHDAICPP/4YV1xxBe6//34sXLgQy5cv7/cgiYa7zhtrBcNRfNnkwhcNThxvdMIfiiIqAlVWN6qsbvy/z+tRmKnG5Pzh35HHE4jgSK0DlfUOjM2JfVvB8h0iIqLB1e+dbG+88UaUlZXhhz/8IX7+858nbsvOzsbLL7/MgE90HoVMgrKCDJQVZCTab37REGu/6fSHAQC1bT7UtsU68mTrFJgcb9dZlKUZlot0I1HgZJMb1c1ujM7WYrLFAAO77xAREQ2Kfu9ke9NNN+EPf/gDwuFwl4A/ffp0/OY3v+n3AInSWef2m7dMs6De7kvUsVvjHXla3EH89WQL/nqyBTqlDKV5ekzON2DcMFykGxWBU9bY3gHFWRpMthhg1CiSPSwiIqK00q+A//e//x2vvfYaAHRbSJeTk4Pm5ub+3D3RiCIRBBRmalCYqcGNU/JgdQXwRYMTxxqcqLF5IQJwB8L45GwbPjnbdZHuxDw9NIrhU/oiisCZVi/OtHpRmKlGWUEGsrQM+kRERAOhX4lAJpMhFAr1eFtzczP0en1/7p5oRMvp1JHH5Q/heEOsbr/a2vMi3WKTNlG3nzmMwnJ7OVK+UYXJ+QbkDuM1B0RERKmgXwF/1qxZ+N3vfofbb7+9222vv/465syZ05+7J6I4vUqOWWOyMGtMFgLhCE42ufFFgxMnGl3whSKIisDplljpy5+ONiDPoMKkfD0m5RtgMaqHRd1+g92PhnjnndGm2EZiw7mbEBERUbL0K+A/9NBDuPHGG7Fs2TJ885vfhCAIOHToEF566SW8/vrr2L9//0CNk4jilDJpl0W6Z1o9iVIeuzf2jVqj049Gpx/7T1hhUMlQmhdbpDs2R5vydfueQCTxzYRJp8CYbC1GZWmgkrPNJhER0aUQRFEU+3MH27dvx7p162Cz2RLHjEYjnn/+eXzjG9/o9wCHk8rKSpSVlaGiogJTpkwZssfdd6wJTc7AkD0epSZRFNHg8ONYYyzs19v93c5RyCQYb9ZhUr4Bpbl6aIZJy0qJAFiMaozJ1qLAqIZEkvrfSBAREZ1vqLLiZf/rHolEUF1djVtuuQVf+9rXcODAATQ1NSE7OxvXXHMNtFrtQI6TiC5CEARYjGpYjGosLM2F3RvE8UYXjjU4ccrqQUQUEQx31O0LaK/b16M034BsnTLZT+GComJHrb5SJsEokwZjsrUpPWYiIqJkueyAL4oiJk+ejD/+8Y9YsmQJFi5cOJDjIqJ+MmoUuHqsCVePNcEfiuBksxvHOtXtiwDOtHpwptWDXRWNyNEpUZqvx6Q8A0aZUrfffiAcxckmN042uWFQyzAmW4ux2dwpl4iIqN1lB3yZTIa8vDxEo9GBHA8RDQKVXIqpBRmYGq/bP9vqwbEGJ441umDzBAEAVncA1pMBfHCyBRqFFBNzYzP7E8w6KFO0/t3pC+PzGgeO1jqQb1RjLEt4iIiI0K/VditXrsRvf/vbgRpLgtvtxrp162CxWKBSqTBjxgy8+uqrl3Rtc3Mz7rnnHmRnZ0Oj0WDOnDnYt29ft/MCgQCeeeYZlJWVQavVIjc3F0uWLMGBAwcG+ukQpRSpRMDYHB1unmbBDxZNwAMLx+PGybkYlaVBeyz2BiP4e40d5R+fw1O7juE3H57GwVOtsHuDSR37hURFoK7Nhw9OtuAPn9fh7+fa4PD13MKXiIgo3fVrhd2MGTPwv//7v7j++uuxfPly5Ofnd9vwavny5X2+3+XLl+Pw4cPYvHkzJkyYgB07dmDVqlWIRqO48847L3hdIBDAwoULYbfb8dxzz8FsNmPLli1YvHgx9u7di/nz5yfO/da3voVXXnkFDz/8MK6//nrYbDZs3rwZ8+fPx4cffoirrrqqz+MmGm4EQUCuQYVcgwrzJ5rhDoRxotGJYw0unGx2IRQREYmKONnsxslmN/74OZCfoUJpnh6leQYUZKZeC05fMIpjDS4ca3AhR6/E2BwtirM0kKV49yAiIqKB0q8uOhJJ7/9gCoKASCTSp/vctWsXbr755kSob3fDDTegsrIS586dg1Tac7nA1q1bcf/99+PAgQOJHvzhcBjTp0+HTqfDoUOHAMQ+CGi1WqxatQq/+93vEtc3NDTAYrHg3//93/Hcc8/1adwAu+hQeglFojhl9eB4vCuP0x/udo5WKUNprh6l+XqUmHVQylKzlEcmFVCcpcHYHB1y9FyYS0REyZHyXXQADEqf+507d0Kn02HFihVdjq9evRp33nknDh06hLlz517w2okTJ3bZYEsmk+Guu+7Chg0bUFdXh4KCAkgkEkgkEmRkZHS53mAwQCKRQKUaXjtpZmkVCEWi8IUi8Iei6F/jU6IYuVSCiXl6TMzT47bplkQLzuMNLtTZfQAATyCMT8+14dNzbbHSn2xtYnY/lXbTDUdEVFs9qLZ6YFDLEhtp6YZJm1AiIqK+6PO/bt///vfxve99D0VFRRgzZgzy8/Mhlw/cbpMVFRWYNGkSZLKuQ5s2bVri9gsF/IqKCsybN6/b8fZrKysrUVBQALlcjrVr1+LFF1/EV7/61USJzoYNG5CRkYFvfetbA/Z8hsLMUZmJ/xZFEf5QLOz7QhH4ghH44//tb/85HIU/FEE4wk8CdGnOb8Hp9IVwotGF441OVFnd3Ut5jjQg16BEaZ4BpXl6FGWlTlcepy+MI7UOHKl1IEevxJhsDUZlaaGQsYSHiIjSQ58D/n/+539i5cqViYB/8ODBAa1Xb21txdixY7sdz8rKStze27Xt513s2l/+8pfIyMjA1772tUQnoFGjRuHdd99FSUnJRcfZ3NwMq9Xa5VhVVdVFrxtsgiBArZBeUsvAcKdZf3/8A4A/FIU/HPsg4AtF4PCGEI7ygwB1ZVDLMWtMFmaNyYqX8rhxrNGFE42uxOLWJmcATU4r3v/SmujKMzFPj/Fmfcq0tLS6ArC6Avj0bBssRjVGm9iFh4iIhr8+B/zMzEw0NTUBiM0Wn7+odiD0dp8Xe7xLvfbpp5/Gs88+i8cffxzz5s2D0+nE//2//xeLFi3CX/7yF8ycObPXx9m6dSs2bdrU6zmpTiaVQC+VQN9LRZIoinD4QmhxB9HqDqDVE4TDF2IZECXESnkMmJhnSOyme7zRhRONTtS2+SCioyvP32vskAixDbZK4+U/OTrloPw90heRKFBj86HG1rGR1miTlvX6REQ0LPU54F999dVYs2ZNYtb+Bz/4AYxGY4/nCoKAP/zhD326f5PJ1OMsvc1mA4AeZ+j7eu2xY8ewceNG/PznP8cPf/jDxHlLlizB5MmT8f3vf/+i6wvWrl3bbZ1AVVUVli5d2ut1w40gCDBqFDBqFCgx6wDEFl/aPEG0uAOweYJodQfhDfZtMTWlp86lPNeXmuHyx0p5TjS5cLLZjWA4iqgInG7x4HSLB7srGpGlVWBinh6luXqMydYmvdtN5420dCoZxpi0KM7WwKAauFJEIiKiwdTngL9161asW7cOlZWVEAQBVVVVUCp7nuW6nFm5qVOnory8HOFwuEsd/tGjRwEAZWVlvV7bfl5n51/7+eefQxRFzJo1q8t5crkc06dPx/vvv3/RcZrNZpjN5os/oTQkl0oSrRXbeYNhtLpjs/sufxieQBieYBjeYISz/SOYXiXHV0Zn4SujsxCORHG61ROv3e/YYMvmCeJgdSsOVrdCIZVgnFmH0lw9JuTpkaFObqh2+8M4WufA0ToHsrRyjMrSotikgZaLc4mIKIX1+V+p4uJi7Ny5E0CsTeZbb701oDX4y5YtwwsvvIA33ngDd9xxR+L4tm3bYLFYMHv27F6vXbt2LQ4dOpQ4LxwOY/v27Zg9ezYsFgsAJH7/6KOPuvTGDwQC+Oyzz1BYWDhgz2ek0Chk0GTJUHTe8WhUhCcYhjsQC/3uQARuf8fPgTB3Qh4pZFIJxptjNfg3TxVhdQcSYf9sqwdREQhGorEddhucAGI999tr95O9UNfmCcHmseMfNXbk6JUoNmkwKksDVYru8ktERCNXv9tkTp48+ZLOFUURTz75JL797W8jLy/vguctWbIEixYtwn333Qen04mSkhKUl5djz5492L59e6IH/po1a7Bt2zZUV1ejuLgYAHDvvfdiy5YtWLFiBTZv3gyz2YytW7fixIkT2Lt3b+Ix/umf/gmzZs3C448/Dq/Xi2uvvRYOhwPPP/88Tp8+3aU3PvWPRCJAr5JDf4HyhlAkCm8wtqjXG5/x94Ui8WNheAKRi34IUMkl0CikUCtksd/lsUXGGoUUGrkMMqkQ+5Dhj92fKxBKfMjwh/gBIxkEQYBZr4JZr8K88TnwBSM42RxbpPtlkwueeMlXg8OPBocf731phVouxYRcHSbmGTDBrIMmibPonRfn5hqUKDZpUZSpYSceIiJKCf3a6KovIpEIFAoFDh8+jCuuuKLXc91uNx555BH8/ve/h81mQ2lpKR5++GGsXLkycc4999yDbdu24fTp0xg9enTieFNTE9avX4+3334bXq8XM2bMwJNPPomvfvWrXR7D4XDgmWeewZtvvomzZ89Cp9Nh8uTJWL9+PZYsWXJZzzFZG12lu2hUhDcU+wDgC0YgQEgEeLVc2q+OJ+FIFO5AOFZWFP8Q4AqE4Q1E4AmG2Uo0CaKiiLo2H040xQJ/e8/9zgQARVkalObpMSFXj/wMVdIX6koEIN+oRnGWBhajmmGfiIi6GaqsOKQBXy6X45NPPrlowB+uGPDTTzAchTcYhicYgTfQ8bs3GPsA4A9FEOGXAIPK6Q/hZFOslKeq2d3jNzoGlQwTcmNhv8SsS3rZjCAAGWo5zHolcuK/NArW7RMRjXTDYidbonSnkEmgkClg1Fz4nFAk2rGHQChWUhT7vfMeAx23Ud8YVHJcWZyFK4uzEI5GcbbVG+vM0+iC1R0AADj9YXxytg2fnG1LtOGcGF+om6sf+jacogjYvSHYvSF82eQGAGiVUuTolfHQr0r6AmIiIkpfDPhE/SSXSiC/yH4C7QLhCJocATQ4fGhw+NletI9kEgnG5egwLkeHm6bmw+YJ4kSTC182unCqJbajbuc2nHsqG5GhlmNCrh4Tc/UYZ9ZCKUvO7L4nEIEn4MWZFi8AQCmTIDse+M16JbK0iqSXGRERUXpgwCcaQkqZFKNMGowyxb4ScPhCibBvdQa4a3AfZWkVmDPWhDljTQhFojjd4kkE/tZ4G06HL4TDZ2w4fMYGqUTAaJMmUc5jTsLsfrtAOIq6Nh/q2mJrDJQySXwPARXyM1jDT0REl48BnyiJMtRyZKjlKM0zIBIVYXV1zO7bvaFkD29YkUslieCOaUCLO4Av4wt1T7d4EI6KiERFVFs9qLbGNtkyquUYn6vHxNzYtwLKJNbuB8LRxDcPEgHI1imRb1ShwKiGUaNI2riIiGj4YcAnShFSiYC8DBXyMlSYCcAXjKDJ6YfT39HW0xMMwxdkHf+lyNYpka1TYu64bATDUZxqcSfacLbFPzzZO83ud6ndz9Uj15C82f2oCDS7Amh2BfB5jQNapRQWoxp5BhVMOgUX7BIRUa/4rwRRilIrpBidre12PByJwhOIwB1v69mxiVjsV+fWnu0dRNs3iBKEWA96IfHfQDSKtF/8q5BJUJpnQGmeAaIoosUdxJdNsbDfPrt/fu1+KnXm8QQiONnkxsn4gl21QoJMjQJZ2tgvk1YJtYIbbhERUcyQBXypVIrTp08ndpElossjk0qQoZEgQ9NzFxZRFPs88+wJhNHqDsLqDqDVHUCbN5i27T8FQUi0rrymJDa7f7rFjRNNbnzZ5IItXrt/fmeeoqx47b5Zj3yjKqm76vqCUfiCftTb/Ylj7aHfpFUiUytn6CciGsH6HPCfeOKJSz5XEAQ8+uijiZ/bd5wlosFzOWUlWqUMWqUssfg3GhVh8wbR6g6i1R2A1R2AJ5CeHX8UMgkm5hkwMc8AAGh1B2ILdZtcOGXtmN0/2+rF2VYv3vmiCVqFFONz9ZiQq0OJWQ9dEnfVbXeh0G/UKGBUy5GpUcCokcOgkvdrczgiIkp9fd7oSiLp2tlBEAScfxedA0Ykkp6hoCfc6IrSmT8UQYs7gBZ3EE5fCN5gBL5QGP5QFEOzXd7Qa+/Mc7LJhS+b3bC6Aj2eV2BUY3yuDhPMehRlaSBN4QAtiW/ClaHpCP2ZGkXSNwcjIhoJUnajq2i043v7kydPYsmSJVizZg3uvPNO5OXlobGxEa+88gpeeukl7N69e0AHS0TJo5JLUZipQWFm112/olERvlAkvgA4Am8wAm8wHP899t/D9UNA5848NwNo8wZxMl7KU23t2FW3zu5Dnd2H905YoZLHevWPN+sxPleHzBTrgBMVgTZvCG3eEM7Amziukktg1Mi7zPhnqDnbT0Q0HPXre+UHHngA3/zmN/Hwww8njhUXF2PDhg0IhUL493//d4Z8ojQnkQiJEp8LCUeiiZKfFncAre7gsNzkK1OjwFVjsnDVmCxEoiLO2bzx2X1XojTGH4qist6JynongFg3n9jsvg5jsnUp29/eH4qi0RFAo6PjWwqJAOhVcmRqus74s4sPEVFq69ff0h988AF+8IMf9HjbNddcg2effbY/d09EaUImlcCsV8HcabtfX7C95CcW+G2e4LDa6EsqETAmW4sx2VrcMCUPLn8IVc2x2f2Tze7EB5j253iwuhVSiYBikwYT4rP7eQZVSu9eGxVjG4U5fCGgteO4UtY+2x+b8W+f7U/l0iQiopGkXwFfqVTik08+wcKFC7vd9sknn0ChSK2vpokodagVUhRlaVCUFSv5EUURTn+s5acnEIYnGEm0//QOg/7/epUcM0dlYuaoTERFEQ12P042u/BlkxvnbB5ERSASFXHK6sEpqwd7KgG9UoYSsw7j4604U2Gx7qUIhKNocgbQ5Ox5tt+oUSBTy9p+IqJk6de/JsuWLcOmTZug0+lw5513IjMzE21tbXjllVfwxBNP4Bvf+MZAjZOI0pwgCImdfXsSiYrwBMPwBiKJ0O8OhGH3huD0hZBKk/8SQUBBphoFmWpcN9GMQCiCUy2exOx+eytOVyCMv9fY8fcaOwDAYlRhvDkW9ouzNJBJU7OcpyddZ/u71vZ3XsybqVFAr5Kxtp+IaBD1uYtOZy6XC7fffjvee+89CIIAmUyGcDgMURRx7bXX4o9//CP0ev1AjjelsYsOUXKEI1HYfSHYPLE6/zZvEA5fKGUX9ra6AzjZ7MbJJheqWzwI9rDRmFwqYGy2LjbDb9YhR5+8nXUHmkQANEoZ9EoZ9CoZdCoZ9Co5dPFjDP9ElK5StotOZ3q9Hu+++y727NmD/fv3w2azwWQyYcGCBbjhhhvS5h8jIkptMqkE2TolsnVKIDd2LByJxrvFpF7oN+mUMOmUuHqsCeFoFOdsXlQ1u1HV7EZdmw8igFBExIkmF040uQDEWluWmGOBvyRH1+ui5lQXFRHbhdkfRoOj622CAGgU0ljwV8rjv8ugkkuhkkuglElTdqEyEVGq6NcMPnXFGXyi1NbezafFFUwsfvWHUqu23xsIo8oaC/snm92xkpfzCADyjSqU5MTLeUwayIdROU9/SYRY21alTJL4XXnez2qFNPHBgIgoVQyLGfx2f/7zn/Hee++hpaUFjz76KEaNGoXDhw9j9OjRyMnJGYiHICLqt566+bj8IbTE23e2uAKwJ3mWX6OUYVqhEdMKjRBFEVZ3IBb2m9w41eJGKCJCBFBvj+1a+9eTVsilAkabtIkZ/lTvztNfURGJfRaA7h+AOpNKALVCBp1SCo1CBq1CBo0yFv41Cim0CpYEEVH66VfA93q9uP3227Fv377EPyb33XcfRo0ahWeffRZFRUVslUlEKU2vkkOvkmNMthZAbPfa9n791njoD0WSk/gFQUh8IJk7LhvhSKdyHmvXcp6T8Rl/ANDFu/OU5MQCv+ECC5dHgki0oxwI6HknYrVCAq1ChkytApmJfv8Ktv0komGrXwH/kUcewSeffII33ngDixYtgsFgSNx2ww034Pnnn+/3AImIhpJcKkFehgp5GbFZ/vZZ9NiMuQ92b+8zxoNJJpVgbI4OY3N0uAGxcp7qFg+qml2oanajLT42dyCMf9TY8Y94dx6zXolxZh3G5+gwJlsLJctWuvAFo/AFg2hxBxPHBAEwxNt+xoJ/rPWnUsY/OyJKff0K+K+99hqefPJJLFu2DJFI110pR40ahXPnzvVrcEREydZ5Fn1GkRGeQBj1dh9q7T40O/2IJLGEX6OUYWpBBqYWZEAURdg8QZyML9attroRiHfnaXYF0OyKbbYlEYCiTE2inKcwU8OZ6h6Indp+nunU9lOtkEAtj5X3qBVSqOWx3zWd/psfAogo2foV8K1W6wUXCEgkEvh8vv7cPRFRytEqZRifq8f4XD3CkSganX7UtflQ7/AldTMuQRC6dOeJREXUtXkTC3bP2byIirH69bM2L87avNh3vBlKmQRjsmP1++NydDCnUTvOwdA+22/zXPic9rp/tTwW/Ns7ALV/AFDL24/xgwARDY5+BfyCggIcPXoUCxYs6HbbkSNHMGbMmP7cPRFRSpNJJSjM1KAwM7Ybr80TRL3dhwaHHzZPIKmz+1KJgFEmLUaZtLi+NBeBcARnWjyJ+v32XWgD4SiON7pwvDHWjtOgkmFcTizsjzPrLrjxGF1Y17r/C2vvBqSSx7r/tH8A0KvkyM9Q8QMAEV22fgX85cuX4+mnn8a8efMwbdo0ALFZpLNnz+KXv/wlVq9efVn363a78eMf/xi///3vYbPZUFpaioceeggrV6686LXNzc1Yv3493n77bXi9XkyfPh1PPfUUFi5cmDjnzJkzvX74uPHGG7Fnz57LGjsRjVxZWgWytAqUFWQgGhXR6gnC6upYrBvoYUOroaKUSTExz4CJebG1Uk5/CNXxUp6qZjec8TDq9HfdXTdbp0SJWYtxOTqMzdZBrWDoHCgX6waUpZXDYlQjP0ONbJ2C36wQ0SXrV8B/7LHHsG/fPlx11VUoKyuDIAhYvXo1qqurMXHiRDz00EOXdb/Lly/H4cOHsXnzZkyYMAE7duzAqlWrEI1Gceedd17wukAggIULF8Jut+O5556D2WzGli1bsHjxYuzduxfz588HAOTn5+PgwYPdrn/rrbfws5/9DMuWLbuscRMRtZNIBOTolcjRKxPHHL5QLPDHQ//FZngHk0Elx8xRmZg5KjO2kNgVQJXVjepmN061eBIfRtr3C/jolA0CgIJMdWKGf6T13x9qNk8INk8IFXVOKGQS5BlUsBhVyM9Q84MWEfWq3xtd+Xw+PPfcc/jTn/6EpqYmZGdn45ZbbsG6deug0Wj6fH+7du3CzTffnAj17W644QZUVlbi3LlzkEp7/ott69atuP/++3HgwAHMmTMHABAOhzF9+nTodDocOnSo18desGABPv74YzQ0NHTpCHSpuNEVEfWFLxiB1RVAs8uPOrsPnkDk4hcNgUhURJ3dl5jdP2fzIhLt/k+FTCKg2KRJBH6LUc0Fu0MkSytHXoYaFqMK2Vole/kTDRNDlRVTbifbb33rW3j11VfR1tYGmazjC4by8nLceeed+PDDDzF37twer120aBFqampw/PjxLsd/+tOfYsOGDaitrUVBQUGP11ZXV2P8+PG4++678Zvf/Oayxs6AT0T90eIOoLbNhxqbF64kzu6fLxiO4myrJxb4rW402P3o6R8OlVyCMSYtxpljrTxzuWB3SMikAuRSAZL4n7UgCBAQa/UpQIj/HvsZnX7u7GKvk1QCmLRK5GWokK1T8oMc0WUaVjvZDqSKigpMmjSpS7gHkKjxr6iouGDAr6iowLx587odb7+2srLyggH/pZdegiiK+Jd/+Zf+DJ+I6LJl65TI1ikxo8gIuzeIGpsPNW3epPbeBwCFTJLoHAR09N+vjpf0tHpi/eP9oSiONbpwLL5gV6uUYVyONjHDn6VVJO05pLNwRER4CDZja3QEUFnvhFQS+38116BCrkEFk1bBbxCIUkyfA/69996LRx99FGPGjMG9997b67mCIODFF1/s0/23trZi7Nix3Y5nZWUlbu/t2vbz+nJtJBLBtm3bUFpaimuuueaSxtnc3Ayr1drlWFVV1SVdS0R0Mcb4bqpTCzPg8ocSYb+102ZMydK5/z4A2L1BVFs9OGWNLdptX7DrCYRxpNaBI7UOAECmRo6x8bA/NkcLg4odeoajSBRocgbinZgckElj603y4oE/UyPnNzdESdbngL9//3488MADAIB333231zfx5b7B+3Ofl3Ptnj17UFdXh2eeeebSBohYvf+mTZsu+XwiosulV8kx2SLHZIsBvmAEdXYfatu8aHYGEO6hNn6oGTUKXFmswJXFsQW7Le5gbHbf6sYpqwe+UGxtQZs3hE/PtuHTs20AgBydEmNztLHdebO10CpT7ktlugThiIgGux8Ndj+A2Dc+Zr0SRo080fO/88ZgDP9Eg6/Pf5uePn068d9nzpwZyLEAAEwmU48z7TabDQB6nKHv77Uvvvgi5HI5vvnNb17yONeuXYsVK1Z0OVZVVYWlS5de8n0QEfWVWiFN7EIbjkTR4Igt0K23++APJbHxfpwgdHQPunqsCVFRRIPDn5jdP93iQSheTmJ1x7oJHTod+zs6P0OFsdmxwD8mW8s+8MNUMBxFbZsPtW3dN7sUBEApkyQ2AFPLpdAqZVArpNAq2n+XQsbuTET90ueAf8UVV+B3v/sdpkyZgt/+9re4+eabYTKZBmxAU6dORXl5OcLhcJc6/KNHjwIAysrKer22/bzOeru2ubkZb7/9Nm677TaYzeZLHqfZbO7T+UREA00mlaAoS4OiLE1i5rx9dt/pS41FuhJBQIFRjQKjGvPG5yAcjaKuzRef4fegxuZNfAvR4PCjweHHh9WtiZacY7N1GJejRbFJC4WMoW+4E8XYWo3Yh9ELry1RxD8EaBTxDwDxDwLtx9Ryfggg6k2fA/6RI0fgdrsBAKtXr8bBgwcHNOAvW7YML7zwAt544w3ccccdiePbtm2DxWLB7Nmze7127dq1OHToUOK8cDiM7du3Y/bs2bBYLN2u+e1vf4tQKIQ1a9YM2HMgIhpqnWfOZxQZ4fSHUBfvyNOSAnX77WQSCYpNscB+fSkQikRxzuZNlPPUtnkRFQERSMwC//WkFVJBQGGmGmNytBibzR786S4YjiIYjva6wFwmEaCKh3115x2BO3070H6cZUE00vQ54JvNZnz22WeYPXs2RFEc8DfNkiVLsGjRItx3331wOp0oKSlBeXk59uzZg+3btyd64K9Zswbbtm1DdXU1iouLAcQWAG/ZsgUrVqzA5s2bYTabsXXrVpw4cQJ79+7t8fFefPFFFBUV4cYbbxzQ50FElEwGlRyGfDkm5RvgDYZRY/PhnM0LqyuQ7KF1IZdKEl12ACAQiuBMqxenrLENt+rtPogAIqKIszYvztq8eO+EFVKJgKJMTbyGX4tRmRrO6I4w4agItz980Q3jeioLUse/CYitD5DxgwClnT4H/Ntuuw33338/HnzwQQiCgAULFkAi6fkvVUEQ4HA4+jyoN998E4888gg2btwIm82G0tJSlJeXY+XKlYlzIpEIIpEIOrfxVyqV2LdvH9avX4/vfve78Hq9mDFjBnbv3p3YxbazAwcO4Pjx49i4ceMFnwMR0XCnUcgwMU+PiXl6+IIRnLN5cc7mRYs7gNTaCQVQyqWJsQKxzcBOt8TC/imrB43O2ELOSFTEmVYPzrR68O7x2GzuqKx44M/WoTBLDRn/XidcelmQIMT2clDHQ3+sHEgGrbLjdy4SpuGizxtdhUIh/OpXv8LRo0fx0ksvYcmSJcjJybng+Ze7adRwxI2uiGg48QUjqGnz4lyrF9YUDPs98QTCON3iwamWWElP8wW+kZBLBRRnaeMlPVoUZDLwU/9JBMRn/2XQKqTQKDt+13QqDyK6kGGxk61EIsFHH32Eq666aiDHNGwx4BPRcOULRlDb5sXZVu8FQ3MqcvlD8cAfm+FvcTPwU3K1fwi4UClQ+21cND4yDYudbKPR5LdkIyKi/lMrpIndaj2BMM60enC2Nfm76F6MXiXHtEIjphUaAQBOfwinrbHAf7rFnVhgHIqIqLK6UWWNNYlg4KfBEhUBTyACTyDS63kyqZDoCKSJtwjt+Dl2jOsC6HJxVxEiIupCq5RhiiUDUywZaPMEE2HfG+w9sKQCg0qO6UVGTC8yAgCcvo4Z/osF/lFZGozJ1mJMtg5FmWou2qVBFY6IcPrC8Za2PX/zJBEAVQ+bhak7fRBov52osz4HfKlUioMHD+Kqq66CRNL7J0tBEBAOp0YvZiIi6rtMrQKZWgVmFBnR7ArgdEusd337ZlWpzqC+9MBfbfWg2uoB0AyZREBRIvBrMSqLbTlp6EVFwBuMwBuMwOa58HntZUGqxOy/FGq5rONDgUIKDfcOGFH6HPA3btyIwsLCxH/zqyMiovQnCAJyDSrkGlSYNToLdW0+nGmNtbGMDo+sD+Bigb+jhj8cFXE6fgxAvC2nOjHDPypLwxpqShmdy4JaezlPLhUSHYI6fxho/xZArZBCJZPwg0Aa6NciW+qKi2yJaKQJhCM43eJBVbM7ZXbP7Q+nP4Qz8WB/uuXCXXokAlBgVCdm+ItNWpZJUNqQSYX43gBdNxFr/xCgkUthUMshlXCSt6+GxSLbJ554Av/yL//S4w6xDQ0NeOGFF7Bx48b+PAQREaUwpUyK0jwDSvMMaHL6cbLJndiNdjgynLdo1x1vy3m6xYMzLR19+KMiUNPmQ02bD3892QIBQL5RhTGmWOAfbdJCo+QyNxqewhERrkgYrl42EZMIsW/EjGo5jBoFjBo5MjUKqBX8oJsK+jWD37ke/3yffvoprrrqKkQiqb8oa6BwBp+ICPCHIqhqdqPa6r5oJ5HhxhvvMHS6xYMzrd7ETrs9yTUoMbo98GdrYVDJh3SsRMmglEmQqY2HfnUs9Geo5ZBwth/AMJnB7+2zgdvthlzOv8yIiEYalVyKsoIMTLEYUO/w42STCw0O/7DYSOtiNEoZJlsyMNmSASD2YeZsqzce+D1dvr1ocgbQ5Azg0GkbAMCkVWC0KRb2x2RrkamRcx0bpZ1AOIpGRwCNjo7yNokAKOUSKGXxch+ZtMvPyk4/K2USlrsNgD4H/CNHjuAf//hH4uddu3bh+PHjXc7x+Xx45ZVXMG7cuH4PkIiIhidBEFBgVKPAqIYnEEa1NTar7wumzx4qKrkUE/P0mJinBwAEw1Gcs3UE/hqbF+F44m/1BNHqCeLTc20AAINKhtHxcp7R2VqY9UpIGPgpDUVFwBeMXvJ7XxAAlVyS6ATU3g2ofYEwuwJdXJ8D/s6dO7Fp0yYAsb+8n3jiiR7PU6vV+M1vftO/0RERUVrQKmWYVmhEmSUD9Q4fzrTEylvCw7VY/wIUMglKzDqUmHUAgHAkitp4x6H2/QQC4VjIcfrDOFLrwJFaBwBALZditEmTCP0Wo5qLGGlEEhMfCIK9tgdVyCSJwK+Nh3+dUgatUgadUjai1wP0OeB/+9vfxi233AJRFHHVVVfhN7/5DcrKyrqco1QqMW7cOKjV6gEbKBERDX8SiYDCTA0KMzUIRaKosXlxttWLRmd6lPCcTyaVxAJ7thYAEImKaHT6E516zrR6EhuI+UIRHGt04VijC0CspWFRliY2w2/SsjUn0XmC4SiC4egFd9yWSQRolNJE4Ncq4r/Hj6VzKVCfA35+fj7y8/MRDAaxe/duFBQUdAv4REREFyOXSjA2R4exObpELfuZVg9a45tPpSOppKNs6ZqSbIiiCKsrgDPx5366xQOHLxZWQhERp6wenLLGpjAlAmAxquOBX4NikxZaduohuqBwtPNuwd197coCKGXpGfIv+28GmUyGW2+9Fbt372bAJyKifulcy+7yhxILV3tr05cOBEGA2aCC2aDCVWOyAABt3iDOxLv0nGn1wBrvxR8Vgdo2H2rbfPhbVez6HL0yEfhHm7QwcuEuEaEfAV8ikaCwsBBOp3Mgx0NERCOcXiVHWUEGygoy0OoO4KzNixqbN+1abl5IpkaBzFEKzByVCQDwBMKJbzfO3z3Y6grA6grg8JlYpx6DSobiTjP8eRkqLtwlGoH69d3emjVrsGXLFtx2222QStPzKw4iIkoek04Jk06JK0Zlwu4NJmawbZ70LeM5n1Ypw2SLAZMtBgAdnXraA3+NzYtQJJb4nf4wjtY5cLQutnBXKZNgVJYmEfoLM1nHTzQS9CvgKxQKnDhxApMmTcJtt92G/Pz8Ll8NCoKA733ve/0eJBERUWy3TAXKCjLgDYZRFw/7TU7/sN0593Kc36knEhXR4PDhTKsXZ1tjpT2eQKy0KRCO4mSzGyeb3QBidfwFRjWKTVoUx2f5dazjJ0o7/drJViLpfRZAEATuZEtERIMqGI6iweFDXZsPdXZfYjZ7pBJFEa2eYCLsn2nxoLWXbzxMWkUi7BdnaZCjV7KOn0aEZCyyHRY72Z4+fXqgxkFERHRZFDJJfEZai2hURJPLjxqbDzW2jp7zI4kgCMjWKZGtU+LK4tjC3faFy+2hv8HRUcffvgHXZ+fsAGL9+DsH/oJMNeTcUIhoWOlXwC8uLh6ocRAREfWbRCIgP0ON/Aw1vlKciSaXH2dbvV3q1EeizguXgdi3HjVtsT0Iztm6bsDlC0VwvNGF4/F+/O2tPYtNGhRnaTCKZT1EKW9A3qHHjx/H+++/j5aWFqxZswZ5eXmor69HZmYmN7siIqKk6Bz2rxqdhQanH2dbPaht8yE8gsM+EPvWY1yODuNyYnX8UVFEk9MfD/yxmf62+OZBkaiIc7bY8Q/i15u0isTi3VEmDcx6Jbv1EKWQfgX8SCSCb3/723j55ZchiiIEQcCSJUuQl5eHf/3Xf8XMmTPxxBNPDNRYiYiILouk0wZTkaiIersPZ1u9qLf7EB5JK3QvQCJ0fBi6eqwJAOD0hXA23q3n3AXKev5eYwcAqOSxbj3tob8wU522GwgRDQf9CvhPP/00duzYgWeeeQaLFy/usuHVkiVL8PLLLzPgExFRSpFKBBRlaVCUpUE4EkWdPdaBpt7uw+W3nUg/BrUcUwsyMPW8sp72Gf5zNi/8oVhZjz8UxZdNbnzZ1NGtJ8+gwiiTBqOyYrX83ISLaOj0K+C//PLLePTRR/H973+/W7ecMWPGcBEuERGlNJm0Y4GuNxhGdbMH1VY3vMGR0wHuUvVU1mN1BXCu1Yuz8Tr+9m49URGod/hR7/Djo1OxTbj0Kllshj8+028xqiHj4l2iQdGvd1ZdXR3mzJnT420qlQoul+uy7tftdmPdunWwWCxQqVSYMWMGXn311Uu6trm5Gffccw+ys7Oh0WgwZ84c7Nu3r8dzPR4PNm7ciAkTJkCpVMJkMmHBggU4efLkZY2biIiGL41ChqmFGbh9hgXXTsiGxagCJ5wvTCIIyDWoMGtMFr5+ZRF+cMNEbLhpEu6aXYx547NRnKWBTNLxB+jyh1FZ78Suikb8919PYdPbX+C/36/GrqMNqKhzwOkLJfHZEKWXfs3gm81mnDp1CgsWLOh224kTJ1BYWHhZ97t8+XIcPnwYmzdvxoQJE7Bjxw6sWrUK0WgUd9555wWvCwQCWLhwIex2O5577jmYzWZs2bIFixcvxt69ezF//vzEuW63GwsWLEB9fT0eeughTJs2DQ6HAwcOHIDX672scRMR0fAnCAIKM2O7vnoCYVQ1u3GqxQ1fcOS13Owr3Xm77oajUTTY/TgbX6R7rtUDpz+2CVfnxbvtjGo5iuIz/KOyNMg3qiC7yJ47RNRdvwL+TTfdhKeffhqLFy9GXl4egNhfjA6HA//1X/+FW2+9tc/3uWvXLrzzzjuJUA8ACxYswNmzZ/Hggw/ijjvugFTa88KdF198ERUVFThw4EDim4UFCxZg+vTpWL9+PQ4dOpQ498c//jGOHTuGI0eOYOzYsYnjt912W5/HTERE6UmrlGF6kRFTCzJQZ/ehyupGk2Nk7ZzbHzKJJLHeAYhtwuWIL96NBf6ui3ftvhDsdQ4crXPErxdQkKlOBP5RWRroVfJkPR2iYaNfAf+JJ57A7t27MXnyZCxYsACCIGDDhg2oqKiAXC7Ho48+2uf73LlzJ3Q6HVasWNHl+OrVq3HnnXfi0KFDmDt37gWvnThxYpeyIZlMhrvuugsbNmxAXV0dCgoK4PV68T//8z9YsWJFl3BPRETUE0mnhbmBcAR1bT6cs3nRyLDfJ4IgwKhRwKhRYHqhEUBs8W6d3ZeYzT9n88ITiM3yh6NifIOujln+TE3HLH9RJmf5iXrSr4Cfm5uLw4cP47HHHsOf/vQnSKVSfP7557jlllvwxBNPICsrq8/3WVFRgUmTJkEm6zq0adOmJW6/UMCvqKjAvHnzuh1vv7ayshIFBQX49NNP4fF4MH78eNx333149dVX4fF4MG3aNGzatAk333zzRcfZ3NwMq9Xa5VhVVdUlPUciIhq+lDIpxuboMDZH1yWcNjp8iLCKp88UMgnGZGsxJlsLIDbL3+YN4ZzNkwj8nT9ItXlDaPM6cKS2Y5bfYozN8rcH/ww1Z/lpZOtXwA+FQtDpdPjv//7vbrd5PB6EQiHI5X17k7W2tvY4q97+YaG1tbXXa3v6UHH+tXV1dQCAn/3sZ5g6dSp++9vfQiKR4Be/+AVuvfVW7N69GzfeeGOv49y6dSs2bdp0aU+KiIjSUudwGopEEzP7DQz7l00QBGRpFcjSKjCjKBNAbJa/1u5FTWunWf54p6NwD7X8BpWsSy2/xaiGnB17aATpV8D/1re+hUAggPLy8m63ffvb34Zarcb//M//9Pl+e+uTe7EeupdybTQa+1tXoVBg9+7d0Ov1AGL1+uPHj8eTTz550YC/du3abmVEVVVVWLp0aa/XERFRepJLJRidrcXoeNivt/tQY/NxM60BoJBJMDZbh7HZsRadHbP8XtTEw33nWn5nvGNPZb0TQKwvf36GGkVZahRlxmb6TVoF+/JT2upXwN+/fz82b97c42233norHn744T7fp8lk6nGW3maL9dHtreznUq81mWK79M2dOzcR7gFAo9Fg/vz5eOutty46TrPZDLPZfNHziIho5JF36q/Pmf2B13WW3wgAiQ9V7bP5NTZvomNPVATq7D7U2X34CLFMoFFIUZipjs30x7smqRXcfZfSQ78CflNTE/Lz83u8LS8vD42NjX2+z6lTp6K8vBzhcLhLHf7Ro0cBoMtuuT1d235eZ+df216T3xNRFCHhYh0iIhognWf2g+Eoatu8OGvzshvPAOv8oQro6NhzzuZFbZsPNTYv6jp9m+INRrrsvgsAOTplbJY/voA316CCVMJZfhp++hXwjUYjqqqqcN1113W7raqqqsvs+KVatmwZXnjhBbzxxhu44447Ese3bdsGi8WC2bNn93rt2rVrcejQocR54XAY27dvx+zZs2GxWAAA+fn5mDNnDj788EM4nU4YDLF+vV6vF++//z6uvvrqPo+biIjoYhQySWKBrj8UQW2bD+dsHjQ5AxAZ9gdU54490+Ide8LRKBodftTEA3+NrWP3XQCwugOwugP47JwdACCXCrBkxAJ/+2y/US1naQ+lvH4F/AULFuCnP/0pli9f3qV0xmazYfPmzbj++uv7fJ9LlizBokWLcN9998HpdKKkpATl5eXYs2cPtm/fnuiBv2bNGmzbtg3V1dUoLi4GANx7773YsmULVqxYgc2bN8NsNmPr1q04ceIE9u7d2+Vxnn32WSxYsAA33ngjfvSjH0EQBPziF79AS0sLnnzyyX78qRAREV2cSi5FiVmHEnMs7J+zxdpBWl2BZA8tbckkksQmZnPGxsp1PYEwatu8HaG/zQt/KFZHFYqIOGuLfePSTqeUoSizPfTHgr9KztIeSi39CviPP/44Zs2ahfHjx+OOO+5AQUEBamtr8dprryEUCl12l5k333wTjzzyCDZu3AibzYbS0lKUl5dj5cqViXMikQgikQjETlMeSqUS+/btw/r16/Hd734XXq8XM2bMwO7du7vsYgvE6u/37duHH//4x/jGN74BALj66qvx3nvvdemjT0RENNhUcikm5OoxIVcPhy+Ez2vsqG3zJXtYI4JWKcPEPAMm5sW+zY+KIlrcgURZT22br8sCXncgjGONLhxrdAEABADZeiWK4mG/KFOD3Awle/NTUgmi2L8vBT///HN8//vfx1//+ldEIhFIpVLMnz8f//Ef/9FrrXs6qqysRFlZGSoqKjBlypRkD4eIiIYxqyuAf9TYOaOfAhJdkdp8sdl+mxdt3tAFz5dJBORnqFCYpYnN9mdqkMWuPSnna1cWQCkb2m9fhior9msGHwCmT5+Offv2wefzoa2tDVlZWVCpVAMxNiIiohErR6/Eosm5qG3z4vMaBxy+CwdKGlznL+AFYjP5tfGSnvbg317aE46KsZKfNh8Oxs9Xy2NdewozY6G/IFMNvYobctHg6HfAb6dWq6FWqwfq7oiIiAhAYaYGBUY1TrV4UFHngCcQSfaQCLFa/NJ8A0rzY6U9oiii1RNMlPXUtnlR7/AjEq/t8YUiONnsxsnmjq49RrU8EfoLM9UoMKqhZD0/DYABC/hEREQ0OARBwLgcHUabtPiyyYXKeieCYTbUTyWCICBbp0S2TomZo2I78LZ37WkP/DVtvi4lV3ZfCHZfCBXxDbk66vnVKIjP9OcZVJBxF17qIwZ8IiKiYUIqETAp34BxOTp80eDEl40u7pKbwjp37QFiXXva26PWxQN/nd2XKL8SEVt7YXV1tOqUSgTkGVSJGf7CTA3MBiUkrOenXjDgExERDTMKmQQzioyYkKtDZb0TtW1e+IKc0R8OOrdHbef0h1DX5kNNmxd1bT7UtvngC8VKsSJRMbELbzu5VIDFqEahMTbTX5iphomLeKkTBnwiIqJhSqOQYdboLMwanQWXP4Tm+OxvsysAtz+c7OHRJTKo5DDkyzGpUz2/zROMzfC3eVFr96He7kMoEvu2JhQRcbY1tm8C0AoAUMklKDRqUJCY6Vcjg5tyjVgM+ERERGlAr5JDr5JjXE5sZtgXjKDZ5U+EfnsvbR0ptQiCAJNOCZNOiRlFRgCxmXyrK4DaeOCva/Oh0eFHJN7t3B+KosrqRpW1YxGvViFFQXwRb4Ex1rnHwM49IwIDPhERURpSK6RdWjsGwpHE7L7VFUCbJwiW7w8fUomAvAwV8jJU+Er8WDgSRaPTH6/p96HW7kWzM4D2l9UTjODLJje+bOoI/QaVLBH2C+Iz/jol42C64StKREQ0Aihl0k4LPmPhsNUTTCzqtLoDCEeY+IcTmVTS5TUFgGA4tilXe91+bZsPLe6Ozj1OfxjOTjvxArF2ne2lPe2/NAz9wxpfPSIiohFIJpUg16BCriG2OaUoimjzhjoFfj8X7g5DCpkEo7O1GJ3dsSmXPxRBfTzstwd/myeYuL29XWdlvF0nAGRq5ImFvJZ4+NcoGBuHC75SREREBEEQkKVVIEurwMQ8PYDYbq3NTj+anAGcs3kQYd4fllRyKcbm6DA2p6NzjzcYjoX99tDf5oO9027Jbd4Q2rzdQ39Bez2/UQ2LUcXQn6L4qhAREVGPdEoZdPFgOKPIiGONTlQ1udl7Pw1oFDKMN+sx3qxPHHMHwh3lPef16AfaQ78DFXWOxLH2mf5Y4I/9rmV5T9LxFSAiIqKLUiukuGJUJibnG3Ci0YUvm1yJto2UHnRKGSbk6jEht3vor23zJcJ/99DfdabfqI6FfkunmX49u/cMKQZ8IiIiumQquRTTi4yYlG/Al00unGh0IRBm7U666i30t8/019u7lve01/R/0dAR+g0q2XmhXw2DSsY+/YOEAZ+IiIj6TCGToKwgA6V5epxsduN4o5OLckeInkK/p1Pob/+9rdPeC+3de4536t6jVcpQYFTBkqFOhP9MDTfnGggM+ERERHTZZFIJJuUbMCFXj1NWN75ocMITiCR7WDTEtEoZxufqMb5T6PcGw6i3+xOhv97uQ2un7j2eQLhbn36VXBKb5Y+H/nyjCtk6JSQM/X3CgE9ERET9JpUIGJ+rx7gcHc60elBt9aDFHYDIMv0RS6OQocSsQ4m5o3uPPxRBvcOHers/Efqtro7NufyhKE5ZPThl9SSuUUglyMtQwdJptt9sUEImkQzxMxo+GPCJiIhowEgkQqIloz8USdRpNzr87L5DsZad2TqMze4I/cFwFI0OH+ocHaG/yelP7LQcjERxzubFOZs3cY1UEJBrUCLfqIYlQwWLUY28DBWUMulQP6WUxIBPREREg0Ill2Jcjg7jcnQIR6JodPoT7Rf9IdbrU4xCJsEokxajTB2bc4UjUTQ5A/HZ/tivRqc/0bkpIoqod/hR7/Dj0/g1AgCTToH89vKeePDXjcC2nSPvGRMREdGQk0klKMzUoDBTA1EU0eIOos7uQ22bF05fONnDoxQjk0pQkKlGQaY6cSwqimhxBbqW+Dg6PiyKAFrcQbS4gzjaqVe/QSVDfkasnt+SEQv+WVrFUD+lIcWAT0RERENKEATk6JXI0Ssxo8gIhzeEmjYvatu8sHlCF78DGpEkggCzQQWzQYUZRbFjoijC7g2hzu5Dg8OPhviMv9Pf8aHR6Q/D6XfhRFNHBx+lTILJFgNmjsoc6qcxJBjwiYiIKKkyNHJkaDJQVpABTyAcC/s2H6xcpEsXIQgCMrUKZGoVKCvISBx3B8JocPjQYPcnZvxb3R2LeQPhKAo7fTuQbhjwiYiIKGVolTKU5hlQmmeAPxRBbZsPNW1eNDk6Fl0SXYxOKcN4sx7jzR1tO9sX89Y7/LB7gzCo03d33ZTsL+R2u7Fu3TpYLBaoVCrMmDEDr7766iVd29zcjHvuuQfZ2dnQaDSYM2cO9u3b1+286667DoIgdPu1ePHigX46REREdBlUcilKzDosmGjG8isKMXecCaOyNJBL2ROd+q59Me/VY01YXJaf7OEMqpScwV++fDkOHz6MzZs3Y8KECdixYwdWrVqFaDSKO++884LXBQIBLFy4EHa7Hc899xzMZjO2bNmCxYsXY+/evZg/f36X88eOHYtXXnmlyzGj0TgYT4mIiIj6QSGTYHS2FqOztYhGRTS7Aqize1Fn98Pt5yJdos5SLuDv2rUL77zzTiLUA8CCBQtw9uxZPPjgg7jjjjsglfbc4/TFF19ERUUFDhw4gDlz5iSunT59OtavX49Dhw51OV+tVuPqq68e3CdEREREA0oiEZCXoUJehgpXFgMOXyjRfpObaxGlYInOzp07odPpsGLFii7HV69ejfr6+m4h/fxrJ06cmAj3ACCTyXDXXXfh448/Rl1d3aCNm4iIiJIjQy3HZIsBiybnYvkVBZg7zoRiE0t5aORKuRn8iooKTJo0CTJZ16FNmzYtcfvcuXMveO28efO6HW+/trKyEgUFBYnj1dXVyMrKgtPpRHFxMVauXIkf//jHUKsvvqq6ubkZVqu1y7GqqqqLXkdERESDRymTdinlsboDqItvlMR++zRSpFzAb21txdixY7sdz8rKStze27Xt513s2n/6p3/CHXfcgdLSUvh8PuzevRs///nP8be//Q379++HRNL7lxtbt27Fpk2bLuk5ERER0dCTSATkGlTINahwxahMuPyhRNhvdgbYlYfSVsoFfCDW0/RybuvLtU899VSX22666SaMHj0aP/zhD/GHP/wBy5Yt6/Vx1q5d262MqKqqCkuXLu31OiIiIkoOvUqO0jw5SvMMCEWiaHT4UdvmQ0On3VCJ0kHKBXyTydTjLL3NZgOAHmfoB+JaALjrrrvwwx/+EB999NFFA77ZbIbZbO71HCIiIkpNcqkERVkaFGVpAAAt7gDq7T7UtfnQ5uVuujS8pVzAnzp1KsrLyxEOh7vU4R89ehQAUFZW1uu17ed1dinXdnax8hwiIiJKL9k6JbJ1SkwrNMITCMc22LJ5uZsuDUspl2SXLVsGt9uNN954o8vxbdu2wWKxYPbs2b1ee/z48S6ddsLhMLZv347Zs2fDYrH0+tjbtm0DALbOJCIiGsG0Shkm5unx1cm5WDazAFeNyUK+UQUJm/LQMJFyM/hLlizBokWLcN9998HpdKKkpATl5eXYs2cPtm/fnuiBv2bNGmzbtg3V1dUoLi4GANx7773YsmULVqxYgc2bN8NsNmPr1q04ceIE9u7dm3iMDz74AE8//TSWLVuGsWPHwu/3Y/fu3fj1r3+N66+/HrfeemtSnjsRERGllvbddEvMOgTDUdTbfahp86LB7keYq3QpRaVcwAeAN998E4888gg2btwIm82G0tJSlJeXY+XKlYlzIpEIIpEIxE7fmymVSuzbtw/r16/Hd7/7XXi9XsyYMQO7d+/usottfn4+pFIpnnzySbS0tEAQBIwfPx5PPPEEfvCDH7BEh4iIiLrpvJtuOBJFg8OPmjYv6tp8CEUY9il1CKLIyrKBUllZibKyMlRUVGDKlCnJHg4RERENgWhUREu8336Dww87F+kOC1+7sgBKmXRIH3OosmJKzuATERERDRcSiQCzQQWzQYWZADyBMBocPtTb/Wh0+hHm7D4NMQZ8IiIiogGkVcpQYtajxKxHNCqi2RVAvYO76dLQYcAnIiIiGiQSiYC8DBXyMmK76boDYTTYfaiL76bLhbo0GBjwiYiIiIaITinD+Fw9xufqEYmKaHb5UW+PlfO4/Jzdp4HBgE9ERESUBFKJgPwMNfIz1LiyGHD5Q6i3+1Hv8KHZ6UckmuwR0nDFgE9ERESUAvQqOSbmyTExT49wJIomVwANdh/qHX64ObtPfcCAT0RERJRiZFIJCoxqFBjVAGKz+w2OWDkPa/fpYhjwiYiIiFKcXiWHXiXHhNyOzjwNDvbdp54x4BMRERENI50788wE4A2G0eDwoyHedz8YZvH+SMeAT0RERDSMaRQyjMvRYVyODqIoosUdTMzu2zxBiKzmGXEY8ImIiIjShCAIyNErkaNXYloh4A9F0OT0x3fV9cEX5Oz+SMCAT0RERJSmVHIpik1aFJu0AIA2TxD1Dh8aHX5YXQFwrW56YsAnIiIiGiEytQpkahWYYslAKBJFk9Mfq99nK860woBPRERENALJpRIUZmpQmKkBEGvF2RgP+01OP0IRTu8PVwz4RERERJRoxTk+3oqzxRNIBH4u1h1eGPCJiIiIqAuJRIBZr4JZr8K0QiAQjqDJ0dF73xuMJHuI1AsGfCIiIiLqlVImxSiTBqNMsXKeZqcfp1s8OGfzspQnBTHgExEREVGfmA0qmA0qfGV0FurtPpxp9aDe7kOEXThTAgM+EREREV0WqURAUZYGRVkaBMNRnLN5cbbVgyZnINlDG9EY8ImIiIio3xQyCUrMOpSYdfAGwzjTEgv7bd5Qsoc24jDgExEREdGA0ihkmGwxYLLFAIc3hHqHD1ZXAFZXAIEw63gGGwM+EREREQ2aDI0cGRo5JuXHfrZ7g7C6Amh2BdDs8sMXZOAfaAz4RERERDRkjBoFjBoFxufqAcQ22Gp2BdDsDMDqDnBH3QEgSfYAeuJ2u7Fu3TpYLBaoVCrMmDEDr7766iVd29zcjHvuuQfZ2dnQaDSYM2cO9u3b1+s1Pp8PEyZMgCAIePbZZwfiKRARERHRJdCr5BiXo8OccSbcNt2CpTMtmDvOhDHZWmgU0mQPb1hKyRn85cuX4/Dhw9i8eTMmTJiAHTt2YNWqVYhGo7jzzjsveF0gEMDChQtht9vx3HPPwWw2Y8uWLVi8eDH27t2L+fPn93jdo48+Co/HM1hPh4iIiIgukUYhw+hsGUZnawEADl8ITU4/Gh1+NDn97Lt/CVIu4O/atQvvvPNOItQDwIIFC3D27Fk8+OCDuOOOOyCV9vxp7sUXX0RFRQUOHDiAOXPmJK6dPn061q9fj0OHDnW75uOPP8bzzz+PV155BStWrBi8J0ZEREREfZahliNDLceEXD1EUUSrJ4hGRyzwt7gDiDLvd5NyJTo7d+6ETqfrFrZXr16N+vr6HkN652snTpyYCPcAIJPJcNddd+Hjjz9GXV1dl/ODwSDuvfde3H///fjKV74ysE+EiIiIiAaUIAjI1ilRVpCBr07OxdevLMR1E3NQmq+HUSNP9vBSRsrN4FdUVGDSpEmQyboObdq0aYnb586de8Fr582b1+14+7WVlZUoKChIHH/iiSfg8Xjw5JNPwmq19mmczc3N3a6pqqrq030QERER0eWTSSWwGNWwGNUAAG8wjHp7bHa/0elHcIS25Ey5gN/a2oqxY8d2O56VlZW4vbdr28+72LX/+Mc/8POf/xx//OMfodVq+xzwt27dik2bNvXpGiIiIiIaPBqFLLHZliiKaHEH0eDwocHhh80ThDhCynlSLuADsa9fLue2S702HA7j3nvvxR133IEbb7zxssa4du3abmVEVVVVWLp06WXdHxERERENHEEQkKNXIkevxLRCwB+KoMnpj83wO33JHt6gSrmAbzKZepylt9lsANDjDH1fr/3P//xPnDp1Cr///e9ht9sBAE6nEwDg9/tht9uh1+svuJgXAMxmM8xm86U9KSIiIiJKKpVcimKTFsUmbbKHMuhSbpHt1KlTcezYMYTDXTc5OHr0KACgrKys12vbz+vt2oqKCjgcDowfPx6ZmZnIzMzE9OnTAcRaZmZmZvZ4P0REREREqS7lAv6yZcvgdrvxxhtvdDm+bds2WCwWzJ49u9drjx8/3qXTTjgcxvbt2zF79mxYLBYAwEMPPYT9+/d3+VVeXg4A+Ld/+zfs378fJSUlg/DsiIiIiIgGV8qV6CxZsgSLFi3CfffdB6fTiZKSEpSXl2PPnj3Yvn17omxmzZo12LZtG6qrq1FcXAwAuPfee7FlyxasWLECmzdvhtlsxtatW3HixAns3bs38RilpaUoLS3t8rhnzpwBAIwbNw7XXXfdkDxXIiIiIqKBlnIBHwDefPNNPPLII9i4cSNsNhtKS0tRXl6OlStXJs6JRCKIRCIQOy2HViqV2LdvH9avX4/vfve78Hq9mDFjBnbv3n3BXWyJiIiIiNKJIIojpWHQ4KusrERZWRkqKiowZcqUZA+HiIiIiFLIUGXFlKvBJyIiIiKiy8eAT0RERESURhjwiYiIiIjSCAM+EREREVEaYcAnIiIiIkojDPhERERERGkkJfvgD1eBQAAAUFVVleSREBEREVGqac+I7ZlxsDDgD6CamhoAwNKlS5M7ECIiIiJKWTU1NbjiiisG7f650dUAstvteP/991FUVASlUjmoj1VVVYWlS5firbfeQklJyaA+FiUfX++Rha/3yMPXfGTh6z2ydH69i4qKUFNTg/nz58NoNA7aY3IGfwAZjUbcfvvtQ/qYJSUl3DV3BOHrPbLw9R55+JqPLHy9R5b213swZ+7bcZEtEREREVEaYcAnIiIiIkojDPhERERERGmEAX+YysnJwWOPPYacnJxkD4WGAF/vkYWv98jD13xk4es9siTj9WYXHSIiIiKiNMIZfCIiIiKiNMKAT0RERESURhjwiYiIiIjSCAM+EREREVEaYcAfZtxuN9atWweLxQKVSoUZM2bg1VdfTfawqJ/ee+89CILQ46+PPvqoy7mfffYZvvrVr0Kn08FoNGL58uU4depUkkZOF+NyubB+/XrccMMNyMnJgSAIePzxx3s8ty+v7fPPP4/S0lIolUqMGTMGmzZtQigUGsRnQpfqUl/ze+65p8f3fGlpaY/3y9c89bz77ru49957UVpaCq1Wi4KCAtx+++349NNPu53L93d6uNTXPNnvbwb8YWb58uXYtm0bHnvsMezevRuzZs3CqlWrsGPHjmQPjQbAT37yExw8eLDLr7KyssTtx48fx3XXXYdgMIjf//73eOmll/Dll19i3rx5sFqtSRw5XUhrayt+/etfIxAIYOnSpRc8ry+v7dNPP40HHngAy5cvx5///GesXbsWP/nJT3D//fcP8rOhS3GprzkAqNXqbu/5//3f/+12Hl/z1PSrX/0KZ86cwQMPPIBdu3bhueeeQ3NzM66++mq8++67ifP4/k4fl/qaA0l+f4s0bPzpT38SAYg7duzocnzRokWixWIRw+FwkkZG/bV//34RgPjaa6/1et6KFSvE7Oxs0eFwJI6dOXNGlMvl4vr16wd7mHQZotGoGI1GRVEURavVKgIQH3vssW7nXepr29LSIqpUKvHb3/52l+uffvppURAEsbKycnCeCF2yS33N7777blGr1V70/viap66mpqZux1wul5ibmysuXLgwcYzv7/Rxqa95st/fnMEfRnbu3AmdTocVK1Z0Ob569WrU19fj0KFDSRoZDYVwOIy3334bX/va12AwGBLHi4uLsWDBAuzcuTOJo6MLaf9atjd9eW337NkDv9+P1atXd7mP1atXQxRFvPXWWwM6fuq7S3nN+4Kveeoym83djul0OkyePBk1NTUA+P5ON5fymvfFYL3mDPjDSEVFBSZNmgSZTNbl+LRp0xK30/B2//33QyaTwWAw4MYbb8Tf/va3xG3V1dXw+XyJ17uzadOmoaqqCn6/fyiHSwOkL69t+/t86tSpXc7Lz89HdnY2/x4YZnw+H/Ly8iCVSlFYWIjvfOc7sNlsXc7haz68OBwOfPbZZ5gyZQoAvr9HgvNf83bJfH/LLn4KpYrW1laMHTu22/GsrKzE7TQ8ZWRk4IEHHsB1110Hk8mEqqoqPPPMM7juuuvwpz/9CTfeeGPi9W1/vTvLysqCKIpoa2tDfn7+UA+f+qkvr21rayuUSiW0Wm2P5/LvgeFj+vTpmD59emKdzfvvv49f/vKX2LdvHw4fPgydTgcAfM2Hmfvvvx8ejwePPPIIAL6/R4LzX3Mg+e9vBvxhprevfQfyK2EaWjNnzsTMmTMTP8+bNw/Lli3D1KlTsX79etx4442J2/j/QPq61NeW/w+kh+9973tdfl60aBFmzpyJr3/963jhhRe63M7XfHh49NFH8corr+D555/HlVde2eU2vr/T04Ve82S/v1miM4yYTKYeP8m1f93T0+wADV9GoxG33HILjhw5Ap/PB5PJBKDnb2psNhsEQYDRaBziUdJA6MtrazKZ4Pf74fV6ezyXfw8Mb8uWLYNWq+3SHpev+fCwadMmPPXUU3j66afxne98J3Gc7+/0daHX/EKG8v3NgD+MTJ06FceOHUM4HO5y/OjRowDQpZ0ipQdRFAHEPsGPGzcOarU68Xp3dvToUZSUlEClUg31EGkA9OW1ba/TPP/cxsZGtLS08O+BNCCKIiSSjn+e+Zqnvk2bNuHxxx/H448/jg0bNnS5je/v9NTba96boXp/M+API8uWLYPb7cYbb7zR5fi2bdtgsVgwe/bsJI2MBkNbWxvefvttzJgxAyqVCjKZDLfeeivefPNNuFyuxHnnzp3D/v37sXz58iSOlvqjL6/t4sWLoVKp8PLLL3e5j5dffhmCIFy07zqlttdffx1erxdXX3114hhf89T25JNP4vHHH8ePf/xjPPbYY91u5/s7/VzsNb+QIX1/X1ZzTUqaRYsWiZmZmeKvf/1r8d133xW/9a1viQDE7du3J3to1A+rVq0Sf/SjH4mvvfaauH//fvHXv/61OHHiRFEmk4nvvPNO4rxjx46JOp1OvPbaa8Vdu3aJb775plhWViZaLBaxubk5ic+AerNr1y7xtddeE1966SURgLhixQrxtddeE1977TXR4/GIoti31/app54SBUEQN2zYIL733nviM888IyqVSvFb3/pWMp4e9eBir/mZM2fEuXPniv/1X/8l7tq1S9y9e7f40EMPiSqVSpwyZYrodru73B9f89T07LPPigDExYsXiwcPHuz2qx3f3+njUl7zVHh/M+APMy6XS/z3f/93MS8vT1QoFOK0adPE8vLyZA+L+umnP/2pOGPGDDEjI0OUSqViTk6OuGzZMvHjjz/udu4nn3wiLly4UNRoNKLBYBCXLl0qVlVVJWHUdKmKi4tFAD3+On36dOK8vry2zz33nDhhwgRRoVCIo0aNEh977DExGAwO0TOii7nYa26z2cRly5aJo0ePFtVqtahQKMTx48eL69evF+12e4/3ydc89cyfP/+Cr/P5c6h8f6eHS3nNU+H9LYhivMiXiIiIiIiGPdbgExERERGlEQZ8IiIiIqI0woBPRERERJRGGPCJiIiIiNIIAz4RERERURphwCciIiIiSiMM+EREREREaYQBn4iIiIgojTDgExERERGlEQZ8IqIR6uWXX4YgCDhz5kyyh4IDBw7g8ccfh91u73bb6NGjccsttwz9oIiIhikGfCIiSroDBw5g06ZNPQZ8IiLqGwZ8IiIiIqI0woBPREQJe/fuxcKFC2EwGKDRaHDNNddg3759Xc55/PHHIQgCKisrsWrVKmRkZCA3Nxf33nsvHA5Hl3PtdjvWrFmDrKws6HQ63HzzzTh16hQEQcDjjz+euL8HH3wQADBmzBgIggBBEPDee+91ua89e/bgiiuugFqtRmlpKV566aVB+3MgIhrOGPCJiAgAsH37dtxwww0wGAzYtm0bfv/73yMrKws33nhjt5APAF/72tcwYcIEvPHGG3jooYewY8cOfO9730vcHo1Gceutt2LHjh340Y9+hJ07d2L27NlYvHhxl/v5l3/5F3z3u98FALz55ps4ePAgDh48iCuuuCJxzueff44f/OAH+N73voc//OEPmDZtGtasWYO//vWvg/SnQUQ0fMmSPQAiIko+r9eLBx54ALfccgt27tyZOH7TTTfhiiuuwIYNG3Do0KEu16xZsyYx8/7Vr34VVVVVeOmll/Diiy9CEATs2bMHf/vb3/CrX/0K//Zv/wYAWLRoERQKBR5++OHE/RQWFmLUqFEAgJkzZ2L06NHdxtfS0oIPP/wwcd61116Lffv2YceOHbj22msH9M+CiGi44ww+ERHhwIEDsNlsuPvuuxEOhxO/otEoFi9ejMOHD8Pj8XS55rbbbuvy87Rp0+D3+9Hc3AwAeP/99wEA/+f//J8u561atarP45sxY0Yi3AOASqXChAkTcPbs2T7fFxFRuuMMPhERoampCQDw9a9//YLn2Gw2aLXaxM8mk6nL7UqlEgDg8/kAAK2trZDJZMjKyupyXm5ubp/Hd/5jtT9e+2MREVEHBnwiIkJ2djYA4Pnnn8fVV1/d4zl9DeYmkwnhcBg2m61LyG9sbLz8gRIR0UWxRIeIiHDNNdfAaDTiiy++wFe+8pUefykUij7d5/z58wEA//u//9vl+Kuvvtrt3PNn/4mI6PJxBp+IiKDT6fD888/j7rvvhs1mw9e//nWYzWZYrVZ8/vnnsFqt+NWvftWn+1y8eDGuueYa/OAHP4DT6cSVV16JgwcP4re//S0AQCLpmGOaOnUqAOC5557D3XffDblcjokTJ0Kv1w/ckyQiGiE4g09ERACAu+66C/v374fb7ca//uu/4qtf/SoeeOABfPbZZ1i4cGGf708ikeCPf/wjVq5cic2bN+P222/HBx98gO3btwMAjEZj4tzrrrsODz/8MP74xz/in/7pnzBr1ix8+umnA/XUiIhGFEEURTHZgyAiopFjx44d+MY3voEPP/wQc+fOTfZwiIjSDgM+ERENmvLyctTV1WHq1KmQSCT46KOP8Mwzz2DmzJmJNppERDSwWINPRESDRq/X49VXX8VTTz0Fj8eD/Px83HPPPXjqqaeSPTQiorTFGXwiIiIiojTCRbZERERERGmEAZ+IiIiIKI0w4BMRERERpREGfCIiIiKiNMKAT0RERESURhjwiYiIiIjSCAM+EREREVEaYcAnIiIiIkojDPhERERERGmEAZ+IiIiIKI38f0X9eY2Er8+7AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " 0.65% [52/8000 00:09<24:20 Sampling 4 chains, 0 divergences]\n", + "
\n", + " " ], - "source": [ - "fig, ax = plt.subplots(figsize=(7, 3), dpi=120)\n", - "bmb.interpret.plot_predictions(model, idata, \"length\", ax=ax);" + "text/plain": [ + "" ] }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Additionally, we can see how the probability of `certified_fresh` varies as a function of categorical covariates. " + "metadata": {}, + "output_type": "display_data" + }, + { + "ename": "ValueError", + "evalue": "Not enough samples to build a trace.", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m/Users/gabestechschulte/Documents/repos/bambi/docs/notebooks/plot_predictions.ipynb Cell 27\u001b[0m line \u001b[0;36m1\n\u001b[1;32m 10\u001b[0m priors \u001b[39m=\u001b[39m {\u001b[39m\"\u001b[39m\u001b[39mstyle\u001b[39m\u001b[39m\"\u001b[39m: bmb\u001b[39m.\u001b[39mPrior(\u001b[39m\"\u001b[39m\u001b[39mNormal\u001b[39m\u001b[39m\"\u001b[39m, mu\u001b[39m=\u001b[39m\u001b[39m0\u001b[39m, sigma\u001b[39m=\u001b[39m\u001b[39m2\u001b[39m)}\n\u001b[1;32m 11\u001b[0m model \u001b[39m=\u001b[39m bmb\u001b[39m.\u001b[39mModel(\u001b[39m\"\u001b[39m\u001b[39mcertified_fresh ~ 0 + length * style\u001b[39m\u001b[39m\"\u001b[39m, data\u001b[39m=\u001b[39mdata, priors\u001b[39m=\u001b[39mpriors, family\u001b[39m=\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mbernoulli\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[0;32m---> 12\u001b[0m idata \u001b[39m=\u001b[39m model\u001b[39m.\u001b[39;49mfit(random_seed\u001b[39m=\u001b[39;49m\u001b[39m1234\u001b[39;49m, target_accept\u001b[39m=\u001b[39;49m\u001b[39m0.9\u001b[39;49m, init\u001b[39m=\u001b[39;49m\u001b[39m\"\u001b[39;49m\u001b[39madapt_diag\u001b[39;49m\u001b[39m\"\u001b[39;49m)\n", + "File \u001b[0;32m~/Documents/repos/bambi/bambi/models.py:333\u001b[0m, in \u001b[0;36mModel.fit\u001b[0;34m(self, draws, tune, discard_tuned_samples, omit_offsets, include_mean, inference_method, init, n_init, chains, cores, random_seed, **kwargs)\u001b[0m\n\u001b[1;32m 326\u001b[0m response \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mcomponents[\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mresponse_name]\n\u001b[1;32m 327\u001b[0m _log\u001b[39m.\u001b[39minfo(\n\u001b[1;32m 328\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mModeling the probability that \u001b[39m\u001b[39m%s\u001b[39;00m\u001b[39m==\u001b[39m\u001b[39m%s\u001b[39;00m\u001b[39m\"\u001b[39m,\n\u001b[1;32m 329\u001b[0m response\u001b[39m.\u001b[39mresponse_term\u001b[39m.\u001b[39mname,\n\u001b[1;32m 330\u001b[0m \u001b[39mstr\u001b[39m(response\u001b[39m.\u001b[39mresponse_term\u001b[39m.\u001b[39msuccess),\n\u001b[1;32m 331\u001b[0m )\n\u001b[0;32m--> 333\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mbackend\u001b[39m.\u001b[39;49mrun(\n\u001b[1;32m 334\u001b[0m draws\u001b[39m=\u001b[39;49mdraws,\n\u001b[1;32m 335\u001b[0m tune\u001b[39m=\u001b[39;49mtune,\n\u001b[1;32m 336\u001b[0m discard_tuned_samples\u001b[39m=\u001b[39;49mdiscard_tuned_samples,\n\u001b[1;32m 337\u001b[0m omit_offsets\u001b[39m=\u001b[39;49momit_offsets,\n\u001b[1;32m 338\u001b[0m include_mean\u001b[39m=\u001b[39;49minclude_mean,\n\u001b[1;32m 339\u001b[0m inference_method\u001b[39m=\u001b[39;49minference_method,\n\u001b[1;32m 340\u001b[0m init\u001b[39m=\u001b[39;49minit,\n\u001b[1;32m 341\u001b[0m n_init\u001b[39m=\u001b[39;49mn_init,\n\u001b[1;32m 342\u001b[0m chains\u001b[39m=\u001b[39;49mchains,\n\u001b[1;32m 343\u001b[0m cores\u001b[39m=\u001b[39;49mcores,\n\u001b[1;32m 344\u001b[0m random_seed\u001b[39m=\u001b[39;49mrandom_seed,\n\u001b[1;32m 345\u001b[0m \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs,\n\u001b[1;32m 346\u001b[0m )\n", + "File \u001b[0;32m~/Documents/repos/bambi/bambi/backend/pymc.py:96\u001b[0m, in \u001b[0;36mPyMCModel.run\u001b[0;34m(self, draws, tune, discard_tuned_samples, omit_offsets, include_mean, inference_method, init, n_init, chains, cores, random_seed, **kwargs)\u001b[0m\n\u001b[1;32m 94\u001b[0m \u001b[39m# NOTE: Methods return different types of objects (idata, approximation, and dictionary)\u001b[39;00m\n\u001b[1;32m 95\u001b[0m \u001b[39mif\u001b[39;00m inference_method \u001b[39min\u001b[39;00m [\u001b[39m\"\u001b[39m\u001b[39mmcmc\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39m\"\u001b[39m\u001b[39mnuts_numpyro\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39m\"\u001b[39m\u001b[39mnuts_blackjax\u001b[39m\u001b[39m\"\u001b[39m]:\n\u001b[0;32m---> 96\u001b[0m result \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_run_mcmc(\n\u001b[1;32m 97\u001b[0m draws,\n\u001b[1;32m 98\u001b[0m tune,\n\u001b[1;32m 99\u001b[0m discard_tuned_samples,\n\u001b[1;32m 100\u001b[0m omit_offsets,\n\u001b[1;32m 101\u001b[0m include_mean,\n\u001b[1;32m 102\u001b[0m init,\n\u001b[1;32m 103\u001b[0m n_init,\n\u001b[1;32m 104\u001b[0m chains,\n\u001b[1;32m 105\u001b[0m cores,\n\u001b[1;32m 106\u001b[0m random_seed,\n\u001b[1;32m 107\u001b[0m inference_method,\n\u001b[1;32m 108\u001b[0m \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs,\n\u001b[1;32m 109\u001b[0m )\n\u001b[1;32m 110\u001b[0m \u001b[39melif\u001b[39;00m inference_method \u001b[39m==\u001b[39m \u001b[39m\"\u001b[39m\u001b[39mvi\u001b[39m\u001b[39m\"\u001b[39m:\n\u001b[1;32m 111\u001b[0m result \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_run_vi(\u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs)\n", + "File \u001b[0;32m~/Documents/repos/bambi/bambi/backend/pymc.py:172\u001b[0m, in \u001b[0;36mPyMCModel._run_mcmc\u001b[0;34m(self, draws, tune, discard_tuned_samples, omit_offsets, include_mean, init, n_init, chains, cores, random_seed, sampler_backend, **kwargs)\u001b[0m\n\u001b[1;32m 170\u001b[0m \u001b[39mif\u001b[39;00m sampler_backend \u001b[39m==\u001b[39m \u001b[39m\"\u001b[39m\u001b[39mmcmc\u001b[39m\u001b[39m\"\u001b[39m:\n\u001b[1;32m 171\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[0;32m--> 172\u001b[0m idata \u001b[39m=\u001b[39m pm\u001b[39m.\u001b[39;49msample(\n\u001b[1;32m 173\u001b[0m draws\u001b[39m=\u001b[39;49mdraws,\n\u001b[1;32m 174\u001b[0m tune\u001b[39m=\u001b[39;49mtune,\n\u001b[1;32m 175\u001b[0m discard_tuned_samples\u001b[39m=\u001b[39;49mdiscard_tuned_samples,\n\u001b[1;32m 176\u001b[0m init\u001b[39m=\u001b[39;49minit,\n\u001b[1;32m 177\u001b[0m n_init\u001b[39m=\u001b[39;49mn_init,\n\u001b[1;32m 178\u001b[0m chains\u001b[39m=\u001b[39;49mchains,\n\u001b[1;32m 179\u001b[0m cores\u001b[39m=\u001b[39;49mcores,\n\u001b[1;32m 180\u001b[0m random_seed\u001b[39m=\u001b[39;49mrandom_seed,\n\u001b[1;32m 181\u001b[0m \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs,\n\u001b[1;32m 182\u001b[0m )\n\u001b[1;32m 183\u001b[0m \u001b[39mexcept\u001b[39;00m (\u001b[39mRuntimeError\u001b[39;00m, \u001b[39mValueError\u001b[39;00m):\n\u001b[1;32m 184\u001b[0m \u001b[39mif\u001b[39;00m (\n\u001b[1;32m 185\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mValueError: Mass matrix contains\u001b[39m\u001b[39m\"\u001b[39m \u001b[39min\u001b[39;00m traceback\u001b[39m.\u001b[39mformat_exc()\n\u001b[1;32m 186\u001b[0m \u001b[39mand\u001b[39;00m init \u001b[39m==\u001b[39m \u001b[39m\"\u001b[39m\u001b[39mauto\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 187\u001b[0m ):\n", + "File \u001b[0;32m~/miniforge3/envs/bambinos/lib/python3.11/site-packages/pymc/sampling/mcmc.py:789\u001b[0m, in \u001b[0;36msample\u001b[0;34m(draws, tune, chains, cores, random_seed, progressbar, step, nuts_sampler, initvals, init, jitter_max_retries, n_init, trace, discard_tuned_samples, compute_convergence_checks, keep_warning_stat, return_inferencedata, idata_kwargs, nuts_sampler_kwargs, callback, mp_ctx, model, **kwargs)\u001b[0m\n\u001b[1;32m 785\u001b[0m t_sampling \u001b[39m=\u001b[39m time\u001b[39m.\u001b[39mtime() \u001b[39m-\u001b[39m t_start\n\u001b[1;32m 787\u001b[0m \u001b[39m# Packaging, validating and returning the result was extracted\u001b[39;00m\n\u001b[1;32m 788\u001b[0m \u001b[39m# into a function to make it easier to test and refactor.\u001b[39;00m\n\u001b[0;32m--> 789\u001b[0m \u001b[39mreturn\u001b[39;00m _sample_return(\n\u001b[1;32m 790\u001b[0m run\u001b[39m=\u001b[39;49mrun,\n\u001b[1;32m 791\u001b[0m traces\u001b[39m=\u001b[39;49mtraces,\n\u001b[1;32m 792\u001b[0m tune\u001b[39m=\u001b[39;49mtune,\n\u001b[1;32m 793\u001b[0m t_sampling\u001b[39m=\u001b[39;49mt_sampling,\n\u001b[1;32m 794\u001b[0m discard_tuned_samples\u001b[39m=\u001b[39;49mdiscard_tuned_samples,\n\u001b[1;32m 795\u001b[0m compute_convergence_checks\u001b[39m=\u001b[39;49mcompute_convergence_checks,\n\u001b[1;32m 796\u001b[0m return_inferencedata\u001b[39m=\u001b[39;49mreturn_inferencedata,\n\u001b[1;32m 797\u001b[0m keep_warning_stat\u001b[39m=\u001b[39;49mkeep_warning_stat,\n\u001b[1;32m 798\u001b[0m idata_kwargs\u001b[39m=\u001b[39;49midata_kwargs \u001b[39mor\u001b[39;49;00m {},\n\u001b[1;32m 799\u001b[0m model\u001b[39m=\u001b[39;49mmodel,\n\u001b[1;32m 800\u001b[0m )\n", + "File \u001b[0;32m~/miniforge3/envs/bambinos/lib/python3.11/site-packages/pymc/sampling/mcmc.py:820\u001b[0m, in \u001b[0;36m_sample_return\u001b[0;34m(run, traces, tune, t_sampling, discard_tuned_samples, compute_convergence_checks, return_inferencedata, keep_warning_stat, idata_kwargs, model)\u001b[0m\n\u001b[1;32m 818\u001b[0m \u001b[39m# Pick and slice chains to keep the maximum number of samples\u001b[39;00m\n\u001b[1;32m 819\u001b[0m \u001b[39mif\u001b[39;00m discard_tuned_samples:\n\u001b[0;32m--> 820\u001b[0m traces, length \u001b[39m=\u001b[39m _choose_chains(traces, tune)\n\u001b[1;32m 821\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m 822\u001b[0m traces, length \u001b[39m=\u001b[39m _choose_chains(traces, \u001b[39m0\u001b[39m)\n", + "File \u001b[0;32m~/miniforge3/envs/bambinos/lib/python3.11/site-packages/pymc/backends/base.py:601\u001b[0m, in \u001b[0;36m_choose_chains\u001b[0;34m(traces, tune)\u001b[0m\n\u001b[1;32m 599\u001b[0m lengths \u001b[39m=\u001b[39m [\u001b[39mmax\u001b[39m(\u001b[39m0\u001b[39m, \u001b[39mlen\u001b[39m(trace) \u001b[39m-\u001b[39m tune) \u001b[39mfor\u001b[39;00m trace \u001b[39min\u001b[39;00m traces]\n\u001b[1;32m 600\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39msum\u001b[39m(lengths):\n\u001b[0;32m--> 601\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\u001b[39m\"\u001b[39m\u001b[39mNot enough samples to build a trace.\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[1;32m 603\u001b[0m idxs \u001b[39m=\u001b[39m np\u001b[39m.\u001b[39margsort(lengths)\n\u001b[1;32m 604\u001b[0m l_sort \u001b[39m=\u001b[39m np\u001b[39m.\u001b[39marray(lengths)[idxs]\n", + "\u001b[0;31mValueError\u001b[0m: Not enough samples to build a trace." + ] + } + ], + "source": [ + "data = pd.read_csv(\"https://vincentarelbundock.github.io/Rdatasets/csv/ggplot2movies/movies.csv\")\n", + "\n", + "data[\"style\"] = \"Other\"\n", + "data.loc[data[\"Action\"] == 1, \"style\"] = \"Action\"\n", + "data.loc[data[\"Comedy\"] == 1, \"style\"] = \"Comedy\"\n", + "data.loc[data[\"Drama\"] == 1, \"style\"] = \"Drama\"\n", + "data[\"certified_fresh\"] = (data[\"rating\"] >= 8) * 1\n", + "data = data[data[\"length\"] < 240]\n", + "\n", + "priors = {\"style\": bmb.Prior(\"Normal\", mu=0, sigma=2)}\n", + "model = bmb.Model(\"certified_fresh ~ 0 + length * style\", data=data, priors=priors, family=\"bernoulli\")\n", + "idata = model.fit(random_seed=1234, target_accept=0.9, init=\"adapt_diag\")" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The logistic regression model uses a logit link function and a Bernoulli likelihood. Therefore, the link scale is the log-odds of a successful response and the response scale is the probability of a successful response." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + " Formula: certified_fresh ~ 0 + length * style\n", + " Family: bernoulli\n", + " Link: p = logit\n", + " Observations: 58662\n", + " Priors: \n", + " target = p\n", + " Common-level effects\n", + " length ~ Normal(mu: 0.0, sigma: 0.0708)\n", + " style ~ Normal(mu: 0.0, sigma: 2.0)\n", + " length:style ~ Normal(mu: [0. 0. 0.], sigma: [0.0702 0.0509 0.0611])\n", + "------\n", + "* To see a plot of the priors call the .plot_priors() method.\n", + "* To see a summary or plot of the posterior pass the object returned by .fit() to az.summary() or az.plot_trace()" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuoAAAFeCAYAAADT1DpYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABJ0AAASdAHeZh94AAA/7ElEQVR4nO3df3zP9f7/8ft7v80Q5o0Zs/wc86OIhmL5rEwqZIec/D4ppJRIdfyuE/pxlKhOiQmrD6Gc0JkZp0/kt7KFYzK/mSZm+dF+PL9/9N37eNuw7f1mL3a7Xi7vy2mv5/P5ej1eO+/tfd/T8/V62YwxRgAAAAAsxaOkCwAAAACQH0EdAAAAsCCCOgAAAGBBBHUAAADAggjqAAAAgAUR1AEAAAALIqgDAAAAFkRQBwAAACyIoA4AAABYEEEdAAAAsCCvki7gVnL69GmtW7dONWvWlK+vb0mXAwAAAAu5ePGiDh06pPbt2+u222679gBjQWfPnjXPPvusqV69uvH19TXNmjUzcXFx1xx36NAh8+yzz5p7773XVKhQwUgyc+bMuWL/+Ph4c/fdd5syZcqYypUrm379+pkTJ04Uu+5ly5YZSbx48eLFixcvXrx4XfG1bNmyQmVLS86od+/eXZs3b9aUKVNUv359LVy4UI899phyc3PVu3fvK45LSUnRggUL1Lx5c3Xu3FlxcXFX7Ltu3TpFR0frwQcf1Jdffqm0tDS9+OKL6tixo7Zs2VKsGfGaNWtKkpYtW6a6desWeTwAAABuXSkpKeratasjM16L5YL6ihUrFB8f7wjnkhQZGakDBw5o1KhR6tmzpzw9PQsce++99+rkyZOSpC1btlw1qI8aNUr169fX4sWL5eX1x7chNDRUbdu21SeffKIhQ4YUufa8cF+3bl01bty4yOMBAABw6yvshLDlLiZdunSpAgICFBMT47R9wIABOnr0qDZu3HjFsR4ehTudI0eOaPPmzerTp48jpEtSmzZtVL9+fS1durR4xQMAAABuYrmgnpSUpLCwMKcALUlNmzZ1tLvjGJfu8/LjuOMYAAAAgCsst/QlPT1dt99+e77tlSpVcrS74xiX7vPy4xTmGGlpaY5lNnlSUlJcrg0AAACQLBjUJclmsxWrzV3HKcwxZs2apYkTJ7qtFgAAAOBSlgvqlStXLnBG+9SpU5IKngUvzjGkgmfnT506VahjDB06NN86+rwreQEAAABXWS6oN2nSRHFxccrOznZap75z505JUnh4uMvHyNvHzp071blzZ6e2nTt3FuoYdrtddrvd5VoAAACAgljuYtJu3bopMzNTX3zxhdP22NhYBQUFqXXr1i4fo0aNGmrVqpXmz5+vnJwcx/bvv/9ee/bsUffu3V0+BgAAAOAKy82oR0dHKyoqSkOGDFFGRobq1q2ruLg4rVq1SvPnz3fcQ33QoEGKjY3Vvn37FBIS4hi/ePFiSdLPP/8s6Y/7qQcEBEiSevTo4eg3depURUVFKSYmRkOHDlVaWprGjBmj8PBwDRgw4EadLgAAAFAgywV1SVqyZIleeeUVjRs3TqdOnVLDhg0VFxenXr16Ofrk5OQoJydHxhinsZevG585c6ZmzpwpSU59O3TooBUrVmjcuHF66KGH5O/vry5duuiNN94o1lNJAQAAAHeymcuTLootOTlZ4eHhSkpK4smkAAAAcFLUrGjJGXUAAADgelm05ZAO/3pewRXLKKZlzZIu54osdzEpAAAAcD0t3npY7yTs1eKth0u6lKsiqAMAAAAWRFAHAAAALIigDgAAAFgQQR0AAACwIII6AAAAYEEEdQAAAJQaWTm5yriQJUnKuJClrJzcEq7oygjqAAAAuOVl5eTq3YS9ing9QbuOnZUk7Tp2Vm1eX6N3E/ZaMrDzwCMAAADc0rJycjV43hYl7jkp22Vtv2Re1Nvx/9GOQ6f1YZ8W8va0zjy2dSoBAAAAroP31+5T4p6TkiRzWVve12t2p+mDtftuaF3XQlAHAADALSsrJ1fzNqTmm0m/nE3SvA0HLLUEhqAOAACAW9aW1F/1S+bv+WbSL2ckncy8qC2pv96IsgqFoA4AAIBb1pnzv1/X/tcTQR0AAAC3rAplfK5r/+uJoA4AAIBbVsvaFRUY4FOoNepVAnzVsnbFG1FWoRDUAQAAcMvy9vRQ34jahVqj3jcihNszAgAAADfKkA51dF9DuyTlm1nP+/q+hnY91aHODa3rWgjqAAAAuKV5e3rowz4tNDKqvgIDfJ3aAgN8NTKqvuUediTxZFIAAACUAt6eHhresZ6e6lBHD7/3f9p17KzCqpfTV0+3s1xAz2PNqgAAAIDrwNvTQ+X9vCVJ5f28LRvSJYI6AAAAYEkEdQAAAMCCCOoAAACABRHUAQAAAAsiqAMAAAAWxO0ZAQAAUKr0aBGsu2+vrOCKZUq6lKsiqAMAAKBUiWlZs6RLKBSWvgAAAAAWRFAHAAAALIigDgAAAFgQQR0AAACwIII6AAAAYEEEdQAAAMCCCOoAAACABRHUAQAAAAsiqAMAAAAWRFAHAAAALIigDgAAAFgQQR0AAACwIII6AAAAYEEEdQAAAMCCCOoAAACABRHUAQAAAAsiqAMAAAAWRFAHAAAALIigDgAAAFgQQR0AAACwIII6AAAAYEEEdQAAAMCCCOoAAACABRHUAQAAAAsiqAMAAAAWZMmgnpmZqREjRigoKEh+fn5q3ry5Pvvss0KNTUtLU//+/RUYGCh/f39FREQoISEhX7+LFy/qjTfeUHh4uMqWLauqVasqOjpa69evd/fpAAAAAEVmyaDevXt3xcbGavz48Vq5cqXuuusuPfbYY1q4cOFVx128eFEdO3ZUQkKC3nnnHX355ZeqWrWqOnXqpHXr1jn1feKJJzRmzBh17dpVy5cv18yZM3Xy5Em1b99emzZtup6nBwAAAFyTV0kXcLkVK1YoPj5eCxcu1GOPPSZJioyM1IEDBzRq1Cj17NlTnp6eBY6dPXu2kpKStH79ekVERDjGNmvWTKNHj9bGjRsl/RHoFy5cqN69e+vVV191jG/btq2CgoK0YMECtWrV6jqfKQAAN8aiLYd0+NfzCq5YRjEta5Z0OQAKyXIz6kuXLlVAQIBiYmKctg8YMEBHjx51hO0rjW3QoIEjpEuSl5eXHn/8cW3atElHjhyRJHl4eMjDw0MVKlRwGl++fHl5eHjIz8/PjWcEAEDJWrz1sN5J2KvFWw+XdCkAisByQT0pKUlhYWHy8nKe7G/atKmj/Wpj8/oVNDY5OVmS5O3traFDhyo2NlbLli1TRkaGUlNT9cQTT6hChQp64okn3HU6AAAAQLFYbulLenq6br/99nzbK1Wq5Gi/2ti8ftca+/e//10VKlTQo48+qtzcXElSrVq1tGbNGtWtW/eadaalpenkyZNO21JSUq45DgAAACgMywV1SbLZbMVqK8rY1157TW+++aYmTJige+65RxkZGXrvvfcUFRWlf/3rX7rjjjuuepxZs2Zp4sSJV+0DAAAAFJflgnrlypULnDU/deqUJBU4Y17Usbt27dK4ceM0bdo0vfDCC45+0dHRatSokZ5//nklJiZetc6hQ4fmW0efkpKirl27XnUcAAAAUBiWC+pNmjRRXFycsrOzndap79y5U5IUHh5+1bF5/S51+dgffvhBxhjdddddTv28vb3VrFmzfLdyLIjdbpfdbr/2CQEAAADFYLmLSbt166bMzEx98cUXTttjY2MVFBSk1q1bX3Xs7t27ne4Mk52drfnz56t169YKCgqSJMf/fv/9907jL168qG3btik4ONhdpwMAQInKyslVxoUsSVLGhSxl5eSWcEUACstyM+rR0dGKiorSkCFDlJGRobp16youLk6rVq3S/PnzHfdQHzRokGJjY7Vv3z6FhIRIkgYOHKiZM2cqJiZGU6ZMkd1u16xZs7Rnzx6tXr3acYx27drprrvu0oQJE3Tu3Dnde++9OnPmjGbMmKH9+/fr008/LZFzBwDAXbJycvX+2n2atyFVv2T+Lknadeys2ry+Rn0iQjSkQx15e1puvg7AJSwX1CVpyZIleuWVVzRu3DidOnVKDRs2VFxcnHr16uXok5OTo5ycHBljHNt8fX2VkJCg0aNHa/jw4Tp37pyaN2+ulStXqn379o5+Hh4eio+P1xtvvKFFixbpzTffVEBAgBo1aqQVK1YoOjr6hp4vAADulJWTq8Hztihxz0ldfouFXzIv6u34/2jHodP6sE8LwjpgYTZzadKFS5KTkxUeHq6kpCQ1bty4pMsBAJRS7ybs1dvx/7lmv5FR9TW8Y70bUBEAqehZkT+jAQC4hWTl5GrehtR8M+mXs0mat+EAa9YBCyOoAwBwC9mS+qt+yfxd1/rnciPpZOZFbUn99UaUBaAYCOoAANxCzpz//br2B3DjENQBALiFVCjjc137A7hxXL7ry/z587Vw4UIdOHBA58+fd2qz2Wzat2+fq4cAAACF1LJ2RQUG+Cj9GstfbJICA3zVsnbFG1UagCJyKahPnTpVL730kho1aqRmzZrJ19fXXXUBAIBi8Pb0UN+I2te864uR1DcihNszAhbmUlD/xz/+oWHDhmnGjBnuqgcAALhoSIc62nHotNbsTpNNcppZz/v6voZ2PdWhTskUCKBQXPoz+vjx4+rWrZu7agEAAG7g7emhD/u00Mio+goMcP7X7sAAX42Mqs/DjoCbgEs/oS1atGANOgAAFuTt6aHhHetp/Uv3Kax6OUlSWPVyWv/SfRresR4hHbgJuPRT+vbbb+utt97S1q1b3VUPAABwI29PD5X385YklffzJqADN5Eir1Fv2rSp09fp6elq1aqVqlWrpsqVKzu12Ww2/fDDD65VCAAAAJRCRQ7qlSpVks323wcTXx7OAQAAALiuyEF97dq116EMAAAAAJdioRoAAABgQS4F9TVr1mjRokWOr0+cOKHOnTurWrVq6tu3ry5cuOBygQAAwDU9WgTr2Y711KNFcEmXAqAIXHrg0bhx4xQVFeX4evTo0fr2228VFRWlxYsXq169eho7dqzLRQIAgOKLaVmzpEsAUAwuzaj/5z//0Z133ilJys7O1tKlSzV16lQtWbJEkyZNUlxcnFuKBAAAAEobl4J6RkaGbrvtNknS1q1b9dtvv+nhhx+WJLVq1UoHDx50uUAAAACgNHIpqNvtdu3du1eStHr1aoWEhCg4+I/1b2fPnpW3t7frFQIAAAClkEtr1Dt16qSXX35ZycnJmjt3rvr16+do2717t2rXru1qfQAAAECp5FJQ/9vf/qaDBw/qo48+UqtWrfTXv/7V0bZw4UK1adPG5QIBAACA0siloB4YGKhVq1YV2JaYmCg/Pz9Xdg8AAACUWm574NH58+d15MgRZWdnS5LKly8vHx8fd+0eAAAAKFVcDuqJiYmKiIhQuXLlFBISoh9//FGSNGzYMC1ZssTlAgEAAIDSyOUnk95///26cOGCXnjhBeXm5jraAgMDNXfuXFfrAwAAAEoll4L6uHHj1LlzZ23fvl2vvvqqU1uzZs20Y8cOV3YPAAAAlFouXUy6fft2LVq0SJJks9mc2qpUqaK0tDRXdg8AAACUWi7NqHt5eSkrK6vAtrS0NJUrV86V3QMAAACllktB/a677tKnn35aYNvixYsVERHhyu4BAACAUsulpS9jxozRAw88oG7duqlv376y2WzauHGjPvnkEy1evFiJiYnuqhMAAAAoVVwK6v/zP/+j2NhYjRgxQl9++aWkP27LeNttt2nu3Llq166dW4oEAAAASptiB/WcnBzt27dPXbp00aOPPqr169frxIkTCgwMVNu2bVW2bFl31gkAAACUKsUO6sYYNWrUSMuXL1d0dLQ6duzozroAAACAUq3YF5N6eXmpWrVqTg85AgAAAOAeLt31pVevXpo3b567agEAAADw/7l0MWnz5s31+eef67777lP37t1VvXr1fA8+6t69u0sFAgAAAKWRS0G9b9++kqQjR45o7dq1+dptNptycnJcOQQAAABQKrkU1LlPOgAAAHB9FDmoP//883ruuedUs2ZNhYaGqnr16vL29r4etQEAAAClVpEvJp0+fbqOHTsmSQoNDdX27dvdXhQAAABQ2hU5qFesWFEnTpyQ9Me91C+/eBQAAACA64q89OXuu+/WoEGD1KpVK0nSyJEjddtttxXY12az6csvv3SpQAAAAKA0KnJQnzVrlkaMGKHk5GTZbDalpKTI19e3wL7MtgMAAADFU+SgHhISoqVLl0qSPDw8tGzZMsfsOgAAAAD3cOnJpImJiWrUqFGh+hpjNGnSJB0/ftyVQwIAAAClgktBvX379goICChU39zcXE2cOFFHjx515ZAAAABAqeBSUC8qY8yNPBwAAABw07qhQR0AAABA4RDUAQAAAAsiqAMAAAAWRFAHAAAALIigDgAAAFgQQR0AAACwoBsW1D09PbV//341adLkmn0zMzM1YsQIBQUFyc/PT82bN9dnn31WqOOkpaWpf//+CgwMlL+/vyIiIpSQkFBg399++03jxo1T/fr15evrq8qVKysyMlJ79+4t0rkBAAAA7uZV1AGTJk0qdF+bzaaxY8c6vg4JCSnUuO7du2vz5s2aMmWK6tevr4ULF+qxxx5Tbm6uevfufcVxFy9eVMeOHXX69Gm98847stvtmjlzpjp16qTVq1erffv2jr6ZmZmKjIzU0aNHNWbMGDVt2lRnzpzR+vXrde7cuUKfIwAAAHA92EwRn0Lk4eE8CW+z2fI9yMhmszn+Oycnp0gFrVixQg8++KAjnOe5//77lZycrIMHD8rT07PAsbNmzdKwYcO0fv16RURESJKys7PVrFkzBQQEaOPGjY6+I0aM0Mcff6wff/xRt99+e5FqvJLk5GSFh4crKSlJjRs3dss+AQAAcGsoalYs8tKX3Nxcx2vPnj0KDQ3Va6+9pv379+v8+fPav3+/Jk+erNDQUO3evbvIJ7B06VIFBAQoJibGafuAAQN09OhRp7Bd0NgGDRo4QrokeXl56fHHH9emTZt05MgRSdK5c+f08ccfKyYmxm0hHQAAAHAnl9aoP/vss+rbt69eeuklhYSEyNfXVyEhIXr55ZfVp08fPfPMM0XeZ1JSksLCwuTl5bwqp2nTpo72q43N61fQ2OTkZEnS1q1b9dtvv6levXoaMmSIKlasKB8fH7Vs2VJff/11kWsGAAAA3M2loP7tt9+qbdu2Bba1bdtW//d//1fkfaanp6tSpUr5tudtS09Pd3ls3sz61KlTtXPnTs2bN09Lly5V+fLl9dBDD+mbb765Zp1paWlKTk52eqWkpFz7BAEAAIBCKPLFpJfy9fXVli1b1LFjx3xtW7ZskY+PT7H2e+ka96K0FXZsbm6uJMnHx0crV65UuXLlJEmRkZGqV6+eJk+erAceeOCqx5k1a5YmTpx41T4AAABAcbkU1Lt166aJEycqICBAvXv3VsWKFfXrr79qwYIFmjRpkv785z8XeZ+VK1cucNb81KlTklTgjHlRx1auXFmS1KZNG0dIlyR/f3+1b99ey5Ytu2adQ4cOzbeOPiUlRV27dr3mWAAAAOBaXArqb7/9tvbt26fhw4frmWeekZeXl7Kzs2WM0b333qu33367yPts0qSJ4uLilJ2d7bROfefOnZKk8PDwq47N63epy8cWtI49jzEm351tCmK322W326/ZDwAAACgOl9aolytXTmvWrNGKFSv0wgsvqG/fvho1apRWrlypxMREp9nqwurWrZsyMzP1xRdfOG2PjY1VUFCQWrdufdWxu3fvdrozTHZ2tubPn6/WrVsrKChIklS9enVFRETou+++U0ZGhqPvuXPntG7dOt19991FrhsAAABwJ5dm1PN06tRJnTp1cseuFB0draioKA0ZMkQZGRmqW7eu4uLitGrVKs2fP99xD/VBgwYpNjZW+/btczxIaeDAgZo5c6ZiYmI0ZcoU2e12zZo1S3v27NHq1audjvPmm28qMjJSDzzwgF588UXZbDa99dZb+uWXXzR58mS3nAsAAABQXC7NqOf55ptv9NJLL+mJJ57QwYMHJUmbN2/WyZMni7W/JUuWqE+fPho3bpw6deqkjRs3Ki4uzmnNe05OjnJycpwetuTr66uEhARFRkZq+PDheuihh3Ts2DGtXLnS6amk0h/r0xMSEuTr66s///nP6t27t7y9vbV27Vqn+7ADuPks2nJIf4//jxZtOVTSpQAAUGxFfjLppc6dO6dHHnlECQkJjjuqbN68WXfeead69uypmjVr6s0333RbsVbHk0kBa+j54QZt3H9KrUMr6fMn+cMbAGAN1/3JpJd65ZVXtGXLFn3xxRc6c+aM0+z2/fffn2+5CQAAAIDCcWmN+qJFizR58mR169ZNOTk5Tm21atVyLIMBAAAAUDQuzaifPHnyitP2Hh4eOn/+vCu7BwAAAEotl4J6jRo1CrxvuST9+OOPCg0NdWX3AAAAQKnlUlDv3r27XnvtNW3fvt2xzWaz6cCBA/r73/+e78mdAAAAAArHpaA+fvx4BQUFqVWrVmrZsqVsNpsGDBig8PBw2e12jRkzxl11AkChZOXkKuNCliQp40KWsnJyS7giAACKx+Unk65fv16TJ09WQECA6tSpI39/f7300kv697//rTJlyrirTgC4qqycXL2bsFcRrydo17GzkqRdx86qzetr9G7CXgI7AOCm4/KTScuUKaMxY8Ywew6gxGTl5GrwvC1K3HNStsvafsm8qLfj/6Mdh07rwz4t5O3plue8AQBw3fGJBeCm9/7afUrc88eTkC9/glve12t2p+mDtftuaF0AALiiyDPqAwcO1NixYxUaGqqBAwdeta/NZtPs2bOLXRwAXEtWTq7mbUiVTflD+qVskuZtOKCnOtRhVh0AcFMoclBPTEzUs88+K0las2aNbLbL/6H5v67WBgDusCX1V/2S+fs1+xlJJzMvakvqr4qoU/n6FwYAgIuKHNT379/v+O/U1FR31gIARXbm/LVDuiv9AQAoKUX+998777xTycnJkqR58+YpPT3d7UUBQGFVKONzXfsDAFBSihzUf/zxR2VmZkqSBgwYoH37uDgLQMlpWbuiAgN88t3t5XI2SVUCfNWydsUbURYAAC4rclC32+3atm2bJMkYwzp0ACXK29NDfSNqX/VCUumPNep9I0K4kBQAcNMo8ifWww8/rGHDhikgIEA2m02RkZEqX758ga8KFSpcj5oBwMmQDnV0X0O7JOWbWc/7+r6Gdj3Voc4NrQsAAFcU+WLSGTNmqFGjRtq5c6c++eQTdejQQVWqVLketQFAoXh7eujDPi30wdp9mrfhgE5mXnS0BQb4qm9ECLdlBADcdGzGmGv9i/EVeXh46Pvvv1erVq3cWdNNKzk5WeHh4UpKSlLjxo1LuhygVMrKydXD7/2fdh07q7Dq5fTV0+0I6AAASyhqVizyjPqlcnNzXRkOAG7n7emh8n7ekqTyft6EdADATYtPMAAAAMCCihzUPT09tWnTpj8Ge3jI09Pzii8vL5cm7AEAAIBSq8hJety4cQoODnb8N7dnBAAAANyvyEF9/Pjxjv+eMGGCO2sBAAAA8P+5tEZ90qRJOnr0aIFtx44d06RJk1zZPQAUS48WwXq2Yz31aBFc0qUAAFBsLgX1iRMn6vDhwwW2HT16VBMnTnRl9wBQLDEta+q5qPqKaVmzpEsBAKDYXArqV7sFe2Zmpry9vV3ZPQAAAFBqFXmN+o8//qgdO3Y4vl6xYoV2797t1Of8+fNasGCB6tThcd0AAABAcRQ5qC9dutSxpMVms11xHXqZMmU0Z84c16oDAAAASqkiB/XBgwerS5cuMsaoVatWmjNnjsLDw536+Pr6qk6dOipTpozbCgUAAABKkyIH9erVq6t69er6/ffftXLlStWoUSNfUAcAAADgmmJfTOrl5aWHHnpIJ06ccGc9AAAAAORCUPfw8FBwcLAyMjLcWQ8AAAAAuXh7xkGDBmnmzJnKyclxVz0AAAAAVIw16pfy8fHRnj17FBYWpocffljVq1eXzWZztNtsNj333HMuFwkAAACUNi4F9RdffNHx32+//Xa+doI6AAAAUDwuBfX9+/e7qw4AAAAAl3ApqIeEhLirDgAAAACXcCmo59m9e7fWrVunX375RYMGDVK1atV09OhRVaxYkYceAQAAAMXgUlDPycnR4MGDNXfuXBljZLPZFB0drWrVqunJJ5/UHXfcoUmTJrmrVgAAAKDUcOn2jK+99poWLlyoN954Q0lJSTLGONqio6O1atUqlwsEAAAASiOXZtTnzp2rsWPH6vnnn893L/XQ0FAuNgUAAACKyaUZ9SNHjigiIqLANj8/P509e9aV3QMAAACllktB3W636+effy6wbc+ePQoODnZl9wAAAECp5VJQ79y5s1577TUdOXLEsc1ms+nMmTN699139dBDD7lcIAAAAFAauRTUJ02apOzsbDVq1EiPPvqobDabXn75ZYWHh+vChQsaO3asu+oEAAAAShWXgnrVqlW1efNmPfbYY9q6das8PT31ww8/KDo6WuvXr1elSpXcVScAAABQqrh015esrCwFBATogw8+yNf222+/KSsrS97e3q4cAgAAACiVXJpRf+KJJ/SXv/ylwLbBgwdryJAhruweAAAAKLVcCuqJiYl6+OGHC2x76KGHlJCQ4MruAQAAgFLLpaB+4sQJVa9evcC2atWq6fjx467sHgAAACi1XArqt912m1JSUgpsS0lJUbly5VzZPQAAAFBquRTUIyMj9frrr+vUqVNO20+dOqUpU6bovvvuc6k4AAAAoLRy6a4vEyZM0F133aV69eqpZ8+eqlGjhg4fPqxFixYpKytLEydOdFedAAAAQKniUlBv0KCBvv32Wz3//PP66KOPlJOTI09PT7Vv315vv/22GjRo4K46AQAAgFLFpaUvktSsWTMlJCQoIyNDhw8f1tmzZ7V69Wo1bdq02PvMzMzUiBEjFBQUJD8/PzVv3lyfffZZocampaWpf//+CgwMlL+/vyIiIq5595nz58+rfv36stlsevPNN4tdNwAAAOAuLs2oX6pMmTIqU6aMW/bVvXt3bd68WVOmTFH9+vW1cOFCPfbYY8rNzVXv3r2vOO7ixYvq2LGjTp8+rXfeeUd2u10zZ85Up06dtHr1arVv377AcWPHjtVvv/3mltoBAAAAd3BbUHeXFStWKD4+3hHOpT8uWj1w4IBGjRqlnj17ytPTs8Cxs2fPVlJSktavX6+IiAjH2GbNmmn06NHauHFjvjGbNm3SjBkztGDBAsXExFy/EwMAAACKwOWlL+62dOlSBQQE5AvNAwYM0NGjRwsM25eObdCggSOkS5KXl5cef/xxbdq0SUeOHHHq//vvv2vgwIEaNmyYWrZs6d4TAQAAAFxguaCelJSksLAweXk5T/bnrXlPSkq66tiC1sbnbUtOTnbaPmnSJP3222+aPHmyq2UDAAAAbmW5pS/p6em6/fbb822vVKmSo/1qY/P6XWvsjh07NG3aNC1fvlxly5bVyZMni1RnWlpavjFXevgTAAAAUFSWC+qSZLPZitVW2LHZ2dkaOHCgevbsqQceeKBYNc6aNYv7xAMAAOC6sVxQr1y5coGz5nlPPy1oxryoY6dPn66ff/5Z//u//6vTp09LkjIyMiRJFy5c0OnTp1WuXLkrXrQqSUOHDs23jj4lJUVdu3a98skBAAAAhWS5oN6kSRPFxcUpOzvbaZ36zp07JUnh4eFXHZvX71KXj01KStKZM2dUr169fH3Hjh2rsWPHavv27WrevPkVj2W322W32wt1TgAAAEBRWe5i0m7duikzM1NffPGF0/bY2FgFBQWpdevWVx27e/dupzvDZGdna/78+WrdurWCgoIkSWPGjFFiYqLTKy4uTpL01FNPKTExUXXr1r0OZwcAAAAUjuVm1KOjoxUVFaUhQ4YoIyNDdevWVVxcnFatWqX58+c7lqMMGjRIsbGx2rdvn0JCQiRJAwcO1MyZMxUTE6MpU6bIbrdr1qxZ2rNnj1avXu04RsOGDdWwYUOn46ampkqS6tSpow4dOtyQcwUAAACuxHJBXZKWLFmiV155RePGjdOpU6fUsGFDxcXFqVevXo4+OTk5ysnJkTHGsc3X11cJCQkaPXq0hg8frnPnzql58+ZauXLlFZ9KCgAAAFiRzVyadOGS5ORkhYeHKykpSY0bNy7pcgAAAGAhRc2KllujDgAAAICgDgAAAFiSJdeoo/AWbTmkw7+eV3DFMoppWbOkywEAAICbMKN+k1u89bDeSdirxVsPl3QpAAAAcCOCOgAAAGBBBHUAAADAggjqAAAAgAUR1AEAAAALIqgDAAAAFkRQBwAAACyIoA4AAABYEEEdAAAAsCCCOgAAAGBBBHUAAADAggjqAAAAgAUR1AEAAAALIqgDAAAAFkRQBwAAACyIoA4AAABYEEEdAAAAsCCCOgAAAGBBBPWbWFZOrjIuZEmSMi5kKSsnt4QrAgAAgLsQ1G9CWTm5ejdhryJeT9CuY2clSbuOnVWb19fo3YS9BHYAAIBbgFdJF4CiycrJ1eB5W5S456Rsl7X9knlRb8f/RzsOndaHfVrI25O/wwAAAG5WJLmbzPtr9ylxz0lJkrmsLe/rNbvT9MHafTe0LgAAALgXQf0mkpWTq3kbUvPNpF/OJmnehgMsgQEAALiJEdRvIltSf9Uvmb/nm0m/nJF0MvOitqT+eiPKAgAAwHVAUL+JnDn/+3XtDwAAAOsgqN9EKpTxua79AQAAYB0E9ZtIy9oVFRjgU6g16lUCfNWydsUbURYAAACuA4L6TcTb00N9I2oXao1634gQbs8IAABwEyPJ3WSGdKij+xraJSnfzHre1/c1tOupDnVuaF0AAABwL4L6Tcbb00Mf9mmhkVH1FRjg69QWGOCrkVH1edgRAADALYAnk96EvD09NLxjPT3VoY4efu//tOvYWYVVL6evnm5HQAcAALhFkOpuYt6eHirv5y1JKu/nTUgHAAC4hZDsAAAAAAsiqAMAAAAWRFAHAAAALIigDgAAAFgQQR0AAACwIII6AAAAYEEEdQAAAMCCCOoAAACABRHUAQAAAAsiqAMAAAAWRFAHAAAALIigDgAAAFgQQR0AAACwIII6AAAAYEEEdQAAAMCCCOoAAACABRHUAQAAAAsiqAMAAAAWZMmgnpmZqREjRigoKEh+fn5q3ry5Pvvss0KNTUtLU//+/RUYGCh/f39FREQoISHBqU9GRoZee+01dejQQdWqVVNAQICaNGmiqVOn6sKFC9fjlK6bHi2C9WzHeurRIrikSwEAAIAbeZV0AQXp3r27Nm/erClTpqh+/fpauHChHnvsMeXm5qp3795XHHfx4kV17NhRp0+f1jvvvCO73a6ZM2eqU6dOWr16tdq3by9JOnjwoKZPn64+ffro+eefV0BAgL799ltNmDBB8fHxio+Pl81mu1Gn65KYljVLugQAAABcB5YL6itWrFB8fLwjnEtSZGSkDhw4oFGjRqlnz57y9PQscOzs2bOVlJSk9evXKyIiwjG2WbNmGj16tDZu3ChJCg0NVWpqqsqWLesYe99996ls2bIaNWqUvvvuO7Vr1+46nykAAABwZZZb+rJ06VIFBAQoJibGafuAAQN09OhRR9i+0tgGDRo4QrokeXl56fHHH9emTZt05MgRSVLZsmWdQnqeVq1aSZIOHTrkjlMBAAAAis1yQT0pKUlhYWHy8nKe7G/atKmj/Wpj8/oVNDY5Ofmqx16zZo0kqXHjxkWqGQAAAHA3yy19SU9P1+23355ve6VKlRztVxub16+oY3/88UdNmzZN3bp1KzDsXy4tLU0nT5502paSknLNcQAAAEBhWC6oS7rqhZzXusizOGNTU1PVpUsX1axZUx9//HGhapw1a5YmTpxYqL4AAABAUVkuqFeuXLnAme9Tp05JUoEz5q6MPXDggCIjI+Xl5aWEhISr7v9SQ4cOzbeOPiUlRV27di3UeAAAAOBqLBfUmzRpori4OGVnZzutU9+5c6ckKTw8/Kpj8/pd6kpjDxw4oA4dOsgYo7Vr1yo4uPD3Irfb7bLb7YXuDwAAABSF5S4m7datmzIzM/XFF184bY+NjVVQUJBat2591bG7d+92ujNMdna25s+fr9atWysoKMix/eDBg+rQoYNycnK0Zs0ahYSEuP9kAAAAgGKy3Ix6dHS0oqKiNGTIEGVkZKhu3bqKi4vTqlWrNH/+fMc91AcNGqTY2Fjt27fPEbIHDhyomTNnKiYmRlOmTJHdbtesWbO0Z88erV692nGMtLQ0RUZG6tixY5o9e7bS0tKUlpbmaA8ODi7S7DoAAADgbpYL6pK0ZMkSvfLKKxo3bpxOnTqlhg0bKi4uTr169XL0ycnJUU5Ojowxjm2+vr5KSEjQ6NGjNXz4cJ07d07NmzfXypUrHU8llaSffvpJP//8syTp8ccfz3f88ePHa8KECdfvBAEAAIBrsJlLky5csm3bNrVo0ULLli1T3bp1S7ocAAAAWEjejUe2bt2qO++885r9LTmjfrPKe6Ipd34BAADAlRw6dKhQQZ0ZdTc6ffq01q1bp5o1a8rX1/eGHDPvLzNm8YH/4ucCcMbPBOCspH4mLl68qEOHDql9+/a67bbbrtmfGXU3uu222/TII4+UyLHr1q2rxo0bl8ixAavi5wJwxs8E4KwkfiYKM5Oex3K3ZwQAAABAUAcAAAAsiaAOAAAAWBBB/SZXpUoVjR8/XlWqVCnpUgDL4OcCcMbPBODsZvmZ4K4vAAAAgAUxow4AAABYEEEdAAAAsCCCOgAAAGBBBPUb6N1335XNZlN4eHixxh89elQTJkzQjh078rVNmDBBNpvNxQoB9/rxxx81YMAAhYaGys/PTwEBAbrzzjs1bdo0nTp1qqTLK5K1a9fKZrNp7dq1JV0KbiFz586VzWZzvPz8/FStWjVFRkbq9ddfV1paWkmXCFjG999/r5iYGFWvXl0+Pj6qVq2aevTooQ0bNjj1W79+vSZMmKDTp0/n20ft2rXVpUuXG1Sx6wjqN9Ann3wiSUpOTtbGjRuLPP7o0aOaOHFigUH9L3/5S743KlCSPvroI7Vo0UKbN2/WqFGjtGrVKi1dulQxMTH64IMPNGjQoJIuEbCMOXPmaMOGDYqPj9fMmTPVvHlzTZ06VWFhYVq9enVJlweUuBkzZqht27Y6fPiwpk2bptWrV+vNN9/UkSNH1K5dO7333nuOvuvXr9fEiRMLDOo3G6+SLqC02LJli3744Qc9+OCD+vrrrzV79my1bt3abfsPDg5WcHCw2/YHuGLDhg0aMmSIoqKitGzZMvn6+jraoqKiNHLkSK1ataoEKwSsJTw8XC1btnR8/eijj+q5555Tu3bt1L17d+3du1dVq1YtcOy5c+fk7+9/o0oFbrjvvvtOI0aMUOfOnbV06VJ5ef03vvbq1UvdunXTs88+qzvuuENt27YtwUr/kJOTo+zsbKfPvuJiRv0GmT17tiRpypQpatOmjT777DOdO3fOqc+RI0c0ePBg1axZUz4+PgoKClKPHj104sQJrV27VnfddZckacCAAY5/Jp0wYYKkgpe+5Obmatq0aWrYsKF8fX1lt9vVt29fHT582Klfhw4dFB4ers2bN+uee+6Rv7+/br/9dk2ZMkW5ubnX6TuCW9nf/vY32Ww2/eMf/yjwF5WPj48efvhhSUV/n27YsEFt2rRRmTJlVLt2bc2ZM0eS9PXXX+vOO++Uv7+/mjRpUuAfAnv37lXv3r1lt9vl6+ursLAwzZw5M1+/3bt3q1OnTvL391dgYKCeeuopnT171qnP5MmT5eXlpUOHDuUbP3DgQFWuXFkXLlwo/DcNuEytWrX01ltv6ezZs/rwww8lSf3791dAQIB27typ+++/X+XKlVPHjh0lSfHx8XrkkUcUHBwsPz8/1a1bV08++aR++eUXp/3mfV78+OOPiomJUYUKFVSpUiU9//zzys7O1p49e9SpUyeVK1dOtWvX1rRp05zGX7hwQSNHjlTz5s0dYyMiIvTll1/emG8MSp3XX39dNptN77//vlNIlyQvLy/NmjVLNptNU6ZM0YQJEzRq1ChJUmhoqCMvXb5scdWqVbrzzjtVpkwZNWzY0LHq4VLHjx/Xk08+qeDgYPn4+Cg0NFQTJ05Udna2o09qaqpsNpumTZumV199VaGhofL19VViYqJ7Tt7gujt37pypUKGCueuuu4wxxnz88cdGkpk7d66jz+HDh0316tVNYGCgefvtt83q1avN559/bgYOHGh27dplzpw5Y+bMmWMkmb/+9a9mw4YNZsOGDebQoUPGGGPGjx9vLv+/c/DgwUaSefrpp82qVavMBx98YKpUqWJq1qxpTp486ejXvn17U7lyZVOvXj3zwQcfmPj4eDN06FAjycTGxt6A7xBuJdnZ2cbf39+0bt26UP2L+j5t0KCBmT17tvnmm29Mly5djCQzceJE06RJExMXF2dWrFhh7r77buPr62uOHDniGJ+cnGwqVKhgmjRpYubNm2f+9a9/mZEjRxoPDw8zYcIER7/jx48bu91uatSoYebMmWNWrFhh/vznP5tatWoZSSYxMdEYY8yJEyeMr6+veeWVV5zOJz093ZQpU8aMGjXKhe8iSou83+ubN28usD0zM9N4enqajh07GmOM6devn/H29ja1a9c2r7/+uklISDDffPONMcaY999/37z++uvmq6++MuvWrTOxsbGmWbNmpkGDBub333937DPv86JBgwZm8uTJJj4+3owePdrxc9iwYUPz7rvvmvj4eDNgwAAjyXzxxReO8adPnzb9+/c3n376qVmzZo1ZtWqVeeGFF4yHhwefGXC7wn6mtGrVyvj7+5vU1FQzfPhwI8ksWbLEkZfOnDljjDEmJCTEBAcHm0aNGpl58+aZb775xsTExBhJZt26dY79HTt2zNSsWdOEhISYDz/80KxevdpMnjzZ+Pr6mv79+zv67d+/30gyNWrUMJGRkWbx4sXmX//6l9m/f79bzp+gfgPMmzfPSDIffPCBMcaYs2fPmoCAAHPPPfc4+gwcONB4e3ubn3766Yr72bx5s5Fk5syZk6/t8qC+a9cuI8kMHTrUqd/GjRuNJPPyyy87trVv395IMhs3bnTq26hRI/PAAw8U6VyB48ePG0mmV69e1+xbnPfpli1bHNvS09ONp6enKVOmjFMo37Fjh5Fk3n33Xce2Bx54wAQHBzt+Wed5+umnjZ+fnzl16pQxxpgXX3zR2Gw2s2PHDqd+UVFRTkHdmD9Ck91uNxcvXnRsmzp1qvHw8HDbL2nc2q4V1I0xpmrVqiYsLMwY88d7TpL55JNPrrrf3Nxck5WVZQ4cOGAkmS+//NLRlvd58dZbbzmNad68uSPc5MnKyjJVqlQx3bt3v+KxsrOzTVZWlhk0aJC54447rloXUFSF/Uzp2bOnkWROnDhh3njjDSOpwN/DISEhxs/Pzxw4cMCx7fz586ZSpUrmySefdGx78sknTUBAgFM/Y4x58803jSSTnJxsjPlvUK9Tp47TH8TuwtKXG2D27NkqU6aMevXqJUkKCAhQTEyMvv32W+3du1eStHLlSkVGRiosLMwtx8z7J5f+/fs7bW/VqpXCwsKUkJDgtL1atWpq1aqV07amTZvqwIEDbqkHKEhR36fVq1dXixYtHF9XqlRJdrtdzZs3V1BQkGN73s9R3vv3woULSkhIULdu3eTv76/s7GzHq3Pnzrpw4YK+//57R02NGzdWs2bNnI7du3fvfPU/++yzSktL06JFiyT9sYzn/fff14MPPqjatWsX4zsC5GcKeID4o48+mm9bWlqannrqKdWsWVNeXl7y9vZWSEiIJGnXrl35+l9+54uwsDDZbDZFR0c7tnl5ealu3br5PgsWLVqktm3bKiAgwHGs2bNnF3gc4EbI+zkpzB3wmjdvrlq1ajm+9vPzU/369Z3e5//85z8VGRmpoKAgp8+MvJ+PdevWOe3z4Ycflre3tztOxQlB/TpLSUnRv//9bz344IMyxuj06dM6ffq0evToIem/d4I5efKkWy8GTU9Pl/RHsLlcUFCQoz1P5cqV8/Xz9fXV+fPn3VYTSofAwED5+/tr//791+xb1PdppUqV8vXz8fHJt93Hx0eSHGvE09PTlZ2drRkzZsjb29vp1blzZ0lyrONNT09XtWrV8h2noG133HGH7rnnHsc693/+859KTU3V008/ffUTBwrpt99+U3p6utMfov7+/ipfvrxTv9zcXN1///1asmSJRo8erYSEBG3atMnxB2hBv8sL+rnx9/eXn59fvu2XXm+xZMkS/elPf1KNGjU0f/58bdiwQZs3b9bAgQO5LgNuV9jPlNTUVPn7+xf4OXG5wmSeEydOaPny5fk+Mxo3bixJ+a79KOhzzB2468t19sknn8gYo8WLF2vx4sX52mNjY/Xqq6+qSpUq+S6ec0Xem/DYsWP5/gA4evSoAgMD3XYs4FKenp7q2LGjVq5cqcOHD1/1D9Ab9T6tWLGiPD091adPHw0bNqzAPqGhoY6ajh8/nq+9oG2S9MwzzygmJkbbtm3Te++9p/r16ysqKsotdQNff/21cnJy1KFDB8e2gmYMk5KS9MMPP2ju3Lnq16+fY3tKSorba5o/f75CQ0P1+eefO9Vy8eJFtx8L8PT0VGRkpFatWnXFz5TDhw9r69atio6Olqenp1uOGxgYqKZNm+q1114rsP3SP56lws3kFwcz6tdRTk6OYmNjVadOHSUmJuZ7jRw5UseOHdPKlSsVHR2txMRE7dmz54r7y7t7RmFmue+77z5Jf/xCvdTmzZu1a9cux10CgOvhpZdekjFGTzzxhH7//fd87VlZWVq+fPkNe5/6+/srMjJS27dvV9OmTdWyZct8r7w/GiIjI5WcnKwffvjBaR8LFy4scN/dunVTrVq1NHLkSK1evVpDhw7l4WNwi4MHD+qFF15QhQoV9OSTT161b9577vK7LOXdLcadbDabfHx8nN7nx48f564vuG7yPlOGDh2qnJwcp7acnBwNGTJExhi99NJLkoqWl66kS5cuSkpKUp06dQr8zLg8qF8vzKhfRytXrtTRo0c1depUp9mQPOHh4Xrvvfc0e/Zsvffee1q5cqXuvfdevfzyy2rSpIlOnz6tVatW6fnnn1fDhg1Vp04dlSlTRgsWLFBYWJgCAgIUFBRU4JulQYMGGjx4sGbMmCEPDw9FR0crNTVVY8eOVc2aNfXcc8/dgO8ASquIiAi9//77Gjp0qFq0aKEhQ4aocePGysrK0vbt2/WPf/xD4eHhWrp06Q17n77zzjtq166d7rnnHg0ZMkS1a9fW2bNnlZKSouXLl2vNmjWSpBEjRuiTTz7Rgw8+qFdffVVVq1bVggULtHv37gL36+npqWHDhunFF19U2bJl8623BwojKSnJsQY2LS1N3377rebMmSNPT08tXbpUVapUuer4vM+IMWPGyBijSpUqafny5YqPj3d7rV26dNGSJUs0dOhQ9ejRQ4cOHdLkyZNVvXp1x3VXgDu1bdtW06dP14gRI9SuXTs9/fTTqlWrlg4ePKiZM2dq48aNmj59utq0aSNJatKkiaQ/fu/369dP3t7eatCggcqVK1foY06aNEnx8fFq06aNnnnmGTVo0EAXLlxQamqqVqxYoQ8++ODGPL/G7ZenwqFr167Gx8fHpKWlXbFPr169jJeXlzl+/Lg5dOiQGThwoKlWrZrx9vY2QUFB5k9/+pM5ceKEo39cXJxp2LCh8fb2NpLM+PHjjTEF354xJyfHTJ061dSvX994e3ubwMBA8/jjjztu6Zinffv2pnHjxvlq69evnwkJCSn+NwCl3o4dO0y/fv1MrVq1jI+Pjylbtqy54447zLhx4xw/F66+T0NCQsyDDz6Yb7skM2zYMKdt+/fvNwMHDjQ1atQw3t7epkqVKqZNmzbm1Vdfder3008/maioKOPn52cqVapkBg0aZL788st8d33Jk5qaaiSZp556qqjfIpRyeXd9yXv5+PgYu91u2rdvb/72t7/l+/zo16+fKVu2bIH7ynvflitXzlSsWNHExMSYgwcPOn1WGPPfz4tLb396tX0X9LM3ZcoUU7t2bePr62vCwsLMRx99VODnEOBOGzZsMD169DBVq1Y1Xl5exm63m+7du5v169fn6/vSSy+ZoKAg4+Hh4fS7+0qfGe3btzft27d32nby5EnzzDPPmNDQUOPt7W0qVapkWrRoYV555RWTmZlpjPnvXV/eeOMNt5+vMcbYjCngcnIAQKHNmDFDzzzzjJKSkhwXGgEA4CqCOgAU0/bt27V//349+eSTatu2rZYtW1bSJQEAbiEEdQAoptq1a+v48eO655579OmnnxZ4C0cAAIqLoA4AAABYELdnBAAAACyIoA4AAABYEEEdAAAAsCCCOgAAAGBBBHUAAADAggjqAAAAgAUR1AEARbZw4UJNnz692ONTU1Nls9k0d+5ct9UEALcagjoAoMhcDeoAgGsjqAMAAAAWRFAHAORz8uRJDR48WDVr1pSvr6+qVKmitm3bavXq1erQoYO+/vprHThwQDabzfEyxqhevXp64IEH8u0vMzNTFSpU0LBhw6563L1796p3796y2+3y9fVVWFiYZs6ceb1OEwAszaukCwAAWE+fPn20bds2vfbaa6pfv75Onz6tbdu2KT09XbNmzdLgwYO1b98+LV261DHGZrNp+PDhGjFihPbu3at69eo52ubNm6eMjIyrBvWffvpJbdq0Ua1atfTWW2+pWrVq+uabb/TMM8/ol19+0fjx46/rOQOA1diMMaakiwAAWEu5cuX0l7/8RX//+98LbO/SpYuSkpKUmprqtP3s2bOqUaOGBg4c6LSGvXHjxqpatarWrFkj6Y+LSUNDQzVnzhz1799fktSpUyclJycrOTlZ5cuXd4wdPny4Pv74Yx09elQVK1Z063kCgJWx9AUAkE+rVq00d+5cvfrqq/r++++VlZVVqHHlypXTgAEDNHfuXP3222+SpDVr1uinn37S008/fcVxFy5cUEJCgrp16yZ/f39lZ2c7Xp07d9aFCxf0/fffu+XcAOBmQVAHAOTz+eefq1+/fvr4448VERGhSpUqqW/fvjp+/Pg1xw4fPlxnz57VggULJEnvvfeegoOD9cgjj1xxTHp6urKzszVjxgx5e3s7vTp37ixJ+uWXX9xzcgBwk2CNOgAgn8DAQE2fPl3Tp0/XwYMH9dVXX2nMmDFKS0vTqlWrrjq2bt26io6O1syZMxUdHa2vvvpKEydOlKen5xXHVKxYUZ6enurTp88V17GHhoa6dE4AcLMhqAMArqpWrVp6+umnlZCQoO+++06S5Ovrq/Pnz19xzLPPPqv7779f/fr1k6enp5544omrHsPf31+RkZHavn27mjZtKh8fH7eeAwDcjAjqAAAnZ86cUWRkpHr37q2GDRuqXLly2rx5s1atWqXu3btLkpo0aaIlS5bo/fffV4sWLeTh4aGWLVs69hEVFaVGjRopMTFRjz/+uOx2+zWP+84776hdu3a65557NGTIENWuXVtnz55VSkqKli9f7rgQFQBKC4I6AMCJn5+fWrdurU8//VSpqanKyspSrVq19OKLL2r06NGS/pgxT05O1ssvv6wzZ87IGKPLbyL2pz/9SRMmTLjqRaSXatSokbZt26bJkyfrr3/9q9LS0nTbbbepXr16jnXqAFCacHtGAMB10bJlS9lsNm3evLmkSwGAmxIz6gAAt8nIyFBSUpL++c9/auvWrU4PRAIAFA1BHQDgNtu2bVNkZKQqV66s8ePHq2vXriVdEgDctFj6AgAAAFgQDzwCAAAALIigDgAAAFgQQR0AAACwIII6AAAAYEEEdQAAAMCCCOoAAACABRHUAQAAAAsiqAMAAAAWRFAHAAAALIigDgAAAFgQQR0AAACwoP8HGs9hr87jtxEAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(figsize=(7, 3), dpi=120)\n", - "bmb.interpret.plot_predictions(model, idata, \"style\", ax=ax);" + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Again, by default, the `plot_predictions` function plots the mean outcome on the response scale. Therefore, the plot below shows the probability of a successful response `certified_fresh` as a function of `length`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvgAAAFdCAYAAAB2GxkjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABJ0AAASdAHeZh94AABz2klEQVR4nO3deXiU5b038O8z+55JJpkkk4SwBAgQNi0ieBCRouAKtLyC9VSR054jtke6SBUriktLqz09Hl/ouerRSovEUxfsWwu0gmitIKK2QiIgCVv2TDKZfZ953j9mMklICIQsM5l8P9fFhXnmeWbuYRz4zj2/+3cLoiiKICIiIiKitCBJ9gCIiIiIiGjgMOATEREREaURBnwiIiIiojTCgE9ERERElEYY8ImIiIiI0ggDPhERERFRGmHAJyIiIiJKIwz4RERERERphAGfiIiIiCiNyJI9gHRit9vx/vvvo6ioCEqlMtnDISIiIqIUEggEUFNTg/nz58NoNA7a4zDgD6D3338fS5cuTfYwiIiIiCiFvfXWW7j99tsH7f4Z8AdQUVERgNiLVlJSkuTREBEREVEqqaqqwtKlSxOZcbAw4A+g9rKckpISTJkyJcmjISIiIqJUNNil3FxkS0RERESURhjwiYiIiIjSSEoGfLfbjXXr1sFisUClUmHGjBl49dVXL3pdbW0t1q1bl1iZLAgCXn755R7Pffvtt/HNb34TU6dOhVwuhyAIA/wsiIiIiIiGXkoG/OXLl2Pbtm147LHHsHv3bsyaNQurVq3Cjh07er2uqqoKr7zyChQKBW666aZez925cyc++ugjTJ48GdOnTx/I4RMRERERJU3KLbLdtWsX3nnnHezYsQOrVq0CACxYsABnz57Fgw8+iDvuuANSqbTHa6+99lpYrVYAwCeffILy8vILPs4LL7wAiST2+eY73/kOPv300wF+JkREREREQy/lZvB37twJnU6HFStWdDm+evVq1NfX49ChQxe8tj2wX4q+nEtERERENFyk3Ax+RUUFJk2aBJms69CmTZuWuH3u3LnJGFoXzc3NiW8L2lVVVSVpNEREREREMSkX8FtbWzF27Nhux7OyshK3p4KtW7di06ZNyR4GEREREVEXKRfwAfTa0SZVut2sXbu2WxlR++5kRERERETJknIB32Qy9ThLb7PZAHTM5Ceb2WyG2WxO9jCIiIiIiLpIuZWmU6dOxbFjxxAOh7scP3r0KACgrKwsGcNKaf+oscPmCSZ7GERERESUAlIu4C9btgxutxtvvPFGl+Pbtm2DxWLB7NmzkzSy1NXqDuDPlY04fMaGQDiS7OEQERERURKlXInOkiVLsGjRItx3331wOp0oKSlBeXk59uzZg+3btyd64K9Zswbbtm1DdXU1iouLE9e//vrrAIBTp04BiPXD1+l0AICvf/3rifPOnj2Lw4cPAwCqq6u7XDt69Gh85StfGeRnOrBEETjZ5Ma5Vi+mFxlRYtYle0hERERElAQpF/AB4M0338QjjzyCjRs3wmazobS0FOXl5Vi5cmXinEgkgkgkAlEUu1x7/sLXLVu2YMuWLQDQ5dz9+/dj9erVPV5799134+WXXx7IpzRkAuEoPj5tQ7XVja8UZ8KkUyZ7SEREREQ0hATx/IRMl62yshJlZWWoqKjAlClThuxx9x1rQpMz0O24IADjcnSYXpQBpazn3X+JiIiIaGgMVVZMyRl8GhiiCFQ1u1Fj82J6UQbG5ehSps0oEREREQ2OlFtkSwMvVrbThj9XNsLq6j7TT0RERETpgwF/BLF5QnjniyYcqG6BL8huO0RERETpiCU6I9CZFi9q23yYYjGgNM8AqYRlO0RERETpgjP4I1Q4IuLzGgf+dLQBtW3eZA+HiIiIiAYIA/4I5/aH8dcvW7D/eDMcvlCyh0NERERE/cSATwCABocfu4824NOzbQiGo8keDhERERFdJgZ8SoiKwIlGF94+Uo+qZne3TcSIiIiIKPUx4FM3/lBsN9w/VzbB4WXZDhEREdFwwoBPF2TzBLGnsgFf1Ds5m09EREQ0TDDgU68iUeAfNXa880UTXH7O5hMRERGlOgZ8uiQt7iB2H23El02uZA+FiIiIiHrBgE+XLBwV8cmZNrx7vAmeQDjZwyEiIiKiHjDgU581OgLYdbQB1VZ3sodCREREROdhwKfLEoqIOHTKhve/tMIXjCR7OEREREQUx4BP/VLX5sOuow041+pN9lCIiIiICAz4NAAC4Sj+VtWCv51sgT/E2XwiIiKiZJIlewCUPs7ZvGh0+jG9MAMlZh0EQUj2kIiIiIhGHM7g04AKhqM4fKYNf65sQqs7kOzhEBEREY04DPg0KGyeIP7yRRMOnWpFIMyyHSIiIqKhwhIdGjSiCFRbPaht82F6kRElZl2yh0RERESU9jiDT4MuEI7i49M2/LmyETZPMNnDISIiIkprDPg0ZFrdQfy5shGHz9hYtkNEREQ0SFIy4Lvdbqxbtw4WiwUqlQozZszAq6++etHramtrsW7dOsyfPx9GoxGCIODll1++4Pl79+7FnDlzoNFokJ2djXvuuQfNzc0D+EzofKIInGxy4+3PuRMuERER0WBIyYC/fPlybNu2DY899hh2796NWbNmYdWqVdixY0ev11VVVeGVV16BQqHATTfd1Ou577//PpYsWYLc3Fz84Q9/wHPPPYe9e/di4cKFCATY/WWwBcJRHDplw18qG9lth4iIiGgApdwi2127duGdd97Bjh07sGrVKgDAggULcPbsWTz44IO44447IJVKe7z22muvhdVqBQB88sknKC8vv+DjPPjgg5gwYQJef/11yGSxP4YxY8bgmmuuwUsvvYT77rtvgJ8Z9aTFHcSfK5swOluDmUWZUCt6fm2JiIiI6NKk3Az+zp07odPpsGLFii7HV69ejfr6ehw6dOiC10okl/Z06urqcPjwYfzzP/9zItwDwNy5czFhwgTs3Lnz8gZPl+1Mixd//LweFXUOhCPRZA+HiIiIaNhKuRn8iooKTJo0qUvwBoBp06Ylbp87d26/H6PzfZ7/OB9++OFF76O5uTnxbUG7qqqqfo1rpAtHRRypdaDa6saMIiOKTdpkD4mIiIho2Em5gN/a2oqxY8d2O56VlZW4fSAeo/N9nv84l/IYW7duxaZNm/o9FurOE4jgw6pWnGh04criTJh0ymQPiYiIiGjYSLmADwCCIFzWbQP1OJfyGGvXru1WRlRVVYWlS5cOxNAIHfX5Y7K1mFFkZH0+ERER0SVIuYBvMpl6nEG32WwAep51v5zHAHr+NsBms13SY5jNZpjN5n6PhS7udIsHNTYvJlsMmJRvgFQycB/yiIiIiNJNyi2ynTp1Ko4dO4ZwONzl+NGjRwEAZWVl/X6M9vtov8/zH2cgHoMGVnt9/ttH6lFZ74AnEL74RUREREQjUMoF/GXLlsHtduONN97ocnzbtm2wWCyYPXt2vx+joKAAV111FbZv345IpGNH1Y8++ggnTpzA8uXL+/0YNDg8gQg+r3HgD/+oxztfNKGq2cVdcYmIiIg6SbkSnSVLlmDRokW477774HQ6UVJSgvLycuzZswfbt29P9MBfs2YNtm3bhurqahQXFyeuf/311wEAp06dAhDrh6/T6QAAX//61xPn/exnP8OiRYuwYsUKrF27Fs3NzXjooYdQVlaG1atXD9XTpX6wugKwugL45Ewb8o1qjDZpUGBUQyZNuc+tREREREMm5QI+ALz55pt45JFHsHHjRthsNpSWlqK8vBwrV65MnBOJRBCJRCCKYpdrz1/4umXLFmzZsgUAupx73XXXYdeuXdi4cSNuvfVWaDQa3HLLLXjmmWegVLJry3ASFYG6Nh/q2nyQSQUUZWowOluDPINqQBdlExEREQ0Hgnh+QqbLVllZibKyMlRUVGDKlClD9rj7jjWhyRkYsscbLlRyCYpNGozL0cGoUSR7OERERDTCDVVWTMkZfKKB4A9FcaLRjRONbow2aTC9yAitkv/LExERUXpj2qER4UyrFzVtXozP1WOKxQCljD31iYiIKD0x4NOIEYkCxxtcOGX1YIrFgAm5evbUJyIiorTDdiM04gTDUfz9nB1vH6nH6RZPsodDRERENKAY8GnE8gQiOFjdij0VDWh0+JM9HCIiIqIBwYBPI57NE8K7x5ux/3gz7N5gsodDRERE1C+swSeKa3D40VjRiNEmLaYVZrDjDhEREQ1LTDBEnYgicLrFg3M2DzvuEBER0bDEgE/Ug84ddybnGzAxjx13iIiIaHhgDX4aqKx34B81bQiEI8keStoJhqP4R02s40611Q1u/ExERESpjjP4aWB3RSOONbgglwqYlG/A9EIjxufqIJPw89tA8QQiOHTKhhONLkwvMqLAqE72kIiIiIh6xIA/zHmDYdS2+QAAoYiII7UOHKl1QC2XoqwgFvZHZ2shEVheMhDs3hDeP2GFWa/EjFFGZOuUyR4SERERURcM+MOcRiHDs1+fhg+rWvGPWjuONTgRiojwhSI4fKYNh8+0waCSYVqhEdMLjbAYVRAY9vut2RXAXyqbkG9UocySgRw9gz4RERGlBgb8NCCTSlCab0BpvgGBcATHGlz4vMaOk80uREXA6Q/jb1Ut+FtVC7J1CkwrNGJaYQbMelWyhz7sNdj9aLD7kWtQoqwgA7kG/pkSERFRcjHgpxmlTIoZRUbMKDLCGwjjaL0Dn9c4cKbVAwBocQfx7vFmvHu8GfkZKkyPh32jRpHkkQ9vTc4AmpzNyNErMcVigIU1+kRERJQkDPhpTKOUYfYYE2aPMcHuDcbr8+2od/gBxDZ2anA0Yk9lI4qzNJhWZMTUggzouMHTZbO6AnjvhBVZWjmmWDJQlKVJ9pCIiIhohGGSGyGMGgWunZCDayfkwOoK4EitHZ/XOtDiDgAAztq8OGvz4k9H6jEuR4dphUZMsRigknOTp8th84TwwckWGDVyTLEYMCpLw7UPRERENCQY8EegHL0SCyfl4vpSMxocfnxea8eRWgccvhCiInCy2Y2TzW689Q8BE3P1mFaYgdI8AxQytt3sK7s3hA+rWnFU7cDkfANGm7SQcMMsIiIiGkQM+COYIAiwGNWwGNW4cUoeamxefF5rx9FaBzzBCCJREV80OPFFgxNyqYDSPAOmF2ZgfK4ecinDfl84fWF8FO+jP3usCVlarnkgIiKiwcGATwAAiSCg2KRFsUmLm6dacMrqxue1DnzR4IA/FEUoIuJonQNH6xxQyiSYnG/AtEIjSsw6SDkjfcnavCH8pbIRpfkGTC3I4J8dERERDTgGfOpGKhEwPleP8bl6hCMWnGx240itHccaXAhGogiEo/h7jR1/r7EnNtSaVmjEGG6odUmiIvBFvRO1bV7MHmNiD30iIiIaUAz41CuZVIJJ+QZMyjcgGI7iRJMLR2rtONHoQjjadUMtnVKGsoIMTCvIwCiThmH/Ipy+MPYea8KEXB2mFxohY9kTERERDQAGfLpkCpkEUwsyMLUgA/5QBMcanDha58DJJjciogh3IIyPTrXio1OtMKhksXMLjSjKVLODzAWIInCi0Y06ux+zx2RxoywiIiLqt5ScMnS73Vi3bh0sFgtUKhVmzJiBV1999ZKubW5uxj333IPs7GxoNBrMmTMH+/bt63ZeMBjExo0bMWbMGCgUChQXF+Phhx+Gz+cb6KeTllRyKWaOysQ354zGwzeVYvnMApTk6NAe453+MD6sbsV/v1+NZ/58AruPNqC2zQtRFJM67lTl9oex71gzDp1qRTAcTfZwiIiIaBhLyRn85cuX4/Dhw9i8eTMmTJiAHTt2YNWqVYhGo7jzzjsveF0gEMDChQtht9vx3HPPwWw2Y8uWLVi8eDH27t2L+fPnJ85dtWoVdu3ahY0bN2LWrFk4ePAgnnrqKVRWVuL//b//NxRPM21oFDJ8ZXQWvjI6C+5AGJX1DhypdeBMiwciALsvhA+qWvBBVQuytIrEtwD5GSrO7J+n2upBg8OPWWOyUMDdcImIiOgyCGKKTanu2rULN998cyLUt7vhhhtQWVmJc+fOQSrtefOlrVu34v7778eBAwcwZ84cAEA4HMb06dOh0+lw6NAhAMBHH32EOXPm4Be/+AW+//3vJ67/6U9/ig0bNuAvf/kLFi1a1OexV1ZWoqysDBUVFZgyZUqfr79c+441ockZGLLHu1ROfwiVdQ4cqXPgbKu32+0mrQLTCjMwtcCIXIOSYf88o00aXFGcyc3GiIiI0sRQZcWUK9HZuXMndDodVqxY0eX46tWrUV9fnwjpF7p24sSJiXAPADKZDHfddRc+/vhj1NXVAQA+/PBDAMBNN93U5fpbbrkFAPDGG28MyHMZ6QwqOeaMy8a/XjsOP1pcipun5qMos2NWutUTxP4TVvzXuyfxy70n8c4XTWh0+FnGE3em1Yu3jzTgaK0DgXAk2cMhIiKiYSLlSnQqKiowadIkyGRdhzZt2rTE7XPnzr3gtfPmzet2vP3ayspKFBQUIBgMAgCUyq7tCdt/PnLkyEXH2dzcDKvV2uVYVVXVRa8bqTLUclxTko1rSrLR5g2ioi5WxlNnj615aHEHsP9EM/afaEaOTomphRkoK8hArn5kz+wHw1EcrXPgWIMT48w6TMrXQ6NIubctERERpZCUSwqtra0YO3Zst+NZWVmJ23u7tv283q6dPHkygNhM/pgxYxLn/e1vf7voY7TbunUrNm3adNHzqLtMjQLzxudg3vgc2DxBHK1zoKKuI+xb3QG8e7wZ7x5vRo5emajZH8kdZsJREScaXTjZ5MLobC0mWwwwqOTJHhYRERGloH4H/O3bt2PHjh04e/Zstw40giCgurq6z/fZ24ztxWZzL+XaJUuWoKSkBD/60Y+Qm5uLWbNm4aOPPsKGDRsglUohkVy8cmnt2rXdyoiqqqqwdOnSi15LHbK0CsyfkIP5EzrC/tE6O+rtfgCA1cWw31lUBE5ZPTjd4kFhphpTLBnI0iqSPSwiIiJKIf0K+D/72c/w8MMPY/LkyZg+fXq3kpfLYTKZepxBt9lsANDjDH1fr1UoFNi9ezf++Z//GTfccAMAQKvV4ic/+QmefPJJFBQUXHScZrMZZrP54k+ILlnnsN/qDqCizoGj9Y4Lhv0yS3vYH3llPKII1Nh8qLH5kJ+hwmSLYcR+6CEiIqKu+hXwf/3rX+P+++/H888/P1DjwdSpU1FeXo5wONylDv/o0aMAgLKysl6vbT+vs56uLSkpwcGDB1FXVwebzYZx48bB4XDggQcewLXXXjtQT4cuk0mnxPyJZsyfaO4I+3UO1Ds6wn57zX62ToGyggyUWUZm680Ghx8NDj9MOgUm5xtQyI3FiIiIRrR+ddFpbGzEsmXLBmosAIBly5bB7XZ362Szbds2WCwWzJ49u9drjx8/3qXTTjgcxvbt2zF79mxYLJZu1xQUFGDq1KnQaDR45plnoNVqsWbNmoF7QtRv7WH/O9ePxw8WTcCNk3O79IhvcQfx3gkr/u/+KvzHO1/iz5WNqGvzjbhuPK3uID442YK3/lGHT8/a0OzyJ3tIRERElAT9msG/8sorUV1djeuvv36gxoMlS5Zg0aJFuO++++B0OlFSUoLy8nLs2bMH27dvT/TAX7NmDbZt24bq6moUFxcDAO69915s2bIFK1aswObNm2E2m7F161acOHECe/fu7fI4P//5z5GXl4dRo0ahqakJv//97/HWW2/hd7/73SWV6FBydJ7Zt3li3Xgq6h2obYut/2j1BPH+l1a8/6UVmRo5yuI1+wXGkTOr7QtGcaLRjRONbmiVUhRmalBs0iBb1/8SOiIiIkp9/Qr4//Ef/4G77roLV1xxBa688sqBGhPefPNNPPLII9i4cSNsNhtKS0tRXl6OlStXJs6JRCKIRCJdZmmVSiX27duH9evX47vf/S68Xi9mzJiB3bt3d9nFFgD8fj+eeOIJ1NbWQq1W4+qrr8Z7773XY5tNSk1ZWgWunZCDayfkJFpvVtQ5UBMP+23eED442YIPTrbAqJZjisWAsoIMFGVpIBkhYd8TiOBEowsnGl3QKqUYlaXBqCwNTAz7REREaavPO9m295Rv19DQAJvNhry8PJhMpq53Lgj4/PPP+z/KYYI72aYGuzeIynonKuocOGvrvoOuQSXDZIsBZZYMjM7Wjpiw35lOJUuEfXbhISIiGhpDlRX7PIOflZXVpdTh/FBPlGxGjSKxqZbDF8IX9Q5U1DtxpsUDEYDTH8ZHp2z46JQNWoUUky0ZKLMYMDZHB6lkZIR9tz+ML+qd+KLeCaNGjqnxbzaIiIho+OtzwH/vvfcGYRhEgyNDLceccdmYMy4bLn8IXzQ4UVnvxCmrG1ER8AQjOHzGhsNnbFDLpZiUb0CZxYASsw4yab/WoA8b9ngpU7ZOgRmjjDDr2W6TiIhoOEu5nWyJBoteJcfsMSbMHmOCNxDGsUYnKuqcqGp2IyKK8IUi+OxcGz471walTIKJeXqUWTIwIVcPhSz9w36LO4i9XzTDYlRhRpERRg1Ld4iIiIajfgX8d999F62trYkdXZuamrB69Wp89tlnuOGGG/DrX/8aKhVnAyn1aJQyXFmchSuLs+ALRnC8MTaz/2WTC+GoiEA4iiO1DhypdUAmETAhV48pFgNK8wxQK6TJHv6gqrf70eBoxGiTFtMKM6BVch6AiIhoOOnXv9wbN27EokWLEj+vX78eH3zwARYtWoTXX38d48ePx6OPPtrvQRINJrVCipmjMjFzVCYC4VjXmcp6J040uRAMRxGOiviiwYkvGpyQCgLGmbWYkp+BSRYDdGkafkURON3iwTmbByXm2IcblTy9P9gQERGli37VHXz55Ze44oorAMQ2lNq5cyd+9rOf4c0338QTTzyB8vLyARkk0VBRyqSYVmjEqqtG4ZGbJuGfry7GFaOMUMfDbUQU8WWTGzv/UYef7jqGFz44hQ+rWmD3BpM88sERiQInGl344+f1qKhzIByJJntIREREdBH9mn50Op0wGo0AgE8//RQejwe33XYbAOCqq67C448/3t/xESWNXCrBpHwDJuUbEImKON3iQUW9A1/UO+EOhCEiNst9usWDPx1tQIFRjSkWAybnG2A2pFdpWigi4kitAyebXSizZIyojkNERETDTb8CvtlsxsmTJzFv3jzs3bsXxcXFKCwsBAC4XC7I5fIBGSRRskklAkrMOpSYdbhtugXnWr2orHfgiwYn2rwhAECd3Yc6uw9/+aIJOTolJlsMmGIxpNUuur5gFIfPtOFIrQNjcrQYb9ZBr+L7nIiIKJX0K+AvXrwYGzZsQGVlJV5++WXcfffdiduOHz+O0aNH93d8RClHIggYna3F6GwtbpqajwaHH5X1DlTWO9Hsim04ZnUH8P6XVrz/pRUZanki7I82pcfGWoFwFMcbXDje4EJehhIlOXoUZqoh4aw+ERFR0vUr4P/kJz/BuXPn8MILL+Cqq67Cj3/848RtO3bswNy5c/s9QKJUJggCLEY1LEY1Fk3OQ4srgMoGJyrrHaht8wEAHL4QDla34mB1KzQKKSblGTA53mtfnga99hsdATQ6AlArJBibHfuWg513iIiIkqdf/wpnZ2djz549Pd62f/9+tsikESdbr8R8fQ7mT8hJ7KJb2RDbRTcqAt5gBJ+ea8On59qgkEowPleHyfnp0X7TF4yisj7WbSg/Q4XxuXpYMlRpU55EREQ0XAzYNJvP54PNZkNubi5kMhkMBsNA3TXRsNR5F932jbW+qHfiZLMb4aiIYCQWiCvrnZAIwNhsHSZbYot6M9TDt65dFGO99OvtfmiVUozL0WFcjm7Yf4AhIiIaLvod8Pfv348NGzbg8OHDAICPP/4YV1xxBe6//34sXLgQy5cv7/cgiYa7zhtrBcNRfNnkwhcNThxvdMIfiiIqAlVWN6qsbvy/z+tRmKnG5Pzh35HHE4jgSK0DlfUOjM2JfVvB8h0iIqLB1e+dbG+88UaUlZXhhz/8IX7+858nbsvOzsbLL7/MgE90HoVMgrKCDJQVZCTab37REGu/6fSHAQC1bT7UtsU68mTrFJgcb9dZlKUZlot0I1HgZJMb1c1ujM7WYrLFAAO77xAREQ2Kfu9ke9NNN+EPf/gDwuFwl4A/ffp0/OY3v+n3AInSWef2m7dMs6De7kvUsVvjHXla3EH89WQL/nqyBTqlDKV5ekzON2DcMFykGxWBU9bY3gHFWRpMthhg1CiSPSwiIqK00q+A//e//x2vvfYaAHRbSJeTk4Pm5ub+3D3RiCIRBBRmalCYqcGNU/JgdQXwRYMTxxqcqLF5IQJwB8L45GwbPjnbdZHuxDw9NIrhU/oiisCZVi/OtHpRmKlGWUEGsrQM+kRERAOhX4lAJpMhFAr1eFtzczP0en1/7p5oRMvp1JHH5Q/heEOsbr/a2vMi3WKTNlG3nzmMwnJ7OVK+UYXJ+QbkDuM1B0RERKmgXwF/1qxZ+N3vfofbb7+9222vv/465syZ05+7J6I4vUqOWWOyMGtMFgLhCE42ufFFgxMnGl3whSKIisDplljpy5+ONiDPoMKkfD0m5RtgMaqHRd1+g92PhnjnndGm2EZiw7mbEBERUbL0K+A/9NBDuPHGG7Fs2TJ885vfhCAIOHToEF566SW8/vrr2L9//0CNk4jilDJpl0W6Z1o9iVIeuzf2jVqj049Gpx/7T1hhUMlQmhdbpDs2R5vydfueQCTxzYRJp8CYbC1GZWmgkrPNJhER0aUQRFEU+3MH27dvx7p162Cz2RLHjEYjnn/+eXzjG9/o9wCHk8rKSpSVlaGiogJTpkwZssfdd6wJTc7AkD0epSZRFNHg8ONYYyzs19v93c5RyCQYb9ZhUr4Bpbl6aIZJy0qJAFiMaozJ1qLAqIZEkvrfSBAREZ1vqLLiZf/rHolEUF1djVtuuQVf+9rXcODAATQ1NSE7OxvXXHMNtFrtQI6TiC5CEARYjGpYjGosLM2F3RvE8UYXjjU4ccrqQUQUEQx31O0LaK/b16M034BsnTLZT+GComJHrb5SJsEokwZjsrUpPWYiIqJkueyAL4oiJk+ejD/+8Y9YsmQJFi5cOJDjIqJ+MmoUuHqsCVePNcEfiuBksxvHOtXtiwDOtHpwptWDXRWNyNEpUZqvx6Q8A0aZUrfffiAcxckmN042uWFQyzAmW4ux2dwpl4iIqN1lB3yZTIa8vDxEo9GBHA8RDQKVXIqpBRmYGq/bP9vqwbEGJ441umDzBAEAVncA1pMBfHCyBRqFFBNzYzP7E8w6KFO0/t3pC+PzGgeO1jqQb1RjLEt4iIiI0K/VditXrsRvf/vbgRpLgtvtxrp162CxWKBSqTBjxgy8+uqrl3Rtc3Mz7rnnHmRnZ0Oj0WDOnDnYt29ft/MCgQCeeeYZlJWVQavVIjc3F0uWLMGBAwcG+ukQpRSpRMDYHB1unmbBDxZNwAMLx+PGybkYlaVBeyz2BiP4e40d5R+fw1O7juE3H57GwVOtsHuDSR37hURFoK7Nhw9OtuAPn9fh7+fa4PD13MKXiIgo3fVrhd2MGTPwv//7v7j++uuxfPly5Ofnd9vwavny5X2+3+XLl+Pw4cPYvHkzJkyYgB07dmDVqlWIRqO48847L3hdIBDAwoULYbfb8dxzz8FsNmPLli1YvHgx9u7di/nz5yfO/da3voVXXnkFDz/8MK6//nrYbDZs3rwZ8+fPx4cffoirrrqqz+MmGm4EQUCuQYVcgwrzJ5rhDoRxotGJYw0unGx2IRQREYmKONnsxslmN/74OZCfoUJpnh6leQYUZKZeC05fMIpjDS4ca3AhR6/E2BwtirM0kKV49yAiIqKB0q8uOhJJ7/9gCoKASCTSp/vctWsXbr755kSob3fDDTegsrIS586dg1Tac7nA1q1bcf/99+PAgQOJHvzhcBjTp0+HTqfDoUOHAMQ+CGi1WqxatQq/+93vEtc3NDTAYrHg3//93/Hcc8/1adwAu+hQeglFojhl9eB4vCuP0x/udo5WKUNprh6l+XqUmHVQylKzlEcmFVCcpcHYHB1y9FyYS0REyZHyXXQADEqf+507d0Kn02HFihVdjq9evRp33nknDh06hLlz517w2okTJ3bZYEsmk+Guu+7Chg0bUFdXh4KCAkgkEkgkEmRkZHS53mAwQCKRQKUaXjtpZmkVCEWi8IUi8Iei6F/jU6IYuVSCiXl6TMzT47bplkQLzuMNLtTZfQAATyCMT8+14dNzbbHSn2xtYnY/lXbTDUdEVFs9qLZ6YFDLEhtp6YZJm1AiIqK+6PO/bt///vfxve99D0VFRRgzZgzy8/Mhlw/cbpMVFRWYNGkSZLKuQ5s2bVri9gsF/IqKCsybN6/b8fZrKysrUVBQALlcjrVr1+LFF1/EV7/61USJzoYNG5CRkYFvfetbA/Z8hsLMUZmJ/xZFEf5QLOz7QhH4ghH44//tb/85HIU/FEE4wk8CdGnOb8Hp9IVwotGF441OVFnd3Ut5jjQg16BEaZ4BpXl6FGWlTlcepy+MI7UOHKl1IEevxJhsDUZlaaGQsYSHiIjSQ58D/n/+539i5cqViYB/8ODBAa1Xb21txdixY7sdz8rKStze27Xt513s2l/+8pfIyMjA1772tUQnoFGjRuHdd99FSUnJRcfZ3NwMq9Xa5VhVVdVFrxtsgiBArZBeUsvAcKdZf3/8A4A/FIU/HPsg4AtF4PCGEI7ygwB1ZVDLMWtMFmaNyYqX8rhxrNGFE42uxOLWJmcATU4r3v/SmujKMzFPj/Fmfcq0tLS6ArC6Avj0bBssRjVGm9iFh4iIhr8+B/zMzEw0NTUBiM0Wn7+odiD0dp8Xe7xLvfbpp5/Gs88+i8cffxzz5s2D0+nE//2//xeLFi3CX/7yF8ycObPXx9m6dSs2bdrU6zmpTiaVQC+VQN9LRZIoinD4QmhxB9HqDqDVE4TDF2IZECXESnkMmJhnSOyme7zRhRONTtS2+SCioyvP32vskAixDbZK4+U/OTrloPw90heRKFBj86HG1rGR1miTlvX6REQ0LPU54F999dVYs2ZNYtb+Bz/4AYxGY4/nCoKAP/zhD326f5PJ1OMsvc1mA4AeZ+j7eu2xY8ewceNG/PznP8cPf/jDxHlLlizB5MmT8f3vf/+i6wvWrl3bbZ1AVVUVli5d2ut1w40gCDBqFDBqFCgx6wDEFl/aPEG0uAOweYJodQfhDfZtMTWlp86lPNeXmuHyx0p5TjS5cLLZjWA4iqgInG7x4HSLB7srGpGlVWBinh6luXqMydYmvdtN5420dCoZxpi0KM7WwKAauFJEIiKiwdTngL9161asW7cOlZWVEAQBVVVVUCp7nuW6nFm5qVOnory8HOFwuEsd/tGjRwEAZWVlvV7bfl5n51/7+eefQxRFzJo1q8t5crkc06dPx/vvv3/RcZrNZpjN5os/oTQkl0oSrRXbeYNhtLpjs/sufxieQBieYBjeYISz/SOYXiXHV0Zn4SujsxCORHG61ROv3e/YYMvmCeJgdSsOVrdCIZVgnFmH0lw9JuTpkaFObqh2+8M4WufA0ToHsrRyjMrSotikgZaLc4mIKIX1+V+p4uJi7Ny5E0CsTeZbb701oDX4y5YtwwsvvIA33ngDd9xxR+L4tm3bYLFYMHv27F6vXbt2LQ4dOpQ4LxwOY/v27Zg9ezYsFgsAJH7/6KOPuvTGDwQC+Oyzz1BYWDhgz2ek0Chk0GTJUHTe8WhUhCcYhjsQC/3uQARuf8fPgTB3Qh4pZFIJxptjNfg3TxVhdQcSYf9sqwdREQhGorEddhucAGI999tr95O9UNfmCcHmseMfNXbk6JUoNmkwKksDVYru8ktERCNXv9tkTp48+ZLOFUURTz75JL797W8jLy/vguctWbIEixYtwn333Qen04mSkhKUl5djz5492L59e6IH/po1a7Bt2zZUV1ejuLgYAHDvvfdiy5YtWLFiBTZv3gyz2YytW7fixIkT2Lt3b+Ix/umf/gmzZs3C448/Dq/Xi2uvvRYOhwPPP/88Tp8+3aU3PvWPRCJAr5JDf4HyhlAkCm8wtqjXG5/x94Ui8WNheAKRi34IUMkl0CikUCtksd/lsUXGGoUUGrkMMqkQ+5Dhj92fKxBKfMjwh/gBIxkEQYBZr4JZr8K88TnwBSM42RxbpPtlkwueeMlXg8OPBocf731phVouxYRcHSbmGTDBrIMmibPonRfn5hqUKDZpUZSpYSceIiJKCf3a6KovIpEIFAoFDh8+jCuuuKLXc91uNx555BH8/ve/h81mQ2lpKR5++GGsXLkycc4999yDbdu24fTp0xg9enTieFNTE9avX4+3334bXq8XM2bMwJNPPomvfvWrXR7D4XDgmWeewZtvvomzZ89Cp9Nh8uTJWL9+PZYsWXJZzzFZG12lu2hUhDcU+wDgC0YgQEgEeLVc2q+OJ+FIFO5AOFZWFP8Q4AqE4Q1E4AmG2Uo0CaKiiLo2H040xQJ/e8/9zgQARVkalObpMSFXj/wMVdIX6koEIN+oRnGWBhajmmGfiIi6GaqsOKQBXy6X45NPPrlowB+uGPDTTzAchTcYhicYgTfQ8bs3GPsA4A9FEOGXAIPK6Q/hZFOslKeq2d3jNzoGlQwTcmNhv8SsS3rZjCAAGWo5zHolcuK/NArW7RMRjXTDYidbonSnkEmgkClg1Fz4nFAk2rGHQChWUhT7vfMeAx23Ud8YVHJcWZyFK4uzEI5GcbbVG+vM0+iC1R0AADj9YXxytg2fnG1LtOGcGF+om6sf+jacogjYvSHYvSF82eQGAGiVUuTolfHQr0r6AmIiIkpfDPhE/SSXSiC/yH4C7QLhCJocATQ4fGhw+NletI9kEgnG5egwLkeHm6bmw+YJ4kSTC182unCqJbajbuc2nHsqG5GhlmNCrh4Tc/UYZ9ZCKUvO7L4nEIEn4MWZFi8AQCmTIDse+M16JbK0iqSXGRERUXpgwCcaQkqZFKNMGowyxb4ScPhCibBvdQa4a3AfZWkVmDPWhDljTQhFojjd4kkE/tZ4G06HL4TDZ2w4fMYGqUTAaJMmUc5jTsLsfrtAOIq6Nh/q2mJrDJQySXwPARXyM1jDT0REl48BnyiJMtRyZKjlKM0zIBIVYXV1zO7bvaFkD29YkUslieCOaUCLO4Av4wt1T7d4EI6KiERFVFs9qLbGNtkyquUYn6vHxNzYtwLKJNbuB8LRxDcPEgHI1imRb1ShwKiGUaNI2riIiGj4YcAnShFSiYC8DBXyMlSYCcAXjKDJ6YfT39HW0xMMwxdkHf+lyNYpka1TYu64bATDUZxqcSfacLbFPzzZO83ud6ndz9Uj15C82f2oCDS7Amh2BfB5jQNapRQWoxp5BhVMOgUX7BIRUa/4rwRRilIrpBidre12PByJwhOIwB1v69mxiVjsV+fWnu0dRNs3iBKEWA96IfHfQDSKtF/8q5BJUJpnQGmeAaIoosUdxJdNsbDfPrt/fu1+KnXm8QQiONnkxsn4gl21QoJMjQJZ2tgvk1YJtYIbbhERUcyQBXypVIrTp08ndpElossjk0qQoZEgQ9NzFxZRFPs88+wJhNHqDsLqDqDVHUCbN5i27T8FQUi0rrymJDa7f7rFjRNNbnzZ5IItXrt/fmeeoqx47b5Zj3yjKqm76vqCUfiCftTb/Ylj7aHfpFUiUytn6CciGsH6HPCfeOKJSz5XEAQ8+uijiZ/bd5wlosFzOWUlWqUMWqUssfg3GhVh8wbR6g6i1R2A1R2AJ5CeHX8UMgkm5hkwMc8AAGh1B2ILdZtcOGXtmN0/2+rF2VYv3vmiCVqFFONz9ZiQq0OJWQ9dEnfVbXeh0G/UKGBUy5GpUcCokcOgkvdrczgiIkp9fd7oSiLp2tlBEAScfxedA0Ykkp6hoCfc6IrSmT8UQYs7gBZ3EE5fCN5gBL5QGP5QFEOzXd7Qa+/Mc7LJhS+b3bC6Aj2eV2BUY3yuDhPMehRlaSBN4QAtiW/ClaHpCP2ZGkXSNwcjIhoJUnajq2i043v7kydPYsmSJVizZg3uvPNO5OXlobGxEa+88gpeeukl7N69e0AHS0TJo5JLUZipQWFm112/olERvlAkvgA4Am8wAm8wHP899t/D9UNA5848NwNo8wZxMl7KU23t2FW3zu5Dnd2H905YoZLHevWPN+sxPleHzBTrgBMVgTZvCG3eEM7Amziukktg1Mi7zPhnqDnbT0Q0HPXre+UHHngA3/zmN/Hwww8njhUXF2PDhg0IhUL493//d4Z8ojQnkQiJEp8LCUeiiZKfFncAre7gsNzkK1OjwFVjsnDVmCxEoiLO2bzx2X1XojTGH4qist6JynongFg3n9jsvg5jsnUp29/eH4qi0RFAo6PjWwqJAOhVcmRqus74s4sPEVFq69ff0h988AF+8IMf9HjbNddcg2effbY/d09EaUImlcCsV8HcabtfX7C95CcW+G2e4LDa6EsqETAmW4sx2VrcMCUPLn8IVc2x2f2Tze7EB5j253iwuhVSiYBikwYT4rP7eQZVSu9eGxVjG4U5fCGgteO4UtY+2x+b8W+f7U/l0iQiopGkXwFfqVTik08+wcKFC7vd9sknn0ChSK2vpokodagVUhRlaVCUFSv5EUURTn+s5acnEIYnGEm0//QOg/7/epUcM0dlYuaoTERFEQ12P042u/BlkxvnbB5ERSASFXHK6sEpqwd7KgG9UoYSsw7j4604U2Gx7qUIhKNocgbQ5Ox5tt+oUSBTy9p+IqJk6de/JsuWLcOmTZug0+lw5513IjMzE21tbXjllVfwxBNP4Bvf+MZAjZOI0pwgCImdfXsSiYrwBMPwBiKJ0O8OhGH3huD0hZBKk/8SQUBBphoFmWpcN9GMQCiCUy2exOx+eytOVyCMv9fY8fcaOwDAYlRhvDkW9ouzNJBJU7OcpyddZ/u71vZ3XsybqVFAr5Kxtp+IaBD1uYtOZy6XC7fffjvee+89CIIAmUyGcDgMURRx7bXX4o9//CP0ev1AjjelsYsOUXKEI1HYfSHYPLE6/zZvEA5fKGUX9ra6AzjZ7MbJJheqWzwI9rDRmFwqYGy2LjbDb9YhR5+8nXUHmkQANEoZ9EoZ9CoZdCoZ9Co5dPFjDP9ElK5StotOZ3q9Hu+++y727NmD/fv3w2azwWQyYcGCBbjhhhvS5h8jIkptMqkE2TolsnVKIDd2LByJxrvFpF7oN+mUMOmUuHqsCeFoFOdsXlQ1u1HV7EZdmw8igFBExIkmF040uQDEWluWmGOBvyRH1+ui5lQXFRHbhdkfRoOj622CAGgU0ljwV8rjv8ugkkuhkkuglElTdqEyEVGq6NcMPnXFGXyi1NbezafFFUwsfvWHUqu23xsIo8oaC/snm92xkpfzCADyjSqU5MTLeUwayIdROU9/SYRY21alTJL4XXnez2qFNPHBgIgoVQyLGfx2f/7zn/Hee++hpaUFjz76KEaNGoXDhw9j9OjRyMnJGYiHICLqt566+bj8IbTE23e2uAKwJ3mWX6OUYVqhEdMKjRBFEVZ3IBb2m9w41eJGKCJCBFBvj+1a+9eTVsilAkabtIkZ/lTvztNfURGJfRaA7h+AOpNKALVCBp1SCo1CBq1CBo0yFv41Cim0CpYEEVH66VfA93q9uP3227Fv377EPyb33XcfRo0ahWeffRZFRUVslUlEKU2vkkOvkmNMthZAbPfa9n791njoD0WSk/gFQUh8IJk7LhvhSKdyHmvXcp6T8Rl/ANDFu/OU5MQCv+ECC5dHgki0oxwI6HknYrVCAq1ChkytApmJfv8Ktv0komGrXwH/kUcewSeffII33ngDixYtgsFgSNx2ww034Pnnn+/3AImIhpJcKkFehgp5GbFZ/vZZ9NiMuQ92b+8zxoNJJpVgbI4OY3N0uAGxcp7qFg+qml2oanajLT42dyCMf9TY8Y94dx6zXolxZh3G5+gwJlsLJctWuvAFo/AFg2hxBxPHBAEwxNt+xoJ/rPWnUsY/OyJKff0K+K+99hqefPJJLFu2DJFI110pR40ahXPnzvVrcEREydZ5Fn1GkRGeQBj1dh9q7T40O/2IJLGEX6OUYWpBBqYWZEAURdg8QZyML9attroRiHfnaXYF0OyKbbYlEYCiTE2inKcwU8OZ6h6Indp+nunU9lOtkEAtj5X3qBVSqOWx3zWd/psfAogo2foV8K1W6wUXCEgkEvh8vv7cPRFRytEqZRifq8f4XD3CkSganX7UtflQ7/AldTMuQRC6dOeJREXUtXkTC3bP2byIirH69bM2L87avNh3vBlKmQRjsmP1++NydDCnUTvOwdA+22/zXPic9rp/tTwW/Ns7ALV/AFDL24/xgwARDY5+BfyCggIcPXoUCxYs6HbbkSNHMGbMmP7cPRFRSpNJJSjM1KAwM7Ybr80TRL3dhwaHHzZPIKmz+1KJgFEmLUaZtLi+NBeBcARnWjyJ+v32XWgD4SiON7pwvDHWjtOgkmFcTizsjzPrLrjxGF1Y17r/C2vvBqSSx7r/tH8A0KvkyM9Q8QMAEV22fgX85cuX4+mnn8a8efMwbdo0ALFZpLNnz+KXv/wlVq9efVn363a78eMf/xi///3vYbPZUFpaioceeggrV6686LXNzc1Yv3493n77bXi9XkyfPh1PPfUUFi5cmDjnzJkzvX74uPHGG7Fnz57LGjsRjVxZWgWytAqUFWQgGhXR6gnC6upYrBvoYUOroaKUSTExz4CJebG1Uk5/CNXxUp6qZjec8TDq9HfdXTdbp0SJWYtxOTqMzdZBrWDoHCgX6waUpZXDYlQjP0ONbJ2C36wQ0SXrV8B/7LHHsG/fPlx11VUoKyuDIAhYvXo1qqurMXHiRDz00EOXdb/Lly/H4cOHsXnzZkyYMAE7duzAqlWrEI1Gceedd17wukAggIULF8Jut+O5556D2WzGli1bsHjxYuzduxfz588HAOTn5+PgwYPdrn/rrbfws5/9DMuWLbuscRMRtZNIBOTolcjRKxPHHL5QLPDHQ//FZngHk0Elx8xRmZg5KjO2kNgVQJXVjepmN061eBIfRtr3C/jolA0CgIJMdWKGf6T13x9qNk8INk8IFXVOKGQS5BlUsBhVyM9Q84MWEfWq3xtd+Xw+PPfcc/jTn/6EpqYmZGdn45ZbbsG6deug0Wj6fH+7du3CzTffnAj17W644QZUVlbi3LlzkEp7/ott69atuP/++3HgwAHMmTMHABAOhzF9+nTodDocOnSo18desGABPv74YzQ0NHTpCHSpuNEVEfWFLxiB1RVAs8uPOrsPnkDk4hcNgUhURJ3dl5jdP2fzIhLt/k+FTCKg2KRJBH6LUc0Fu0MkSytHXoYaFqMK2Vole/kTDRNDlRVTbifbb33rW3j11VfR1tYGmazjC4by8nLceeed+PDDDzF37twer120aBFqampw/PjxLsd/+tOfYsOGDaitrUVBQUGP11ZXV2P8+PG4++678Zvf/Oayxs6AT0T90eIOoLbNhxqbF64kzu6fLxiO4myrJxb4rW402P3o6R8OlVyCMSYtxpljrTxzuWB3SMikAuRSAZL4n7UgCBAQa/UpQIj/HvsZnX7u7GKvk1QCmLRK5GWokK1T8oMc0WUaVjvZDqSKigpMmjSpS7gHkKjxr6iouGDAr6iowLx587odb7+2srLyggH/pZdegiiK+Jd/+Zf+DJ+I6LJl65TI1ikxo8gIuzeIGpsPNW3epPbeBwCFTJLoHAR09N+vjpf0tHpi/eP9oSiONbpwLL5gV6uUYVyONjHDn6VVJO05pLNwRER4CDZja3QEUFnvhFQS+38116BCrkEFk1bBbxCIUkyfA/69996LRx99FGPGjMG9997b67mCIODFF1/s0/23trZi7Nix3Y5nZWUlbu/t2vbz+nJtJBLBtm3bUFpaimuuueaSxtnc3Ayr1drlWFVV1SVdS0R0Mcb4bqpTCzPg8ocSYb+102ZMydK5/z4A2L1BVFs9OGWNLdptX7DrCYRxpNaBI7UOAECmRo6x8bA/NkcLg4odeoajSBRocgbinZgckElj603y4oE/UyPnNzdESdbngL9//3488MADAIB333231zfx5b7B+3Ofl3Ptnj17UFdXh2eeeebSBohYvf+mTZsu+XwiosulV8kx2SLHZIsBvmAEdXYfatu8aHYGEO6hNn6oGTUKXFmswJXFsQW7Le5gbHbf6sYpqwe+UGxtQZs3hE/PtuHTs20AgBydEmNztLHdebO10CpT7ktlugThiIgGux8Ndj+A2Dc+Zr0SRo080fO/88ZgDP9Eg6/Pf5uePn068d9nzpwZyLEAAEwmU48z7TabDQB6nKHv77Uvvvgi5HI5vvnNb17yONeuXYsVK1Z0OVZVVYWlS5de8n0QEfWVWiFN7EIbjkTR4Igt0K23++APJbHxfpwgdHQPunqsCVFRRIPDn5jdP93iQSheTmJ1x7oJHTod+zs6P0OFsdmxwD8mW8s+8MNUMBxFbZsPtW3dN7sUBEApkyQ2AFPLpdAqZVArpNAq2n+XQsbuTET90ueAf8UVV+B3v/sdpkyZgt/+9re4+eabYTKZBmxAU6dORXl5OcLhcJc6/KNHjwIAysrKer22/bzOeru2ubkZb7/9Nm677TaYzeZLHqfZbO7T+UREA00mlaAoS4OiLE1i5rx9dt/pS41FuhJBQIFRjQKjGvPG5yAcjaKuzRef4fegxuZNfAvR4PCjweHHh9WtiZacY7N1GJejRbFJC4WMoW+4E8XYWo3Yh9ELry1RxD8EaBTxDwDxDwLtx9Ryfggg6k2fA/6RI0fgdrsBAKtXr8bBgwcHNOAvW7YML7zwAt544w3ccccdiePbtm2DxWLB7Nmze7127dq1OHToUOK8cDiM7du3Y/bs2bBYLN2u+e1vf4tQKIQ1a9YM2HMgIhpqnWfOZxQZ4fSHUBfvyNOSAnX77WQSCYpNscB+fSkQikRxzuZNlPPUtnkRFQERSMwC//WkFVJBQGGmGmNytBibzR786S4YjiIYjva6wFwmEaCKh3115x2BO3070H6cZUE00vQ54JvNZnz22WeYPXs2RFEc8DfNkiVLsGjRItx3331wOp0oKSlBeXk59uzZg+3btyd64K9Zswbbtm1DdXU1iouLAcQWAG/ZsgUrVqzA5s2bYTabsXXrVpw4cQJ79+7t8fFefPFFFBUV4cYbbxzQ50FElEwGlRyGfDkm5RvgDYZRY/PhnM0LqyuQ7KF1IZdKEl12ACAQiuBMqxenrLENt+rtPogAIqKIszYvztq8eO+EFVKJgKJMTbyGX4tRmRrO6I4w4agItz980Q3jeioLUse/CYitD5DxgwClnT4H/Ntuuw33338/HnzwQQiCgAULFkAi6fkvVUEQ4HA4+jyoN998E4888gg2btwIm82G0tJSlJeXY+XKlYlzIpEIIpEIOrfxVyqV2LdvH9avX4/vfve78Hq9mDFjBnbv3p3YxbazAwcO4Pjx49i4ceMFnwMR0XCnUcgwMU+PiXl6+IIRnLN5cc7mRYs7gNTaCQVQyqWJsQKxzcBOt8TC/imrB43O2ELOSFTEmVYPzrR68O7x2GzuqKx44M/WoTBLDRn/XidcelmQIMT2clDHQ3+sHEgGrbLjdy4SpuGizxtdhUIh/OpXv8LRo0fx0ksvYcmSJcjJybng+Ze7adRwxI2uiGg48QUjqGnz4lyrF9YUDPs98QTCON3iwamWWElP8wW+kZBLBRRnaeMlPVoUZDLwU/9JBMRn/2XQKqTQKDt+13QqDyK6kGGxk61EIsFHH32Eq666aiDHNGwx4BPRcOULRlDb5sXZVu8FQ3MqcvlD8cAfm+FvcTPwU3K1fwi4UClQ+21cND4yDYudbKPR5LdkIyKi/lMrpIndaj2BMM60enC2Nfm76F6MXiXHtEIjphUaAQBOfwinrbHAf7rFnVhgHIqIqLK6UWWNNYlg4KfBEhUBTyACTyDS63kyqZDoCKSJtwjt+Dl2jOsC6HJxVxEiIupCq5RhiiUDUywZaPMEE2HfG+w9sKQCg0qO6UVGTC8yAgCcvo4Z/osF/lFZGozJ1mJMtg5FmWou2qVBFY6IcPrC8Za2PX/zJBEAVQ+bhak7fRBov52osz4HfKlUioMHD+Kqq66CRNL7J0tBEBAOp0YvZiIi6rtMrQKZWgVmFBnR7ArgdEusd337ZlWpzqC+9MBfbfWg2uoB0AyZREBRIvBrMSqLbTlp6EVFwBuMwBuMwOa58HntZUGqxOy/FGq5rONDgUIKDfcOGFH6HPA3btyIwsLCxH/zqyMiovQnCAJyDSrkGlSYNToLdW0+nGmNtbGMDo+sD+Bigb+jhj8cFXE6fgxAvC2nOjHDPypLwxpqShmdy4JaezlPLhUSHYI6fxho/xZArZBCJZPwg0Aa6NciW+qKi2yJaKQJhCM43eJBVbM7ZXbP7Q+nP4Qz8WB/uuXCXXokAlBgVCdm+ItNWpZJUNqQSYX43gBdNxFr/xCgkUthUMshlXCSt6+GxSLbJ554Av/yL//S4w6xDQ0NeOGFF7Bx48b+PAQREaUwpUyK0jwDSvMMaHL6cbLJndiNdjgynLdo1x1vy3m6xYMzLR19+KMiUNPmQ02bD3892QIBQL5RhTGmWOAfbdJCo+QyNxqewhERrkgYrl42EZMIsW/EjGo5jBoFjBo5MjUKqBX8oJsK+jWD37ke/3yffvoprrrqKkQiqb8oa6BwBp+ICPCHIqhqdqPa6r5oJ5HhxhvvMHS6xYMzrd7ETrs9yTUoMbo98GdrYVDJh3SsRMmglEmQqY2HfnUs9Geo5ZBwth/AMJnB7+2zgdvthlzOv8yIiEYalVyKsoIMTLEYUO/w42STCw0O/7DYSOtiNEoZJlsyMNmSASD2YeZsqzce+D1dvr1ocgbQ5Azg0GkbAMCkVWC0KRb2x2RrkamRcx0bpZ1AOIpGRwCNjo7yNokAKOUSKGXxch+ZtMvPyk4/K2USlrsNgD4H/CNHjuAf//hH4uddu3bh+PHjXc7x+Xx45ZVXMG7cuH4PkIiIhidBEFBgVKPAqIYnEEa1NTar7wumzx4qKrkUE/P0mJinBwAEw1Gcs3UE/hqbF+F44m/1BNHqCeLTc20AAINKhtHxcp7R2VqY9UpIGPgpDUVFwBeMXvJ7XxAAlVyS6ATU3g2ofYEwuwJdXJ8D/s6dO7Fp0yYAsb+8n3jiiR7PU6vV+M1vftO/0RERUVrQKmWYVmhEmSUD9Q4fzrTEylvCw7VY/wIUMglKzDqUmHUAgHAkitp4x6H2/QQC4VjIcfrDOFLrwJFaBwBALZditEmTCP0Wo5qLGGlEEhMfCIK9tgdVyCSJwK+Nh3+dUgatUgadUjai1wP0OeB/+9vfxi233AJRFHHVVVfhN7/5DcrKyrqco1QqMW7cOKjV6gEbKBERDX8SiYDCTA0KMzUIRaKosXlxttWLRmd6lPCcTyaVxAJ7thYAEImKaHT6E516zrR6EhuI+UIRHGt04VijC0CspWFRliY2w2/SsjUn0XmC4SiC4egFd9yWSQRolNJE4Ncq4r/Hj6VzKVCfA35+fj7y8/MRDAaxe/duFBQUdAv4REREFyOXSjA2R4exObpELfuZVg9a45tPpSOppKNs6ZqSbIiiCKsrgDPx5366xQOHLxZWQhERp6wenLLGpjAlAmAxquOBX4NikxZaduohuqBwtPNuwd197coCKGXpGfIv+28GmUyGW2+9Fbt372bAJyKifulcy+7yhxILV3tr05cOBEGA2aCC2aDCVWOyAABt3iDOxLv0nGn1wBrvxR8Vgdo2H2rbfPhbVez6HL0yEfhHm7QwcuEuEaEfAV8ikaCwsBBOp3Mgx0NERCOcXiVHWUEGygoy0OoO4KzNixqbN+1abl5IpkaBzFEKzByVCQDwBMKJbzfO3z3Y6grA6grg8JlYpx6DSobiTjP8eRkqLtwlGoH69d3emjVrsGXLFtx2222QStPzKw4iIkoek04Jk06JK0Zlwu4NJmawbZ70LeM5n1Ypw2SLAZMtBgAdnXraA3+NzYtQJJb4nf4wjtY5cLQutnBXKZNgVJYmEfoLM1nHTzQS9CvgKxQKnDhxApMmTcJtt92G/Pz8Ll8NCoKA733ve/0eJBERUWy3TAXKCjLgDYZRFw/7TU7/sN0593Kc36knEhXR4PDhTKsXZ1tjpT2eQKy0KRCO4mSzGyeb3QBidfwFRjWKTVoUx2f5dazjJ0o7/drJViLpfRZAEATuZEtERIMqGI6iweFDXZsPdXZfYjZ7pBJFEa2eYCLsn2nxoLWXbzxMWkUi7BdnaZCjV7KOn0aEZCyyHRY72Z4+fXqgxkFERHRZFDJJfEZai2hURJPLjxqbDzW2jp7zI4kgCMjWKZGtU+LK4tjC3faFy+2hv8HRUcffvgHXZ+fsAGL9+DsH/oJMNeTcUIhoWOlXwC8uLh6ocRAREfWbRCIgP0ON/Aw1vlKciSaXH2dbvV3q1EeizguXgdi3HjVtsT0Iztm6bsDlC0VwvNGF4/F+/O2tPYtNGhRnaTCKZT1EKW9A3qHHjx/H+++/j5aWFqxZswZ5eXmor69HZmYmN7siIqKk6Bz2rxqdhQanH2dbPaht8yE8gsM+EPvWY1yODuNyYnX8UVFEk9MfD/yxmf62+OZBkaiIc7bY8Q/i15u0isTi3VEmDcx6Jbv1EKWQfgX8SCSCb3/723j55ZchiiIEQcCSJUuQl5eHf/3Xf8XMmTPxxBNPDNRYiYiILouk0wZTkaiIersPZ1u9qLf7EB5JK3QvQCJ0fBi6eqwJAOD0hXA23q3n3AXKev5eYwcAqOSxbj3tob8wU522GwgRDQf9CvhPP/00duzYgWeeeQaLFy/usuHVkiVL8PLLLzPgExFRSpFKBBRlaVCUpUE4EkWdPdaBpt7uw+W3nUg/BrUcUwsyMPW8sp72Gf5zNi/8oVhZjz8UxZdNbnzZ1NGtJ8+gwiiTBqOyYrX83ISLaOj0K+C//PLLePTRR/H973+/W7ecMWPGcBEuERGlNJm0Y4GuNxhGdbMH1VY3vMGR0wHuUvVU1mN1BXCu1Yuz8Tr+9m49URGod/hR7/Djo1OxTbj0Kllshj8+028xqiHj4l2iQdGvd1ZdXR3mzJnT420qlQoul+uy7tftdmPdunWwWCxQqVSYMWMGXn311Uu6trm5Gffccw+ys7Oh0WgwZ84c7Nu3r8dzPR4PNm7ciAkTJkCpVMJkMmHBggU4efLkZY2biIiGL41ChqmFGbh9hgXXTsiGxagCJ5wvTCIIyDWoMGtMFr5+ZRF+cMNEbLhpEu6aXYx547NRnKWBTNLxB+jyh1FZ78Suikb8919PYdPbX+C/36/GrqMNqKhzwOkLJfHZEKWXfs3gm81mnDp1CgsWLOh224kTJ1BYWHhZ97t8+XIcPnwYmzdvxoQJE7Bjxw6sWrUK0WgUd9555wWvCwQCWLhwIex2O5577jmYzWZs2bIFixcvxt69ezF//vzEuW63GwsWLEB9fT0eeughTJs2DQ6HAwcOHIDX672scRMR0fAnCAIKM2O7vnoCYVQ1u3GqxQ1fcOS13Owr3Xm77oajUTTY/TgbX6R7rtUDpz+2CVfnxbvtjGo5iuIz/KOyNMg3qiC7yJ47RNRdvwL+TTfdhKeffhqLFy9GXl4egNhfjA6HA//1X/+FW2+9tc/3uWvXLrzzzjuJUA8ACxYswNmzZ/Hggw/ijjvugFTa88KdF198ERUVFThw4EDim4UFCxZg+vTpWL9+PQ4dOpQ498c//jGOHTuGI0eOYOzYsYnjt912W5/HTERE6UmrlGF6kRFTCzJQZ/ehyupGk2Nk7ZzbHzKJJLHeAYhtwuWIL96NBf6ui3ftvhDsdQ4crXPErxdQkKlOBP5RWRroVfJkPR2iYaNfAf+JJ57A7t27MXnyZCxYsACCIGDDhg2oqKiAXC7Ho48+2uf73LlzJ3Q6HVasWNHl+OrVq3HnnXfi0KFDmDt37gWvnThxYpeyIZlMhrvuugsbNmxAXV0dCgoK4PV68T//8z9YsWJFl3BPRETUE0mnhbmBcAR1bT6cs3nRyLDfJ4IgwKhRwKhRYHqhEUBs8W6d3ZeYzT9n88ITiM3yh6NifIOujln+TE3HLH9RJmf5iXrSr4Cfm5uLw4cP47HHHsOf/vQnSKVSfP7557jlllvwxBNPICsrq8/3WVFRgUmTJkEm6zq0adOmJW6/UMCvqKjAvHnzuh1vv7ayshIFBQX49NNP4fF4MH78eNx333149dVX4fF4MG3aNGzatAk333zzRcfZ3NwMq9Xa5VhVVdUlPUciIhq+lDIpxuboMDZH1yWcNjp8iLCKp88UMgnGZGsxJlsLIDbL3+YN4ZzNkwj8nT9ItXlDaPM6cKS2Y5bfYozN8rcH/ww1Z/lpZOtXwA+FQtDpdPjv//7vbrd5PB6EQiHI5X17k7W2tvY4q97+YaG1tbXXa3v6UHH+tXV1dQCAn/3sZ5g6dSp++9vfQiKR4Be/+AVuvfVW7N69GzfeeGOv49y6dSs2bdp0aU+KiIjSUudwGopEEzP7DQz7l00QBGRpFcjSKjCjKBNAbJa/1u5FTWunWf54p6NwD7X8BpWsSy2/xaiGnB17aATpV8D/1re+hUAggPLy8m63ffvb34Zarcb//M//9Pl+e+uTe7EeupdybTQa+1tXoVBg9+7d0Ov1AGL1+uPHj8eTTz550YC/du3abmVEVVVVWLp0aa/XERFRepJLJRidrcXoeNivt/tQY/NxM60BoJBJMDZbh7HZsRadHbP8XtTEw33nWn5nvGNPZb0TQKwvf36GGkVZahRlxmb6TVoF+/JT2upXwN+/fz82b97c42233norHn744T7fp8lk6nGW3maL9dHtreznUq81mWK79M2dOzcR7gFAo9Fg/vz5eOutty46TrPZDLPZfNHziIho5JF36q/Pmf2B13WW3wgAiQ9V7bP5NTZvomNPVATq7D7U2X34CLFMoFFIUZipjs30x7smqRXcfZfSQ78CflNTE/Lz83u8LS8vD42NjX2+z6lTp6K8vBzhcLhLHf7Ro0cBoMtuuT1d235eZ+df216T3xNRFCHhYh0iIhognWf2g+Eoatu8OGvzshvPAOv8oQro6NhzzuZFbZsPNTYv6jp9m+INRrrsvgsAOTplbJY/voA316CCVMJZfhp++hXwjUYjqqqqcN1113W7raqqqsvs+KVatmwZXnjhBbzxxhu44447Ese3bdsGi8WC2bNn93rt2rVrcejQocR54XAY27dvx+zZs2GxWAAA+fn5mDNnDj788EM4nU4YDLF+vV6vF++//z6uvvrqPo+biIjoYhQySWKBrj8UQW2bD+dsHjQ5AxAZ9gdU54490+Ide8LRKBodftTEA3+NrWP3XQCwugOwugP47JwdACCXCrBkxAJ/+2y/US1naQ+lvH4F/AULFuCnP/0pli9f3qV0xmazYfPmzbj++uv7fJ9LlizBokWLcN9998HpdKKkpATl5eXYs2cPtm/fnuiBv2bNGmzbtg3V1dUoLi4GANx7773YsmULVqxYgc2bN8NsNmPr1q04ceIE9u7d2+Vxnn32WSxYsAA33ngjfvSjH0EQBPziF79AS0sLnnzyyX78qRAREV2cSi5FiVmHEnMs7J+zxdpBWl2BZA8tbckkksQmZnPGxsp1PYEwatu8HaG/zQt/KFZHFYqIOGuLfePSTqeUoSizPfTHgr9KztIeSi39CviPP/44Zs2ahfHjx+OOO+5AQUEBamtr8dprryEUCl12l5k333wTjzzyCDZu3AibzYbS0lKUl5dj5cqViXMikQgikQjETlMeSqUS+/btw/r16/Hd734XXq8XM2bMwO7du7vsYgvE6u/37duHH//4x/jGN74BALj66qvx3nvvdemjT0RENNhUcikm5OoxIVcPhy+Ez2vsqG3zJXtYI4JWKcPEPAMm5sW+zY+KIlrcgURZT22br8sCXncgjGONLhxrdAEABADZeiWK4mG/KFOD3Awle/NTUgmi2L8vBT///HN8//vfx1//+ldEIhFIpVLMnz8f//Ef/9FrrXs6qqysRFlZGSoqKjBlypRkD4eIiIYxqyuAf9TYOaOfAhJdkdp8sdl+mxdt3tAFz5dJBORnqFCYpYnN9mdqkMWuPSnna1cWQCkb2m9fhior9msGHwCmT5+Offv2wefzoa2tDVlZWVCpVAMxNiIiohErR6/Eosm5qG3z4vMaBxy+CwdKGlznL+AFYjP5tfGSnvbg317aE46KsZKfNh8Oxs9Xy2NdewozY6G/IFMNvYobctHg6HfAb6dWq6FWqwfq7oiIiAhAYaYGBUY1TrV4UFHngCcQSfaQCLFa/NJ8A0rzY6U9oiii1RNMlPXUtnlR7/AjEq/t8YUiONnsxsnmjq49RrU8EfoLM9UoMKqhZD0/DYABC/hEREQ0OARBwLgcHUabtPiyyYXKeieCYTbUTyWCICBbp0S2TomZo2I78LZ37WkP/DVtvi4lV3ZfCHZfCBXxDbk66vnVKIjP9OcZVJBxF17qIwZ8IiKiYUIqETAp34BxOTp80eDEl40u7pKbwjp37QFiXXva26PWxQN/nd2XKL8SEVt7YXV1tOqUSgTkGVSJGf7CTA3MBiUkrOenXjDgExERDTMKmQQzioyYkKtDZb0TtW1e+IKc0R8OOrdHbef0h1DX5kNNmxd1bT7UtvngC8VKsSJRMbELbzu5VIDFqEahMTbTX5iphomLeKkTBnwiIqJhSqOQYdboLMwanQWXP4Tm+OxvsysAtz+c7OHRJTKo5DDkyzGpUz2/zROMzfC3eVFr96He7kMoEvu2JhQRcbY1tm8C0AoAUMklKDRqUJCY6Vcjg5tyjVgM+ERERGlAr5JDr5JjXE5sZtgXjKDZ5U+EfnsvbR0ptQiCAJNOCZNOiRlFRgCxmXyrK4DaeOCva/Oh0eFHJN7t3B+KosrqRpW1YxGvViFFQXwRb4Ex1rnHwM49IwIDPhERURpSK6RdWjsGwpHE7L7VFUCbJwiW7w8fUomAvAwV8jJU+Er8WDgSRaPTH6/p96HW7kWzM4D2l9UTjODLJje+bOoI/QaVLBH2C+Iz/jol42C64StKREQ0Aihl0k4LPmPhsNUTTCzqtLoDCEeY+IcTmVTS5TUFgGA4tilXe91+bZsPLe6Ozj1OfxjOTjvxArF2ne2lPe2/NAz9wxpfPSIiohFIJpUg16BCriG2OaUoimjzhjoFfj8X7g5DCpkEo7O1GJ3dsSmXPxRBfTzstwd/myeYuL29XWdlvF0nAGRq5ImFvJZ4+NcoGBuHC75SREREBEEQkKVVIEurwMQ8PYDYbq3NTj+anAGcs3kQYd4fllRyKcbm6DA2p6NzjzcYjoX99tDf5oO9027Jbd4Q2rzdQ39Bez2/UQ2LUcXQn6L4qhAREVGPdEoZdPFgOKPIiGONTlQ1udl7Pw1oFDKMN+sx3qxPHHMHwh3lPef16AfaQ78DFXWOxLH2mf5Y4I/9rmV5T9LxFSAiIqKLUiukuGJUJibnG3Ci0YUvm1yJto2UHnRKGSbk6jEht3vor23zJcJ/99DfdabfqI6FfkunmX49u/cMKQZ8IiIiumQquRTTi4yYlG/Al00unGh0IRBm7U666i30t8/019u7lve01/R/0dAR+g0q2XmhXw2DSsY+/YOEAZ+IiIj6TCGToKwgA6V5epxsduN4o5OLckeInkK/p1Pob/+9rdPeC+3de4536t6jVcpQYFTBkqFOhP9MDTfnGggM+ERERHTZZFIJJuUbMCFXj1NWN75ocMITiCR7WDTEtEoZxufqMb5T6PcGw6i3+xOhv97uQ2un7j2eQLhbn36VXBKb5Y+H/nyjCtk6JSQM/X3CgE9ERET9JpUIGJ+rx7gcHc60elBt9aDFHYDIMv0RS6OQocSsQ4m5o3uPPxRBvcOHers/Efqtro7NufyhKE5ZPThl9SSuUUglyMtQwdJptt9sUEImkQzxMxo+GPCJiIhowEgkQqIloz8USdRpNzr87L5DsZad2TqMze4I/cFwFI0OH+ocHaG/yelP7LQcjERxzubFOZs3cY1UEJBrUCLfqIYlQwWLUY28DBWUMulQP6WUxIBPREREg0Ill2Jcjg7jcnQIR6JodPoT7Rf9IdbrU4xCJsEokxajTB2bc4UjUTQ5A/HZ/tivRqc/0bkpIoqod/hR7/Dj0/g1AgCTToH89vKeePDXjcC2nSPvGRMREdGQk0klKMzUoDBTA1EU0eIOos7uQ22bF05fONnDoxQjk0pQkKlGQaY6cSwqimhxBbqW+Dg6PiyKAFrcQbS4gzjaqVe/QSVDfkasnt+SEQv+WVrFUD+lIcWAT0RERENKEATk6JXI0Ssxo8gIhzeEmjYvatu8sHlCF78DGpEkggCzQQWzQYUZRbFjoijC7g2hzu5Dg8OPhviMv9Pf8aHR6Q/D6XfhRFNHBx+lTILJFgNmjsoc6qcxJBjwiYiIKKkyNHJkaDJQVpABTyAcC/s2H6xcpEsXIQgCMrUKZGoVKCvISBx3B8JocPjQYPcnZvxb3R2LeQPhKAo7fTuQbhjwiYiIKGVolTKU5hlQmmeAPxRBbZsPNW1eNDk6Fl0SXYxOKcN4sx7jzR1tO9sX89Y7/LB7gzCo03d33ZTsL+R2u7Fu3TpYLBaoVCrMmDEDr7766iVd29zcjHvuuQfZ2dnQaDSYM2cO9u3b1+286667DoIgdPu1ePHigX46REREdBlUcilKzDosmGjG8isKMXecCaOyNJBL2ROd+q59Me/VY01YXJaf7OEMqpScwV++fDkOHz6MzZs3Y8KECdixYwdWrVqFaDSKO++884LXBQIBLFy4EHa7Hc899xzMZjO2bNmCxYsXY+/evZg/f36X88eOHYtXXnmlyzGj0TgYT4mIiIj6QSGTYHS2FqOztYhGRTS7Aqize1Fn98Pt5yJdos5SLuDv2rUL77zzTiLUA8CCBQtw9uxZPPjgg7jjjjsglfbc4/TFF19ERUUFDhw4gDlz5iSunT59OtavX49Dhw51OV+tVuPqq68e3CdEREREA0oiEZCXoUJehgpXFgMOXyjRfpObaxGlYInOzp07odPpsGLFii7HV69ejfr6+m4h/fxrJ06cmAj3ACCTyXDXXXfh448/Rl1d3aCNm4iIiJIjQy3HZIsBiybnYvkVBZg7zoRiE0t5aORKuRn8iooKTJo0CTJZ16FNmzYtcfvcuXMveO28efO6HW+/trKyEgUFBYnj1dXVyMrKgtPpRHFxMVauXIkf//jHUKsvvqq6ubkZVqu1y7GqqqqLXkdERESDRymTdinlsboDqItvlMR++zRSpFzAb21txdixY7sdz8rKStze27Xt513s2n/6p3/CHXfcgdLSUvh8PuzevRs///nP8be//Q379++HRNL7lxtbt27Fpk2bLuk5ERER0dCTSATkGlTINahwxahMuPyhRNhvdgbYlYfSVsoFfCDW0/RybuvLtU899VSX22666SaMHj0aP/zhD/GHP/wBy5Yt6/Vx1q5d262MqKqqCkuXLu31OiIiIkoOvUqO0jw5SvMMCEWiaHT4UdvmQ0On3VCJ0kHKBXyTydTjLL3NZgOAHmfoB+JaALjrrrvwwx/+EB999NFFA77ZbIbZbO71HCIiIkpNcqkERVkaFGVpAAAt7gDq7T7UtfnQ5uVuujS8pVzAnzp1KsrLyxEOh7vU4R89ehQAUFZW1uu17ed1dinXdnax8hwiIiJKL9k6JbJ1SkwrNMITCMc22LJ5uZsuDUspl2SXLVsGt9uNN954o8vxbdu2wWKxYPbs2b1ee/z48S6ddsLhMLZv347Zs2fDYrH0+tjbtm0DALbOJCIiGsG0Shkm5unx1cm5WDazAFeNyUK+UQUJm/LQMJFyM/hLlizBokWLcN9998HpdKKkpATl5eXYs2cPtm/fnuiBv2bNGmzbtg3V1dUoLi4GANx7773YsmULVqxYgc2bN8NsNmPr1q04ceIE9u7dm3iMDz74AE8//TSWLVuGsWPHwu/3Y/fu3fj1r3+N66+/HrfeemtSnjsRERGllvbddEvMOgTDUdTbfahp86LB7keYq3QpRaVcwAeAN998E4888gg2btwIm82G0tJSlJeXY+XKlYlzIpEIIpEIxE7fmymVSuzbtw/r16/Hd7/7XXi9XsyYMQO7d+/usottfn4+pFIpnnzySbS0tEAQBIwfPx5PPPEEfvCDH7BEh4iIiLrpvJtuOBJFg8OPmjYv6tp8CEUY9il1CKLIyrKBUllZibKyMlRUVGDKlCnJHg4RERENgWhUREu8336Dww87F+kOC1+7sgBKmXRIH3OosmJKzuATERERDRcSiQCzQQWzQYWZADyBMBocPtTb/Wh0+hHm7D4NMQZ8IiIiogGkVcpQYtajxKxHNCqi2RVAvYO76dLQYcAnIiIiGiQSiYC8DBXyMmK76boDYTTYfaiL76bLhbo0GBjwiYiIiIaITinD+Fw9xufqEYmKaHb5UW+PlfO4/Jzdp4HBgE9ERESUBFKJgPwMNfIz1LiyGHD5Q6i3+1Hv8KHZ6UckmuwR0nDFgE9ERESUAvQqOSbmyTExT49wJIomVwANdh/qHX64ObtPfcCAT0RERJRiZFIJCoxqFBjVAGKz+w2OWDkPa/fpYhjwiYiIiFKcXiWHXiXHhNyOzjwNDvbdp54x4BMRERENI50788wE4A2G0eDwoyHedz8YZvH+SMeAT0RERDSMaRQyjMvRYVyODqIoosUdTMzu2zxBiKzmGXEY8ImIiIjShCAIyNErkaNXYloh4A9F0OT0x3fV9cEX5Oz+SMCAT0RERJSmVHIpik1aFJu0AIA2TxD1Dh8aHX5YXQFwrW56YsAnIiIiGiEytQpkahWYYslAKBJFk9Mfq99nK860woBPRERENALJpRIUZmpQmKkBEGvF2RgP+01OP0IRTu8PVwz4RERERJRoxTk+3oqzxRNIBH4u1h1eGPCJiIiIqAuJRIBZr4JZr8K0QiAQjqDJ0dF73xuMJHuI1AsGfCIiIiLqlVImxSiTBqNMsXKeZqcfp1s8OGfzspQnBTHgExEREVGfmA0qmA0qfGV0FurtPpxp9aDe7kOEXThTAgM+EREREV0WqURAUZYGRVkaBMNRnLN5cbbVgyZnINlDG9EY8ImIiIio3xQyCUrMOpSYdfAGwzjTEgv7bd5Qsoc24jDgExEREdGA0ihkmGwxYLLFAIc3hHqHD1ZXAFZXAIEw63gGGwM+EREREQ2aDI0cGRo5JuXHfrZ7g7C6Amh2BdDs8sMXZOAfaAz4RERERDRkjBoFjBoFxufqAcQ22Gp2BdDsDMDqDnBH3QEgSfYAeuJ2u7Fu3TpYLBaoVCrMmDEDr7766iVd29zcjHvuuQfZ2dnQaDSYM2cO9u3b1+s1Pp8PEyZMgCAIePbZZwfiKRARERHRJdCr5BiXo8OccSbcNt2CpTMtmDvOhDHZWmgU0mQPb1hKyRn85cuX4/Dhw9i8eTMmTJiAHTt2YNWqVYhGo7jzzjsveF0gEMDChQtht9vx3HPPwWw2Y8uWLVi8eDH27t2L+fPn93jdo48+Co/HM1hPh4iIiIgukUYhw+hsGUZnawEADl8ITU4/Gh1+NDn97Lt/CVIu4O/atQvvvPNOItQDwIIFC3D27Fk8+OCDuOOOOyCV9vxp7sUXX0RFRQUOHDiAOXPmJK6dPn061q9fj0OHDnW75uOPP8bzzz+PV155BStWrBi8J0ZEREREfZahliNDLceEXD1EUUSrJ4hGRyzwt7gDiDLvd5NyJTo7d+6ETqfrFrZXr16N+vr6HkN652snTpyYCPcAIJPJcNddd+Hjjz9GXV1dl/ODwSDuvfde3H///fjKV74ysE+EiIiIiAaUIAjI1ilRVpCBr07OxdevLMR1E3NQmq+HUSNP9vBSRsrN4FdUVGDSpEmQyboObdq0aYnb586de8Fr582b1+14+7WVlZUoKChIHH/iiSfg8Xjw5JNPwmq19mmczc3N3a6pqqrq030QERER0eWTSSWwGNWwGNUAAG8wjHp7bHa/0elHcIS25Ey5gN/a2oqxY8d2O56VlZW4vbdr28+72LX/+Mc/8POf/xx//OMfodVq+xzwt27dik2bNvXpGiIiIiIaPBqFLLHZliiKaHEH0eDwocHhh80ThDhCynlSLuADsa9fLue2S702HA7j3nvvxR133IEbb7zxssa4du3abmVEVVVVWLp06WXdHxERERENHEEQkKNXIkevxLRCwB+KoMnpj83wO33JHt6gSrmAbzKZepylt9lsANDjDH1fr/3P//xPnDp1Cr///e9ht9sBAE6nEwDg9/tht9uh1+svuJgXAMxmM8xm86U9KSIiIiJKKpVcimKTFsUmbbKHMuhSbpHt1KlTcezYMYTDXTc5OHr0KACgrKys12vbz+vt2oqKCjgcDowfPx6ZmZnIzMzE9OnTAcRaZmZmZvZ4P0REREREqS7lAv6yZcvgdrvxxhtvdDm+bds2WCwWzJ49u9drjx8/3qXTTjgcxvbt2zF79mxYLBYAwEMPPYT9+/d3+VVeXg4A+Ld/+zfs378fJSUlg/DsiIiIiIgGV8qV6CxZsgSLFi3CfffdB6fTiZKSEpSXl2PPnj3Yvn17omxmzZo12LZtG6qrq1FcXAwAuPfee7FlyxasWLECmzdvhtlsxtatW3HixAns3bs38RilpaUoLS3t8rhnzpwBAIwbNw7XXXfdkDxXIiIiIqKBlnIBHwDefPNNPPLII9i4cSNsNhtKS0tRXl6OlStXJs6JRCKIRCIQOy2HViqV2LdvH9avX4/vfve78Hq9mDFjBnbv3n3BXWyJiIiIiNKJIIojpWHQ4KusrERZWRkqKiowZcqUZA+HiIiIiFLIUGXFlKvBJyIiIiKiy8eAT0RERESURhjwiYiIiIjSCAM+EREREVEaYcAnIiIiIkojDPhERERERGkkJfvgD1eBQAAAUFVVleSREBEREVGqac+I7ZlxsDDgD6CamhoAwNKlS5M7ECIiIiJKWTU1NbjiiisG7f650dUAstvteP/991FUVASlUjmoj1VVVYWlS5firbfeQklJyaA+FiUfX++Rha/3yMPXfGTh6z2ydH69i4qKUFNTg/nz58NoNA7aY3IGfwAZjUbcfvvtQ/qYJSUl3DV3BOHrPbLw9R55+JqPLHy9R5b213swZ+7bcZEtEREREVEaYcAnIiIiIkojDPhERERERGmEAX+YysnJwWOPPYacnJxkD4WGAF/vkYWv98jD13xk4es9siTj9WYXHSIiIiKiNMIZfCIiIiKiNMKAT0RERESURhjwiYiIiIjSCAM+EREREVEaYcAfZtxuN9atWweLxQKVSoUZM2bg1VdfTfawqJ/ee+89CILQ46+PPvqoy7mfffYZvvrVr0Kn08FoNGL58uU4depUkkZOF+NyubB+/XrccMMNyMnJgSAIePzxx3s8ty+v7fPPP4/S0lIolUqMGTMGmzZtQigUGsRnQpfqUl/ze+65p8f3fGlpaY/3y9c89bz77ru49957UVpaCq1Wi4KCAtx+++349NNPu53L93d6uNTXPNnvbwb8YWb58uXYtm0bHnvsMezevRuzZs3CqlWrsGPHjmQPjQbAT37yExw8eLDLr7KyssTtx48fx3XXXYdgMIjf//73eOmll/Dll19i3rx5sFqtSRw5XUhrayt+/etfIxAIYOnSpRc8ry+v7dNPP40HHngAy5cvx5///GesXbsWP/nJT3D//fcP8rOhS3GprzkAqNXqbu/5//3f/+12Hl/z1PSrX/0KZ86cwQMPPIBdu3bhueeeQ3NzM66++mq8++67ifP4/k4fl/qaA0l+f4s0bPzpT38SAYg7duzocnzRokWixWIRw+FwkkZG/bV//34RgPjaa6/1et6KFSvE7Oxs0eFwJI6dOXNGlMvl4vr16wd7mHQZotGoGI1GRVEURavVKgIQH3vssW7nXepr29LSIqpUKvHb3/52l+uffvppURAEsbKycnCeCF2yS33N7777blGr1V70/viap66mpqZux1wul5ibmysuXLgwcYzv7/Rxqa95st/fnMEfRnbu3AmdTocVK1Z0Ob569WrU19fj0KFDSRoZDYVwOIy3334bX/va12AwGBLHi4uLsWDBAuzcuTOJo6MLaf9atjd9eW337NkDv9+P1atXd7mP1atXQxRFvPXWWwM6fuq7S3nN+4Kveeoym83djul0OkyePBk1NTUA+P5ON5fymvfFYL3mDPjDSEVFBSZNmgSZTNbl+LRp0xK30/B2//33QyaTwWAw4MYbb8Tf/va3xG3V1dXw+XyJ17uzadOmoaqqCn6/fyiHSwOkL69t+/t86tSpXc7Lz89HdnY2/x4YZnw+H/Ly8iCVSlFYWIjvfOc7sNlsXc7haz68OBwOfPbZZ5gyZQoAvr9HgvNf83bJfH/LLn4KpYrW1laMHTu22/GsrKzE7TQ8ZWRk4IEHHsB1110Hk8mEqqoqPPPMM7juuuvwpz/9CTfeeGPi9W1/vTvLysqCKIpoa2tDfn7+UA+f+qkvr21rayuUSiW0Wm2P5/LvgeFj+vTpmD59emKdzfvvv49f/vKX2LdvHw4fPgydTgcAfM2Hmfvvvx8ejwePPPIIAL6/R4LzX3Mg+e9vBvxhprevfQfyK2EaWjNnzsTMmTMTP8+bNw/Lli3D1KlTsX79etx4442J2/j/QPq61NeW/w+kh+9973tdfl60aBFmzpyJr3/963jhhRe63M7XfHh49NFH8corr+D555/HlVde2eU2vr/T04Ve82S/v1miM4yYTKYeP8m1f93T0+wADV9GoxG33HILjhw5Ap/PB5PJBKDnb2psNhsEQYDRaBziUdJA6MtrazKZ4Pf74fV6ezyXfw8Mb8uWLYNWq+3SHpev+fCwadMmPPXUU3j66afxne98J3Gc7+/0daHX/EKG8v3NgD+MTJ06FceOHUM4HO5y/OjRowDQpZ0ipQdRFAHEPsGPGzcOarU68Xp3dvToUZSUlEClUg31EGkA9OW1ba/TPP/cxsZGtLS08O+BNCCKIiSSjn+e+Zqnvk2bNuHxxx/H448/jg0bNnS5je/v9NTba96boXp/M+API8uWLYPb7cYbb7zR5fi2bdtgsVgwe/bsJI2MBkNbWxvefvttzJgxAyqVCjKZDLfeeivefPNNuFyuxHnnzp3D/v37sXz58iSOlvqjL6/t4sWLoVKp8PLLL3e5j5dffhmCIFy07zqlttdffx1erxdXX3114hhf89T25JNP4vHHH8ePf/xjPPbYY91u5/s7/VzsNb+QIX1/X1ZzTUqaRYsWiZmZmeKvf/1r8d133xW/9a1viQDE7du3J3to1A+rVq0Sf/SjH4mvvfaauH//fvHXv/61OHHiRFEmk4nvvPNO4rxjx46JOp1OvPbaa8Vdu3aJb775plhWViZaLBaxubk5ic+AerNr1y7xtddeE1966SURgLhixQrxtddeE1977TXR4/GIoti31/app54SBUEQN2zYIL733nviM888IyqVSvFb3/pWMp4e9eBir/mZM2fEuXPniv/1X/8l7tq1S9y9e7f40EMPiSqVSpwyZYrodru73B9f89T07LPPigDExYsXiwcPHuz2qx3f3+njUl7zVHh/M+APMy6XS/z3f/93MS8vT1QoFOK0adPE8vLyZA+L+umnP/2pOGPGDDEjI0OUSqViTk6OuGzZMvHjjz/udu4nn3wiLly4UNRoNKLBYBCXLl0qVlVVJWHUdKmKi4tFAD3+On36dOK8vry2zz33nDhhwgRRoVCIo0aNEh977DExGAwO0TOii7nYa26z2cRly5aJo0ePFtVqtahQKMTx48eL69evF+12e4/3ydc89cyfP/+Cr/P5c6h8f6eHS3nNU+H9LYhivMiXiIiIiIiGPdbgExERERGlEQZ8IiIiIqI0woBPRERERJRGGPCJiIiIiNIIAz4RERERURphwCciIiIiSiMM+EREREREaYQBn4iIiIgojTDgExERERGlEQZ8IqIR6uWXX4YgCDhz5kyyh4IDBw7g8ccfh91u73bb6NGjccsttwz9oIiIhikGfCIiSroDBw5g06ZNPQZ8IiLqGwZ8IiIiIqI0woBPREQJe/fuxcKFC2EwGKDRaHDNNddg3759Xc55/PHHIQgCKisrsWrVKmRkZCA3Nxf33nsvHA5Hl3PtdjvWrFmDrKws6HQ63HzzzTh16hQEQcDjjz+euL8HH3wQADBmzBgIggBBEPDee+91ua89e/bgiiuugFqtRmlpKV566aVB+3MgIhrOGPCJiAgAsH37dtxwww0wGAzYtm0bfv/73yMrKws33nhjt5APAF/72tcwYcIEvPHGG3jooYewY8cOfO9730vcHo1Gceutt2LHjh340Y9+hJ07d2L27NlYvHhxl/v5l3/5F3z3u98FALz55ps4ePAgDh48iCuuuCJxzueff44f/OAH+N73voc//OEPmDZtGtasWYO//vWvg/SnQUQ0fMmSPQAiIko+r9eLBx54ALfccgt27tyZOH7TTTfhiiuuwIYNG3Do0KEu16xZsyYx8/7Vr34VVVVVeOmll/Diiy9CEATs2bMHf/vb3/CrX/0K//Zv/wYAWLRoERQKBR5++OHE/RQWFmLUqFEAgJkzZ2L06NHdxtfS0oIPP/wwcd61116Lffv2YceOHbj22msH9M+CiGi44ww+ERHhwIEDsNlsuPvuuxEOhxO/otEoFi9ejMOHD8Pj8XS55rbbbuvy87Rp0+D3+9Hc3AwAeP/99wEA/+f//J8u561atarP45sxY0Yi3AOASqXChAkTcPbs2T7fFxFRuuMMPhERoampCQDw9a9//YLn2Gw2aLXaxM8mk6nL7UqlEgDg8/kAAK2trZDJZMjKyupyXm5ubp/Hd/5jtT9e+2MREVEHBnwiIkJ2djYA4Pnnn8fVV1/d4zl9DeYmkwnhcBg2m61LyG9sbLz8gRIR0UWxRIeIiHDNNdfAaDTiiy++wFe+8pUefykUij7d5/z58wEA//u//9vl+Kuvvtrt3PNn/4mI6PJxBp+IiKDT6fD888/j7rvvhs1mw9e//nWYzWZYrVZ8/vnnsFqt+NWvftWn+1y8eDGuueYa/OAHP4DT6cSVV16JgwcP4re//S0AQCLpmGOaOnUqAOC5557D3XffDblcjokTJ0Kv1w/ckyQiGiE4g09ERACAu+66C/v374fb7ca//uu/4qtf/SoeeOABfPbZZ1i4cGGf708ikeCPf/wjVq5cic2bN+P222/HBx98gO3btwMAjEZj4tzrrrsODz/8MP74xz/in/7pnzBr1ix8+umnA/XUiIhGFEEURTHZgyAiopFjx44d+MY3voEPP/wQc+fOTfZwiIjSDgM+ERENmvLyctTV1WHq1KmQSCT46KOP8Mwzz2DmzJmJNppERDSwWINPRESDRq/X49VXX8VTTz0Fj8eD/Px83HPPPXjqqaeSPTQiorTFGXwiIiIiojTCRbZERERERGmEAZ+IiIiIKI0w4BMRERERpREGfCIiIiKiNMKAT0RERESURhjwiYiIiIjSCAM+EREREVEaYcAnIiIiIkojDPhERERERGmEAZ+IiIiIKI38f0X9eY2Er8+7AAAAAElFTkSuQmCC", + "text/plain": [ + "
" ] }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Plotting other model parameters\n", - "\n", - "`plot_predictions` also has the argument `target` where `target` determines what parameter of the response distribution is plotted as a function of the explanatory variables. This argument is useful in distributional models, i.e., when the response distribution contains a parameter for location, scale and or shape. The default of this argument is `mean` and passing a parameter into `target` only works when the argument `pps=False` because when `pps=True` the posterior predictive distribution is plotted and thus, can only refer to the outcome variable (instead of any of the parameters of the response distribution). For this example, we will simulate our own dataset." + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(7, 3), dpi=120)\n", + "bmb.interpret.plot_predictions(model, idata, \"length\", ax=ax);" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Additionally, we can see how the probability of `certified_fresh` varies as a function of categorical covariates. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuoAAAFeCAYAAADT1DpYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABJ0AAASdAHeZh94AAA/7ElEQVR4nO3df3zP9f7/8ft7v80Q5o0Zs/wc86OIhmL5rEwqZIec/D4ppJRIdfyuE/pxlKhOiQmrD6Gc0JkZp0/kt7KFYzK/mSZm+dF+PL9/9N37eNuw7f1mL3a7Xi7vy2mv5/P5ej1eO+/tfd/T8/V62YwxRgAAAAAsxaOkCwAAAACQH0EdAAAAsCCCOgAAAGBBBHUAAADAggjqAAAAgAUR1AEAAAALIqgDAAAAFkRQBwAAACyIoA4AAABYEEEdAAAAsCCvki7gVnL69GmtW7dONWvWlK+vb0mXAwAAAAu5ePGiDh06pPbt2+u222679gBjQWfPnjXPPvusqV69uvH19TXNmjUzcXFx1xx36NAh8+yzz5p7773XVKhQwUgyc+bMuWL/+Ph4c/fdd5syZcqYypUrm379+pkTJ04Uu+5ly5YZSbx48eLFixcvXrx4XfG1bNmyQmVLS86od+/eXZs3b9aUKVNUv359LVy4UI899phyc3PVu3fvK45LSUnRggUL1Lx5c3Xu3FlxcXFX7Ltu3TpFR0frwQcf1Jdffqm0tDS9+OKL6tixo7Zs2VKsGfGaNWtKkpYtW6a6desWeTwAAABuXSkpKeratasjM16L5YL6ihUrFB8f7wjnkhQZGakDBw5o1KhR6tmzpzw9PQsce++99+rkyZOSpC1btlw1qI8aNUr169fX4sWL5eX1x7chNDRUbdu21SeffKIhQ4YUufa8cF+3bl01bty4yOMBAABw6yvshLDlLiZdunSpAgICFBMT47R9wIABOnr0qDZu3HjFsR4ehTudI0eOaPPmzerTp48jpEtSmzZtVL9+fS1durR4xQMAAABuYrmgnpSUpLCwMKcALUlNmzZ1tLvjGJfu8/LjuOMYAAAAgCsst/QlPT1dt99+e77tlSpVcrS74xiX7vPy4xTmGGlpaY5lNnlSUlJcrg0AAACQLBjUJclmsxWrzV3HKcwxZs2apYkTJ7qtFgAAAOBSlgvqlStXLnBG+9SpU5IKngUvzjGkgmfnT506VahjDB06NN86+rwreQEAAABXWS6oN2nSRHFxccrOznZap75z505JUnh4uMvHyNvHzp071blzZ6e2nTt3FuoYdrtddrvd5VoAAACAgljuYtJu3bopMzNTX3zxhdP22NhYBQUFqXXr1i4fo0aNGmrVqpXmz5+vnJwcx/bvv/9ee/bsUffu3V0+BgAAAOAKy82oR0dHKyoqSkOGDFFGRobq1q2ruLg4rVq1SvPnz3fcQ33QoEGKjY3Vvn37FBIS4hi/ePFiSdLPP/8s6Y/7qQcEBEiSevTo4eg3depURUVFKSYmRkOHDlVaWprGjBmj8PBwDRgw4EadLgAAAFAgywV1SVqyZIleeeUVjRs3TqdOnVLDhg0VFxenXr16Ofrk5OQoJydHxhinsZevG585c6ZmzpwpSU59O3TooBUrVmjcuHF66KGH5O/vry5duuiNN94o1lNJAQAAAHeymcuTLootOTlZ4eHhSkpK4smkAAAAcFLUrGjJGXUAAADgelm05ZAO/3pewRXLKKZlzZIu54osdzEpAAAAcD0t3npY7yTs1eKth0u6lKsiqAMAAAAWRFAHAAAALIigDgAAAFgQQR0AAACwIII6AAAAYEEEdQAAAJQaWTm5yriQJUnKuJClrJzcEq7oygjqAAAAuOVl5eTq3YS9ing9QbuOnZUk7Tp2Vm1eX6N3E/ZaMrDzwCMAAADc0rJycjV43hYl7jkp22Vtv2Re1Nvx/9GOQ6f1YZ8W8va0zjy2dSoBAAAAroP31+5T4p6TkiRzWVve12t2p+mDtftuaF3XQlAHAADALSsrJ1fzNqTmm0m/nE3SvA0HLLUEhqAOAACAW9aW1F/1S+bv+WbSL2ckncy8qC2pv96IsgqFoA4AAIBb1pnzv1/X/tcTQR0AAAC3rAplfK5r/+uJoA4AAIBbVsvaFRUY4FOoNepVAnzVsnbFG1FWoRDUAQAAcMvy9vRQ34jahVqj3jcihNszAgAAADfKkA51dF9DuyTlm1nP+/q+hnY91aHODa3rWgjqAAAAuKV5e3rowz4tNDKqvgIDfJ3aAgN8NTKqvuUediTxZFIAAACUAt6eHhresZ6e6lBHD7/3f9p17KzCqpfTV0+3s1xAz2PNqgAAAIDrwNvTQ+X9vCVJ5f28LRvSJYI6AAAAYEkEdQAAAMCCCOoAAACABRHUAQAAAAsiqAMAAAAWxO0ZAQAAUKr0aBGsu2+vrOCKZUq6lKsiqAMAAKBUiWlZs6RLKBSWvgAAAAAWRFAHAAAALIigDgAAAFgQQR0AAACwIII6AAAAYEEEdQAAAMCCCOoAAACABRHUAQAAAAsiqAMAAAAWRFAHAAAALIigDgAAAFgQQR0AAACwIII6AAAAYEEEdQAAAMCCCOoAAACABRHUAQAAAAsiqAMAAAAWRFAHAAAALIigDgAAAFgQQR0AAACwIII6AAAAYEEEdQAAAMCCCOoAAACABRHUAQAAAAsiqAMAAAAWZMmgnpmZqREjRigoKEh+fn5q3ry5Pvvss0KNTUtLU//+/RUYGCh/f39FREQoISEhX7+LFy/qjTfeUHh4uMqWLauqVasqOjpa69evd/fpAAAAAEVmyaDevXt3xcbGavz48Vq5cqXuuusuPfbYY1q4cOFVx128eFEdO3ZUQkKC3nnnHX355ZeqWrWqOnXqpHXr1jn1feKJJzRmzBh17dpVy5cv18yZM3Xy5Em1b99emzZtup6nBwAAAFyTV0kXcLkVK1YoPj5eCxcu1GOPPSZJioyM1IEDBzRq1Cj17NlTnp6eBY6dPXu2kpKStH79ekVERDjGNmvWTKNHj9bGjRsl/RHoFy5cqN69e+vVV191jG/btq2CgoK0YMECtWrV6jqfKQAAN8aiLYd0+NfzCq5YRjEta5Z0OQAKyXIz6kuXLlVAQIBiYmKctg8YMEBHjx51hO0rjW3QoIEjpEuSl5eXHn/8cW3atElHjhyRJHl4eMjDw0MVKlRwGl++fHl5eHjIz8/PjWcEAEDJWrz1sN5J2KvFWw+XdCkAisByQT0pKUlhYWHy8nKe7G/atKmj/Wpj8/oVNDY5OVmS5O3traFDhyo2NlbLli1TRkaGUlNT9cQTT6hChQp64okn3HU6AAAAQLFYbulLenq6br/99nzbK1Wq5Gi/2ti8ftca+/e//10VKlTQo48+qtzcXElSrVq1tGbNGtWtW/eadaalpenkyZNO21JSUq45DgAAACgMywV1SbLZbMVqK8rY1157TW+++aYmTJige+65RxkZGXrvvfcUFRWlf/3rX7rjjjuuepxZs2Zp4sSJV+0DAAAAFJflgnrlypULnDU/deqUJBU4Y17Usbt27dK4ceM0bdo0vfDCC45+0dHRatSokZ5//nklJiZetc6hQ4fmW0efkpKirl27XnUcAAAAUBiWC+pNmjRRXFycsrOzndap79y5U5IUHh5+1bF5/S51+dgffvhBxhjdddddTv28vb3VrFmzfLdyLIjdbpfdbr/2CQEAAADFYLmLSbt166bMzEx98cUXTttjY2MVFBSk1q1bX3Xs7t27ne4Mk52drfnz56t169YKCgqSJMf/fv/9907jL168qG3btik4ONhdpwMAQInKyslVxoUsSVLGhSxl5eSWcEUACstyM+rR0dGKiorSkCFDlJGRobp16youLk6rVq3S/PnzHfdQHzRokGJjY7Vv3z6FhIRIkgYOHKiZM2cqJiZGU6ZMkd1u16xZs7Rnzx6tXr3acYx27drprrvu0oQJE3Tu3Dnde++9OnPmjGbMmKH9+/fr008/LZFzBwDAXbJycvX+2n2atyFVv2T+Lknadeys2ry+Rn0iQjSkQx15e1puvg7AJSwX1CVpyZIleuWVVzRu3DidOnVKDRs2VFxcnHr16uXok5OTo5ycHBljHNt8fX2VkJCg0aNHa/jw4Tp37pyaN2+ulStXqn379o5+Hh4eio+P1xtvvKFFixbpzTffVEBAgBo1aqQVK1YoOjr6hp4vAADulJWTq8Hztihxz0ldfouFXzIv6u34/2jHodP6sE8LwjpgYTZzadKFS5KTkxUeHq6kpCQ1bty4pMsBAJRS7ybs1dvx/7lmv5FR9TW8Y70bUBEAqehZkT+jAQC4hWTl5GrehtR8M+mXs0mat+EAa9YBCyOoAwBwC9mS+qt+yfxd1/rnciPpZOZFbUn99UaUBaAYCOoAANxCzpz//br2B3DjENQBALiFVCjjc137A7hxXL7ry/z587Vw4UIdOHBA58+fd2qz2Wzat2+fq4cAAACF1LJ2RQUG+Cj9GstfbJICA3zVsnbFG1UagCJyKahPnTpVL730kho1aqRmzZrJ19fXXXUBAIBi8Pb0UN+I2te864uR1DcihNszAhbmUlD/xz/+oWHDhmnGjBnuqgcAALhoSIc62nHotNbsTpNNcppZz/v6voZ2PdWhTskUCKBQXPoz+vjx4+rWrZu7agEAAG7g7emhD/u00Mio+goMcP7X7sAAX42Mqs/DjoCbgEs/oS1atGANOgAAFuTt6aHhHetp/Uv3Kax6OUlSWPVyWv/SfRresR4hHbgJuPRT+vbbb+utt97S1q1b3VUPAABwI29PD5X385YklffzJqADN5Eir1Fv2rSp09fp6elq1aqVqlWrpsqVKzu12Ww2/fDDD65VCAAAAJRCRQ7qlSpVks323wcTXx7OAQAAALiuyEF97dq116EMAAAAAJdioRoAAABgQS4F9TVr1mjRokWOr0+cOKHOnTurWrVq6tu3ry5cuOBygQAAwDU9WgTr2Y711KNFcEmXAqAIXHrg0bhx4xQVFeX4evTo0fr2228VFRWlxYsXq169eho7dqzLRQIAgOKLaVmzpEsAUAwuzaj/5z//0Z133ilJys7O1tKlSzV16lQtWbJEkyZNUlxcnFuKBAAAAEobl4J6RkaGbrvtNknS1q1b9dtvv+nhhx+WJLVq1UoHDx50uUAAAACgNHIpqNvtdu3du1eStHr1aoWEhCg4+I/1b2fPnpW3t7frFQIAAAClkEtr1Dt16qSXX35ZycnJmjt3rvr16+do2717t2rXru1qfQAAAECp5FJQ/9vf/qaDBw/qo48+UqtWrfTXv/7V0bZw4UK1adPG5QIBAACA0siloB4YGKhVq1YV2JaYmCg/Pz9Xdg8AAACUWm574NH58+d15MgRZWdnS5LKly8vHx8fd+0eAAAAKFVcDuqJiYmKiIhQuXLlFBISoh9//FGSNGzYMC1ZssTlAgEAAIDSyOUnk95///26cOGCXnjhBeXm5jraAgMDNXfuXFfrAwAAAEoll4L6uHHj1LlzZ23fvl2vvvqqU1uzZs20Y8cOV3YPAAAAlFouXUy6fft2LVq0SJJks9mc2qpUqaK0tDRXdg8AAACUWi7NqHt5eSkrK6vAtrS0NJUrV86V3QMAAACllktB/a677tKnn35aYNvixYsVERHhyu4BAACAUsulpS9jxozRAw88oG7duqlv376y2WzauHGjPvnkEy1evFiJiYnuqhMAAAAoVVwK6v/zP/+j2NhYjRgxQl9++aWkP27LeNttt2nu3Llq166dW4oEAAAASptiB/WcnBzt27dPXbp00aOPPqr169frxIkTCgwMVNu2bVW2bFl31gkAAACUKsUO6sYYNWrUSMuXL1d0dLQ6duzozroAAACAUq3YF5N6eXmpWrVqTg85AgAAAOAeLt31pVevXpo3b567agEAAADw/7l0MWnz5s31+eef67777lP37t1VvXr1fA8+6t69u0sFAgAAAKWRS0G9b9++kqQjR45o7dq1+dptNptycnJcOQQAAABQKrkU1LlPOgAAAHB9FDmoP//883ruuedUs2ZNhYaGqnr16vL29r4etQEAAAClVpEvJp0+fbqOHTsmSQoNDdX27dvdXhQAAABQ2hU5qFesWFEnTpyQ9Me91C+/eBQAAACA64q89OXuu+/WoEGD1KpVK0nSyJEjddtttxXY12az6csvv3SpQAAAAKA0KnJQnzVrlkaMGKHk5GTZbDalpKTI19e3wL7MtgMAAADFU+SgHhISoqVLl0qSPDw8tGzZMsfsOgAAAAD3cOnJpImJiWrUqFGh+hpjNGnSJB0/ftyVQwIAAAClgktBvX379goICChU39zcXE2cOFFHjx515ZAAAABAqeBSUC8qY8yNPBwAAABw07qhQR0AAABA4RDUAQAAAAsiqAMAAAAWRFAHAAAALIigDgAAAFgQQR0AAACwoBsW1D09PbV//341adLkmn0zMzM1YsQIBQUFyc/PT82bN9dnn31WqOOkpaWpf//+CgwMlL+/vyIiIpSQkFBg399++03jxo1T/fr15evrq8qVKysyMlJ79+4t0rkBAAAA7uZV1AGTJk0qdF+bzaaxY8c6vg4JCSnUuO7du2vz5s2aMmWK6tevr4ULF+qxxx5Tbm6uevfufcVxFy9eVMeOHXX69Gm98847stvtmjlzpjp16qTVq1erffv2jr6ZmZmKjIzU0aNHNWbMGDVt2lRnzpzR+vXrde7cuUKfIwAAAHA92EwRn0Lk4eE8CW+z2fI9yMhmszn+Oycnp0gFrVixQg8++KAjnOe5//77lZycrIMHD8rT07PAsbNmzdKwYcO0fv16RURESJKys7PVrFkzBQQEaOPGjY6+I0aM0Mcff6wff/xRt99+e5FqvJLk5GSFh4crKSlJjRs3dss+AQAAcGsoalYs8tKX3Nxcx2vPnj0KDQ3Va6+9pv379+v8+fPav3+/Jk+erNDQUO3evbvIJ7B06VIFBAQoJibGafuAAQN09OhRp7Bd0NgGDRo4QrokeXl56fHHH9emTZt05MgRSdK5c+f08ccfKyYmxm0hHQAAAHAnl9aoP/vss+rbt69eeuklhYSEyNfXVyEhIXr55ZfVp08fPfPMM0XeZ1JSksLCwuTl5bwqp2nTpo72q43N61fQ2OTkZEnS1q1b9dtvv6levXoaMmSIKlasKB8fH7Vs2VJff/11kWsGAAAA3M2loP7tt9+qbdu2Bba1bdtW//d//1fkfaanp6tSpUr5tudtS09Pd3ls3sz61KlTtXPnTs2bN09Lly5V+fLl9dBDD+mbb765Zp1paWlKTk52eqWkpFz7BAEAAIBCKPLFpJfy9fXVli1b1LFjx3xtW7ZskY+PT7H2e+ka96K0FXZsbm6uJMnHx0crV65UuXLlJEmRkZGqV6+eJk+erAceeOCqx5k1a5YmTpx41T4AAABAcbkU1Lt166aJEycqICBAvXv3VsWKFfXrr79qwYIFmjRpkv785z8XeZ+VK1cucNb81KlTklTgjHlRx1auXFmS1KZNG0dIlyR/f3+1b99ey5Ytu2adQ4cOzbeOPiUlRV27dr3mWAAAAOBaXArqb7/9tvbt26fhw4frmWeekZeXl7Kzs2WM0b333qu33367yPts0qSJ4uLilJ2d7bROfefOnZKk8PDwq47N63epy8cWtI49jzEm351tCmK322W326/ZDwAAACgOl9aolytXTmvWrNGKFSv0wgsvqG/fvho1apRWrlypxMREp9nqwurWrZsyMzP1xRdfOG2PjY1VUFCQWrdufdWxu3fvdrozTHZ2tubPn6/WrVsrKChIklS9enVFRETou+++U0ZGhqPvuXPntG7dOt19991FrhsAAABwJ5dm1PN06tRJnTp1cseuFB0draioKA0ZMkQZGRmqW7eu4uLitGrVKs2fP99xD/VBgwYpNjZW+/btczxIaeDAgZo5c6ZiYmI0ZcoU2e12zZo1S3v27NHq1audjvPmm28qMjJSDzzwgF588UXZbDa99dZb+uWXXzR58mS3nAsAAABQXC7NqOf55ptv9NJLL+mJJ57QwYMHJUmbN2/WyZMni7W/JUuWqE+fPho3bpw6deqkjRs3Ki4uzmnNe05OjnJycpwetuTr66uEhARFRkZq+PDheuihh3Ts2DGtXLnS6amk0h/r0xMSEuTr66s///nP6t27t7y9vbV27Vqn+7ADuPks2nJIf4//jxZtOVTSpQAAUGxFfjLppc6dO6dHHnlECQkJjjuqbN68WXfeead69uypmjVr6s0333RbsVbHk0kBa+j54QZt3H9KrUMr6fMn+cMbAGAN1/3JpJd65ZVXtGXLFn3xxRc6c+aM0+z2/fffn2+5CQAAAIDCcWmN+qJFizR58mR169ZNOTk5Tm21atVyLIMBAAAAUDQuzaifPHnyitP2Hh4eOn/+vCu7BwAAAEotl4J6jRo1CrxvuST9+OOPCg0NdWX3AAAAQKnlUlDv3r27XnvtNW3fvt2xzWaz6cCBA/r73/+e78mdAAAAAArHpaA+fvx4BQUFqVWrVmrZsqVsNpsGDBig8PBw2e12jRkzxl11AkChZOXkKuNCliQp40KWsnJyS7giAACKx+Unk65fv16TJ09WQECA6tSpI39/f7300kv697//rTJlyrirTgC4qqycXL2bsFcRrydo17GzkqRdx86qzetr9G7CXgI7AOCm4/KTScuUKaMxY8Ywew6gxGTl5GrwvC1K3HNStsvafsm8qLfj/6Mdh07rwz4t5O3plue8AQBw3fGJBeCm9/7afUrc88eTkC9/glve12t2p+mDtftuaF0AALiiyDPqAwcO1NixYxUaGqqBAwdeta/NZtPs2bOLXRwAXEtWTq7mbUiVTflD+qVskuZtOKCnOtRhVh0AcFMoclBPTEzUs88+K0las2aNbLbL/6H5v67WBgDusCX1V/2S+fs1+xlJJzMvakvqr4qoU/n6FwYAgIuKHNT379/v+O/U1FR31gIARXbm/LVDuiv9AQAoKUX+998777xTycnJkqR58+YpPT3d7UUBQGFVKONzXfsDAFBSihzUf/zxR2VmZkqSBgwYoH37uDgLQMlpWbuiAgN88t3t5XI2SVUCfNWydsUbURYAAC4rclC32+3atm2bJMkYwzp0ACXK29NDfSNqX/VCUumPNep9I0K4kBQAcNMo8ifWww8/rGHDhikgIEA2m02RkZEqX758ga8KFSpcj5oBwMmQDnV0X0O7JOWbWc/7+r6Gdj3Voc4NrQsAAFcU+WLSGTNmqFGjRtq5c6c++eQTdejQQVWqVLketQFAoXh7eujDPi30wdp9mrfhgE5mXnS0BQb4qm9ECLdlBADcdGzGmGv9i/EVeXh46Pvvv1erVq3cWdNNKzk5WeHh4UpKSlLjxo1LuhygVMrKydXD7/2fdh07q7Dq5fTV0+0I6AAASyhqVizyjPqlcnNzXRkOAG7n7emh8n7ekqTyft6EdADATYtPMAAAAMCCihzUPT09tWnTpj8Ge3jI09Pzii8vL5cm7AEAAIBSq8hJety4cQoODnb8N7dnBAAAANyvyEF9/Pjxjv+eMGGCO2sBAAAA8P+5tEZ90qRJOnr0aIFtx44d06RJk1zZPQAUS48WwXq2Yz31aBFc0qUAAFBsLgX1iRMn6vDhwwW2HT16VBMnTnRl9wBQLDEta+q5qPqKaVmzpEsBAKDYXArqV7sFe2Zmpry9vV3ZPQAAAFBqFXmN+o8//qgdO3Y4vl6xYoV2797t1Of8+fNasGCB6tThcd0AAABAcRQ5qC9dutSxpMVms11xHXqZMmU0Z84c16oDAAAASqkiB/XBgwerS5cuMsaoVatWmjNnjsLDw536+Pr6qk6dOipTpozbCgUAAABKkyIH9erVq6t69er6/ffftXLlStWoUSNfUAcAAADgmmJfTOrl5aWHHnpIJ06ccGc9AAAAAORCUPfw8FBwcLAyMjLcWQ8AAAAAuXh7xkGDBmnmzJnKyclxVz0AAAAAVIw16pfy8fHRnj17FBYWpocffljVq1eXzWZztNtsNj333HMuFwkAAACUNi4F9RdffNHx32+//Xa+doI6AAAAUDwuBfX9+/e7qw4AAAAAl3ApqIeEhLirDgAAAACXcCmo59m9e7fWrVunX375RYMGDVK1atV09OhRVaxYkYceAQAAAMXgUlDPycnR4MGDNXfuXBljZLPZFB0drWrVqunJJ5/UHXfcoUmTJrmrVgAAAKDUcOn2jK+99poWLlyoN954Q0lJSTLGONqio6O1atUqlwsEAAAASiOXZtTnzp2rsWPH6vnnn893L/XQ0FAuNgUAAACKyaUZ9SNHjigiIqLANj8/P509e9aV3QMAAACllktB3W636+effy6wbc+ePQoODnZl9wAAAECp5VJQ79y5s1577TUdOXLEsc1ms+nMmTN699139dBDD7lcIAAAAFAauRTUJ02apOzsbDVq1EiPPvqobDabXn75ZYWHh+vChQsaO3asu+oEAAAAShWXgnrVqlW1efNmPfbYY9q6das8PT31ww8/KDo6WuvXr1elSpXcVScAAABQqrh015esrCwFBATogw8+yNf222+/KSsrS97e3q4cAgAAACiVXJpRf+KJJ/SXv/ylwLbBgwdryJAhruweAAAAKLVcCuqJiYl6+OGHC2x76KGHlJCQ4MruAQAAgFLLpaB+4sQJVa9evcC2atWq6fjx467sHgAAACi1XArqt912m1JSUgpsS0lJUbly5VzZPQAAAFBquRTUIyMj9frrr+vUqVNO20+dOqUpU6bovvvuc6k4AAAAoLRy6a4vEyZM0F133aV69eqpZ8+eqlGjhg4fPqxFixYpKytLEydOdFedAAAAQKniUlBv0KCBvv32Wz3//PP66KOPlJOTI09PT7Vv315vv/22GjRo4K46AQAAgFLFpaUvktSsWTMlJCQoIyNDhw8f1tmzZ7V69Wo1bdq02PvMzMzUiBEjFBQUJD8/PzVv3lyfffZZocampaWpf//+CgwMlL+/vyIiIq5595nz58+rfv36stlsevPNN4tdNwAAAOAuLs2oX6pMmTIqU6aMW/bVvXt3bd68WVOmTFH9+vW1cOFCPfbYY8rNzVXv3r2vOO7ixYvq2LGjTp8+rXfeeUd2u10zZ85Up06dtHr1arVv377AcWPHjtVvv/3mltoBAAAAd3BbUHeXFStWKD4+3hHOpT8uWj1w4IBGjRqlnj17ytPTs8Cxs2fPVlJSktavX6+IiAjH2GbNmmn06NHauHFjvjGbNm3SjBkztGDBAsXExFy/EwMAAACKwOWlL+62dOlSBQQE5AvNAwYM0NGjRwsM25eObdCggSOkS5KXl5cef/xxbdq0SUeOHHHq//vvv2vgwIEaNmyYWrZs6d4TAQAAAFxguaCelJSksLAweXk5T/bnrXlPSkq66tiC1sbnbUtOTnbaPmnSJP3222+aPHmyq2UDAAAAbmW5pS/p6em6/fbb822vVKmSo/1qY/P6XWvsjh07NG3aNC1fvlxly5bVyZMni1RnWlpavjFXevgTAAAAUFSWC+qSZLPZitVW2LHZ2dkaOHCgevbsqQceeKBYNc6aNYv7xAMAAOC6sVxQr1y5coGz5nlPPy1oxryoY6dPn66ff/5Z//u//6vTp09LkjIyMiRJFy5c0OnTp1WuXLkrXrQqSUOHDs23jj4lJUVdu3a98skBAAAAhWS5oN6kSRPFxcUpOzvbaZ36zp07JUnh4eFXHZvX71KXj01KStKZM2dUr169fH3Hjh2rsWPHavv27WrevPkVj2W322W32wt1TgAAAEBRWe5i0m7duikzM1NffPGF0/bY2FgFBQWpdevWVx27e/dupzvDZGdna/78+WrdurWCgoIkSWPGjFFiYqLTKy4uTpL01FNPKTExUXXr1r0OZwcAAAAUjuVm1KOjoxUVFaUhQ4YoIyNDdevWVVxcnFatWqX58+c7lqMMGjRIsbGx2rdvn0JCQiRJAwcO1MyZMxUTE6MpU6bIbrdr1qxZ2rNnj1avXu04RsOGDdWwYUOn46ampkqS6tSpow4dOtyQcwUAAACuxHJBXZKWLFmiV155RePGjdOpU6fUsGFDxcXFqVevXo4+OTk5ysnJkTHGsc3X11cJCQkaPXq0hg8frnPnzql58+ZauXLlFZ9KCgAAAFiRzVyadOGS5ORkhYeHKykpSY0bNy7pcgAAAGAhRc2KllujDgAAAICgDgAAAFiSJdeoo/AWbTmkw7+eV3DFMoppWbOkywEAAICbMKN+k1u89bDeSdirxVsPl3QpAAAAcCOCOgAAAGBBBHUAAADAggjqAAAAgAUR1AEAAAALIqgDAAAAFkRQBwAAACyIoA4AAABYEEEdAAAAsCCCOgAAAGBBBHUAAADAggjqAAAAgAUR1AEAAAALIqgDAAAAFkRQBwAAACyIoA4AAABYEEEdAAAAsCCCOgAAAGBBBPWbWFZOrjIuZEmSMi5kKSsnt4QrAgAAgLsQ1G9CWTm5ejdhryJeT9CuY2clSbuOnVWb19fo3YS9BHYAAIBbgFdJF4CiycrJ1eB5W5S456Rsl7X9knlRb8f/RzsOndaHfVrI25O/wwAAAG5WJLmbzPtr9ylxz0lJkrmsLe/rNbvT9MHafTe0LgAAALgXQf0mkpWTq3kbUvPNpF/OJmnehgMsgQEAALiJEdRvIltSf9Uvmb/nm0m/nJF0MvOitqT+eiPKAgAAwHVAUL+JnDn/+3XtDwAAAOsgqN9EKpTxua79AQAAYB0E9ZtIy9oVFRjgU6g16lUCfNWydsUbURYAAACuA4L6TcTb00N9I2oXao1634gQbs8IAABwEyPJ3WSGdKij+xraJSnfzHre1/c1tOupDnVuaF0AAABwL4L6Tcbb00Mf9mmhkVH1FRjg69QWGOCrkVH1edgRAADALYAnk96EvD09NLxjPT3VoY4efu//tOvYWYVVL6evnm5HQAcAALhFkOpuYt6eHirv5y1JKu/nTUgHAAC4hZDsAAAAAAsiqAMAAAAWRFAHAAAALIigDgAAAFgQQR0AAACwIII6AAAAYEEEdQAAAMCCCOoAAACABRHUAQAAAAsiqAMAAAAWRFAHAAAALIigDgAAAFgQQR0AAACwIII6AAAAYEEEdQAAAMCCCOoAAACABRHUAQAAAAsiqAMAAAAWZMmgnpmZqREjRigoKEh+fn5q3ry5Pvvss0KNTUtLU//+/RUYGCh/f39FREQoISHBqU9GRoZee+01dejQQdWqVVNAQICaNGmiqVOn6sKFC9fjlK6bHi2C9WzHeurRIrikSwEAAIAbeZV0AQXp3r27Nm/erClTpqh+/fpauHChHnvsMeXm5qp3795XHHfx4kV17NhRp0+f1jvvvCO73a6ZM2eqU6dOWr16tdq3by9JOnjwoKZPn64+ffro+eefV0BAgL799ltNmDBB8fHxio+Pl81mu1Gn65KYljVLugQAAABcB5YL6itWrFB8fLwjnEtSZGSkDhw4oFGjRqlnz57y9PQscOzs2bOVlJSk9evXKyIiwjG2WbNmGj16tDZu3ChJCg0NVWpqqsqWLesYe99996ls2bIaNWqUvvvuO7Vr1+46nykAAABwZZZb+rJ06VIFBAQoJibGafuAAQN09OhRR9i+0tgGDRo4QrokeXl56fHHH9emTZt05MgRSVLZsmWdQnqeVq1aSZIOHTrkjlMBAAAAis1yQT0pKUlhYWHy8nKe7G/atKmj/Wpj8/oVNDY5Ofmqx16zZo0kqXHjxkWqGQAAAHA3yy19SU9P1+23355ve6VKlRztVxub16+oY3/88UdNmzZN3bp1KzDsXy4tLU0nT5502paSknLNcQAAAEBhWC6oS7rqhZzXusizOGNTU1PVpUsX1axZUx9//HGhapw1a5YmTpxYqL4AAABAUVkuqFeuXLnAme9Tp05JUoEz5q6MPXDggCIjI+Xl5aWEhISr7v9SQ4cOzbeOPiUlRV27di3UeAAAAOBqLBfUmzRpori4OGVnZzutU9+5c6ckKTw8/Kpj8/pd6kpjDxw4oA4dOsgYo7Vr1yo4uPD3Irfb7bLb7YXuDwAAABSF5S4m7datmzIzM/XFF184bY+NjVVQUJBat2591bG7d+92ujNMdna25s+fr9atWysoKMix/eDBg+rQoYNycnK0Zs0ahYSEuP9kAAAAgGKy3Ix6dHS0oqKiNGTIEGVkZKhu3bqKi4vTqlWrNH/+fMc91AcNGqTY2Fjt27fPEbIHDhyomTNnKiYmRlOmTJHdbtesWbO0Z88erV692nGMtLQ0RUZG6tixY5o9e7bS0tKUlpbmaA8ODi7S7DoAAADgbpYL6pK0ZMkSvfLKKxo3bpxOnTqlhg0bKi4uTr169XL0ycnJUU5Ojowxjm2+vr5KSEjQ6NGjNXz4cJ07d07NmzfXypUrHU8llaSffvpJP//8syTp8ccfz3f88ePHa8KECdfvBAEAAIBrsJlLky5csm3bNrVo0ULLli1T3bp1S7ocAAAAWEjejUe2bt2qO++885r9LTmjfrPKe6Ipd34BAADAlRw6dKhQQZ0ZdTc6ffq01q1bp5o1a8rX1/eGHDPvLzNm8YH/4ucCcMbPBOCspH4mLl68qEOHDql9+/a67bbbrtmfGXU3uu222/TII4+UyLHr1q2rxo0bl8ixAavi5wJwxs8E4KwkfiYKM5Oex3K3ZwQAAABAUAcAAAAsiaAOAAAAWBBB/SZXpUoVjR8/XlWqVCnpUgDL4OcCcMbPBODsZvmZ4K4vAAAAgAUxow4AAABYEEEdAAAAsCCCOgAAAGBBBPUb6N1335XNZlN4eHixxh89elQTJkzQjh078rVNmDBBNpvNxQoB9/rxxx81YMAAhYaGys/PTwEBAbrzzjs1bdo0nTp1qqTLK5K1a9fKZrNp7dq1JV0KbiFz586VzWZzvPz8/FStWjVFRkbq9ddfV1paWkmXCFjG999/r5iYGFWvXl0+Pj6qVq2aevTooQ0bNjj1W79+vSZMmKDTp0/n20ft2rXVpUuXG1Sx6wjqN9Ann3wiSUpOTtbGjRuLPP7o0aOaOHFigUH9L3/5S743KlCSPvroI7Vo0UKbN2/WqFGjtGrVKi1dulQxMTH64IMPNGjQoJIuEbCMOXPmaMOGDYqPj9fMmTPVvHlzTZ06VWFhYVq9enVJlweUuBkzZqht27Y6fPiwpk2bptWrV+vNN9/UkSNH1K5dO7333nuOvuvXr9fEiRMLDOo3G6+SLqC02LJli3744Qc9+OCD+vrrrzV79my1bt3abfsPDg5WcHCw2/YHuGLDhg0aMmSIoqKitGzZMvn6+jraoqKiNHLkSK1ataoEKwSsJTw8XC1btnR8/eijj+q5555Tu3bt1L17d+3du1dVq1YtcOy5c+fk7+9/o0oFbrjvvvtOI0aMUOfOnbV06VJ5ef03vvbq1UvdunXTs88+qzvuuENt27YtwUr/kJOTo+zsbKfPvuJiRv0GmT17tiRpypQpatOmjT777DOdO3fOqc+RI0c0ePBg1axZUz4+PgoKClKPHj104sQJrV27VnfddZckacCAAY5/Jp0wYYKkgpe+5Obmatq0aWrYsKF8fX1lt9vVt29fHT582Klfhw4dFB4ers2bN+uee+6Rv7+/br/9dk2ZMkW5ubnX6TuCW9nf/vY32Ww2/eMf/yjwF5WPj48efvhhSUV/n27YsEFt2rRRmTJlVLt2bc2ZM0eS9PXXX+vOO++Uv7+/mjRpUuAfAnv37lXv3r1lt9vl6+ursLAwzZw5M1+/3bt3q1OnTvL391dgYKCeeuopnT171qnP5MmT5eXlpUOHDuUbP3DgQFWuXFkXLlwo/DcNuEytWrX01ltv6ezZs/rwww8lSf3791dAQIB27typ+++/X+XKlVPHjh0lSfHx8XrkkUcUHBwsPz8/1a1bV08++aR++eUXp/3mfV78+OOPiomJUYUKFVSpUiU9//zzys7O1p49e9SpUyeVK1dOtWvX1rRp05zGX7hwQSNHjlTz5s0dYyMiIvTll1/emG8MSp3XX39dNptN77//vlNIlyQvLy/NmjVLNptNU6ZM0YQJEzRq1ChJUmhoqCMvXb5scdWqVbrzzjtVpkwZNWzY0LHq4VLHjx/Xk08+qeDgYPn4+Cg0NFQTJ05Udna2o09qaqpsNpumTZumV199VaGhofL19VViYqJ7Tt7gujt37pypUKGCueuuu4wxxnz88cdGkpk7d66jz+HDh0316tVNYGCgefvtt83q1avN559/bgYOHGh27dplzpw5Y+bMmWMkmb/+9a9mw4YNZsOGDebQoUPGGGPGjx9vLv+/c/DgwUaSefrpp82qVavMBx98YKpUqWJq1qxpTp486ejXvn17U7lyZVOvXj3zwQcfmPj4eDN06FAjycTGxt6A7xBuJdnZ2cbf39+0bt26UP2L+j5t0KCBmT17tvnmm29Mly5djCQzceJE06RJExMXF2dWrFhh7r77buPr62uOHDniGJ+cnGwqVKhgmjRpYubNm2f+9a9/mZEjRxoPDw8zYcIER7/jx48bu91uatSoYebMmWNWrFhh/vznP5tatWoZSSYxMdEYY8yJEyeMr6+veeWVV5zOJz093ZQpU8aMGjXKhe8iSou83+ubN28usD0zM9N4enqajh07GmOM6devn/H29ja1a9c2r7/+uklISDDffPONMcaY999/37z++uvmq6++MuvWrTOxsbGmWbNmpkGDBub333937DPv86JBgwZm8uTJJj4+3owePdrxc9iwYUPz7rvvmvj4eDNgwAAjyXzxxReO8adPnzb9+/c3n376qVmzZo1ZtWqVeeGFF4yHhwefGXC7wn6mtGrVyvj7+5vU1FQzfPhwI8ksWbLEkZfOnDljjDEmJCTEBAcHm0aNGpl58+aZb775xsTExBhJZt26dY79HTt2zNSsWdOEhISYDz/80KxevdpMnjzZ+Pr6mv79+zv67d+/30gyNWrUMJGRkWbx4sXmX//6l9m/f79bzp+gfgPMmzfPSDIffPCBMcaYs2fPmoCAAHPPPfc4+gwcONB4e3ubn3766Yr72bx5s5Fk5syZk6/t8qC+a9cuI8kMHTrUqd/GjRuNJPPyyy87trVv395IMhs3bnTq26hRI/PAAw8U6VyB48ePG0mmV69e1+xbnPfpli1bHNvS09ONp6enKVOmjFMo37Fjh5Fk3n33Xce2Bx54wAQHBzt+Wed5+umnjZ+fnzl16pQxxpgXX3zR2Gw2s2PHDqd+UVFRTkHdmD9Ck91uNxcvXnRsmzp1qvHw8HDbL2nc2q4V1I0xpmrVqiYsLMwY88d7TpL55JNPrrrf3Nxck5WVZQ4cOGAkmS+//NLRlvd58dZbbzmNad68uSPc5MnKyjJVqlQx3bt3v+KxsrOzTVZWlhk0aJC54447rloXUFSF/Uzp2bOnkWROnDhh3njjDSOpwN/DISEhxs/Pzxw4cMCx7fz586ZSpUrmySefdGx78sknTUBAgFM/Y4x58803jSSTnJxsjPlvUK9Tp47TH8TuwtKXG2D27NkqU6aMevXqJUkKCAhQTEyMvv32W+3du1eStHLlSkVGRiosLMwtx8z7J5f+/fs7bW/VqpXCwsKUkJDgtL1atWpq1aqV07amTZvqwIEDbqkHKEhR36fVq1dXixYtHF9XqlRJdrtdzZs3V1BQkGN73s9R3vv3woULSkhIULdu3eTv76/s7GzHq3Pnzrpw4YK+//57R02NGzdWs2bNnI7du3fvfPU/++yzSktL06JFiyT9sYzn/fff14MPPqjatWsX4zsC5GcKeID4o48+mm9bWlqannrqKdWsWVNeXl7y9vZWSEiIJGnXrl35+l9+54uwsDDZbDZFR0c7tnl5ealu3br5PgsWLVqktm3bKiAgwHGs2bNnF3gc4EbI+zkpzB3wmjdvrlq1ajm+9vPzU/369Z3e5//85z8VGRmpoKAgp8+MvJ+PdevWOe3z4Ycflre3tztOxQlB/TpLSUnRv//9bz344IMyxuj06dM6ffq0evToIem/d4I5efKkWy8GTU9Pl/RHsLlcUFCQoz1P5cqV8/Xz9fXV+fPn3VYTSofAwED5+/tr//791+xb1PdppUqV8vXz8fHJt93Hx0eSHGvE09PTlZ2drRkzZsjb29vp1blzZ0lyrONNT09XtWrV8h2noG133HGH7rnnHsc693/+859KTU3V008/ffUTBwrpt99+U3p6utMfov7+/ipfvrxTv9zcXN1///1asmSJRo8erYSEBG3atMnxB2hBv8sL+rnx9/eXn59fvu2XXm+xZMkS/elPf1KNGjU0f/58bdiwQZs3b9bAgQO5LgNuV9jPlNTUVPn7+xf4OXG5wmSeEydOaPny5fk+Mxo3bixJ+a79KOhzzB2468t19sknn8gYo8WLF2vx4sX52mNjY/Xqq6+qSpUq+S6ec0Xem/DYsWP5/gA4evSoAgMD3XYs4FKenp7q2LGjVq5cqcOHD1/1D9Ab9T6tWLGiPD091adPHw0bNqzAPqGhoY6ajh8/nq+9oG2S9MwzzygmJkbbtm3Te++9p/r16ysqKsotdQNff/21cnJy1KFDB8e2gmYMk5KS9MMPP2ju3Lnq16+fY3tKSorba5o/f75CQ0P1+eefO9Vy8eJFtx8L8PT0VGRkpFatWnXFz5TDhw9r69atio6Olqenp1uOGxgYqKZNm+q1114rsP3SP56lws3kFwcz6tdRTk6OYmNjVadOHSUmJuZ7jRw5UseOHdPKlSsVHR2txMRE7dmz54r7y7t7RmFmue+77z5Jf/xCvdTmzZu1a9cux10CgOvhpZdekjFGTzzxhH7//fd87VlZWVq+fPkNe5/6+/srMjJS27dvV9OmTdWyZct8r7w/GiIjI5WcnKwffvjBaR8LFy4scN/dunVTrVq1NHLkSK1evVpDhw7l4WNwi4MHD+qFF15QhQoV9OSTT161b9577vK7LOXdLcadbDabfHx8nN7nx48f564vuG7yPlOGDh2qnJwcp7acnBwNGTJExhi99NJLkoqWl66kS5cuSkpKUp06dQr8zLg8qF8vzKhfRytXrtTRo0c1depUp9mQPOHh4Xrvvfc0e/Zsvffee1q5cqXuvfdevfzyy2rSpIlOnz6tVatW6fnnn1fDhg1Vp04dlSlTRgsWLFBYWJgCAgIUFBRU4JulQYMGGjx4sGbMmCEPDw9FR0crNTVVY8eOVc2aNfXcc8/dgO8ASquIiAi9//77Gjp0qFq0aKEhQ4aocePGysrK0vbt2/WPf/xD4eHhWrp06Q17n77zzjtq166d7rnnHg0ZMkS1a9fW2bNnlZKSouXLl2vNmjWSpBEjRuiTTz7Rgw8+qFdffVVVq1bVggULtHv37gL36+npqWHDhunFF19U2bJl8623BwojKSnJsQY2LS1N3377rebMmSNPT08tXbpUVapUuer4vM+IMWPGyBijSpUqafny5YqPj3d7rV26dNGSJUs0dOhQ9ejRQ4cOHdLkyZNVvXp1x3VXgDu1bdtW06dP14gRI9SuXTs9/fTTqlWrlg4ePKiZM2dq48aNmj59utq0aSNJatKkiaQ/fu/369dP3t7eatCggcqVK1foY06aNEnx8fFq06aNnnnmGTVo0EAXLlxQamqqVqxYoQ8++ODGPL/G7ZenwqFr167Gx8fHpKWlXbFPr169jJeXlzl+/Lg5dOiQGThwoKlWrZrx9vY2QUFB5k9/+pM5ceKEo39cXJxp2LCh8fb2NpLM+PHjjTEF354xJyfHTJ061dSvX994e3ubwMBA8/jjjztu6Zinffv2pnHjxvlq69evnwkJCSn+NwCl3o4dO0y/fv1MrVq1jI+Pjylbtqy54447zLhx4xw/F66+T0NCQsyDDz6Yb7skM2zYMKdt+/fvNwMHDjQ1atQw3t7epkqVKqZNmzbm1Vdfder3008/maioKOPn52cqVapkBg0aZL788st8d33Jk5qaaiSZp556qqjfIpRyeXd9yXv5+PgYu91u2rdvb/72t7/l+/zo16+fKVu2bIH7ynvflitXzlSsWNHExMSYgwcPOn1WGPPfz4tLb396tX0X9LM3ZcoUU7t2bePr62vCwsLMRx99VODnEOBOGzZsMD169DBVq1Y1Xl5exm63m+7du5v169fn6/vSSy+ZoKAg4+Hh4fS7+0qfGe3btzft27d32nby5EnzzDPPmNDQUOPt7W0qVapkWrRoYV555RWTmZlpjPnvXV/eeOMNt5+vMcbYjCngcnIAQKHNmDFDzzzzjJKSkhwXGgEA4CqCOgAU0/bt27V//349+eSTatu2rZYtW1bSJQEAbiEEdQAoptq1a+v48eO655579OmnnxZ4C0cAAIqLoA4AAABYELdnBAAAACyIoA4AAABYEEEdAAAAsCCCOgAAAGBBBHUAAADAggjqAAAAgAUR1AEARbZw4UJNnz692ONTU1Nls9k0d+5ct9UEALcagjoAoMhcDeoAgGsjqAMAAAAWRFAHAORz8uRJDR48WDVr1pSvr6+qVKmitm3bavXq1erQoYO+/vprHThwQDabzfEyxqhevXp64IEH8u0vMzNTFSpU0LBhw6563L1796p3796y2+3y9fVVWFiYZs6ceb1OEwAszaukCwAAWE+fPn20bds2vfbaa6pfv75Onz6tbdu2KT09XbNmzdLgwYO1b98+LV261DHGZrNp+PDhGjFihPbu3at69eo52ubNm6eMjIyrBvWffvpJbdq0Ua1atfTWW2+pWrVq+uabb/TMM8/ol19+0fjx46/rOQOA1diMMaakiwAAWEu5cuX0l7/8RX//+98LbO/SpYuSkpKUmprqtP3s2bOqUaOGBg4c6LSGvXHjxqpatarWrFkj6Y+LSUNDQzVnzhz1799fktSpUyclJycrOTlZ5cuXd4wdPny4Pv74Yx09elQVK1Z063kCgJWx9AUAkE+rVq00d+5cvfrqq/r++++VlZVVqHHlypXTgAEDNHfuXP3222+SpDVr1uinn37S008/fcVxFy5cUEJCgrp16yZ/f39lZ2c7Xp07d9aFCxf0/fffu+XcAOBmQVAHAOTz+eefq1+/fvr4448VERGhSpUqqW/fvjp+/Pg1xw4fPlxnz57VggULJEnvvfeegoOD9cgjj1xxTHp6urKzszVjxgx5e3s7vTp37ixJ+uWXX9xzcgBwk2CNOgAgn8DAQE2fPl3Tp0/XwYMH9dVXX2nMmDFKS0vTqlWrrjq2bt26io6O1syZMxUdHa2vvvpKEydOlKen5xXHVKxYUZ6enurTp88V17GHhoa6dE4AcLMhqAMArqpWrVp6+umnlZCQoO+++06S5Ovrq/Pnz19xzLPPPqv7779f/fr1k6enp5544omrHsPf31+RkZHavn27mjZtKh8fH7eeAwDcjAjqAAAnZ86cUWRkpHr37q2GDRuqXLly2rx5s1atWqXu3btLkpo0aaIlS5bo/fffV4sWLeTh4aGWLVs69hEVFaVGjRopMTFRjz/+uOx2+zWP+84776hdu3a65557NGTIENWuXVtnz55VSkqKli9f7rgQFQBKC4I6AMCJn5+fWrdurU8//VSpqanKyspSrVq19OKLL2r06NGS/pgxT05O1ssvv6wzZ87IGKPLbyL2pz/9SRMmTLjqRaSXatSokbZt26bJkyfrr3/9q9LS0nTbbbepXr16jnXqAFCacHtGAMB10bJlS9lsNm3evLmkSwGAmxIz6gAAt8nIyFBSUpL++c9/auvWrU4PRAIAFA1BHQDgNtu2bVNkZKQqV66s8ePHq2vXriVdEgDctFj6AgAAAFgQDzwCAAAALIigDgAAAFgQQR0AAACwIII6AAAAYEEEdQAAAMCCCOoAAACABRHUAQAAAAsiqAMAAAAWRFAHAAAALIigDgAAAFgQQR0AAACwoP8HGs9hr87jtxEAAAAASUVORK5CYII=", + "text/plain": [ + "
" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Auto-assigning NUTS sampler...\n", - "Initializing NUTS using jitter+adapt_diag...\n", - "Multiprocess sampling (4 chains in 4 jobs)\n", - "NUTS: [Intercept, x, alpha_Intercept, alpha_x]\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - "\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - "
\n", - " \n", - " 100.00% [8000/8000 00:02<00:00 Sampling 4 chains, 25 divergences]\n", - "
\n", - " " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 2 seconds.\n", - "There were 25 divergences after tuning. Increase `target_accept` or reparameterize.\n" - ] - } - ], - "source": [ - "rng = np.random.default_rng(121195)\n", - "N = 200\n", - "a, b = 0.5, 1.1\n", - "x = rng.uniform(-1.5, 1.5, N)\n", - "shape = np.exp(0.3 + x * 0.5 + rng.normal(scale=0.1, size=N))\n", - "y = rng.gamma(shape, np.exp(a + b * x) / shape, N)\n", - "data_gamma = pd.DataFrame({\"x\": x, \"y\": y})\n", + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(7, 3), dpi=120)\n", + "bmb.interpret.plot_predictions(model, idata, \"style\", ax=ax);" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plotting other model parameters\n", + "\n", + "`plot_predictions` also has the argument `target` where `target` determines what parameter of the response distribution is plotted as a function of the explanatory variables. This argument is useful in distributional models, i.e., when the response distribution contains a parameter for location, scale and or shape. The default of this argument is `mean` and passing a parameter into `target` only works when the argument `pps=False` because when `pps=True` the posterior predictive distribution is plotted and thus, can only refer to the outcome variable (instead of any of the parameters of the response distribution). For this example, we will simulate our own dataset." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Auto-assigning NUTS sampler...\n", + "Initializing NUTS using jitter+adapt_diag...\n", + "Multiprocess sampling (4 chains in 4 jobs)\n", + "NUTS: [Intercept, x, alpha_Intercept, alpha_x]\n" + ] + }, + { + "data": { + "text/html": [ "\n", - "formula = bmb.Formula(\"y ~ x\", \"alpha ~ x\")\n", - "model = bmb.Model(formula, data_gamma, family=\"gamma\")\n", - "idata = model.fit(random_seed=1234)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - " Formula: y ~ x\n", - " alpha ~ x\n", - " Family: gamma\n", - " Link: mu = inverse\n", - " alpha = log\n", - " Observations: 200\n", - " Priors: \n", - " target = mu\n", - " Common-level effects\n", - " Intercept ~ Normal(mu: 0.0, sigma: 2.5037)\n", - " x ~ Normal(mu: 0.0, sigma: 2.8025)\n", - " target = alpha\n", - " Common-level effects\n", - " alpha_Intercept ~ Normal(mu: 0.0, sigma: 1.0)\n", - " alpha_x ~ Normal(mu: 0.0, sigma: 1.0)\n", - "------\n", - "* To see a plot of the priors call the .plot_priors() method.\n", - "* To see a summary or plot of the posterior pass the object returned by .fit() to az.summary() or az.plot_trace()" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } + "\n" ], - "source": [ - "model" + "text/plain": [ + "" ] }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The model we defined uses a `gamma` distribution parameterized by `alpha` and `mu` where `alpha` utilizes a log link and `mu` goes through an inverse link. Therefore, we can plot either: (1) the `mu` of the response distribution (which is the default), or (2) `alpha` of the response distribution as a function of the explanatory variable $x$. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAukAAAFdCAYAAAC+d/P1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABJ0AAASdAHeZh94AABIbElEQVR4nO3deZRU9Z3//1ctXdV7N70UTbM0S7MIDUhcAJeIIkpcfgNmSDRfk7hkTkYnk+T7nW9IjkYDMZNjEjOJZ77wna/jAjNEYyASx0ScEYxmggExmgRU0GYTGpre91pv3d8ftXQ13XRXVW9V3c/HOX266tbn1v1UV9Xh5cf3fV+LaZqmAAAAAKQM62hPAAAAAEBPhHQAAAAgxRDSAQAAgBRDSAcAAABSDCEdAAAASDGEdAAAACDFENIBAACAFENIBwAAAFIMIR0AAABIMfbRnsBY0NLSojfeeENTp06V0+kc7ekAAAAghXi9Xp06dUrXXHONCgsL49qHkD4E3njjDa1Zs2a0pwEAAIAU9qtf/Up/9Vd/FddYQvoQmDp1qqTQH76ysnKUZwMAAIBUUl1drTVr1kQzYzwI6UMgUuJSWVmpBQsWjPJsAAAAkIoSKYvmxFEAAAAgxRDSAQAAgBRDSAcAAABSDCEdAAAASDGEdAAAACDFENIBAACAFENIBwAAAFIMIR0AAABIMYR0AAAAIMUQ0gEAAIAUQ0gHAADAuOHxG6M9hbgQ0gEAADButLr9oz2FuBDSAQAAMG4Q0gEAAIAU09JFSAcAAABSSkuXb7SnEBdCOgAAAMYFj9+QJxAc7WnEhZAOAACAcaHV7ZdpmqM9jbgQ0gEAADAupMtJoxIhHQAAAONEupw0KhHSAQAAME6ky0mjEiEdAAAA4wTlLgAAAEAK6fQG5DfS46RRiZAOAACAcaAljVbRJUI6AAAAxoHWNDppVCKkAwAAYBxocafPSaMSIR0AAADjACvpg9Te3q7169frhhtuUGlpqSwWizZs2NBr3F133SWLxdLrZ968eXEfa/fu3Vq+fLmys7NVUlKiu+66S3V1dUP4agAAADDaTNNUmye9Qrp9tCdwvsbGRj3xxBNavHix1qxZoyeffPKCY7OysvTaa6/12haPN954Q5/61Kd0880368UXX1RdXZ2++c1vauXKlXr77bfldDoH9ToAAACQGto8ARnB0Z5FYlIupFdUVKi5uVkWi0UNDQ39hnSr1aply5YldZxvfOMbmjNnjnbs2CG7PfRnmDFjhq688ko9/fTTuu+++5J6XgAAAKSWdCt1kVKw3CVStjKcampqdODAAX3+85+PBnRJuuKKKzRnzhzt3LlzWI8PAACAkZNOFzGKSLmQngi3262ysjLZbDZNmTJFX/nKV9TU1DTgfocOHZIkLVq0qNdjixYtij4OAACA9JdunV2kFCx3idfixYu1ePFiVVVVSQrVmP/kJz/Rnj17dODAAeXm5l5w38bGRklSUVFRr8eKioqij/elrq5O9fX1PbZVV1cn8xIAAAAwAlrSsNwlbUP6//yf/7PH/VWrVmnJkiX667/+a/3rv/5rr8f7cqGymv7KbTZv3qyNGzcmNlkAAACMCiNoqsMbGO1pJCxtQ3pf1q5dq5ycHO3bt6/fccXFxZLU54p5U1NTnyvsEffff7/WrVvXY1t1dbXWrFmT+IQBAAAwrFrdfpnmaM8icWMqpEuhPphWa/+l9pESmYMHD+qmm27q8djBgwejj/fF5XLJ5XINfqIAAAAYdi1d6VePLqX5iaPn27Fjh7q6ugZsyzh58mRdfvnl2rZtmwzDiG7ft2+fjhw5ottuu224pwoAAIARkI6dXaQUXUnftWuXOjs71d7eLkl6//33tWPHDknSTTfdpPr6en3uc5/T7bffrsrKSlksFr3xxhv66U9/qgULFuhLX/pSj+ez2+265pprtGfPnui2H/zgB1q1apXWrVun+++/X3V1dfrWt76lqqoq3X333SP3YgEAADBsWgjpQ+e+++7TyZMno/e3b9+u7du3S5KOHz+ugoICTZw4Uf/0T/+kc+fOyTAMVVRU6Ktf/aoeeOAB5eTk9Hg+wzB6rJhL0ooVK/Tyyy/r4Ycf1q233qrs7Gzdcsst+tGPfsTVRgEAAMaIdLyQkZSiIf3EiRMDjnnhhRfifj7zAmcLrFq1SqtWrYr7eQAAAJA+fIGgunzGwANT0JiqSQcAAAAi0vEiRhGEdAAAAIxJ6VrqIhHSAQAAMEala2cXiZAOAACAMaqFlXQAAAAgtbCSDgAAAKQQt8+QNxAc7WkkjZAOAACAMSedO7tIhHQAAACMQelcjy4R0gEAADAGpXM9ukRIBwAAwBjESjoAAACQYtpYSQcAAABSR7vHr0DQHO1pDAohHQAAAGNKupe6SIR0AAAAjDHpftKoREgHAADAGENIBwAAAFIM5S4AAABACgkGTbV7COkAAABAymjz+JXmjV0kEdIBAAAwhoyFUheJkA4AAIAxpGUMnDQqEdIBAAAwhoyFzi4SIR0AAABjSEuXb7SnMCQI6QAAABgT/EZQnV5jtKcxJAjpAAAAGBPGSqmLREgHAADAGDFWOrtIhHQAAACMEaykAwAAACmm1T02ThqVCOkAAAAYIyh3GUbt7e1av369brjhBpWWlspisWjDhg09xhiGoX/6p3/S6tWrNWXKFGVnZ+uiiy7St771LbW0tMR1nBUrVshisfT6Wb169dC/KAAAAAwrj9+Qxx8c7WkMGftoT+B8jY2NeuKJJ7R48WKtWbNGTz75ZK8xbrdbGzZs0B133KEvfelLKikp0TvvvKPvfe97eumll/T2228rKytrwGPNnDlTP/vZz3psKywsHKqXAgAAgBEylurRpRQM6RUVFWpubpbFYlFDQ0OfIT0rK0vHjx9XcXFxdNuKFSs0bdo0rVu3Tr/85S915513DnisrKwsLVu2bEjnDwAAgJE3lkpdpBQM6RaLZcAxNputR0CPuPzyyyVJp06dGvJ5AQAAIHWxkp7CXnvtNUnSggUL4hp/9OhRFRUVqa2tTRUVFbr99tv17W9/u99Smbq6OtXX1/fYVl1dnfykAQAAMGgtXWOns4s0hkJ6TU2NvvWtb+nSSy/VLbfcMuD4q666Sp/97Gc1b948ud1u7dq1Sz/84Q/1+9//Xr/97W9ltfZ9Tu3mzZu1cePGoZ4+AAAABoGV9BTU1NSkm266SaZp6vnnn79gwI71ve99r8f9m266SdOnT9f//t//Wy+++KLWrl3b537333+/1q1b12NbdXW11qxZk/T8AQAAkLxOb0B+wxztaQyplGvBmKjm5matWrVKNTU1evXVVzVz5syknytysum+ffsuOMblcmnBggU9fiorK5M+JgAAAAanZYytoktpvpLe3Nys66+/XsePH9eePXu0aNGiIXneeFbiAQAAkBrGWj26lMYhPRLQjx07pldffVVLliwZ9HNu3bpVkmjLCAAAkEbirUf/4GybGju9mlWaqwXl+XF1FRwtKRnSd+3apc7OTrW3t0uS3n//fe3YsUNSqHbcYrHoxhtv1Lvvvquf/vSnCgQCPUpUSktLNWvWrOh9u92ua665Rnv27JEk/fd//7f+8R//UWvXrtXMmTPl8Xi0a9cuPfHEE7ruuut06623juCrBQAAwGC0xtkj/e2TzfrgbJveOt6ktx64Ximc0VMzpN933306efJk9P727du1fft2SdLx48clSQcOHJAkfe1rX+u1/xe/+EVt2bIlet8wDBmGEb0/adIk2Ww2PfLII2poaJDFYtHs2bP13e9+V//wD/9AuQsAAECaME1TbZ6BQ3rACOpoXYck6Zo5LlmtKZzQlaIh/cSJEwOOMc34z+A9f2xlZaV+85vfJDotAAAApJg2T0BGcOBxJxq75AsPvHZe6TDPavBYMgYAAEDaqmvzxDXuSG2bJMlqka6uJKQDAAAAw6amxR3XuCPnQqUuM0pyVJCdMZxTGhKEdAAAAKQlI2iqrs074LjGDq8aOkLjLpqUP9zTGhKEdAAAAKSlc20eBYIDn6f44bn26O355YR0AAAAYNicibvUJRTS8zPtKi/IHM4pDRlCOgAAANJSPPXovkBQx+o7JUlzy/JS+gJGsQjpAAAASDutbr86vcaA4443dERLYuZOzBvuaQ0ZQjoAAADSTqKlLjaLRbNKc4dzSkOKkA4AAIC0E09IN01TR2pDIX16SbacGbbhntaQIaQDAAAgrfiNoOrbB269WN/hVXOXX1J6lbpIhHQAAACkmdpWj+LovKgPa7tbL84pI6QDAAAAwybRevQJ2RkqzXUO55SGHCEdAAAAaeVM68Ah3es3dKKhS1J6tV6MIKQDAAAgbTR1+uT2BQccd7S+Q4aZfq0XIwjpAAAASBuJlrrYrRbNKEmf1osRhHQAAACkjURbL84szZHDnn6RN/1mDAAAgHHJ4zfU2OkbcFxtm0dtnoCk9Cx1kQjpAAAASBO1rR6ZCbZenFuWP4wzGj6EdAAAAKSFROvRS3KdKspxDOeUhg0hHQAAACnPNE2dbfUMOM7tM/RxU7j14sT0O2E0gpAOAACAlNfQ4ZM3MHDrxY/q2qNXI03XUheJkA4AAIA0EG+py4fhUheHzarpxdnDOaVhRUgHAABAyosnpAdNU0fOdUiSZrlyZbelb9RN35kDAABgXHD7DDV3+Qccd6bFrU5verdejCCkAwAAIKXVJNjVRZLmpPFJoxIhHQAAACku7nr0cH/0svxMFWanZ+vFCEI6AAAAUlYwaKq2beDWix3egE43h8L8nDQvdZFSMKS3t7dr/fr1uuGGG1RaWiqLxaINGzb0Ofadd97R9ddfr9zcXBUWFuq2227TsWPH4j7W7t27tXz5cmVnZ6ukpER33XWX6urqhuiVAAAAYLDq2r0KGANfZvSjc+2KjJpTlt6lLlIKhvTGxkY98cQT8nq9WrNmzQXHHT58WCtWrJDP59MvfvELPf300/rwww919dVXq76+fsDjvPHGG/rUpz6liRMn6sUXX9Tjjz+u3bt3a+XKlfJ6vUP4igAAAJCsM62J1aM77VZVFOUM55RGhH20J3C+iooKNTc3y2KxqKGhQU8++WSf4x5++GE5nU79+te/Vn5+qFH9JZdcotmzZ+uxxx7TD37wg36P841vfENz5szRjh07ZLeH/gwzZszQlVdeqaefflr33Xff0L4wAAAAJCze1osfhVsvznblyma1DPe0hl3KraRbLBZZLP3/YQOBgH7961/r05/+dDSgS6GAf+2112rnzp397l9TU6MDBw7o85//fDSgS9IVV1yhOXPmDLg/AAAAhl+7x682d2DAcaeauuT2G5KkuWXpX48upWBIj8fRo0fldru1aNGiXo8tWrRI1dXV8ngufILBoUOHomP72j/yOAAAAEbPmZaBTxiVerZenD0GThqVUrDcJR6NjY2SpKKiol6PFRUVyTRNNTc3a9KkSUntH3m8L3V1db1q3qurq+OeOwAAAOITbz16pPVieWGm8jMzhnNKIyYtQ3pEf2UxA5XM9Demv303b96sjRs3Djw5AAAAJC1gBFUXR+vFNrdfZ1pD49L9KqOx0jKkFxcXS1KfK95NTU2yWCwqLCxMev++Vtgj7r//fq1bt67Hturq6n470QAAACAx59q9MoIDj/swptSFkD7KZs2apaysLB08eLDXYwcPHlRlZaUyMzMvuH9VVVV07E033dRr/8jjfXG5XHK5XEnOHAAAAPGI9yqjkXr0rAybphRlD+eURlRanjhqt9t166236oUXXlB7e/d/PX388cf67W9/q9tuu63f/SdPnqzLL79c27Ztk2EY0e379u3TkSNHBtwfAAAAwyuekG4ETVXXhVovzpmYK2sc5c7pIiVD+q5du7Rjxw699NJLkqT3339fO3bs0I4dO9TV1SVJ2rhxo7q6unTLLbdo165d2rlzp26++WaVlJToH/7hH3o8n91u18qVK3ts+8EPfqDDhw9r3bp12r17t5599ll95jOfUVVVle6+++6ReaEAAADopbXLr06vMeC4k42d8gZCNTFjpfViREqWu9x33306efJk9P727du1fft2SdLx48c1ffp0zZs3T6+//rq++c1v6q//+q9lt9t13XXX6bHHHlNpaWmP5zMMo8eKuSStWLFCL7/8sh5++GHdeuutys7O1i233KIf/ehHcjqdw/8iAQAA0KeaOEtd3vm4WZJkkTTbRUgfdidOnIhr3CWXXKLdu3cPOM40zT63r1q1SqtWrUpkagAAABhm8ZS6tLn9+vOpVknS/PJ85ThTMtYmLSXLXQAAADA++QJBNXR4Bxz3h2ONMsILsVdXlgz3tEYcIR0AAAApo6bFrWDfRRBRvkBQbx1vkiRNK8rWtOKcEZjZyCKkAwAAIGV8cLZtwDF/PNkktz90vuFVY3AVXSKkAwAAIEXUtLjV0uXvd0zQNLX3aOiClEU5Ds0vzx+JqY04QjoAAABSwvtnBl5Ff/9Mm5o6fZKkK2cVj6ne6LEI6QAAABh1de0e1bcPfMLo76sbJIWuMHpJRdFwT2vUENIBAAAw6uJZRf+4sVMfN4UubHn5jCI57GM3yo7dVwYAAIC00NLl05kWz4Dj/ju8im6zWLR8ZvFwT2tUEdIBAAAwqt6Po6NLU6cvutq+eGqB8rMyhntao4qQDgAAgFHT6Q3o48auAcftrW5QpH36lWO07WIsQjoAAABGzQdn2wa8eJHbZ+iPJ5slSZWuXE0qyBqBmY0uQjoAAABGhcdv6Fh954Dj3jreKJ8RlDR2L150PkI6AAAARsWH59oVGGAZPRAM6g/HQhcvmpjv1GxX7khMbdQNKqT/8Y9/HKp5AAAAYBzxG0F9eK5jwHF/Od2qNk9AknRVZaksY/TiRecbVEi/7LLLtHz5cv3sZz+T39//JVwBAACAiOq6DvkCwX7HmKap338UaruY57Rr8ZSCQR83XUL+oEL6li1bFAwG9fnPf15Tp07VQw89pNOnTw/V3AAAADAGBYOmjtS2DzjuaH2nattC/dOXzyqW3Tb4Su15ZXmDfo6RMKhX+oUvfEH79+/X/v37dcMNN+ixxx7TzJkz9elPf1qvv/76EE0RAAAAY8mxhk51+YwBx/2+ul6SlGGz6PIZRYM+rivPqTkTx0FIj7jsssv0b//2bzp16pQ2bNigt99+WytXrlRVVZX+3//7f/J4Br6CFAAAAMY+0zR1uHbgixfVtnmiNeuXVExQtsM+qOParRYtnTn4oD9ShrS7i8PhUHZ2thwOh0zTVFdXl+677z7Nnj1b+/btG8pDAQAAIA2dbnarzR0YcNzecC26RdKVswbfdnHR1ALlZabPVUqHJKT/5S9/0Ze//GVNnjxZ3/zmN7V06VLt379fx44d05/+9CdNnjxZX/7yl4fiUAAAAEhj750ZeBW93ePXn063SJIumpSv4lznoI5ZkuvQ3DQpc4kY1P83eP7557Vp0ybt3btXpaWl+l//63/pvvvuU1lZWXTMokWL9P3vf1833njjoCcLAACA9FXb6lFTp2/AcX841igj3D/96tmDW0W3WaWlM4vTpqtLxKBC+h133KElS5bo6aef1h133CGHw9HnuOnTp+vOO+8czKEAAACQ5t4/2zrgGF8gqP3HmiRJUydkaVpR9qCOuXByoQqy0qfMJWJQIf13v/udrrrqqgHHzZw5U88888xgDgUAAIA01tTpU22rd8Bx73zcLLc/1PnlqtmDu3hRca5DF01KrzKXiEHVpMcT0AEAAID346hFD5qm9laHThidkJ2h+ZPykz6ezSotm5F+ZS4RQ9rdBQAAADhfm8evU81dA457/0ybGsM161dWlshmTT5gLygvUEF2+pW5RBDSAQAAMKw+ONMm0+x/jDdg6OVDZyVJmRlWXVIxIenjFeUMbhU+FRDSAQAAMGzcPkPHGzoHHLf7/XNq6fJLkm6YXyan3ZbU8awWadnMYlkHsQqfCgjpAAAAGDZ/Od2i4ACr6KeauvTm0UZJUkVRti6fkfyVQReUF6gwu++Og+kkbUP6XXfdJYvFcsGf/q5wumXLlgvuV1tbO4KvAgAAYOw61+bR0fr+V9EDwaBeePe0TEk2q0Vrl0yWNcmTPSdkZ2hBeXqXuUQMqgXjaHrooYf0t3/7t72233rrrXI6nbrssssGfI5nnnlG8+bN67GtuLh4yOYIAAAwXgWMoPYfbxpw3O8+bNC5tlBrxmvnlsqVn5nU8ayW0EWL0r3MJSJtQ/qsWbM0a9asHtveeOMNNTQ06Nvf/rZstoHrmKqqqnTppZcO1xQBAADGrT+fblWHJ9DvmLp2j357pE6S5Mpz6pNzSpM+3kWT8lWUk/5lLhFpW+7Sl6eeekoWi0X33HPPaE8FAABg3Gro8OrDc+39jgmapna+WyMjaMoi6bZPTJHdmlw0LcjKUNXkgqT2TVVpu5J+vtbWVu3YsUMrV67UjBkz4trnlltuUX19vQoKCrRixQp997vfVVVVVb/71NXVqb6+vse26urqpOcNAAAwlgSDpvYfaxqw5eKBE0062Rjqnb5sVrGmFWUndTyLRVo6s2hQPdVT0ZgJ6c8995zcbrfuvffeAceWlZXpwQcf1LJly5Sfn6+DBw/q0Ucf1bJly7R3714tXrz4gvtu3rxZGzduHMqpAwAAjBmHzrSq1e3vd0yr269XDoWadRRmZeiGiyYmfbwF5fkqyXUmvX+qspjmQP+dkx4uu+wyHT9+XDU1NXI6E3+jTpw4oYULF+q6667Tiy++eMFxF1pJX7NmjQ4dOqQFCxYkfGwAAICxoKXLp1cO1fbbctE0TW3bd1If1IbKYb64fLrmluUldTxXnlMrL3LJkmQ3mJHy3nvvqaqqKqGsOCZW0v/yl7/o7bff1te+9rWkArokTZ8+XVdddVW/rRslyeVyyeVyJXUMAACAsco0Te071jRgT/RDZ9qiAf3iqYVJB3Sn3aorK0tSPqAna0ycOPrUU09Jkr70pS8N6nlM05Q1yRMWAAAAxrMPzrarqdPX75guX0Av/fmMJCnbYdNNCyclfbwrKouV5UjuqqTpIO0Tqdfr1bZt23T55ZcPeNJnf44fP669e/dq2bJlQzg7AACAsa/N49ehmtYBx+06VKsOb6gt480LJynXmVxRx/zyfE0qyEpq33SR9uUuv/rVr9TU1HTBVfR7771XW7du1dGjR1VRUSFJuv766/XJT35SixYtip44+sMf/lAWi0WPPPLISE4fAAAg7b11rEmBAepcqus69MeTzZKk2a5cXTy1MKljleY5tWiMtVvsS9qH9Keeeko5OTm6/fbb+3zcMAwZhqHY82MXLlyo559/Xo899pjcbrdcLpeuu+46PfTQQ5ozZ85ITR0AACDtfXSuXXXt3n7H+AJB/epPNZKkDJtFay6enFQtucNu1RWzxs5VRfuT9iH9v/7rv/p9fMuWLdqyZUuPbT/5yU+GcUYAAADjQ6c3oHdPtQw47rXD56L16jfML9OEJK8MumxmkXKSLJFJN2lfkw4AAIDRceBEkwJG/2UuNS1u/b66QZI0ZUKWls8qTupYc8vyNGVCchc8SkeEdAAAACTsREOnzrR4+h1jBE3tfOe0gqZktUi3LZkiaxJlLsW5Di1JsoY9XRHSAQAAkBCP34ieBNqf3x6p05nWUJC/Zk6pygoyEz5Whs2iKytLxkUdeixCOgAAABLyx5PN8gaC/Y559+NmvXa4TpJUkuvUirnJXQxy2czipFs1pjNCOgAAAOJ2qqlLJxu7+h1zrKFDL7wT6uaSmWHVnUunKcOWeOycMzFXU4vGTx16LEI6AAAA4lLX7tEfjjb2O6a+3auf7ftYhmnKZrHozqUVcuUnXuZSlJOhJdMmJDvVtEdIBwAAwICaOn1640h9vxct6vAGtPUPJ+T2G5Kk2z4xWTNLcxM+lj1ch24bZ3XosQjpAAAA6Fdrl1+/PVwnfz/tFv1GUP/+hxPRfugr57mSXglfOqNIeZkZSe07VhDSAQAAcEHtHr9eO3Ku3xNFg6ap7W+f0qlmtyRpydRCXTcvuRNF503KU0VxTlL7jiWEdAAAAPSpyxfQa4fr5Pb138nlv96r1aEzbZKkGSU5WvuJybIk0Q99blmuPjGO69BjEdIBAADQi8dv6LXDder0Gv2Oe+t4k373UeiKoqW5Tt25tEJ2a3KdXC6pKEpqrmMRIR0AAAA9+AJB/fZwndrcgX7HfXiuXf/x51CrxRynXV+8YrqyHLaEjzdnYq4unU5Aj0VIBwAAQJTfCOq3R+rU3OXvd9zZVreefetjBU3JbrXoC8sqVJTjSPh4swnofSKkAwAAQJJkBE397sN6NXb4+h3X6vZr65sn5AsEZZH0mUunJnXRodkTc3UZAb1PhHQAAAAoGDT13x/V61ybt99xXr+hf/vDCbV5QqUwq6vKVDW5IOHjVboI6P0hpAMAAIxzpmnqD8cadabF0+84I2jq5wdO6WxraNzSGUW6qrIk4ePNKs3R5TMI6P2xj/YEAAAAMLreOt6kk41d/Y4JBIN64Z0aHTnXLkmaOzFPtywqT7jV4qzSHC2dWZz0XMcLQjoAAMA4FQya+uPHzTpa39nvOK/f0LNvfayP6jokSZMKMnX7ZVNlsyYW0GcS0ONGSAcAABiHPH5De6sbBqxBb/f4tfUPJ6KlMFMmZOkLy6fLmZFYq8WZpTlaSolL3AjpAAAA40xzp0+/+6h+wAsVNXR49cze49F2jHMn5umOy6fJYU/stMYZJaGAnsxVSMcrQjoAAMA4crKxU/uPNSkQNPsdd6qpS1v/cEJdvlCQv6RigtZcPDnhEpfISaIE9MQQ0gEAAMYB0zT17qkWHT7bPuDYI7Vtevatj+U3QkH+2rkuXX+RK+GgvXhqgRaUJ96eEYR0AACAMc8bMPRmdWO0dWJ//niySTvfrVHQlCyS/r+Ly7V0RmIne9qtFi2bWaxpxYlf4AghhHQAAIAxrKXLp9991KCO8MWHLsQ0Tf32SL12f3BOUiho337ZVM1PcCU8M8OqT84pVUmuM+k5g5AOAAAwZn3c2KV9xxoHrD8PmqZe+vMZ7T/eJEnKyrDpC8srVFGck9DxCrMzdM2cUuU4iZiDxV8QAABgjDFNU38+3ar3z7QNONZvBPX8gVN6/2xobGFWhu66Yrpc+ZkJHXNSQaaurCxJuPML+kZIBwAAGEN8gaDePNoQ7Wveny5fQP/+h5M62RS62mhZfqa+eMV0FWRlJHTM2RNzdWnFBDq4DKG0/U+d119/XRaLpc+fffv2Dbh/XV2d7rrrLpWUlCg7O1vLly/Xnj17RmDmAAAAw6OuzaNX3quNK6Afb+jU/3mtOhrQZ5Tk6G+unplQQLdYpE9UFOqy6bRYHGppv5L+/e9/X9dee22PbVVVVf3u4/V6tXLlSrW0tOjxxx+Xy+XSpk2btHr1au3evVvXXHPNcE4ZAABgSAWMoP58ukVHajsGHGsETb12+JxeP1KvSKX6wskFWnfJFNlt8a/f2m0WXVlZosmFWUnOGv1J+5A+e/ZsLVu2LKF9nnrqKR06dEhvvvmmli9fLkm69tprtXjxYq1fv1779+8fjqkCAAAMubo2j/Ydbxqwe4skNXZ49Yu3T+lUs1tSqIPLpxZO0rIELzaU7bDpmjmlmpDjSHre6F/ah/Rk7Ny5U3Pnzo0GdEmy2+2688479cADD6impkaTJ08exRkCAAD0L5HVc9M09c7HLXrpL2fkCwQlherPP3vZVE1M8ATRohyHrplTqiyHLal5Iz5pW5Me8Xd/93ey2+3Kz8/XjTfeqN///vcD7nPo0CEtWrSo1/bItvfee2/I5wkAADBU6to9evlQbVwB3e0z9NyBU/rlO6ejAf3KWcW6b8WshAK63WrR4qkFumH+RAL6CEjblfSCggJ97Wtf04oVK1RcXKzq6mr96Ec/0ooVK/Sb3/xGN9544wX3bWxsVFFRUa/tkW2NjY0X3Leurk719fU9tlVXVyf5KgAAAOKXyOq5JB1r6ND2t0+r1e2XJOU57fr0JVM0Z2JeQsedVJCpS6dPUF5mYl1fkLy0DelLlizRkiVLovevvvpqrV27VgsXLtT69ev7DemS+q276u+xzZs3a+PGjYlPGAAAYBDq2j3adyy+2nMjaGr3B+f0uw+7Tw6dV5an2z4xRbkJXGjIabfqExUTNKMksYsaYfDSNqT3pbCwULfccov+5V/+RW63W1lZfZ9tXFxc3OdqeVNT6Cpbfa2yR9x///1at25dj23V1dVas2ZN8hMHAAC4gERXzxs6vHr+wCnVtHSfHHrTwklamuDJoTNKcrRkWqEyMyhtGQ1jKqRLoRMjpP5XwxcuXKiDBw/22h7Z1l8LR5fLJZfLNchZAgAADOzjxi796XRL3Kvnb51o0n8eqpXPCNWeTyrI1GcvnZrQ1UNzM+1aOqMo4RNKMbTGVEhvbm7Wr3/9a1188cXKzLzwB2vt2rW6//77tX//fi1dulSSFAgEtG3bNi1dulTl5eUjNWUAAIBezrV59O7HLWrq9MU1/lh9h379l7Oqbeu+iNFVlSW6Yf7EuHufWy3SvEn5Wji5QDYrFyYabWkb0j/3uc9p2rRpuvTSS1VSUqKPPvpIP/7xj3Xu3Dlt2bIlOu7ee+/V1q1bdfToUVVUVEiS7rnnHm3atEnr1q3To48+KpfLpc2bN+vIkSPavXv3KL0iAAAw3jV3+vSnUy062zrwFUMj43cdOqtDZ9qi2yZkZ2jNksma7Yr/5NDiXIeWzihSYTZ9z1NF2ob0RYsW6fnnn9e//Mu/qKOjQ0VFRbrqqqv07//+77rsssui4wzDkGEY0TIYSXI6ndqzZ4/Wr1+vv//7v1dXV5cuvvhi7dq1i6uNAgCAEdfpDejPp1t0oqErrvG+QFBvfFiv//6oXoFgKONk2CxaMdelqypLlBHn6nmWw6qq8gJVunITqlfH8LOYsekVSXnvvfdUVVWlQ4cOacGCBaM9HQAAkCY8fkPvnWlTdV27wmXk/TJNU3+padUrh2qjbRUlafGUAq2umqSCrPhaJDrsVl00KU9zJ+bFXQ6D5CWTFdN2JR0AACBdBYygDte264OzbfIb8a2Xnmlx66W/nNHJxu7V9vLCTN26qFwVxfG1SLTbLJo7MU8XTcqXw044T2WEdAAAgBESDJo61tChgzWtcvviWDqX1OEN6NX3a/X2ieZoz/Mch003LijTJyomyBpHmYrNKlW68rSgPJ+WimmCkA4AADDMgkFTR+s79P7ZNnV6jbj28foN7TvepDc+rJPHHwr0Vot0xawSXTfPFVfYtlpC/c6rJhcoJ4GLGGH08W4BAAAMEyNoqrquQx+cbVOXL75w7vYZevNYg96sbpTb373PnIm5umnhJLny4utfXlGcrYVTCpSfGV+dOlILIR0AAGCIBYygPqrr0OHatoTKWvZWN2jfsUZ5A937uPKcWr2gTHPL8uLqwDJ5QpYWTS7QhBzaKaYzQjoAAMAQ8RtBfXiuXYfPtvcI2v1pdfv1+4/q9daJph4nkZYXZGrFXJfml+fHVXc+tShLVeWE87GCkA4AADBIvkAonB+pjT+cN3f69MZH9frjyWYZwe5wPq0oW9fOLdWciQOvnFssUkVRthaUF6ggm7KWsYSQDgAAkCSP34iG83hbKTa0e/X6h/X606lmxWRzzSzN0bVzXZpZkjNgOLdapOklOVpQnq88as7HJEI6AABAgmpbPaqu69Dp5q4eQftCgqapY/Wd2n+8Ue+faVPsLnMn5mnF3NK4ep3brNLM0lzNn5RPt5YxjncXAAAgDt6AoWP1naqu61C7JxDXPl3egP74cbPeOt6kxk5fj8cWlOdrxVyXJhdmDfg8dqtFs1yhcJ7loM/5eEBIBwAA6Edde2jV/FRTl4w4ys1N09SpZrf2H2vUwZpWBWKW2u1WixZNKdTVs0s0MX/gVopOu1WVrlzNLcvjIkTjDCEdAADgPL5AUCcaQ6vmLV3+uPbx+g396XSL3jrepLOtnh6PleQ6tXRGkZZMK1S2Y+D4VZSToTkT81RRnCObdeDOLhh7COkAAAAKrYDXtXt1oqFTJxu7eqyA96e21aP9xxv1p1MtPTq7WC3S/PICLZ1RFPfJoNOKsjWnLE8luc5BvRakP0I6AAAYt4JBU2fbPDrV1KWaZnfc7RPbPX4drGnVn0616HSzu8djBVkZumx6kS6dPiGuq31mO2yqdOWq0pVLSQuiCOkAAGBc8RtBnW3x6FRzl860uONunej2GXr/bKv+fKpVR+s7enRosUiaPTFXS2cUa25ZXlwXH5qY79SciXmaXJglKyUtOA8hHQAAjHnegKGaZrdONbtV2+qO6wRQKRToD9e268+nWnTkXHuPiw5J0oTsDC2eUqhLpxepKI4rfdptFs0oydEcVx4XH0K/COkAAGBM6vQGdLrZrZqWLtW1eePqZy5JRtDU0foO/flUi94/29arBCbHadeiyQVaPLVQUydkDVhrLoVOBK105amiOFsZNmsyLwfjDCEdAACMGQ0dXtU0u1XT4o67K4sUWjE/Vt+pD2rb9F5Nqzp9Ro/HnXarFpQXaPHUAs0syY2r44rdZtH04hxVunLjWmUHYhHSAQBA2goYQdW2eVTT7NaZVrfcvjjrWCR1eAM6UtuuD862qbquQ77zamDsVovmluVp8ZRCzS3Li3sFPLRqnquK4hxWzZE0QjoAAEgrbp+hmpYunW52q67NG3erxEiLxcPhYH6qqUvn72mzWDSzNEeLpxRqfnl+3N1W7DaLKoqyVenKVTHtEzEECOkAACCl+Y2g6tq9qm31qK7No+YEyliMoKkTjZ06fLZNH9S2q6nT12tMtsOmuRPzNG9SvmYn0AbRYgldpGh6cbaml7BqjqFFSAcAACklYATV0OFTbZtH59o8au70xX3Sp2maqm/3qrq+Q0frOnSsobPP3ucluU5dNClP88ryNa0oO+6reloskivPqWlF2ZoyIVtZDvqaY3gQ0gEAwKgKBk01dHpV1xZaLW/s9MbdIlGSWt1+HQ2H8qP1HWrzBHqNsUiqKM7RRZPydFFZvkry4i9JsVqkifmZmlqUpSkTsrngEEYEIR0AAIwoXyCoxk6v6tu9auzwqb49/rpySfL4DR1v6FR1XYeq6ztU3+7tc1x+pl2zSkNX8pw7MU/Zzvhjj9UiTSzIDK+YZ8lpJ5hjZBHSAQDAsGrz+NXQHgrlDR0+tXn8MuPP5Or0BnSysUsnGzt1orFTNS3uPstfnHarZpbkaJYrV5WluSrNc8bVwzx2/4n5mSovzNSUCdly2Kkxx+ghpAMAgCETMIJq6vSpvqN7pbyvmvALMU1TTZ0+nQiH8pONXarv6Hul3GaxaGpRtipdOaoszdXkCfHXlkuSzSqV5jk1MT9Tkwqy6GWOlEJIBwAASfEGDDV3+tXc5VNzp09NXT61ewIJrZIbQVNnW9062dilE+FQ3uHtXVMuhUpQJhVkaUZJjmaV5mp6SXbCZSgTsjNUVpCpsoJMleY6ZacjC1IUIR0AAAyoyxdQU6dPLV1+NXX61NzlU6fXGHjHGKZpqrHTp9PNbtU0h/qcn2l1y2/0neoddqumFWWrojhb04tzkqoNz3HaNDE/U2X5oWDOSZ9IF2kb0l977TVt27ZNb775pk6dOqXCwkJdeumlevjhh3XJJZf0u++WLVt099139/nY2bNnVVZWNhxTBgAg5Xn8htrcfrV5/Gp1h36aO/0JlaxEtLr90TB+usWtmma33P4LB/u8TLumF+eoojhbFcU5KsvPTKh8RZIyM0J15aEfp/IyMxKeN5AK0jak/9//+3/V2Nior33ta5o/f77q6+v14x//WMuWLdN//ud/6rrrrhvwOZ555hnNmzevx7bi4uLhmjIAACnD7TOiIbzN41drV+h2MmHcNE21eQI62+rWmRaPalpCK+V9tUKMsFktmlSQqcmFWZpaFFopn5CdkdCJnpKUYbP0COWF2dSVY2xI25C+adMmuVyuHttWr16tyspKff/7348rpFdVVenSSy8drikCADDqYsN4S5dPbZ6AWt1++ZII41Kohryu3aPaVo/Otnp0ptWt2laPunwXXiG3KHSC5pQJoXaGUyZkqSw/M6l6cLvNotJcZzSUF+U4Eg72QDpI25B+fkCXpNzcXM2fP1+nTp0ahRkBADB6PH4jHMS7y1QGE8YlqcMbUF1bKIyfbfWottWtc+1eGQP0NJ+QnREN5JMnZGlyQZacSdSCWyxSQVaGinMcKs51qiTXoYKsxFfbgXSUtiG9L62trXrnnXfiWkWXpFtuuUX19fUqKCjQihUr9N3vfldVVVX97lNXV6f6+voe26qrq5OeMwAAifAbwXAQD53E2TKIMpWITm9A59o9qmvz6lybR3XtXtW1edTZz+q4FGqB6Mp3alJBliYVZIZ/spTlSO7kzCyHVcU5ThXnOlSSG1olz6D7CsapMRXS/+7v/k6dnZ168MEH+x1XVlamBx98UMuWLVN+fr4OHjyoRx99VMuWLdPevXu1ePHiC+67efNmbdy4cainDgBAD8GgqTZPdwhvCZerJNpRJcI0TXV4A2ro8IWDuEfn2ryqa/eq8wItD2NlO2wqK8hUeTiQlxVkqjTPKbs1uRCdmWHVhGyHCrMzosE8J4ErggJjncU0E+lmmroeeughfe9739M///M/6ytf+UrC+584cUILFy7UddddpxdffPGC4y60kr5mzRodOnRICxYsSPjYAIDxy+M31O4JqMMbULvHrw5PQC1uv9rc/j6vqjkQvxFUQ0foyp6hK3x2/3j8A6+2O2xWufKdcuWFar5deU6VFWQpP9OeVJmJxRLq2hIJ5BOyHZqQ7Uh6tR1IR++9956qqqoSyopj4j9ZN27cqO9973v6x3/8x6QCuiRNnz5dV111lfbt29fvOJfL1Wc9PAAAF9LpjYTwnmG83RtQ4AI9wvsTCIZKXho7fGrq9Kq+wxcK4u1etbj9cT1Hhs0SE8S7fxdkZ8iaZM23w25VfqZdE3IcmpCdocJshwqzMrhgEJCEtA/pGzdu1IYNG7RhwwY98MADg3ou0zRlTfJ/2wEAxidvwFCX11CX31CXN6Aun6FOX0Bun6FOnyG3LyAjiXJxb8BQU6cvHMRDP42d3ugFheKN9vmZdpXkOkM/eU6V5jpUmpepwkGE8cwMqwqyMpSflaGC8E9+Zgar48AQSuuQ/sgjj2jDhg369re/re985zuDeq7jx49r7969uv7664dodgCAdBcMmuryG+r0BsI/oQDe5QuF8S6voUAyNSkKrYa3dvnV3OVXc1foCp6Rq3k2dfrUEUedeITDZlVJrkMlec5oIC8Nd0NJpquKJFktUo7TrtxMu/Izw0E8y66CrIyEr/oJIHFpG9J//OMf6+GHH9bq1at188039ypTWbZsmSTp3nvv1datW3X06FFVVFRIkq6//np98pOf1KJFi6Injv7whz+UxWLRI488MuKvBQAwOoygGQ3cHbFB3BsIh3FDyZ655TeCaguf8Nnc6esVxtvc8a+GS1JWhk1FOQ4V5ThUnOtQcY5DRTmhDijJ1os77FblOu3Ky7Qr12lXTsztbIeNVofAKErbkP7SSy9Jkl555RW98sorvR6PnA9rGIYMw1Ds+bELFy7U888/r8cee0xut1sul0vXXXedHnroIc2ZM2dkXgAAYFj5jaC6fIbcPiMaxN3hVfHQNiPptoVB01S7J6DWLp9a3N3dV1pjOrHE0zEllkWhnuCF2eEAnhsO5DkOFec4B9XWMNeZobzMUADPc2YoNxzEHXZKPIFUNWa6u4ymZM7YBQAkJ1KC4g4HcLc//OMz5PYH5PYF1eULyJ/ECZlSKNy3h6/K2eYJrXi3uf3RK3W2hbcnWuVikZSflaEJ4Q4nhdkOFeWEQvmE7NBFemzW5Fausx226Ap4pDwlcp+TNoHRN267uwAA0p/fCMrtN+TxG/L4gj3Ctyd8u8tnDOpy9pHOKu2egNrCv9s9frW5Q/db3f5+L2/fH4fNqoLsDBVGTqbMzlBhVih8T8gO3U+2p7gU6saSlxmqC8/PzIgG8bxMgjgwFhHSAQDDxm8E5fGHykoiv90+Q96AIXdMEPf4kjsB0zRNeQPBaDvD2BAeCeCR310+I6Ea8Fh2q0X54Q4mBVl2FWSFen4XxoTxzAzroGu4bVYp2xEK3qHjRVbF6ZwCjDeEdABAXIygKV8gKF8gKK9hyOsPhkN4UJ5A6H7ktzf8O5ngHTTNUPtCb0AdvtCJnO0evzq8AXWE+4zH3k62u0pEjsMWDeD5kQ4mkdvhleusjKE5iTIzw6psh105Tlv0d44jdJJmjtOuzCQ7sQAYewjpADDORFafQz+hMO0zgtFw7Qs/5guEtkeCebJhOGia4XaFAXX6ujunRDqpdMTc7/CG+ooPMnfLalG4a0nMCZOR2zEnUeZm2gdVghI5VmaGTZkZVmVm2OS025TlCN8P385yhMJ4sjXnAMYfQjoApCnTNHuE6Njb3pj73kBQ3nCpiTcQWv1OtmWAETSjdeLRXuHh253e8O+YQN4VvqjPUHQosCjctzt8cmSu0668mNux23Oc9qQv1BORYbMoy2FTtsOmzIzQyndWhk1Z4UDuDN+mQwqA4UBIB4BRdn7A7nE/Zrvf6Bm+hyJse3xGd6cUf3drwki7wvODuMef3EmbF5KZYVWOwx4N3znOUNlHjqM7bOc4bcrLzFC2wzbo4G2xSE57aMU7K8MmZ0b37WxH6HdW+DcnYwIYTYR0ABgkvxEKzL4eAdrsEaz9McE6dlwgaCYdtANGzImX/mCPLiieHm0Je/9Otj94f2wWi7JjaqyznXblOGy9arCzIwHcMTRB2GZVuMzEKqe9Z/COlKFEbjvtgz+5EwBGAiEdwLhmBM1QcDaCChhmjzAdCJo9grXfMOUzDPkCoTITf/ixZOqng6YZLUVx+w15Y8K2J9KGMBK+/ZFuKIY84S4p7iS7ocQrEmyzw4E7y9F9u/vHHl19znHahywA222WnoE7/DuyAt4dyEP3M1jxBjAGEdIBpJ1AOED7I8E6GArQASP0u8f2QPfY6JigmXTAjg3Xnmidd0xHk8j2cKcTT3h7JHxHHvcFgkNSp90fu9USWlF29F3OEam3Dt2293hsqE5wzLBZ5MywyWGzyGkPBepI4Hbaw2G7RxAfumMDQDojpAMYVqZpym+YofZ9RlBGsDsoR0J1INi9ih0bvgPR8B267QuE9k8kWEeOH+peYsR0MenZySQSsCNdTSInWvrCLQYjjyd7IZ1k2MIhO/O8GuroyYuO7pKOrJiSjsj2oVhhzrBZ5LBblWGL/FjksFmVYe9532EP/5x3m9ISAEgOIR2ATNNUIGhGSz+MYOh+JDhH7wcj4dmUEQ7Qfe0TGRfZFq9AMCh/uJTEGzDkD5jyGkbfJ1Se172ku6NJ9/jI9uFese5Lhs0SXR2OlGdE2vNlhleMIy36Mh3dQTy2ld9gQ7bVolCQtlvliAnbjug2a0wAt0SDdSSQ07UEAEYPIR1IA5HyjkjoNcKB2QiH4j639xG6jUiAjoxNMEjH1m/7A7G/+9humH2eKNnn/fDtYSyxjovdGgqq55diRG/bQ233nPaeddLOmFKNSBgfTMlGJFzbw6vU9pgV68jt2JXtjJiwHdknw2albAQA0hghHUiQaXYH22B4BToYE4pjf3ptM0Mr0JFwbPSxf2SV2ggq+rs/QbN7xfv8Wuxo7XWw+3F/zNgeYyLBOjouPDYaukc/RMeKBNnYUB1bbhEJ1aHSC1v3bVvv4O2wD74W2mpRjwBtt3YHabvNErM9ZkwfYZtwDQCQCOlIU+cHZSNoKhhUOAR3b4sNx7FBODZcdz8eKreIhN6g2XfwvlBQjcypR411THlINECHV8V71mV3P+aPKTMJxDzu7yuIh8N+qrJI0ZXdaKnFeWUWfd139lHbHLntDJdq2K2WpOudLZZQvXeGzSKb1aoMq0X2cLC22yyyW63h391hOhKuo0Hc2jNkE6wBAEOJkI6kBKOrwjEh2VQ0CPcVgnsG3fMe7/V83avIkYAdO+b8vtKRYB0p94itjY4E59gTFo2Y8BwpJTm/njoQE4IDMd1Dzh8XG8TTiUUKnfxnPf/EQKscdkvP+9FwGrodqWeOLbNwxNQ1R7YnG6St4RBtjwnR/d23R+7HhO3Y+5HbsdsAAEhlhPQ019Dh7RV+ewbdmFXlmLAbNMMrv2Y4XIcfO/+2YZrRFWIjHG59gd7lHBeqh+4+mTDYx/hgTJ30eduCvUN3ZFvsMSL30ywf9ylSLhFdvY2WS1h61SH3fqz36q7D3rOm2dGjxtkimyWxAG2zSjarNfrbbrXIarH0CMC9fizdYTo0JrzfeaE59Ls7TFtZlQYAjHOE9DT3090fRtvS9VWaEQ3K55d/nBeq+6yjNrsDdOxq91gWu9Ka0UfpQ3dJRPdqbl/lEPZwKYU9JjTbY587NmDHrPYOxGIJXdXRarXIZlWPkBy5bQ2H49gwbI0JzLY+tkVCe2x4jg3arDwDADCyCOlp7udvnUq7MotYkZplW8wqa3Rl1dZzdbW/cobYANy9vWe9caQG2W61xjxuidYT28JB93yRMHx+CLZZJYulO+hG6py7Q7RFVkt3kI59jtiAbY0Jz9HbFousVvWxjRVmAADGA0J6mrNbLf2G9EhtbyQE28IlFbGrqrGrq+fft1p6huULjbP1FaYj223nb495Llt3kI0NwdbwirHFEhN2I0HV0n3fel5YtobDbffz9XzuSJDucTyLoscJHVOEYgAAMKoI6WnuK9dVKmiGO1XElF447aEOGDarNRp4rdbugGsJB9PofXWH1e4ALEk9V4QtPVaGu58jEm67g3RMiI4JztGgHA3UhGAAAIDzEdLT3JevmRUNvwAAABgbCOlpbrCXDQcAAEDqIeEBAAAAKYaQDgAAAKQYQjoAAACQYgjpAAAAQIohpAMAAAApJm1DekdHh77+9a+rvLxcmZmZuvjii/Xzn/88rn3r6up01113qaSkRNnZ2Vq+fLn27NkzzDMGAAAA4pO2LRhvu+02HThwQI8++qjmzJmjZ599VnfccYeCwaA+97nPXXA/r9erlStXqqWlRY8//rhcLpc2bdqk1atXa/fu3brmmmtG8FUAAAAAvaVlSH/55Zf16quvRoO5JF177bU6efKkvvGNb+izn/2sbDZbn/s+9dRTOnTokN58800tX748uu/ixYu1fv167d+/f8ReBwAAANCXtCx32blzp3Jzc7Vu3boe2++++26dOXOm36C9c+dOzZ07NxrQJclut+vOO+/UW2+9pZqammGbNwAAABCPtFxJP3TokC666CLZ7T2nv2jRoujjV1xxxQX3vfrqq3ttj+z73nvvafLkyRc8dl1dnerr63tsq66uTmj+AAAAQH/SMqQ3NjZq5syZvbYXFRVFH+9v38i4RPeVpM2bN2vjxo19PkZYBwAAwPkiGdHr9ca9T1qGdEmyWCxJPTbYfe+///5eZTavvfaavvrVr2rNmjX97gsAAIDx69SpU/rEJz4R19i0DOnFxcV9rng3NTVJUp8r5UOxryS5XC65XK4e2yZPnqxp06Zp6tSpcjqdA85/MKqrq7VmzRr96le/UmVl5bAeCwPj/UgdvBephfcjdfBepBbej9Qxku+F1+vVqVOnEuoimJYhfeHChXruuecUCAR61KUfPHhQklRVVdXvvpFxseLZ90IKCwv1V3/1VwnvNxiVlZVasGDBiB4TF8b7kTp4L1IL70fq4L1ILbwfqWOk3ot4V9Aj0rK7y9q1a9XR0aFf/vKXPbZv3bpV5eXlWrp0ab/7Hj58uEcHmEAgoG3btmnp0qUqLy8ftnkDAAAA8UjLlfRPfepTWrVqle677z61tbWpsrJSzz33nF555RVt27Yt2iP93nvv1datW3X06FFVVFRIku655x5t2rRJ69at06OPPiqXy6XNmzfryJEj2r1792i+LAAAAEBSmoZ0SXrhhRf04IMP6uGHH1ZTU5PmzZun5557Trfffnt0jGEYMgxDpmlGtzmdTu3Zs0fr16/X3//936urq0sXX3yxdu3axdVGAQAAkBLSNqTn5ubq8ccf1+OPP37BMVu2bNGWLVt6bZ84caK2bt06jLMbPqWlpfrOd76j0tLS0Z4KxPuRSngvUgvvR+rgvUgtvB+pI9XfC4sZu8wMAAAAYNSl5YmjAAAAwFhGSAcAAABSDCEdAAAASDGEdAAAACDFENJTXHt7u9avX68bbrhBpaWlslgs2rBhQ9z7b9myRRaLpc+f2tra4Zv4GDTY90KS6urqdNddd6mkpETZ2dlavny59uzZMzwTHgc6Ojr09a9/XeXl5crMzNTFF1+sn//853Hty3cjOYP5m/P5H1rJvhd89ofeYP994LsxtAbzfqTS9yNtWzCOF42NjXriiSe0ePFirVmzRk8++WRSz/PMM89o3rx5PbYVFxcPxRTHjcG+F16vVytXrlRLS4sef/xxuVwubdq0SatXr9bu3bvp05+E2267TQcOHNCjjz6qOXPm6Nlnn9Udd9yhYDCoz33uc3E9B9+NxCT7N+fzP/QG+/nnsz90BvPvA9+NoTcU2Sklvh8mUlowGDSDwaBpmqZZX19vSjK/853vxL3/M888Y0oyDxw4MEwzHD8G+15s2rTJlGS++eab0W1+v9+cP3++efnllw/1dMe83/zmN6Yk89lnn+2xfdWqVWZ5ebkZCAT63Z/vRuIG8zfn8z+0BvNe8NkfeoP594HvxtAbzPuRSt8Pyl1SXOR/sWD0Dfa92Llzp+bOnavly5dHt9ntdt1555166623VFNTMxTTHDd27typ3NxcrVu3rsf2u+++W2fOnNH+/ftHaWZj12D+5nz+hxaf/9QymH8f+G4MvbGSnQjp48Qtt9wim82moqIi3XbbbTp06NBoT2ncOXTokBYtWtRre2Tbe++9N9JTSmuHDh3SRRddJLu9Z9Ve5O8Z72ec70b8BvM35/M/tIbi889nPzXw3UhNqfD9oCZ9jCsrK9ODDz6oZcuWKT8/XwcPHtSjjz6qZcuWae/evVq8ePFoT3HcaGxsVFFRUa/tkW2NjY0jPaW01tjYqJkzZ/baHu/fk+9G4gbzN+fzP7QG817w2U8tfDdSSyp9PwjpI+j111/XtddeG9fYd999VxdffPGgj7l69WqtXr06ev+Tn/ykbr75Zi1cuFAPP/ywXnzxxUEfIx2Nxnshqd///TYW/tdcspJ9Pwbz9+S7kZzB/M35/A+tZP+efPZTD9+N1JFK3w9C+giaO3eu/vVf/zWusdOmTRu2eUyfPl1XXXWV9u3bN2zHSHWj8V4UFxf3uSLS1NQkSX2upIwXybwfw/H35LvRv8H8zfn8D62h/nvy2R89fDdS32h9PwjpI2jSpEn60pe+NNrTkCSZpimrdfyekjAa78XChQt18ODBXtsj26qqqkZ0Pqkkmfdj4cKFeu655xQIBHrU5Q727znevxv9GczfnM//0BqOzz+f/dHBdyM9jMb3g2/jOHT8+HHt3btXy5YtG+2pjCtr167V4cOHe3RdCAQC2rZtm5YuXary8vJRnF36Wbt2rTo6OvTLX/6yx/atW7eqvLxcS5cuTfg5+W70bzB/cz7/Q2uoP/989kcP343UN2rfj9HtAIl4vPzyy+b27dvNp59+2pRkrlu3zty+fbu5fft2s7OzMzrunnvuMW02m3nixInotpUrV5obN240d+7cae7Zs8f86U9/apaXl5t5eXnmwYMHR+PlpLXBvBcej8dcsGCBOXXqVPNnP/uZ+eqrr5pr16417Xa7+frrr4/Gy0l7q1atMidMmGA+8cQT5muvvWb+zd/8jSnJ3LZtW49xfDeGTjx/cz7/IyPZ94LP/vCI598HvhsjJ9n3I5W+H4T0NFBRUWFK6vPn+PHj0XFf/OIXe237+te/bs6fP9/My8sz7Xa7WV5ebt55553mkSNHRv6FjAGDeS9M0zRra2vNL3zhC2ZRUZGZmZlpLlu2zHz11VdH9kWMIe3t7eZXv/pVs6yszHQ4HOaiRYvM5557rtc4vhtDJ56/OZ//kZHse8Fnf3jE8+8D342Rk+z7kUrfD4tpmuZwrtQDAAAASAw16QAAAECKIaQDAAAAKYaQDgAAAKQYQjoAAACQYgjpAAAAQIohpAMAAAAphpAOAAAApBhCOgAAAJBiCOkAAABAiiGkAwAAACmGkA4AAACkGEI6AAAAkGII6QCAIeHxeLRkyRJVVlaqtbU1ur22tlZlZWVasWKFDMMYxRkCQPogpAMAhkRmZqZ+8YtfqK6uTvfcc48kKRgM6n/8j/8h0zT13HPPyWazjfIsASA92Ed7AgCAsWP27Nl68skn9dnPflaPP/64mpqa9Prrr+uVV17RpEmTRnt6AJA2LKZpmqM9CQDA2HL//ffrySeflGEYeuCBB/TII4+M9pQAIK0Q0gEAQ+7tt9/WZZddJofDodOnT6u0tHS0pwQAaYWQDgAYUp2dnbr00ksVDAZ17tw5XXPNNXrxxRdHe1oAkFY4cRQAMKT+9m//Vh9//LFeeOEFPfXUU/qP//gP/eQnPxntaQFAWiGkAwCGzJNPPqlt27Zp06ZNWrBggT796U/rK1/5ir75zW/qrbfeGu3pAUDaoNwFADAkDh48qKVLl+ozn/mMtmzZEt3u9Xp15ZVXqrGxUe+++64KCwtHbY4AkC4I6QAAAECKodwFAAAASDGEdAAAACDFENIBAACAFENIBwAAAFIMIR0AAABIMYR0AAAAIMUQ0gEAAIAUQ0gHAAAAUgwhHQAAAEgxhHQAAAAgxRDSAQAAgBRDSAcAAABSDCEdAAAASDH/P5NCfsIkjDYcAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " 100.00% [8000/8000 00:02<00:00 Sampling 4 chains, 25 divergences]\n", + "
\n", + " " ], - "source": [ - "# First, the mean of the response (default)\n", - "fig, ax = plt.subplots(figsize=(7, 3), dpi=120)\n", - "bmb.interpret.plot_predictions(model, idata, \"x\", ax=ax);" + "text/plain": [ + "" ] }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Below, instead of plotting the default target, `target=mean`, we set `target=alpha` to visualize how the model parameter `alpha` varies as a function of the `x` predictor." + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 2 seconds.\n", + "There were 25 divergences after tuning. Increase `target_accept` or reparameterize.\n" + ] + } + ], + "source": [ + "rng = np.random.default_rng(121195)\n", + "N = 200\n", + "a, b = 0.5, 1.1\n", + "x = rng.uniform(-1.5, 1.5, N)\n", + "shape = np.exp(0.3 + x * 0.5 + rng.normal(scale=0.1, size=N))\n", + "y = rng.gamma(shape, np.exp(a + b * x) / shape, N)\n", + "data_gamma = pd.DataFrame({\"x\": x, \"y\": y})\n", + "\n", + "formula = bmb.Formula(\"y ~ x\", \"alpha ~ x\")\n", + "model = bmb.Model(formula, data_gamma, family=\"gamma\")\n", + "idata = model.fit(random_seed=1234)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + " Formula: y ~ x\n", + " alpha ~ x\n", + " Family: gamma\n", + " Link: mu = inverse\n", + " alpha = log\n", + " Observations: 200\n", + " Priors: \n", + " target = mu\n", + " Common-level effects\n", + " Intercept ~ Normal(mu: 0.0, sigma: 2.5037)\n", + " x ~ Normal(mu: 0.0, sigma: 2.8025)\n", + " target = alpha\n", + " Common-level effects\n", + " alpha_Intercept ~ Normal(mu: 0.0, sigma: 1.0)\n", + " alpha_x ~ Normal(mu: 0.0, sigma: 1.0)\n", + "------\n", + "* To see a plot of the priors call the .plot_priors() method.\n", + "* To see a summary or plot of the posterior pass the object returned by .fit() to az.summary() or az.plot_trace()" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAt4AAAFdCAYAAAA0WGq0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABJ0AAASdAHeZh94AABQy0lEQVR4nO3de3jV9Z0n8Pe5X5OcS3IICRBEBIRArFIJrQIKnc0UZwfdobNaZlplLi2tO51nLbMVRRCnD+OjO2tb6NbRAbZQ19LWcZ2OOkIVRxC8oJVwk4QkhNzO/X7/nd/+cU4OCbnnJOf6fj1PnoRfzkk+50be+ebz+3wloiiKICIiIiKiaSXNdQFERERERKWAwZuIiIiIKAsYvImIiIiIsoDBm4iIiIgoCxi8iYiIiIiygMGbiIiIiCgLGLyJiIiIiLKAwZuIiIiIKAsYvImIiIiIskCe6wLymdvtxrFjxzB79myoVKpcl0NEREREeSQSiaCzsxOrV6+GwWAY8/IM3qM4duwYNmzYkOsyiIiIiCiP/cu//Av++I//eMzLMXiPYvbs2QCSd+b8+fNzXA0RERER5ZOWlhZs2LAhnRnHwuA9iv72kvnz52PJkiU5roaIiIiI8tF4W5J5ciURERERURYweBMRERERZQGDNxERERFRFjB4ExERERFlAYM3EREREVEWMHgTEREREWVB3gfvF154ARKJBHq9flyXt1qt+OY3v4nKykpotVqsXLkSR48eneYqiYiIiIhGl9fBu6urC4888ghqamrGdflIJIK1a9fi6NGjeO655/Dqq69ixowZaGpqwrFjx6a5WiIiIiKikeX1Bjrf+ta3sGrVKphMJvzqV78a8/IvvvgimpubceLECaxcuRIAcNddd6GhoQFbt27FqVOnprtkIiIiIqJh5e2K98GDB3Hs2DHs3bt33Nd55ZVXsHDhwnToBgC5XI5Nmzbhgw8+QFdX13SUSkREREQ0prxc8bZarfje976H3bt3Y9asWeO+XnNzM+68884hx5ctWwYAOHv2LGpra0f8njabbdCxlpaWCVRNRERERLnQ4wlBJZfBpFPmupRR5WXw3rJlCxYuXIhvf/vbE7qew+GAyWQacrz/mMPhGPG6e/fuxc6dOydWKBERERHl1BVHECda7bh7kSXXpYwp74L3r3/9a7z22mv45JNPIJFIJnz90a4z2ue2bNmCjRs3DjrW0tKCDRs2TLgGIiIiIpp+l/p8+KjDBVHMdSXjk1fB2+/34zvf+Q4efvhh1NTUwO12AwCi0SgAwO12Q6FQQKfTDXt9s9k87Kq20+kEgGFXw/tZLBZYLPn/mxIRERERAc1dHnx21ZPrMiYkr06utNvt6Ovrw7PPPguj0Zh+e+mllxAIBGA0GvH1r399xOsvXboUZ86cGXK8/1h9ff201U5ERERE2fFxh6vgQjeQZyve1dXVePvtt4cc3717N44dO4bXX38dlZWVI17/3nvvxZYtW3Dq1CmsWLECABCPx3Hw4EGsWLFi3PPAiYiIiCj/JBIiTrY50G4P5rqUScmr4K1Wq7FmzZohx/fv3w+ZTDboc5s3b8aBAwfQ2tqKuro6AMBDDz2EPXv2YOPGjdi9ezcsFgv27t2Lixcv4siRI1m6FUREREQ01eJCAu+12NHtDue6lEnLq1aTiRAEAYIgQBzQTa9SqXD06FHcddddePjhh/FHf/RH6Onpweuvv47Vq1fnsFoiIiIimqxoPIG3L9oKOnQDgEQUC+U80Ow7e/Ys6uvr0dzcjCVLluS6HCIiIqKSE44JePuCFa5gbNTLrbvZAku5OktVJU00K+ZVqwkRERERUT9/JI7fXbDCH47nupQpweBNRERERHnHHYzi7YtWhKKJXJcyZRi8iYiIiChvJBIiLln9+OyqGzGhuDqiGbyJiIiIKC9ccQTx6VV30bSWXI/Bm4iIiIhyyuoL45Mrbjj80VyXMq0YvImIiIgoJzyhGD7tdKPLFcp1KVnB4E1EREREWRWKCjjT5UGrzY9SGmzN4E1EREREWREXEjjf48P5Xi/iRXbi5HgweBMRERHRtGux+nCmy1NU4wEnisGbiIiIiKZNTEjgRKujZPq4R8PgTURERETTwheO4d3P7fCERt/uvVQweBMRERHRlOv1hPFeix3ReOm2llyPwZuIiIiIptSFXi8+ueIuqYkl48HgTURERERTIpEQ8UG7E5dtgVyXkpcYvImIiIgoY6GogP+4ZIO9yHefzASDNxERERFlxOGP4D8u2RGMCrkuJa8xeBMRERHRpLXbAzjV5oDAcyjHxOBNRERERBMmiiI+7XTjfI8v16UUDAZvIiIiIpqQaDyB46129LjDuS6loDB4ExEREdG4eUIxvPu5Db5wPNelFBwGbyIiIiIaly53CCda7IgJHNA9GQzeRERERDSms90efHbVw01xMsDgTUREREQjigsJnGpzosMRzHUpBU+a6wIG+vTTT7F+/XrMmTMHGo0GJpMJK1euxMGDB8e87v79+yGRSIZ96+3tzUL1RERERMUlEInjyPk+hu4pklcr3m63G7Nnz8b999+P2tpaBAIBHDp0CH/2Z3+G9vZ2PPbYY2N+jX379mHRokWDjpnN5ukqmYiIiKgoWX1h/MfndkTiHNA9VfIqeK9ZswZr1qwZdOyee+5BW1sbnn/++XEF7/r6eixfvnyaKiQiIiIqfpf6fPi4w4UE+7mnVF61moyksrIScnle/Y5AREREVHQSCREftDnxYTtD93TIyzSbSCSQSCTgcrlw+PBhvPnmm/jJT34yruvec889sNlsqKiowJo1a/Dkk0+ivr5+zOtZrVbYbLZBx1paWiZVPxEREVGhCccE/MclO2y+SK5LKVp5Gby3bNmCn/3sZwAApVKJH/3oR/jrv/7rUa9TXV2Nbdu2obGxEeXl5Thz5gx2796NxsZGHD9+HA0NDaNef+/evdi5c+eU3QYiIiKiQmH3R3C8xY5ARMh1KUVNIor5N43xypUrsFqtsFqteO211/D888/jH/7hH/DII49M6Ou0t7dj6dKluPvuu/Hqq6+OetmRVrw3bNiA5uZmLFmyZMK3g4iIiCjfnev24rOr7oJvLVl3swWWcnVWv+fZs2dRX18/7qyYlyvec+bMwZw5cwAAX/3qVwEAP/jBD/CNb3wDVVVV4/46c+fOxR133IGTJ0+OeVmLxQKLxTK5gomIiIgKTDgm4P1WB3o84VyXUjIK4uTK22+/HfF4HJcvX57wdUVRhFRaEDeTiIiIKCt6PWG83tzD0J1lebnifb23334bUqkU8+bNm9D12tracPz4caxbt26aKiMiIiIqHImEiM+6PDjf4+XW7zmQV8H7r/7qr1BeXo7bb78dM2bMgN1ux+HDh/Hyyy/j+9//frrNZPPmzThw4ABaW1tRV1cHAFi3bh1WrVqFZcuWpU+ufPrppyGRSLBr165c3iwiIiKinPNH4jjRYofdH811KSUrr4L3ypUrsW/fPhw4cAButxt6vR4NDQ34+c9/jk2bNqUvJwgCBEHAwPNCly5dipdffhnPPPMMQqEQLBYL7r77bjz++ONYsGBBLm4OERERUV644gjiVJsDMYHL3LmUl1NN8sVEz1QlIiIiyidxIYHTV9xosfpzXcq041QTIiIiIsoJTzCG4612uIOxXJdCKQzeREREREXmiiOIk5cdiBf6cO4iw+BNREREVEQu9vrwcYcr12XQMBi8iYiIiIrE7zvdONvtzXUZNAIGbyIiIqICJ4oiPmhzotUWyHUpNAoGbyIiIqICJiREHG+x46orlOtSaAwM3kREREQFKhpP4N3PbbD6IrkuhcaBwZuIiIioAIWiAt6+aOW4wALC4E1ERERUYLzhGN6+YEUgIuS6FJoABm8iIiKiAuLwR/DORRsi8USuS6EJYvAmIiIiKhC9njDevWRDXODGOIWIwZuIiIioAHQ4Ani/1QFuRlm4GLyJiIiI8pgoijjb7cWZLg9Ehu6CxuBNRERElKdCUQEnWu3o83JcYDFg8CYiIiLKQ13uEE62OngSZRFh8CYiIiLKI0JCxKedLlzs9ee6FJpiDN5EREREecITiuFEix0ubopTlBi8iYiIiPJAi9WP0x0uxDm2pGgxeBMRERHlUDSewIftTnQ4grkuhaYZgzcRERFRjth8EZxotXPr9xLB4E1ERESUZf2zuZu7PNwQp4QweBMRERFlUSASx/utDlh9nM1dahi8iYiIiLKk1ebHxx0uxAUuc5ciaa4LGOjTTz/F+vXrMWfOHGg0GphMJqxcuRIHDx4c1/WtViu++c1vorKyElqtFitXrsTRo0enuWoiIiKi0YVjAo59bsOpy06G7hKWVyvebrcbs2fPxv3334/a2loEAgEcOnQIf/Znf4b29nY89thjI143Eolg7dq1cLvdeO6552CxWLBnzx40NTXhyJEjWL16dRZvCREREVFSpzOID9qc3IGSIBFFMe9/7WpsbER3dzeuXLky4mX27t2L73znOzhx4gRWrlwJAIjH42hoaIBer8epU6cm/H3Pnj2L+vp6NDc3Y8mSJZOun4iIiEpPNJ7Axx0utNkDuS6lqHU4Aviow4Wf3P8FzDRosvq9J5oV86rVZCSVlZWQy0dfnH/llVewcOHCdOgGALlcjk2bNuGDDz5AV1fXdJdJREREBADo84bxenMPQ/c06vWG8fP32/Gzdy/j4w4X3jjbm+uSxpRXrSb9EokEEokEXC4XDh8+jDfffBM/+clPRr1Oc3Mz7rzzziHHly1bBiD5G0ltbe2I17darbDZbIOOtbS0TKJ6IiIiKlVxIYHfX3XjYq8/16UULVcwiqPn+/DJFTf62zbkUgmcgWhO6xqPvAzeW7Zswc9+9jMAgFKpxI9+9CP89V//9ajXcTgcMJlMQ473H3M4HKNef+/evdi5c+ckKyYiIqJS5/BH8P5lB7yheK5LKUr+SBzHLlpxss0JITX8XALg1joj1i6y4E9um5XbAschL4P3o48+ir/4i7+A1WrFa6+9hu9+97sIBAJ45JFHRr2eRCKZ1OeAZNjfuHHjoGMtLS3YsGHDuOsmIiKi0hMXEjjb7cX5Hi83w5kGkZiA91rteO+SfdAJqotnluMPFs+ApVydw+omJi+D95w5czBnzhwAwFe/+lUAwA9+8AN84xvfQFVV1bDXMZvNw65qO51OABh2NXwgi8UCi8WSSdlERERUYjqdQZy+4uKW79MgLiTwQbsTb1+wIhC9dv/eUKlD05JqzDZpc1jd5ORl8L7e7bffjv/9v/83Ll++PGLwXrp0Kc6cOTPkeP+x+vr6aa2RiIiISocvHMPHHS50u8O5LqXoJEQRn3a6cfR8H1zBWPp4TYUaf7CkGjdZ9GN2MuSrggjeb7/9NqRSKebNmzfiZe69915s2bIFp06dwooVKwAkxwkePHgQK1asQE1NTbbKJSIioiIlJESc7fbgfI8XAsdyT6mEKOJstxdHzvfB5oukj5t0Snxl8Qwsra2AtEADd7+8Ct5/9Vd/hfLyctx+++2YMWMG7HY7Dh8+jJdffhnf//7306vdmzdvxoEDB9Da2oq6ujoAwEMPPYQ9e/Zg48aN2L17NywWC/bu3YuLFy/iyJEjubxZREREVAS63CF81O5kW8kUE0URF3t9eOt8H3o81/6CUKaS465FFnxxrgkyaWEH7n55FbxXrlyJffv24cCBA3C73dDr9WhoaMDPf/5zbNq0KX05QRAgCAIG7v2jUqlw9OhRbN26FQ8//DCCwSBuueUWvP7669y1koiIiCbNH4njo3Yn20qmmCiKaLUF8Na5XnS6QunjWqUMqxdUYcUNZijlBbHlzLgVxM6VucKdK4mIiEqXkBBxrtuLcz0etpVMsQ5HAP9+rm/QBkNqhRR3zK/Cl280Q6WQTfhrrrvZkvUJJxPNinm14k1ERESUDzqdQXzS6YY/zJncU+mqK4gj5/vwed+1DYaUMim+dKMZd9xUCa2yuKNpcd86IiIionESEiLa7AFc6PVyE5wp1usJ48j5Ppzr8aaPyaUSrLjBhNULLdCrSiOSlsatJCIiIhpBOCagxerH530+hGPsKZlKvd4wfnfBiuYuT/qYTCLB8rlGrFloQYVGkcPqso/Bm4iIiEqSLxzDhV4f2mwBxLnl5JQaLnBLANw6x4i7Fllg0ilzV1wOMXgTERFRSbH6wrjQ40OXOwSOmJhafQMCd/9dKwFwy2wD7lpoQWWZKpfl5RyDNxERERU9URRx1RXC+R4v7P5orsspOgzc48PgTUREREXNFYjiRKsDnlBs7AvThDBwTwyDNxERERWt8z1e/L7TDbZwT62RAndDKnBXMXAPi8GbiIiIik4oKuDkZcegLcgpc93uEN6+aMXZ7mtjARm4x4/Bm4iIiIpKlzuEk60OROIcDThVrjiDeOeiFRd6feljDNwTx+BNRERERUFIiDh9xYVLA3ZFpMxctvvxzgUbWmzX7lOpJNnDvXoBA/dEMXgTERFRwXMHozjewhMop4Ioimix+vH2RSvaHcH0cZlUgtvmGLFqQVXJzuHOFIM3ERERFbSLvT582umCwM6SjIiiiAu9Prx90YqrrlD6uFwqwe03mHDnTVUlt9PkVGPwJiIiooIUjiVPoOx28wTKTCREEWe7vXj7ghW93mv3pVIuReMNZnx5vhllagbuqcDgTURERAWnyx3CqcsOhGNc5p6suJDAJ51uvPu5DY7AtU2F1AopvnRjJb40zwytilFxKvHeJCIiooLhCcXwyRUXV7kzEIkJ+KDdifda7PCF4+njWqUMd8yvROM8M9QKWQ4rLF4M3kRERJT3wjEBzV0etFj93AxnkvyRON5vteP96/5SUKFR4M6bKrG8zgSlXJrDCosfgzcRERHlrURCxMU+H5q7PIgJTNyT4QpG8d4lOz7qcA66D6vKVFh9UxWWza6AXMrAnQ0M3kRERJSXrjiC+PSqG/4B7RA0fn3eMN793IbfX3UP+ivBLKMGaxZUYdHMckglktwVWIIYvImIiCivOPwRnL7ihs0XyXUpBUcURVxxBvHu5zacH7DLJADcZNFj1YIqzKvUQcLAnRMM3kRERJQXApE4ft/pHrRpC41PQhRxrtuL/7hkQ+eAGdwSAEtqK7D6pirUGjW5K5AAMHgTERFRjoVjAi72+nCx14c4z5yckJiQwMcdLhxvsQ8aCSiTSvCF2QasuqkKldzWPW/kVfD+3e9+h4MHD+LEiRPo7OyEwWDA8uXLsX37dtx2222jXnf//v148MEHh/1cT08Pqqurp6NkIiIimiRvOIaLvT602QIM3BMUiMRx8rID7192IBgV0sc1ChlW3GDCyhu56U0+yqvg/dOf/hQOhwN/8zd/g8WLF8Nms+HZZ59FY2Mj3nzzTdx9991jfo19+/Zh0aJFg46ZzebpKpmIiIgmyOoL40KPD13uEETm7Qlx+CN4r8WO01dcgyaUGLUKfHl+JW6rM0Il5wzufJVXwXvPnj2wWCyDjjU1NWH+/Pn44Q9/OK7gXV9fj+XLl09XiURERDQJoiii0xnC+V4vHP7o2FegQa44g/iPSzac6/Zi4O8qNQY17rypCvU1FZBJecJkvsur4H196AYAvV6PxYsXo7OzMwcVERERUSbiQgKttgAu9HoRiAhjX4HShISIcz1eHG+x44pz8AmnC2bocedNnFBSaDIO3u+++y5+9KMf4fz58wiFQoM+J5FI0NramtHX93g8OH369LhWuwHgnnvugc1mQ0VFBdasWYMnn3wS9fX1GdVAREREExOKCrjY50OL1Y9oPDH2FSgtHBPwYbsT7192wB2MpY/LJBI0zDbgjpsqUV2uzmGFNFkZBe/33nsPa9euxZo1a3D+/Hk0NTXB5/Ph/fffx7x58/DlL3854wK/853vIBAIYNu2baNerrq6Gtu2bUNjYyPKy8tx5swZ7N69G42NjTh+/DgaGhpGvb7VaoXNZht0rKWlJeP6iYiISoknGMP5Xi/a7QFu7T5BzkAUJ1rt+KjDNeiXFY1ChttvMKFxnhkVGp4wWcgyCt5PPPEEHnzwQfz0pz+FQqHAU089hVtvvRWfffYZmpqacN9992VU3OOPP45Dhw7hxz/+8ZhTTZqamtDU1JT+96pVq7B+/XosXboU27dvx6uvvjrq9ffu3YudO3dmVC8REVGpsnrDONfjRbc7nOtSCoooimh3BHG8xY7zPYP7tyv1Knx5vhlfmG2EUs4t3YtBRsG7ubkZjzzySLq3SBCSvVvLli3D448/jieffBJ/9Ed/NKmvvXPnTjz11FP4+7//e3z3u9+d1NeYO3cu7rjjDpw8eXLMy27ZsgUbN24cdKylpQUbNmyY1PcmIiIqdjxhcvKEhIgzXR4cb7Gjyz24VXd+lR5fnm/GTTPKuKV7kckoeAeDQej1ekilUqhUKtjt9vTnFi1ahHPnzk3q6+7cuRM7duzAjh078Oijj2ZSIkRRhFQ69m+JFotl2JM7iYiIaLC4kECbPYDzvT74w/Fcl1NQ/JE4Pmp34uRlB7wD7juZVIJbZhnwpflmzKzgDpPFKqPgPWfOHPT19QEAFi9ejN/+9rf4wz/8QwDAsWPHJjU/e9euXdixYwcee+wxPPHEE5mUh7a2Nhw/fhzr1q3L6OsQERFR8qS/S31+fN7nQ4QnTE5IlzuE91sd+Oyqe9BmQTqlDCvmmbHiBhM3vCkBGQXvNWvW4J133sGf/Mmf4C//8i+xZcsWnD9/HiqVCv/+7/+O//7f//uEvt6zzz6L7du3o6mpCevXrx/SItLY2AgA2Lx5Mw4cOIDW1lbU1dUBANatW4dVq1Zh2bJl6ZMrn376aUgkEuzatSuTm0lERFTSQlEBzd0e7jA5QUJCxNluD95vdaDjunGA1eVqfOlGMxpmG6CQsX+7VGQUvHfu3Amn0wkA+Na3voVgMIhDhw5BIpHgscceG3MSyfVee+01AMAbb7yBN954Y8jnxdT2VoIgQBCE9L8BYOnSpXj55ZfxzDPPIBQKwWKx4O6778bjjz+OBQsWTPYmEhERlaxEQsTFPh/OdHkQFxi4x8sfiePDdidOXddOIgGwuKYcX7qxEnPNWs7fLkESUeRmrSM5e/Ys6uvr0dzcjCVLluS6HCIioqzp8YTwcYcL3hB7uMcr2U5ix2dXPYP+MtA/DnDFDSYYtMocVljc1t1sgSXL880nmhXzaudKIiIiyi1/JI7THS5cdYXGvjAhnkjgbLcXJ9lOQuOQcfB+77338Itf/AIdHR3D7lx59OjRTL8FERERTbO4kMD5Hh/O93jZxz0O7mAUH7Q78WG7C4EI20lofDIK3vv27cPmzZthMpmwYMECqFSqQZ9nFwsREVH+63QGcfqKC4GIkOtS8lpCFNFq8+PkZScuXLfZjVYpw/I6ExrnsZ2ERpZR8H766afxta99DQcOHBgSuomIiCi/eUIxnO5wocfD3SZHE4oK+PiKC6cuO+AIDN4oaLZRg8Z5ZtTXVrCdhMaUUfDu6OjAj3/8Y4ZuIiKiAhKKCjjf68XnvT6wq2RkXe4QTl124PdX3YgNmOqikEnQMMuAFfPMqDVwsxsav4yC980335zeQIeIiIjyl5AQ0eUK4bLdjx5PGOwGHV40nsCZLg8+aHOg87oTTM06JRrnmXHrHCM0SlmOKqRCllHw/uEPf4hHHnkEa9asQW1t7VTVRERERFPE7o+gzR5AhyOIKHebHFGfN4wP2p345IoL4di1+0kC4OaZ5Vgxz4Qbq/SQ8mRJysCEg/d//s//edC/PR4PFixYgFtuuWXIFvESiQSvvvpqZhUSERHRhISiAtrsAbTZA/CEYrkuJ2/FhASauzz4oN2JDsfgUYB6lRzL64y4nbO3aQpNOHh/9tlng0bjyGQyWCwWdHd3o7u7e9BlOUKHiIgoO/pbSVrtfvSylWRUVl8YH7Y5cfqKG6HY4Eku86v0+OINJtw8swxyKU+WpKk14eDd3t4+DWUQERHRZHhCMbRYfWizs5VkNHEhgbM9XnzQ5kSbPTDoczqlDLfVGfHFuSaY9RwYQdOHO1cSEREVGFEUcdUVwiWrD72eSK7LyWtWXxgft7vw8RUXgtHBq9vzKnW4/QYTFs8sh5yjACkLMg7egiDgl7/8Jd5++204HA6YzWbcdddd2LhxI+Ry5noiIqKpEo4JaLH60Wrzc7ObUfRPJvmo3TlkG3etUoZb5xhx+1wTKsu4uk3ZlVEyttvtaGpqwunTpyGXy2E2m+FwOPDCCy/gmWeewZtvvonKysqpqpWIiKgk2XwRXOrz4YozyLnbIxBFEV3uED5qd+H3V92IXNd2c0OlDl+ca8KSmnJudEM5k1Hw/tu//VtcvHgRhw4dwte+9jXIZDIIgoCXX34Z3/rWt/C3f/u3+PnPfz5VtRIREZWMuJBAuyOIFqsPzgAnk4wkGI3j0043Pmp3odc7eAfOMpUct9YZcVudEZXs3aY8kFHwfu211/DUU0/h/vvvTx+TyWR44IEHYLVasWPHjkzrIyIiKimRuIALPT5csvp5suQIEqKINnsAH7U7cbbbi/iAPwNIACysLsPyOhMWVpdBJuWENcofGQVvURSxZMmSYT9XX18PkbOMiIiIxiUcE3Ch14fP+3yIC/z5ORxXMIrTV1w43eGCKzj4rwAmnRLL64z4whwjKjSKHFVINLqMgve6detw5MgRrFu3bsjn3nrrLaxZsyaTL09ERFT0GLhHF40ncK7Hg487XLhsC2DgPSSTSrCkphxfnGvCDZU67ipJeS+j4P3444/jvvvugyAIeOCBB1BdXY3e3l4cOnQIv/nNb/Cb3/wGTqczfXmTyZRxwURERMUgHBNwvseLS33+Qa0SlPyLeqcziI+vuPDZVc+QEyVrKtS4tc6IW2YZoFVxghoVjoyerbfeeisA4Nlnn8X//J//M328v8XktttuG3R5QeDoIyIiKm3hmIBzPV60MHAP4Q3F8EmnG6c7XLD5B88n1ypluGW2AbfVGTGzQpOjCokyk1Hw3r59O7eFJyIiGgcG7uHFhAQu9PpwusOFz/t8g1pJpBJgwYwy3FZnxMJqbuFOhS+j4M2pJURERKNzB6O4ZPWjzRZg4E4RRRFXnEGcvuLGmS43wrHBrSSWMhVuqzPiltkGlKl5oiQVDzZGERERTbG4kMAVZxCXrH44/NFcl5M3HP4IPu1045NON5yBwfeLWiHFslkG3DbHiFlGDf+iTkVpwsH7//yf/zOhy//5n//5RL8FERFRQfKEYmix+tBmD3IGd0ooKuBMlwefXHEN2b69v5XkC3OMWFRdxh0lqehNOHh/85vfHPdlJRLJhIL37373Oxw8eBAnTpxAZ2cnDAYDli9fju3btw85UXM4VqsVW7duxb/+678iGAyioaEBTz31FNauXTvuGoiIiCZCSCQncFyy+mHzRca+QgkQEiIu9flwutONCz3eIS02tQYNvjDHgGWzDNBzKgmVkAk/29va2qajDgDAT3/6UzgcDvzN3/wNFi9eDJvNhmeffRaNjY148803cffdd4943UgkgrVr18LtduO5556DxWLBnj170NTUhCNHjmD16tXTVjcREZUebziGllTv9vXj7kpRf9/2p51unOnyIBgdPMmsXC3HLbON+MIcA2aUq3NUJVFuTTh419XVTUcdAIA9e/bAYrEMOtbU1IT58+fjhz/84ajB+8UXX0RzczNOnDiBlStXAgDuuusuNDQ0YOvWrTh16tS01U1ERKUhkRBx1RVCi82HXg9XtwHA6gvj951u/P6qZ0jftkImQX1NBb4wx4h5Vdzghiiv/r5zfegGAL1ej8WLF6Ozs3PU677yyitYuHBhOnQDgFwux6ZNm/Doo4+iq6sLtbW1U14zEREVP38kjharH5dt/iETOEqRNxTDZ1fd+PSqG93u8KDPSQDMt+jRMNuAJTXlUMlluSmSSkK5Ro6ZFRrUGNSo1KtyXc6YMg7ely5dws9+9jOcP38eoVBo0OckEgmOHj2a0df3eDw4ffr0qKvdANDc3Iw777xzyPFly5YBAM6ePcvgTURE4yaK/avbfvR6whBLfBJgOCbgbLcHn3a6h2zdDgCzjBo0zDJg2awKjgCkaaOQSTCjXI0agxozKzTQFdg5AhlV29zcjMbGRtTW1qKlpQXLli2D3W5HV1cXZs+ejRtvvDHjAr/zne8gEAhg27Zto17O4XAMuyV9/zGHwzHq9a1WK2w226BjLS0tE6yWiIgKXTAaR6s1gFabf0ifcqmJCQlc7PXh91fduNjrG3KSpFmnRMNsA26ZbSiI1UbKLpkUMGiVMOuUMOmUUClkCEUFhGMCQjEBwaiQ/nc4JmCkMfcmnQIzKzSYaVCjUqeCVFq4LUsZBe9HH30U/+k//Se8/PLLUCqVePHFF3Hrrbfit7/9LR566CE89dRTGRX3+OOP49ChQ/jxj388rqkmo838HGse6N69e7Fz584J10hERIVPFEV0e8JosfrR7Q6V9Op2PJFAq9WP31/14FyPd8hYRJ1KjmWzKnDLLAPnbVOaVAJUaBQw6ZQw65Uw6VQwaBTjDsmiKCISTyAUFRCMJQO5XCpBdYUaakXxtCtlFLxPnz6NvXv3QprawjWRSL44169fj0ceeQQ/+MEPcOzYsUl97Z07d+Kpp57C3//93+O73/3umJc3m83Drmo7nU4AGHY1fKAtW7Zg48aNg461tLRgw4YN4y+aiIgKijsYRZs9gCvOIAKR0l3dTogi2uwBfHbVjeYuL0KxwfeFSi7F4pnlaJhtwI1VesgKeMWRpkaZWo5KvSodtI1aZUbPC4lEArVCBrVCBuMU1plvMgreLpcLJpMJUqkUCoUCLpcr/bnly5fjySefnNTX3blzJ3bs2IEdO3bg0UcfHdd1li5dijNnzgw53n+svr5+1OtbLJZhT+4kIqLiEozG0W4Pot0RgDsYy3U5OSOKIjpdIfz+qhvNVz3wReKDPi+XSrBoZjmW1VZgITe3KXkGrQKWMhUsZWpUlamgURbPKnQ2ZRS8a2trYbfbAQDz58/Hu+++i6985SsAgM8++wx6vX7CX3PXrl3YsWMHHnvsMTzxxBPjvt69996LLVu24NSpU1ixYgUAIB6P4+DBg1ixYgVqamomXAsRERWHmJBApzMZtvu8kZJtJRFFEd3uMM50eXCmyw3Xdb949O8kuWxWBW6uLoeqiP7ET+MnlQBGnRKWMhWqUm+cTjM1Mgred9xxB06cOIENGzbg61//Op544gn09PRAqVRi//792LRp04S+3rPPPovt27ejqakJ69evx8mTJwd9vrGxEQCwefNmHDhwAK2trem54g899BD27NmDjRs3Yvfu3bBYLNi7dy8uXryII0eOZHIziYioACUSInq8YbTbA+hyhYacGFgq+vvXm7s8ONM1dNa2BMC8Kh2WzUqO/9MqC2tKBGVOrZDCqE22jFjK1KjUKyHnXzimRUavrm3btqG7uxsA8Hd/93fo7e3FoUOHIJFI8LWvfQ3PPPPMhL7ea6+9BgB444038MYbbwz5vJhaohAEAYIgpP8NACqVCkePHsXWrVvx8MMPIxgM4pZbbsHrr7/OXSuJiEpIIBLHhV4f2u2lu6OkKIro8fSvbA8N2wAwx6TFslkVWFrL8X+lQiJJ9mYbtUoYtAoYtcnebLaNZI9EFEv1D25jO3v2LOrr69Hc3IwlS5bkuhwiIhqFJxTD+R4v2u2BEceSFbOBYbu5ywPHCGG7vrYC9TXlMGiVOaiSskUmRXKySCpgG7QKGDQKrmRPsYlmRf49iYiICpozEMXZbg+uukpvDGB/G8nZ1Mr2cGF7tlGDpbUVqK+tYNguAQatAjdW6XFDpQ5KOUN2vmHwJiKigtTnDeNctxc9nvDYFy4iCVFEpzOIs91enO32DDlBEmDYLjVyqQSzTVrMt+hRVcaNjPIZgzcRERWUq65k6HT4h67uFishIaLdEcDZbg/OdXvhDceHXGbWgLBtZNguCUatAjda9Jhr5up2oWDwJiKivJdIiOhwBnGu2wtPqDRmb8cTCVy2BdDcldxB8vrt6yUA6sxaLKmpwBL2bJcMuVSCOrMWN1r0qNRzdbvQMHgTEVHeEUURrmAMNl8k+eYPIxQt/gkl0XgCl6w+nOv24nyvF+HY4NsslQDzKvVYUluOxTPLOY2kRMilEph0StSZtZhbqeNmRgWMwZuIiHIuLiTgCEQHBO0I4kJpnCkZjMRxvteHcz1etFh9iF13u2VSCeZX6VFfW46bq8uhVfFHd7HTKKWo0qtRWaZMbsuuVUKawXbslD/46iUioqwLxwTYfBFYU0HbHYyW1AhAVzCK8z1enO32osMxdPyhQibBghllWFJTgUXVZVBzB8miJZEke7Ur9SpU6pO7ROr4y1XR4iNLRERZ4QvH0OkM4aorCHsJnRgJJFtn+nwRnOtO9mt3u4dOYtEqZVhUXY4lNeW4sUrPk+WKlEImQWWZClWpkG3WcZfIUsLgTURE08YZiOKqK4irrhDcw4y9K2ZCQkSHM4ALPT6c7/EOO2PboFFgcU2yX7vOrIOM7QRFR6+Wp0K2ElV6NSq07MsvZQzeREQ0ZURRhM0XQWcqbAciwthXKiLhmIBLVj/O93hxsdeHUGzo7a8uV+PmmcmV7ZkVakgkDNvFQioBTDrloBVttgnRQAzeRESUkf6tyq84g+hyhRCJF//0kYHcwSjO9/pwoceLy7YAhOu2z+wf+3fzzOTKtpkj4IqCQiaBIbUVu1GrQIVGCZNOyb9a0KgYvImIaFJCUQEtVj9abf4hM6aLmSiK6HaHcb7Xi/M9w++cqZRJcdMMPW6eWY6FM8p4slwBk0qAMrUCBm3/mxIGjYKPKU0KnzVERDQhPZ4QLvX50e0OlcwkkkhcQKs1gAu9Xlzs88E3zM6R5Wo5bp5ZjptnluMGzlrOW3KpBAq5BAqZFEqZFAp56r1MCoUsdTx1rEKjQIVGwVF+NGUYvImIaEzhmIDLtgBabH74hwmdxcgZiOJirxcXen24bA9AGOa3jJkVyX7tm6vLUWNgv3a+kUqAGeVqzDZpUWvQQCWXMkRTTjF4ExHRiKy+MFr6/Oh0BSEUeeu2kBBxxRlMh22rLzLkMnKpBDdW6bGwugyLqsu4TXsekkqA6go15pi0qDVqoJLz5EbKHwzeREQ0iC8cQ7c7jFabv+hHAPojcVzq8+Finw+X+vzDTiEpV8uxqLocC6vLOF87T8mkwMwKTXplm48R5SsGbyKiEheKCuj1htGXeivmEYAJUUSXK4SLfT583udDlyuE6xtIJABmGTVYWF2ORdVlHPmXp+RSCWYakivbNQYNe+qpIDB4ExGVmHBMgNUbQZ8vGbS9oeLu2Q5G4vjc6sfnqbA93AQWlVyKmyx6LKoux4LqMug5sSKvSCVAhUYBky45ss+oU8Ko5eg+Kjz8n4WIqMhF4gLs/ih6PWFYvWG4irx9JCGK6HaH8HmfDxd7fbg6zKo2kNzIZsGMMiysLsMck5YhLk9IJUjNxlamg7aBIZuKBIM3EVEREUURnlAMdn8Udn8Edn+k6Fe0gWRf+iWrH5f6fLhkHX6uuEouxXyLHgtmlGHBjDJUaLh1d7bJpIBKLoNKLoVKIYVKLoNSLoVKLoVWKYNRy5BNxY3Bm4iogEXjCTgCEdh914J2TCj+4drxRAIdjmA6aA+3iQ0AzChXYWEqaM8xayGXsg94uihkEpRrFChXK1CmlkOvkqfDtSoVruXsw6YSx+BNRFRA+k+EtHrDsPuj8ISKu22knyiKcASi6aB92RZAdJj5hmqFFDdW6bHAUoabZug57m+KSSWATiVHuSYZrsvVCpRrku/VCo7tIxoLgzcRUR6LxJMnQvZPHSmFtpF+oaiAVpsfLVY/Wmx+OAPRIZeRAKg1anCTpQwLZugxy8he7akklQCWchVmG7WwlKtRppJzAxqiDORd8Pb5fNi1axc+/fRTfPLJJ7Db7XjiiSewY8eOMa+7f/9+PPjgg8N+rqenB9XV1VNcLRHR1IoJCVh9keRoP0/xnwg5UDyRwBVnMBm0rf5hR/0BQJlanl7Rnl+lh5YTSKaUTJrc7ZEb0BBNvbz738rhcOD5559HQ0MDNmzYgBdeeGHCX2Pfvn1YtGjRoGNms3mqSiQimjKJhAh7IIJeTxi9njCcgSiG2Zm8KImiCKsvkg7abfbh20fkUgnmmnW4aYYeN1nKMKNcxbnaU0wuk6CmQoPZJg1nYhNNo7wL3nV1dXC5XJBIJLDb7ZMK3vX19Vi+fPk0VEdElDl/JI4edwg9nmT7SCmcDNnPG4ql20dabX54w8O3zsysUGO+RY/5Fj3mmnUMgtNAKZei1pAM2zMrNGzRIcqCvAveXMUgomITFxLo80XSYds3QtgsRqGogMv2ZMhutQZg80eGvVyFRoH5VcmgfaNFzw1sMiSRABqFDBqlDNrUm0YhT75PvemV7Ncmyrai/J/tnnvugc1mQ0VFBdasWYMnn3wS9fX1uS6LiEqIKxBFtyeEXk8YNl+kZNpHYkIC7Y4AWq0BtNr86HYP36etlEsxr1KXXtWu0rN9ZKIUMgkqNApUaBQo1yigV8lTIVsOtULK+5MoDxVV8K6ursa2bdvQ2NiI8vJynDlzBrt370ZjYyOOHz+OhoaGEa9rtVphs9kGHWtpaZnukomowCUSItyhGFzBKFyBKFzB5MfxEmkfERIirrqCaLUlg/YVZxDCML9lyKQSzDFpcWOVDjdWcfrIRKgV0nS4rkjNya7QKKBR8qRHokJTVMG7qakJTU1N6X+vWrUK69evx9KlS7F9+3a8+uqrI15379692LlzZzbKJKICFY0n4A4mw7UzEIU7mJyjXSqr2UAyaHe7Q7hsD+CyzY8OR3DYEyIlAGoMmnTQrjProJSzT3ssaoUUVWUqWMrUMOqSAZtTRYiKR1EF7+HMnTsXd9xxB06ePDnq5bZs2YKNGzcOOtbS0oINGzZMY3VElM984Rj6vJHkZjWBKPwl1JvdLyGK6PGEcdmW3LSm3RFAJD40aANApV6VDtrzqnTQKov+R0zGdCpZKmirUFWm5jb2REWuJP5XFEUR0jG2CbZYLLBYLFmqiIjyUSAST87P9kZg9YURiAi5LinrEqKIPm8Yl20BXLYH0Gb3IxwbPmgbtQrMq9JjXqUO86r0DI3jUKaWw1KmgqVcDUuZCjqeREpUUor+Fd/W1objx49j3bp1uS6FiPJMOCagz5ucn93ni5TuirY7jDZ7co52uyOIUGz4XzgqNIp0yJ5XpYOR27GPSquUwahTwqhVwKhVoqpMxW3ViUpcXgbv119/HYFAAD6fDwBw7tw5/OpXvwIAfPWrX4VWq8XmzZtx4MABtLa2oq6uDgCwbt06rFq1CsuWLUufXPn0009DIpFg165dObs9RJR7QkJM9WdH4QzEYPNF4AmVzq6Q/fp7tNvsgVTQHrl1pFwtH7SibdQqOCljBGVqOUw6JQxaBUw6JYxaJUM2EQ2Rl8H729/+Njo6OtL/Pnz4MA4fPgwguYI9d+5cCIIAQRAgitfOalq6dClefvllPPPMMwiFQrBYLLj77rvx+OOPY8GCBVm/HUSUG3EhkZ4u4gwkp42U2kmQ/eJCAl0DgvZIJ0MCyRXtGyp1uMGsww2VOpj1Sgbt60gkQLk6Ga5NOiWMuuRqNjf4IaLxyMvg3d7ePuZl9u/fj/379w869o//+I/TUxAR5a1IXIAnGIMzHbJj8IZjEEswZANAJCagwxlEuyOAdnsQV11BxEf4jcOoTQXtSh1uqOSK9nB0KhlMOiXMOhXM+mTYZsgmosnKy+BNRHS9REKENxyDOxhLz832BGMIRkvvBMiB/JE42u0BdDiS/dkjbVgDACadckDQZo/29ZRyKcw6Jcx6Jcx6Fcw6tosQ0dRi8CaivBOOCakNaWJwh6JwB2PwlmiryECiKMIZiCZXtFMnQtpH2IJdAmBGuRp1Zi3mVuow16zj1JEB5FIJjKl2kf6wXabm/UNE04vBm4hyKi4k4AxE4QhE4fBH4QhESnKM33D6T4TscAbR4Uj2Z/sjw09ekUqAWoMGN6RCdp1Zx50NU6SSZP+6SXdtJdvAthoiygEGbyLKGlEU4QnFYPdH4fBH4Eid9Fiq/djXC0UFXHEG0eFMhuyrriBiI2w9r5RJMcekRV2lFnPNOsw2arkzZIpcJkFNhQaVZckVbZNWCTn7sokoDzB4E9G0CccE2HzJgG33ReAMRhEfIUiWmoFtI1ccQVxxBtHnDY/Yn12ulmOOWYc6kxZ1Zi1mVmggk3LFtp9SLkWtQYPZJg3vGyLKWwzeRDQlEgkR7lAMdn8Edl8ENj9bRgaKxpNj/a44AqlV7eCIJ4b292fPMWtTQVvHiSPDUCukmGXUYrZJgxllakgZtokozzF4E9GkhGNCMmT7U6vZgeiIY+tKTX9LTYczuZJ9xRFEjyc04smhCpkEs4zJlew6kw5zTFr2Z49Ap5JhllGD2UYtqspU/GWEiAoKgzcRjSkSF+AKxOAIROAKJGdml+L26iPpX83udAbR6Qqi0xmEd5T7x6hVYLYpuZo9x6RDdYWarRHXUcql0Cpl0ChkUCtk0KvkmGlQo1KvynVpRESTxuBNRIP0j/Jz+KPpnR/ZMnKNKIpw+KO4kgrYnc4ger3hEVezZVIJag0azDFpk29mLcpLfGydWiGFQauARiGHRikbFLA1qY/5iwgRFSMGb6ISFY4J8Efi8Ifj8EfiyV0fgwzZ1wtG47jqGriaHUIoNvJ9VKFRYLZRk17RrjFoSnqihlYpS87L1ia3VzfplNAq+aOHiEoT//cjKlKJhIhAND4oXA/8eKQxdaUsJiTQ4w6h0xXCVVcQV10hOALRES+vkElQa0ie3DfbqMVsk7akN6nRq+WDArZRy50fiYgGYvAmKgK+1FbqrmAUrmAMnlAMgUic87FHkRBF2HwRXB0Qskc7ARIAKvUqzDFpMMuYbBuZUV7avdn987JnGTWYaVBDJWfIJiIaDYM3UQGJCQm4gzG4g1G4QzG4Asn3nI09OlEU4Q7GcNWdDNldrhC63CFE4okRr6NTyjDbpMUsYzJozzJq2CKBZH92rUGDWSYtqkv8Fw8iooniTxGiPCSKIrzhODyp1Wt3KLmSzUki4+MNx9CVWsnucodw1RUacWY20N8yci1gzzZquaX4AHq1PPULiAZVeo7wIyKaLAZvohwLROJwh2LwBJMB2xOMwRuOQRh5MZYGCETi6HKH0gG7yzX6KD+pJLk5Ta0hGbBnmTSwlHHldiCJJDnysP8XEYNWmeuSiIiKAoM3UZaEY0Jy9bp/FTsYhScU40mOE+CPxNGdCtldrhC63SG4Q7ERLy9Bsi97llGDWqMGswwaVFdooJSX7pSR62mVMlRoFTBoFDBolTBoFCjXKPiLCBHRNGDwJppi4ZgAb6i/RSSWbhcZrZ+YhvKFY6mQHU6Hbc8oIRu4tkqbbBvRoMag4VSNFIVMgor+cJ0K2hVaBU+IJCLKIgZvokkKRuPwhuLwhZOtIf0r2eEYA/ZE9G+v3u0Oo9uTXMXudodGbRcBkiG7xqBB7YA3raq0/0uTSgCtSo5ytRxlagXK1XKUaxQoU8t5YigRUR7g/8REo4gJCfjCcXhDyXDd/7EvHEd8tLlzNKyEKMLpj6LLE0KPO5QO26Od+AgkQ3Z/uK4xalBbUdohWyGTwKhVomxAsC5TK1CmkkPKFhEiorxVuj+5iFJiQiK9qYwvnFzB9kfi8IZjCEW5ej1ZcSEBqy+CHs+1gN3jCSM6RsuNWafEzAGr2DUGdUmv1sqlEhi0Cpj1Sph1Kpj0ypLfcp6IqFCV7k8zKin926P7wsmdG32RWDpsszUkc8FoHD2eMHrcyXDd4wnD6guPuhmNVAJYytSoMagxsyLZjz2zQl3SPdlSCWDQKmDSqWDSKWHWKVGhUXAVm4ioSDB4U9EIx4RBK9b9H/vC3B59qiREEa5ANB2ue1Kr2GOd9CiXSlBdoUZNKmDXGNSYUa6GQlba00U0Simq9GpUlilRqVfBqFVymggRURFj8KaCwnCdPZGYgF5vMmD3esPoTb0fq1VEq5SlV69nViTfV+pVJR8oJRKgQqNAVZkKVXoVKstU0JdwnzoRUSnKu//1fT4fdu3ahU8//RSffPIJ7HY7nnjiCezYsWNc17dardi6dSv+9V//FcFgEA0NDXjqqaewdu3a6S2cpkw0nkiH6f5g7U29Z7ieegNXsQcGbGcgOuZ1+/uxayrU6aBdppZzZ0MAcpkElfrkSnZVmQpmnYrzw4mISlzeBW+Hw4Hnn38eDQ0N2LBhA1544YVxXzcSiWDt2rVwu9147rnnYLFYsGfPHjQ1NeHIkSNYvXr1NFZO4yWKIoJRAYFoHIGIgMB1K9ecdz19ApE4er1h9KUCdp83jD5vBNExtslUyqWoLlejOhWwq8uTb6oS7sceSCWXwqhLzsg2apUwahWo0HDLeSIiGizvgnddXR1cLhckEgnsdvuEgveLL76I5uZmnDhxAitXrgQA3HXXXWhoaMDWrVtx6tSp6SqbBkgkRARjyUDtj8QRjCRPbAxGk/8ORYVRT7qjzMWEBGy+SHr1us+bfO8bYzY2AJh0SlSXpwJ2ahXboFVAyhAJANCr5TBqFcmArUuG7FKeukJEROOXdz8tMlkheuWVV7Bw4cJ06AYAuVyOTZs24dFHH0VXVxdqa2unosySF4omw3R/uB74cTAqQGSwzgohIcIRiKDPG0mtXodh9UbgCETG/OVGrUiuYs9IrWRzFXsopVyKqjIVLGUqmPXJ1exSPyGUiIgmL++Cdyaam5tx5513Djm+bNkyAMDZs2cZvMcpEhfSbSDJlpBkO0j/MW4ek10JUYQ7GEuH6z5vGFZfBFZfBMIYj4VMIkFVmQrVFamQXa7CjHI1WyGGoUoF7RnlaljKVDBoeR8REdHUKarg7XA4YDKZhhzvP+ZwOEa8rtVqhc1mG3SspaVlagvMI9F4Ir1C3R+s/f1BO8IJIbmSEEV4gjH0+ZIr11ZfKmCPow8bSO7wOKN/FbtcjRkValRxosiIVHJpMmSXq1JBW5nrkoiIqIgVVfAGRm9VGe1ze/fuxc6dO6ejpGkXjgmIxBOIxAVE44nkm5BAJJZ8338sEu+/XAJxBuuc6l/Btg4I2H3eCGy+8QXscrU8HbBnpFawq8pUUMnZJjIShUySOvkxeRJklV6FCi13gCQiouwpquBtNpuHXdV2Op0AMOxqeL8tW7Zg48aNg461tLRgw4YNU1rjRIiiiHAsgUA0eUJiMCogmPo4kPo4HBMwjpxGOSIkRDgDUdh811pDbL7xB2ydUgbLgHA9oywZtjVKBuzR6NVyGDTJEyANWgWMOiVnZhMRUc4V1U+ipUuX4syZM0OO9x+rr68f8boWiwUWi2XaapuI8z1efN7n4/SPAhITErD7I+m2kP6g7fBHIYzjTFOdSg5LmQozylWwlPW3PqgZFsegkElQoUmuYBu0imTI5gmQRESUp4rqp/q9996LLVu24NSpU1ixYgUAIB6P4+DBg1ixYgVqampyXOH4JPushVyXQcMIROLJFWv/tZVrmz8CVyCK8fyOVKaSoyrVT9wfsGeUqaFjwB6VXCpBuUaRCtnX3nOMHxERFZK8/Kn1+uuvIxAIwOfzAQDOnTuHX/3qVwCAr371q9Bqtdi8eTMOHDiA1tZW1NXVAQAeeugh7NmzBxs3bsTu3bthsViwd+9eXLx4EUeOHMnZ7aHC0r+T46BwnQrYwejYvxBJABi0CljK1OlRdJYyFarK2CIyHnq1HGadMh2wKzQKlKnZi01ERIUvL4P3t7/9bXR0dKT/ffjwYRw+fBgA0NbWhrlz50IQBAiCAHHAn/FVKhWOHj2KrVu34uGHH0YwGMQtt9yC119/nbtW0hDBSBw2fwR2fwQ2XxT21MeOQHTMEX0AIJMmtwSv0qtQ2b+CXaZCpZ5bg4+XUi6FWa+EWaeEWa+CWaeEmnPEiYioSOVl8G5vbx/zMvv378f+/fuHHJ8xYwYOHDgw9UVRQYoLCTgCqVDti8Duj6bD9nhWrwFAo5ClVqxTb/rke6NOyd0cJ0AmBQxaJSr1Sph1Kpj0SpRzJZuIiEpIXgZvoonoH83Xv2Jt90fhSH3sDsbG1XstlSS3Sq/UJ1es+8N1VZmK/deTpFPJUKVXJVey9UqYtEpIOU+ciIhKGBMFFYSEKMIXjsPhT04KsQeSAdvuj8A5ztYQIDmerzK1al2ZCteVehVMOiU3mcmAXCaBOfWLi1mffM+WESIiosEYvClviKIIb3+4DvSvWkfhDEThCETGvZumQiZJr1xX6vvDYDJs8+TGzEkkQLlakQ7YlXolt58nIiIaBwZvyqqEKMITiiXDtD8KZ6A/ZE8sXMskEph0ygHh71rILlPLGQKnUP+UEZMueRKkUcc52URERJPB4E1TLp5IwB2IJQN1Klg7/VE4AlG4guNvC5FKAKP2WvvCwMkXBi1bQ6aDRimFSadK3ddKGLWcMkJERDRVGLxpUkJRId0C4gokQ7UzmGwL8YzzhEYguXJt0CoYrrNMq5ShTC2HXiVHmVqBMrUcZr2SG9IQERFNI/6UpWEJiWRLiCsVpq9/C8XGv7OmQiZJjo9LtSqYUuPkzDolKrQKjuSbJlqlLBWsr4Xr/rAtZ6sIERFR1jF4lyhRFBGICnClVqpdqUDdH7Q9oRjG2RECIBnyTKk+4HTA1iVXsctU7LmeTnKZBEZtcqdHo1YBg1YJg0bBcE1ERJRnGLyLWDgmwBWMwhVIrly7UgHbFYzBGYwiGk+M+2tJJUCFRgGzLrlxjHlAyDZxt8Gs0alkMGqV6aBt0HI7dSIiokLB4F3AInEB7mB/qI6lQnU0HbYn0g4CXFu1NmqV171XsN86y+RSCSq0Chg0Chh1qZCtUXIreiIiogLG4J3H+les+8P19e/Hu+V5P0WqJcGoTY6EM2kVyWCt4/SKXNKr5TBoFKlWESVXsYmIiIoUg3ceevG9Nrx90YpwbPytIAAgk0pgTIW35JsiHaqNOiV0Shl7rXNIKZfCoFGkV7INqZDNmdhERESlgcE7Tw0XuuVSCQzaa60fA98btUro1XJOCMkDcqkE5Ro5KjTX+rANGiV3zSQiIipxDN55qL62HM5AdMCkiuR7PaeD5JX+gF2mVqBcnQzYFVoFp7gQERHRsBi889CKG8wwalW5LoOQnOaiS83CLtcoUD5gJjY3myEiIqKJYHKgkieRXNvJ8dpGM8n3eqUcUk5zISIioinA4E0l4/pwrVfJUa5WQK+Wc1QiERERTTsGbyoqcpkE5epkoE62hlzbKp07ORIREVEuMXhTQdKpZKlwfe3kxnIN+66JiIgofzGlUN6SSTEoVF9bxebqNRERERUeBm/KObVCmgrYqckhqXDN8YlERERUTBi8adpJUiP59CoZ9KrkPPL+kxv1ajl3biQiIqKSwOBNU0IulSTDdepExrLUx3qVHDqO5CMiIiLKv+Dt9/vx2GOP4Ze//CWcTicWLVqE//E//gf+63/9r6Neb//+/XjwwQeH/VxPTw+qq6uno9ySIpdJ0oG6TH1t5ZqbyRARERGNLe/S0n333YcPP/wQu3fvxoIFC/CLX/wC999/PxKJBB544IExr79v3z4sWrRo0DGz2Txd5RYdtUKabgEpUynSq9ZlajnUClmuyyMiIiIqWHkVvP/t3/4Nb731VjpsA8Bdd92Fjo4OfP/738ef/umfQiYbPfzV19dj+fLl2Si34EgkgEImhVIuZb81ERERUZblVfB+5ZVXoNfrsXHjxkHHH3zwQTzwwAM4deoUvvSlL+WouvwilQBalRw6pQxapRxKuRQquRQKmRQKmQRKuRTKVMhWDHhPRERERLmRV8G7ubkZN998M+TywWUtW7Ys/fmxgvc999wDm82GiooKrFmzBk8++STq6+vH/N5WqxU2m23QsZaWlgnegqmRXJlOnqyoGxCu9So5tCoZdEo5NEq2fRAREREVkrwK3g6HA/PmzRty3GQypT8/kurqamzbtg2NjY0oLy/HmTNnsHv3bjQ2NuL48eNoaGgY9Xvv3bsXO3fuzOwGTJEvzDbitjpTrssgIiIioimUV8EbwKgbpoz2uaamJjQ1NaX/vWrVKqxfvx5Lly7F9u3b8eqrr476fbds2TKkxaWlpQUbNmwYX+FTiKP3iIiIiIpPXgVvs9k87Kq20+kEcG3le7zmzp2LO+64AydPnhzzshaLBRaLZUJfn4iIiIhovPLqbLulS5fi/PnziMfjg46fOXMGAMbVq309URQhlebVzSQiIiKiEpRXifTee++F3+/Hr3/960HHDxw4gJqaGqxYsWJCX6+trQ3Hjx9HY2PjVJZJRERERDRhedVq8od/+If4yle+gm9/+9vwer2YP38+XnrpJbzxxhs4ePBgeob35s2bceDAAbS2tqKurg4AsG7dOqxatQrLli1Ln1z59NNPQyKRYNeuXbm8WURERERE+RW8AeA3v/kNtm3bhu3bt6e3jH/ppZcGbRkvCAIEQYAoiuljS5cuxcsvv4xnnnkGoVAIFosFd999Nx5//HEsWLAgFzeFiIiIiChNIg5MrzTI2bNnUV9fj+bmZixZsiTX5RARERFRHploVsyrHm8iIiIiomLF4E1ERERElAUM3kREREREWcDgTURERESUBXk31SSfRCIRAMmt44mIiIiIBurPiP2ZcSwM3qPo7OwEAGzYsCG3hRARERFR3urs7MStt9465uU4TnAUbrcbx44dw+zZs6FSqab1e7W0tGDDhg34l3/5F8yfP39avxeNjo9FfuHjkT/4WOQXPh75g49F/sj2YxGJRNDZ2YnVq1fDYDCMeXmueI/CYDDgj//4j7P6PefPn8+Z4XmCj0V+4eORP/hY5Bc+HvmDj0X+yOZjMZ6V7n48uZKIiIiIKAsYvImIiIiIsoDBm4iIiIgoCxi880RVVRWeeOIJVFVV5bqUksfHIr/w8cgffCzyCx+P/MHHIn/k+2PBqSZERERERFnAFW8iIiIioixg8CYiIiIiygIGbyIiIiKiLGDwJiIiIiLKAgbvHPD5fNi6dSv+4A/+AFVVVZBIJNixY8e4r79//35IJJJh33p7e6ev8CKV6eMBAFarFd/85jdRWVkJrVaLlStX4ujRo9NTcJHz+/343ve+h5qaGqjVatxyyy34v//3/47runxtTE4m9zmf+1Nrso8Fn/vTI9OfD3x9TJ1MHot8en1wy/gccDgceP7559HQ0IANGzbghRdemNTX2bdvHxYtWjTomNlsnooSS0qmj0ckEsHatWvhdrvx3HPPwWKxYM+ePWhqasKRI0ewevXqaaq8ON1333348MMPsXv3bixYsAC/+MUvcP/99yORSOCBBx4Y19fga2NiJnuf87k/9TJ9/vO5P7Uy+fnA18fUmorslBevD5GyLpFIiIlEQhRFUbTZbCIA8Yknnhj39fft2ycCED/88MNpqrC0ZPp47NmzRwQgnjhxIn0sFouJixcvFm+//fapLreo/fa3vxUBiL/4xS8GHf/KV74i1tTUiPF4fNTr87UxcZnc53zuT61MHgs+96dHJj8f+PqYWpk8Fvn0+mCrSQ70/3mD8kOmj8crr7yChQsXYuXKleljcrkcmzZtwgcffICurq6pKLMkvPLKK9Dr9di4ceOg4w8++CC6u7tx6tSpHFVWvDK5z/ncn1p8/uefTH4+8PUxtYolOzF4F7B77rkHMpkMJpMJ9913H5qbm3NdUklqbm7GsmXLhhzvP3b27Nlsl1SwmpubcfPNN0MuH9wF139fjvc5ztfG+GVyn/O5P7Wm4vnP537+4Osj/+TD64M93gWouroa27ZtQ2NjI8rLy3HmzBns3r0bjY2NOH78OBoaGnJdYklxOBwwmUxDjvcfczgc2S6pYDkcDsybN2/I8fHel3xtTFwm9zmf+1Mrk8eCz/38w9dH/sin1weDd4beeecd3HXXXeO67CeffIJbbrkl4+/Z1NSEpqam9L9XrVqF9evXY+nSpdi+fTteffXVjL9HocrF4wFg1D9/FcOfxiZjso9FJvclXxuTk8l9zuf+1Jrs/cnnfn7i6yM/5NPrg8E7QwsXLsQ//dM/jeuyc+bMmbY65s6dizvuuAMnT56ctu9RCHLxeJjN5mFXLpxOJwAMu+JRCibzWEzHfcnXxugyuc/53J9aU31/8rmfW3x95LdcvT4YvDM0c+ZM/MVf/EWuywAAiKIIqbS02/Zz8XgsXboUZ86cGXK8/1h9fX1W68kXk3ksli5dipdeegnxeHxQn2um9yVfGyPL5D7nc39qTcfzn8/93OHrI//l4vXBV2ORaGtrw/Hjx9HY2JjrUkrOvffeiwsXLgyaOBCPx3Hw4EGsWLECNTU1OayusNx7773w+/349a9/Pej4gQMHUFNTgxUrVkz4a/K1MbpM7nM+96fWVD//+dzPLb4+8lvOXh+5nWZYuv7t3/5NPHz4sPjP//zPIgBx48aN4uHDh8XDhw+LgUAgfbmHHnpIlMlkYnt7e/rY2rVrxZ07d4qvvPKKePToUfF//a//JdbU1IhlZWXimTNncnFzCl4mj0c4HBaXLFkizp49Wzx06JD41ltviffee68ol8vFd955Jxc3p6B95StfEY1Go/j888+Lv/vd78S//Mu/FAGIBw8eHHQ5vjamznjucz73s2OyjwWf+9NnPD8f+PrIjsk+Fvn0+mDwzpG6ujoRwLBvbW1t6ct94xvfGHLse9/7nrh48WKxrKxMlMvlYk1Njbhp0ybx4sWL2b8hRSKTx0MURbG3t1f88z//c9FkMolqtVpsbGwU33rrrezeiCLh8/nE//bf/ptYXV0tKpVKcdmyZeJLL7005HJ8bUyd8dznfO5nx2QfCz73p894fj7w9ZEdk30s8un1IRFFUZzOFXUiIiIiImKPNxERERFRVjB4ExERERFlAYM3EREREVEWMHgTEREREWUBgzcRERERURYweBMRERERZQGDNxERERFRFjB4ExERERFlAYM3EREREVEWMHgTEREREWUBgzcRERERURYweBMRERERZQGDNxERjSgcDuMLX/gC5s+fD4/Hkz7e29uL6upqrFmzBoIg5LBCIqLCweBNREQjUqvV+OUvfwmr1YqHHnoIAJBIJPD1r38doijipZdegkwmy3GVRESFQZ7rAoiIKL/ddNNNeOGFF/Cnf/qneO655+B0OvHOO+/gjTfewMyZM3NdHhFRwZCIoijmuggiIsp/W7ZswQsvvABBEPDoo49i165duS6JiKigMHgTEdG4fPTRR/jiF78IpVKJq1evoqqqKtclEREVFAZvIiIaUyAQwPLly5FIJNDX14fVq1fj1VdfzXVZREQFhSdXEhHRmL71rW/hypUr+M1vfoMXX3wR/+///T/84z/+Y67LIiIqKAzeREQ0qhdeeAEHDx7Enj17sGTJEvyX//Jf8N3vfhd/93d/hw8++CDX5RERFQy2mhAR0YjOnDmDFStW4Gtf+xr279+fPh6JRPDlL38ZDocDn3zyCQwGQ85qJCIqFAzeRERERERZwFYTIiIiIqIsYPAmIiIiIsoCBm8iIiIioixg8CYiIiIiygIGbyIiIiKiLGDwJiIiIiLKAgZvIiIiIqIsYPAmIiIiIsoCBm8iIiIioixg8CYiIiIiygIGbyIiIiKiLGDwJiIiIiLKAgZvIiIiIqIs+P+4ddHkWSCo3QAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Second, another param. of the distribution: alpha\n", - "fig, ax = plt.subplots(figsize=(7, 3), dpi=120)\n", - "bmb.interpret.plot_predictions(model, idata, \"x\", target='alpha', ax=ax);" + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The model we defined uses a `gamma` distribution parameterized by `alpha` and `mu` where `alpha` utilizes a log link and `mu` goes through an inverse link. Therefore, we can plot either: (1) the `mu` of the response distribution (which is the default), or (2) `alpha` of the response distribution as a function of the explanatory variable $x$. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAukAAAFdCAYAAAC+d/P1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABJ0AAASdAHeZh94AABIbElEQVR4nO3deZRU9Z3//1ctXdV7N70UTbM0S7MIDUhcAJeIIkpcfgNmSDRfk7hkTkYnk+T7nW9IjkYDMZNjEjOJZ77wna/jAjNEYyASx0ScEYxmggExmgRU0GYTGpre91pv3d8ftXQ13XRXVW9V3c/HOX266tbn1v1UV9Xh5cf3fV+LaZqmAAAAAKQM62hPAAAAAEBPhHQAAAAgxRDSAQAAgBRDSAcAAABSDCEdAAAASDGEdAAAACDFENIBAACAFENIBwAAAFIMIR0AAABIMfbRnsBY0NLSojfeeENTp06V0+kc7ekAAAAghXi9Xp06dUrXXHONCgsL49qHkD4E3njjDa1Zs2a0pwEAAIAU9qtf/Up/9Vd/FddYQvoQmDp1qqTQH76ysnKUZwMAAIBUUl1drTVr1kQzYzwI6UMgUuJSWVmpBQsWjPJsAAAAkIoSKYvmxFEAAAAgxRDSAQAAgBRDSAcAAABSDCEdAAAASDGEdAAAACDFENIBAACAFENIBwAAAFIMIR0AAABIMYR0AAAAIMUQ0gEAAIAUQ0gHAADAuOHxG6M9hbgQ0gEAADButLr9oz2FuBDSAQAAMG4Q0gEAAIAU09JFSAcAAABSSkuXb7SnEBdCOgAAAMYFj9+QJxAc7WnEhZAOAACAcaHV7ZdpmqM9jbgQ0gEAADAupMtJoxIhHQAAAONEupw0KhHSAQAAME6ky0mjEiEdAAAA4wTlLgAAAEAK6fQG5DfS46RRiZAOAACAcaAljVbRJUI6AAAAxoHWNDppVCKkAwAAYBxocafPSaMSIR0AAADjACvpg9Te3q7169frhhtuUGlpqSwWizZs2NBr3F133SWLxdLrZ968eXEfa/fu3Vq+fLmys7NVUlKiu+66S3V1dUP4agAAADDaTNNUmye9Qrp9tCdwvsbGRj3xxBNavHix1qxZoyeffPKCY7OysvTaa6/12haPN954Q5/61Kd0880368UXX1RdXZ2++c1vauXKlXr77bfldDoH9ToAAACQGto8ARnB0Z5FYlIupFdUVKi5uVkWi0UNDQ39hnSr1aply5YldZxvfOMbmjNnjnbs2CG7PfRnmDFjhq688ko9/fTTuu+++5J6XgAAAKSWdCt1kVKw3CVStjKcampqdODAAX3+85+PBnRJuuKKKzRnzhzt3LlzWI8PAACAkZNOFzGKSLmQngi3262ysjLZbDZNmTJFX/nKV9TU1DTgfocOHZIkLVq0qNdjixYtij4OAACA9JdunV2kFCx3idfixYu1ePFiVVVVSQrVmP/kJz/Rnj17dODAAeXm5l5w38bGRklSUVFRr8eKioqij/elrq5O9fX1PbZVV1cn8xIAAAAwAlrSsNwlbUP6//yf/7PH/VWrVmnJkiX667/+a/3rv/5rr8f7cqGymv7KbTZv3qyNGzcmNlkAAACMCiNoqsMbGO1pJCxtQ3pf1q5dq5ycHO3bt6/fccXFxZLU54p5U1NTnyvsEffff7/WrVvXY1t1dbXWrFmT+IQBAAAwrFrdfpnmaM8icWMqpEuhPphWa/+l9pESmYMHD+qmm27q8djBgwejj/fF5XLJ5XINfqIAAAAYdi1d6VePLqX5iaPn27Fjh7q6ugZsyzh58mRdfvnl2rZtmwzDiG7ft2+fjhw5ottuu224pwoAAIARkI6dXaQUXUnftWuXOjs71d7eLkl6//33tWPHDknSTTfdpPr6en3uc5/T7bffrsrKSlksFr3xxhv66U9/qgULFuhLX/pSj+ez2+265pprtGfPnui2H/zgB1q1apXWrVun+++/X3V1dfrWt76lqqoq3X333SP3YgEAADBsWgjpQ+e+++7TyZMno/e3b9+u7du3S5KOHz+ugoICTZw4Uf/0T/+kc+fOyTAMVVRU6Ktf/aoeeOAB5eTk9Hg+wzB6rJhL0ooVK/Tyyy/r4Ycf1q233qrs7Gzdcsst+tGPfsTVRgEAAMaIdLyQkZSiIf3EiRMDjnnhhRfifj7zAmcLrFq1SqtWrYr7eQAAAJA+fIGgunzGwANT0JiqSQcAAAAi0vEiRhGEdAAAAIxJ6VrqIhHSAQAAMEala2cXiZAOAACAMaqFlXQAAAAgtbCSDgAAAKQQt8+QNxAc7WkkjZAOAACAMSedO7tIhHQAAACMQelcjy4R0gEAADAGpXM9ukRIBwAAwBjESjoAAACQYtpYSQcAAABSR7vHr0DQHO1pDAohHQAAAGNKupe6SIR0AAAAjDHpftKoREgHAADAGENIBwAAAFIM5S4AAABACgkGTbV7COkAAABAymjz+JXmjV0kEdIBAAAwhoyFUheJkA4AAIAxpGUMnDQqEdIBAAAwhoyFzi4SIR0AAABjSEuXb7SnMCQI6QAAABgT/EZQnV5jtKcxJAjpAAAAGBPGSqmLREgHAADAGDFWOrtIhHQAAACMEaykAwAAACmm1T02ThqVCOkAAAAYIyh3GUbt7e1av369brjhBpWWlspisWjDhg09xhiGoX/6p3/S6tWrNWXKFGVnZ+uiiy7St771LbW0tMR1nBUrVshisfT6Wb169dC/KAAAAAwrj9+Qxx8c7WkMGftoT+B8jY2NeuKJJ7R48WKtWbNGTz75ZK8xbrdbGzZs0B133KEvfelLKikp0TvvvKPvfe97eumll/T2228rKytrwGPNnDlTP/vZz3psKywsHKqXAgAAgBEylurRpRQM6RUVFWpubpbFYlFDQ0OfIT0rK0vHjx9XcXFxdNuKFSs0bdo0rVu3Tr/85S915513DnisrKwsLVu2bEjnDwAAgJE3lkpdpBQM6RaLZcAxNputR0CPuPzyyyVJp06dGvJ5AQAAIHWxkp7CXnvtNUnSggUL4hp/9OhRFRUVqa2tTRUVFbr99tv17W9/u99Smbq6OtXX1/fYVl1dnfykAQAAMGgtXWOns4s0hkJ6TU2NvvWtb+nSSy/VLbfcMuD4q666Sp/97Gc1b948ud1u7dq1Sz/84Q/1+9//Xr/97W9ltfZ9Tu3mzZu1cePGoZ4+AAAABoGV9BTU1NSkm266SaZp6vnnn79gwI71ve99r8f9m266SdOnT9f//t//Wy+++KLWrl3b537333+/1q1b12NbdXW11qxZk/T8AQAAkLxOb0B+wxztaQyplGvBmKjm5matWrVKNTU1evXVVzVz5syknytysum+ffsuOMblcmnBggU9fiorK5M+JgAAAAanZYytoktpvpLe3Nys66+/XsePH9eePXu0aNGiIXneeFbiAQAAkBrGWj26lMYhPRLQjx07pldffVVLliwZ9HNu3bpVkmjLCAAAkEbirUf/4GybGju9mlWaqwXl+XF1FRwtKRnSd+3apc7OTrW3t0uS3n//fe3YsUNSqHbcYrHoxhtv1Lvvvquf/vSnCgQCPUpUSktLNWvWrOh9u92ua665Rnv27JEk/fd//7f+8R//UWvXrtXMmTPl8Xi0a9cuPfHEE7ruuut06623juCrBQAAwGC0xtkj/e2TzfrgbJveOt6ktx64Ximc0VMzpN933306efJk9P727du1fft2SdLx48clSQcOHJAkfe1rX+u1/xe/+EVt2bIlet8wDBmGEb0/adIk2Ww2PfLII2poaJDFYtHs2bP13e9+V//wD/9AuQsAAECaME1TbZ6BQ3rACOpoXYck6Zo5LlmtKZzQlaIh/cSJEwOOMc34z+A9f2xlZaV+85vfJDotAAAApJg2T0BGcOBxJxq75AsPvHZe6TDPavBYMgYAAEDaqmvzxDXuSG2bJMlqka6uJKQDAAAAw6amxR3XuCPnQqUuM0pyVJCdMZxTGhKEdAAAAKQlI2iqrs074LjGDq8aOkLjLpqUP9zTGhKEdAAAAKSlc20eBYIDn6f44bn26O355YR0AAAAYNicibvUJRTS8zPtKi/IHM4pDRlCOgAAANJSPPXovkBQx+o7JUlzy/JS+gJGsQjpAAAASDutbr86vcaA4443dERLYuZOzBvuaQ0ZQjoAAADSTqKlLjaLRbNKc4dzSkOKkA4AAIC0E09IN01TR2pDIX16SbacGbbhntaQIaQDAAAgrfiNoOrbB269WN/hVXOXX1J6lbpIhHQAAACkmdpWj+LovKgPa7tbL84pI6QDAAAAwybRevQJ2RkqzXUO55SGHCEdAAAAaeVM68Ah3es3dKKhS1J6tV6MIKQDAAAgbTR1+uT2BQccd7S+Q4aZfq0XIwjpAAAASBuJlrrYrRbNKEmf1osRhHQAAACkjURbL84szZHDnn6RN/1mDAAAgHHJ4zfU2OkbcFxtm0dtnoCk9Cx1kQjpAAAASBO1rR6ZCbZenFuWP4wzGj6EdAAAAKSFROvRS3KdKspxDOeUhg0hHQAAACnPNE2dbfUMOM7tM/RxU7j14sT0O2E0gpAOAACAlNfQ4ZM3MHDrxY/q2qNXI03XUheJkA4AAIA0EG+py4fhUheHzarpxdnDOaVhRUgHAABAyosnpAdNU0fOdUiSZrlyZbelb9RN35kDAABgXHD7DDV3+Qccd6bFrU5verdejCCkAwAAIKXVJNjVRZLmpPFJoxIhHQAAACku7nr0cH/0svxMFWanZ+vFCEI6AAAAUlYwaKq2beDWix3egE43h8L8nDQvdZFSMKS3t7dr/fr1uuGGG1RaWiqLxaINGzb0Ofadd97R9ddfr9zcXBUWFuq2227TsWPH4j7W7t27tXz5cmVnZ6ukpER33XWX6urqhuiVAAAAYLDq2r0KGANfZvSjc+2KjJpTlt6lLlIKhvTGxkY98cQT8nq9WrNmzQXHHT58WCtWrJDP59MvfvELPf300/rwww919dVXq76+fsDjvPHGG/rUpz6liRMn6sUXX9Tjjz+u3bt3a+XKlfJ6vUP4igAAAJCsM62J1aM77VZVFOUM55RGhH20J3C+iooKNTc3y2KxqKGhQU8++WSf4x5++GE5nU79+te/Vn5+qFH9JZdcotmzZ+uxxx7TD37wg36P841vfENz5szRjh07ZLeH/gwzZszQlVdeqaefflr33Xff0L4wAAAAJCze1osfhVsvznblyma1DPe0hl3KraRbLBZZLP3/YQOBgH7961/r05/+dDSgS6GAf+2112rnzp397l9TU6MDBw7o85//fDSgS9IVV1yhOXPmDLg/AAAAhl+7x682d2DAcaeauuT2G5KkuWXpX48upWBIj8fRo0fldru1aNGiXo8tWrRI1dXV8ngufILBoUOHomP72j/yOAAAAEbPmZaBTxiVerZenD0GThqVUrDcJR6NjY2SpKKiol6PFRUVyTRNNTc3a9KkSUntH3m8L3V1db1q3qurq+OeOwAAAOITbz16pPVieWGm8jMzhnNKIyYtQ3pEf2UxA5XM9Demv303b96sjRs3Djw5AAAAJC1gBFUXR+vFNrdfZ1pD49L9KqOx0jKkFxcXS1KfK95NTU2yWCwqLCxMev++Vtgj7r//fq1bt67Hturq6n470QAAACAx59q9MoIDj/swptSFkD7KZs2apaysLB08eLDXYwcPHlRlZaUyMzMvuH9VVVV07E033dRr/8jjfXG5XHK5XEnOHAAAAPGI9yqjkXr0rAybphRlD+eURlRanjhqt9t166236oUXXlB7e/d/PX388cf67W9/q9tuu63f/SdPnqzLL79c27Ztk2EY0e379u3TkSNHBtwfAAAAwyuekG4ETVXXhVovzpmYK2sc5c7pIiVD+q5du7Rjxw699NJLkqT3339fO3bs0I4dO9TV1SVJ2rhxo7q6unTLLbdo165d2rlzp26++WaVlJToH/7hH3o8n91u18qVK3ts+8EPfqDDhw9r3bp12r17t5599ll95jOfUVVVle6+++6ReaEAAADopbXLr06vMeC4k42d8gZCNTFjpfViREqWu9x33306efJk9P727du1fft2SdLx48c1ffp0zZs3T6+//rq++c1v6q//+q9lt9t13XXX6bHHHlNpaWmP5zMMo8eKuSStWLFCL7/8sh5++GHdeuutys7O1i233KIf/ehHcjqdw/8iAQAA0KeaOEtd3vm4WZJkkTTbRUgfdidOnIhr3CWXXKLdu3cPOM40zT63r1q1SqtWrUpkagAAABhm8ZS6tLn9+vOpVknS/PJ85ThTMtYmLSXLXQAAADA++QJBNXR4Bxz3h2ONMsILsVdXlgz3tEYcIR0AAAApo6bFrWDfRRBRvkBQbx1vkiRNK8rWtOKcEZjZyCKkAwAAIGV8cLZtwDF/PNkktz90vuFVY3AVXSKkAwAAIEXUtLjV0uXvd0zQNLX3aOiClEU5Ds0vzx+JqY04QjoAAABSwvtnBl5Ff/9Mm5o6fZKkK2cVj6ne6LEI6QAAABh1de0e1bcPfMLo76sbJIWuMHpJRdFwT2vUENIBAAAw6uJZRf+4sVMfN4UubHn5jCI57GM3yo7dVwYAAIC00NLl05kWz4Dj/ju8im6zWLR8ZvFwT2tUEdIBAAAwqt6Po6NLU6cvutq+eGqB8rMyhntao4qQDgAAgFHT6Q3o48auAcftrW5QpH36lWO07WIsQjoAAABGzQdn2wa8eJHbZ+iPJ5slSZWuXE0qyBqBmY0uQjoAAABGhcdv6Fh954Dj3jreKJ8RlDR2L150PkI6AAAARsWH59oVGGAZPRAM6g/HQhcvmpjv1GxX7khMbdQNKqT/8Y9/HKp5AAAAYBzxG0F9eK5jwHF/Od2qNk9AknRVZaksY/TiRecbVEi/7LLLtHz5cv3sZz+T39//JVwBAACAiOq6DvkCwX7HmKap338UaruY57Rr8ZSCQR83XUL+oEL6li1bFAwG9fnPf15Tp07VQw89pNOnTw/V3AAAADAGBYOmjtS2DzjuaH2nattC/dOXzyqW3Tb4Su15ZXmDfo6RMKhX+oUvfEH79+/X/v37dcMNN+ixxx7TzJkz9elPf1qvv/76EE0RAAAAY8mxhk51+YwBx/2+ul6SlGGz6PIZRYM+rivPqTkTx0FIj7jsssv0b//2bzp16pQ2bNigt99+WytXrlRVVZX+3//7f/J4Br6CFAAAAMY+0zR1uHbgixfVtnmiNeuXVExQtsM+qOParRYtnTn4oD9ShrS7i8PhUHZ2thwOh0zTVFdXl+677z7Nnj1b+/btG8pDAQAAIA2dbnarzR0YcNzecC26RdKVswbfdnHR1ALlZabPVUqHJKT/5S9/0Ze//GVNnjxZ3/zmN7V06VLt379fx44d05/+9CdNnjxZX/7yl4fiUAAAAEhj750ZeBW93ePXn063SJIumpSv4lznoI5ZkuvQ3DQpc4kY1P83eP7557Vp0ybt3btXpaWl+l//63/pvvvuU1lZWXTMokWL9P3vf1833njjoCcLAACA9FXb6lFTp2/AcX841igj3D/96tmDW0W3WaWlM4vTpqtLxKBC+h133KElS5bo6aef1h133CGHw9HnuOnTp+vOO+8czKEAAACQ5t4/2zrgGF8gqP3HmiRJUydkaVpR9qCOuXByoQqy0qfMJWJQIf13v/udrrrqqgHHzZw5U88888xgDgUAAIA01tTpU22rd8Bx73zcLLc/1PnlqtmDu3hRca5DF01KrzKXiEHVpMcT0AEAAID346hFD5qm9laHThidkJ2h+ZPykz6ezSotm5F+ZS4RQ9rdBQAAADhfm8evU81dA457/0ybGsM161dWlshmTT5gLygvUEF2+pW5RBDSAQAAMKw+ONMm0+x/jDdg6OVDZyVJmRlWXVIxIenjFeUMbhU+FRDSAQAAMGzcPkPHGzoHHLf7/XNq6fJLkm6YXyan3ZbU8awWadnMYlkHsQqfCgjpAAAAGDZ/Od2i4ACr6KeauvTm0UZJUkVRti6fkfyVQReUF6gwu++Og+kkbUP6XXfdJYvFcsGf/q5wumXLlgvuV1tbO4KvAgAAYOw61+bR0fr+V9EDwaBeePe0TEk2q0Vrl0yWNcmTPSdkZ2hBeXqXuUQMqgXjaHrooYf0t3/7t72233rrrXI6nbrssssGfI5nnnlG8+bN67GtuLh4yOYIAAAwXgWMoPYfbxpw3O8+bNC5tlBrxmvnlsqVn5nU8ayW0EWL0r3MJSJtQ/qsWbM0a9asHtveeOMNNTQ06Nvf/rZstoHrmKqqqnTppZcO1xQBAADGrT+fblWHJ9DvmLp2j357pE6S5Mpz6pNzSpM+3kWT8lWUk/5lLhFpW+7Sl6eeekoWi0X33HPPaE8FAABg3Gro8OrDc+39jgmapna+WyMjaMoi6bZPTJHdmlw0LcjKUNXkgqT2TVVpu5J+vtbWVu3YsUMrV67UjBkz4trnlltuUX19vQoKCrRixQp997vfVVVVVb/71NXVqb6+vse26urqpOcNAAAwlgSDpvYfaxqw5eKBE0062Rjqnb5sVrGmFWUndTyLRVo6s2hQPdVT0ZgJ6c8995zcbrfuvffeAceWlZXpwQcf1LJly5Sfn6+DBw/q0Ucf1bJly7R3714tXrz4gvtu3rxZGzduHMqpAwAAjBmHzrSq1e3vd0yr269XDoWadRRmZeiGiyYmfbwF5fkqyXUmvX+qspjmQP+dkx4uu+wyHT9+XDU1NXI6E3+jTpw4oYULF+q6667Tiy++eMFxF1pJX7NmjQ4dOqQFCxYkfGwAAICxoKXLp1cO1fbbctE0TW3bd1If1IbKYb64fLrmluUldTxXnlMrL3LJkmQ3mJHy3nvvqaqqKqGsOCZW0v/yl7/o7bff1te+9rWkArokTZ8+XVdddVW/rRslyeVyyeVyJXUMAACAsco0Te071jRgT/RDZ9qiAf3iqYVJB3Sn3aorK0tSPqAna0ycOPrUU09Jkr70pS8N6nlM05Q1yRMWAAAAxrMPzrarqdPX75guX0Av/fmMJCnbYdNNCyclfbwrKouV5UjuqqTpIO0Tqdfr1bZt23T55ZcPeNJnf44fP669e/dq2bJlQzg7AACAsa/N49ehmtYBx+06VKsOb6gt480LJynXmVxRx/zyfE0qyEpq33SR9uUuv/rVr9TU1HTBVfR7771XW7du1dGjR1VRUSFJuv766/XJT35SixYtip44+sMf/lAWi0WPPPLISE4fAAAg7b11rEmBAepcqus69MeTzZKk2a5cXTy1MKljleY5tWiMtVvsS9qH9Keeeko5OTm6/fbb+3zcMAwZhqHY82MXLlyo559/Xo899pjcbrdcLpeuu+46PfTQQ5ozZ85ITR0AACDtfXSuXXXt3n7H+AJB/epPNZKkDJtFay6enFQtucNu1RWzxs5VRfuT9iH9v/7rv/p9fMuWLdqyZUuPbT/5yU+GcUYAAADjQ6c3oHdPtQw47rXD56L16jfML9OEJK8MumxmkXKSLJFJN2lfkw4AAIDRceBEkwJG/2UuNS1u/b66QZI0ZUKWls8qTupYc8vyNGVCchc8SkeEdAAAACTsREOnzrR4+h1jBE3tfOe0gqZktUi3LZkiaxJlLsW5Di1JsoY9XRHSAQAAkBCP34ieBNqf3x6p05nWUJC/Zk6pygoyEz5Whs2iKytLxkUdeixCOgAAABLyx5PN8gaC/Y559+NmvXa4TpJUkuvUirnJXQxy2czipFs1pjNCOgAAAOJ2qqlLJxu7+h1zrKFDL7wT6uaSmWHVnUunKcOWeOycMzFXU4vGTx16LEI6AAAA4lLX7tEfjjb2O6a+3auf7ftYhmnKZrHozqUVcuUnXuZSlJOhJdMmJDvVtEdIBwAAwICaOn1640h9vxct6vAGtPUPJ+T2G5Kk2z4xWTNLcxM+lj1ch24bZ3XosQjpAAAA6Fdrl1+/PVwnfz/tFv1GUP/+hxPRfugr57mSXglfOqNIeZkZSe07VhDSAQAAcEHtHr9eO3Ku3xNFg6ap7W+f0qlmtyRpydRCXTcvuRNF503KU0VxTlL7jiWEdAAAAPSpyxfQa4fr5Pb138nlv96r1aEzbZKkGSU5WvuJybIk0Q99blmuPjGO69BjEdIBAADQi8dv6LXDder0Gv2Oe+t4k373UeiKoqW5Tt25tEJ2a3KdXC6pKEpqrmMRIR0AAAA9+AJB/fZwndrcgX7HfXiuXf/x51CrxRynXV+8YrqyHLaEjzdnYq4unU5Aj0VIBwAAQJTfCOq3R+rU3OXvd9zZVreefetjBU3JbrXoC8sqVJTjSPh4swnofSKkAwAAQJJkBE397sN6NXb4+h3X6vZr65sn5AsEZZH0mUunJnXRodkTc3UZAb1PhHQAAAAoGDT13x/V61ybt99xXr+hf/vDCbV5QqUwq6vKVDW5IOHjVboI6P0hpAMAAIxzpmnqD8cadabF0+84I2jq5wdO6WxraNzSGUW6qrIk4ePNKs3R5TMI6P2xj/YEAAAAMLreOt6kk41d/Y4JBIN64Z0aHTnXLkmaOzFPtywqT7jV4qzSHC2dWZz0XMcLQjoAAMA4FQya+uPHzTpa39nvOK/f0LNvfayP6jokSZMKMnX7ZVNlsyYW0GcS0ONGSAcAABiHPH5De6sbBqxBb/f4tfUPJ6KlMFMmZOkLy6fLmZFYq8WZpTlaSolL3AjpAAAA40xzp0+/+6h+wAsVNXR49cze49F2jHMn5umOy6fJYU/stMYZJaGAnsxVSMcrQjoAAMA4crKxU/uPNSkQNPsdd6qpS1v/cEJdvlCQv6RigtZcPDnhEpfISaIE9MQQ0gEAAMYB0zT17qkWHT7bPuDYI7Vtevatj+U3QkH+2rkuXX+RK+GgvXhqgRaUJ96eEYR0AACAMc8bMPRmdWO0dWJ//niySTvfrVHQlCyS/r+Ly7V0RmIne9qtFi2bWaxpxYlf4AghhHQAAIAxrKXLp9991KCO8MWHLsQ0Tf32SL12f3BOUiho337ZVM1PcCU8M8OqT84pVUmuM+k5g5AOAAAwZn3c2KV9xxoHrD8PmqZe+vMZ7T/eJEnKyrDpC8srVFGck9DxCrMzdM2cUuU4iZiDxV8QAABgjDFNU38+3ar3z7QNONZvBPX8gVN6/2xobGFWhu66Yrpc+ZkJHXNSQaaurCxJuPML+kZIBwAAGEN8gaDePNoQ7Wveny5fQP/+h5M62RS62mhZfqa+eMV0FWRlJHTM2RNzdWnFBDq4DKG0/U+d119/XRaLpc+fffv2Dbh/XV2d7rrrLpWUlCg7O1vLly/Xnj17RmDmAAAAw6OuzaNX3quNK6Afb+jU/3mtOhrQZ5Tk6G+unplQQLdYpE9UFOqy6bRYHGppv5L+/e9/X9dee22PbVVVVf3u4/V6tXLlSrW0tOjxxx+Xy+XSpk2btHr1au3evVvXXHPNcE4ZAABgSAWMoP58ukVHajsGHGsETb12+JxeP1KvSKX6wskFWnfJFNlt8a/f2m0WXVlZosmFWUnOGv1J+5A+e/ZsLVu2LKF9nnrqKR06dEhvvvmmli9fLkm69tprtXjxYq1fv1779+8fjqkCAAAMubo2j/Ydbxqwe4skNXZ49Yu3T+lUs1tSqIPLpxZO0rIELzaU7bDpmjmlmpDjSHre6F/ah/Rk7Ny5U3Pnzo0GdEmy2+2688479cADD6impkaTJ08exRkCAAD0L5HVc9M09c7HLXrpL2fkCwQlherPP3vZVE1M8ATRohyHrplTqiyHLal5Iz5pW5Me8Xd/93ey2+3Kz8/XjTfeqN///vcD7nPo0CEtWrSo1/bItvfee2/I5wkAADBU6to9evlQbVwB3e0z9NyBU/rlO6ejAf3KWcW6b8WshAK63WrR4qkFumH+RAL6CEjblfSCggJ97Wtf04oVK1RcXKzq6mr96Ec/0ooVK/Sb3/xGN9544wX3bWxsVFFRUa/tkW2NjY0X3Leurk719fU9tlVXVyf5KgAAAOKXyOq5JB1r6ND2t0+r1e2XJOU57fr0JVM0Z2JeQsedVJCpS6dPUF5mYl1fkLy0DelLlizRkiVLovevvvpqrV27VgsXLtT69ev7DemS+q276u+xzZs3a+PGjYlPGAAAYBDq2j3adyy+2nMjaGr3B+f0uw+7Tw6dV5an2z4xRbkJXGjIabfqExUTNKMksYsaYfDSNqT3pbCwULfccov+5V/+RW63W1lZfZ9tXFxc3OdqeVNT6Cpbfa2yR9x///1at25dj23V1dVas2ZN8hMHAAC4gERXzxs6vHr+wCnVtHSfHHrTwklamuDJoTNKcrRkWqEyMyhtGQ1jKqRLoRMjpP5XwxcuXKiDBw/22h7Z1l8LR5fLJZfLNchZAgAADOzjxi796XRL3Kvnb51o0n8eqpXPCNWeTyrI1GcvnZrQ1UNzM+1aOqMo4RNKMbTGVEhvbm7Wr3/9a1188cXKzLzwB2vt2rW6//77tX//fi1dulSSFAgEtG3bNi1dulTl5eUjNWUAAIBezrV59O7HLWrq9MU1/lh9h379l7Oqbeu+iNFVlSW6Yf7EuHufWy3SvEn5Wji5QDYrFyYabWkb0j/3uc9p2rRpuvTSS1VSUqKPPvpIP/7xj3Xu3Dlt2bIlOu7ee+/V1q1bdfToUVVUVEiS7rnnHm3atEnr1q3To48+KpfLpc2bN+vIkSPavXv3KL0iAAAw3jV3+vSnUy062zrwFUMj43cdOqtDZ9qi2yZkZ2jNksma7Yr/5NDiXIeWzihSYTZ9z1NF2ob0RYsW6fnnn9e//Mu/qKOjQ0VFRbrqqqv07//+77rsssui4wzDkGEY0TIYSXI6ndqzZ4/Wr1+vv//7v1dXV5cuvvhi7dq1i6uNAgCAEdfpDejPp1t0oqErrvG+QFBvfFiv//6oXoFgKONk2CxaMdelqypLlBHn6nmWw6qq8gJVunITqlfH8LOYsekVSXnvvfdUVVWlQ4cOacGCBaM9HQAAkCY8fkPvnWlTdV27wmXk/TJNU3+padUrh2qjbRUlafGUAq2umqSCrPhaJDrsVl00KU9zJ+bFXQ6D5CWTFdN2JR0AACBdBYygDte264OzbfIb8a2Xnmlx66W/nNHJxu7V9vLCTN26qFwVxfG1SLTbLJo7MU8XTcqXw044T2WEdAAAgBESDJo61tChgzWtcvviWDqX1OEN6NX3a/X2ieZoz/Mch003LijTJyomyBpHmYrNKlW68rSgPJ+WimmCkA4AADDMgkFTR+s79P7ZNnV6jbj28foN7TvepDc+rJPHHwr0Vot0xawSXTfPFVfYtlpC/c6rJhcoJ4GLGGH08W4BAAAMEyNoqrquQx+cbVOXL75w7vYZevNYg96sbpTb373PnIm5umnhJLny4utfXlGcrYVTCpSfGV+dOlILIR0AAGCIBYygPqrr0OHatoTKWvZWN2jfsUZ5A937uPKcWr2gTHPL8uLqwDJ5QpYWTS7QhBzaKaYzQjoAAMAQ8RtBfXiuXYfPtvcI2v1pdfv1+4/q9daJph4nkZYXZGrFXJfml+fHVXc+tShLVeWE87GCkA4AADBIvkAonB+pjT+cN3f69MZH9frjyWYZwe5wPq0oW9fOLdWciQOvnFssUkVRthaUF6ggm7KWsYSQDgAAkCSP34iG83hbKTa0e/X6h/X606lmxWRzzSzN0bVzXZpZkjNgOLdapOklOVpQnq88as7HJEI6AABAgmpbPaqu69Dp5q4eQftCgqapY/Wd2n+8Ue+faVPsLnMn5mnF3NK4ep3brNLM0lzNn5RPt5YxjncXAAAgDt6AoWP1naqu61C7JxDXPl3egP74cbPeOt6kxk5fj8cWlOdrxVyXJhdmDfg8dqtFs1yhcJ7loM/5eEBIBwAA6Edde2jV/FRTl4w4ys1N09SpZrf2H2vUwZpWBWKW2u1WixZNKdTVs0s0MX/gVopOu1WVrlzNLcvjIkTjDCEdAADgPL5AUCcaQ6vmLV3+uPbx+g396XSL3jrepLOtnh6PleQ6tXRGkZZMK1S2Y+D4VZSToTkT81RRnCObdeDOLhh7COkAAAAKrYDXtXt1oqFTJxu7eqyA96e21aP9xxv1p1MtPTq7WC3S/PICLZ1RFPfJoNOKsjWnLE8luc5BvRakP0I6AAAYt4JBU2fbPDrV1KWaZnfc7RPbPX4drGnVn0616HSzu8djBVkZumx6kS6dPiGuq31mO2yqdOWq0pVLSQuiCOkAAGBc8RtBnW3x6FRzl860uONunej2GXr/bKv+fKpVR+s7enRosUiaPTFXS2cUa25ZXlwXH5qY79SciXmaXJglKyUtOA8hHQAAjHnegKGaZrdONbtV2+qO6wRQKRToD9e268+nWnTkXHuPiw5J0oTsDC2eUqhLpxepKI4rfdptFs0oydEcVx4XH0K/COkAAGBM6vQGdLrZrZqWLtW1eePqZy5JRtDU0foO/flUi94/29arBCbHadeiyQVaPLVQUydkDVhrLoVOBK105amiOFsZNmsyLwfjDCEdAACMGQ0dXtU0u1XT4o67K4sUWjE/Vt+pD2rb9F5Nqzp9Ro/HnXarFpQXaPHUAs0syY2r44rdZtH04hxVunLjWmUHYhHSAQBA2goYQdW2eVTT7NaZVrfcvjjrWCR1eAM6UtuuD862qbquQ77zamDsVovmluVp8ZRCzS3Li3sFPLRqnquK4hxWzZE0QjoAAEgrbp+hmpYunW52q67NG3erxEiLxcPhYH6qqUvn72mzWDSzNEeLpxRqfnl+3N1W7DaLKoqyVenKVTHtEzEECOkAACCl+Y2g6tq9qm31qK7No+YEyliMoKkTjZ06fLZNH9S2q6nT12tMtsOmuRPzNG9SvmYn0AbRYgldpGh6cbaml7BqjqFFSAcAACklYATV0OFTbZtH59o8au70xX3Sp2maqm/3qrq+Q0frOnSsobPP3ucluU5dNClP88ryNa0oO+6reloskivPqWlF2ZoyIVtZDvqaY3gQ0gEAwKgKBk01dHpV1xZaLW/s9MbdIlGSWt1+HQ2H8qP1HWrzBHqNsUiqKM7RRZPydFFZvkry4i9JsVqkifmZmlqUpSkTsrngEEYEIR0AAIwoXyCoxk6v6tu9auzwqb49/rpySfL4DR1v6FR1XYeq6ztU3+7tc1x+pl2zSkNX8pw7MU/Zzvhjj9UiTSzIDK+YZ8lpJ5hjZBHSAQDAsGrz+NXQHgrlDR0+tXn8MuPP5Or0BnSysUsnGzt1orFTNS3uPstfnHarZpbkaJYrV5WluSrNc8bVwzx2/4n5mSovzNSUCdly2Kkxx+ghpAMAgCETMIJq6vSpvqN7pbyvmvALMU1TTZ0+nQiH8pONXarv6Hul3GaxaGpRtipdOaoszdXkCfHXlkuSzSqV5jk1MT9Tkwqy6GWOlEJIBwAASfEGDDV3+tXc5VNzp09NXT61ewIJrZIbQVNnW9062dilE+FQ3uHtXVMuhUpQJhVkaUZJjmaV5mp6SXbCZSgTsjNUVpCpsoJMleY6ZacjC1IUIR0AAAyoyxdQU6dPLV1+NXX61NzlU6fXGHjHGKZpqrHTp9PNbtU0h/qcn2l1y2/0neoddqumFWWrojhb04tzkqoNz3HaNDE/U2X5oWDOSZ9IF2kb0l977TVt27ZNb775pk6dOqXCwkJdeumlevjhh3XJJZf0u++WLVt099139/nY2bNnVVZWNhxTBgAg5Xn8htrcfrV5/Gp1h36aO/0JlaxEtLr90TB+usWtmma33P4LB/u8TLumF+eoojhbFcU5KsvPTKh8RZIyM0J15aEfp/IyMxKeN5AK0jak/9//+3/V2Nior33ta5o/f77q6+v14x//WMuWLdN//ud/6rrrrhvwOZ555hnNmzevx7bi4uLhmjIAACnD7TOiIbzN41drV+h2MmHcNE21eQI62+rWmRaPalpCK+V9tUKMsFktmlSQqcmFWZpaFFopn5CdkdCJnpKUYbP0COWF2dSVY2xI25C+adMmuVyuHttWr16tyspKff/7348rpFdVVenSSy8drikCADDqYsN4S5dPbZ6AWt1++ZII41Kohryu3aPaVo/Otnp0ptWt2laPunwXXiG3KHSC5pQJoXaGUyZkqSw/M6l6cLvNotJcZzSUF+U4Eg72QDpI25B+fkCXpNzcXM2fP1+nTp0ahRkBADB6PH4jHMS7y1QGE8YlqcMbUF1bKIyfbfWottWtc+1eGQP0NJ+QnREN5JMnZGlyQZacSdSCWyxSQVaGinMcKs51qiTXoYKsxFfbgXSUtiG9L62trXrnnXfiWkWXpFtuuUX19fUqKCjQihUr9N3vfldVVVX97lNXV6f6+voe26qrq5OeMwAAifAbwXAQD53E2TKIMpWITm9A59o9qmvz6lybR3XtXtW1edTZz+q4FGqB6Mp3alJBliYVZIZ/spTlSO7kzCyHVcU5ThXnOlSSG1olz6D7CsapMRXS/+7v/k6dnZ168MEH+x1XVlamBx98UMuWLVN+fr4OHjyoRx99VMuWLdPevXu1ePHiC+67efNmbdy4cainDgBAD8GgqTZPdwhvCZerJNpRJcI0TXV4A2ro8IWDuEfn2ryqa/eq8wItD2NlO2wqK8hUeTiQlxVkqjTPKbs1uRCdmWHVhGyHCrMzosE8J4ErggJjncU0E+lmmroeeughfe9739M///M/6ytf+UrC+584cUILFy7UddddpxdffPGC4y60kr5mzRodOnRICxYsSPjYAIDxy+M31O4JqMMbULvHrw5PQC1uv9rc/j6vqjkQvxFUQ0foyp6hK3x2/3j8A6+2O2xWufKdcuWFar5deU6VFWQpP9OeVJmJxRLq2hIJ5BOyHZqQ7Uh6tR1IR++9956qqqoSyopj4j9ZN27cqO9973v6x3/8x6QCuiRNnz5dV111lfbt29fvOJfL1Wc9PAAAF9LpjYTwnmG83RtQ4AI9wvsTCIZKXho7fGrq9Kq+wxcK4u1etbj9cT1Hhs0SE8S7fxdkZ8iaZM23w25VfqZdE3IcmpCdocJshwqzMrhgEJCEtA/pGzdu1IYNG7RhwwY98MADg3ou0zRlTfJ/2wEAxidvwFCX11CX31CXN6Aun6FOX0Bun6FOnyG3LyAjiXJxb8BQU6cvHMRDP42d3ugFheKN9vmZdpXkOkM/eU6V5jpUmpepwkGE8cwMqwqyMpSflaGC8E9+Zgar48AQSuuQ/sgjj2jDhg369re/re985zuDeq7jx49r7969uv7664dodgCAdBcMmuryG+r0BsI/oQDe5QuF8S6voUAyNSkKrYa3dvnV3OVXc1foCp6Rq3k2dfrUEUedeITDZlVJrkMlec5oIC8Nd0NJpquKJFktUo7TrtxMu/Izw0E8y66CrIyEr/oJIHFpG9J//OMf6+GHH9bq1at188039ypTWbZsmSTp3nvv1datW3X06FFVVFRIkq6//np98pOf1KJFi6Injv7whz+UxWLRI488MuKvBQAwOoygGQ3cHbFB3BsIh3FDyZ655TeCaguf8Nnc6esVxtvc8a+GS1JWhk1FOQ4V5ThUnOtQcY5DRTmhDijJ1os77FblOu3Ky7Qr12lXTsztbIeNVofAKErbkP7SSy9Jkl555RW98sorvR6PnA9rGIYMw1Ds+bELFy7U888/r8cee0xut1sul0vXXXedHnroIc2ZM2dkXgAAYFj5jaC6fIbcPiMaxN3hVfHQNiPptoVB01S7J6DWLp9a3N3dV1pjOrHE0zEllkWhnuCF2eEAnhsO5DkOFec4B9XWMNeZobzMUADPc2YoNxzEHXZKPIFUNWa6u4ymZM7YBQAkJ1KC4g4HcLc//OMz5PYH5PYF1eULyJ/ECZlSKNy3h6/K2eYJrXi3uf3RK3W2hbcnWuVikZSflaEJ4Q4nhdkOFeWEQvmE7NBFemzW5Fausx226Ap4pDwlcp+TNoHRN267uwAA0p/fCMrtN+TxG/L4gj3Ctyd8u8tnDOpy9pHOKu2egNrCv9s9frW5Q/db3f5+L2/fH4fNqoLsDBVGTqbMzlBhVih8T8gO3U+2p7gU6saSlxmqC8/PzIgG8bxMgjgwFhHSAQDDxm8E5fGHykoiv90+Q96AIXdMEPf4kjsB0zRNeQPBaDvD2BAeCeCR310+I6Ea8Fh2q0X54Q4mBVl2FWSFen4XxoTxzAzroGu4bVYp2xEK3qHjRVbF6ZwCjDeEdABAXIygKV8gKF8gKK9hyOsPhkN4UJ5A6H7ktzf8O5ngHTTNUPtCb0AdvtCJnO0evzq8AXWE+4zH3k62u0pEjsMWDeD5kQ4mkdvhleusjKE5iTIzw6psh105Tlv0d44jdJJmjtOuzCQ7sQAYewjpADDORFafQz+hMO0zgtFw7Qs/5guEtkeCebJhOGia4XaFAXX6ujunRDqpdMTc7/CG+ooPMnfLalG4a0nMCZOR2zEnUeZm2gdVghI5VmaGTZkZVmVm2OS025TlCN8P385yhMJ4sjXnAMYfQjoApCnTNHuE6Njb3pj73kBQ3nCpiTcQWv1OtmWAETSjdeLRXuHh253e8O+YQN4VvqjPUHQosCjctzt8cmSu0668mNux23Oc9qQv1BORYbMoy2FTtsOmzIzQyndWhk1Z4UDuDN+mQwqA4UBIB4BRdn7A7nE/Zrvf6Bm+hyJse3xGd6cUf3drwki7wvODuMef3EmbF5KZYVWOwx4N3znOUNlHjqM7bOc4bcrLzFC2wzbo4G2xSE57aMU7K8MmZ0b37WxH6HdW+DcnYwIYTYR0ABgkvxEKzL4eAdrsEaz9McE6dlwgaCYdtANGzImX/mCPLiieHm0Je/9Otj94f2wWi7JjaqyznXblOGy9arCzIwHcMTRB2GZVuMzEKqe9Z/COlKFEbjvtgz+5EwBGAiEdwLhmBM1QcDaCChhmjzAdCJo9grXfMOUzDPkCoTITf/ixZOqng6YZLUVx+w15Y8K2J9KGMBK+/ZFuKIY84S4p7iS7ocQrEmyzw4E7y9F9u/vHHl19znHahywA222WnoE7/DuyAt4dyEP3M1jxBjAGEdIBpJ1AOED7I8E6GArQASP0u8f2QPfY6JigmXTAjg3Xnmidd0xHk8j2cKcTT3h7JHxHHvcFgkNSp90fu9USWlF29F3OEam3Dt2293hsqE5wzLBZ5MywyWGzyGkPBepI4Hbaw2G7RxAfumMDQDojpAMYVqZpym+YofZ9RlBGsDsoR0J1INi9ih0bvgPR8B267QuE9k8kWEeOH+peYsR0MenZySQSsCNdTSInWvrCLQYjjyd7IZ1k2MIhO/O8GuroyYuO7pKOrJiSjsj2oVhhzrBZ5LBblWGL/FjksFmVYe9532EP/5x3m9ISAEgOIR2ATNNUIGhGSz+MYOh+JDhH7wcj4dmUEQ7Qfe0TGRfZFq9AMCh/uJTEGzDkD5jyGkbfJ1Se172ku6NJ9/jI9uFese5Lhs0SXR2OlGdE2vNlhleMIy36Mh3dQTy2ld9gQ7bVolCQtlvliAnbjug2a0wAt0SDdSSQ07UEAEYPIR1IA5HyjkjoNcKB2QiH4j639xG6jUiAjoxNMEjH1m/7A7G/+9humH2eKNnn/fDtYSyxjovdGgqq55diRG/bQ233nPaeddLOmFKNSBgfTMlGJFzbw6vU9pgV68jt2JXtjJiwHdknw2albAQA0hghHUiQaXYH22B4BToYE4pjf3ptM0Mr0JFwbPSxf2SV2ggq+rs/QbN7xfv8Wuxo7XWw+3F/zNgeYyLBOjouPDYaukc/RMeKBNnYUB1bbhEJ1aHSC1v3bVvv4O2wD74W2mpRjwBtt3YHabvNErM9ZkwfYZtwDQCQCOlIU+cHZSNoKhhUOAR3b4sNx7FBODZcdz8eKreIhN6g2XfwvlBQjcypR411THlINECHV8V71mV3P+aPKTMJxDzu7yuIh8N+qrJI0ZXdaKnFeWUWfd139lHbHLntDJdq2K2WpOudLZZQvXeGzSKb1aoMq0X2cLC22yyyW63h391hOhKuo0Hc2jNkE6wBAEOJkI6kBKOrwjEh2VQ0CPcVgnsG3fMe7/V83avIkYAdO+b8vtKRYB0p94itjY4E59gTFo2Y8BwpJTm/njoQE4IDMd1Dzh8XG8TTiUUKnfxnPf/EQKscdkvP+9FwGrodqWeOLbNwxNQ1R7YnG6St4RBtjwnR/d23R+7HhO3Y+5HbsdsAAEhlhPQ019Dh7RV+ewbdmFXlmLAbNMMrv2Y4XIcfO/+2YZrRFWIjHG59gd7lHBeqh+4+mTDYx/hgTJ30eduCvUN3ZFvsMSL30ywf9ylSLhFdvY2WS1h61SH3fqz36q7D3rOm2dGjxtkimyWxAG2zSjarNfrbbrXIarH0CMC9fizdYTo0JrzfeaE59Ls7TFtZlQYAjHOE9DT3090fRtvS9VWaEQ3K55d/nBeq+6yjNrsDdOxq91gWu9Ka0UfpQ3dJRPdqbl/lEPZwKYU9JjTbY587NmDHrPYOxGIJXdXRarXIZlWPkBy5bQ2H49gwbI0JzLY+tkVCe2x4jg3arDwDADCyCOlp7udvnUq7MotYkZplW8wqa3Rl1dZzdbW/cobYANy9vWe9caQG2W61xjxuidYT28JB93yRMHx+CLZZJYulO+hG6py7Q7RFVkt3kI59jtiAbY0Jz9HbFousVvWxjRVmAADGA0J6mrNbLf2G9EhtbyQE28IlFbGrqrGrq+fft1p6huULjbP1FaYj223nb495Llt3kI0NwdbwirHFEhN2I0HV0n3fel5YtobDbffz9XzuSJDucTyLoscJHVOEYgAAMKoI6WnuK9dVKmiGO1XElF447aEOGDarNRp4rdbugGsJB9PofXWH1e4ALEk9V4QtPVaGu58jEm67g3RMiI4JztGgHA3UhGAAAIDzEdLT3JevmRUNvwAAABgbCOlpbrCXDQcAAEDqIeEBAAAAKYaQDgAAAKQYQjoAAACQYgjpAAAAQIohpAMAAAApJm1DekdHh77+9a+rvLxcmZmZuvjii/Xzn/88rn3r6up01113qaSkRNnZ2Vq+fLn27NkzzDMGAAAA4pO2LRhvu+02HThwQI8++qjmzJmjZ599VnfccYeCwaA+97nPXXA/r9erlStXqqWlRY8//rhcLpc2bdqk1atXa/fu3brmmmtG8FUAAAAAvaVlSH/55Zf16quvRoO5JF177bU6efKkvvGNb+izn/2sbDZbn/s+9dRTOnTokN58800tX748uu/ixYu1fv167d+/f8ReBwAAANCXtCx32blzp3Jzc7Vu3boe2++++26dOXOm36C9c+dOzZ07NxrQJclut+vOO+/UW2+9pZqammGbNwAAABCPtFxJP3TokC666CLZ7T2nv2jRoujjV1xxxQX3vfrqq3ttj+z73nvvafLkyRc8dl1dnerr63tsq66uTmj+AAAAQH/SMqQ3NjZq5syZvbYXFRVFH+9v38i4RPeVpM2bN2vjxo19PkZYBwAAwPkiGdHr9ca9T1qGdEmyWCxJPTbYfe+///5eZTavvfaavvrVr2rNmjX97gsAAIDx69SpU/rEJz4R19i0DOnFxcV9rng3NTVJUp8r5UOxryS5XC65XK4e2yZPnqxp06Zp6tSpcjqdA85/MKqrq7VmzRr96le/UmVl5bAeCwPj/UgdvBephfcjdfBepBbej9Qxku+F1+vVqVOnEuoimJYhfeHChXruuecUCAR61KUfPHhQklRVVdXvvpFxseLZ90IKCwv1V3/1VwnvNxiVlZVasGDBiB4TF8b7kTp4L1IL70fq4L1ILbwfqWOk3ot4V9Aj0rK7y9q1a9XR0aFf/vKXPbZv3bpV5eXlWrp0ab/7Hj58uEcHmEAgoG3btmnp0qUqLy8ftnkDAAAA8UjLlfRPfepTWrVqle677z61tbWpsrJSzz33nF555RVt27Yt2iP93nvv1datW3X06FFVVFRIku655x5t2rRJ69at06OPPiqXy6XNmzfryJEj2r1792i+LAAAAEBSmoZ0SXrhhRf04IMP6uGHH1ZTU5PmzZun5557Trfffnt0jGEYMgxDpmlGtzmdTu3Zs0fr16/X3//936urq0sXX3yxdu3axdVGAQAAkBLSNqTn5ubq8ccf1+OPP37BMVu2bNGWLVt6bZ84caK2bt06jLMbPqWlpfrOd76j0tLS0Z4KxPuRSngvUgvvR+rgvUgtvB+pI9XfC4sZu8wMAAAAYNSl5YmjAAAAwFhGSAcAAABSDCEdAAAASDGEdAAAACDFENJTXHt7u9avX68bbrhBpaWlslgs2rBhQ9z7b9myRRaLpc+f2tra4Zv4GDTY90KS6urqdNddd6mkpETZ2dlavny59uzZMzwTHgc6Ojr09a9/XeXl5crMzNTFF1+sn//853Hty3cjOYP5m/P5H1rJvhd89ofeYP994LsxtAbzfqTS9yNtWzCOF42NjXriiSe0ePFirVmzRk8++WRSz/PMM89o3rx5PbYVFxcPxRTHjcG+F16vVytXrlRLS4sef/xxuVwubdq0SatXr9bu3bvp05+E2267TQcOHNCjjz6qOXPm6Nlnn9Udd9yhYDCoz33uc3E9B9+NxCT7N+fzP/QG+/nnsz90BvPvA9+NoTcU2Sklvh8mUlowGDSDwaBpmqZZX19vSjK/853vxL3/M888Y0oyDxw4MEwzHD8G+15s2rTJlGS++eab0W1+v9+cP3++efnllw/1dMe83/zmN6Yk89lnn+2xfdWqVWZ5ebkZCAT63Z/vRuIG8zfn8z+0BvNe8NkfeoP594HvxtAbzPuRSt8Pyl1SXOR/sWD0Dfa92Llzp+bOnavly5dHt9ntdt1555166623VFNTMxTTHDd27typ3NxcrVu3rsf2u+++W2fOnNH+/ftHaWZj12D+5nz+hxaf/9QymH8f+G4MvbGSnQjp48Qtt9wim82moqIi3XbbbTp06NBoT2ncOXTokBYtWtRre2Tbe++9N9JTSmuHDh3SRRddJLu9Z9Ve5O8Z72ec70b8BvM35/M/tIbi889nPzXw3UhNqfD9oCZ9jCsrK9ODDz6oZcuWKT8/XwcPHtSjjz6qZcuWae/evVq8ePFoT3HcaGxsVFFRUa/tkW2NjY0jPaW01tjYqJkzZ/baHu/fk+9G4gbzN+fzP7QG817w2U8tfDdSSyp9PwjpI+j111/XtddeG9fYd999VxdffPGgj7l69WqtXr06ev+Tn/ykbr75Zi1cuFAPP/ywXnzxxUEfIx2Nxnshqd///TYW/tdcspJ9Pwbz9+S7kZzB/M35/A+tZP+efPZTD9+N1JFK3w9C+giaO3eu/vVf/zWusdOmTRu2eUyfPl1XXXWV9u3bN2zHSHWj8V4UFxf3uSLS1NQkSX2upIwXybwfw/H35LvRv8H8zfn8D62h/nvy2R89fDdS32h9PwjpI2jSpEn60pe+NNrTkCSZpimrdfyekjAa78XChQt18ODBXtsj26qqqkZ0Pqkkmfdj4cKFeu655xQIBHrU5Q727znevxv9GczfnM//0BqOzz+f/dHBdyM9jMb3g2/jOHT8+HHt3btXy5YtG+2pjCtr167V4cOHe3RdCAQC2rZtm5YuXary8vJRnF36Wbt2rTo6OvTLX/6yx/atW7eqvLxcS5cuTfg5+W70bzB/cz7/Q2uoP/989kcP343UN2rfj9HtAIl4vPzyy+b27dvNp59+2pRkrlu3zty+fbu5fft2s7OzMzrunnvuMW02m3nixInotpUrV5obN240d+7cae7Zs8f86U9/apaXl5t5eXnmwYMHR+PlpLXBvBcej8dcsGCBOXXqVPNnP/uZ+eqrr5pr16417Xa7+frrr4/Gy0l7q1atMidMmGA+8cQT5muvvWb+zd/8jSnJ3LZtW49xfDeGTjx/cz7/IyPZ94LP/vCI598HvhsjJ9n3I5W+H4T0NFBRUWFK6vPn+PHj0XFf/OIXe237+te/bs6fP9/My8sz7Xa7WV5ebt55553mkSNHRv6FjAGDeS9M0zRra2vNL3zhC2ZRUZGZmZlpLlu2zHz11VdH9kWMIe3t7eZXv/pVs6yszHQ4HOaiRYvM5557rtc4vhtDJ56/OZ//kZHse8Fnf3jE8+8D342Rk+z7kUrfD4tpmuZwrtQDAAAASAw16QAAAECKIaQDAAAAKYaQDgAAAKQYQjoAAACQYgjpAAAAQIohpAMAAAAphpAOAAAApBhCOgAAAJBiCOkAAABAiiGkAwAAACmGkA4AAACkGEI6AAAAkGII6QCAIeHxeLRkyRJVVlaqtbU1ur22tlZlZWVasWKFDMMYxRkCQPogpAMAhkRmZqZ+8YtfqK6uTvfcc48kKRgM6n/8j/8h0zT13HPPyWazjfIsASA92Ed7AgCAsWP27Nl68skn9dnPflaPP/64mpqa9Prrr+uVV17RpEmTRnt6AJA2LKZpmqM9CQDA2HL//ffrySeflGEYeuCBB/TII4+M9pQAIK0Q0gEAQ+7tt9/WZZddJofDodOnT6u0tHS0pwQAaYWQDgAYUp2dnbr00ksVDAZ17tw5XXPNNXrxxRdHe1oAkFY4cRQAMKT+9m//Vh9//LFeeOEFPfXUU/qP//gP/eQnPxntaQFAWiGkAwCGzJNPPqlt27Zp06ZNWrBggT796U/rK1/5ir75zW/qrbfeGu3pAUDaoNwFADAkDh48qKVLl+ozn/mMtmzZEt3u9Xp15ZVXqrGxUe+++64KCwtHbY4AkC4I6QAAAECKodwFAAAASDGEdAAAACDFENIBAACAFENIBwAAAFIMIR0AAABIMYR0AAAAIMUQ0gEAAIAUQ0gHAAAAUgwhHQAAAEgxhHQAAAAgxRDSAQAAgBRDSAcAAABSDCEdAAAASDH/P5NCfsIkjDYcAAAAAElFTkSuQmCC", + "text/plain": [ + "
" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Last updated: Wed Aug 16 2023\n", - "\n", - "Python implementation: CPython\n", - "Python version : 3.11.0\n", - "IPython version : 8.13.2\n", - "\n", - "pandas : 2.0.1\n", - "matplotlib: 3.7.1\n", - "bambi : 0.10.0.dev0\n", - "arviz : 0.15.1\n", - "numpy : 1.24.2\n", - "\n", - "Watermark: 2.3.1\n", - "\n" - ] - } - ], - "source": [ - "%load_ext watermark\n", - "%watermark -n -u -v -iv -w" + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# First, the mean of the response (default)\n", + "fig, ax = plt.subplots(figsize=(7, 3), dpi=120)\n", + "bmb.interpret.plot_predictions(model, idata, \"x\", ax=ax);" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Below, instead of plotting the default target, `target=mean`, we set `target=alpha` to visualize how the model parameter `alpha` varies as a function of the `x` predictor." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAt4AAAFdCAYAAAA0WGq0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABJ0AAASdAHeZh94AABQy0lEQVR4nO3de3jV9Z0n8Pe5X5OcS3IICRBEBIRArFIJrQIKnc0UZwfdobNaZlplLi2tO51nLbMVRRCnD+OjO2tb6NbRAbZQ19LWcZ2OOkIVRxC8oJVwk4QkhNzO/X7/nd/+cU4OCbnnJOf6fj1PnoRfzkk+50be+ebz+3wloiiKICIiIiKiaSXNdQFERERERKWAwZuIiIiIKAsYvImIiIiIsoDBm4iIiIgoCxi8iYiIiIiygMGbiIiIiCgLGLyJiIiIiLKAwZuIiIiIKAsYvImIiIiIskCe6wLymdvtxrFjxzB79myoVKpcl0NEREREeSQSiaCzsxOrV6+GwWAY8/IM3qM4duwYNmzYkOsyiIiIiCiP/cu//Av++I//eMzLMXiPYvbs2QCSd+b8+fNzXA0RERER5ZOWlhZs2LAhnRnHwuA9iv72kvnz52PJkiU5roaIiIiI8tF4W5J5ciURERERURYweBMRERERZQGDNxERERFRFjB4ExERERFlAYM3EREREVEWMHgTEREREWVB3gfvF154ARKJBHq9flyXt1qt+OY3v4nKykpotVqsXLkSR48eneYqiYiIiIhGl9fBu6urC4888ghqamrGdflIJIK1a9fi6NGjeO655/Dqq69ixowZaGpqwrFjx6a5WiIiIiKikeX1Bjrf+ta3sGrVKphMJvzqV78a8/IvvvgimpubceLECaxcuRIAcNddd6GhoQFbt27FqVOnprtkIiIiIqJh5e2K98GDB3Hs2DHs3bt33Nd55ZVXsHDhwnToBgC5XI5Nmzbhgw8+QFdX13SUSkREREQ0prxc8bZarfje976H3bt3Y9asWeO+XnNzM+68884hx5ctWwYAOHv2LGpra0f8njabbdCxlpaWCVRNRERERLnQ4wlBJZfBpFPmupRR5WXw3rJlCxYuXIhvf/vbE7qew+GAyWQacrz/mMPhGPG6e/fuxc6dOydWKBERERHl1BVHECda7bh7kSXXpYwp74L3r3/9a7z22mv45JNPIJFIJnz90a4z2ue2bNmCjRs3DjrW0tKCDRs2TLgGIiIiIpp+l/p8+KjDBVHMdSXjk1fB2+/34zvf+Q4efvhh1NTUwO12AwCi0SgAwO12Q6FQQKfTDXt9s9k87Kq20+kEgGFXw/tZLBZYLPn/mxIRERERAc1dHnx21ZPrMiYkr06utNvt6Ovrw7PPPguj0Zh+e+mllxAIBGA0GvH1r399xOsvXboUZ86cGXK8/1h9ff201U5ERERE2fFxh6vgQjeQZyve1dXVePvtt4cc3717N44dO4bXX38dlZWVI17/3nvvxZYtW3Dq1CmsWLECABCPx3Hw4EGsWLFi3PPAiYiIiCj/JBIiTrY50G4P5rqUScmr4K1Wq7FmzZohx/fv3w+ZTDboc5s3b8aBAwfQ2tqKuro6AMBDDz2EPXv2YOPGjdi9ezcsFgv27t2Lixcv4siRI1m6FUREREQ01eJCAu+12NHtDue6lEnLq1aTiRAEAYIgQBzQTa9SqXD06FHcddddePjhh/FHf/RH6Onpweuvv47Vq1fnsFoiIiIimqxoPIG3L9oKOnQDgEQUC+U80Ow7e/Ys6uvr0dzcjCVLluS6HCIiIqKSE44JePuCFa5gbNTLrbvZAku5OktVJU00K+ZVqwkRERERUT9/JI7fXbDCH47nupQpweBNRERERHnHHYzi7YtWhKKJXJcyZRi8iYiIiChvJBIiLln9+OyqGzGhuDqiGbyJiIiIKC9ccQTx6VV30bSWXI/Bm4iIiIhyyuoL45Mrbjj80VyXMq0YvImIiIgoJzyhGD7tdKPLFcp1KVnB4E1EREREWRWKCjjT5UGrzY9SGmzN4E1EREREWREXEjjf48P5Xi/iRXbi5HgweBMRERHRtGux+nCmy1NU4wEnisGbiIiIiKZNTEjgRKujZPq4R8PgTURERETTwheO4d3P7fCERt/uvVQweBMRERHRlOv1hPFeix3ReOm2llyPwZuIiIiIptSFXi8+ueIuqYkl48HgTURERERTIpEQ8UG7E5dtgVyXkpcYvImIiIgoY6GogP+4ZIO9yHefzASDNxERERFlxOGP4D8u2RGMCrkuJa8xeBMRERHRpLXbAzjV5oDAcyjHxOBNRERERBMmiiI+7XTjfI8v16UUDAZvIiIiIpqQaDyB46129LjDuS6loDB4ExEREdG4eUIxvPu5Db5wPNelFBwGbyIiIiIaly53CCda7IgJHNA9GQzeRERERDSms90efHbVw01xMsDgTUREREQjigsJnGpzosMRzHUpBU+a6wIG+vTTT7F+/XrMmTMHGo0GJpMJK1euxMGDB8e87v79+yGRSIZ96+3tzUL1RERERMUlEInjyPk+hu4pklcr3m63G7Nnz8b999+P2tpaBAIBHDp0CH/2Z3+G9vZ2PPbYY2N+jX379mHRokWDjpnN5ukqmYiIiKgoWX1h/MfndkTiHNA9VfIqeK9ZswZr1qwZdOyee+5BW1sbnn/++XEF7/r6eixfvnyaKiQiIiIqfpf6fPi4w4UE+7mnVF61moyksrIScnle/Y5AREREVHQSCREftDnxYTtD93TIyzSbSCSQSCTgcrlw+PBhvPnmm/jJT34yruvec889sNlsqKiowJo1a/Dkk0+ivr5+zOtZrVbYbLZBx1paWiZVPxEREVGhCccE/MclO2y+SK5LKVp5Gby3bNmCn/3sZwAApVKJH/3oR/jrv/7rUa9TXV2Nbdu2obGxEeXl5Thz5gx2796NxsZGHD9+HA0NDaNef+/evdi5c+eU3QYiIiKiQmH3R3C8xY5ARMh1KUVNIor5N43xypUrsFqtsFqteO211/D888/jH/7hH/DII49M6Ou0t7dj6dKluPvuu/Hqq6+OetmRVrw3bNiA5uZmLFmyZMK3g4iIiCjfnev24rOr7oJvLVl3swWWcnVWv+fZs2dRX18/7qyYlyvec+bMwZw5cwAAX/3qVwEAP/jBD/CNb3wDVVVV4/46c+fOxR133IGTJ0+OeVmLxQKLxTK5gomIiIgKTDgm4P1WB3o84VyXUjIK4uTK22+/HfF4HJcvX57wdUVRhFRaEDeTiIiIKCt6PWG83tzD0J1lebnifb23334bUqkU8+bNm9D12tracPz4caxbt26aKiMiIiIqHImEiM+6PDjf4+XW7zmQV8H7r/7qr1BeXo7bb78dM2bMgN1ux+HDh/Hyyy/j+9//frrNZPPmzThw4ABaW1tRV1cHAFi3bh1WrVqFZcuWpU+ufPrppyGRSLBr165c3iwiIiKinPNH4jjRYofdH811KSUrr4L3ypUrsW/fPhw4cAButxt6vR4NDQ34+c9/jk2bNqUvJwgCBEHAwPNCly5dipdffhnPPPMMQqEQLBYL7r77bjz++ONYsGBBLm4OERERUV644gjiVJsDMYHL3LmUl1NN8sVEz1QlIiIiyidxIYHTV9xosfpzXcq041QTIiIiIsoJTzCG4612uIOxXJdCKQzeREREREXmiiOIk5cdiBf6cO4iw+BNREREVEQu9vrwcYcr12XQMBi8iYiIiIrE7zvdONvtzXUZNAIGbyIiIqICJ4oiPmhzotUWyHUpNAoGbyIiIqICJiREHG+x46orlOtSaAwM3kREREQFKhpP4N3PbbD6IrkuhcaBwZuIiIioAIWiAt6+aOW4wALC4E1ERERUYLzhGN6+YEUgIuS6FJoABm8iIiKiAuLwR/DORRsi8USuS6EJYvAmIiIiKhC9njDevWRDXODGOIWIwZuIiIioAHQ4Ani/1QFuRlm4GLyJiIiI8pgoijjb7cWZLg9Ehu6CxuBNRERElKdCUQEnWu3o83JcYDFg8CYiIiLKQ13uEE62OngSZRFh8CYiIiLKI0JCxKedLlzs9ee6FJpiDN5EREREecITiuFEix0ubopTlBi8iYiIiPJAi9WP0x0uxDm2pGgxeBMRERHlUDSewIftTnQ4grkuhaYZgzcRERFRjth8EZxotXPr9xLB4E1ERESUZf2zuZu7PNwQp4QweBMRERFlUSASx/utDlh9nM1dahi8iYiIiLKk1ebHxx0uxAUuc5ciaa4LGOjTTz/F+vXrMWfOHGg0GphMJqxcuRIHDx4c1/WtViu++c1vorKyElqtFitXrsTRo0enuWoiIiKi0YVjAo59bsOpy06G7hKWVyvebrcbs2fPxv3334/a2loEAgEcOnQIf/Znf4b29nY89thjI143Eolg7dq1cLvdeO6552CxWLBnzx40NTXhyJEjWL16dRZvCREREVFSpzOID9qc3IGSIBFFMe9/7WpsbER3dzeuXLky4mX27t2L73znOzhx4gRWrlwJAIjH42hoaIBer8epU6cm/H3Pnj2L+vp6NDc3Y8mSJZOun4iIiEpPNJ7Axx0utNkDuS6lqHU4Aviow4Wf3P8FzDRosvq9J5oV86rVZCSVlZWQy0dfnH/llVewcOHCdOgGALlcjk2bNuGDDz5AV1fXdJdJREREBADo84bxenMPQ/c06vWG8fP32/Gzdy/j4w4X3jjbm+uSxpRXrSb9EokEEokEXC4XDh8+jDfffBM/+clPRr1Oc3Mz7rzzziHHly1bBiD5G0ltbe2I17darbDZbIOOtbS0TKJ6IiIiKlVxIYHfX3XjYq8/16UULVcwiqPn+/DJFTf62zbkUgmcgWhO6xqPvAzeW7Zswc9+9jMAgFKpxI9+9CP89V//9ajXcTgcMJlMQ473H3M4HKNef+/evdi5c+ckKyYiIqJS5/BH8P5lB7yheK5LKUr+SBzHLlpxss0JITX8XALg1joj1i6y4E9um5XbAschL4P3o48+ir/4i7+A1WrFa6+9hu9+97sIBAJ45JFHRr2eRCKZ1OeAZNjfuHHjoGMtLS3YsGHDuOsmIiKi0hMXEjjb7cX5Hi83w5kGkZiA91rteO+SfdAJqotnluMPFs+ApVydw+omJi+D95w5czBnzhwAwFe/+lUAwA9+8AN84xvfQFVV1bDXMZvNw65qO51OABh2NXwgi8UCi8WSSdlERERUYjqdQZy+4uKW79MgLiTwQbsTb1+wIhC9dv/eUKlD05JqzDZpc1jd5ORl8L7e7bffjv/9v/83Ll++PGLwXrp0Kc6cOTPkeP+x+vr6aa2RiIiISocvHMPHHS50u8O5LqXoJEQRn3a6cfR8H1zBWPp4TYUaf7CkGjdZ9GN2MuSrggjeb7/9NqRSKebNmzfiZe69915s2bIFp06dwooVKwAkxwkePHgQK1asQE1NTbbKJSIioiIlJESc7fbgfI8XAsdyT6mEKOJstxdHzvfB5oukj5t0Snxl8Qwsra2AtEADd7+8Ct5/9Vd/hfLyctx+++2YMWMG7HY7Dh8+jJdffhnf//7306vdmzdvxoEDB9Da2oq6ujoAwEMPPYQ9e/Zg48aN2L17NywWC/bu3YuLFy/iyJEjubxZREREVAS63CF81O5kW8kUE0URF3t9eOt8H3o81/6CUKaS465FFnxxrgkyaWEH7n55FbxXrlyJffv24cCBA3C73dDr9WhoaMDPf/5zbNq0KX05QRAgCAIG7v2jUqlw9OhRbN26FQ8//DCCwSBuueUWvP7669y1koiIiCbNH4njo3Yn20qmmCiKaLUF8Na5XnS6QunjWqUMqxdUYcUNZijlBbHlzLgVxM6VucKdK4mIiEqXkBBxrtuLcz0etpVMsQ5HAP9+rm/QBkNqhRR3zK/Cl280Q6WQTfhrrrvZkvUJJxPNinm14k1ERESUDzqdQXzS6YY/zJncU+mqK4gj5/vwed+1DYaUMim+dKMZd9xUCa2yuKNpcd86IiIionESEiLa7AFc6PVyE5wp1usJ48j5Ppzr8aaPyaUSrLjBhNULLdCrSiOSlsatJCIiIhpBOCagxerH530+hGPsKZlKvd4wfnfBiuYuT/qYTCLB8rlGrFloQYVGkcPqso/Bm4iIiEqSLxzDhV4f2mwBxLnl5JQaLnBLANw6x4i7Fllg0ilzV1wOMXgTERFRSbH6wrjQ40OXOwSOmJhafQMCd/9dKwFwy2wD7lpoQWWZKpfl5RyDNxERERU9URRx1RXC+R4v7P5orsspOgzc48PgTUREREXNFYjiRKsDnlBs7AvThDBwTwyDNxERERWt8z1e/L7TDbZwT62RAndDKnBXMXAPi8GbiIiIik4oKuDkZcegLcgpc93uEN6+aMXZ7mtjARm4x4/Bm4iIiIpKlzuEk60OROIcDThVrjiDeOeiFRd6feljDNwTx+BNRERERUFIiDh9xYVLA3ZFpMxctvvxzgUbWmzX7lOpJNnDvXoBA/dEMXgTERFRwXMHozjewhMop4Ioimix+vH2RSvaHcH0cZlUgtvmGLFqQVXJzuHOFIM3ERERFbSLvT582umCwM6SjIiiiAu9Prx90YqrrlD6uFwqwe03mHDnTVUlt9PkVGPwJiIiooIUjiVPoOx28wTKTCREEWe7vXj7ghW93mv3pVIuReMNZnx5vhllagbuqcDgTURERAWnyx3CqcsOhGNc5p6suJDAJ51uvPu5DY7AtU2F1AopvnRjJb40zwytilFxKvHeJCIiooLhCcXwyRUXV7kzEIkJ+KDdifda7PCF4+njWqUMd8yvROM8M9QKWQ4rLF4M3kRERJT3wjEBzV0etFj93AxnkvyRON5vteP96/5SUKFR4M6bKrG8zgSlXJrDCosfgzcRERHlrURCxMU+H5q7PIgJTNyT4QpG8d4lOz7qcA66D6vKVFh9UxWWza6AXMrAnQ0M3kRERJSXrjiC+PSqG/4B7RA0fn3eMN793IbfX3UP+ivBLKMGaxZUYdHMckglktwVWIIYvImIiCivOPwRnL7ihs0XyXUpBUcURVxxBvHu5zacH7DLJADcZNFj1YIqzKvUQcLAnRMM3kRERJQXApE4ft/pHrRpC41PQhRxrtuL/7hkQ+eAGdwSAEtqK7D6pirUGjW5K5AAMHgTERFRjoVjAi72+nCx14c4z5yckJiQwMcdLhxvsQ8aCSiTSvCF2QasuqkKldzWPW/kVfD+3e9+h4MHD+LEiRPo7OyEwWDA8uXLsX37dtx2222jXnf//v148MEHh/1cT08Pqqurp6NkIiIimiRvOIaLvT602QIM3BMUiMRx8rID7192IBgV0sc1ChlW3GDCyhu56U0+yqvg/dOf/hQOhwN/8zd/g8WLF8Nms+HZZ59FY2Mj3nzzTdx9991jfo19+/Zh0aJFg46ZzebpKpmIiIgmyOoL40KPD13uEETm7Qlx+CN4r8WO01dcgyaUGLUKfHl+JW6rM0Il5wzufJVXwXvPnj2wWCyDjjU1NWH+/Pn44Q9/OK7gXV9fj+XLl09XiURERDQJoiii0xnC+V4vHP7o2FegQa44g/iPSzac6/Zi4O8qNQY17rypCvU1FZBJecJkvsur4H196AYAvV6PxYsXo7OzMwcVERERUSbiQgKttgAu9HoRiAhjX4HShISIcz1eHG+x44pz8AmnC2bocedNnFBSaDIO3u+++y5+9KMf4fz58wiFQoM+J5FI0NramtHX93g8OH369LhWuwHgnnvugc1mQ0VFBdasWYMnn3wS9fX1GdVAREREExOKCrjY50OL1Y9oPDH2FSgtHBPwYbsT7192wB2MpY/LJBI0zDbgjpsqUV2uzmGFNFkZBe/33nsPa9euxZo1a3D+/Hk0NTXB5/Ph/fffx7x58/DlL3854wK/853vIBAIYNu2baNerrq6Gtu2bUNjYyPKy8tx5swZ7N69G42NjTh+/DgaGhpGvb7VaoXNZht0rKWlJeP6iYiISoknGMP5Xi/a7QFu7T5BzkAUJ1rt+KjDNeiXFY1ChttvMKFxnhkVGp4wWcgyCt5PPPEEHnzwQfz0pz+FQqHAU089hVtvvRWfffYZmpqacN9992VU3OOPP45Dhw7hxz/+8ZhTTZqamtDU1JT+96pVq7B+/XosXboU27dvx6uvvjrq9ffu3YudO3dmVC8REVGpsnrDONfjRbc7nOtSCoooimh3BHG8xY7zPYP7tyv1Knx5vhlfmG2EUs4t3YtBRsG7ubkZjzzySLq3SBCSvVvLli3D448/jieffBJ/9Ed/NKmvvXPnTjz11FP4+7//e3z3u9+d1NeYO3cu7rjjDpw8eXLMy27ZsgUbN24cdKylpQUbNmyY1PcmIiIqdjxhcvKEhIgzXR4cb7Gjyz24VXd+lR5fnm/GTTPKuKV7kckoeAeDQej1ekilUqhUKtjt9vTnFi1ahHPnzk3q6+7cuRM7duzAjh078Oijj2ZSIkRRhFQ69m+JFotl2JM7iYiIaLC4kECbPYDzvT74w/Fcl1NQ/JE4Pmp34uRlB7wD7juZVIJbZhnwpflmzKzgDpPFKqPgPWfOHPT19QEAFi9ejN/+9rf4wz/8QwDAsWPHJjU/e9euXdixYwcee+wxPPHEE5mUh7a2Nhw/fhzr1q3L6OsQERFR8qS/S31+fN7nQ4QnTE5IlzuE91sd+Oyqe9BmQTqlDCvmmbHiBhM3vCkBGQXvNWvW4J133sGf/Mmf4C//8i+xZcsWnD9/HiqVCv/+7/+O//7f//uEvt6zzz6L7du3o6mpCevXrx/SItLY2AgA2Lx5Mw4cOIDW1lbU1dUBANatW4dVq1Zh2bJl6ZMrn376aUgkEuzatSuTm0lERFTSQlEBzd0e7jA5QUJCxNluD95vdaDjunGA1eVqfOlGMxpmG6CQsX+7VGQUvHfu3Amn0wkA+Na3voVgMIhDhw5BIpHgscceG3MSyfVee+01AMAbb7yBN954Y8jnxdT2VoIgQBCE9L8BYOnSpXj55ZfxzDPPIBQKwWKx4O6778bjjz+OBQsWTPYmEhERlaxEQsTFPh/OdHkQFxi4x8sfiePDdidOXddOIgGwuKYcX7qxEnPNWs7fLkESUeRmrSM5e/Ys6uvr0dzcjCVLluS6HCIioqzp8YTwcYcL3hB7uMcr2U5ix2dXPYP+MtA/DnDFDSYYtMocVljc1t1sgSXL880nmhXzaudKIiIiyi1/JI7THS5cdYXGvjAhnkjgbLcXJ9lOQuOQcfB+77338Itf/AIdHR3D7lx59OjRTL8FERERTbO4kMD5Hh/O93jZxz0O7mAUH7Q78WG7C4EI20lofDIK3vv27cPmzZthMpmwYMECqFSqQZ9nFwsREVH+63QGcfqKC4GIkOtS8lpCFNFq8+PkZScuXLfZjVYpw/I6ExrnsZ2ERpZR8H766afxta99DQcOHBgSuomIiCi/eUIxnO5wocfD3SZHE4oK+PiKC6cuO+AIDN4oaLZRg8Z5ZtTXVrCdhMaUUfDu6OjAj3/8Y4ZuIiKiAhKKCjjf68XnvT6wq2RkXe4QTl124PdX3YgNmOqikEnQMMuAFfPMqDVwsxsav4yC980335zeQIeIiIjyl5AQ0eUK4bLdjx5PGOwGHV40nsCZLg8+aHOg87oTTM06JRrnmXHrHCM0SlmOKqRCllHw/uEPf4hHHnkEa9asQW1t7VTVRERERFPE7o+gzR5AhyOIKHebHFGfN4wP2p345IoL4di1+0kC4OaZ5Vgxz4Qbq/SQ8mRJysCEg/d//s//edC/PR4PFixYgFtuuWXIFvESiQSvvvpqZhUSERHRhISiAtrsAbTZA/CEYrkuJ2/FhASauzz4oN2JDsfgUYB6lRzL64y4nbO3aQpNOHh/9tlng0bjyGQyWCwWdHd3o7u7e9BlOUKHiIgoO/pbSVrtfvSylWRUVl8YH7Y5cfqKG6HY4Eku86v0+OINJtw8swxyKU+WpKk14eDd3t4+DWUQERHRZHhCMbRYfWizs5VkNHEhgbM9XnzQ5kSbPTDoczqlDLfVGfHFuSaY9RwYQdOHO1cSEREVGFEUcdUVwiWrD72eSK7LyWtWXxgft7vw8RUXgtHBq9vzKnW4/QYTFs8sh5yjACkLMg7egiDgl7/8Jd5++204HA6YzWbcdddd2LhxI+Ry5noiIqKpEo4JaLH60Wrzc7ObUfRPJvmo3TlkG3etUoZb5xhx+1wTKsu4uk3ZlVEyttvtaGpqwunTpyGXy2E2m+FwOPDCCy/gmWeewZtvvonKysqpqpWIiKgk2XwRXOrz4YozyLnbIxBFEV3uED5qd+H3V92IXNd2c0OlDl+ca8KSmnJudEM5k1Hw/tu//VtcvHgRhw4dwte+9jXIZDIIgoCXX34Z3/rWt/C3f/u3+PnPfz5VtRIREZWMuJBAuyOIFqsPzgAnk4wkGI3j0043Pmp3odc7eAfOMpUct9YZcVudEZXs3aY8kFHwfu211/DUU0/h/vvvTx+TyWR44IEHYLVasWPHjkzrIyIiKimRuIALPT5csvp5suQIEqKINnsAH7U7cbbbi/iAPwNIACysLsPyOhMWVpdBJuWENcofGQVvURSxZMmSYT9XX18PkbOMiIiIxiUcE3Ch14fP+3yIC/z5ORxXMIrTV1w43eGCKzj4rwAmnRLL64z4whwjKjSKHFVINLqMgve6detw5MgRrFu3bsjn3nrrLaxZsyaTL09ERFT0GLhHF40ncK7Hg487XLhsC2DgPSSTSrCkphxfnGvCDZU67ipJeS+j4P3444/jvvvugyAIeOCBB1BdXY3e3l4cOnQIv/nNb/Cb3/wGTqczfXmTyZRxwURERMUgHBNwvseLS33+Qa0SlPyLeqcziI+vuPDZVc+QEyVrKtS4tc6IW2YZoFVxghoVjoyerbfeeisA4Nlnn8X//J//M328v8XktttuG3R5QeDoIyIiKm3hmIBzPV60MHAP4Q3F8EmnG6c7XLD5B88n1ypluGW2AbfVGTGzQpOjCokyk1Hw3r59O7eFJyIiGgcG7uHFhAQu9PpwusOFz/t8g1pJpBJgwYwy3FZnxMJqbuFOhS+j4M2pJURERKNzB6O4ZPWjzRZg4E4RRRFXnEGcvuLGmS43wrHBrSSWMhVuqzPiltkGlKl5oiQVDzZGERERTbG4kMAVZxCXrH44/NFcl5M3HP4IPu1045NON5yBwfeLWiHFslkG3DbHiFlGDf+iTkVpwsH7//yf/zOhy//5n//5RL8FERFRQfKEYmix+tBmD3IGd0ooKuBMlwefXHEN2b69v5XkC3OMWFRdxh0lqehNOHh/85vfHPdlJRLJhIL37373Oxw8eBAnTpxAZ2cnDAYDli9fju3btw85UXM4VqsVW7duxb/+678iGAyioaEBTz31FNauXTvuGoiIiCZCSCQncFyy+mHzRca+QgkQEiIu9flwutONCz3eIS02tQYNvjDHgGWzDNBzKgmVkAk/29va2qajDgDAT3/6UzgcDvzN3/wNFi9eDJvNhmeffRaNjY148803cffdd4943UgkgrVr18LtduO5556DxWLBnj170NTUhCNHjmD16tXTVjcREZUebziGllTv9vXj7kpRf9/2p51unOnyIBgdPMmsXC3HLbON+MIcA2aUq3NUJVFuTTh419XVTUcdAIA9e/bAYrEMOtbU1IT58+fjhz/84ajB+8UXX0RzczNOnDiBlStXAgDuuusuNDQ0YOvWrTh16tS01U1ERKUhkRBx1RVCi82HXg9XtwHA6gvj951u/P6qZ0jftkImQX1NBb4wx4h5Vdzghiiv/r5zfegGAL1ej8WLF6Ozs3PU677yyitYuHBhOnQDgFwux6ZNm/Doo4+iq6sLtbW1U14zEREVP38kjharH5dt/iETOEqRNxTDZ1fd+PSqG93u8KDPSQDMt+jRMNuAJTXlUMlluSmSSkK5Ro6ZFRrUGNSo1KtyXc6YMg7ely5dws9+9jOcP38eoVBo0OckEgmOHj2a0df3eDw4ffr0qKvdANDc3Iw777xzyPFly5YBAM6ePcvgTURE4yaK/avbfvR6whBLfBJgOCbgbLcHn3a6h2zdDgCzjBo0zDJg2awKjgCkaaOQSTCjXI0agxozKzTQFdg5AhlV29zcjMbGRtTW1qKlpQXLli2D3W5HV1cXZs+ejRtvvDHjAr/zne8gEAhg27Zto17O4XAMuyV9/zGHwzHq9a1WK2w226BjLS0tE6yWiIgKXTAaR6s1gFabf0ifcqmJCQlc7PXh91fduNjrG3KSpFmnRMNsA26ZbSiI1UbKLpkUMGiVMOuUMOmUUClkCEUFhGMCQjEBwaiQ/nc4JmCkMfcmnQIzKzSYaVCjUqeCVFq4LUsZBe9HH30U/+k//Se8/PLLUCqVePHFF3Hrrbfit7/9LR566CE89dRTGRX3+OOP49ChQ/jxj388rqkmo838HGse6N69e7Fz584J10hERIVPFEV0e8JosfrR7Q6V9Op2PJFAq9WP31/14FyPd8hYRJ1KjmWzKnDLLAPnbVOaVAJUaBQw6ZQw65Uw6VQwaBTjDsmiKCISTyAUFRCMJQO5XCpBdYUaakXxtCtlFLxPnz6NvXv3QprawjWRSL44169fj0ceeQQ/+MEPcOzYsUl97Z07d+Kpp57C3//93+O73/3umJc3m83Drmo7nU4AGHY1fKAtW7Zg48aNg461tLRgw4YN4y+aiIgKijsYRZs9gCvOIAKR0l3dTogi2uwBfHbVjeYuL0KxwfeFSi7F4pnlaJhtwI1VesgKeMWRpkaZWo5KvSodtI1aZUbPC4lEArVCBrVCBuMU1plvMgreLpcLJpMJUqkUCoUCLpcr/bnly5fjySefnNTX3blzJ3bs2IEdO3bg0UcfHdd1li5dijNnzgw53n+svr5+1OtbLJZhT+4kIqLiEozG0W4Pot0RgDsYy3U5OSOKIjpdIfz+qhvNVz3wReKDPi+XSrBoZjmW1VZgITe3KXkGrQKWMhUsZWpUlamgURbPKnQ2ZRS8a2trYbfbAQDz58/Hu+++i6985SsAgM8++wx6vX7CX3PXrl3YsWMHHnvsMTzxxBPjvt69996LLVu24NSpU1ixYgUAIB6P4+DBg1ixYgVqamomXAsRERWHmJBApzMZtvu8kZJtJRFFEd3uMM50eXCmyw3Xdb949O8kuWxWBW6uLoeqiP7ET+MnlQBGnRKWMhWqUm+cTjM1Mgred9xxB06cOIENGzbg61//Op544gn09PRAqVRi//792LRp04S+3rPPPovt27ejqakJ69evx8mTJwd9vrGxEQCwefNmHDhwAK2trem54g899BD27NmDjRs3Yvfu3bBYLNi7dy8uXryII0eOZHIziYioACUSInq8YbTbA+hyhYacGFgq+vvXm7s8ONM1dNa2BMC8Kh2WzUqO/9MqC2tKBGVOrZDCqE22jFjK1KjUKyHnXzimRUavrm3btqG7uxsA8Hd/93fo7e3FoUOHIJFI8LWvfQ3PPPPMhL7ea6+9BgB444038MYbbwz5vJhaohAEAYIgpP8NACqVCkePHsXWrVvx8MMPIxgM4pZbbsHrr7/OXSuJiEpIIBLHhV4f2u2lu6OkKIro8fSvbA8N2wAwx6TFslkVWFrL8X+lQiJJ9mYbtUoYtAoYtcnebLaNZI9EFEv1D25jO3v2LOrr69Hc3IwlS5bkuhwiIhqFJxTD+R4v2u2BEceSFbOBYbu5ywPHCGG7vrYC9TXlMGiVOaiSskUmRXKySCpgG7QKGDQKrmRPsYlmRf49iYiICpozEMXZbg+uukpvDGB/G8nZ1Mr2cGF7tlGDpbUVqK+tYNguAQatAjdW6XFDpQ5KOUN2vmHwJiKigtTnDeNctxc9nvDYFy4iCVFEpzOIs91enO32DDlBEmDYLjVyqQSzTVrMt+hRVcaNjPIZgzcRERWUq65k6HT4h67uFishIaLdEcDZbg/OdXvhDceHXGbWgLBtZNguCUatAjda9Jhr5up2oWDwJiKivJdIiOhwBnGu2wtPqDRmb8cTCVy2BdDcldxB8vrt6yUA6sxaLKmpwBL2bJcMuVSCOrMWN1r0qNRzdbvQMHgTEVHeEUURrmAMNl8k+eYPIxQt/gkl0XgCl6w+nOv24nyvF+HY4NsslQDzKvVYUluOxTPLOY2kRMilEph0StSZtZhbqeNmRgWMwZuIiHIuLiTgCEQHBO0I4kJpnCkZjMRxvteHcz1etFh9iF13u2VSCeZX6VFfW46bq8uhVfFHd7HTKKWo0qtRWaZMbsuuVUKawXbslD/46iUioqwLxwTYfBFYU0HbHYyW1AhAVzCK8z1enO32osMxdPyhQibBghllWFJTgUXVZVBzB8miJZEke7Ur9SpU6pO7ROr4y1XR4iNLRERZ4QvH0OkM4aorCHsJnRgJJFtn+nwRnOtO9mt3u4dOYtEqZVhUXY4lNeW4sUrPk+WKlEImQWWZClWpkG3WcZfIUsLgTURE08YZiOKqK4irrhDcw4y9K2ZCQkSHM4ALPT6c7/EOO2PboFFgcU2yX7vOrIOM7QRFR6+Wp0K2ElV6NSq07MsvZQzeREQ0ZURRhM0XQWcqbAciwthXKiLhmIBLVj/O93hxsdeHUGzo7a8uV+PmmcmV7ZkVakgkDNvFQioBTDrloBVttgnRQAzeRESUkf6tyq84g+hyhRCJF//0kYHcwSjO9/pwoceLy7YAhOu2z+wf+3fzzOTKtpkj4IqCQiaBIbUVu1GrQIVGCZNOyb9a0KgYvImIaFJCUQEtVj9abf4hM6aLmSiK6HaHcb7Xi/M9w++cqZRJcdMMPW6eWY6FM8p4slwBk0qAMrUCBm3/mxIGjYKPKU0KnzVERDQhPZ4QLvX50e0OlcwkkkhcQKs1gAu9Xlzs88E3zM6R5Wo5bp5ZjptnluMGzlrOW3KpBAq5BAqZFEqZFAp56r1MCoUsdTx1rEKjQIVGwVF+NGUYvImIaEzhmIDLtgBabH74hwmdxcgZiOJirxcXen24bA9AGOa3jJkVyX7tm6vLUWNgv3a+kUqAGeVqzDZpUWvQQCWXMkRTTjF4ExHRiKy+MFr6/Oh0BSEUeeu2kBBxxRlMh22rLzLkMnKpBDdW6bGwugyLqsu4TXsekkqA6go15pi0qDVqoJLz5EbKHwzeREQ0iC8cQ7c7jFabv+hHAPojcVzq8+Finw+X+vzDTiEpV8uxqLocC6vLOF87T8mkwMwKTXplm48R5SsGbyKiEheKCuj1htGXeivmEYAJUUSXK4SLfT583udDlyuE6xtIJABmGTVYWF2ORdVlHPmXp+RSCWYakivbNQYNe+qpIDB4ExGVmHBMgNUbQZ8vGbS9oeLu2Q5G4vjc6sfnqbA93AQWlVyKmyx6LKoux4LqMug5sSKvSCVAhUYBky45ss+oU8Ko5eg+Kjz8n4WIqMhF4gLs/ih6PWFYvWG4irx9JCGK6HaH8HmfDxd7fbg6zKo2kNzIZsGMMiysLsMck5YhLk9IJUjNxlamg7aBIZuKBIM3EVEREUURnlAMdn8Udn8Edn+k6Fe0gWRf+iWrH5f6fLhkHX6uuEouxXyLHgtmlGHBjDJUaLh1d7bJpIBKLoNKLoVKIYVKLoNSLoVKLoVWKYNRy5BNxY3Bm4iogEXjCTgCEdh914J2TCj+4drxRAIdjmA6aA+3iQ0AzChXYWEqaM8xayGXsg94uihkEpRrFChXK1CmlkOvkqfDtSoVruXsw6YSx+BNRFRA+k+EtHrDsPuj8ISKu22knyiKcASi6aB92RZAdJj5hmqFFDdW6bHAUoabZug57m+KSSWATiVHuSYZrsvVCpRrku/VCo7tIxoLgzcRUR6LxJMnQvZPHSmFtpF+oaiAVpsfLVY/Wmx+OAPRIZeRAKg1anCTpQwLZugxy8he7akklQCWchVmG7WwlKtRppJzAxqiDORd8Pb5fNi1axc+/fRTfPLJJ7Db7XjiiSewY8eOMa+7f/9+PPjgg8N+rqenB9XV1VNcLRHR1IoJCVh9keRoP0/xnwg5UDyRwBVnMBm0rf5hR/0BQJlanl7Rnl+lh5YTSKaUTJrc7ZEb0BBNvbz738rhcOD5559HQ0MDNmzYgBdeeGHCX2Pfvn1YtGjRoGNms3mqSiQimjKJhAh7IIJeTxi9njCcgSiG2Zm8KImiCKsvkg7abfbh20fkUgnmmnW4aYYeN1nKMKNcxbnaU0wuk6CmQoPZJg1nYhNNo7wL3nV1dXC5XJBIJLDb7ZMK3vX19Vi+fPk0VEdElDl/JI4edwg9nmT7SCmcDNnPG4ql20dabX54w8O3zsysUGO+RY/5Fj3mmnUMgtNAKZei1pAM2zMrNGzRIcqCvAveXMUgomITFxLo80XSYds3QtgsRqGogMv2ZMhutQZg80eGvVyFRoH5VcmgfaNFzw1sMiSRABqFDBqlDNrUm0YhT75PvemV7Ncmyrai/J/tnnvugc1mQ0VFBdasWYMnn3wS9fX1uS6LiEqIKxBFtyeEXk8YNl+kZNpHYkIC7Y4AWq0BtNr86HYP36etlEsxr1KXXtWu0rN9ZKIUMgkqNApUaBQo1yigV8lTIVsOtULK+5MoDxVV8K6ursa2bdvQ2NiI8vJynDlzBrt370ZjYyOOHz+OhoaGEa9rtVphs9kGHWtpaZnukomowCUSItyhGFzBKFyBKFzB5MfxEmkfERIirrqCaLUlg/YVZxDCML9lyKQSzDFpcWOVDjdWcfrIRKgV0nS4rkjNya7QKKBR8qRHokJTVMG7qakJTU1N6X+vWrUK69evx9KlS7F9+3a8+uqrI15379692LlzZzbKJKICFY0n4A4mw7UzEIU7mJyjXSqr2UAyaHe7Q7hsD+CyzY8OR3DYEyIlAGoMmnTQrjProJSzT3ssaoUUVWUqWMrUMOqSAZtTRYiKR1EF7+HMnTsXd9xxB06ePDnq5bZs2YKNGzcOOtbS0oINGzZMY3VElM984Rj6vJHkZjWBKPwl1JvdLyGK6PGEcdmW3LSm3RFAJD40aANApV6VDtrzqnTQKov+R0zGdCpZKmirUFWm5jb2REWuJP5XFEUR0jG2CbZYLLBYLFmqiIjyUSAST87P9kZg9YURiAi5LinrEqKIPm8Yl20BXLYH0Gb3IxwbPmgbtQrMq9JjXqUO86r0DI3jUKaWw1KmgqVcDUuZCjqeREpUUor+Fd/W1objx49j3bp1uS6FiPJMOCagz5ucn93ni5TuirY7jDZ7co52uyOIUGz4XzgqNIp0yJ5XpYOR27GPSquUwahTwqhVwKhVoqpMxW3ViUpcXgbv119/HYFAAD6fDwBw7tw5/OpXvwIAfPWrX4VWq8XmzZtx4MABtLa2oq6uDgCwbt06rFq1CsuWLUufXPn0009DIpFg165dObs9RJR7QkJM9WdH4QzEYPNF4AmVzq6Q/fp7tNvsgVTQHrl1pFwtH7SibdQqOCljBGVqOUw6JQxaBUw6JYxaJUM2EQ2Rl8H729/+Njo6OtL/Pnz4MA4fPgwguYI9d+5cCIIAQRAgitfOalq6dClefvllPPPMMwiFQrBYLLj77rvx+OOPY8GCBVm/HUSUG3EhkZ4u4gwkp42U2kmQ/eJCAl0DgvZIJ0MCyRXtGyp1uMGsww2VOpj1Sgbt60gkQLk6Ga5NOiWMuuRqNjf4IaLxyMvg3d7ePuZl9u/fj/379w869o//+I/TUxAR5a1IXIAnGIMzHbJj8IZjEEswZANAJCagwxlEuyOAdnsQV11BxEf4jcOoTQXtSh1uqOSK9nB0KhlMOiXMOhXM+mTYZsgmosnKy+BNRHS9REKENxyDOxhLz832BGMIRkvvBMiB/JE42u0BdDiS/dkjbVgDACadckDQZo/29ZRyKcw6Jcx6Jcx6Fcw6tosQ0dRi8CaivBOOCakNaWJwh6JwB2PwlmiryECiKMIZiCZXtFMnQtpH2IJdAmBGuRp1Zi3mVuow16zj1JEB5FIJjKl2kf6wXabm/UNE04vBm4hyKi4k4AxE4QhE4fBH4QhESnKM33D6T4TscAbR4Uj2Z/sjw09ekUqAWoMGN6RCdp1Zx50NU6SSZP+6SXdtJdvAthoiygEGbyLKGlEU4QnFYPdH4fBH4Eid9Fiq/djXC0UFXHEG0eFMhuyrriBiI2w9r5RJMcekRV2lFnPNOsw2arkzZIpcJkFNhQaVZckVbZNWCTn7sokoDzB4E9G0CccE2HzJgG33ReAMRhEfIUiWmoFtI1ccQVxxBtHnDY/Yn12ulmOOWYc6kxZ1Zi1mVmggk3LFtp9SLkWtQYPZJg3vGyLKWwzeRDQlEgkR7lAMdn8Edl8ENj9bRgaKxpNj/a44AqlV7eCIJ4b292fPMWtTQVvHiSPDUCukmGXUYrZJgxllakgZtokozzF4E9GkhGNCMmT7U6vZgeiIY+tKTX9LTYczuZJ9xRFEjyc04smhCpkEs4zJlew6kw5zTFr2Z49Ap5JhllGD2UYtqspU/GWEiAoKgzcRjSkSF+AKxOAIROAKJGdml+L26iPpX83udAbR6Qqi0xmEd5T7x6hVYLYpuZo9x6RDdYWarRHXUcql0Cpl0ChkUCtk0KvkmGlQo1KvynVpRESTxuBNRIP0j/Jz+KPpnR/ZMnKNKIpw+KO4kgrYnc4ger3hEVezZVIJag0azDFpk29mLcpLfGydWiGFQauARiGHRikbFLA1qY/5iwgRFSMGb6ISFY4J8Efi8Ifj8EfiyV0fgwzZ1wtG47jqGriaHUIoNvJ9VKFRYLZRk17RrjFoSnqihlYpS87L1ia3VzfplNAq+aOHiEoT//cjKlKJhIhAND4oXA/8eKQxdaUsJiTQ4w6h0xXCVVcQV10hOALRES+vkElQa0ie3DfbqMVsk7akN6nRq+WDArZRy50fiYgGYvAmKgK+1FbqrmAUrmAMnlAMgUic87FHkRBF2HwRXB0Qskc7ARIAKvUqzDFpMMuYbBuZUV7avdn987JnGTWYaVBDJWfIJiIaDYM3UQGJCQm4gzG4g1G4QzG4Asn3nI09OlEU4Q7GcNWdDNldrhC63CFE4okRr6NTyjDbpMUsYzJozzJq2CKBZH92rUGDWSYtqkv8Fw8iooniTxGiPCSKIrzhODyp1Wt3KLmSzUki4+MNx9CVWsnucodw1RUacWY20N8yci1gzzZquaX4AHq1PPULiAZVeo7wIyKaLAZvohwLROJwh2LwBJMB2xOMwRuOQRh5MZYGCETi6HKH0gG7yzX6KD+pJLk5Ta0hGbBnmTSwlHHldiCJJDnysP8XEYNWmeuSiIiKAoM3UZaEY0Jy9bp/FTsYhScU40mOE+CPxNGdCtldrhC63SG4Q7ERLy9Bsi97llGDWqMGswwaVFdooJSX7pSR62mVMlRoFTBoFDBolTBoFCjXKPiLCBHRNGDwJppi4ZgAb6i/RSSWbhcZrZ+YhvKFY6mQHU6Hbc8oIRu4tkqbbBvRoMag4VSNFIVMgor+cJ0K2hVaBU+IJCLKIgZvokkKRuPwhuLwhZOtIf0r2eEYA/ZE9G+v3u0Oo9uTXMXudodGbRcBkiG7xqBB7YA3raq0/0uTSgCtSo5ytRxlagXK1XKUaxQoU8t5YigRUR7g/8REo4gJCfjCcXhDyXDd/7EvHEd8tLlzNKyEKMLpj6LLE0KPO5QO26Od+AgkQ3Z/uK4xalBbUdohWyGTwKhVomxAsC5TK1CmkkPKFhEiorxVuj+5iFJiQiK9qYwvnFzB9kfi8IZjCEW5ej1ZcSEBqy+CHs+1gN3jCSM6RsuNWafEzAGr2DUGdUmv1sqlEhi0Cpj1Sph1Kpj0ypLfcp6IqFCV7k8zKin926P7wsmdG32RWDpsszUkc8FoHD2eMHrcyXDd4wnD6guPuhmNVAJYytSoMagxsyLZjz2zQl3SPdlSCWDQKmDSqWDSKWHWKVGhUXAVm4ioSDB4U9EIx4RBK9b9H/vC3B59qiREEa5ANB2ue1Kr2GOd9CiXSlBdoUZNKmDXGNSYUa6GQlba00U0Simq9GpUlilRqVfBqFVymggRURFj8KaCwnCdPZGYgF5vMmD3esPoTb0fq1VEq5SlV69nViTfV+pVJR8oJRKgQqNAVZkKVXoVKstU0JdwnzoRUSnKu//1fT4fdu3ahU8//RSffPIJ7HY7nnjiCezYsWNc17dardi6dSv+9V//FcFgEA0NDXjqqaewdu3a6S2cpkw0nkiH6f5g7U29Z7ieegNXsQcGbGcgOuZ1+/uxayrU6aBdppZzZ0MAcpkElfrkSnZVmQpmnYrzw4mISlzeBW+Hw4Hnn38eDQ0N2LBhA1544YVxXzcSiWDt2rVwu9147rnnYLFYsGfPHjQ1NeHIkSNYvXr1NFZO4yWKIoJRAYFoHIGIgMB1K9ecdz19ApE4er1h9KUCdp83jD5vBNExtslUyqWoLlejOhWwq8uTb6oS7sceSCWXwqhLzsg2apUwahWo0HDLeSIiGizvgnddXR1cLhckEgnsdvuEgveLL76I5uZmnDhxAitXrgQA3HXXXWhoaMDWrVtx6tSp6SqbBkgkRARjyUDtj8QRjCRPbAxGk/8ORYVRT7qjzMWEBGy+SHr1us+bfO8bYzY2AJh0SlSXpwJ2ahXboFVAyhAJANCr5TBqFcmArUuG7FKeukJEROOXdz8tMlkheuWVV7Bw4cJ06AYAuVyOTZs24dFHH0VXVxdqa2unosySF4omw3R/uB74cTAqQGSwzgohIcIRiKDPG0mtXodh9UbgCETG/OVGrUiuYs9IrWRzFXsopVyKqjIVLGUqmPXJ1exSPyGUiIgmL++Cdyaam5tx5513Djm+bNkyAMDZs2cZvMcpEhfSbSDJlpBkO0j/MW4ek10JUYQ7GEuH6z5vGFZfBFZfBMIYj4VMIkFVmQrVFamQXa7CjHI1WyGGoUoF7RnlaljKVDBoeR8REdHUKarg7XA4YDKZhhzvP+ZwOEa8rtVqhc1mG3SspaVlagvMI9F4Ir1C3R+s/f1BO8IJIbmSEEV4gjH0+ZIr11ZfKmCPow8bSO7wOKN/FbtcjRkValRxosiIVHJpMmSXq1JBW5nrkoiIqIgVVfAGRm9VGe1ze/fuxc6dO6ejpGkXjgmIxBOIxAVE44nkm5BAJJZ8338sEu+/XAJxBuuc6l/Btg4I2H3eCGy+8QXscrU8HbBnpFawq8pUUMnZJjIShUySOvkxeRJklV6FCi13gCQiouwpquBtNpuHXdV2Op0AMOxqeL8tW7Zg48aNg461tLRgw4YNU1rjRIiiiHAsgUA0eUJiMCogmPo4kPo4HBMwjpxGOSIkRDgDUdh811pDbL7xB2ydUgbLgHA9oywZtjVKBuzR6NVyGDTJEyANWgWMOiVnZhMRUc4V1U+ipUuX4syZM0OO9x+rr68f8boWiwUWi2XaapuI8z1efN7n4/SPAhITErD7I+m2kP6g7fBHIYzjTFOdSg5LmQozylWwlPW3PqgZFsegkElQoUmuYBu0imTI5gmQRESUp4rqp/q9996LLVu24NSpU1ixYgUAIB6P4+DBg1ixYgVqampyXOH4JPushVyXQcMIROLJFWv/tZVrmz8CVyCK8fyOVKaSoyrVT9wfsGeUqaFjwB6VXCpBuUaRCtnX3nOMHxERFZK8/Kn1+uuvIxAIwOfzAQDOnTuHX/3qVwCAr371q9Bqtdi8eTMOHDiA1tZW1NXVAQAeeugh7NmzBxs3bsTu3bthsViwd+9eXLx4EUeOHMnZ7aHC0r+T46BwnQrYwejYvxBJABi0CljK1OlRdJYyFarK2CIyHnq1HGadMh2wKzQKlKnZi01ERIUvL4P3t7/9bXR0dKT/ffjwYRw+fBgA0NbWhrlz50IQBAiCAHHAn/FVKhWOHj2KrVu34uGHH0YwGMQtt9yC119/nbtW0hDBSBw2fwR2fwQ2XxT21MeOQHTMEX0AIJMmtwSv0qtQ2b+CXaZCpZ5bg4+XUi6FWa+EWaeEWa+CWaeEmnPEiYioSOVl8G5vbx/zMvv378f+/fuHHJ8xYwYOHDgw9UVRQYoLCTgCqVDti8Duj6bD9nhWrwFAo5ClVqxTb/rke6NOyd0cJ0AmBQxaJSr1Sph1Kpj0SpRzJZuIiEpIXgZvoonoH83Xv2Jt90fhSH3sDsbG1XstlSS3Sq/UJ1es+8N1VZmK/deTpFPJUKVXJVey9UqYtEpIOU+ciIhKGBMFFYSEKMIXjsPhT04KsQeSAdvuj8A5ztYQIDmerzK1al2ZCteVehVMOiU3mcmAXCaBOfWLi1mffM+WESIiosEYvClviKIIb3+4DvSvWkfhDEThCETGvZumQiZJr1xX6vvDYDJs8+TGzEkkQLlakQ7YlXolt58nIiIaBwZvyqqEKMITiiXDtD8KZ6A/ZE8sXMskEph0ygHh71rILlPLGQKnUP+UEZMueRKkUcc52URERJPB4E1TLp5IwB2IJQN1Klg7/VE4AlG4guNvC5FKAKP2WvvCwMkXBi1bQ6aDRimFSadK3ddKGLWcMkJERDRVGLxpUkJRId0C4gokQ7UzmGwL8YzzhEYguXJt0CoYrrNMq5ShTC2HXiVHmVqBMrUcZr2SG9IQERFNI/6UpWEJiWRLiCsVpq9/C8XGv7OmQiZJjo9LtSqYUuPkzDolKrQKjuSbJlqlLBWsr4Xr/rAtZ6sIERFR1jF4lyhRFBGICnClVqpdqUDdH7Q9oRjG2RECIBnyTKk+4HTA1iVXsctU7LmeTnKZBEZtcqdHo1YBg1YJg0bBcE1ERJRnGLyLWDgmwBWMwhVIrly7UgHbFYzBGYwiGk+M+2tJJUCFRgGzLrlxjHlAyDZxt8Gs0alkMGqV6aBt0HI7dSIiokLB4F3AInEB7mB/qI6lQnU0HbYn0g4CXFu1NmqV171XsN86y+RSCSq0Chg0Chh1qZCtUXIreiIiogLG4J3H+les+8P19e/Hu+V5P0WqJcGoTY6EM2kVyWCt4/SKXNKr5TBoFKlWESVXsYmIiIoUg3ceevG9Nrx90YpwbPytIAAgk0pgTIW35JsiHaqNOiV0Shl7rXNIKZfCoFGkV7INqZDNmdhERESlgcE7Tw0XuuVSCQzaa60fA98btUro1XJOCMkDcqkE5Ro5KjTX+rANGiV3zSQiIipxDN55qL62HM5AdMCkiuR7PaeD5JX+gF2mVqBcnQzYFVoFp7gQERHRsBi889CKG8wwalW5LoOQnOaiS83CLtcoUD5gJjY3myEiIqKJYHKgkieRXNvJ8dpGM8n3eqUcUk5zISIioinA4E0l4/pwrVfJUa5WQK+Wc1QiERERTTsGbyoqcpkE5epkoE62hlzbKp07ORIREVEuMXhTQdKpZKlwfe3kxnIN+66JiIgofzGlUN6SSTEoVF9bxebqNRERERUeBm/KObVCmgrYqckhqXDN8YlERERUTBi8adpJUiP59CoZ9KrkPPL+kxv1ajl3biQiIqKSwOBNU0IulSTDdepExrLUx3qVHDqO5CMiIiLKv+Dt9/vx2GOP4Ze//CWcTicWLVqE//E//gf+63/9r6Neb//+/XjwwQeH/VxPTw+qq6uno9ySIpdJ0oG6TH1t5ZqbyRARERGNLe/S0n333YcPP/wQu3fvxoIFC/CLX/wC999/PxKJBB544IExr79v3z4sWrRo0DGz2Txd5RYdtUKabgEpUynSq9ZlajnUClmuyyMiIiIqWHkVvP/t3/4Nb731VjpsA8Bdd92Fjo4OfP/738ef/umfQiYbPfzV19dj+fLl2Si34EgkgEImhVIuZb81ERERUZblVfB+5ZVXoNfrsXHjxkHHH3zwQTzwwAM4deoUvvSlL+WouvwilQBalRw6pQxapRxKuRQquRQKmRQKmQRKuRTKVMhWDHhPRERERLmRV8G7ubkZN998M+TywWUtW7Ys/fmxgvc999wDm82GiooKrFmzBk8++STq6+vH/N5WqxU2m23QsZaWlgnegqmRXJlOnqyoGxCu9So5tCoZdEo5NEq2fRAREREVkrwK3g6HA/PmzRty3GQypT8/kurqamzbtg2NjY0oLy/HmTNnsHv3bjQ2NuL48eNoaGgY9Xvv3bsXO3fuzOwGTJEvzDbitjpTrssgIiIioimUV8EbwKgbpoz2uaamJjQ1NaX/vWrVKqxfvx5Lly7F9u3b8eqrr476fbds2TKkxaWlpQUbNmwYX+FTiKP3iIiIiIpPXgVvs9k87Kq20+kEcG3le7zmzp2LO+64AydPnhzzshaLBRaLZUJfn4iIiIhovPLqbLulS5fi/PnziMfjg46fOXMGAMbVq309URQhlebVzSQiIiKiEpRXifTee++F3+/Hr3/960HHDxw4gJqaGqxYsWJCX6+trQ3Hjx9HY2PjVJZJRERERDRhedVq8od/+If4yle+gm9/+9vwer2YP38+XnrpJbzxxhs4ePBgeob35s2bceDAAbS2tqKurg4AsG7dOqxatQrLli1Ln1z59NNPQyKRYNeuXbm8WURERERE+RW8AeA3v/kNtm3bhu3bt6e3jH/ppZcGbRkvCAIEQYAoiuljS5cuxcsvv4xnnnkGoVAIFosFd999Nx5//HEsWLAgFzeFiIiIiChNIg5MrzTI2bNnUV9fj+bmZixZsiTX5RARERFRHploVsyrHm8iIiIiomLF4E1ERERElAUM3kREREREWcDgTURERESUBXk31SSfRCIRAMmt44mIiIiIBurPiP2ZcSwM3qPo7OwEAGzYsCG3hRARERFR3urs7MStt9465uU4TnAUbrcbx44dw+zZs6FSqab1e7W0tGDDhg34l3/5F8yfP39avxeNjo9FfuHjkT/4WOQXPh75g49F/sj2YxGJRNDZ2YnVq1fDYDCMeXmueI/CYDDgj//4j7P6PefPn8+Z4XmCj0V+4eORP/hY5Bc+HvmDj0X+yOZjMZ6V7n48uZKIiIiIKAsYvImIiIiIsoDBm4iIiIgoCxi880RVVRWeeOIJVFVV5bqUksfHIr/w8cgffCzyCx+P/MHHIn/k+2PBqSZERERERFnAFW8iIiIioixg8CYiIiIiygIGbyIiIiKiLGDwJiIiIiLKAgbvHPD5fNi6dSv+4A/+AFVVVZBIJNixY8e4r79//35IJJJh33p7e6ev8CKV6eMBAFarFd/85jdRWVkJrVaLlStX4ujRo9NTcJHz+/343ve+h5qaGqjVatxyyy34v//3/47runxtTE4m9zmf+1Nrso8Fn/vTI9OfD3x9TJ1MHot8en1wy/gccDgceP7559HQ0IANGzbghRdemNTX2bdvHxYtWjTomNlsnooSS0qmj0ckEsHatWvhdrvx3HPPwWKxYM+ePWhqasKRI0ewevXqaaq8ON1333348MMPsXv3bixYsAC/+MUvcP/99yORSOCBBx4Y19fga2NiJnuf87k/9TJ9/vO5P7Uy+fnA18fUmorslBevD5GyLpFIiIlEQhRFUbTZbCIA8Yknnhj39fft2ycCED/88MNpqrC0ZPp47NmzRwQgnjhxIn0sFouJixcvFm+//fapLreo/fa3vxUBiL/4xS8GHf/KV74i1tTUiPF4fNTr87UxcZnc53zuT61MHgs+96dHJj8f+PqYWpk8Fvn0+mCrSQ70/3mD8kOmj8crr7yChQsXYuXKleljcrkcmzZtwgcffICurq6pKLMkvPLKK9Dr9di4ceOg4w8++CC6u7tx6tSpHFVWvDK5z/ncn1p8/uefTH4+8PUxtYolOzF4F7B77rkHMpkMJpMJ9913H5qbm3NdUklqbm7GsmXLhhzvP3b27Nlsl1SwmpubcfPNN0MuH9wF139fjvc5ztfG+GVyn/O5P7Wm4vnP537+4Osj/+TD64M93gWouroa27ZtQ2NjI8rLy3HmzBns3r0bjY2NOH78OBoaGnJdYklxOBwwmUxDjvcfczgc2S6pYDkcDsybN2/I8fHel3xtTFwm9zmf+1Mrk8eCz/38w9dH/sin1weDd4beeecd3HXXXeO67CeffIJbbrkl4+/Z1NSEpqam9L9XrVqF9evXY+nSpdi+fTteffXVjL9HocrF4wFg1D9/FcOfxiZjso9FJvclXxuTk8l9zuf+1Jrs/cnnfn7i6yM/5NPrg8E7QwsXLsQ//dM/jeuyc+bMmbY65s6dizvuuAMnT56ctu9RCHLxeJjN5mFXLpxOJwAMu+JRCibzWEzHfcnXxugyuc/53J9aU31/8rmfW3x95LdcvT4YvDM0c+ZM/MVf/EWuywAAiKIIqbS02/Zz8XgsXboUZ86cGXK8/1h9fX1W68kXk3ksli5dipdeegnxeHxQn2um9yVfGyPL5D7nc39qTcfzn8/93OHrI//l4vXBV2ORaGtrw/Hjx9HY2JjrUkrOvffeiwsXLgyaOBCPx3Hw4EGsWLECNTU1OayusNx7773w+/349a9/Pej4gQMHUFNTgxUrVkz4a/K1MbpM7nM+96fWVD//+dzPLb4+8lvOXh+5nWZYuv7t3/5NPHz4sPjP//zPIgBx48aN4uHDh8XDhw+LgUAgfbmHHnpIlMlkYnt7e/rY2rVrxZ07d4qvvPKKePToUfF//a//JdbU1IhlZWXimTNncnFzCl4mj0c4HBaXLFkizp49Wzx06JD41ltviffee68ol8vFd955Jxc3p6B95StfEY1Go/j888+Lv/vd78S//Mu/FAGIBw8eHHQ5vjamznjucz73s2OyjwWf+9NnPD8f+PrIjsk+Fvn0+mDwzpG6ujoRwLBvbW1t6ct94xvfGHLse9/7nrh48WKxrKxMlMvlYk1Njbhp0ybx4sWL2b8hRSKTx0MURbG3t1f88z//c9FkMolqtVpsbGwU33rrrezeiCLh8/nE//bf/ptYXV0tKpVKcdmyZeJLL7005HJ8bUyd8dznfO5nx2QfCz73p894fj7w9ZEdk30s8un1IRFFUZzOFXUiIiIiImKPNxERERFRVjB4ExERERFlAYM3EREREVEWMHgTEREREWUBgzcRERERURYweBMRERERZQGDNxERERFRFjB4ExERERFlAYM3EREREVEWMHgTEREREWUBgzcRERERURYweBMRERERZQGDNxERjSgcDuMLX/gC5s+fD4/Hkz7e29uL6upqrFmzBoIg5LBCIqLCweBNREQjUqvV+OUvfwmr1YqHHnoIAJBIJPD1r38doijipZdegkwmy3GVRESFQZ7rAoiIKL/ddNNNeOGFF/Cnf/qneO655+B0OvHOO+/gjTfewMyZM3NdHhFRwZCIoijmuggiIsp/W7ZswQsvvABBEPDoo49i165duS6JiKigMHgTEdG4fPTRR/jiF78IpVKJq1evoqqqKtclEREVFAZvIiIaUyAQwPLly5FIJNDX14fVq1fj1VdfzXVZREQFhSdXEhHRmL71rW/hypUr+M1vfoMXX3wR/+///T/84z/+Y67LIiIqKAzeREQ0qhdeeAEHDx7Enj17sGTJEvyX//Jf8N3vfhd/93d/hw8++CDX5RERFQy2mhAR0YjOnDmDFStW4Gtf+xr279+fPh6JRPDlL38ZDocDn3zyCQwGQ85qJCIqFAzeRERERERZwFYTIiIiIqIsYPAmIiIiIsoCBm8iIiIioixg8CYiIiIiygIGbyIiIiKiLGDwJiIiIiLKAgZvIiIiIqIsYPAmIiIiIsoCBm8iIiIioixg8CYiIiIiygIGbyIiIiKiLGDwJiIiIiLKAgZvIiIiIqIs+P+4ddHkWSCo3QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "bambinos", - "language": "python", - "name": "python3" }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.0" - }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 2 - } \ No newline at end of file + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Second, another param. of the distribution: alpha\n", + "fig, ax = plt.subplots(figsize=(7, 3), dpi=120)\n", + "bmb.interpret.plot_predictions(model, idata, \"x\", target='alpha', ax=ax);" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Last updated: Wed Aug 16 2023\n", + "\n", + "Python implementation: CPython\n", + "Python version : 3.11.0\n", + "IPython version : 8.13.2\n", + "\n", + "pandas : 2.0.1\n", + "matplotlib: 3.7.1\n", + "bambi : 0.10.0.dev0\n", + "arviz : 0.15.1\n", + "numpy : 1.24.2\n", + "\n", + "Watermark: 2.3.1\n", + "\n" + ] + } + ], + "source": [ + "%load_ext watermark\n", + "%watermark -n -u -v -iv -w" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "bambinos", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.0" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/notebooks/zero_inflated_regression.ipynb b/docs/notebooks/zero_inflated_regression.ipynb index 409616061..e8947e9be 100644 --- a/docs/notebooks/zero_inflated_regression.ipynb +++ b/docs/notebooks/zero_inflated_regression.ipynb @@ -399,7 +399,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -486,7 +486,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -518,7 +518,7 @@ "* To see a summary or plot of the posterior pass the object returned by .fit() to az.summary() or az.plot_trace()" ] }, - "execution_count": 9, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -764,7 +764,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -950,7 +950,7 @@ "psi_child 4022.0 2883.0 1.0 " ] }, - "execution_count": 11, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -974,7 +974,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -994,7 +994,7 @@ "bmb.interpret.plot_predictions(\n", " zip_model,\n", " zip_idata,\n", - " covariates=\"persons\",\n", + " conditional=\"persons\",\n", " ax=ax[0]\n", ")\n", "ax[0].set_ylabel(\"mu (fish count)\")\n", @@ -1003,7 +1003,7 @@ "bmb.interpret.plot_predictions(\n", " zip_model,\n", " zip_idata,\n", - " covariates=\"persons\",\n", + " conditional=\"persons\",\n", " target=\"psi\",\n", " ax=ax[1]\n", ")\n",