diff --git a/src/scripts/finetune_asr_model.py b/src/scripts/finetune_asr_model.py index 92fc144f..dfd065b6 100644 --- a/src/scripts/finetune_asr_model.py +++ b/src/scripts/finetune_asr_model.py @@ -37,13 +37,6 @@ def main(config: DictConfig) -> None: # hyperparameters is_main_process = os.getenv("RANK", "0") == "0" if os.getenv("WORLD_SIZE") is not None or torch.cuda.device_count() > 1: - if "layerdrop" in config.model and config.model.layerdrop != 0.0: - if is_main_process: - logger.info( - "Forcing `layerdrop` to be 0.0 as this is required in a multi-GPU " - "training" - ) - config.model.layerdrop = 0.0 if "gradient_checkpointing" in config and config.gradient_checkpointing is True: if is_main_process: logger.info( @@ -51,13 +44,20 @@ def main(config: DictConfig) -> None: "GPU training" ) config.gradient_checkpointing = False - if config.padding != "max_length": - if is_main_process: - logger.info( - "Forcing `padding` to be 'max_length' as this is required in a " - "multi-GPU training" - ) - config.padding = "max_length" + # if "layerdrop" in config.model and config.model.layerdrop != 0.0: + # if is_main_process: + # logger.info( + # "Forcing `layerdrop` to be 0.0 as this is required in a multi-GPU " + # "training" + # ) + # config.model.layerdrop = 0.0 + # if config.padding != "max_length": + # if is_main_process: + # logger.info( + # "Forcing `padding` to be 'max_length' as this is required in a " + # "multi-GPU training" + # ) + # config.padding = "max_length" finetune(config=config)