-
Notifications
You must be signed in to change notification settings - Fork 3
/
ibslike.m
703 lines (581 loc) · 24.7 KB
/
ibslike.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
function [nlogL,nlogLvar,exitflag,output] = ibslike(fun,params,respMat,designMat,options,varargin)
%IBSLIKE Unbiased negative log-likelihood via inverse binomial sampling.
% NLOGL = IBLLIKE(FUN,PARAMS,RESPMAT,DESIGNMAT) returns unbiased estimate
% NLOGL of the negative of the log-likelihood for the simulated model
% and data, calculated using inverse binomial sampling (IBS).
% FUN is a function handle to a function that simulates the model's
% responses (see below).
% PARAMS is the parameter vector used to simulate the model's responses.
% RESPMAT is a "response" data matrix, where each row correspond to one
% observation or "trial" (e.g., a trial of a psychophysical experiment),
% and each column represents a different response feature (e.g., the
% subject's response and reported confidence level). Responses need to
% belong to a finite set.
% DESIGNMAT is an optional experimental design matrix, where each row
% corresponds to one trial, and each column corresponds to a different
% trial feature (such as condition, stimulus value, etc.).
%
% FUN takes as input a vector of parameters PARAMS and an experimental
% design matrix DMAT (one row per trial), and generates a matrix of
% simulated model responses (one row per trial, corresponding to rows of
% DMAT). DMAT is built by the algorithm out of rows of DESIGNMAT.
%
% DESIGNMAT can be omitted or left empty, in which case FUN needs to
% accept a parameter vector PARAMS and an array of trial numbers T, and
% returns a matrix of simulated responses, where the i-th row contains
% the simulated response for trial T(i) (the indices in T may repeat).
%
% NLOGL = IBSLIKE(FUN,PARAMS,RESPMAT,DESIGNMAT,OPTIONS) uses options in
% structure OPTIONS to replace default values. (To be explained...)
%
% NLOGL = IBSLIKE(...,VARARGIN) additional arguments are passed to FUN.
%
% [NLOGL,NLOGLVAR] = IBSLIKE(...) also returns an estimate NLOGVAR of the
% variance of the log likelihood.
%
% [NLOGL,NLOGLVAR,EXITFLAG] = IBSLIKE(...) returns an EXITFLAG that
% describes the exit condition. Possible values of EXITFLAG and the
% corresponding exit conditions are
%
% 2 IBS terminated after reaching the maximum runtime specified by the
% user (the estimate can be arbitrarily biased).
% 1 IBS terminated after reaching the negative log-likelihood
% threshold specified by the user (the estimate is biased).
% 0 Correct run of IBS; the estimate is unbiased.
%
% [NLOGL,NLOGLVAR,EXITFLAG,OUTPUT] = IBSLIKE(...) returns a structure
% OUTPUT with additional information about the sampling.
%
% OPTIONS = IBSLIKE('defaults') returns a basic default OPTIONS structure.
%
% EXITFLAG = IBSLIKE('test') runs some tests. Here EXITFLAG is 0 if
% everything works correctly.
%
% Test code on binomial sampling:
% p = 0.7; Ntrials = 100; % Define binomial probability
% fun = @(x,dmat) rand(size(dmat)) < x; % Simulating function
% rmat = fun(p,NaN(Ntrials,1)); % Generate responses
% [nlogL,nlogLvar,pc,output] = ibslike(fun,p,rmat);
% nlogL_true = -log(p)*sum(rmat == 1) - log(1-p)*sum(rmat == 0);
% fprintf('Ground truth: %.4g, Estimate: %.4g ± %.4g.\n',nlogL_true,nlogL,sqrt(nlogLvar));
%
% Reference:
% van Opheusden*, B., Acerbi*, L. & Ma, W. J. (2020), "Unbiased and
% efficient log-likelihood estimation with inverse binomial sampling".
% (* equal contribution), PLoS Computational Biology 16(12): e1008483.
% Link: https://doi.org/10.1371/journal.pcbi.1008483
%
% See also @.
%--------------------------------------------------------------------------
% IBS: Inverse Binomial Sampling for unbiased log-likelihood estimation
% To be used under the terms of the MIT License
% (https://opensource.org/licenses/MIT).
%
% Authors (copyright): Luigi Acerbi and Bas van Opheusden, 2020-2022
% e-mail: [email protected], [email protected]
% URL: http://luigiacerbi.com
% Version: 0.96
% Release date: Jan 21, 2021
% Code repository: https://github.com/acerbilab/ibs
%--------------------------------------------------------------------------
if nargin < 4; designMat = []; end
if nargin < 5; options = []; end
t0 = tic;
% Default options
% defopts.Display = 'off'; % Level of display on screen
defopts.Nreps = 10; % # independent log-likelihood estimates per trial
defopts.NegLogLikeThreshold = Inf; % Stop sampling if estimated nLL is above threshold (incompatible with vectorized sampling)
defopts.Vectorized = 'auto'; % Use vectorized sampling algorithm with acceleration
defopts.Acceleration = 1.5; % Acceleration factor for vectorized sampling
defopts.NsamplesPerCall = 0; % # starting samples per trial per function call (0 = choose automatically)
defopts.MaxIter = 1e5; % Maximum number of iterations (per trial and estimate)
defopts.ReturnPositive = false; % If true, the first returned output is the *positive* log-likelihood
defopts.ReturnStd = false; % If true, the second returned output is the standard deviation of the estimate
defopts.MaxTime = Inf; % Maximum time for a IBS call (in seconds)
defopts.TrialWeights = []; % Vector of per-trial weights to yield a weighted sum of log-likelihood
%% If called with no arguments or with 'defaults', return default options
if nargout <= 1 && (nargin == 0 || (nargin == 1 && ischar(fun) && strcmpi(fun,'defaults')))
if nargin < 1
fprintf('Basic default options returned (type "help ibslike" for help).\n');
end
nlogL = defopts;
return;
end
%% If called with the first argument as 'test', run test
if ischar(fun) && strcmpi(fun,'test')
if nargin < 2; options = []; else; options = params; end
figure;
subplot(1,3,1);
exitflag(1) = runtest1(options);
subplot(1,3,2);
exitflag(2) = runtest2(options);
subplot(1,3,3);
exitflag(3) = runtest3(options);
nlogL = any(exitflag);
return;
end
for f = fields(defopts)'
if ~isfield(options,f{:}) || isempty(options.(f{:}))
options.(f{:}) = defopts.(f{:});
end
end
Ntrials = size(respMat,1);
% Add hard-coded options
options.MaxSamples = 1e4; % Maximum # of samples per function call
options.AccelerationThreshold = 0.1; % Keep accelerating until threshold is passed (in s)
options.VectorizedThreshold = 0.1; % Max threshold for using vectorized algorithm (in s)
options.MaxMem = 1e6; % Maximum number of samples for vectorized implementation
options.MaxMem = max(min(Ntrials,1e4),10)*100; % Maximum number of samples for vectorized implementation
% NSAMPLESPERCALL should be a scalar integer
if ~isnumeric(options.NsamplesPerCall) || ~isscalar(options.NsamplesPerCall)
error('ibslike:NsamplesPerCall','OPTIONS.NsamplesPerCall should be a scalar integer.');
end
% ACCELERATION should be a scalar equal or greater than 1
if ~isnumeric(options.Acceleration) || ~isscalar(options.Acceleration) || ...
options.Acceleration < 1
error('ibslike:Acceleration','OPTIONS.Acceleration should be a scalar equal or greater than one.');
end
% NEGLOGLIKETHRESHOLD should be a scalar greater than 0 (or Inf)
if ~isnumeric(options.NegLogLikeThreshold) || ~isscalar(options.NegLogLikeThreshold) || ...
options.NegLogLikeThreshold <= 0
error('ibslike:NegLogLikeThreshold','OPTIONS.NegLogLikeThreshold should be a positive scalar (including Inf).');
end
% MAXTIME should be a positive scalar (including Inf)
if ~isnumeric(options.MaxTime) || ~isscalar(options.MaxTime) || ...
options.MaxTime <= 0
error('ibslike:MaxTime','OPTIONS.MaxTime should be a positive scalar (or Inf).');
end
% WEIGHT vector should be a scalar or same as number of trials
weights = options.TrialWeights(:);
if isempty(weights); weights = 1; end
if numel(weights) ~= 1 && numel(weights) ~= Ntrials
error('ibslike:NumWeights','OPTIONS.TrialWeights should be empty, a scalar or an array of weights with as many elements as the number of trials.');
end
Trials = (1:Ntrials)';
funcCount = 0;
simdata = []; elapsed_time = [];
% Use vectorized or loop version?
if ischar(options.Vectorized) && options.Vectorized(1) == 'a'
if options.Nreps == 1
vectorized_flag = false;
else
% First full simulation to determine computation time
fun_clock = tic;
if isempty(designMat) % Pass only trial indices
simdata = fun(params,Trials(:),varargin{:});
else % Pass full design matrix per trial
simdata = fun(params,designMat(Trials(:),:),varargin{:});
end
elapsed_time = toc(fun_clock);
vectorized_flag = elapsed_time < options.VectorizedThreshold;
funcCount = 1;
end
else
vectorized_flag = logical(options.Vectorized);
if options.Nreps == 1 && vectorized_flag
vectorized_flag = false;
warning('Vectorized IBS requires OPTIONS.Nreps > 1. Switching to non-vectorized algorithm.');
end
end
if vectorized_flag
[nlogL,K,Nreps,Ns,fc,exitflag] = ...
vectorized_ibs_sampling(fun,params,respMat,designMat,simdata,elapsed_time,t0,options,varargin{:});
else
[nlogL,K,Nreps,Ns,fc,exitflag] = ...
loop_ibs_sampling(fun,params,respMat,designMat,simdata,elapsed_time,t0,options,varargin{:});
end
funcCount = funcCount + fc;
% Variance of estimate per trial
if nargout > 1
K_max = max(max(K(:),1));
Ktab = -(psi(1,1:K_max)' - psi(1,1));
LLvar = Ktab(max(K,1));
nlogLvar = sum(LLvar,2)./Nreps.^2;
end
% OUTPUT structure with additional information
if nargout > 2
output.funcCount = funcCount;
output.NsamplesPerTrial = Ns/Ntrials;
output.nlogL_trials = nlogL;
output.nlogLvar_trials = nlogLvar;
end
% Return negative log-likelihood and variance summed over trials
nlogL = sum(nlogL.*weights);
if options.ReturnPositive; nlogL = -nlogL; end
if nargout > 1
nlogLvar = sum(nlogLvar.*(weights.^2));
if options.ReturnStd % Return standard deviation instead of variance
nlogLvar = sqrt(nlogLvar);
end
end
end
%--------------------------------------------------------------------------
function [nlogL,K,Nreps,Ns,fc,exitflag] = vectorized_ibs_sampling(fun,params,respMat,designMat,simdata0,elapsed_time0,t0,options,varargin)
Ntrials = size(respMat,1);
Trials = (1:Ntrials)';
Ns = 0;
fc = 0;
exitflag = 0;
Psi_tab = []; % Empty PSI table
% Empty matrix of K values (samples-to-hit) for each repeat for each trial
K_mat = zeros([max(options.Nreps),Ntrials]);
% Matrix of rep counts
K_place0 = repmat((1:size(K_mat,1))',[1,Ntrials]);
% Current rep being sampled for each trial
Ridx = ones(1,Ntrials);
% Current vector of "open" K values per trial (not reached a "hit" yet)
K_open = zeros(1,Ntrials);
targetHits = options.Nreps(:)'.*ones(1,Ntrials);
MaxIter = options.MaxIter*max(options.Nreps);
% Starting samples
if options.NsamplesPerCall == 0
samples_level = options.Nreps;
else
samples_level = options.NsamplesPerCall;
end
for iter = 1:MaxIter
% Pick trials that need more hits, sample multiple times
T = Trials(Ridx <= targetHits);
if isfinite(options.MaxTime) && toc(t0) > options.MaxTime
T = [];
exitflag = 2;
end
if isempty(T); break; end
Ttrials = numel(T); % Number of trials under consideration
% With accelerated sampling, might request multiple samples at once
Nsamples = min(options.MaxSamples,max(1,round(samples_level)));
MaxSamples = ceil(options.MaxMem / Ttrials);
Nsamples = min(Nsamples, MaxSamples);
Tmat = repmat(T,[1,Nsamples]);
% Simulate trials
if iter == 1 && Nsamples == 1 && ~isempty(simdata0)
simdata = simdata0;
elapsed_time = elapsed_time0;
else
fun_clock = tic;
if isempty(designMat) % Pass only trial indices
simdata = fun(params,Tmat(:),varargin{:});
fc = fc + 1;
else % Pass full design matrix per trial
simdata = fun(params,designMat(Tmat(:),:),varargin{:});
fc = fc + 1;
end
elapsed_time = toc(fun_clock);
end
% Check that the returned simulated data have the right size
if size(simdata,1) ~= numel(Tmat)
error('ibslike:SizeMismatch', ...
'Number of rows of returned simulated data does not match the number of requested trials.');
end
Ns = Ns + Ttrials;
% Accelerated sampling
if options.Acceleration > 0 && elapsed_time < options.AccelerationThreshold
samples_level = samples_level*options.Acceleration;
end
% Check new "hits"
hits_temp = all(respMat(Tmat(:),:) == simdata,2);
% Build matrix of new hits (sandwich with buffer of hits, then removed)
hits_new = [ones(1,Ttrials);reshape(hits_temp,size(Tmat))';ones(1,Ttrials)];
% Warning: from now on it's going to be incomprehensible
% (all vectorized for speed)
% Extract matrix of Ks from matrix of hits for this iteration
h = size(hits_new,1);
list = find(hits_new(:) == 1)-1;
row = floor(list/h)+1;
col = mod(list,h)+1;
delta = diff([col;1]);
remidx = delta <= 0;
delta(remidx) = [];
row(remidx) = [];
indexcol = find(diff([0;row]));
col = 1 + (1:numel(row))' - indexcol(row);
K_iter = zeros(size(T,1),max(col));
K_iter(row + (col-1)*size(K_iter,1)) = delta;
% This is the comprehensible version that we want to get to:
%
% for iTrial = 1:Ntrials
% index = find(hits_new(iTrial,:),targetHits(iTrial));
% K = diff([0 index]);
% logL(iTrial) = sum(Ktab(K))/numel(index);
% end
% Add still-open K to first column
K_iter(:,1) = K_open(T)' + K_iter(:,1);
% Find last K position for each trial
[~,idx_last] = min([K_iter,zeros(Ttrials,1)],[],2);
idx_last = idx_last - 1;
ii = sub2ind(size(K_iter),(1:Ttrials)',idx_last);
% Subtract one hit from last K (it was added)
K_iter(ii) = K_iter(ii) - 1;
K_open(T) = K_iter(ii)';
% For each trial, ignore entries of K_iter past max # of reps
idx_mat = bsxfun(@plus,Ridx(T)',repmat(0:size(K_iter,2)-1,[Ttrials,1]));
K_iter(idx_mat > (options.Nreps)) = 0;
% Find last K position for each trial again
[~,idx_last2] = min([K_iter,zeros(Ttrials,1)],[],2);
idx_last2 = idx_last2 - 1;
% Add current K to full K matrix
K_iter_place = bsxfun(@ge,K_place0(:,1:Ttrials),Ridx(T)) & bsxfun(@le,K_place0(:,1:Ttrials),Ridx(T) + idx_last2'- 1);
K_place = false(size(K_place0));
K_place(:,T) = K_iter_place;
Kt = K_iter';
K_mat(K_place) = Kt(Kt > 0);
Ridx(T) = Ridx(T) + idx_last' - 1;
% Compute log-likelihood only if requested for thresholding
if isfinite(options.NegLogLikeThreshold)
Rmin = min(Ridx(T)); % Find repeat still ongoing
if Rmin > size(K_mat,1); continue; end
[LL_temp,Psi_tab] = get_LL_from_K(Psi_tab,K_mat(Rmin,:));
nLL_temp = -sum(LL_temp,1);
if nLL_temp > options.NegLogLikeThreshold
idx_move = Ridx == Rmin;
Ridx(idx_move) = Rmin+1;
K_open(idx_move) = 0;
exitflag = 1;
end
end
end
if ~isempty(T)
error('ibslike:ConvergenceFail', ...
'Maximum number of iterations or time limit reached and algorithm did not converge. Check FUN and DATA.');
end
% Log likelihood estimate per trial and run lengths K for each repetition
Nreps = sum(K_mat > 0,1)';
[LL_mat,Psi_tab] = get_LL_from_K(Psi_tab,K_mat);
nlogL = sum(-LL_mat',2)./Nreps;
K = K_mat';
end
%--------------------------------------------------------------------------
function [nlogL,K,Nreps,Ns,fc,exitflag] = loop_ibs_sampling(fun,params,respMat,designMat,simdata0,elapsed_time0,t0,options,varargin)
Ntrials = size(respMat,1);
Trials = (1:Ntrials)';
MaxIter = options.MaxIter;
exitflag = 0;
K = zeros(Ntrials,options.Nreps);
Ns = 0;
fc = 0;
Psi_tab = [];
for iRep = 1:options.Nreps
offset = 1;
hits = zeros(Ntrials,1);
if isfinite(options.MaxTime) && toc(t0) > options.MaxTime
exitflag = 2;
break;
end
for iter = 1:MaxIter
% Pick trials that need more hits, sample multiple times
T = Trials(hits < 1);
if isempty(T); break; end
% Simulate trials
if iter == 1 && iRep == 1 && ~isempty(simdata0)
simdata = simdata0;
elseif isempty(designMat) % Pass only trial indices
simdata = fun(params,T(:),varargin{:});
fc = fc + 1;
else % Pass full design matrix per trial
simdata = fun(params,designMat(T(:),:),varargin{:});
fc = fc + 1;
end
% Check that the returned simulated data have the right size
if size(simdata,1) ~= numel(T)
error('ibslike:SizeMismatch', ...
'Number of rows of returned simulated data does not match the number of requested trials.');
end
Ns = Ns + numel(T); % Count samples
hits_new = all(respMat(T(:),:) == simdata,2);
hits(T) = hits(T) + hits_new;
K(T(hits_new),iRep) = offset;
offset = offset + 1;
% Terminate if negative log likelihood is above a given threshold
if isfinite(options.NegLogLikeThreshold)
K(hits < 1,iRep) = offset;
[LL_mat,Psi_tab] = get_LL_from_K(Psi_tab,K(:,iRep));
nlogL_sum = -sum(LL_mat,1);
if nlogL_sum > options.NegLogLikeThreshold
T = [];
exitflag = 1;
break;
end
end
% Terminate if above maximum allowed runtime
if isfinite(options.MaxTime) && toc(t0) > options.MaxTime
T = [];
exitflag = 2;
break;
end
end
if ~isempty(T)
error('ibslike:ConvergenceFail', ...
'Maximum number of iterations reached and algorithm did not converge. Check FUN and DATA.');
end
end
Nreps = sum(K > 0,2);
[LL_mat,Psi_tab] = get_LL_from_K(Psi_tab,K);
nlogL = sum(-LL_mat,2)./Nreps;
end
%--------------------------------------------------------------------------
function [LL_mat,Psi_tab] = get_LL_from_K(Psi_tab,K_mat)
%GET_LL_FROM_K Convert matrix of K values into log-likelihoods.
K_max = max(1,max(K_mat(:)));
if K_max > numel(Psi_tab) % Fill digamma function table
Psi_tab = [Psi_tab; (psi(1) - psi(numel(Psi_tab)+1:K_max)')];
end
LL_mat = Psi_tab(max(1,K_mat));
end
%--------------------------------------------------------------------------
function exitflag = runtest1(options)
Nreps = 1e3;
RMSE_tol = 2/sqrt(Nreps);
% Binomial probability model
p_model = exp(linspace(log(1e-3),log(1),10));
fun = @(x,dmat) rand(size(dmat)) < x; % Simulating function
rmat = fun(1,NaN);
fprintf('\n');
fprintf('TEST 1: Using IBS to compute log(p) of Bernoulli distributions with %d repeats.\n',Nreps);
fprintf('We consider p = %s.\n',mat2str(p_model,3));
options.Nreps = Nreps;
options.NegLogLikeThreshold = Inf;
nlogL = zeros(1,numel(p_model));
nlogLvar = zeros(1,numel(p_model));
for iter = 1:numel(p_model)
[nlogL(iter),nlogLvar(iter)] = ibslike(fun,p_model(iter),rmat,[],options);
end
% We expect the true value to be almost certainly (> 99.99%) in this range
LL_min = (-nlogL - 4*sqrt(nlogLvar));
LL_max = (-nlogL + 4*sqrt(nlogLvar));
exitflag = any(log(p_model) < LL_min) | any(log(p_model) > LL_max);
rmse = sqrt(mean((-nlogL - log(p_model)).^2));
fprintf('Average RMSE of log(p) estimates across p: %.4f.\n',rmse);
exitflag = exitflag | (rmse > RMSE_tol);
if exitflag
fprintf('Test FAILED. Something might be wrong.\n');
else
fprintf('Test PASSED. IBS estimates are calibrated and close to ground truth.\n');
end
% Plot figure
xx = log(p_model);
h(1) = plot(xx,xx,'k-','LineWidth',2); hold on;
yy = -nlogL;
xxerr = [xx, fliplr(xx)];
yyerr_down = yy - 1.96*sqrt(nlogLvar);
yyerr_up = yy + 1.96*sqrt(nlogLvar);
yyerr = [yyerr_down, fliplr(yyerr_up)];
fill(xxerr, yyerr,'b','FaceAlpha',0.5,'LineStyle','none'); hold on;
h(2) = plot(xx,yy,'b-','LineWidth',2); hold on;
box off;
set(gca,'TickDir','out');
set(gcf,'Color','w');
xlabel('True log(p)');
ylabel('Estimated log(p)')
%xlim([-5 5]);
hl = legend(h,'True log(p)','IBS estimate (95% CI)');
set(hl,'Location','NorthWest','Box','off');
title('IBS estimation test');
end
%--------------------------------------------------------------------------
function exitflag = runtest2(options)
% Binomial probability model
Ntrials = 100;
p_true = 0.9*rand() + 0.05; % True probability
p_model = 0.9*rand() + 0.05; % Model probability
fun = @(x,dmat) rand(size(dmat)) < x; % Simulating function
Nexps = 2e3;
options.NegLogLikeThreshold = Inf;
fprintf('\n');
fprintf('TEST 2: Using IBS to compute the log-likelihood of a binomial distribution.\n');
fprintf('Parameters: p_true=%.2g, p_model=%.2g, %d trials per experiment.\n',p_true,p_model,Ntrials);
fprintf('The distribution of z-scores should approximate a standard normal distribution (mean 0, SD 1).\n');
zscores = zeros(1,Nexps);
for iter = 1:Nexps
rmat = fun(p_true,NaN(Ntrials,1)); % Generate data
[nlogL,nlogLvar] = ibslike(fun,p_model,rmat,[],options);
nlogL_exact = -log(p_model)*sum(rmat == 1) - log(1-p_model)*sum(rmat == 0);
zscores(iter) = (nlogL_exact - nlogL)/sqrt(nlogLvar);
end
edges = -4.75:0.5:4.75;
nz = histc(zscores,edges);
h(1) = bar(edges,nz,'histc');
hold on;
xx = linspace(-5,5,1e4);
h(2) = plot(xx,Nexps*exp(-xx.^2/2)/sqrt(2*pi)/2,'k-','LineWidth',2);
box off;
set(gca,'TickDir','out');
set(gcf,'Color','w');
xlabel('z-score');
ylabel('pdf')
xlim([-5 5]);
hl = legend(h,'z-scores histogram','expected pdf');
set(hl,'Location','NorthEast','Box','off');
title('Calibration test');
exitflag = abs(mean(zscores)) > 0.15 || abs(std(zscores) - 1) > 0.1;
fprintf('Distribution of z-scores (%d experiments). Mean: %.4g. Standard deviation: %.4g.\n',Nexps,mean(zscores),std(zscores));
if exitflag
fprintf('Test FAILED. Something might be wrong.\n');
else
fprintf('Test PASSED. We verified that IBS is unbiased (~zero mean) and calibrated (SD ~1).\n');
end
end
%--------------------------------------------------------------------------
function exitflag = runtest3(options)
Nreps = 100;
RMSE_tol = 4/sqrt(Nreps);
% Binomial probability model
p_model = exp(linspace(log(1e-3),log(0.1),10));
fun = @(x,dmat) rand(size(dmat)) < x; % Simulating function
rmat = fun(1,NaN);
thresh = -log(0.01);
p_target = max(p_model,exp(-thresh));
fprintf('\n');
fprintf('TEST 3: Log-likelihood thresholding at log(p) = %.3f.\n',-thresh);
fprintf('Using IBS to compute thresholded log(p) of Bernoulli distributions with %d repeats.\n',Nreps);
fprintf('We consider p = %s.\n',mat2str(p_model,3));
options.Nreps = Nreps;
options.NegLogLikeThreshold = thresh;
options.Acceleration = 1;
nlogL = zeros(1,numel(p_model));
nlogLvar = zeros(1,numel(p_model));
for iter = 1:numel(p_model)
[nlogL(iter),nlogLvar(iter)] = ibslike(fun,p_model(iter),rmat,[],options);
end
% We expect the true value to be almost certainly (> 99.99%) in this range
LL_min = (-nlogL - 4*sqrt(nlogLvar));
LL_max = (-nlogL + 4*sqrt(nlogLvar));
% We expect the estimates to be (almost) correct away from the threshold
idx = log(p_model) > -thresh*0.75;
exitflag = any(log(p_model(idx)) < LL_min(idx)) | any(log(p_model(idx)) > LL_max(idx));
% We expect the estimates to be above the true value below the threshold
LL_thresh = (-nlogL - sqrt(nlogLvar));
idx_below = log(p_model) < -thresh;
exitflag = exitflag | any(log(p_model(idx_below)) > LL_thresh(idx_below));
% exitflag = any(log(p_target) < LL_min) | any(log(p_target) > LL_max);
rmse = sqrt(mean((-nlogL(idx) - log(p_target(idx))).^2));
fprintf('Average RMSE of log(p) estimates across p: %.4f.\n',rmse);
exitflag = exitflag | (rmse > RMSE_tol);
if exitflag
fprintf('Test FAILED. Something might be wrong.\n');
else
fprintf('Test PASSED. IBS estimates are calibrated and close to (thresholded) ground truth.\n');
end
% Plot figure
xx = log(p_model);
h(1) = plot(xx,xx,'k-','LineWidth',2); hold on;
yy = -nlogL;
xxerr = [xx, fliplr(xx)];
yyerr_down = yy - 1.96*sqrt(nlogLvar);
yyerr_up = yy + 1.96*sqrt(nlogLvar);
yyerr = [yyerr_down, fliplr(yyerr_up)];
fill(xxerr, yyerr,'b','FaceAlpha',0.5,'LineStyle','none'); hold on;
h(2) = plot(xx,yy,'b-','LineWidth',2); hold on;
h(3) = plot([xx(1),xx(end)],-thresh*[1 1],'k:','LineWidth',2);
box off;
set(gca,'TickDir','out');
set(gcf,'Color','w');
xlabel('True log(p)');
ylabel('Estimated log(p) with thresholding')
%xlim([-5 5]);
hl = legend(h,'True log(p)','IBS estimate (95% CI)','Threshold');
set(hl,'Location','NorthWest','Box','off');
title('Thresholded IBS test');
end
% TODO:
% - Fix help and documentation
% - Optimal allocation of estimates?