From 0583889b2231089da3091aeea32879a14ee9da4f Mon Sep 17 00:00:00 2001 From: ZedongPeng Date: Tue, 31 Oct 2023 19:25:57 -0400 Subject: [PATCH] update warmstart --- pyomo/contrib/mindtpy/util.py | 79 ----------------------------------- 1 file changed, 79 deletions(-) diff --git a/pyomo/contrib/mindtpy/util.py b/pyomo/contrib/mindtpy/util.py index 397c2ee15b2..337e76079dd 100644 --- a/pyomo/contrib/mindtpy/util.py +++ b/pyomo/contrib/mindtpy/util.py @@ -1014,87 +1014,8 @@ def eval_fim2(m, a, b): ### update greybox grey_box_name = "ele_"+str(a)+"_"+str(b) mod.my_block.egb.inputs[grey_box_name].value = dynamic_initial_element - - - def _sgn(p): - """ - This is a helper function for stochastic_program function to compute the determinant formula. - Give the signature of a permutation - - Parameters - ----------- - p: the permutation (a list) - - Returns - ------- - 1 if the number of exchange is an even number - -1 if the number is an odd number - """ - - if len(p) == 1: - return 1 - trans = 0 - for i in range(0, len(p)): - j = i + 1 - - for j in range(j, len(p)): - if p[i] > p[j]: - trans = trans + 1 - - if (trans % 2) == 0: - return 1 - else: - return -1 - - def compute_determinant(m): - """Calculate determinant. Can be applied to FIM of any size. - det(A) = sum_{\sigma \in \S_n} (sgn(\sigma) * \Prod_{i=1}^n a_{i,\sigma_i}) - Use permutation() to get permutations, sgn() to get signature - """ - r_list = list(range(4)) - # get all permutations - object_p = permutations(r_list) - list_p = list(object_p) - - regression_parameters = [0,1,2,3] - - # generate a name_order to iterate \sigma_i - all_name_order = [] - for i in range(len(list_p)): - name_order = [] - x_order = list_p[i] - # sigma_i is the value in the i-th position after the reordering \sigma - for x in range(len(x_order)): - for y, element in enumerate(regression_parameters): - if x_order[x] == y: - name_order.append(element) - #print(name_order) - - all_name_order.append(name_order) - - # det(A) = sum_{\sigma \in \S_n} (sgn(\sigma) * \Prod_{i=1}^n a_{i,\sigma_i}) - det_perm = 0 - - for d in range(len(list_p)): - #print(all_name_order[d]) - summi = 1 - for b, each in enumerate(regression_parameters): - if each <= all_name_order[d][b]: - summi *= m.TotalFIM[each, all_name_order[d][b]] - else: - summi *= m.TotalFIM[all_name_order[d][b], each] - - det_perm += _sgn(list_p[d])*summi - - return det_perm - - det_init = log(compute_determinant(mod)+0.000001) - - mod.my_block.egb.outputs["log_det"].value = det_init - - # manual and dynamic install initial def total_dynamic_exp(m): return sum(m.cov_y[i,i] for i in range(m.n_static_measurements, m.num_measure_dynamic_flatten))