forked from fitzgerald0/time_series_data_mining
-
Notifications
You must be signed in to change notification settings - Fork 0
/
spark_prophet_demo.py
249 lines (226 loc) · 8.09 KB
/
spark_prophet_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
#-*- coding:utf-8 -*-
"""
Name : prophet_spark_demo.py
Time : 2020/5/16 10:25
Author : hjs
"""
import datetime
from dateutil.relativedelta import relativedelta
from fbprophet import Prophet
import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings('ignore')
from pyspark.sql import SparkSession
from pyspark.sql.functions import pandas_udf, PandasUDFType
from pyspark.sql.types import *
spark = SparkSession. \
Builder(). \
config("spark.sql.crossJoin.enabled", "true"). \
config("spark.sql.execution.arrow.enabled", "true"). \
enableHiveSupport(). \
getOrCreate()
def holiday_set():
""""
更新周期:年
更新方式:手动
优化点:
1.观察该节假日是否存在假日效应,如果存在则设置,促销也可以作为假日因素考虑.
2.如果日期周期短,可以把不同的假日合并
"""
new_year_day = pd.DataFrame({
'holiday': 'new_year_day',
'ds': pd.to_datetime(['2020-01-01', '2021-01-01']),
'lower_window': -2,
'upper_window': 1,
})
# 受疫情的影响,2020年春节时间长
spring_festival = pd.DataFrame({
'holiday': 'spring_festival',
'ds': pd.to_datetime(['2020-01-24']),
'lower_window': -4,
'upper_window': 14,
})
valentine_day = pd.DataFrame({
'holiday': 'valentine_day',
'ds': pd.to_datetime(['2019-02-14', '2020-02-14']),
'lower_window': -1,
'upper_window': 0,
})
tomb_sweeping = pd.DataFrame({
'holiday': 'tomb_sweeping',
'ds': pd.to_datetime(['2019-04-05', '2020-04-05']),
'lower_window': 0,
'upper_window': 1,
})
labour_day = pd.DataFrame({
'holiday': 'labour_day',
'ds': pd.to_datetime(['2019-05-01', '2020-05-01']),
'lower_window': -1,
'upper_window': 2,
})
children_day = pd.DataFrame({
'holiday': 'children_day',
'ds': pd.to_datetime(['2019-06-01', '2020-06-01']),
'lower_window': -1,
'upper_window': 0,
})
shopping_618 = pd.DataFrame({
'holiday': 'shopping_618',
'ds': pd.to_datetime(['2019-06-18', '2020-06-18']),
'lower_window': 0,
'upper_window': 1,
})
mid_autumn = pd.DataFrame({
'holiday': 'mid_autumn',
'ds': pd.to_datetime(['2019-09-13']),
'lower_window': 0,
'upper_window': 0,
})
national_day = pd.DataFrame({
'holiday': 'national_day',
'ds': pd.to_datetime(['2019-10-01', '2020-10-01']),
'lower_window': -1,
'upper_window': 6,
})
double_eleven = pd.DataFrame({
'holiday': 'double_eleven',
'ds': pd.to_datetime(['2019-11-11', '2020-11-11']),
'lower_window': -1,
'upper_window': 0,
})
year_sale = pd.DataFrame({
'holiday': 'year_sale',
'ds': pd.to_datetime(['2019-12-05', '2019-12-31']),
'lower_window': 0,
'upper_window': 1,
})
double_twelve = pd.DataFrame({
'holiday': 'double_twelve',
'ds': pd.to_datetime(['2019-12-12', '2020-12-12']),
'lower_window': 0,
'upper_window': 0,
})
christmas_day = pd.DataFrame({
'holiday': 'christmas_day',
'ds': pd.to_datetime(['2019-12-25', '2020-12-25']),
'lower_window': -1,
'upper_window': 0,
})
holidays_df = pd.concat(
(new_year_day,
spring_festival,
valentine_day,
tomb_sweeping,
labour_day,
children_day,
shopping_618,
mid_autumn,
national_day,
double_eleven,
year_sale,
double_twelve,
christmas_day))
holidays_set = holidays_df[['ds', 'holiday',
'lower_window', 'upper_window']].reset_index()
return holidays_set
holiday_df = holiday_set()
def sale_ds(df):
df['ds'] = pd.to_datetime(df['ds'])
df = df[['store_sku', 'ds', 'y']]
# 控制长度,周期不用太长,关注最近的几个完整周期即可
start_day = (
df['ds'].max() -
relativedelta(
days=63)).strftime('%Y-%m-%d')
df = df[df['ds'] >= start_day][['store_sku', 'ds', 'y']]
# 筛选条件:1 序列长度大于等于14,且过去最少有七天的销售记录;
# 条件1,保障模型有两个完整的周期数据;
# 条件2,避免出现0,0,0,0,0,0,1,0,1这样数据稀疏的数据出现
sale_set = df.groupby(
['store_sku']).filter(
lambda x: len(x) >= 14 and np.sum(
x['y']) > 7)
return sale_set
def replace_fill(data):
"""
先尝试使用上周的数据填补,再针对极端的数据进行cap,保障序列的完整和平滑性
:param data:单个序列
:param name: 序列名称,store_sku
:return: 修复后的一条序列
"""
data['ds'] = pd.to_datetime(data['ds'], format='%Y-%m-%d')
data['y'] = data['y'].astype(float)
data.loc[data['y'] <= 0, 'y'] = np.NaN
data.loc[data['y'].isnull(), 'y'] = data['y'].shift(7).values[0]
data.loc[data['y'].isnull(), 'y'] = data['y'].shift(-7).values[0]
data.loc[data['y'].isnull(), 'y'] = data['y'].shift(-14).values[0]
data.loc[data['y'].isnull(), 'y'] = data['y'].shift(14).values[0]
data.loc[data['y'].isnull(), 'y'] = data['y'].interpolate(methon='nearest', order=3)
low = data[data['y'] > 0]['y'].quantile(0.10)
high = data[data['y'] > 0]['y'].quantile(0.90)
data.loc[data['y'] < low, 'y'] = np.NaN
data.loc[data['y'] > high, 'y'] = np.NaN
data['y'] = data['y'].fillna(data['y'].mean())
data['y'] = np.log1p(data['y'])
return data
def prophet_train(data):
model = Prophet(
daily_seasonality=False,
yearly_seasonality=False,
holidays=holiday_df,
holidays_prior_scale=10)
model.add_seasonality(
name='weekly',
period=7,
fourier_order=3,
prior_scale=0.10)
model.fit(data)
future = model.make_future_dataframe(periods=7, freq='d')
forecast = model.predict(future)
forecast['pro_pred'] = np.expm1(forecast['yhat'])
forecast_df=forecast[['store_sku','ds','pro_pred']]
# 对预测值修正
forecast_df.loc[forecast_df['pro_pred'] < 0, 'pro_pred'] = 0
low = (1 + 0.1) * data['y'].min()
hight = min((1 + 0.05) * data['y'].max(), 10000)
forecast_df.loc[forecast_df['pro_pred'] < low, 'pro_pred'] = low
forecast_df.loc[forecast_df['pro_pred'] > hight, 'pro_pred'] = hight
return forecast
def prophet_main(data):
true_time = pd.datetime.now().strftime('%Y-%m-%d')
data.dropna(inplace=True)
data['ds'] = pd.to_datetime(data['ds'])
data = data[data['ds'] < true_time]
data['ds'] = data['ds'].astype(str)
data['ds'] = pd.to_datetime(data['ds'])
# 异常值替换
data = replace_fill(data)
pro_back = prophet_train(data)
return pro_back
schema = StructType([
StructField("store_sku", StringType()),
StructField("ds", StringType()),
StructField("pro_pred", DoubleType())
])
@pandas_udf(schema, functionType=PandasUDFType.GROUPED_MAP)
def run_model(data):
data['store_sku']=data['store_sku'].astype(str)
df = prophet_main(data)
uuid = data['store_sku'].iloc[0]
df['store_sku']=unid
df['ds']=df['ds'].astype(str)
df['pro_pred']=df['pro_pred'].astype(float)
cols=['store_sku','ds','pro_pred']
return df[cols]
data = spark.sql(
"""
select concat(store_code,'_',goods_code) as store_sku,qty_fix as y,ds
from scmtemp.csh_etl_predsku_store_sku_sale_fix_d""")
data.createOrReplaceTempView('data')
sale_predict = data.groupby(['store_sku']).apply(run_model)
sale_predict.createOrReplaceTempView('test_read_data')
# 保存到数据库
spark.sql(f"drop table if exists scmtemp.tmp_hjs_store_sku_sale_prophet")
spark.sql(f"create table scmtemp.tmp_hjs_store_sku_sale_prophet as select * from store_sku_predict_29 ")
print('完成预测')