forked from fitzgerald0/time_series_data_mining
-
Notifications
You must be signed in to change notification settings - Fork 0
/
multi_prophet_model.py
270 lines (246 loc) · 10.1 KB
/
multi_prophet_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
# -*- coding:utf-8 -*-
"""
Name : multi_prophet_model.py
Time : 2020/4/28 14:11
Author : hjs
"""
"""
针对多个序列数据的prophet预测,比如,10万个sku序列
从数据库读取到数据预处理和回测,预测的个人算法框架
回测最近7天,预测未来28天
"""
import gc
from dateutil.relativedelta import relativedelta
from fbprophet import Prophet
import pandas as pd
import numpy as np
import time
import datetime
import os
from holiday_data import holiday_df#自定义假期数据
from joblib import Parallel, delayed
from multiprocessing import cpu_count
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
warnings.filterwarnings('ignore')
#全局超参数,使用计算核数
use_cpu = cpu_count() // 4
def sale_ds():
sql = """select * from scmtemp.csh_scode1_29_dateset"""
hive_conn = conn_hive()#该处为定义的读取hive,因隐私问题,不放出
df = pd.read_sql(sql, hive_conn)
df.columns = [col.lower().split('.')[-1] for col in df.columns]
df.drop_duplicates(subset=['store_code', 'goods_code', 'ds'], inplace=True)
df['store_code'] = df['store_code'].astype(str)
df = df[df['store_code'] != 'None']
df['store_sku'] = df['store_code'].astype(
str) + '-' + df['goods_code'].astype(str)
df.drop(columns=['store_code', 'goods_code'], inplace=True)
df.rename(columns={'qty_fix': 'y'}, inplace=True)
print('finish the data reading....')
return df
def replace_fill(data, name):
"""
先尝试使用上周的数据填补,再针对极端的数据进行cap,保障序列的完整和平滑性
:param data:单个序列
:param name: 序列名称,store_sku
:return: 修复后的一条序列
"""
data['ds'] = pd.to_datetime(data['ds'], format='%Y-%m-%d')
data['y'] = data['y'].astype(float)
data.loc[data['y'] <= 0, 'y'] = np.NaN
data.loc[data['y'].isnull(), 'y'] = data['y'].shift(7).values[0]
data.loc[data['y'].isnull(), 'y'] = data['y'].shift(-7).values[0]
data.loc[data['y'].isnull(), 'y'] = data['y'].shift(-14).values[0]
data.loc[data['y'].isnull(), 'y'] = data['y'].shift(14).values[0]
data['y'] = data['y'].interpolate(methon='nearest', order=3)
low = data[data['y'] > 0]['y'].quantile(0.10)
high = data[data['y'] > 0]['y'].quantile(0.90)
data.loc[data['y'] < low, 'y'] = np.NaN
data.loc[data['y'] > high, 'y'] = np.NaN
data['y'] = data['y'].fillna(data['y'].mean())
data['store_sku'] = name
return data
def multi_fill(data):
start_time = time.time()
data['store_sku'] = data['store_sku'].astype(str)
data_grouped = data.groupby(data.store_sku)
results = Parallel(
n_jobs=use_cpu)(
delayed(replace_fill)(
group,
name) for name,
group in data_grouped)
p_predict = pd.concat(results)
end_time = time.time()
del data
gc.collect()
print('read data end etl have use {} minutes'.format(
round((end_time - start_time) / 60, 2)))
return p_predict
def predict_cap(data, result, columns):
"""
:param data:修正后的输入数据
:param result: 预测值
:param columns: 预测值columns
:return:每个序列上下限使用原始输入数据进行修正的结果
"""
data_list = set(result['store_sku'].unique())
data_df = data[data['store_sku'].isin(data_list)][['store_sku', 'y']]
for i in data_df['store_sku'].unique():
low = (1 + 0.1) * data_df[data_df['store_sku'] == i]['y'].min()
hight = (1 + 0.05) * data_df[data_df['store_sku'] == i]['y'].max()
result.loc[(result['store_sku'] == i) & (
result[columns] < low), columns] = low
result.loc[(result['store_sku'] == i) & (
result[columns] > hight), columns] = hight
return result
def data_tranform(data):
"""
:param data:全部序列的数据
:return: 针对所以数据处理后的结果,如,针对某一天赋值为0,做对数处理
"""
data = data[['store_sku', 'ds', 'y']]
data.drop_duplicates(subset=['store_sku', 'ds'], inplace=True)
data.sort_values(['store_sku', 'ds'], ascending=[
True, True], inplace=True)
data['ds'] = data['ds'].astype(str)
data['ds'] = data['ds'].apply(
lambda x: datetime.datetime.strptime(
x, "%Y-%m-%d"))
data.loc[data['y'] == np.nan, 'y'] = data.shift(7).iloc[-1:, :]
data.loc[data['y'] == np.nan, 'y'] = data.shift(-7).iloc[-1:, :]
data.loc[data['y'] == np.nan, 'y'] = data.shift(-14).iloc[-1:, :]
data['y'] = np.log1p(data['y'])
data = data.dropna(axis=0)
return data
def prophet_train(data, name, holiday_df, model_type='test'):
# 选择model_type:test表示回测,否则预测未来时间点
model = Prophet(
daily_seasonality=False,
yearly_seasonality=True,
holidays=holiday_df,
holidays_prior_scale=10)
model.add_seasonality(
name='weekly',
period=7,
fourier_order=3,
prior_scale=0.10
# ,mode='additive'
)
if model_type == 'test':
data_train = data.iloc[:-6]
model.fit(data_train)
future = model.make_future_dataframe(periods=7, freq='d')
else:
model.fit(data)
future = model.make_future_dataframe(periods=7 * 4, freq='d')
forecast = model.predict(future)
forecast['store_sku'] = name
print('---this runing id is :{0} ---'.format(name))
return forecast
def multi_process(data, holiday_df, model_type):
data['store_sku'] = data['store_sku'].astype(str)
data_grouped = data.groupby(data.store_sku)
results = Parallel(
n_jobs=use_cpu)(
delayed(prophet_train)(
group,
name,
holiday_df,
model_type) for name,
group in data_grouped)
p_predict = pd.concat(results)
return p_predict
def prophet_main(data, holiday_df_, model_type, true_time=False):
start = time.time()
if true_time is False:
true_time = pd.datetime.now().strftime('%Y-%m-%d')
else:
true_time = datetime.datetime.strptime(true_time, "%Y-%m-%d")
true_time = str(
(true_time +
datetime.timedelta(
days=7)).strftime('%Y-%m-%d'))
df = data_tranform(data)
df['ds'] = pd.to_datetime(df['ds'], format('Y%-%m-%d'))
df = df[df['ds'] < true_time]
df['ds'] = df['ds'].astype(str)
df['ds'] = pd.to_datetime(df['ds'])
holiday_df_['ds'] = pd.to_datetime(holiday_df_['ds'])
holiday_df_['ds'] = holiday_df_['ds'].astype(str)
holiday_df_['ds'] = holiday_df_['ds'].apply(
lambda x: datetime.datetime.strptime(x, "%Y-%m-%d"))
# parallel
pro_back = multi_process(df, holiday_df_, model_type)
if model_type == 'test':
pro_back = pd.merge(
df, pro_back, on=[
'store_sku', 'ds'], how='inner')
else:
print('this is forecast model!')
pro_back.rename(columns={'yhat': 'pro_pred'}, inplace=True)
pro_back['pro_pred'] = np.expm1(pro_back['pro_pred'])
# 盖帽异常值
pro_back.loc[pro_back['pro_pred'] < 0, 'pro_pred'] = 0
pro_back_adj = predict_cap(df, pro_back, 'pro_pred')
low = pro_back_adj['pro_pred'].quantile(0.05)
hight = pro_back_adj['pro_pred'].quantile(0.95)
pro_back_adj.loc[pro_back_adj['pro_pred'] < low, 'pro_pred'] = low
pro_back_adj.loc[pro_back_adj['pro_pred'] > hight, 'pro_pred'] = hight
pro_back_adj['pro_pred'] = pro_back_adj['pro_pred'].round(2)
if model_type == 'test':
today_date = str(
(datetime.datetime.strptime(
true_time,
"%Y-%m-%d") -
datetime.timedelta(
days=7)).strftime('%Y-%m-%d'))
back_result = pro_back_adj[pro_back_adj['ds'] >= today_date][[
'store_sku', 'ds', 'pro_pred']].drop_duplicates(subset=['store_sku', 'ds'])
else:
result = pro_back_adj[pro_back_adj['ds'] >= true_time]
back_result = result[['store_sku', 'ds', 'pro_pred']
].drop_duplicates(subset=['store_sku', 'ds'])
print(
'prophet model use : {} minutes'.format(
(time.time() - start) // 60))
return back_result
if __name__ == '__main__':
sale_df = sale_ds()
sale_df['ds'] = pd.to_datetime(sale_df['ds'])
sale_df = sale_df[['store_sku', 'ds', 'y']]
# 控制长度,不使用疫情时期的数据,且周期不用太长,关注最近的几个完整周期即可
start_day = (
sale_df['ds'].max() -
relativedelta(
days=63)).strftime('%Y-%m-%d')
sale_df = sale_df[sale_df['ds'] >= start_day][['store_sku', 'ds', 'y']]
# 筛选条件:1 序列长度大于等于14,且过去最少有七天的销售记录;
# 条件1,保障模型有两个完整的周期数据;
# 条件2,避免出现0,0,0,0,0,0,1,0,1这样非常稀疏的数据出现
sale_set = sale_df.groupby(
['store_sku']).filter(
lambda x: len(x) >= 14 and np.sum(
x['y']) > 7)
print('min date is {},max date is {}'.format(
sale_set['ds'].min(), sale_set['ds'].max()))
sale_data = multi_fill(sale_set)
holiday_df_ = holiday_df()
# 回测最近7天
model_type = 'test'
# 回测开始时间,如果为false,则回测从过去的第七天开始
true_time = False
pro_mape = prophet_main(sale_data, holiday_df_, model_type, true_time)
pro_mape = pd.merge(
pro_mape, sale_set, on=[
'store_sku', 'ds'], how='inner')
pro_mape['mape'] = np.abs(
pro_mape['y'] - pro_mape['pro_pred']) / pro_mape['y'] * 100
print('mape------', pro_mape['mape'].mean())
pro_mape.to_excel('pro_mape_428.xlsx', index=False)
# 以下为预测未来28天
model_type = 'train'
prophet_forecast = prophet_main(
sale_data, holiday_df_, model_type, true_time)
prophet_forecast.to_excel('prophet_forecast_428.xlsx', index=False)