-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
ocr.py
87 lines (71 loc) · 2.9 KB
/
ocr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#-*- coding:utf-8 -*-
import os
import sys
import cv2
from math import *
import numpy as np
from PIL import Image
sys.path.append(os.getcwd() + '/ctpn')
from ctpn.text_detect import text_detect
from lib.fast_rcnn.config import cfg_from_file
from densenet.model import predict as keras_densenet
def sort_box(box):
"""
对box进行排序
"""
box = sorted(box, key=lambda x: sum([x[1], x[3], x[5], x[7]]))
return box
def dumpRotateImage(img, degree, pt1, pt2, pt3, pt4):
height, width = img.shape[:2]
heightNew = int(width * fabs(sin(radians(degree))) + height * fabs(cos(radians(degree))))
widthNew = int(height * fabs(sin(radians(degree))) + width * fabs(cos(radians(degree))))
matRotation = cv2.getRotationMatrix2D((width // 2, height // 2), degree, 1)
matRotation[0, 2] += (widthNew - width) // 2
matRotation[1, 2] += (heightNew - height) // 2
imgRotation = cv2.warpAffine(img, matRotation, (widthNew, heightNew), borderValue=(255, 255, 255))
pt1 = list(pt1)
pt3 = list(pt3)
[[pt1[0]], [pt1[1]]] = np.dot(matRotation, np.array([[pt1[0]], [pt1[1]], [1]]))
[[pt3[0]], [pt3[1]]] = np.dot(matRotation, np.array([[pt3[0]], [pt3[1]], [1]]))
ydim, xdim = imgRotation.shape[:2]
imgOut = imgRotation[max(1, int(pt1[1])) : min(ydim - 1, int(pt3[1])), max(1, int(pt1[0])) : min(xdim - 1, int(pt3[0]))]
return imgOut
def charRec(img, text_recs, adjust=False):
"""
加载OCR模型,进行字符识别
"""
results = {}
xDim, yDim = img.shape[1], img.shape[0]
for index, rec in enumerate(text_recs):
xlength = int((rec[6] - rec[0]) * 0.1)
ylength = int((rec[7] - rec[1]) * 0.2)
if adjust:
pt1 = (max(1, rec[0] - xlength), max(1, rec[1] - ylength))
pt2 = (rec[2], rec[3])
pt3 = (min(rec[6] + xlength, xDim - 2), min(yDim - 2, rec[7] + ylength))
pt4 = (rec[4], rec[5])
else:
pt1 = (max(1, rec[0]), max(1, rec[1]))
pt2 = (rec[2], rec[3])
pt3 = (min(rec[6], xDim - 2), min(yDim - 2, rec[7]))
pt4 = (rec[4], rec[5])
degree = degrees(atan2(pt2[1] - pt1[1], pt2[0] - pt1[0])) # 图像倾斜角度
partImg = dumpRotateImage(img, degree, pt1, pt2, pt3, pt4)
if partImg.shape[0] < 1 or partImg.shape[1] < 1 or partImg.shape[0] > partImg.shape[1]: # 过滤异常图片
continue
image = Image.fromarray(partImg).convert('L')
text = keras_densenet(image)
if len(text) > 0:
results[index] = [rec]
results[index].append(text) # 识别文字
return results
def model(img, adjust=False):
"""
@img: 图片
@adjust: 是否调整文字识别结果
"""
cfg_from_file('./ctpn/ctpn/text.yml')
text_recs, img_framed, img = text_detect(img)
text_recs = sort_box(text_recs)
result = charRec(img, text_recs, adjust)
return result, img_framed