Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as:
a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Example 1:
Given the following tree [3,9,20,null,null,15,7]:
3
/ \
9 20
/ \
15 7
Return true.
Example 2:
Given the following tree [1,2,2,3,3,null,null,4,4]:
1
/ \
2 2
/ \
3 3
/ \
4 4
Return false.
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean isBalanced(TreeNode root) {
if (root == null) return true;
int left = helper(root.left);
int right = helper(root.right);
return Math.abs(left - right) <= 1 && isBalanced(root.left) && isBalanced(root.right);
}
public int helper(TreeNode node) {
if (node == null) return 0;
return Math.max(helper(node.left), helper(node.right)) + 1;
}
}
- 使用辅助函数helper递归计算树的深度;
- left和right差别不大于1且左右子树分别平衡,则返回真;
- 返回值:
Math.abs(left - right) <= 1 && isBalanced(root.left) && isBalanced(root.right);
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean isBalanced(TreeNode root) {
return helper(root) != -1;
}
public int helper(TreeNode node) {
if (node == null) return 0;
int left = helper(node.left);
int right = helper(node.right);
if (left == -1 || right == -1 || Math.abs(left - right) > 1) return -1;
return Math.max(left, right) + 1;
}
}
- 在递归使用helper计算树的深度的时候,如果树不平衡,则返回-1;
- 如果树平衡,则返回树的深度。