-
Notifications
You must be signed in to change notification settings - Fork 36
/
app.py
500 lines (441 loc) · 18.7 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
################################################################################
# Copyright (C) 2023 Xingqian Xu - All Rights Reserved #
# #
# Please visit Prompt-Free-Diffusion's arXiv paper for more details, link at #
# arxiv.org/abs/2305.16223 #
# #
################################################################################
import gradio as gr
import os.path as osp
from PIL import Image
import numpy as np
import time
import torch
import torchvision.transforms as tvtrans
from lib.cfg_helper import model_cfg_bank
from lib.model_zoo import get_model
from collections import OrderedDict
from lib.model_zoo.ddim import DDIMSampler
n_sample_image = 1
controlnet_path = OrderedDict([
['canny' , ('canny' , 'pretrained/controlnet/control_sd15_canny_slimmed.safetensors')],
['canny_v11p' , ('canny' , 'pretrained/controlnet/control_v11p_sd15_canny_slimmed.safetensors')],
['depth' , ('depth' , 'pretrained/controlnet/control_sd15_depth_slimmed.safetensors')],
['hed' , ('hed' , 'pretrained/controlnet/control_sd15_hed_slimmed.safetensors')],
['softedge_v11p' , ('hed' , 'pretrained/controlnet/control_v11p_sd15_softedge_slimmed.safetensors')],
['mlsd' , ('mlsd' , 'pretrained/controlnet/control_sd15_mlsd_slimmed.safetensors')],
['mlsd_v11p' , ('mlsd' , 'pretrained/controlnet/control_v11p_sd15_mlsd_slimmed.safetensors')],
['normal' , ('normal' , 'pretrained/controlnet/control_sd15_normal_slimmed.safetensors')],
['openpose' , ('openpose', 'pretrained/controlnet/control_sd15_openpose_slimmed.safetensors')],
['openpose_v11p' , ('openpose', 'pretrained/controlnet/control_v11p_sd15_openpose_slimmed.safetensors')],
['scribble' , ('scribble', 'pretrained/controlnet/control_sd15_scribble_slimmed.safetensors')],
['seg' , ('none' , 'pretrained/controlnet/control_sd15_seg_slimmed.safetensors')],
['lineart_v11p' , ('none' , 'pretrained/controlnet/control_v11p_sd15_lineart_slimmed.safetensors')],
['lineart_anime_v11p', ('none' , 'pretrained/controlnet/control_v11p_sd15s2_lineart_anime_slimmed.safetensors')],
])
preprocess_method = [
'canny' ,
'depth' ,
'hed' ,
'mlsd' ,
'normal' ,
'openpose' ,
'openpose_withface' ,
'openpose_withfacehand',
'scribble' ,
'none' ,
]
diffuser_path = OrderedDict([
['SD-v1.5' , 'pretrained/pfd/diffuser/SD-v1-5.safetensors'],
['OpenJouney-v4' , 'pretrained/pfd/diffuser/OpenJouney-v4.safetensors'],
['Deliberate-v2.0' , 'pretrained/pfd/diffuser/Deliberate-v2-0.safetensors'],
['RealisticVision-v2.0', 'pretrained/pfd/diffuser/RealisticVision-v2-0.safetensors'],
['Anything-v4' , 'pretrained/pfd/diffuser/Anything-v4.safetensors'],
['Oam-v3' , 'pretrained/pfd/diffuser/AbyssOrangeMix-v3.safetensors'],
['Oam-v2' , 'pretrained/pfd/diffuser/AbyssOrangeMix-v2.safetensors'],
])
ctxencoder_path = OrderedDict([
['SeeCoder' , 'pretrained/pfd/seecoder/seecoder-v1-0.safetensors'],
['SeeCoder-PA' , 'pretrained/pfd/seecoder/seecoder-pa-v1-0.safetensors'],
['SeeCoder-Anime', 'pretrained/pfd/seecoder/seecoder-anime-v1-0.safetensors'],
])
##########
# helper #
##########
def highlight_print(info):
print('')
print(''.join(['#']*(len(info)+4)))
print('# '+info+' #')
print(''.join(['#']*(len(info)+4)))
print('')
def load_sd_from_file(target):
if osp.splitext(target)[-1] == '.ckpt':
sd = torch.load(target, map_location='cpu')['state_dict']
elif osp.splitext(target)[-1] == '.pth':
sd = torch.load(target, map_location='cpu')
elif osp.splitext(target)[-1] == '.safetensors':
from safetensors.torch import load_file as stload
sd = OrderedDict(stload(target, device='cpu'))
else:
assert False, "File type must be .ckpt or .pth or .safetensors"
return sd
########
# main #
########
class prompt_free_diffusion(object):
def __init__(self,
fp16=False,
tag_ctx=None,
tag_diffuser=None,
tag_ctl=None,):
self.tag_ctx = tag_ctx
self.tag_diffuser = tag_diffuser
self.tag_ctl = tag_ctl
self.strict_sd = True
cfgm = model_cfg_bank()('pfd_seecoder_with_controlnet')
self.net = get_model()(cfgm)
self.action_load_ctx(tag_ctx)
self.action_load_diffuser(tag_diffuser)
self.action_load_ctl(tag_ctl)
if fp16:
highlight_print('Running in FP16')
self.net.ctx['image'].fp16 = True
self.net = self.net.half()
self.dtype = torch.float16
else:
self.dtype = torch.float32
self.use_cuda = torch.cuda.is_available()
if self.use_cuda:
self.net.to('cuda')
self.net.eval()
self.sampler = DDIMSampler(self.net)
self.n_sample_image = n_sample_image
self.ddim_steps = 50
self.ddim_eta = 0.0
self.image_latent_dim = 4
def load_ctx(self, pretrained):
sd = load_sd_from_file(pretrained)
sd_extra = [(ki, vi) for ki, vi in self.net.state_dict().items() \
if ki.find('ctx.')!=0]
sd.update(OrderedDict(sd_extra))
self.net.load_state_dict(sd, strict=True)
print('Load context encoder from [{}] strict [{}].'.format(pretrained, True))
def load_diffuser(self, pretrained):
sd = load_sd_from_file(pretrained)
if len([ki for ki in sd.keys() if ki.find('diffuser.image.context_blocks.')==0]) == 0:
sd = [(
ki.replace('diffuser.text.context_blocks.', 'diffuser.image.context_blocks.'), vi)
for ki, vi in sd.items()]
sd = OrderedDict(sd)
sd_extra = [(ki, vi) for ki, vi in self.net.state_dict().items() \
if ki.find('diffuser.')!=0]
sd.update(OrderedDict(sd_extra))
self.net.load_state_dict(sd, strict=True)
print('Load diffuser from [{}] strict [{}].'.format(pretrained, True))
def load_ctl(self, pretrained):
sd = load_sd_from_file(pretrained)
self.net.ctl.load_state_dict(sd, strict=True)
print('Load controlnet from [{}] strict [{}].'.format(pretrained, True))
def action_load_ctx(self, tag):
pretrained = ctxencoder_path[tag]
if tag == 'SeeCoder-PA':
from lib.model_zoo.seecoder import PPE_MLP
pe_layer = \
PPE_MLP(freq_num=20, freq_max=None, out_channel=768, mlp_layer=3)
if self.dtype == torch.float16:
pe_layer = pe_layer.half()
if self.use_cuda:
pe_layer.to('cuda')
pe_layer.eval()
self.net.ctx['image'].qtransformer.pe_layer = pe_layer
else:
self.net.ctx['image'].qtransformer.pe_layer = None
if pretrained is not None:
self.load_ctx(pretrained)
self.tag_ctx = tag
return tag
def action_load_diffuser(self, tag):
pretrained = diffuser_path[tag]
if pretrained is not None:
self.load_diffuser(pretrained)
self.tag_diffuser = tag
return tag
def action_load_ctl(self, tag):
pretrained = controlnet_path[tag][1]
if pretrained is not None:
self.load_ctl(pretrained)
self.tag_ctl = tag
return tag
def action_autoset_hw(self, imctl):
if imctl is None:
return 512, 512
w, h = imctl.size
w = w//64 * 64
h = h//64 * 64
w = w if w >=512 else 512
w = w if w <=1536 else 1536
h = h if h >=512 else 512
h = h if h <=1536 else 1536
return h, w
def action_autoset_method(self, tag):
return controlnet_path[tag][0]
def action_inference(
self, im, imctl, ctl_method, do_preprocess,
h, w, ugscale, seed,
tag_ctx, tag_diffuser, tag_ctl,):
if tag_ctx != self.tag_ctx:
self.action_load_ctx(tag_ctx)
if tag_diffuser != self.tag_diffuser:
self.action_load_diffuser(tag_diffuser)
if tag_ctl != self.tag_ctl:
self.action_load_ctl(tag_ctl)
n_samples = self.n_sample_image
sampler = self.sampler
device = self.net.device
w = w//64 * 64
h = h//64 * 64
if imctl is not None:
imctl = imctl.resize([w, h], Image.Resampling.BICUBIC)
craw = tvtrans.ToTensor()(im)[None].to(device).to(self.dtype)
c = self.net.ctx_encode(craw, which='image').repeat(n_samples, 1, 1)
u = torch.zeros_like(c)
if tag_ctx in ["SeeCoder-Anime"]:
u = torch.load('assets/anime_ug.pth')[None].to(device).to(self.dtype)
pad = c.size(1) - u.size(1)
u = torch.cat([u, torch.zeros_like(u[:, 0:1].repeat(1, pad, 1))], axis=1)
if tag_ctl != 'none':
ccraw = tvtrans.ToTensor()(imctl)[None].to(device).to(self.dtype)
if do_preprocess:
cc = self.net.ctl.preprocess(ccraw, type=ctl_method, size=[h, w])
cc = cc.to(self.dtype)
else:
cc = ccraw
else:
cc = None
shape = [n_samples, self.image_latent_dim, h//8, w//8]
if seed < 0:
np.random.seed(int(time.time()))
torch.manual_seed(-seed + 100)
else:
np.random.seed(seed + 100)
torch.manual_seed(seed)
x, _ = sampler.sample(
steps=self.ddim_steps,
x_info={'type':'image',},
c_info={'type':'image', 'conditioning':c, 'unconditional_conditioning':u,
'unconditional_guidance_scale':ugscale,
'control':cc,},
shape=shape,
verbose=False,
eta=self.ddim_eta)
ccout = [tvtrans.ToPILImage()(i) for i in cc] if cc is not None else []
imout = self.net.vae_decode(x, which='image')
imout = [tvtrans.ToPILImage()(i) for i in imout]
return imout + ccout
pfd_inference = prompt_free_diffusion(
fp16=True, tag_ctx = 'SeeCoder', tag_diffuser = 'Deliberate-v2.0', tag_ctl = 'canny',)
#################
# sub interface #
#################
cache_examples = True
def get_example():
case = [
[
'assets/examples/ghibli-input.jpg',
'assets/examples/ghibli-canny.png',
'canny', False,
768, 1024, 1.8, 23,
'SeeCoder', 'Deliberate-v2.0', 'canny', ],
[
'assets/examples/astronautridinghouse-input.jpg',
'assets/examples/astronautridinghouse-canny.png',
'canny', False,
512, 768, 2.0, 21,
'SeeCoder', 'Deliberate-v2.0', 'canny', ],
[
'assets/examples/grassland-input.jpg',
'assets/examples/grassland-scribble.png',
'scribble', False,
768, 512, 2.0, 41,
'SeeCoder', 'Deliberate-v2.0', 'scribble', ],
[
'assets/examples/jeep-input.jpg',
'assets/examples/jeep-depth.png',
'depth', False,
512, 768, 2.0, 30,
'SeeCoder', 'Deliberate-v2.0', 'depth', ],
[
'assets/examples/bedroom-input.jpg',
'assets/examples/bedroom-mlsd.png',
'mlsd', False,
512, 512, 2.0, 31,
'SeeCoder', 'Deliberate-v2.0', 'mlsd', ],
[
'assets/examples/nightstreet-input.jpg',
'assets/examples/nightstreet-canny.png',
'canny', False,
768, 512, 2.3, 20,
'SeeCoder', 'Deliberate-v2.0', 'canny', ],
[
'assets/examples/woodcar-input.jpg',
'assets/examples/woodcar-depth.png',
'depth', False,
768, 512, 2.0, 20,
'SeeCoder', 'Deliberate-v2.0', 'depth', ],
[
'assets/examples-anime/miku.jpg',
'assets/examples-anime/miku-canny.png',
'canny', False,
768, 576, 1.5, 22,
'SeeCoder-Anime', 'Anything-v4', 'canny', ],
[
'assets/examples-anime/random1.jpg',
'assets/examples-anime/pose.png',
'openpose', False,
768, 1536, 2.5, 28,
'SeeCoder-Anime', 'Oam-v2', 'openpose_v11p', ],
[
'assets/examples-anime/camping.jpg',
'assets/examples-anime/pose.png',
'openpose', False,
768, 1536, 2.0, 35,
'SeeCoder-Anime', 'Anything-v4', 'openpose_v11p', ],
[
'assets/examples-anime/hanfu_girl.jpg',
'assets/examples-anime/pose.png',
'openpose', False,
768, 1536, 2.0, 20,
'SeeCoder-Anime', 'Anything-v4', 'openpose_v11p', ],
]
return case
def interface():
with gr.Row():
with gr.Column():
img_input = gr.Image(label='Image Input', type='pil', elem_id='customized_imbox')
with gr.Row():
out_width = gr.Slider(label="Width" , minimum=512, maximum=1536, value=512, step=64, visible=True)
out_height = gr.Slider(label="Height", minimum=512, maximum=1536, value=512, step=64, visible=True)
with gr.Row():
scl_lvl = gr.Slider(label="CFGScale", minimum=0, maximum=10, value=2, step=0.01, visible=True)
seed = gr.Number(20, label="Seed", precision=0)
with gr.Row():
tag_ctx = gr.Dropdown(label='Context Encoder', choices=[pi for pi in ctxencoder_path.keys()], value='SeeCoder')
tag_diffuser = gr.Dropdown(label='Diffuser', choices=[pi for pi in diffuser_path.keys()], value='Deliberate-v2.0')
button = gr.Button("Run")
with gr.Column():
ctl_input = gr.Image(label='Control Input', type='pil', elem_id='customized_imbox')
do_preprocess = gr.Checkbox(label='Preprocess', value=False)
with gr.Row():
ctl_method = gr.Dropdown(label='Preprocess Type', choices=preprocess_method, value='canny')
tag_ctl = gr.Dropdown(label='ControlNet', choices=[pi for pi in controlnet_path.keys()], value='canny')
with gr.Column():
img_output = gr.Gallery(label="Image Result", elem_id='customized_imbox').style(grid=n_sample_image+1)
tag_ctl.change(
pfd_inference.action_autoset_method,
inputs = [tag_ctl],
outputs = [ctl_method],)
ctl_input.change(
pfd_inference.action_autoset_hw,
inputs = [ctl_input],
outputs = [out_height, out_width],)
# tag_ctx.change(
# pfd_inference.action_load_ctx,
# inputs = [tag_ctx],
# outputs = [tag_ctx],)
# tag_diffuser.change(
# pfd_inference.action_load_diffuser,
# inputs = [tag_diffuser],
# outputs = [tag_diffuser],)
# tag_ctl.change(
# pfd_inference.action_load_ctl,
# inputs = [tag_ctl],
# outputs = [tag_ctl],)
button.click(
pfd_inference.action_inference,
inputs=[img_input, ctl_input, ctl_method, do_preprocess,
out_height, out_width, scl_lvl, seed,
tag_ctx, tag_diffuser, tag_ctl, ],
outputs=[img_output])
gr.Examples(
label='Examples',
examples=get_example(),
fn=pfd_inference.action_inference,
inputs=[img_input, ctl_input, ctl_method, do_preprocess,
out_height, out_width, scl_lvl, seed,
tag_ctx, tag_diffuser, tag_ctl, ],
outputs=[img_output],
cache_examples=cache_examples,)
#############
# Interface #
#############
css = """
#customized_imbox {
min-height: 450px;
}
#customized_imbox>div[data-testid="image"] {
min-height: 450px;
}
#customized_imbox>div[data-testid="image"]>div {
min-height: 450px;
}
#customized_imbox>div[data-testid="image"]>iframe {
min-height: 450px;
}
#customized_imbox>div.unpadded_box {
min-height: 450px;
}
#myinst {
font-size: 0.8rem;
margin: 0rem;
color: #6B7280;
}
#maskinst {
text-align: justify;
min-width: 1200px;
}
#maskinst>img {
min-width:399px;
max-width:450px;
vertical-align: top;
display: inline-block;
}
#maskinst:after {
content: "";
width: 100%;
display: inline-block;
}
"""
if True:
with gr.Blocks(css=css) as demo:
gr.HTML(
"""
<div style="text-align: center; max-width: 1200px; margin: 20px auto;">
<h1 style="font-weight: 900; font-size: 3rem; margin: 0rem">
Prompt-Free Diffusion
</h1>
<p style="font-size: 1rem; margin: 0rem">
Xingqian Xu<sup>1,6</sup>, Jiayi Guo<sup>1,2</sup>, Zhangyang Wang<sup>3,6</sup>, Gao Huang<sup>2</sup>, Irfan Essa<sup>4,5</sup>, and Humphrey Shi<sup>1,6</sup>
</p>
<p style="font-size: 0.8rem; margin: 0rem; line-height: 1em">
<sup>1</sup>SHI Labs @ UIUC & Oregon, <sup>2</sup>Tsinghua University, <sup>3</sup>UT Austin, <sup>4</sup>Georgia Tech, <sup>5</sup>Google Research, <sup>6</sup>Picsart AI Research (PAIR)
</p>
<p style="font-size: 0.9rem; margin: 0rem; line-height: 1.2em; margin-top:1em">
The performance of Text2Image is largely dependent on text prompts.
In Prompt-Free Diffusion, no prompt is needed, just a reference images!
At the core of Prompt-Free Diffusion is an image-only semantic context encoder (SeeCoder).
SeeCoder is reusable to most CLIP-based T2I models: just drop in and replace CLIP, then you will create your own prompt-free diffusion.
<a href="https://github.com/SHI-Labs/Prompt-Free-Diffusion">[Github]</a> <a href="https://arxiv.org/abs/2305.16223">[arXiv]</a>
</p>
</div>
""")
interface()
# gr.HTML(
# """
# <div style="text-align: justify; max-width: 1200px; margin: 20px auto;">
# <h3 style="font-weight: 450; font-size: 0.8rem; margin: 0rem">
# <b>Version</b>: {}
# </h3>
# </div>
# """.format(' '+str(pfd_inference.pretrained)))
demo.launch(server_name="0.0.0.0", server_port=11234)
# demo.launch()