forked from PJayB/DirectCompositionDirectX12Sample
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DirectCompositeSample.cpp
597 lines (501 loc) · 22.4 KB
/
DirectCompositeSample.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
//*********************************************************
//
// Copyright (c) Microsoft. All rights reserved.
// This code is licensed under the MIT License (MIT).
// THIS CODE IS PROVIDED *AS IS* WITHOUT WARRANTY OF
// ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING ANY
// IMPLIED WARRANTIES OF FITNESS FOR A PARTICULAR
// PURPOSE, MERCHANTABILITY, OR NON-INFRINGEMENT.
//
//*********************************************************
#include "stdafx.h"
#include "DirectCompositeSample.h"
DirectCompositeSample::DirectCompositeSample(UINT width, UINT height, std::wstring name) :
DXSample(width, height, name),
m_frameIndex(0),
m_viewport(),
m_scissorRect(),
m_rtvDescriptorSize(0)
{
m_viewport.Width = static_cast<float>(width);
m_viewport.Height = static_cast<float>(height);
m_viewport.MaxDepth = 1.0f;
m_scissorRect.right = static_cast<LONG>(width);
m_scissorRect.bottom = static_cast<LONG>(height);
}
void DirectCompositeSample::OnInit()
{
LoadPipeline();
LoadAssets();
}
// Load the rendering pipeline dependencies.
void DirectCompositeSample::LoadPipeline()
{
#if defined(_DEBUG)
// Enable the D3D12 debug layer.
{
ComPtr<ID3D12Debug> debugController;
if (SUCCEEDED(D3D12GetDebugInterface(IID_PPV_ARGS(&debugController))))
{
debugController->EnableDebugLayer();
}
}
#endif
ComPtr<IDXGIFactory4> factory;
ThrowIfFailed(CreateDXGIFactory1(IID_PPV_ARGS(&factory)));
if (m_useWarpDevice)
{
ComPtr<IDXGIAdapter> warpAdapter;
ThrowIfFailed(factory->EnumWarpAdapter(IID_PPV_ARGS(&warpAdapter)));
ThrowIfFailed(D3D12CreateDevice(
warpAdapter.Get(),
D3D_FEATURE_LEVEL_11_0,
IID_PPV_ARGS(&m_device)
));
}
else
{
ComPtr<IDXGIAdapter1> hardwareAdapter;
GetHardwareAdapter(factory.Get(), &hardwareAdapter);
ThrowIfFailed(D3D12CreateDevice(
hardwareAdapter.Get(),
D3D_FEATURE_LEVEL_11_0,
IID_PPV_ARGS(&m_device)
));
}
// Describe and create the command queue.
D3D12_COMMAND_QUEUE_DESC queueDesc = {};
queueDesc.Flags = D3D12_COMMAND_QUEUE_FLAG_NONE;
queueDesc.Type = D3D12_COMMAND_LIST_TYPE_DIRECT;
ThrowIfFailed(m_device->CreateCommandQueue(&queueDesc, IID_PPV_ARGS(&m_commandQueue)));
// Describe and create the swap chain.
DXGI_SWAP_CHAIN_DESC1 swapChainDesc = {};
swapChainDesc.BufferCount = FrameCount;
swapChainDesc.Width = m_width;
swapChainDesc.Height = m_height;
swapChainDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;
swapChainDesc.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT;
swapChainDesc.SwapEffect = DXGI_SWAP_EFFECT_FLIP_DISCARD;
swapChainDesc.SampleDesc.Count = 1;
swapChainDesc.AlphaMode = DXGI_ALPHA_MODE_PREMULTIPLIED;
ComPtr<IDXGISwapChain1> swapChain;
ThrowIfFailed(factory->CreateSwapChainForComposition(
m_commandQueue.Get(), // Swap chain needs the queue so that it can force a flush on it.
&swapChainDesc,
nullptr,
&swapChain
));
//------------------------------------------------------------------
// Set up DirectComposition
//------------------------------------------------------------------
// Create the DirectComposition device
ThrowIfFailed(DCompositionCreateDevice(
nullptr,
IID_PPV_ARGS(m_dcompDevice.ReleaseAndGetAddressOf())));
// Create a DirectComposition target associated with the window (pass in hWnd here)
ThrowIfFailed(m_dcompDevice->CreateTargetForHwnd(
Win32Application::GetHwnd(),
true,
m_dcompTarget.ReleaseAndGetAddressOf()));
// Create a DirectComposition "visual"
ThrowIfFailed(m_dcompDevice->CreateVisual(m_dcompVisual.ReleaseAndGetAddressOf()));
//AMD
m_dcompVisual->SetCompositeMode( DCOMPOSITION_COMPOSITE_MODE_DESTINATION_INVERT );
// Associate the visual with the swap chain
ThrowIfFailed(m_dcompVisual->SetContent(swapChain.Get()));
// Set the visual as the root of the DirectComposition target's composition tree
ThrowIfFailed(m_dcompTarget->SetRoot(m_dcompVisual.Get()));
ThrowIfFailed(m_dcompDevice->Commit());
//------------------------------------------------------------------
// DirectComposition setup end
//------------------------------------------------------------------
// This sample does not support fullscreen transitions.
ThrowIfFailed(factory->MakeWindowAssociation(Win32Application::GetHwnd(), DXGI_MWA_NO_ALT_ENTER));
ThrowIfFailed(swapChain.As(&m_swapChain));
m_frameIndex = m_swapChain->GetCurrentBackBufferIndex();
// Create descriptor heaps.
{
// Describe and create a render target view (RTV) descriptor heap.
D3D12_DESCRIPTOR_HEAP_DESC rtvHeapDesc = {};
rtvHeapDesc.NumDescriptors = FrameCount;
rtvHeapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_RTV;
rtvHeapDesc.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_NONE;
ThrowIfFailed(m_device->CreateDescriptorHeap(&rtvHeapDesc, IID_PPV_ARGS(&m_rtvHeap)));
// Describe and create a shader resource view (SRV) heap for the texture.
D3D12_DESCRIPTOR_HEAP_DESC srvHeapDesc = {};
srvHeapDesc.NumDescriptors = 1;
srvHeapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV;
srvHeapDesc.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_SHADER_VISIBLE;
ThrowIfFailed(m_device->CreateDescriptorHeap(&srvHeapDesc, IID_PPV_ARGS(&m_srvHeap)));
m_rtvDescriptorSize = m_device->GetDescriptorHandleIncrementSize(D3D12_DESCRIPTOR_HEAP_TYPE_RTV);
}
// Create frame resources.
{
CD3DX12_CPU_DESCRIPTOR_HANDLE rtvHandle(m_rtvHeap->GetCPUDescriptorHandleForHeapStart());
// Create a RTV for each frame.
for (UINT n = 0; n < FrameCount; n++)
{
ThrowIfFailed(m_swapChain->GetBuffer(n, IID_PPV_ARGS(&m_renderTargets[n])));
m_device->CreateRenderTargetView(m_renderTargets[n].Get(), nullptr, rtvHandle);
rtvHandle.Offset(1, m_rtvDescriptorSize);
}
}
ThrowIfFailed(m_device->CreateCommandAllocator(D3D12_COMMAND_LIST_TYPE_DIRECT, IID_PPV_ARGS(&m_commandAllocator)));
}
// Load the sample assets.
void DirectCompositeSample::LoadAssets()
{
// Create the root signature.
{
CD3DX12_DESCRIPTOR_RANGE ranges[1];
ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 1, 0);
CD3DX12_ROOT_PARAMETER rootParameters[2];
rootParameters[0].InitAsConstants(1, 0, 0, D3D12_SHADER_VISIBILITY_VERTEX);
rootParameters[1].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_PIXEL);
D3D12_STATIC_SAMPLER_DESC sampler = {};
sampler.Filter = D3D12_FILTER_MIN_MAG_MIP_POINT;
sampler.AddressU = D3D12_TEXTURE_ADDRESS_MODE_WRAP;
sampler.AddressV = D3D12_TEXTURE_ADDRESS_MODE_WRAP;
sampler.AddressW = D3D12_TEXTURE_ADDRESS_MODE_WRAP;
sampler.MipLODBias = 0;
sampler.MaxAnisotropy = 0;
sampler.ComparisonFunc = D3D12_COMPARISON_FUNC_NEVER;
sampler.BorderColor = D3D12_STATIC_BORDER_COLOR_TRANSPARENT_BLACK;
sampler.MinLOD = 0.0f;
sampler.MaxLOD = D3D12_FLOAT32_MAX;
sampler.ShaderRegister = 0;
sampler.RegisterSpace = 0;
sampler.ShaderVisibility = D3D12_SHADER_VISIBILITY_PIXEL;
CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc;
rootSignatureDesc.Init(_countof(rootParameters), rootParameters, 1, &sampler, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);
ComPtr<ID3DBlob> signature;
ComPtr<ID3DBlob> error;
ThrowIfFailed(D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));
ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_rootSignature)));
}
// Create the pipeline state, which includes compiling and loading shaders.
{
ComPtr<ID3DBlob> vertexShader;
ComPtr<ID3DBlob> pixelShader;
#if defined(_DEBUG)
// Enable better shader debugging with the graphics debugging tools.
UINT compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION;
#else
UINT compileFlags = 0;
#endif
ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "VSMain", "vs_5_0", compileFlags, 0, &vertexShader, nullptr));
ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "PSMain", "ps_5_0", compileFlags, 0, &pixelShader, nullptr));
// Define the vertex input layout.
D3D12_INPUT_ELEMENT_DESC inputElementDescs[] =
{
{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 12, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }
};
const D3D12_BLEND_DESC AlphaBlend =
{
FALSE, // AlphaToCoverageEnable
FALSE, // IndependentBlendEnable
{
TRUE, // BlendEnable
FALSE, // LogicOpEnable
D3D12_BLEND_ONE, // SrcBlend
D3D12_BLEND_INV_SRC_ALPHA, // DestBlend
D3D12_BLEND_OP_ADD, // BlendOp
D3D12_BLEND_ONE, // SrcBlendAlpha
D3D12_BLEND_INV_SRC_ALPHA, // DestBlendAlpha
D3D12_BLEND_OP_ADD, // BlendOpAlpha
D3D12_LOGIC_OP_CLEAR, // LogicOp
D3D12_COLOR_WRITE_ENABLE_ALL // RenderTargetWriteMask
}
};
// Describe and create the graphics pipeline state object (PSO).
D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
psoDesc.InputLayout = { inputElementDescs, _countof(inputElementDescs) };
psoDesc.pRootSignature = m_rootSignature.Get();
psoDesc.VS = CD3DX12_SHADER_BYTECODE(vertexShader.Get());
psoDesc.PS = CD3DX12_SHADER_BYTECODE(pixelShader.Get());
psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
psoDesc.RasterizerState.CullMode = D3D12_CULL_MODE_NONE;
psoDesc.BlendState = AlphaBlend;
psoDesc.DepthStencilState.DepthEnable = FALSE;
psoDesc.DepthStencilState.StencilEnable = FALSE;
psoDesc.SampleMask = UINT_MAX;
psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
psoDesc.NumRenderTargets = 1;
psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
psoDesc.SampleDesc.Count = 1;
ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineState)));
}
// Create the command list.
ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_commandAllocator.Get(), m_pipelineState.Get(), IID_PPV_ARGS(&m_commandList)));
// Create the vertex buffer.
{
// Define the geometry for a circle.
Vertex triangleVertices[CircleSegments + 1] =
{
{ { 0.0f, 0.0f, 0.0f }, { 0.5f, 0.5f } }
};
for (UINT i = 0; i < CircleSegments; ++i)
{
float theta = 2 * DirectX::XM_PI * i / (float)(CircleSegments - 1);
float x = sinf(theta);
float y = cosf(theta);
Vertex& v = triangleVertices[i + 1];
v.position = DirectX::XMFLOAT3(x, y * m_aspectRatio, 0.0f);
v.uv = DirectX::XMFLOAT2(x * 0.5f + 0.5f, y * 0.5f + 0.5f);
}
const UINT vertexBufferSize = sizeof(triangleVertices);
// Note: using upload heaps to transfer static data like vert buffers is not
// recommended. Every time the GPU needs it, the upload heap will be marshalled
// over. Please read up on Default Heap usage. An upload heap is used here for
// code simplicity and because there are very few verts to actually transfer.
ThrowIfFailed(m_device->CreateCommittedResource(
&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
D3D12_HEAP_FLAG_NONE,
&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
D3D12_RESOURCE_STATE_GENERIC_READ,
nullptr,
IID_PPV_ARGS(&m_vertexBuffer)));
// Copy the triangle data to the vertex buffer.
UINT8* pVertexDataBegin;
CD3DX12_RANGE readRange(0, 0); // We do not intend to read from this resource on the CPU.
ThrowIfFailed(m_vertexBuffer->Map(0, &readRange, reinterpret_cast<void**>(&pVertexDataBegin)));
memcpy(pVertexDataBegin, triangleVertices, sizeof(triangleVertices));
m_vertexBuffer->Unmap(0, nullptr);
// Initialize the vertex buffer view.
m_vertexBufferView.BufferLocation = m_vertexBuffer->GetGPUVirtualAddress();
m_vertexBufferView.StrideInBytes = sizeof(Vertex);
m_vertexBufferView.SizeInBytes = vertexBufferSize;
}
// Create the index buffer
{
// Define the geometry for a circle.
UINT16 triangleIndices[3 * CircleSegments];
for (UINT i = 0; i < CircleSegments; ++i)
{
triangleIndices[i * 3 + 0] = 0;
triangleIndices[i * 3 + 1] = 1 + i;
triangleIndices[i * 3 + 2] = 2 + i;
}
const UINT indexBufferSize = sizeof(triangleIndices);
// Note: using upload heaps to transfer static data like vert buffers is not
// recommended. Every time the GPU needs it, the upload heap will be marshalled
// over. Please read up on Default Heap usage. An upload heap is used here for
// code simplicity and because there are very few verts to actually transfer.
ThrowIfFailed(m_device->CreateCommittedResource(
&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
D3D12_HEAP_FLAG_NONE,
&CD3DX12_RESOURCE_DESC::Buffer(indexBufferSize),
D3D12_RESOURCE_STATE_GENERIC_READ,
nullptr,
IID_PPV_ARGS(&m_indexBuffer)));
// Copy the index data to the index buffer.
UINT8* pIndexDataBegin;
CD3DX12_RANGE readRange(0, 0); // We do not intend to read from this resource on the CPU.
ThrowIfFailed(m_indexBuffer->Map(0, &readRange, reinterpret_cast<void**>(&pIndexDataBegin)));
memcpy(pIndexDataBegin, triangleIndices, sizeof(triangleIndices));
m_indexBuffer->Unmap(0, nullptr);
// Intialize the index buffer view
m_indexBufferView.BufferLocation = m_indexBuffer->GetGPUVirtualAddress();
m_indexBufferView.Format = DXGI_FORMAT_R16_UINT;
m_indexBufferView.SizeInBytes = indexBufferSize;
}
// Note: ComPtr's are CPU objects but this resource needs to stay in scope until
// the command list that references it has finished executing on the GPU.
// We will flush the GPU at the end of this method to ensure the resource is not
// prematurely destroyed.
ComPtr<ID3D12Resource> textureUploadHeap;
// Create the texture.
{
// Describe and create a Texture2D.
D3D12_RESOURCE_DESC textureDesc = {};
textureDesc.MipLevels = 1;
textureDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;
textureDesc.Width = TextureWidth;
textureDesc.Height = TextureHeight;
textureDesc.Flags = D3D12_RESOURCE_FLAG_NONE;
textureDesc.DepthOrArraySize = 1;
textureDesc.SampleDesc.Count = 1;
textureDesc.SampleDesc.Quality = 0;
textureDesc.Dimension = D3D12_RESOURCE_DIMENSION_TEXTURE2D;
ThrowIfFailed(m_device->CreateCommittedResource(
&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
D3D12_HEAP_FLAG_NONE,
&textureDesc,
D3D12_RESOURCE_STATE_COPY_DEST,
nullptr,
IID_PPV_ARGS(&m_texture)));
const UINT64 uploadBufferSize = GetRequiredIntermediateSize(m_texture.Get(), 0, 1);
// Create the GPU upload buffer.
ThrowIfFailed(m_device->CreateCommittedResource(
&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
D3D12_HEAP_FLAG_NONE,
&CD3DX12_RESOURCE_DESC::Buffer(uploadBufferSize),
D3D12_RESOURCE_STATE_GENERIC_READ,
nullptr,
IID_PPV_ARGS(&textureUploadHeap)));
// Copy data to the intermediate upload heap and then schedule a copy
// from the upload heap to the Texture2D.
std::vector<UINT8> texture = GenerateTextureData();
D3D12_SUBRESOURCE_DATA textureData = {};
textureData.pData = &texture[0];
textureData.RowPitch = TextureWidth * sizeof(UINT);
textureData.SlicePitch = textureData.RowPitch * TextureHeight;
UpdateSubresources(m_commandList.Get(), m_texture.Get(), textureUploadHeap.Get(), 0, 0, 1, &textureData);
m_commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_texture.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_PIXEL_SHADER_RESOURCE));
// Describe and create a SRV for the texture.
D3D12_SHADER_RESOURCE_VIEW_DESC srvDesc = {};
srvDesc.Shader4ComponentMapping = D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING;
srvDesc.Format = textureDesc.Format;
srvDesc.ViewDimension = D3D12_SRV_DIMENSION_TEXTURE2D;
srvDesc.Texture2D.MipLevels = 1;
m_device->CreateShaderResourceView(m_texture.Get(), &srvDesc, m_srvHeap->GetCPUDescriptorHandleForHeapStart());
}
// Close the command list and execute it to begin the initial GPU setup.
ThrowIfFailed(m_commandList->Close());
ID3D12CommandList* ppCommandLists[] = { m_commandList.Get() };
m_commandQueue->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists);
// Create synchronization objects and wait until assets have been uploaded to the GPU.
{
ThrowIfFailed(m_device->CreateFence(0, D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_fence)));
m_fenceValue = 1;
// Create an event handle to use for frame synchronization.
m_fenceEvent = CreateEvent(nullptr, FALSE, FALSE, nullptr);
if (m_fenceEvent == nullptr)
{
ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
}
// Wait for the command list to execute; we are reusing the same command
// list in our main loop but for now, we just want to wait for setup to
// complete before continuing.
WaitForPreviousFrame();
}
}
// Generate a simple black and white checkerboard texture.
std::vector<UINT8> DirectCompositeSample::GenerateTextureData()
{
const UINT rowPitch = TextureWidth * sizeof(UINT);
const UINT cellPitch = rowPitch >> 3; // The width of a cell in the checkboard texture.
const UINT cellHeight = TextureWidth >> 3; // The height of a cell in the checkerboard texture.
const UINT textureSize = rowPitch * TextureHeight;
DirectX::XMFLOAT4 colors[NumTextureColors] =
{
DirectX::XMFLOAT4(1, 0, 0, 1), // Red
DirectX::XMFLOAT4(0, 1, 0, 1), // Green
DirectX::XMFLOAT4(0, 0, 1, 1), // Blue
DirectX::XMFLOAT4(0, 0, 0, 1), // Black
DirectX::XMFLOAT4(1, 1, 1, 1), // White
DirectX::XMFLOAT4(1, 1, 0, 1), // Yellow
DirectX::XMFLOAT4(0, 1, 1, 1), // Cyan
DirectX::XMFLOAT4(1, 0, 1, 1) // Purple
};
std::vector<UINT8> data(textureSize);
UINT8* pData = &data[0];
for (UINT a = 0; a < NumAlphaShades; ++a)
{
float alpha = a / (float)(NumAlphaShades - 1);
UINT start_x = a * TexturePixelSizeX;
UINT end_x = start_x + TexturePixelSizeX;
for (UINT c = 0; c < NumTextureColors; ++c)
{
const DirectX::XMFLOAT4& color = colors[c];
DirectX::XMFLOAT4 pmaColor =
{
color.x * alpha,
color.y * alpha,
color.z * alpha,
alpha
};
UINT start_y = TexturePixelSizeY * c;
UINT end_y = start_y + TexturePixelSizeY;
for (UINT y = start_y; y < end_y; ++y)
{
for (UINT x = start_x; x < end_x; ++x)
{
UINT offset = (y * TextureWidth + x) * sizeof(UINT);
pData[offset + 0] = (uint8_t)(pmaColor.x * 255.0f);
pData[offset + 1] = (uint8_t)(pmaColor.y * 255.0f);
pData[offset + 2] = (uint8_t)(pmaColor.z * 255.0f);
pData[offset + 3] = (uint8_t)(pmaColor.w * 255.0f);
}
}
}
}
return data;
}
// Update frame-based values.
void DirectCompositeSample::OnUpdate()
{
}
// Render the scene.
void DirectCompositeSample::OnRender()
{
// Record all the commands we need to render the scene into the command list.
PopulateCommandList();
// Execute the command list.
ID3D12CommandList* ppCommandLists[] = { m_commandList.Get() };
m_commandQueue->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists);
// Present the frame.
ThrowIfFailed(m_swapChain->Present(1, 0));
WaitForPreviousFrame();
}
void DirectCompositeSample::OnDestroy()
{
// Ensure that the GPU is no longer referencing resources that are about to be
// cleaned up by the destructor.
WaitForPreviousFrame();
CloseHandle(m_fenceEvent);
}
void DirectCompositeSample::PopulateCommandList()
{
// Command list allocators can only be reset when the associated
// command lists have finished execution on the GPU; apps should use
// fences to determine GPU execution progress.
ThrowIfFailed(m_commandAllocator->Reset());
// However, when ExecuteCommandList() is called on a particular command
// list, that command list can then be reset at any time and must be before
// re-recording.
ThrowIfFailed(m_commandList->Reset(m_commandAllocator.Get(), m_pipelineState.Get()));
// Set necessary state.
m_commandList->SetGraphicsRootSignature(m_rootSignature.Get());
ID3D12DescriptorHeap* ppHeaps[] = { m_srvHeap.Get() };
m_commandList->SetDescriptorHeaps(_countof(ppHeaps), ppHeaps);
static float rotationRadians = 0;
rotationRadians += 0.02f;
m_commandList->SetGraphicsRoot32BitConstant(0, *((UINT*)&rotationRadians), 0); // TODO
m_commandList->SetGraphicsRootDescriptorTable(1, m_srvHeap->GetGPUDescriptorHandleForHeapStart());
m_commandList->RSSetViewports(1, &m_viewport);
m_commandList->RSSetScissorRects(1, &m_scissorRect);
// Indicate that the back buffer will be used as a render target.
m_commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_renderTargets[m_frameIndex].Get(), D3D12_RESOURCE_STATE_PRESENT, D3D12_RESOURCE_STATE_RENDER_TARGET));
CD3DX12_CPU_DESCRIPTOR_HANDLE rtvHandle(m_rtvHeap->GetCPUDescriptorHandleForHeapStart(), m_frameIndex, m_rtvDescriptorSize);
m_commandList->OMSetRenderTargets(1, &rtvHandle, FALSE, nullptr);
// Record commands.
const float clearColor[4] = {};
m_commandList->ClearRenderTargetView(rtvHandle, clearColor, 0, nullptr);
m_commandList->IASetPrimitiveTopology(D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST);
m_commandList->IASetVertexBuffers(0, 1, &m_vertexBufferView);
m_commandList->IASetIndexBuffer(&m_indexBufferView);
m_commandList->DrawIndexedInstanced(CircleSegments * 3, 1, 0, 0, 0);
// Indicate that the back buffer will now be used to present.
m_commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_renderTargets[m_frameIndex].Get(), D3D12_RESOURCE_STATE_RENDER_TARGET, D3D12_RESOURCE_STATE_PRESENT));
ThrowIfFailed(m_commandList->Close());
}
void DirectCompositeSample::WaitForPreviousFrame()
{
// WAITING FOR THE FRAME TO COMPLETE BEFORE CONTINUING IS NOT BEST PRACTICE.
// This is code implemented as such for simplicity. The D3D12HelloFrameBuffering
// sample illustrates how to use fences for efficient resource usage and to
// maximize GPU utilization.
// Signal and increment the fence value.
const UINT64 fence = m_fenceValue;
ThrowIfFailed(m_commandQueue->Signal(m_fence.Get(), fence));
m_fenceValue++;
// Wait until the previous frame is finished.
if (m_fence->GetCompletedValue() < fence)
{
ThrowIfFailed(m_fence->SetEventOnCompletion(fence, m_fenceEvent));
WaitForSingleObject(m_fenceEvent, INFINITE);
}
m_frameIndex = m_swapChain->GetCurrentBackBufferIndex();
}