-
Notifications
You must be signed in to change notification settings - Fork 378
/
pptsm_mv2_k400_videos_uniform.yaml
124 lines (114 loc) · 4.15 KB
/
pptsm_mv2_k400_videos_uniform.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
MODEL: #MODEL field
framework: "Recognizer2D" #Mandatory, indicate the type of network, associate to the 'paddlevideo/modeling/framework/' .
backbone:
name: "PPTSM_MobileNetV2" #Mandatory, The name of backbone.
pretrained: "data/MobileNetV2_ssld_pretrained.pdparams" #Optional, pretrained model path.
head:
name: "MoViNetHead" #Mandatory, indicate the type of head, associate to the 'paddlevideo/modeling/heads'
DATASET: #DATASET field
batch_size: 16 #Mandatory, bacth size
num_workers: 4 #Mandatory, the number of subprocess on each GPU.
train:
format: "VideoDataset" #Mandatory, indicate the type of dataset, associate to the 'paddlevidel/loader/dateset'
data_prefix: "data/k400" #Mandatory, train data root path
file_path: "data/k400/train.list" #Mandatory, train data index file path
valid:
format: "VideoDataset" #Mandatory, indicate the type of dataset, associate to the 'paddlevidel/loader/dateset'
data_prefix: "data/k400" #Mandatory, valid data root path
file_path: "data/k400/val.list" #Mandatory, valid data index file path
test:
format: "VideoDataset" #Mandatory, indicate the type of dataset, associate to the 'paddlevidel/loader/dateset'
data_prefix: "data/k400" #Mandatory, valid data root path
file_path: "data/k400/val.list" #Mandatory, valid data index file path
PIPELINE: #PIPELINE field
train: #Mandotary, indicate the pipeline to deal with the training data, associate to the 'paddlevideo/loader/pipelines/'
decode:
name: "VideoDecoder"
backend: "decord"
sample:
name: "Sampler"
num_seg: 8
seg_len: 1
valid_mode: False
transform: #Mandotary, image transfrom operator
- Scale:
short_size: 256
- MultiScaleCrop:
target_size: 256
- RandomCrop:
target_size: 224
- RandomFlip:
- Image2Array:
- Normalization:
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
valid: #Mandatory, indicate the pipeline to deal with the validing data. associate to the 'paddlevideo/loader/pipelines/'
decode:
name: "VideoDecoder"
backend: "decord"
sample:
name: "Sampler"
num_seg: 8
seg_len: 1
valid_mode: True
transform:
- Scale:
short_size: 256
- CenterCrop:
target_size: 224
- Image2Array:
- Normalization:
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
test: #Mandatory, indicate the pipeline to deal with the validing data. associate to the 'paddlevideo/loader/pipelines/'
decode:
name: "VideoDecoder"
backend: "decord"
sample:
name: "Sampler"
num_seg: 8
seg_len: 1
valid_mode: True
transform:
- Scale:
short_size: 256
- CenterCrop:
target_size: 224
- Image2Array:
- Normalization:
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
OPTIMIZER: #OPTIMIZER field
name: 'Momentum'
momentum: 0.9
learning_rate:
iter_step: True
name: 'CustomWarmupCosineDecay'
max_epoch: 80
warmup_epochs: 10
warmup_start_lr: 0.005
cosine_base_lr: 0.01
weight_decay:
name: 'L2'
value: 1e-4
use_nesterov: True
MIX:
name: "Mixup"
alpha: 0.2
INFERENCE:
name: 'ppTSM_Inference_helper'
num_seg: 8
target_size: 224
PRECISEBN:
preciseBN_interval: 5 # epoch interval to do preciseBN, default 1.
num_iters_preciseBN: 200 # how many batches used to do preciseBN, default 200.
METRIC:
name: 'CenterCropMetric'
INFERENCE:
name: 'ppTSM_Inference_helper'
num_seg: 8
target_size: 224
model_name: "ppTSM"
log_interval: 10 #Optional, the interal of logger, default:10
epochs: 80 #Mandatory, total epoch
log_level: "INFO" #Optional, the logger level. default: "INFO"