This section describes the python APIs of PPLNN
. Refer to pplnn.py for usage examples and py_pplnn.cc for exported symbols.
dims = TensorShape::GetDims()
Returns an array of dimensions.
TensorShape::SetDims(dims)
Sets dims of the tensor.
data_type = TensorShape::GetDataType()
Returns the data type of elements in tensor. Data types are defined in pyppl.common
.
data_format = TensorShape::GetDataFormat()
Returns the data format of tensor. Data formats are defined in pyppl.common
.
is_scalar = TensorShape::IsScalar()
Tells whether a tensor is a scalar.
name_str = Tensor::GetName()
Returns the tensor's name.
tensor_shape = Tensor::GetShape()
Returns a TensorShape
info of the tensor.
ret_code = Tensor::ConvertFromHost(numpy_ndarray)
Copies NDARRAY data to the tensor from an ndarray
object. ret_code
is an instance of RetCode
defined in pyppl.common
.
tensor_data = Tensor::ConvertToHost(data_type=pplcommon.DATATYPE_UNKNOWN, data_format=pplcommon.DATAFORMAT_NDARRAY)
Copies tensor's data to host. If data_type
or data_format
is unknown(by setting them to DATATYPE_UNKNOWN
and DATAFORMAT_UNKNOWN
respectively), data type or format is unchanged. Then we can use numpy.array
to create an ndarray
instance using numpy_ndarray = numpy.array(tensor_data, copy=False)
.
dev_ctx = Tensor::GetDeviceContext()
Returns context of the underlying Device
.
addr = Tensor::GetBufferPtr()
Returns the underlying buffer ptr as an integer.
Tensor::SetBfferPtr(addr)
Sets the tensor buffer area to addr
which is an integer and can be casted to void*
. Note that addr
can be read/written by internal Device
class.
runtime_builder = onnx.RuntimeBuilderFactory.Create()
creates an onnx.RuntimeBuilder
instance.
status = runtime_builder.LoadModelFromFile(onnx_model_file)
loads an ONNX model from the specified file.
resources = RuntimeBuilderResources()
resources.engines = engines
status = runtime_builder.SetResources(resources)
where engines
is a list of Engine
instances that are used to preprocess and evaluate the model.
status = runtime_builder.Preprocess()
does some preparations before creating Runtime
instances.
runtime = runtime_builder.CreateRuntime()
Creates a Runtime
instance for inferencing.
input_count = Runtime::GetInputCount()
Returns the number of model inputs.
input_tensor = Runtime::GetInputTensor(idx)
Returns the input tensor in position idx
, which is in range [0, input_count).
ret_code = Runtime::Run()
Evaluates the model. ret_code
is an instance of RetCode
defined in pyppl.common
.
output_count = Runtime::GetOutputCount()
Returns the number of model outputs.
output_tensor = Runtime::GetOutputTensor(idx)
Returns the output tensor in position idx
, which is in range [0, output_count).
dev_count = Runtime::GetDeviceContextCount()
Returns the number of DeviceContext
used by this Runtime
instance.
dev_ctx = Runtime::GetDeviceContext(idx)
Returns the DeviceContext
at position idx
. Note that idx
should be less than GetDeviceContextCount()
.
tensor = Runtime::GetTensor(name)
if not tensor:
# do something
Returns the specified tensor with name
.
x86_options = x86.EngineOptions()
x86_engine = x86.EngineFactory.Create(x86_options)
Creates an Engine
instance running on x86-64 compatiable CPUs.
ret_code = x86_engine.Configure(option, <optional parameters>)
Configures x86_engine
. Refer to options.h of X86 for available options.
Refer to engine_options.h of CUDA for more details.
cuda_options = cuda.EngineOptions()
cuda_engine = cuda.EngineFactory.Create(cuda_options)
Creates an Engine
instance running on NVIDIA GPUs.
ret_code = cuda_engine.Configure(option, <optional parameters>)
Configures cuda_engine
. Refer to options.h of CUDA for available options(some options are not exported yet).
version related variables:
pyppl.nn.PPLNN_VERSION_MAJOR
pyppl.nn.PPLNN_VERSION_MINOR
pyppl.nn.PPLNN_VERSION_PATCH
pyppl.nn.PPLNN_COMMIT_STR
msg_str = pyppl.common.GetRetCodeStr(ret_code)
Returns a human-readable message of ret_code
.
pyppl.nn.SetLoggingLevel(log_level)
log_level = pyppl.nn.GetLoggingLevel()
Sets and gets the current logging level respectively. Logging levels are defined in pyppl.common
:
pyppl.common.LOG_LEVEL_DEBUG
pyppl.common.LOG_LEVEL_INFO
pyppl.common.LOG_LEVEL_WARNING
pyppl.common.LOG_LEVEL_ERROR
pyppl.common.LOG_LEVEL_FATAL