-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
finetune_moss.py
305 lines (221 loc) · 12.5 KB
/
finetune_moss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
"""Code for moss-sft"""
import os
import copy
import json
import torch
import logging
import argparse
import torch.distributed as dist
from tqdm import tqdm
from accelerate import Accelerator
from torch.utils.data import Dataset, DataLoader
from torch.utils.tensorboard import SummaryWriter
from transformers import set_seed, get_cosine_schedule_with_warmup
from transformers import AutoTokenizer, AutoModelForCausalLM
logger = logging.getLogger(__name__)
logging.basicConfig(level='INFO')
class SFTDataset(Dataset):
def __init__(self, data_dir, tokenizer, data_type='train'):
super().__init__()
self.data_dir = data_dir
self.tokenizer = tokenizer
self.data_type = data_type
self.data = []
# We do not calculate losses for the meta instruction or results returned by plugins
# The token spans with label -100, [(span_start, span_end), ...]
self.no_loss_spans = []
self.load_data()
def load_data(self):
logger.info("Loading data...")
data_file = os.path.join(self.data_dir, f'{self.data_type}_data')
no_loss_spans_file = os.path.join(self.data_dir, f'{self.data_type}_no_loss_spans')
if os.path.exists(data_file) and os.path.exists(no_loss_spans_file):
self.data = torch.load(data_file, map_location='cpu')
self.no_loss_spans = torch.load(no_loss_spans_file, map_location='cpu')
else:
with open(os.path.join(self.data_dir, f'{self.data_type}.jsonl'), 'r') as f:
for line in f:
sample = json.loads(line)
chat = sample['chat']
num_turns = int(sample['num_turns'])
meta_instruction = sample['meta_instruction']
instruction_ids = self.tokenizer.encode(meta_instruction)
assert isinstance(instruction_ids, list) and len(instruction_ids) > 0
input_ids = copy.deepcopy(instruction_ids)
no_loss_spans = [(0, len(instruction_ids))]
for i in range(num_turns):
cur_turn_ids = []
cur_no_loss_spans = []
cur_turn = chat[f'turn_{i+1}']
for key, value in cur_turn.items():
cur_ids = self.tokenizer.encode(value)
if key == 'Tool Responses':
# The format tokens (<|Results|>:...<eor>\n) should have losses.
cur_no_loss_spans.append((len(input_ids + cur_turn_ids) + 5, len(input_ids + cur_turn_ids + cur_ids) - 2))
assert isinstance(cur_ids, list) and len(cur_ids) > 0
cur_turn_ids.extend(cur_ids)
if len(input_ids + cur_turn_ids) > 2048:
break
input_ids.extend(cur_turn_ids)
no_loss_spans.extend(cur_no_loss_spans)
if len(input_ids) == len(instruction_ids):
continue
assert len(input_ids) > 0 and len(input_ids) <= 2048
self.data.append(input_ids)
self.no_loss_spans.append(no_loss_spans)
torch.save(self.data, data_file)
torch.save(self.no_loss_spans, no_loss_spans_file)
logger.info(f"Load data successfully, total {len(self.data)} training samples")
def __len__(self):
return len(self.data)
def __getitem__(self, index):
data = copy.deepcopy(self.data[index])
no_loss_spans = copy.deepcopy(self.no_loss_spans[index])
data = torch.tensor(data, dtype=torch.long)
attn_mask = torch.ones_like(data, dtype=torch.bool)
label = copy.deepcopy(data)
for no_loss_span in no_loss_spans:
label[no_loss_span[0] : no_loss_span[1]] = -100
return data, attn_mask, label
def collate_fn(self, batch):
batch_input_ids, batch_attn_mask, batch_labels = [], [], []
for input_ids, attn_mask, label in batch:
batch_input_ids.append(input_ids)
batch_attn_mask.append(attn_mask)
batch_labels.append(label)
batch_input_ids = torch.nn.utils.rnn.pad_sequence(batch_input_ids, batch_first=True, padding_value=self.tokenizer.eos_token_id)
batch_attn_mask = torch.nn.utils.rnn.pad_sequence(batch_attn_mask, batch_first=True, padding_value=0).to(torch.bool)
batch_labels = torch.nn.utils.rnn.pad_sequence(batch_labels, batch_first=True, padding_value=-100)
return batch_input_ids, batch_attn_mask, batch_labels
class SFTMetric:
def __init__(self, device):
self.n_step = 0
self.right = torch.Tensor([0]).to(device=device)
self.total = torch.Tensor([0]).to(device=device)
self.total_loss = torch.Tensor([0]).to(device=device)
self.world_size = dist.get_world_size()
def __call__(self, logits, labels, loss):
return self.update(logits, labels, loss)
def update(self, logits, labels, loss):
self.n_step += 1
with torch.no_grad():
shift_preds = logits[..., :-1, :].argmax(dim=-1)
shift_labels = labels[..., 1:]
self.right += (shift_preds == shift_labels).masked_fill(shift_labels.eq(-100), 0).sum().item()
self.total += (shift_labels != -100).sum().item()
self.total_loss += loss.item()
def get_metric(self, reset=True):
dist.all_reduce(self.right, op=torch.distributed.ReduceOp.SUM)
dist.all_reduce(self.total, op=torch.distributed.ReduceOp.SUM)
dist.all_reduce(self.total_loss, op=torch.distributed.ReduceOp.SUM)
acc = (self.right / self.total).item()
loss = self.total_loss.item() / (self.world_size * self.n_step)
if reset:
self.n_step = 0
self.right.fill_(0)
self.total.fill_(0)
self.total_loss.fill_(0)
return acc, loss
def train(args):
# deepspeed needs to know your gradient accumulation steps before hand, so don't forget to pass it
# Remember you still need to do gradient accumulation by yourself, just like you would have done without deepspeed
# deepspeed_plugin = DeepSpeedPlugin(zero_stage=3, gradient_accumulation_steps=1)
# deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu'] = 2
accelerator = Accelerator(mixed_precision='fp16')
if accelerator.is_main_process:
writer = SummaryWriter(args.log_dir)
writer.add_hparams(vars(args), {})
accelerator.state.deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu'] = args.train_bsz_per_gpu
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, trust_remote_code=True)
tokenizer.eos_token_id = 106068 # The eos_token_id of base model is 106028. We need map the eos token to <eom> (its token id is 106068)
model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path, trust_remote_code=True, use_cache=False)
model.transformer.gradient_checkpointing = True
assert model.transformer.gradient_checkpointing is True
# Optimizer
# Split weights in two groups, one with weight decay and the other not.
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
train_dataset = SFTDataset(args.data_dir, tokenizer)
train_dataloader = DataLoader(train_dataset, batch_size=args.train_bsz_per_gpu, shuffle=True, drop_last=True, collate_fn=train_dataset.collate_fn)
val_dataset = SFTDataset(args.data_dir, tokenizer, data_type='val')
val_dataloader = DataLoader(val_dataset, batch_size=args.eval_bsz_per_gpu, shuffle=False, drop_last=True, collate_fn=train_dataset.collate_fn)
num_training_steps = (len(train_dataloader) * args.n_epochs) // accelerator.gradient_accumulation_steps
lr_scheduler = get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=int(args.warmup_rates * num_training_steps), num_training_steps=num_training_steps)
model, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare(model, optimizer, train_dataloader, val_dataloader, lr_scheduler)
global_step = 0
metric = SFTMetric(device=torch.cuda.current_device())
model.train()
for epoch in range(args.n_epochs):
for batch_cnt, (input_ids, attention_mask, labels) in enumerate(train_dataloader):
if batch_cnt == 1 and epoch == 0:
torch.cuda.empty_cache()
optimizer.zero_grad()
output = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels, return_dict=True)
loss = output.loss
metric(output.logits, labels, loss)
acc, train_loss = metric.get_metric()
accelerator.backward(loss)
optimizer.step()
if not accelerator.optimizer_step_was_skipped:
lr_scheduler.step()
global_step += 1
if accelerator.is_main_process:
accelerator.print(f"epoch: {epoch}, cureent step: {batch_cnt}, total step: {len(train_dataloader)}, skip:{accelerator.optimizer_step_was_skipped}, loss:{round(train_loss, 3)}, acc:{round(acc, 3)}, length:{len(input_ids[0])}, lr:{lr_scheduler.get_last_lr()[0]}")
if global_step % 3 == 0 and accelerator.is_main_process:
writer.add_scalar('skip', int(accelerator.optimizer_step_was_skipped), global_step=global_step)
writer.add_scalar('loss', train_loss, global_step=global_step)
writer.add_scalar('acc', acc, global_step=global_step)
writer.add_scalar('lr', lr_scheduler.get_last_lr()[0], global_step=global_step)
if global_step % args.eval_step == 0 or global_step == 1:
torch.cuda.empty_cache()
model.eval()
val_metric = SFTMetric(torch.cuda.current_device())
for input_ids, attention_mask, labels in val_dataloader:
with torch.no_grad():
output = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels, return_dict=True)
val_metric(output.logits, labels, output.loss)
val_acc, val_loss = val_metric.get_metric()
if accelerator.is_local_main_process:
writer.add_scalar(f'val_loss', val_loss, global_step=global_step)
writer.add_scalar(f'val_acc', val_acc, global_step=global_step)
accelerator.print(f"Epoch: {epoch}, Step: {batch_cnt}, Val loss: {val_loss}, Val acc: {val_acc}")
model.train()
if global_step % args.save_step == 0:
model.save_checkpoint(args.output_dir, global_step)
if global_step % args.save_step != 0:
model.save_checkpoint(args.output_dir, global_step)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Args of sft')
# Model Args
parser.add_argument('--model_name_or_path', default='./ckpts/moss-16B-base', type=str)
# Data Args
parser.add_argument('--data_dir', default='./data/sft', type=str)
parser.add_argument('--output_dir', default='./ckpts/moss-16B-sft', type=str)
parser.add_argument('--log_dir', default='./train_logs/moss-16B-sft', type=str)
# Training Args
parser.add_argument('--max_seq_len', default=2048, type=int)
parser.add_argument('--train_bsz_per_gpu', default=4, type=int)
parser.add_argument('--eval_bsz_per_gpu', default=4, type=int)
parser.add_argument('--weight_decay', default=0.1, type=float)
parser.add_argument('--learning_rate', default=9e-6, type=float)
parser.add_argument('--warmup_rates', default=0.05, type=int)
parser.add_argument('--n_epochs', default=2, type=int)
# Other Args
parser.add_argument('--save_step', default=3000, type=int)
parser.add_argument('--eval_step', default=5, type=int)
parser.add_argument('--seed', default=42, type=int)
args = parser.parse_args()
os.makedirs(args.log_dir, exist_ok=True)
os.makedirs(args.output_dir, exist_ok=True)
set_seed(args.seed)
train(args)