From 3ffcb65caa7ba515a867ec98110f26921e716261 Mon Sep 17 00:00:00 2001 From: Gregory Petrochenkov Date: Fri, 11 Aug 2023 17:44:11 -0400 Subject: [PATCH 1/3] Add multi-categorical tutorial --- README.MD | 8 +- docs/compile_readme_and_arrange_docs.py | 5 + docs/sphinx/PYPI_README.MD | 8 +- docs/sphinx/SPHINX_README.MD | 8 +- docs/sphinx/SphinxMulticatTutorial.ipynb | 1198 +++++++++++++++++ docs/sphinx/SphinxTutorial.ipynb | 4 +- docs/sphinx/index.rst | 3 +- docs/sphinx/tutorials.rst | 10 + .../Multi-Class Categorical Statistics.ipynb | 1198 +++++++++++++++++ notebooks/Tutorial.ipynb | 4 +- notebooks/benchmark_map_multi_categorical.tif | Bin 0 -> 3920033 bytes notebooks/candidate_map_multi_categorical.tif | Bin 0 -> 433424 bytes ...didate_raw_elevation_multi_categorical.tif | Bin 0 -> 1732516 bytes 13 files changed, 2428 insertions(+), 18 deletions(-) create mode 100644 docs/sphinx/SphinxMulticatTutorial.ipynb create mode 100644 docs/sphinx/tutorials.rst create mode 100644 notebooks/Multi-Class Categorical Statistics.ipynb create mode 100644 notebooks/benchmark_map_multi_categorical.tif create mode 100644 notebooks/candidate_map_multi_categorical.tif create mode 100644 notebooks/candidate_raw_elevation_multi_categorical.tif diff --git a/README.MD b/README.MD index 37b84f51..f596015b 100644 --- a/README.MD +++ b/README.MD @@ -19,10 +19,10 @@ See the full documentation [here](noaa-owp.github.io/gval/). WARNING: -- Our current public API and output formats are likely to change in - the future. -- Software is provided "AS-IS" without any guarantees. Please QA/QC - your metrics carefully until this project matures. +- Our current public API and output formats are likely to change in the + future. +- Software is provided "AS-IS" without any guarantees. Please QA/QC your + metrics carefully until this project matures. # Installation diff --git a/docs/compile_readme_and_arrange_docs.py b/docs/compile_readme_and_arrange_docs.py index 332572ad..12e56da5 100755 --- a/docs/compile_readme_and_arrange_docs.py +++ b/docs/compile_readme_and_arrange_docs.py @@ -101,6 +101,11 @@ def compile_readme(): f"{abs_path}/sphinx/SphinxContinuousTutorial.ipynb", ) + shutil.copy( + f"{abs_path}/../notebooks/Multi-Class Categorical Statistics.ipynb", + f"{abs_path}/sphinx/SphinxMulticatTutorial.ipynb", + ) + shutil.copy( f"{abs_path}/../CONTRIBUTING.MD", f"{abs_path}/sphinx/SPHINX_CONTRIBUTING.MD", diff --git a/docs/sphinx/PYPI_README.MD b/docs/sphinx/PYPI_README.MD index ec458e5c..076c4a36 100644 --- a/docs/sphinx/PYPI_README.MD +++ b/docs/sphinx/PYPI_README.MD @@ -19,10 +19,10 @@ See the full documentation [here](noaa-owp.github.io/gval/). WARNING: -- Our current public API and output formats are likely to change in - the future. -- Software is provided "AS-IS" without any guarantees. Please QA/QC - your metrics carefully until this project matures. +- Our current public API and output formats are likely to change in the + future. +- Software is provided "AS-IS" without any guarantees. Please QA/QC your + metrics carefully until this project matures. # Installation diff --git a/docs/sphinx/SPHINX_README.MD b/docs/sphinx/SPHINX_README.MD index 999fbb8e..77d48eb8 100644 --- a/docs/sphinx/SPHINX_README.MD +++ b/docs/sphinx/SPHINX_README.MD @@ -17,10 +17,10 @@ continuous, and probabilistic. WARNING: -- Our current public API and output formats are likely to change in - the future. -- Software is provided "AS-IS" without any guarantees. Please QA/QC - your metrics carefully until this project matures. +- Our current public API and output formats are likely to change in the + future. +- Software is provided "AS-IS" without any guarantees. Please QA/QC your + metrics carefully until this project matures. # Installation diff --git a/docs/sphinx/SphinxMulticatTutorial.ipynb b/docs/sphinx/SphinxMulticatTutorial.ipynb new file mode 100644 index 00000000..5258b1a9 --- /dev/null +++ b/docs/sphinx/SphinxMulticatTutorial.ipynb @@ -0,0 +1,1198 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "05d93248", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "id": "4744f004", + "metadata": {}, + "source": [ + "# Multi-Class Categorical Comparisons" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "275a7087", + "metadata": { + "tags": [ + "hide-output" + ] + }, + "outputs": [], + "source": [ + "import rioxarray as rxr\n", + "import gval\n", + "import numpy as np\n", + "import pandas as pd\n", + "import xarray as xr\n", + "from xrspatial.zonal import stats\n", + "\n", + "pd.set_option('display.max_columns', None)" + ] + }, + { + "cell_type": "markdown", + "id": "34069943", + "metadata": {}, + "source": [ + "## Load Datasets" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "38473c06", + "metadata": {}, + "outputs": [], + "source": [ + "candidate = rxr.open_rasterio(f'./candidate_map_multi_categorical.tif', \n", + " mask_and_scale=True)\n", + "benchmark = rxr.open_rasterio(f'./benchmark_map_multi_categorical.tif',\n", + " mask_and_scale=True)\n", + "depth_raster = rxr.open_rasterio(f'./candidate_raw_elevation_multi_categorical.tif',\n", + " mask_and_scale=True)" + ] + }, + { + "cell_type": "markdown", + "id": "fa522035", + "metadata": {}, + "source": [ + "## Homogenize Datasets and Make Agreement Map" + ] + }, + { + "cell_type": "markdown", + "id": "e3e5ca15", + "metadata": {}, + "source": [ + "Although one can call `candidate.gval.categorical_compare` to run the entire workflow, in this case homogenization and creation of an agreement map will be done separately to show more options for multi-class comparisons." + ] + }, + { + "cell_type": "markdown", + "id": "2ac66a26", + "metadata": {}, + "source": [ + "#### Homogenize" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "29375e17", + "metadata": {}, + "outputs": [], + "source": [ + "candidate_r, benchmark_r = candidate.sel(band=1).gval.homogenize(benchmark.sel(band=1))\n", + "depth_raster_r, arb = depth_raster.sel(band=1).gval.homogenize(benchmark_r)\n", + "del arb" + ] + }, + { + "cell_type": "markdown", + "id": "4e9e1be1", + "metadata": {}, + "source": [ + "#### Agreement Map" + ] + }, + { + "cell_type": "markdown", + "id": "e2851c9b", + "metadata": {}, + "source": [ + "The following makes a pairing dictionary that represents the candidate class and benchmark class respectively. e.g. 12 represents a class 1 for the candidate and a class 2 for the benchmark." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "de894568", + "metadata": {}, + "outputs": [], + "source": [ + "classes = np.array([1, 2, 3, 4, 5])\n", + "class_mesh = np.array(np.meshgrid(classes, classes)).T.reshape(-1, 2)\n", + "pairing_dictionary = {(k, v): int(f'{k}{v}') for k, v in class_mesh}" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "e248d2cc", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1, 1): 11\n", + "(1, 2): 12\n", + "(1, 3): 13\n", + "(1, 4): 14\n", + "(1, 5): 15\n", + "(2, 1): 21\n" + ] + } + ], + "source": [ + "# Showing the first 6 entries\n", + "print('\\n'.join([f'{k}: {v}' for k,v in pairing_dictionary.items()][:6]))" + ] + }, + { + "cell_type": "markdown", + "id": "44328dcf", + "metadata": {}, + "source": [ + "The benchmark map has an extra class 0 which is very similar to nodata so it will not be included in `allow_benchmark_values` in the following methods." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "1dc16dd7", + "metadata": {}, + "outputs": [], + "source": [ + "agreement_map, crosstab = (candidate_r.gval.compute_agreement_map(benchmark_r, \n", + " nodata=255,\n", + " encode_nodata=True,\n", + " comparison_function='pairing_dict',\n", + " pairing_dict=pairing_dictionary,\n", + " allow_candidate_values=classes,\n", + " allow_benchmark_values=classes),\n", + " candidate_r.gval.compute_crosstab(benchmark_r,\n", + " comparison_function='pairing_dict',\n", + " pairing_dict=pairing_dictionary,\n", + " allow_candidate_values=classes,\n", + " allow_benchmark_values=classes))" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "55606165", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAIvCAYAAAD9IEb7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3wUZf7H37O76Y2WhlQFA1ggIkhAkSYJFhSx4x0BpAYQsAB2IIIIKop0MfF3inoeoMhpkGLAAhaEU0+MiDQhCQRCQnp2d35/bGYz25JNocT7vl+vJbszzzzzzOyG/eRbFVVVVQRBEARBEIQGi+FCL0AQBEEQBEGoGyLoBEEQBEEQGjgi6ARBEARBEBo4IugEQRAEQRAaOCLoBEEQBEEQGjgi6ARBEARBEBo4IugEQRAEQRAaOCLoBEEQBEEQGjgi6ARBEARBEBo4IuiEi45vv/0WRVFQFIXZs2df6OUI9UhiYqL9vR07dqzHcaWlpTRp0sQ+Nj09/fwtsoaMHDmSoKAgTpw44bBdW3tVj8TERIdj2rRp4zImNDSUbt26sXDhQsrKylzOX1payiuvvEJcXBxhYWH4+voSHR3Ntddey6RJk/j3v//tce2nT59m7ty59O7dm4iICHx8fAgLC6NLly6MHz+ebdu21fn+nDp1ioiICBRFoV27di77rVYrX3zxBY8//jhdu3YlJCQEPz8/LrvsMsaNG8fBgwerPceHH35IQkIC4eHh+Pv707JlS4YMGcKXX37pdvyuXbu4/fbbadasGf7+/lx++eU8+eSTFBYWuoxVVZXY2FiuuuoqrFZrzW+AIJwvVEG4yJg4caIKqIB6+eWXX+jlCE48++yzKqCmpKTU+Njhw4fb39vGjRurpaWlbsetXbvWPg5QP//887ot+hzx448/qgaDQX3sscdc9mlrHz58uMfHqlWrHI5p3bq1CqhDhw5Vhw8frv79739Xe/furfr4+KiA2rt3b4d7lpubq15zzTUqoPr4+Ki9e/dW77vvPvXWW29Vo6OjVUCNiYlxu/Z169apoaGhKqAGBwer/fv3V++//3518ODBavv27e3rv/nmm+t0j4YPH64qiqIC6mWXXeayf//+/fZzRUVFqYMHD1aHDBmiXnLJJSqghoSEqF988YXbuS0Wizpy5EgVUIOCgtT4+Hj13nvvVePi4lRfX191zpw5Lse8/fbbqtFoVAH1mmuuUYcMGaK2atVKBdSrr75azcvLc3uvAHX16tV1uheCcC4RQSdcVJSVlanNmjWz/+cOqLt27brQyxJ01Iegi42NVQF1/fr1bscNGTJENRqNaufOnS9qQTd48GDVx8dHzc7OdtmniZSaoAm6gwcPOmzfs2ePGhYWpgLq4sWL7dsnTZqkAmqXLl3UP//802W+b775Rp01a5bL9o8//lhVFEU1mUzqiy++qJaUlLiM2bdvnzp8+HC1ffv2NboGPVu2bFEBdcyYMR4F3e+//67edNNN6tatW1Wr1WrfXlJSoiYmJqqA2qpVK7WsrMzlWO2zeNttt6mnTp1y2Hf69Gn1t99+c9h29OhR1d/f30WclZaWqvfff799rc5YrVa1Q4cO6iWXXKKWl5fX+D4IwvlABJ1wUbFhwwYVUHv16qXOnj1bBdSkpKQLvSxBR30IuhdffFE1GAzqXXfd5TImNzdX9fPzUwcOHKjGx8dftILuyJEjqsFgUG+99Va3++tT0Kmqqs6aNUsF1P79+9u3NW/eXAXUzZs3e32Os2fP2v9o+sc//lHt+O+//97rufUUFRWpl112mdqpUyf1t99+8yjoqptDE7Lp6ekO+44ePar6+vqqrVq1UouKiryab86cOSqg3nTTTS77Tp06pYaEhKgmk0nNycnxeOzatWtrdA2CcL6QGDrhouLtt98G4MEHH+TBBx8E4P3336e8vNzjMT/++CO33XYbjRo1IiQkhN69e7N582bS09PdxilpcVzp6els2rSJvn370qhRIxRF4cyZM/ZxaWlp3HLLLYSHh+Pn58ell17KtGnTOHXqlNt1qKrKu+++S79+/WjcuDH+/v507NiR5557jqKiIpfxffr0QVEUDh06xPvvv0+3bt0IDAzkkksu4fHHH7fHSx04cID777+fiIgIAgMD6du3Lz/++KPH+1GTdevvxY4dO+jXrx8hISGEhoZyyy238MsvvziMb9OmDbNmzQJgxIgRDrFeNYlzi46Opl+/fmzcuJG8vDyHff/85z8pLS21v//u2Lt3rz3mSn+dEyZM4Pjx4y7jDx06hKIo9OnTh/z8fB5++GFatmxpf49eeeWVGsdHvfnmm1itVu6///4aHVdbYmNjATh69Kh928mTJwEIDw/3ep7U1FRycnLo2bNnlfdYo2vXrjVcqY1Zs2bxxx9/sHz5cnx8fGo1R0BAAJdffjmAy/v61ltvUVZWxkMPPURAQIBX8+3evRuw/e4506RJE66++mrMZrPbuMMHHngAgFWrVtXkEgThvCGCTrhoyMvLY8OGDfj6+nLPPffQtm1bevbsSU5ODmlpaW6P2blzJ3FxcWzcuJHWrVtz6623UlJSQkJCAuvWravyfGvWrGHQoEEUFhYyaNAgunXrhqIoAMyYMYNBgwaxZcsWYmJiGDx4MCaTiVdeeYXrrruO7Oxsh7msVivDhg3jgQce4LvvvqNLly7cfPPNFBYWMmvWLPr27UtxcbHbdbz66qs8+OCDNGrUiISEBMrKyliwYAGjR49m//799OjRg71799KvXz/atWtHeno6ffv2dVlDbdat8fHHH9OvXz+Kioq4+eabiY6O5pNPPqF3795kZWXZx91111107twZgF69ejF8+HD7Iyoqqsr77cywYcMoKSlh7dq1DtvfeecdAgMDGTJkiMdjX3jhBV555RUArr/+em6++WZUVWXZsmVce+21bkUd2BII+vXrx//93//RvXt3brrpJg4fPsy0adMYOXJkjda/ceNGwL04OBecPXsWAD8/P/u2li1bArB8+XJUVfVqnk8//RSgTkL0ueeec/vHksaPP/7ISy+9xIgRI7jhhhtqfR6r1crhw4cBXD5fWsJGz549yczMZOHChYwbN47p06eTlpbm9n5oSQ+NGzd2e76mTZsC8J///Mdl36WXXkrLli3Ztm2bx99lQbigXFgDoSBU8sYbb6iAevvtt9u3LV26VAXUu+++22W8xWJRL7/8chVQn3/+ebdzURGUrkcfmP/ee++5zPvPf/5TBdQrr7xS3b9/v3271WpVn3nmGRVQ7733XodjXnzxRRVQ+/Tpo2ZmZtq3l5aWqqNGjVIBdfr06Q7H3HjjjfaA9O+++86+PTMzU42MjFQVRVE7duyozpgxwx5bZLVa1b/97W8qoD7zzDN1Xrd2LwwGg0M8m9lsVocOHaoC6tNPP+1wTH24XP/xj3+o+fn5akBAgNq3b1/7/sOHD6uKoqj333+/qqqqR5frtm3b1KysLIdtFovF7pYcMWKEw76DBw/a3/Orr75aPXnypH3f77//bnddeorpc+bs2bOq0WhUmzdv7nGMdr6aUJXL9b777lMBddiwYfZt8+bNs5+nQ4cO6owZM9T169erR48e9XgOLdngyy+/rNHa9GifAeffLVW1vQ/dunVTmzVrZnddave/pi7Xt99+WwXU8PBwlzg/Lcb2tddes7tl9Y8+ffqoubm5Dsc88MADbn8XNa666ip7Uoo7tN+Jbdu21eg6BOF8IIJOuGjQBM4HH3xg35aTk6P6+Pio/v7+6pkzZxzGb968WQXU9u3bqxaLxWW+Xr16VSnobrnlFrfr0ALxf/rpJ5d9VqtV7dKli2o0Gu2ioLy8XG3WrJkaFBTkIjJU1RYHFBUVpTZu3Nhhndr1PvXUUy7HTJ06VQXUSy+91CUY/D//+Y8KqDfeeGOd1q2/F3qRoPH999+7PU99CTpVVdV77rlHNRgM9oD+uXPnqoD673//W1VVz4KuKi655BK1adOmDtv0gu6zzz5zOWbZsmUu8WlV8c0336iAgxh1xllguHs4C0hnQWe1WtVDhw6p06dPVwFVURR1x44d9vEWi0V9/PHH7Vmw+scVV1yhLlu2zOV3Q0sK+PXXX13WfPr0abfZuPv27XMYt3jxYjUmJkadMWOGyxyLFi1y+XzURtAdOXLEHuu3bNkyl/1+fn4qoJpMJvWGG25Qf/jhBzU/P1/dsmWL2rZtWxVwidFcvny5PcnCOcP6u+++s9+7gQMHul3Tk08+qQLqyy+/7PV1CML5wlQTa54gnCuOHDnCjh07aNSoEbfddpt9e9OmTbn55pv56KOP+OCDD3jooYfs+7766isAhg4disHgGj1w77332se4Y/DgwS7bTpw4wX/+8x/at2/PlVde6bJfURR69erF3r172b17N/Hx8fzwww/k5ORw0003ERkZ6XJMQEAAXbt25d///jf79+8nJibGYf/AgQNdjrn00ksBmzvPOf5I25eZmVmndVe3Bi12SX+e+ubBBx/kn//8J2vWrOGxxx7jnXfeISIiwu16nDl16hQbNmzg559/5syZM1gsFgDKy8s5deoUp0+fpkmTJg7HNGnShJtuusllrvvvv5/x48fz9ddfY7Va3X6e9Gg15zy57vQMHz7c475WrVq53d62bVuXbb6+vixatMjBhWkwGJg/fz4PP/ww//rXv9ixYwffffcdR44c4b///S/jx49n06ZNrF27ttprAptL8q233nLZnpiYSIcOHeyvJ06cyMSJE13GHTlyhKeeeoobb7zRozvWGwoLC7nzzjvJycnhjjvuYNy4cS5jtJjHxo0b8+mnnxIUFARA//792bBhA1dffTX/+te/+O233+yf5WHDhpGcnMyRI0cYPHgwCxcupHXr1uzcuZPRo0djMpkwm80e75X2edJiFwXhYkIEnXBR8M4776CqKnfddZdDjBDYvvQ/+ugj3n77bQdBpwkNLY7IGU9fllXtP3ToEAD79++3x9N5Iicnx+GYzZs3e3WMs6C75JJLXMYFBwdXu6+0tLRO69bTokULl20hISEu56lvEhISaNq0Ke+88w4DBgzgv//9L5MmTcJkqvq/pnfffZcxY8ZQUFDgcczZs2ddBF3r1q3djg0LC6NRo0acOXOG3NxceyyVJ7REDu0eVUVqamq1Y5wZOnQowcHBKIpCcHAwHTp0YMiQITRv3tzt+ObNmzN58mQmT54MwL59+1i4cCFvvvkmH374Ie+++y7Dhg0DbH8kHTt2zO1nsUWLFg6xZwkJCWzatMnrdSclJVFWVsby5ctresl2ysvLufvuu/n++++5/vrrWbNmjdtxwcHB5Obmcvfdd9vFnMaVV15Jt27d+Pbbb9mxY4dd0AUHB7Nx40ZuvfVWNm3a5HBt7dq145FHHmH+/PkehXpoaCiAQ/KUIFwsiKATLgr+8Y9/AJCens7111/vsE/L9tyxYweHDx/2+KVcU/z9/V22aX/1R0VFuVixnNHWoR3Trl07evXqVeUx7oRCVZYTb6wq+jXUZN21OU994+Pjwz333MOyZct44oknAKrNvDx8+LDd+rNo0SJuueUWLrnkEnumY8+ePdm5c6fXSQK1ISwsDKhMVKhvFi5cSJs2bWp9fMeOHVm9ejW5ubmsX7+ef//733ZB17lzZ44dO8aePXuq/bzWlI0bN9KoUSMXi1pJSQkAx44dsyeRvPfeey6JDlarleHDh/Ppp5/SpUsXPv74Y48ZrK1btyY3N9fjfWrTpg3ffvutSwePzp07k5GRwT//+U9++OEHLBYL11xzDffddx/z5s0D4IorrnA7pybkGzVq5PEeCMKFQgSdcMHZvXs3+/btA+D333/n999/dztOVVXeeecd+xd/dHQ04FjGQY+n7VWhWaqaNWvmtWVFO6ZDhw61ssbUB7VZ98XCgw8+yLJly0hLS+Pyyy+ne/fuVY7/5JNPKCsr49FHH+Xhhx922f/HH394PPbIkSNut+fn53PmzBkCAgK8+rKOiIgAbK2zLmb69evH+vXrHayygwYN4pNPPuG9995z6zatK2fOnGH79u1u95WUlNj3aSJPz6RJk3j33Xe5/PLL2bRpU5XvRWxsLHv37iU3N9ftfu290SzaegIDA0lMTHRxC3/99deA58xl7Vw1KRMjCOcLKVsiXHC02nOPPvooqi1Rx+Wh1TjTxgJ268L69evdWmP++c9/1ngtLVq0oEOHDvzyyy/89ttvXh3TrVs3wsLC2L59+wX7gq/NumuLr68vAGazuV7m69mzJ507d6Zp06ZelQ7RvlTduYl37NjhsTQL2OLutm7d6rL9vffeAyAuLg6j0VjtGq644gpMJhMZGRnVjj2XVGeF1P440rvuExMTadq0KV999ZXD71N9rcfdQ+vHetlll9m3OVvWnnrqKZYuXUqrVq3YvHmzXTR7QouBdSceCwoK+OGHH4DK+n3V8eOPP7J9+3auuOIKj5ZL7Q/PLl26eDWnIJxPRNAJFxSLxcK7774LVF0X64YbbuCSSy5h37599uKg/fr1o3379mRkZPDiiy86jE9NTeWLL76o1ZqefvpprFYrQ4cOZe/evS77T5065VBc1M/Pj8cff5yzZ89y5513urUQHTt2zO5WPlfUdN21RYvjqk8xs3fvXnJycpg+fXq1Y7V4qLffftuhmfqxY8fcBs878+ijjzoUWT548CCzZ88GbDFg3hAUFERsbCyZmZkcO3bMq2POBT179iQlJcVtU/mNGzfaY9nuuusu+/bg4GBSUlJQFIURI0awYMECt9ayP//806OV+/XXX6dDhw7MnDmzXq7jlVde4fnnnycqKootW7ZUG/8KcNttt9GxY0e+/vprli5dat9usViYNm0ap0+f5sorr3QJ4di7d6/LHyP79u1j6NChqKrK4sWLPZ7z22+/xdfXlx49etTwCgXh3CMuV+GC8tlnn5Gdnc3ll1/ONddc43GcwWDg3nvv5eWXX+Yf//gHXbt2xWAw8NZbbzFgwABmzJjBu+++S6dOnThw4ADfffcdSUlJLFmyxG5R8pYHHniA//73v8ydO5euXbvSpUsXu2XhwIED/PjjjwQHBzN69Gj7MTNmzODXX3/lH//4Bx07diQ2Npa2bdtSVlZGRkYGv/zyC1dffTV/+9vfan2vzsW6a8PAgQPx9/fnlVde4eeff6Z58+YoisJjjz3mEmR/Lhg8eDBXXHEF33//vT1usaSkhM8//5wuXbrQs2dPu+vMmR49elBWVka7du3o168f5eXlbN26laKiIh588EHuvPNOr9dxyy238N1335Genm6PT3NHVdmerVq1sovJ2rBv3z5GjhzJhAkTuOaaa2jVqhXFxcVkZGTw66+/AjBu3DhuueUWh+Nuu+021q5dS2JiIo8//jizZ8/muuuuIyIigrNnz3L06FF++uknrFYr1113He3bt3c4Picnh4yMjHrJgN67dy+PPPIIYMvuff75592Oe+ihhxzEmdFoZM2aNdx4440kJSWxcuVK2rVrx549e/jjjz9o2rQpa9ascUkSmjJlCr/88gudO3cmPDyco0ePsnPnThRFYcWKFfTt29ft+Q8cOMCff/5JQkKC150pBOG8ch5LpAiCC1pD7GeffbbasVqdqIiICIcG2Xv37lVvvfVWNTQ0VA0KClJ79eqlfvrpp/aipM61srRaaNXVNtu+fbt69913q82bN1d9fHzUpk2bqldffbU6ceJEdfv27W6P+eijj9RbbrlFjYiIUH18fNSIiAi1a9eu6uOPP67u3r3bYaxWh85dEdmUlJQq7wugtm7dus7rru5eeDrPpk2b1F69eqnBwcH22l3e1IpzrkNXHZ7q0J0+fVodP3682qZNG9XPz0+99NJL1enTp6uFhYVu76tWB+3GG29Uz5w5o06YMEFt3ry56uvrq8bExKgLFy5UzWazV2vSOHLkiGo0GtWbb77Z7X6ovg5d586dHY6pqrCwO/7zn/+o8+fPVwcOHKhedtllamBgoOrn56e2atVKveuuu9RPPvmkyuNPnTqlPv/882qvXr3UZs2aqSaTSQ0NDVWvvPJK9aGHHlK3bNliL2qtp6rCwu6oqg7d559/7tW98lT38I8//lD//ve/q1FRUaqPj4/aokUL9aGHHlIPHTrkdvyqVavUG2+8UQ0PD1d9fHzU5s2bqw888IC6Z8+eKq9B6y0tvVyFixVFVc9hKpggXEDGjRvHihUreO+997j33nsv9HKEC8ihQ4do27YtN954Y416zlbHkCFD2LhxI0ePHq1x6zOh4aCqKh07dqSgoIBDhw5VW1ZHEC4EEkMnNGhOnz5tr8Gm5/333+eNN96gUaNG3Hrrred/YcL/BHPmzMFqtbJw4cILvRThHPLhhx+SkZHB7NmzRcwJFy1ioRMaNLt27SIuLo6rr77a3kFh3759ZGRk2GNs7rnnngu8SuFCc64sdAAjR47k/fff5+DBg9VmZgoND1VVueaaazCbzfznP/+5YDUbBaE6RNAJDZoTJ04we/Zstm3bxvHjxyksLKRZs2b07NmTRx99lLi4uAu9ROEi4FwKOkEQhIsBEXSCIAiCIAgNHLEdC4IgCIIgNHBE0AmCIAiCIDRwRNAJgiAIgiA0cETQCYIgCIIgNHBE0AmCIAiCIDRwRNAJgiAIgiA0cETQCYIgCIIgNHBE0AmCIAiCIDRwRNAJgiAIgiA0cETQCYIgCIIgNHBE0AmCIAiCIDRwRNAJgiAIgiA0cETQCYIgCIIgNHBE0AmCIAiCIDRwRNAJgiAIgiA0cETQCYIgCIIgNHBE0AmCIAiCIDRwRNAJgiAIgiA0cETQCYIgCIIgNHBE0AmCIAiCIDRwRNAJgiAIgiA0cETQCYIgCIIgNHBE0AmCIAiCIDRwRNAJgiAIgiA0cETQCYIgCIIgNHBE0AmCIAiCIDRwRNAJgiAIgiA0cETQCYIgCIIgNHBE0AmCIAiCIDRwRNAJgiAIgiA0cETQCYIgCIIgNHBE0AmCIAiCIDRwRNAJgiAIgiA0cETQCYIgCIIgNHBE0AmCIAiCIDRwRNAJgtAgee6551AU5UIvQxAE4aJABJ0gCFWSmpqKoigOj4iICPr27cunn356oZdXLRkZGUydOpWePXvi7++PoigcOnToQi9LEAShXjFd6AUIgtAwmD17Nm3btkVVVbKzs0lNTeXmm2/m448/5tZbb73Qy/PIzp07ee211+jUqRMdO3Zk7969F3pJgiAI9Y4IOkEQvGLQoEFce+219tejRo0iMjKSd99996IWdIMHD+bMmTOEhISwcOFCEXSCIPwlEZerIAi1olGjRgQEBGAyOf5duHDhQnr27EnTpk0JCAiga9eu/Otf/3I5XlEUJk6cyIcffsiVV16Jn58fV1xxBWlpaS5jv/zyS7p164a/vz+XXXYZK1as8HqdTZo0ISQkpOYXKAiC0IAQC50gCF6Rl5dHTk4Oqqpy4sQJFi9eTEFBAQ8++KDDuFdffZXBgwczbNgwysrKeO+997j77rvZuHEjt9xyi8PYL7/8knXr1jFhwgRCQkJ47bXXGDp0KEeOHKFp06YA/PTTTwwcOJDw8HCee+45zGYzzz77LJGRkeft2gVBEC52RNAJguAVAwYMcHjt5+fHm2++yU033eSw/bfffiMgIMD+euLEiVxzzTW8/PLLLoJu3759/PLLL1x22WUA9O3bl86dO/Puu+8yceJEAJ555hlUVeWLL76gVatWAAwdOpSrrrqq3q9REAShoSKCThAEr1iyZAmXX345ANnZ2bz99ts89NBDhISEcOedd9rH6cVcbm4uFouFG264gXfffddlzgEDBtjFHMDVV19NaGgof/zxBwAWi4VNmzZxxx132MUcQMeOHYmPj+eTTz6p9+sUBEFoiIigEwTBK7p37+6QFHH//fcTGxvLxIkTufXWW/H19QVg48aNJCcns3fvXkpLS+3j3dWM04s0jcaNG5ObmwvAyZMnKS4upn379i7jYmJiRNAJgiBUIEkRgiDUCoPBQN++fcnMzGT//v0AfPHFFwwePBh/f3+WLl3KJ598wubNm3nggQdQVdVlDqPR6HZud2MFQRAEz4iFThCEWmM2mwEoKCgAYO3atfj7+7Np0yb8/Pzs41JSUmo1f3h4OAEBAXbBqCcjI6NWcwqCIPwVEQudIAi1ory8nM8++wxfX186duwI2CxuiqJgsVjs4w4dOsSHH35Yq3MYjUbi4+P58MMPOXLkiH37vn372LRpU53WLwiC8FdCLHSCIHjFp59+yq+//grAiRMnWLNmDfv372fGjBmEhoYCcMstt/Dyyy+TkJDAAw88wIkTJ1iyZAnt2rXjxx9/rNV5Z82aRVpaGjfccAMTJkzAbDazePFirrjiCq/mzMvLY/HixQB89dVXALz++us0atSIRo0a2bNpBUEQGjIi6ARB8IpnnnnG/tzf358OHTqwbNkyxo4da9/er18/Vq9ezQsvvMCUKVNo27Yt8+fP59ChQ7UWdFdffTWbNm1i2rRpPPPMM7Ro0YJZs2aRmZnp1Zy5ubk8/fTTDtteeuklAFq3bi2CThCEvwSKKtHHgiAIgiAIDRqJoRMEQRAEQWjgiKATBEEQBEFo4IigEwRBEARBaOCIoBMEQRAEQWjgiKATBEEQBEFo4IigEwRBEARBaOBIHbpaYrVaOX78OCEhIW6bjguCIAjCxYKqqpw9e5bmzZtjMIgt56+ICLpacvz4cVq2bHmhlyEIgiAIXnP06FFatGhxoZchnANE0NWSkJAQAN5beA25bRYSEmChZdMSrCqcOutDQamJkjKFMosBqwogVrwLjZ/RyuXRRYQGmLECoNXU1t4b1Wlr5XtWOUK1v1ZQUFExVOx1Z6lVVbACZ4uNHMv1I6/IhEU+D4IgnGdKigqZMeIW+3eX8NdDBF0t0b68rZ3mER3sx/yZG+373kzti8WqUmo2kF9s4EiOPyXlBuRL/MKhoBLVqIyIZipGg7VCZFe8I05vi615iibS9HNU7leUSsGnOA2sHAcl5QYyz/iSne9LqargGyCfAUEQLhwSIvTXRQRdHSkqMxLpbwYgJbUvACMSPycltR9GXwt+PlbKzDZRZ5UmaxcIleAAC5c0KcVksNqscxX/p6kqNpOcUrnBLucUUFHQ/tVT1X+JasU/+cVG/jjpT36RSWfXEwRBEIT654JGRs6bN49u3boREhJCREQEd9xxBxkZGQ5jDhw4wJAhQwgPDyc0NJR77rmH7OzsKudt06YNiqK4PJKSkgA4ffo0kyZNIiYmhoCAAFq1asXkyZPJy8ur8TUYDWC2KKSk9mVE4ueMSPwcgI07l9nccopKk5By/H2tVDrzhPOHio9R5ZLGpQT6WvSbXd8OVbW7VO1jdGLO7opVbA5X0Ek01fG4glIDf5zwJ6/IVDGDiDlBEATh3HFBBd327dtJSkpi165dbN68mfLycgYOHEhhYSEAhYWFDBw4EEVR2LZtG1999RVlZWXcdtttWK1Wj/N+9913ZGZm2h+bN28G4O677wZsCQ3Hjx9n4cKF/Pzzz6SmppKWlsaoUaNqfA1Nj86k3GK7jalv9QNg6NgM1q6IYUTiNlTAz2Ql2M9SxSzCuaRRkJmmweVOkkp1fK5qNjSlwpVqk3aqioMgq0qSKxUDissM/HEigLxiEyLkBEEQhPOBoqrqRWM2OnnyJBEREWzfvp3evXvz2WefMWjQIHJzcwkNDQUgLy+Pxo0b89lnnzFgwACv5p0yZQobN25k//79HuMHPvjgAx588EEKCwsxmar3ROfn5xMWFka366YxY/5ddGxeiNEAicO3uYxdmdKfzFw/Dp30r9AN8iV//lAJ9LPSIbqQEH8LKrYkBX2cHKh2l6sWF6eqVtt+RW+Js5n1FCrTJew/FQVVheJyA/uzAsgtFDEnCMLFQ3FRAVPu7UNeXp79+/R8oKoqZrMZi0WMGrXBx8cHo9Ho1diLKoZOc3k2adIEgNLSUhRFwc/Pzz7G398fg8HAl19+6ZWgKysr4+2332batGlVBoNqH3JPYq60tJTS0lL76/z8fPvzolIjo0a4CjmNMSO2AvDI87eRW+CD1UFMCOcWheJSA5ln/AiIKMZo0MfDVcTLuflcKIpSGQynk29abJ1mjbPPVJEAcfCEP2dEzAmCIFBWVkZmZiZFRUUXeikNFkVRaNGiBcHBwdWOvWgEndVqZcqUKfTq1Ysrr7wSgB49ehAUFMT06dOZO3cuqqoyY8YMLBYLmZmZXs374YcfcubMGRITEz2OycnJYc6cOYwZM8bjmHnz5jFr1iy3+5bO/pDkVwbx1NRPq1zLS09+zNMLbiHrjC/lFpAv/fODCuSc9aFJcDlNgsuptMipKKqWtap3tFagKE4u1srUBi2PQkFBVVXKzAqHTvqRU+DjJoVCEAThfwur1crBgwcxGo00b94cX19fybCtIaqqcvLkSf7880/at29fraXuohF0SUlJ/Pzzz3z55Zf2beHh4XzwwQeMHz+e1157DYPBwP33388111zjdaXr1atXM2jQIJo3b+52f35+PrfccgudOnXiueee8zjPzJkzmTZtmsNx+sLCpwt9SB6VzlOr+zgcp8XTgc31OmbEv5n3WgJZZ/wotyiYKx6VGbDyga9/FMotcOy0H0F+Fvx8LPbtKqr9PxnVLtVs+1xnqdhf6aFFVaHMYuBQjh8nzvqiqvL+CYIglJWVYbVaadmyJYGBgRd6OQ2W8PBwDh06RHl5ecMQdBMnTmTjxo3s2LHDpYL1wIEDOXDgADk5OZhMJho1akRUVBSXXnpptfMePnyYLVu2sG7dOrf7z549S0JCAiEhIaxfvx4fHx+Pc/n5+Tm4fp0pMyuEXPs8rN7M0LG2TN21K2LsYg4qXa8zJ6exdPUArFYwWwwUlRooLDWRW2CiqEwTqiIM6heF/GIT2Xm+XNK0xE3JYJt1zo2dTjfKXuMEVbVtKyoz8OdpP7LzRMwJgiA4I23G6kZNrJoXVNCpqsqkSZNYv3496enptG3b1uPYZs2aAbBt2zZOnDjB4MGDq50/JSWFiIgIbrnlFpd9+fn5xMfH4+fnx4YNG/D396/VNdw+cj/+AT4oUFE82IZeyLljwqgtrErtj5+PhUA/C00pp1mokaxcX04V+GAWl2y9Y1XhRL4vYUHlFQkSFTY5VZ/Bqkk5VSfw9KXqKl/nFZk4lKOvMycIgiAIF4YLKp2TkpJ4++23WbNmDSEhIWRlZZGVlUVxcbF9TEpKCrt27eLAgQO8/fbb3H333UydOpWYmErB1L9/f15//XWHua1WKykpKQwfPtwl0SE/P99eHmX16tXk5+fbz13TTJyP3mzP2hUxmC2KPXbKnZgbOjbDbrnTGJ1os9gpChgUCPKz0CaimMsiiwkLtGBQ3BVLE2qPQnGZgRN5frpcVcWhG4T+jivon1SUNlFVzBaFrDN+/JYVKHXmBEEQ/iIcOnQIRVHYu3cvAOnp6SiKwpkzZy7ourzlggq6ZcuWkZeXR58+fYiOjrY/3n//ffuYjIwM7rjjDjp27Mjs2bN58sknWbhwocM8mktWz5YtWzhy5AgjR450Oe8PP/zAN998w08//US7du0czn306NFaXYvRoFJuVngzpQ8pqX1c9ifETWDtihi7qNN+jk7c6iDsjAZoGlJO++hC2kUXERFajq9RK0os4q4+yCsy2aypTm29KotQOxYP1mOLl/Pn4El/isuknZsgCEJtSExMdNsAICEh4UIvzU7Pnj3JzMwkLCzsQi/FKy6qOnQNCX0dOpPJFls3dc5tHPlzoYuFTm+ZS4ibQNrOpQ7iThu/KrW/w3GqanMTFhQbOX7an9xCk2RQ1gMGReWyyGIiwkpxDU/Q1aZTVZ21TqGozMDhkwGcLvCRVl6CIDQozncdupKSEg4ePEjbtm3dhjQlJiaSnZ1NSkqKw3Y/Pz8aN258ztfnjkOHDtG2bVv27NlDly5dLsganKnuPuqRaMV6InlUOmVmA2tXxLBg8U0kj0oHbJmtYBNyAGk7lzocpxd2mqVOQ1FUDAo0CjTTJryYIH9pH1YfWFU4XWiizGyg3AzlZkWXcQzlFhWzBcxWA2VmA6XlRnKLTBzIDuSUvSyJiDlBEIS64OfnR1RUlMNDE3OKovDGG28wZMgQAgMDad++PRs2bHA4/r///S+33noroaGhhISEcMMNN3DgwAHAFnY1e/ZsWrRogZ+fH126dCEtLc3h+G+//ZbY2Fj8/f259tpr2bNnj8N+Z5dramoqjRo1YtOmTXTs2JHg4GASEhIcyqiZzWYmT55Mo0aNaNq0KdOnT2f48OHccccd9jH/+te/uOqqqwgICKBp06YMGDDA3iGrLoigqyeyWrxM9J9TWbX6Rh6btJnSDvOZ9fIgNu2yWeOchZyz61VD74JFhcISA7lFPvj7WokMLcUgOqIeUMgr9CHjeBAZx4MrfmqPQH47HsRvx4P5rWL/L8eC2J8ZRF6RFAwWBEE4X8yaNYt77rmHH3/8kZtvvplhw4Zx+vRpAI4dO0bv3r3x8/Nj27Zt7N69m5EjR2I2mwF49dVXeemll1i4cCE//vgj8fHxDB48mP379wNQUFDArbfeSqdOndi9ezfPPfccjz76aLVrKioqYuHChfzjH/9gx44dHDlyxOG4+fPn884775CSksJXX31Ffn4+H374oX1/ZmYm999/PyNHjmTfvn2kp6dz5513Uh/O0ouibElD5um/f0FhzGu89uwGoA+s3k7yqHQaN+pH0uhtQAxPvHgLwf4J7P7vq4CjVc4ToxO38vqqARzJCcBoUAnxKyck0IyvyUpJuXdtQATPmK22Miae8VyPThAEQag7GzdudOmA8MQTT/DEE08ANrfs/fffD8DcuXN57bXX+Pbbb0lISGDJkiWEhYXx3nvv2UuOXX755fZ5Fi5cyPTp07nvvvsAm9D6/PPPWbRoEUuWLGHNmjVYrVZWr16Nv78/V1xxBX/++Sfjx4+vcs3l5eUsX76cyy67DLCVXZs9e7Z9/+LFi5k5cyZDhgwB4PXXX+eTTz6x78/MzMRsNnPnnXfSunVrAK666qqa3zw3iKCrIzkt5rLq2UozcPKodPaYouH7ZQwdaxNvGQdetu/v1H4a171upmyPYxFi53g6gM+/X0Lz6Me5pEkJRqOKv2IlyN9SUR5FhMa5Re6vIAjCuaRv374sW7bMYZvW+hPg6quvtj8PCgoiNDSUEydOALB3715uuOEGt/Vj8/PzOX78OL169XLY3qtXL/7zn/8AsG/fPq6++mqHuLS4uLhq1xwYGGgXcwDR0dH2NeXl5ZGdnU337t3t+41GI127dsVqtQLQuXNn+vfvz1VXXUV8fDwDBw7krrvuqpe4QXG51pFlcx3bfe0xRTu8Hjo2g/geE+yvf9n/Mo9P3ETh5QuZ/cogt0JO23ZF+6ksfu4jQgIsgILJqBIaYHYTyC8IgiAIDYugoCDatWvn8NALOmexpiiKXRgFBASc17VquFtTTdylRqORzZs38+mnn9KpUycWL15MTEwMBw8erPPaRNCdQ7REiE27KuPnNOE2b/pGnqno/frki7cw7zVbqvaKN/uzdkUMT754C7MftZlpx47cyugR2wAIC7DgY5TECEEQBOF/l6uvvpovvviC8vJyl32hoaE0b96cr776ymH7V199RadOnQDo2LEjP/74IyUlJfb9u3btqtOawsLCiIyM5LvvvrNvs1gs/PDDDw7jFEWhV69ezJo1iz179uDr68v69evrdG4QQVdnXl/SkzdW3wDAqtXXO+zTJ0I4twHTb//1wMvMnJzG5W0f4dCJAKYlD+bXCjetPtbuocRt+PtaCA0wI9mugiAIQkOmtLTUXtRfezjXlPXExIkTyc/P57777uP7779n//79/OMf/yAjw/ad+dhjjzF//nzef/99MjIymDFjBnv37uXhhx8G4IEHHkBRFEaPHs0vv/zCJ5984lLjtjZMmjSJefPm8dFHH5GRkcHDDz9Mbm6uvYXXN998w9y5c/n+++85cuQI69at4+TJk3Ts2LHO55YYujoyMelrTCY/kkelM3oUDB3rftzQsRkeO0hoSRK/Hcyg25UPk1dkosNl0xg69mWXY8aN2sprK27CbFU4UyhZl4IgCELDJC0tjehoxzClmJgYfv3112qPbdq0Kdu2beOxxx7jxhtvxGg00qVLF3vc3OTJk8nLy+ORRx7hxIkTdOrUiQ0bNtC+fXsAgoOD+fjjjxk3bhyxsbF06tSJ+fPnM3To0Dpd0/Tp08nKyuLvf/87RqORMWPGEB8fj9FoS2YMDQ1lx44dLFq0iPz8fFq3bs1LL73EoEGD6nRekMLCtUZfWPiFsTvtCQ4ORYR7jCdtl2PAp7uiw1UVIu7Ybhq+Riv/yVjkMMdrK27i0MkAcguk2LAgCIJQNRdbYeH/FaxWKx07duSee+5hzpw5NT6+JvdRLHT1gDsxZ6NSK2sdIvQ4j6/sFNHfPnbf75UZsldePhV/HyuMfZXJY2HxygH4mmwtqErLDRXZryBWO0EQBEE4/xw+fJjPPvuMG2+8kdLSUl5//XUOHjzIAw88cM7PLYKujrz2ehzTpvzgtq5c2q7llc8rBJpzVqv2c+jYDNJ2us6REDcBVbUlVvz82yv2Y55acAvpu21ir3/3JApLjGTn+XL6rA9WVUVEnSAIgiCcXwwGA6mpqTz66KOoqsqVV17Jli1b6iVGrtpzn/Mz/MWZPHEnALHmTLcxclqmq4Z+nPN4d4kTaTuXupQpGTo2g/wiE+ER0+nSYQoTRm0hLNDMpRHFXNKkFJNRRZImBEEQBOH80rJlS7766ivy8vLIz8/n66+/pnfv3ufl3CLo6oGVb1zPHlO0Qzzc2hUxxJozXdys4M416yju3Im6hLgJDtuPHX+RHdunsPfXRQwdm8GmXUsxGVUuaVpCq2Yl+JhE1AmCIAjC/woi6OqBTd+tZmC3UaxdEcPKNypLlzgXGQaIvN4WFDl0bIb9oeGpvyvYRJ3z9o4dHecfM2IrBgUiw8q4pIn0fRUEQRCE/xVE0NWR20faGv1+9t1qm6Xsu9XEdxvluVerUumGdba6gS0xIiFugourtir0Y8eM2IrBAE1Dygn0syBWOkEQBEH46yNJEeeATd+t9rhP74JN27mUVal64dbfZZxWo84dlWJwqX3c2hUxjE7cSvKodJpd8SJFpUZJkhAEQRCEvzgi6C4waTuXOmS6erLMOQs7/Wu9mNOwlVL5hBkv3Ep2nm9FrzkRdYIgCILwV0RcrhcR7sScPq5OL9g8xd45W/OC9z9K0+Byl0xZQRAEQRD+OoiF7iKgUoT1d9mnt8RpP7UixQlxExiduLXKbhN7iCb2j0cwtV/IiTxfrKooO0EQBOHCkZV1hry8wvN2vrCwIKKiGp23810oRNDVE/HdRgGO8XMJPcaBYnBbusQdmkgDvbXO9dhKN+1Se+9YZ3esXuw9tboPyaMexdRhAcdP+4moEwRBEC4IWVlnuO+BlykrM5+3c/r6mnhvzbQaibodO3awYMECdu/eTWZmJuvXr+eOO+4AoLy8nKeeeopPPvmEP/74g7CwMAYMGMALL7xA8+bNq5x3yZIlLFiwgKysLDp37szixYvp3r17Ha6uEnG51gMDu41i03erXZIh0nYt91rMORynO8abbFctW9ZdYWNt2x5TNP6/PoafjxXJfBUEQRAuBHl5hedVzAGUlZlrbBEsLCykc+fOLFmyxGVfUVERP/zwA08//TQ//PAD69atIyMjg8GDB1c55/vvv8+0adN49tln+eGHH+jcuTPx8fGcOHGiRmvzhAi6OtLvmr97PdabciSjE7c6/HRGn0ChvdZq1HkslVJx7j2maE5kz/d6vYIgCILwv8igQYNITk5myJAhLvvCwsLYvHkz99xzDzExMfTo0YPXX3+d3bt3c+TIEY9zvvzyy4wePZoRI0bQqVMnli9fTmBgIG+++Wa9rFkEXR3Z9sP/8VkVZUqgUsh5Y63Ti7K0nUvtblhNCLqLl3NnnXMWhPrXYYFmFEU6SQiCIAhCfZCXl4eiKDRq1Mjt/rKyMnbv3s2AAQPs2wwGAwMGDGDnzp31sgYRdOcBvTAD79yozseDrQ8seM5w1ViV6ppcAZXC789jC8g/PQ9/HytGgwg7QRAEQagtJSUlTJ8+nfvvv5/Q0FC3Y3JycrBYLERGRjpsj4yMJCsrq17WIYKuHhhYkRChJUZoJPQYX2PxpuHOfbrHFG0XZZpFLiFugoPVztkSWFVR4h3bp7B67jpCAyz4GK1itRMEQRCEGlBeXs4999yDqqosW7bsgq5FslzrSP9r/m53ubomRTi+uZrQ0os8b12x2hhngeZuuy1JwtHl6pwF+2ZqPxT6MmLH57z27EcMHZtB55ip5Jz14WyxsULWSTasIAiCILhDE3OHDx9m27ZtHq1zAM2aNcNoNJKdne2wPTs7m6ioqHpZj1jo6kotKvY6t//yFnfWPs0yp/3U3LtakoRzRwmNf+9cxojEz4HKuLz/ZLxCTHQhUY3KMBnFWicIgiAI7tDE3P79+9myZQtNmzatcryvry9du3Zl69ZKY4vVamXr1q3ExcXVy5rEQldHtu5+C/8An1odOywK3qmB6zxt51KGVQh57Th3SRKA28QJTditTu3HJzsz3Aq9bbuXMOi68YQF+nIkx5+iMgNiqRMEQRD+lygoKOD333+3vz548CB79+6lSZMmREdHc9ddd/HDDz+wceNGLBaLPQ6uSZMm+Pr6AtC/f3+GDBnCxIkTAZg2bRrDhw/n2muvpXv37ixatIjCwkJGjBhRL2sWQVdH+ndN5Ktf3qnVsTURc1Ud4y5Oznmb/rUVGBQ3nocStzmMqRR2y7gxdmKFlU4QBEEQ/rf4/vvv6du3r/31tGnTABg+fDjPPfccGzZsAKBLly4Ox33++ef06dMHgAMHDpCTk2Pfd++993Ly5EmeeeYZsrKy6NKlC2lpaS6JErVFBF0d2bo7Ff8AH7u1zZ3VzZMlLiFuAtlfPM0eU3S9rUfLhNUSKNyJvbSdttg+rcsEVFrwbo0bz4hEYOzrdLxsGgUlRqyqiljpBEEQhLoSFhaEr6/pvHeKCAsLqtExffr0QVU9GzWq2qdx6NAhl20TJ060W+zqGxF09YQm2LSfehF3qu0EyHLfwosKMRdrzqwXYaefQx9D5/xTw9k1OyJxm32/f8ZjhLV5mdxC+ZgIgiAIdScqqhHvrZkmvVzPAfJNXUf6d00kODiATd++4bC9KneqltzgnBDhnPHqbYxdVWJQX6fOXaxdVa7ZPaZo+HMBERHTKSk3uEmREKudIAiCUDOiohr9Twis840IujqydXcqt9/oTTuvSsuYu8zWyBvmuGx7J8u9WEuIm4De2qsowM6lbsfqW4Vp59+3L5OOHaMdxjhb8bRjAE6csLULa93yMUwGFbNVIbfQVGFyFlEnCIIgCBcaKVtSD2z6dpXHfXqrmL74rx7nunRgE3LDonBreUvbudShWorWhWKPKZqEuAnEmjPt50oelc7KlP722DqAX3b0cZhPL+LcZcdqHD66gEsji2kbXkywv8XjNQuCIAiCcH4RQVdH+l87wl5KBFzrwjm7NN25PcG91e5UW1fLX6w500EAnvjyadauiLEfn7ZzKXtM0fbzRt4wh027lrrE1unXEmvO9Oh6dXbVjhu1hfQfXqd541L8faxIrTpBEARBuPBcUEE3b948unXrRkhICBEREdxxxx1kZDgKiwMHDjBkyBDCw8MJDQ3lnnvucam07EybNm1QFMXlkZSUZB9TUlJCUlISTZs2JTg4mKFDh1Y7rzu2fp/iEOemF0Ke2n7ZXLA2PPV33WOKrtY1qygQcf0c1j3rvr2XZpVL6DGBhB4THKx0GmtXxNjFnvPatTW56x37/X9fJTy0HIN4XAVBEAThgnNBBd327dtJSkpi165dbN68mfLycgYOHEhhoS37pbCwkIEDB6IoCtu2beOrr76irKyM2267DavV6nHe7777jszMTPtj8+bNANx99932MVOnTuXjjz/mgw8+YPv27Rw/fpw777yzztekF2aacBs6NoPkUen2OLahYzNcxJXW4cFdezCodME6H7Np11IHS57eQqgJtbRdS0nTWem0XrD6bhLaOfVxfp66WKxdEUN8jwnMeezfhASYa9ADVrpPCIIgCMK5QFG9KaZynjh58iQRERFs376d3r1789lnnzFo0CByc3PtPdLy8vJo3Lgxn332GQMGDPBq3ilTprBx40b279+Poijk5eURHh7OmjVruOuuuwD49ddf6dixIzt37qRHjx7Vzpmfn09YWBjJK26rslNEVb1a9aLN3Rh9NqyzwNOP15/DU+05T7gbr23Tz5vQYzwAo0dsY1Vqf4c1tG31KDlntXvg2WTn72MhNNBCfpGRUnvWrJj4/tro/3uR91oQLhTFRQVMubcPeXl5VfYcrS9KSko4ePAgbdu2xd/f/5yf769KTe7jRRVDl5eXB9haZwCUlpaiKAp+fn72Mf7+/hgMBr788kuv5iwrK+Ptt99m5MiRKBWZBLt376a8vNxBEHbo0IFWrVqxc+dOt/OUlpaSn5/v8PCGmvRqdXesPjbOm3NoFjdP7cCc9+ndq85xf5qQTIirFHN68acdc/DIQtqdnEyjQDM+RiuKB0ucj1GlZdMSYi4pokXTUoL8rBgNYrX766KiKODvo4prXhAE4Rxz0ZQtsVqtTJkyhV69enHllVcC0KNHD4KCgpg+fTpz585FVVVmzJiBxWIhM9M1HswdH374IWfOnCExMdG+LSsrC19fXxo1auQwNjIy0t6PzZl58+Yxa9asWl2bJ9xZ3pzRW+m08c7ibu2KGJJHpdu7QzjvcxcDpxdv2nz6zhEJcRMYnbiVhDhbZwltHTZBuNUhRnDtihjWEgNssM/ftvWjFJYYbfXr1Mpvc6NBxc/HSqCfhYiwUkrKjZw668Opsz6UWxT+GlYcR4FqNICp4rotVoXCUvd/RxkUsNoPbYj3wfG6A/2sNG9cSqCfhZx8H3ILfFAU2yjb5wJs1+lJ0DfEeyAIQnVkZZ2RwsLngItG0CUlJfHzzz87WN7Cw8P54IMPGD9+PK+99hoGg4H777+fa665BoPBO+Pi6tWrGTRoEM2bN6/T+mbOnGnv5QY2l2vLli3rNOewKDhF9VY8/X7nscOigLEZPLWij0NMnD7BAaiwtEHaTsftGpqAA1iV2t/+XKuht3ZFZSKH3oI3dKxrRq/t/AuJ6zyZg9kBFJYa0aw1UFE3TwU/HxU/HzMhAWb8fKycyPPFbFGwWJUGLGxs1qjQQDNmi4LJoNIkxEyjoHKMBpWiUiPZZ3zJL7b96hkUlQBfKz4mlRB/MwUlRk7m++qu33FuBTAZVSyqQoCPBV+TitmiUFRmxMdoxaoq+PlYKTcrlJoNdq1UOV193M8KZ7lis7qWWxQMCpiMVvxMtn2+JitRjcoIDbQlzgT7WWjZpAxFUbFYDZwqMJFbaKKgxEiQn9WhDI6qQplZ4UyRCbNFEde8IPyFyMo6w30PvHzeW3+9t2ZajUTdjh07WLBgAbt37yYzM5P169dzxx132Pc/99xzvPfeexw9ehRfX1+6du3K888/z3XXXVflvEuWLGHBggVkZWXRuXNnFi9eTPfu3Wt5ZY5cFIJu4sSJbNy4kR07dtCiRQuHfQMHDrQ3uDWZTDRq1IioqCguvfTSauc9fPgwW7ZsYd26dQ7bo6KiKCsr48yZMw5WuuzsbKKinDIPKvDz83Nw/Xqiqpg5Z061tY2NNWcSecOcKo/zFBvn3EmiqrIommvV+ZxrV8SQEGcbZ7PYZbj0eXWmuuuMNWdyIs+X4jIDoOJjVHnt2Y8cxmixeAYgqlEZYYFmSsoMmK0Gyiu+0EvKbLF25gZhvbNdZ7PQcpo3KcViUTAaVXxNKgbFJkt8jBaC/YvJLzahYBNFgb4WjEabEAwutZJb6IO7/+sMCoSHltEkuJxyi4Egfwt+JgvlZgP5xSZ8TVZUFIL9zZSUGyksMaDds6JSA2eKTDqrmO2eWtWa3lObqAzytxIWWE7jIDO5hT74mqyEBZoxGawoiorRAEaDteJMCiajio/RUvFaJcjPQkRoGeUWA75GK74mtfLtVcFsVcgvNtmFX3GZsYbrFAThYiQvr/C8ijmAsjIzeXmFNRJ0hYWFdO7cmZEjR7pNmLz88st5/fXXufTSSykuLuaVV15h4MCB/P7774SHh7ud8/3332fatGksX76c6667jkWLFhEfH09GRgYRERG1vTw7FzQpQlVVJk2axPr160lPT6d9+/bVHrNt2zYGDBjAvn37iIlxL140nnvuOVasWMHRo0cxmSq1q5YU8e677zJ06FAAMjIy6NChQ62TIrQ2XZrQSYibQNODNsGjF10JcRPI/uJpe8ZpdcKoJgKxqjnAfSKF5q7ViLh+DuUVVjJFAV+jFYuqcPrrpwD3hY4Bh6xd5ar5ZJ7xpajUiMEAPkYrTYLLef7xf3tco2ZZXJliE3kqUFpuwGJVKDMr5OT7UlDhwj03Vqfao6ASHGChcZCZ0EAzQX4WjAYcij97h0qZ2UBOvg8Wa8X1VQguq6rgY7QSHlaOr9GK5rtU3borKzp4qKp9EWaL7T5qo1VVIa/IxJlCHwpKjFistitxnEO7Pts0Qf42i2Cwv5lGQWYC/WyCTWsYolSIPWcXqqFCixvsc3l3Y1TV5oI+nOPP4RwJqhaEunCxJEVkZBxjxKgl5/z8zqSsTiIm5pJaHasoiouFzhlNE2zZsoX+/fu7HXPdddfRrVs3Xn/9dcAWatayZUsmTZrEjBkz3B5Tk6SIC2qhS0pKYs2aNXz00UeEhITY49fCwsIICAgAICUlhY4dOxIeHs7OnTt5+OGHmTp1qoOY69+/P0OGDGHixIn2bVarlZSUFIYPH+4g5rT5R40axbRp02jSpAmhoaFMmjSJuLg4r8ScMwlxE7jTXluuMi5OKycyjKUOoi7yhjkkAE0PLuVUNXNr1jR3QirWnMlTq/t4LF5cVaux0YlbGTqWSjF31XwsVsjMhbwiH4rLDBgNKo2DyykuNWJp8zJNQ8qJ/Wk6YBN2ehFX3ulF8otMlJoNlJ4wYLHa3HGnc14AYNnsqsW3tuYxIypdu5oFT1UhNMBMQUmlxU5VFfKLjBSXGe3ywWxRzmMcXqXbsVGQmdbhJQT4Wh0ETU3/VFIUm6syunEp+q5qiu5fu4SrcnK9b9uGyahiMtqO0e6x3j3fuuVjFJQYKTcrGAwQ5GfhtWc/YvKs2+2W1ddWDsTXZNUlOKjOp6mQkgpgpTI+TqnVO6K55i3Wi90yKwjC/zJlZWWsXLmSsLAwOnfu7HHM7t27mTlzpn2bwWBgwIABHpMxa8oFFXTLli0DoE+fPg7bU1JS7EkMGRkZzJw5k9OnT9OmTRuefPJJpk6d6jBec8nq2bJlC0eOHGHkyJFuz/3KK69gMBgYOnQopaWlxMfHs3Rp7SxhWiyZRvYXTzsUAD7VdgJkVWar6gWfN9Y3TTw5i7o9pugK0dPfPk+sORPGem7hpYm85FHpNO2WTH6xiZP5PpzO9sGq6kPUbc8KSyoF09kSIy06vYiqwqVlRk5ZFFQVissNlJ10LEOiKJVizjmrVtvm3IXCeb9mQdS2x/eYQFhg5djwMAWtHKGq2oTo0VN+WCosjOo5E3Y212qQn4WwIDNNgssJ8PVcF9HrWVXHJ3Yhp6pea9QTXz5tf+7JmgqO3UxsPze4HXns+ItofYi37678wyG+h+dkHr2Es3+eVGpssVRVKCgxknP2oogMEQRBcGDjxo3cd999FBUVER0dzebNm2nWrJnbsTk5OVgsFiIjIx22R0ZG8uuvv9bLei6qOnQNCc282u26adybdMjtGG/qzHnrTo3vMYFNu6p3zWrn1Bc1dhZNyaPSaRKXTF6RiUMnAig1e2vVsiU26OOwPOHnY+Hy6CK+/s9iwFHAeRJy+jhBT7GA2ljtmvVYrFBcZsRsUcg640thie252VpfVjtbPFzTkHKahZQT4GfFZHAUcoqioP+VUip32GZw8+vmfAxqpSNVqTi2qvdeI9acScT1cxy2eTrO+V5XJa6rw52405eu0dysiuZ29ULZqSqUWRSO5vhxLNevFrF+giDoEZdr/btcCwsLyczMJCcnh1WrVrFt2za++eYbt/Fwx48f55JLLuHrr78mLi7Ovv3xxx9n+/btfPPNN27P3WBcrn8Fbh+5H6gsLOycvKAXWVqcnTYOvLcIevpi1sfH6UuKaFYVPZp7NaxHMkdy/GtRKkTx2o1YZjaQmetntyw6izlnAQeO4tOT+NNv165Zn5W7KrUfBiDA10JpuZHCUts6bMkZdREFKqEBFlo0LSU00IxB0TSa65yaQLNZp9QKAVNht3IjZtJ2Ov7nFt9jPAqwadeyGq1wjymaeDx/VjQ8lbJxfu4t+vO5tdwpjk5jbykrN+BjUmkUaCa30HQOLa6CIAg1JygoiHbt2tGuXTt69OhB+/btWb16tYNbVaNZs2YYjUaXFqNVJWPWFBF0dWRAt4f48ue3gMovSk3EOBcFds5I9RQbVxtswq6yW4R+PZqQa9ozmdwCE/uP+3G2xOhQH66+UVWFnLM+FLVYBFnzndx77i1wmrtYj7P4cGdFGp1Y+Xp04jaH/W+k9CM0wMLhk/7kFpqouaywWSWbBJfTslkpgb5Wr12HaV5Y1dyhCbnqrLLuj61+vPP9dC5xUxf050/oMa5yRy0+asH+FoL9bckmpccDK+r3iagTBOHixGq1Ulpa6nafVtpk69atdkuf1Wpl69atDvH/deGi6hTRENny3Rv259oXoj5+zhNaIeDa4skl6UkABXSdy/7MQH7PCiS/+NyKuUoUysoVOneY6nZvfQgIT25C7edDI7YxZdxnHPlzAY2DzJiMVrztO6ug4uejcknjUi6NKCbQ12IXc6MTt5C2cwmjE7c4PNfwJKyce/hWtwbn/r31TX28B55I27WctF3LqUjHrRGKUvkI8rPQsmkJ/j51j1MUBEHwhoKCAvbu3cvevXsBOHjwIHv37uXIkSMUFhbyxBNPsGvXLg4fPszu3bsZOXIkx44dc+gZ379/f3tGK8C0adNYtWoVb731Fvv27WP8+PEUFhYyYsSIelmzWOjqgWFRtgSHpgdt2azeJjrUFH3MnT6DtVLUxLh1W4b3msORHB9OF9TGQlU3zFaF3AITS98YwISHtjjsc4mZG+saz+XOmqRvX+atILEdu4CunR7m+Gk/CkqNeCrTYSuSq7Iyeb3H+TzFnGmFmz3VDazJ+75p1zKbCzOr+ji480lCXJKLm1hPfI9xbNq13P76052252tXxJD6Vr8an89ogGYhZk4VWCgpl3p0giCce77//nv69u1rf601Fhg+fDjLly/n119/5a233iInJ4emTZvSrVs3vvjiC6644gr7Mc4Jm/feey8nT57kmWeeISsriy5dupCWluaSKFFbxEJXD2jlSbSf5wotfs25J2tVX+rJo9IpKTdQ5KHd1Pkgr8jE0VP+LFo+EKgsR1IV+q4X4OpG1sbo9+mPdcfaFTHs/uVVWjQttRWytWNzqwb4Wkl9YR27vprsIOa02nju5tevs6pEjtriTVJDbamJtTDWnGmPj9PEnHa88zwnvnzW7RxDx2bw8dfL2PDVUjZ8VTNXsqpCuVncrYLQ0AkLC8LX9/zaknx9TYSFBdXomD59+qCqqssjNTUVf39/1q1bx7FjxygtLeX48eN89NFHdOvWzWGOQ4cO8dxzzzlsmzhxIocPH6a0tJRvvvmm2s4SNUGyXGuJvrDwHf0eBuqeyapHK7Krr8sG7sWKuySDWHMmjXokc+qsL6cLTOQXm7zKTvWM88ekZvNoxXePH3/RoxjxVN5E/9oTVQmctStiWJ3aj1EV8XVDx2YQc+kjnMjzwWxVCPKzkqWL86sOd9Y5d/vrkjnqDTUVdfqYzZrGb2oZtB6Tc3qMJ62GSRx6Bveq+o+hwlIDPx0Nko4RglBLLpYsV5BerjWhJlmuIuhqiSboflt/GxvO+lR/QA1xJxiSR6Xz1Oo+DtvclfsYOjaDgT0mkH3Gl8MnAyq6AEDtxJwttzDY30Lk0ankXfYSOfk+tco4DPSzsHTWh1UKL+2anLfXRLg4u5wBB0EHFZbLDgsoLjNw6MhCl2Odj6+Omo7VMywKfvkz06XeoKekCG/uh7NgcyfgnLcN7P4Qn337Bt5Qnwk9etwJO6sVsvN9+T3LH7NVnAqCUBsuJkEneE9N7qP871hH/nmi6v3OtdLcoRcC8T0mOAiSoWMzWLG6P68sG4jlivksXnUTyaPSXSxYzmKiuNTIiTxfXUun2rur8nPnEXl0Kk16JGPw0GzKG1QVFi6Nt79OiJvglQjStybzFme3rLbmVan9WZXanz2maPb9/jLRjctcjvNWPOrP4ek6PFki9ePfyaqMrbO3hKtwbzqXAfFWNHojtpzHaGLOm0SM6uaPNWfWKqFDc8cO/7vNMq2qUFRm4M/TvhX1BAVBEAR3iIWuljj3cq0PnN10yaPSCeg6l/wiE6cKfCgpMxDdpIwAXwtgk2hGg0pIgAVFUcn5ytYj9rqrJnMkx5+iUmMdC7LaOiK0znqYZnFzOJbrz/Fcvzq0YrKtdXFFKylwrT3nDZo7Wm+9crYYVVfIWMsy3rcvk9H3z+XLvYvpe+1EPv/+dfvxtcVdjT2wJROMTtzCqtQBjE7cUuX1xpozibwhucrkg6rw1oLmbpy7WoDOx1Tlfq0tg3tNYMNXSx3OeXOPCRzO8efP01JcWBDqgljoGiZSWLgB4alFF8Dpti9x9pgJs6Wyqfqfp/wcbG0mo0qIvwWDQcXQbiHdQ8opLDFSUOKcxVlzfE0qbcOL8b1kLgdP+pKT74ulTvJfqVhXJbURTlqSgt4l6SxKnEXcG6n9eSixMh5RG//Ljj582XExa1fEEGt+koQb5ngV81ib+DitrIm+vMm5wlt3qDsxV5VLfOjYDNsxNRRz1bmJ9WJOI9acycGT/pwq8BExJwiCUA3icq0HqnKrJsRN8Li/KjGTPCqd3AIfyi2Ging120NVFay6R5lZ4VSBrR9rdp4vv2cGcuy0X90uSEdpuYFDJwLIzvPFota9hVZdjt63L7NGmZlDx2bYM2ofStxqd7euSu3P2hUxxPcYz6qU/sT3mOBSBsYba+Gq1AEuZVU8lVvRH1Mbala/rvZza4WxvT2fN4LcmzHD/77V4d7FmjOxXvEiWWd8K7p8CIIgCFUhFro6MqDbQ1VadJz3ufty07JZ9SIgM/oV1BJv5I/jGFsrr/qhzKxwOMdf15Gz7hiNriY+d0kQq1L7V3lfPSULOM/nMIcKo0fYhJ12zysziW118BLiJrBv39OArV3Zvn2ZdOwY7TA/2ERQ9hdPkXBDMgkVbfmyv3jKbeLBWmIqrmlAtdY5TUxG3pDs8PpcJCBoOCdjuDvX2hUxrErpS9oux/fKXT9YTy3nmsfNwqDY2p8d3f60/TzOiSix5kyirk9m3zFTPfbhFQRB+Gsjf/rWEX2nCPAuCUJDsxaNqRAZNrdfJpe1fpTi0ouhPIOisw7WDyaD6lbAOeNOzHXsGM0eU3SVmZ9VWdZGV5SAGa1zvWr3flXqANauiGF04lYeaG9z5+7bl2l/DpXiJXlUOpHXz3HpCBJ5Q7I9qSXWnMnaFTGs2a87f0X8nH4uT2g1j6pqe1afaOJqYPeH7D8Hdh/tkPiRpisW7IxezA28bgwDu49mWJQtwSKi13NE9nrOIZmm5Y22e+ecADQsCoK6zuXYaV/yiy+G3wFBEISGgQi6esadEHEuBOyO0Yk2C92pNi9zIt8H6wVNVVGpca+mGlCdMHFXeLg6F2DyqHS7e1vv5vbk8tZEoa0XrGOtv6dW92HMiK1MGVEp2BJ6TCC+xwSSR6UTcf2cKu/OypT+9vIyUxJn666rMhnC3T3QW7k27VrqIlzrUsNO//mr6v7ry5Z89u0ql/1af1ZPsZ9rV8QwduR2Pvt2Fe9kwZ2zqn6v9XUTB12XxH9CprHveBCHc/wrrM1inRMEQfAGyXKtJd5kuXorXPTtu5JHpfN7+GtcmC8yFZNBpU32w+dsDYG+FrKz59vdqpqYchYrnmqwudtuywh17Z+b/YV7t56eSvGoVFjQbK81ga1Z6TQirredR1Gquje2XylVxavC0Hrc1RQ8F1SXWexNTbqEHhNI8yI5ItacSWSv5zAYFIwVLlewlSjRhHqzuGQO5fhzIs+34o8ZEXKCUJ9cTFmuUljYeyTL9TyjWYD01rmaWKEcvlzN52CBXqHi72OlxfEpHI56FSzn9mwrUzyLOXAfIxdrzqxRqYyoG+YwCPjUy04dmgVNc4vayqPY3tsTXz5NxPVzqhFyUJWY0+asSqQ5txU7V1Q1t7cFhr0Rc2Bz5ya42R5rziSqVzJ5xUb2Z/lyuqB2BasFQWg4ZGWd4b4HXqas7Px92fn6mnhvzbQaibodO3awYMECdu/eTWZmJuvXr+eOO+5wO3bcuHGsWLGCV155hSlTplQ575IlS1iwYAFZWVl07tyZxYsX0717d+8vpgrE5VoPpO1cahdz3vb01Lv59OLuqdV9MCi2+nL+PhbOpetTj0GBFsencCT61XPq6rJYFbfuOm/umXOXDG8ZFDcecCwarM9qHZ24ldGJWxxqxGmMGbGVMSO26hIFqn8/RidutSdcrKqiD+yFpCoXdlVizrnQsSf0YQZrV8QwemQ6n+xczsdfL+Po9qcxW8A/9gUyMgPJyAzklIg5QfifIC+v8LyKOYCyMnONLYKFhYV07tyZJUuqrgW6fv16du3aRfPmzaud8/3332fatGk8++yz/PDDD3Tu3Jn4+HhOnKimQ4GXiKCrR9z1IvWEc5yYPq7Kx6ji52Pl5In5BPmdD1GnEuBrJavlK5SZz2Xckoqi2AL99dYr564X7kiIqywt4hwnV30GqGK/33oLmf6n9tDEnLvkhU27lpL9xdNVXp8ztqza2pUqOZfsMUXXKsmiquxi/XPnBBV9rFxkr2QOnvTnt8wATp41UWY2IC5WQRAuJgYNGkRycjJDhgzxOObYsWNMmjSJd955Bx+f6hsMvPzyy4wePZoRI0bQqVMnli9fTmBgIG+++Wa9rFkEXR356M32VQa4e8PoxK0OgiUkwExJmYGYSx8hK+tFQgMtGA1aokJ9izsVgwLRf06pKN567r5YFSAsyPNfZu7c0OBoTdq3L9NuEfWmALD+3Pv2ZXr1nmjCbujYDBLikrw+h83SZ4u9W6mzzGkisbp+rzU5lydqItJWrL7B7XYt09Vb3MX8aZa5oWMzSB6VTqw5k4HdJxAel8wfJwI4lutHmSQ9CILQQLFarfztb3/jscce44orrqh2fFlZGbt372bAgMo/8A0GAwMGDGDnzp31siYRdPVEdQVl3QkJze2qtx4BHDyykMbB5ZzI8+Gqy6dy7NiLnDk1j7O5todBqS9hp2I0wKUnJgNQWn5uv1xVbIWKAQfBAxVlMXQCTX+/9pii7fu0mnDOuBN3qtPD07HO69D/TNu5xGUt2nbNTas99GgWSL11Tp8J6s7N7G2bL+ds1ZpYhoEKceUo2vRzeBM/53yMdm7n64o1Z9L4uucwXD2PfceC+OnPILLzfFDP8R8PgiAI55L58+djMpmYPHmyV+NzcnKwWCxERkY6bI+MjCQrK6te1iSCro4sXnajw2tPFhLn7ZqY04SIPkFg7YoYDh1ZiJ+PyrHTfnTt9LDDsXmn6yLsVAyKio/JSkiAhdVz19n31L5Hq7colJttMXR6l6s7l507NEudp/gvd+5Qb2XDvn2Z9oc3JMQlObhq9Wi9ZhWqb/PlTSkRZ/SWPmerWE0IP1Ip3NxZD6uaz926nYXlumczaNLjGbLO+PNHdiBnikwUlJikjZcgCA2a3bt38+qrr5KamupFotz5Q7Jc64ziVQcAPZWxYEmMToS1KyrFTUJcEglxoKr92bRrPo2aziDnrK/bJup5p+cBEB39OOUWg63nq2pLqLC5aKloEWYr6OvvayXQz0rGgZd0awHM8GfzRVBeuzvgHbaSKH4+tnWtSh3gYJHypjBwVZ0M7Nt3LnVwXWpytzrrlzfWu6rQx4jZih87CiTNUqf/nOjvQU2TJdyN92aOtStsHTEGYqsRpxXzPdnqIQZ2h5NfpxPeUxPGni11zq5V/bZYcyaY4XDkLLJyAsg561fxx8LF8x+fIAhCbfniiy84ceIErVq1sm+zWCw88sgjLFq0iEOHDrkc06xZM4xGI9nZ2Q7bs7OziYqKqpd1iaCrB2rTbN32Reh6nDbXypR+FSLnBXyM07m+RTR7PFhlMzNfrPH5nbH9kXHuvnBNRpU24SXs2beIoWNhdCJAjC5OzTt3ozPuhG7aziUkxCWh/eH06dfVz61v8aV/7kx1cW76teitXs5xdJVFhqtdmgP64sPafDU9FmxuVe3cJ1tVul/Dez5td7m6iwP1ZBHUi7mga2dzqsCXrGxfCkq1/2JEzAmC8Nfgb3/7m0MsHEB8fDx/+9vfGDFihNtjfH196dq1K1u3brWXP7FarWzdupWJEyfWy7pE0NWRSePTMZn8anSM8xdlfI8JLr1coTKubvSTCr9FPAxZr9bHkt1ictNjtf5QaRxk5qkpnwI2EeBs1UyIS7ILMQ13VjXne6cJKGdhpx07qGf1iQaagNPcrdVb61S8Kce9b18mnXpXFia2FSXuT3wP22vbPfAsypzFm6cxULOCxVqdOW3bZ9++4RBTZ3dpj3U93lPv1lhzJk3jZnM815/MLB8KS42IiBMEoaFSUFDA77//bn998OBB9u7dS5MmTWjVqhVNmzZ1GO/j40NUVBQxMZX/X/fv358hQ4bYBdu0adMYPnw41157Ld27d2fRokUUFhZ6FIE1RQTdBUL/Ja19wTvuW8rKFJvQMxioCCJvuCiKTQGtTLH1rtWLOU18aWKuKveopy4Kzla6yv3ulZcmWprEJdO/m8rW75byQHsI7zWHz75Z6tFK523iAtiEYaw5095dQkMfc1GVqHMWc/qkA72Yqil6MacxdtQXla8r7mX8daPZ9M0q+7n1JI9KJ7LHbGCZXcxl5/mRdcavoo6hIAhCw+X777+nb9++9tfTpk0DYPjw4aSmpno1x4EDB8jJybG/vvfeezl58iTPPPMMWVlZdOnShbS0NJdEidoirb9qidb6q9t107y20GlipqaMf+YOWjUr5fv/Lqrxsd4Qa84ks8WiCqvKuUAlNMDCa89+ZN+i78qQtnOJXWC4s9DV1r0I2HuvAhSVGjhbbKKozEhpuQGrFUABRcXPpBVyhiB/Cz5GK6vefbLWsXWatU/rB1td4KxWJsXTdVRaweZQUGrkbLHtbzHbrLaYycZB5Uwa62zp9Y5Yc6Yuds4m+vSCTr8WbT3accHXJpOV50dOvi9miZUThIuSi6X1V0PpFHGxIK2/LlLc9fWsyp2miR6TUQXl3Opu6zmd3vYFnzwqnTX7bSJHVVWHFluamNOLOw3nUjDu4rr0aK5BzQqXk+/DqQIfikqNlJQZKmx2zqJDRVF8KpJKIMDXwthhz7PinSeBmidNdOwYbe+q4E0WlLtr1LszAzo/T36xD79lmigsNVYUgK5EUeBMUTkvLr6Jxye5FmuuTuTtMUUz7Mgb5LSudL1u+mYVCdeNJe2bFW7F3LAo+LN5MgdPBJJbKLFygiBUT1RUI95bM016uZ4DRNDVkdtH7uff/3el15muziUnqkKbT1XB95zGuIH1HJcsKS4zkH/ZSwzvUkZhiZWp4zcDOIi6tStsSQJVNaevytWo3xZrzqRx3PPk5PmQletDQUl1MV2KPS7OYoXCUiMHsgK5e/CL/Lz/lRpfryYmvU1p14tZqPxs9OoyidMFJo4c99OJONc5VRVOF/hQWFJ7K+s7WRDfGjZ9U5nd6k7MxZozib5hNhn5PmRm+VVYC0XICYLgHVFRjf4nBNb5RgRdHfnozfbcm5RB2s4MtID/qqhJrTC9SPz6P6/VeG36RINqY7/OsQWw3GLgRL4PuYUmDApMnnU7x46/6HDf3MWM6dGyQ7WMWE8uwCZxz3PyrA+/Z5rIKzJVWB9rJjhUVSG/2EhhqZF2bR7h90MvVX9QPeAsSo/mDK7BNSiUmg1Mem4wxzMXuMznDXox52lNkdfP5nSBD0dzAigqk7ZdgiAIFwNSWLiOLHitr9fN5TXcWZ30z7WH5gY1GdUaF41duyLGQcRVV26j5fEpnPuesQrlFgOlZgMFJUauiplK/+4TWZlSaaWrCls3iUoxp+/CEGvOpFeXyViueJE/sv05ctKf3EJTHduZKVisCifP+hLbcUot5/CehLgJxPeYwNoVMcSaM/G7Zh7FZYYaXoNCQYmJqy63VS+vTb9WDXef68Y9kjl8MoD9WYEi5gRBEC4iRNDVkYPZAax71tUKsip1gMem7N5W5B87YgtJz95Os5CaV/zVi0RVVakq90XLED2fBa+tKvyZ48evfwZy5KRflaU73L3WrJfJo9JZ8eYAQrrP5UiOH4dO+JNz1geLlvBQH2u1wsn86hsv1wXbe4S9fE3E9cmcKTRRUl7zX1EVyC30BWDlm+77tTrjruODs2WuS4cp/HY8iOO5mvtXxJwgCMLFgmS51hIty3XR+58T3cyfRc9sYGXKAMaMcB9HV9NuEgDT592KosD+gy/VqkRFQlySXcht2lV1I/tYcyZHm79q77V6flHxMam0iyxm+qS0KkfqhVz49ckUlxnILfAhJ99HZ82qf/xMVtpHF7Hzx5q5vquzjIJNzGnvT6w5k9DuyeQX+5Cd52vPZq0pviYrMdEFPJK02evPTcJ1Yxg9crv9tWOx4Of5IzuQsyUSpSEIDZGLJctVqBk1uY9ioaszCnnFJh6bexubdi2xuw/11rnatAabOf9WjEZ4YcZG+zZvsbUPcxQS8T0mVCku9piiaXn8Yc6929Udth6v2Xm+zH89gaVv3ORxpCbmgrvN5ehJPzKO2Sx8haXnTswBlJkVzhTVXMx4U7du066lxPeYQKw5E58u8zh4IpA/sgM4W1z7BIdys0LOWd+aHaS7fdrnbVCPcQTbxdy5KmsjCIIg1BX5c7seUFWFk/k+XHLJ44wZYau1phdwNRFz657N4Cvfx/D3MfNjxis1bg1VlWjzJkEiwNdK8QWJjVLILTBxtthISICFGS/cahezGlqGZeC189ifGUBRqacSJOcGH6NaZVswT+jvt1bKxNliqqoKpR0WcChTq+UGdbkuFYUys8Hr/q5Dx2aQtmulw+ct1pxJXpGJo6cCKsScuFgFQRAuVsRCVw+czZ1L6gvrOFts5LmXbq71PI8+fxtf+z7KoSMLeHbaJ7WaQxMPWtycoij2R3XsMUVzybEphAZYMCgq59tap6JQblE4XWDiRJ4vz750C+BYV65Rj+fJyfepEHPnK45Lxdek4u9rrXWhYY1Nu5a6dX9/9s0S/H59DLNVE9N1vy6bMLfhKU5TXyZFewyLgj7XJJF/2UJ+PR5cYZkUMScIgnAxc0Fj6ObNm8e6dev49ddfCQgIoGfPnsyfP9+hF9qBAwd49NFH+fLLLyktLSUhIYHFixdX2yrj2LFjTJ8+nU8//ZSioiLatWtHSkoK1157LWDr0zZjxgw+/PBDTp06Rdu2bZk8eTLjxo3zau2VMXTpBAQGV2xVaRRkZtHTGwDHRuzO2Zl6q926ZzPYbnyMV5/Z4LbYcG0q/+uL2upjtLzl0taPViQCXKgvcltcXVRYGUH+FvKKbNY7VYWSciOWc1w3T49BUWkTUUJEWBmbv/G+9VdNiDVnUtB+IVlnatYXuCoURSX/9Dz7a+c4zLUrYlid2pdPdi63r6FZ3BzOFJnIPONHngg5QfjLcDHF0J08WcjZsyXnfA0aISH+hIcHnbfz1ScNplPE9u3bSUpKolu3bpjNZp544gkGDhzIL7/8QlBQEIWFhQwcOJDOnTuzbds2AJ5++mluu+02du3ahcHg3sCYm5tLr1696Nu3L59++inh4eHs37+fxo0b28dMmzaNbdu28fbbb9OmTRs+++wzJkyYQPPmzRk8eLDX11Bw5iUCAp+teKU4CA1NmNnEW6VI07d56njZNL4qG8yrT22wb3Ou8u9VHTknNCGniTm9wPNmrj8OLwQgPHI6JRfIBVtuhj9P+2FQbFmxai3qydUXPkYrCjahXFNxXB2x5kzUK18k91Q9Z9Kq2Gvo6S1x+j8aMr94llggpNvzHM/1I+e4gcJSo/RjFQThnHDyZCGTHv6I8nLreTunj4+Bxa/eXiNRt2PHDhYsWMDu3bvJzMxk/fr13HHHHfb9iYmJvPXWWw7HxMfHk5ZWdWLfkiVLWLBgAVlZWXTu3JnFixfTvXv3Gl2PJy6ooHO+8NTUVCIiIti9eze9e/fmq6++4tChQ+zZs8f+F8Vbb71F48aN2bZtGwMGuC8LMn/+fFq2bElKSop9W9u2bR3GfP311wwfPpw+ffoAMGbMGFasWMG3335bI0EX3OgRh9dFpUaSFw2icbCZbd+9bt+ut7o99/LN5BUOpsxswKqaaR1RXGUHhOoEmHP/U9eEiPFeX48zJ7PnE2vOJKvlK1isynmOr7N1b7Bc0DxsFR+jSnaeL3lFJkICLPU6e6w5k6Y9k/ntuIlSc/3eV0WBID/367V/zsxg7jSfA9k+nC02ndeYREEQ/vc4e7bkvIo5gPJyK2fPltRI0BUWFtK5c2dGjhzJnXfe6XZMQkKCg87w86vaw/L+++8zbdo0li9fznXXXceiRYuIj48nIyODiIgIr9fmiYsqhi4vLw+AJk2aAFBaWoqiKA43yd/fH4PBwJdffulxng0bNnDttddy9913ExERQWxsLKtWrXIY07NnTzZs2MCxY8dQVZXPP/+c3377jYEDB7qds7S0lPz8fIeHO27xmcfhk/7890gQ0dGP07LFY7Rp9SiTZt3OuKeHMO7pO8gt8CE4wMKlkcXMnb6R7bttwq+qgsPVUbXos31Ba3F03pTS0LPHFE1m5ossm/0h7U5ORkGLr/vfqHiTc/IFjv65gP0HX+LISX+uipla67lizZl2aylA057JZJ/xPWcZpIpS+cdEylv9SHmrn/31LXHjCen2PNl5fuQXm85jTKIgCMLFzaBBg0hOTmbIkCEex/j5+REVFWV/6L2A7nj55ZcZPXo0I0aMoFOnTixfvpzAwEDefPPNelnzRSPorFYrU6ZMoVevXlx55ZUA9OjRg6CgIKZPn05RURGFhYU8+uijWCwWMjMzPc71xx9/sGzZMtq3b8+mTZsYP348kydPdjCPLl68mE6dOtGiRQt8fX1JSEhgyZIl9O7d2+2c8+bNIywszP5o2bKl23EbSp+g3GKgqMxIZuaLLHp6A7kFPpSVG2gUVM5lUSXENC+iZdNSHpmwqdr7ojWtr6rivybmNOucvpBwTZIivFnLHlM0+bnzOFvxaHdyksOjcVA5PkYrfyWxFxU13f68TWQxJWUGboidVKu5nlrdx8FlW1Ju4KffXqFN1sME+1swGupPKFtVOHW20o07Yvg2RgzfRvKodPpck8TJsz4cPBFwgbKaBUEQGjbp6elEREQQExPD+PHjOXXqlMexZWVl7N6928GzaDAYGDBgADt37qyX9Vw0gi4pKYmff/6Z9957z74tPDycDz74gI8//pjg4GDCwsI4c+YM11xzjcf4ObCJw2uuuYa5c+cSGxvLmDFjGD16NMuXL7ePWbx4Mbt27WLDhg3s3r2bl156iaSkJLZscV9iZObMmeTl5dkfR48erfaaQho/QeKMO2kUVM6K5PW8MGMjjyWlMeGhzWzatcSevVlde6a0nUu8stZ5srypqkraziX2n1WNrSl7TNEOjyN/LuB0zgu0OzmZID8LfqaGLu4USssrxc73P79Ky2almIyqg6XNW1am9Hd4PXXcZ0ClFfSSJqUV0qru90wBfEwqK1b3J3lUOktXDeC15TdhvPoFMjKD+C0zSDJYBUEQakFCQgL/93//x9atW5k/fz7bt29n0KBBWCzuw1xycnKwWCwuCZ2RkZFkZWXVy5ouijp0EydOZOPGjezYsYMWLVo47Bs4cCAHDhwgJycHk8lEo0aNiIqK4tJLL/U4X3R0NJ06dXLY1rFjR9auXQtAcXExTzzxBOvXr+eWW2ylMa6++mr27t3LwoUL3cbm+fn5efSPn82dS0jjJ+yvB/vNZUPpTMAWw9SqmWs2j7v2SrWhOmHm7IqtTYJFbdhjimbtrA8BeHj27RSWGCrqqzU88eCcUavFRsb3mFCjJAl3AtD5/f/v/pftzy9t/Shni40V7b9qft/Uin9Pfv00Be0WcirLQFGpEbNVqdfWaIIgCP9r3HffffbnV111FVdffTWXXXYZ6enp9O/fv4ojzx0XVNCpqsqkSZNYv3496enpLokLepo1awbAtm3bOHHiRJWJC7169SIjw/GL8rfffqN169YAlJeXU15e7mLlMxqNWK01D9asFHMqqS+sI+CZ6USElZNfZCQr60WWzHK1wOm/yOsi6tJ2LrEnU2jiTstwBcf2XxrOSRTnCu26Xn3GVmz5kedvo8xsoLDEiPUCZqx6j4pBgUA/C+4jJs8dseZMOPAIvjELyc7zwWqlhvdMxWiAsAOPEtT1eY5nmSiy16W72O+7IAhCw+LSSy+lWbNm/P77724FXbNmzTAajWRnZztsz87OJioqql7WcEFdrklJSbz99tusWbOGkJAQsrKyyMrKori42D4mJSWFXbt2ceDAAd5++23uvvtupk6d6lCrrn///rz+emVG6dSpU9m1axdz587l999/Z82aNaxcuZKkJJuQCQ0N5cYbb+Sxxx4jPT2dgwcPkpqayv/93/9VGQBZNSp+PlZmvHAr7aOLuDSiiOVzPuSajlMAx1Zg3uCufZcn9GJOQx835xxHpxdxNTlPbdFcy4eOLGTxsx/x5rx1FdmiF7Mr1pbd2rxJKR0uKWJA94nE90iy3y+9ta0mrldFgYQ4x/Gx5kybgNOhubB/PfASMc2LyTs9D38fKz5GK77VxijahGhogJn8di/xe3ZghZhrmBZSQRCEi50///yTU6dOER3tvvi8r68vXbt2ZevWrfZtVquVrVu3EhcXVy9ruKAWumXLlgHYS4dopKSkkJiYCEBGRgYzZ87k9OnTtGnThieffJKpUx2zDDWXrEa3bt1Yv349M2fOZPbs2bRt25ZFixYxbNgw+5j33nuPmTNnMmzYME6fPk3r1q15/vnnvS4srBHsb6FxaBkLn/jYZV/yqHRMpgTAtf2XpxIlGu7Kj7jD2YXq6ThnEee8zdN89Y12zYuf/ci+7eHZt5NfZKzIsrwYUAn0tdKiWQlNgs0YFJsQsyWb2EZUWkFVQKmR6zVtp+O4Paaqu080CjIDcPLEfAC6XfEwB0/6U1ruLjPWJubCAs2oKpzM90E9hz1uBUEQ/ooUFBTw+++/218fPHiQvXv30qRJE5o0acKsWbMYOnQoUVFRHDhwgMcff5x27doRHx9vP6Z///4MGTKEiRMnArb6t8OHD+faa6+le/fuLFq0iMLCQkaMGFEva77gLtfqeOGFF3jhhReqHHPo0CGXbbfeeiu33nqrx2OioqIc6sfUlhVz/43J5BpbN3RsBhE9khkzIo2VKQMYM8J9skVVAspbYaUJtNGJW1iVanuuz3Kt7ji9CDwf8XXgWDz51Wc+YujYDEKbzKTyI3HhRIjJoJKdPZ/sbIjvkQRUCrkxI7Y6CPGaWOfcCb5Yc2a1gs7ZGhcWZMY3V6W03CYm9WN8jCqhARYsVsgrMl3UNlBBEISLle+//56+ffvaX0+bNg2A4cOHs2zZMn788Ufeeustzpw5Q/PmzRk4cCBz5sxxiLV3Njbde++9nDx5kmeeeYasrCy6dOlCWlpatZ2vvOWCtv5qyGitv7pdN82toANcWnw5U5vYOb1lTxOD7ixyzoLOG8vdhaZrpyns/mURrVo8Rn6x6by299JjNKi0Di8hslEZBsX9Hx56cVYXMexJ0DlnPq9K7Y8CfKqz7kVGTae8ohixn4+VRoFm/DMeo6zDi/x52h+rWOYEQajgYmn91VA6RVwsNJjWX381nEuQqKpK8qh0nlrdx+346tyuns7hjCYanRMj9AkT7nBuSaYdf6FE3hMPfwrEMHTsAi5r8+gFcxdarFBQbCQyDFAc26XF95iAoihO90mtdTigJ+uc3oI5dGwGoxNd3/vsLJsLdt++TCb/PZmcnU/hFzuPrJM+FQkUgiAIFxfh4UEsfvV26eV6DhALXS3RLHTJK27DP8CxB6de1FUl6DRqY6lzzlRduyLGY+KFfr+3ZUycrXnnUuTp+4sOHZtBfI8kNu1awmVtHiUn3+c8W5pUGgWaaRNRQqCflU27XK+7T9eJ+JpUPvtmiX39Wn252vR5TYib4BJXp8e5/6r+8xJrzqRJj2ROF/hwutCHs8VaH1axzgmCUMnFYqETaoZY6C4wenES0WMOrN5a/UE1xFlg2b7kBzjsS4hLYnTiFoaOddyv7dPGVlXGpD7r2HlyTdqEZqVFCpZU/PyYR54fTH7R+RMpigKNg818sWexy75YcyYh3Z/n8El/IhuVcuM1kzBbFXosgfwiW3mTymuoJHlUOmCzxu3bl0nHjtF2V2tCj/GMTtzKqlSbqHO2qOpfO1uAY82ZWK+YT0amDwUlJqktJwiC8D+MCLpzSEKPCYweUb2Yq43r1eVcbsSSLUliAHohp0cTc/qfnubSH1N7tNp4NvHi6Tz6+3HoyAJizZn8EfEaVlWfBFD1ObTM1NqInB8zXnG7PeL6OWza9TodLnuE47n+WK0K5WalomAyhPhb6HDZIzy1wJZpalDAaFQxGBIwGVTWTtzE0LG2uSJvmENChXE8eVQ6qP0Y1GM8sMztfdDQXt/cYxxnS0z8etyv1oWHBUEQhL8OIujOEUPHZpC2K4OVKRMY44WoqwuehNHQsRmk7cxwu1/f/9XdXN6cz2b9806IJsRNQJMdKlotNtXB1ai3bDpYucYCp+cB0KTZDA/WOps4MhlVQv0tvPz0BpJHpXPskkU17lXaqd1UfvndUdRpdeJs69rossahYzM4RaV1bsqcwZRbDFgsUGY2oCgwNXkwJoOKr8lKZq6Kv4+Fsj0zKevwIllnrOz99VVujtOXzVmOO2LNmeQVmzh0MpBSEXOCIAgCF1Ev178qY0Zs9aqocHX9XD3hTYZl2s4l1VrWvImj059LL+a0YruexGBC3ASM2D5sBgU+2bnULuScj/EkENeuiCHWnEmwv3OfPBWjQaVRkJmzufN44/n1vPz0BgCeWt2HS45NoYrKLS6oKpwq8K12nPP7ZStvUrn+RU9vYMlzH7J8zoeEh5bTOKgco2Irf1JmVsgvMnIwO4A/my/iWK4/mbm22IhPdi7nk53LUVW4OW6c289FeM855OT7crbkYqrdJwiCIFxIxEJ3DnFMRPAs2DRrT01dr+eydpy7QsTacy2rVhMba1dUbanTW+Fu6zmB23pO4OOvl2IArKgO7l594H/l/J7unUqAr5Vlsz+seO1oMVu7IoanVvdh6Nh5tLjkcfKLjRX15KoSQVqf05phqzNoe7/XrrDdHy1RYsyIyqLTK960lR8ZM3KrfZ0ALS55jLatHqVdVBE+RiujEj+v6LBReY5YcybB1z7PkRxfsvP9kHQmQRAEQUME3TlAL8y00iArU/pX6XpdldKftIoMSW+FnbfdJGqCd3Fzlb1jtQxab/n460pxZ8DmKFXd1Pxwdr2uTOnPpl0ZtKqITQv2N/OartuERqfe6XTsaCsF8kZqP1QVLNb+FJUVk5PvS9YZ32pj8QyKa324PaZo4t2M1dcadK476O79Hlsh5Fan9mNU4jb7tb6yrISDJ/w5W2yicXC5g/s51pxJaPdkss74cfSYD2VmQ8UdE+ucIAiCYEPKltSSqsqWQPUuVOcvf73gq2uCxPlAuz7tOuorqUOby939W5EygLEjtpA8Kh2f2BcICzQzbqRr4eaXl8VTWq5QWm6guMxgjzM7euxFYs2ZHI56lXKL+2gDo0GlbfZkmvZMZsu3jkI21pzJU6v72K/ZXeFo5wxVPatS+zM60b2oX/Fmf37PCqSw1MhlkcWEBZbz6U5bgkTv2Insr9hXvYVREATBFSlb0jCRsiUXGHd1wxLiklBVlTEjtrIypb9DMeC1K2LsLaXWrohxsLrVh1gaFgWn2nouTVJTtOvT1qkvO1J7bAkSmovRnajTxFxB+4W8MHGj21mGjs3g4InbKShxFD8GRaXrFVN4YvKnwHqmzBlMQYkRs1OCRaMgs80y923VMYkQ47YLiDshqgk/T2Ju6NgMTIZ+NAku59RZHw5kB9C8sUKsOZNmcXM4lONHUalRerIKgvCX4NSZLAoK887b+YKDwmjaKOq8ne9CIYLuHOAs5mzxcY6uuJVv9mPMyG0u7lUtM7WqQsE1ISEuiVN1nsWRyutzLXdSW7HorrCuvlvCqtQBqKrKiS/TKTMbWLR8IEH+VgdhDHBj10ns+1NxET9WFc4WG+1CtNRczMSHNjN0bAatWjwGgMWqoKByfewkfI0q275/3X58rDmTiOvnMNTkmpXrCc3qqq3xjdT+PKQTdW++1Y+Rw7cRa87kZL4v2Xm+qCoUlRo4fDKA6I4vcvCkgdxC6fwgCMJfg1Nnsnjy5fswm8vO2zlNJl+en/ae16Ju3rx5rFu3jl9//ZWAgAB69uzJ/PnziYmx/X9/+vRpnn32WT777DOOHDlCeHg4d9xxB3PmzCEsLMzjvKqq8uyzz7Jq1SrOnDlDr169WLZsGe3bt6+f66yXWQS3wszdc23spm+WocWiucO2vX+trXPOVjk99dHeS2+h0+ar7+QMvViqtIb1IXnUNAzhcx0sZNrYnksVD50lFApLjA7iemXqAMYkwrLVxYwftdlh9LLVA+wdK2xiLtme+ABUdLSYQEKc4rS+SjQXuidX67+/Xsa6Z+H7wAWczPatKMdiW2u5BY6d9tclaIh1ThCEhk9BYd55FXMAZnMZBYV5Xgu67du3k5SURLdu3TCbzTzxxBMMHDiQX375haCgII4fP87x48dZuHAhnTp14vDhw4wbN47jx4/zr3/9y+O8L774Iq+99hpvvfUWbdu25emnnyY+Pp5ffvmlXtzSEkNXS9zF0Dlb5erqKtVaSmnu2JpQXbKEJr404Xeh+rfqcdfaSr89eVQ65k4vklvow6vPVCZEOFtEHWvV2T7eviZbaZMDhxba53S2sOlj4zQ0i5nWOUKrRweVfVg14adfa+WcnuPmkkelUxyzgOOn/aT8iCAI55SLJYbu8LEM5iwZcc7P78zTSSm0vqR25cFOnjxJREQE27dvp3fv3m7HfPDBBzz44IMUFhZiMrnaylRVpXnz5jzyyCM8+uijAOTl5REZGUlqair33Xef23lrEkMndejqAb2Y0LdpqitDx2bUSszVBE9WvAuB3sWq/6mV/wAwGCCqUanDcc4i6nTOC/j5WFEUlSA/Ky2alhLTvIgXZ37sUTRCpZXN8afKlHGfARAZOZ3fw1/j9/DXOBj5GhGR02nT8jFOfPkUvbpMdmnTZYuVrLTS6enUO52Aa+ZSXGZ0k+MrCIIgXCzk5dni/Zo0aVLlmNDQULdiDuDgwYNkZWUxYEClwSAsLIzrrruOnTt31ss6RdDVA+dCcGl16Zy3eUvTg1Vb3PQ17C6kdU5/Te6er10Rg6KrDPzM1E+YOTnN7Vy2GnC244L8rKTMW8eSWR+S/Ni/CQ10LEhc3b3ULHVaEsvaFTEsnf0h7U5OxlarTqG4zMipAhMHwl8j43igi5jXly1RnGTbA+3hjxOBnCmUqAdBEISLFavVypQpU+jVqxdXXnml2zE5OTnMmTOHMWPGeJwnKysLgMjISIftkZGR9n11RQTdRYBevOjLgThTXRC+nnc8fD40Aecu5ut8o3d7uroqK69fE1dayRB345x/mi2VIvCNtyrLi7zxlm2/N/ey8h4pJI9KZ8xTQ/g9/DWnUQoqthIpIY1n0qjpTKKjH+eK9tN4ednAijX1Rx8DlzwqnaCuz1Nu0eL9xN0qCIJwMZKUlMTPP//Me++953Z/fn4+t9xyC506deK55547v4tzQgRdPVHb1l2Ai2Vn7YoYtwH/+jHeoO/X6myJq01HivpEL+bcNaB3jmXT7kf2F085iDdP9eD8fay8vMyxFPAbbw3goeE1F7InvnyK45csosxcnfiyWe4KSowcyfHj1z+DeGbhLaiqYs9uXZ3aD4CTZ/VJEIIgCMLFxsSJE9m4cSOff/45LVq0cNl/9uxZEhISCAkJYf369fj4uNak1YiKsiVkZGdnO2zPzs6276srIujqCU8CSZ8J6gm9haqqXqbunldH2s4lDPPwWalOqA2Lcj9GnxhQG5xjzapyLa9KHeD2nlS2VKvEVuttC2tXxNA6ooQgfwtDx2bw0PAtdsuc8/zuWJU6gFWpA0gelU7yqHROt32ZojJbcWLvsAm/MovN0WrLjrXxSUWx4EKpKycIgnBRoqoqEydOZP369Wzbto22bdu6jMnPz2fgwIH4+vqyYcOGahMW2rZtS1RUFFu3Vobi5Ofn88033xAXF1cv6xZBVw9UJxD0os5dE3tNsMT3mEB8jwlu9zknDHhzXndr0FNd7Jw+YUJ/fOQNyW6voyZoInbtihhS3+rvsl8TbJpAcxZ1oxO3OHSX0NASU5Ie2sxnFZmnmqjTW+c83Ttnl27R5QvJLTRRG7eoyaAS4m9xmDPWnImp8zwKSiR2ThAE4WIkKSmJt99+mzVr1hASEkJWVhZZWVkUFxcDlWKusLCQ1atXk5+fbx9jsVTGa3fo0IH169cDoCgKU6ZMITk5mQ0bNvDTTz/x97//nebNm3PHHXfUy7rlW6UeqK+M1k27Mlzcq3ox42zF8/a8+rIkda1BVx/WOWcSh7uW9bB1yLA9t7lUbbFnkTck67ZtcRFgqqqJw8oCwN4KX22u0Ym2jhTWK1/kxElfalfYR8Xf18o3P73qInzNVgWr1cNhgiAIwgVl2TKbJ6VPnz4O21NSUkhMTOSHH37gm2++AaBdu3YOYw4ePEibNm0AyMjIsGfIAjz++OMUFhYyZswYzpw5w/XXX09aWlq9tUYTQXeOqMp65U5QubNCOZfvgKpFnN61qk+KSNu5pMbWtGFRuO0wEXlDcq0Eobd1+fTxcDYroBY3lwy4JkQ4izpFUVBV1X7P3nhrAIN62vZpFrqqEiI0Med3zTx+z/TDbIXaJi2E+Fu46rqkinX05yG7cBVXqyAI/5sEB4VhMvme904RwUGeOzg4U1153j59+lQ7xt08iqIwe/ZsZs+e7fVaaoIIunOEXvR4K6a8tSR5EkcOLtK2lfFztSkc7FyfThOFdbHueXN9DgJNVb2q0Zb9xVN2y53WL1fDXRKEp36rGiHdn+f3TH9Kq02C8IzRAPNmbGRlimu2cn6RSWrPCYLwP0nTRlE8P+096eV6DhBBdx7wVgzpRVpCXJLXzd89CUZ9H1dPYzytqenBJfVWdNi5g0ZNsNWBm2N/rb8nWvKCs+XOXbyhN9jcvBn8eeo2zpYYqa2YS31hLUPHZvDayomAFVB01jkqYvIEQRD+N2naKOp/QmCdbyQp4jzhjZirqQCpa2KCNoe7bc5irrbWOU9JHJ4yV0HXqWHEVpJHpaMoiltx676zg+O59Nmtns6rZ9++TPKLai/mQGXs00NYuyKGyWM2M2bEVof7FnTt8xXPxO0qCIIg1B8i6C4iapJcUZe6d85UJwybHnTtJqEvtVLVWtxlsHq6Tr0gU1WVFW/2tT93V1DYXZ26TbuW2ve7qztXVewcwC87+tAk2Ay1coqq+PtYWTFnvcs5tWuWzsmCIAjCuUAEXQPlXLQb8yTqTrWtutxKdWvRRJ3eFepOWGk9W20/VcaO/JzwnrMcxjhb8ZzP77zON94a4GCl0/fb9URko1IC/azUTNSp+PlYWT7nQ6f19mdVqq112OrUfhTtfhKTUa3h3IIgCIJQNRLMcxHiKX7OHVrcl3OcmiZaaho7p+3zdJw2t6cuD2ArbbLHFM1tPSfw546nadF7jn186lv93ZYpAV3vU9XqNoPIOX6u8nWMW5e1twkRelam9OfEl08SdeV8Dp0IwOqV7lLxMaq0albqZs2V1zoqcRvJo8TZKgiCINQ/IujqmdoIKHd4iqkbOjaDYVFw56wYEuIcrVPuLGbaed11onAWftUlQujFoztLl7Z9jymaW+NsBZJb9J7jcP7qrnHlm/1QVQugsmJ1b7v68dTiq9Ji595653w+/Vrd7V+Uks6UxNmMGfkp0+fdyplCn4qeq9ooZzlmE3Mtm5Xywy+LAM+CcXVqPzK/SPeihZggCIIg1AxF9aaYiuBCfn4+YWFhJK+4Df8AW/82ZzFXlxIf+vmcLVP6IsHavqqsdOAqYNyN0RIf6lqeBGxWOk3MJQ7f6rA+T1a6oWMzuKnbGEBFUUBroaUYjA6JEe6Enbu59NcFrkJPfy+rysSd/3oChSVGCkuMFJcZKDUrWK22tl4+RpWWTUv4T8aiaq1/Q8dmEGvOJLvVK5wtrkvihSAIQs0oLipgyr19yMvLIzQ09Jyfr6SkhIMHD9K2bdt6K5z7v0hN7qPE0NWRAd0eIiHO1rLLpo0r9bGnVl96qhIB7kSLXoBoFjMNvSvUm/mdLWxpO5ewdkWMg5irqs+qJxLiJhB9wxxUXMUcVHaGcOeuHffQdgDGjtrBya9nob+fzokRVaGdz5OYGzo2wy5etTGerKLTJ6Yx+9F/89JTG+jYopCY5kW0Ci8hPLSc0zkv8My0T11atlW1pkaB5V5fhyAIgiB4g1joaolmoet23TTuTTpkt3atXRFjtyB5Cr7XW8Cq6rGqFxcrU/qj2MxWbsWJO+ucp+4TntyuVeHtOP3Ymmbi2ix0ox22KQooBhOKYvvbozrLnN5656kenadWas73rT4ziTWSR6VT2uFFjp7yRyx0giCcLy4mC11+4UmKS86e8zVoBPiHEBoUft7OV5/UxEInMXT1gL58h83yk0FVsVTgXayds6ioFImuVjNPAsSTmHE+R3Virbpx2nnWPZtBQkXv1ZqydkUMN3WDcQ/tYPkbvQGbpW7Fm30AxaEDhCe8EXPavV+7YovbMeeSPaZoYn99HGPkq1isIugEQfjfIr/wJG9+OAmL9fx5KowGH0besdhrUTdv3jzWrVvHr7/+SkBAAD179mT+/PnExFR+V4wdO5YtW7Zw/PhxgoOD7WM6dOjgcV5VVXn22WdZtWoVZ86coVevXixbtoz27dvX+RpBXK515vaR+wGbBc3bDgVpO13rulUVszZ0bIa9vpqnuT0F+Ts/3I11J9LcuVqrEn3a/KfaJnksKVLVsXqSR6U7DnBq51XV3O4Eq7vn7ix91SVNeKKm9QP3mKLx97F6fYwgCMJfheKSs+dVzAFYrOU1sghu376dpKQkdu3axebNmykvL2fgwIEUFhbax3Tt2pWUlBT27dvHpk2bUFWVgQMHYrFYPM774osv8tprr7F8+XK++eYbgoKCiI+Pp6SkpE7XpyEu11qiuVx3/vARwcFBgK3xbn0lFWhoLlwtvk3DG4uZfkx9rskZzeKldxU7Wwy9cWGuWN2bk1/Pplnc0xVbbBascQ/tcBnrrk2aJ2G6MqU/Y0ZsdVuIuLZtwvTr0L8P3swzdGwG0dGPU1AiBnJBEM4PF4vLNfvUH7z9yWPn/PzOPHjzAiKbXlqrY0+ePElERATbt2+nd+/ebsf8+OOPdO7cmd9//53LLrvMZb+qqjRv3pxHHnmERx99FIC8vDwiIyNJTU3lvvvucztvg0mKmDdvHt26dSMkJISIiAjuuOMOMjIcv5QPHDjAkCFDCA8PJzQ0lHvuuYfs7Oxq5z527BgPPvggTZs2JSAggKuuuorvv//eYcy+ffsYPHgwYWFhBAUF0a1bN44cOVKja1CoiPOqiG/TxE19tOXSGJ24pdqG8vpzu8OTmPPGTeupELC74zx1j/DmeFVVdWLOJuTciTl3rEodYD+/87k06+boxC32B1SKuYS4pFoXavY2AcX5mKijUzEapMCwIAjCxU5eXh4ATZo0cbu/sLCQlJQU2rZtS8uWLd2OOXjwIFlZWQwYUPm9HRYWxnXXXcfOnTvrZZ0XVNBVZ9YsLCxk4MCBKIrCtm3b+OqrrygrK+O2227DavXsssrNzaVXr174+Pjw6aef8ssvv/DSSy/RuHFj+5gDBw5w/fXX06FDB9LT0/nxxx95+umna5FebSutMTpxi70YruZSrYtFzJvsVOf5mx5c4pCxqf+pF1rVWc7cuS2rEjzaOrzpwuCJFattf/WMe+iLii1Vx5c5Z7GC+yxY/Xr0+53X6U4M1/RavHEBr0q1dcPYY4omIrSsojyLIAiCcDFitVqZMmUKvXr14sorr3TYt3TpUoKDgwkODubTTz9l8+bN+Pr6up0nKysLgMjISIftkZGR9n115YIKurS0NBITE7niiivo3LkzqampHDlyhN27dwPw1VdfcejQIVJTU7nqqqu46qqreOutt/j+++/Ztm2bx3nnz59Py5YtSUlJoXv37rRt25aBAwc6mEGffPJJbr75Zl588UViY2O57LLLGDx4MBEREbW6lpUp/dm0a6nXHR68wVNcnCfeyXJvzXN2gVYVZ+YsbGriily7IqZGVkmt1RfAya9nAwrL37hBJ+o84+k+VFXaxPm90VtR3b1vNb12b2IT03YutW/vVvwSARJLJwiCcNGSlJTEzz//zHvvveeyb9iwYezZs4ft27dz+eWXc88999RbPFxtuKiSIpzNmqWlpSiKgp+fn32Mv78/BoOBL7/80uM8GzZs4Nprr+Xuu+8mIiKC2NhYVq1aZd9vtVr597//zeWXX058fDwRERFcd911fPjhhx7nLC0tJT8/3+GhR1EUj667+nS/Os/r/FprWq/fp7fWVRXL5i7Orjor1bAoxxi2tJ1LvLZsaYkOyaPSaRb3TIWL9QuWv9Hbo6tVbwXUX6PmSnU+f3V1/tJ2LrGv3ZtMX0/rcdelQy/ynO99QtwE3skCX5+a9owVBEEQzgcTJ05k48aNfP7557Ro0cJlf1hYGO3bt6d3797861//4tdff2X9+vVu54qKigJwCRnLzs6276srF42gc2fW7NGjB0FBQUyfPp2ioiIKCwt59NFHsVgsZGZmepzrjz/+sKcCb9q0ifHjxzN58mTeeustAE6cOEFBQQEvvPACCQkJfPbZZwwZMoQ777yT7du3u51z3rx5hIWF2R+an3zLd5VC8VwlHejRC5TqMmUT4pIYFmUTXXo8BfA7J154iofT847OUuwphq0qkkelE9FrFgDL37ihSjGnoU/C0B7OgszZGuku09e55py3RZid5/EUO+ho+ZzgMGZ04lbWroih2aFpmIwi6ARBEC4WVFVl4sSJrF+/nm3bttG2bVuvjlFVldJS157eAG3btiUqKoqtWysrNuTn5/PNN98QFxdXL+u+aASdO7NmeHg4H3zwAR9//DHBwcGEhYVx5swZrrnmGgwGz0u3Wq1cc801zJ07l9jYWMaMGcPo0aNZvny5fT/A7bffztSpU+nSpQszZszg1ltvtY9xZubMmeTl5dkfR48eBaB/t4eAqsWcZgmqLc6ipCqcz3OqbRKn2rq3EFYVP6fP3KwuQ9Xba3Ne+7pnM4i4fg5jRn5ub/VVlWVOW5enJBFtv/O53MUNrkzp75IlXJsYwKri5hxrCLqvobfHFE2zkHIUsdIJgiBcFCQlJfH222+zZs0aQkJCyMrKIisri+LiYsBmNJo3bx67d+/myJEjfP3119x9990EBARw88032+fp0KGD3WKnKApTpkwhOTmZDRs28NNPP/H3v/+d5s2bc8cdd9TLui8KQVeVWXPgwIEcOHCAEydOkJOTwz/+8Q+OHTvGpZd6Tj+Ojo6mU6dODts6duxoz2Bt1qwZJpOpyjHO+Pn5ERoa6vDQqE7Q1CZRoCq3YVXiqqp9nly/3sTqVXUN3riTtSxUjeRR6eS0cWyXVZVlzlP8n/7cnq7dnTVtzIitHmvUuXOjujtPdSVjvOWFGRvJz51HkJ8Zcb8KgiBcWJYtW0ZeXh59+vQhOjra/nj//fcBW+jXF198wc0330y7du249957CQkJ4euvv3aIw8/IyLCHkgE8/vjjTJo0iTFjxtCtWzcKCgpIS0urt163F1TQ1cSs2axZMxo1asS2bds4ceIEgwcP9ji2V69eLuVPfvvtN1q3bg2Ar68v3bp1q3KMt5yrJEV9b9Ca1jirCXXJTNVoerB6C52nZBEtjm7sKM9izp3A8pTp62xNdI5hs1nn+tn3J/SYQEKc7V5ros3bvqz6jGLne+jJ9eq8TRs3sMcEov+cKu5XQRD+0gT4h2A0+JzXcxoNPgT4h3g9XnOfOj8SExMBaN68OZ988gnZ2dmUlZVx9OhR3nnnHYdOEto82jFgs9LNnj2brKwsSkpK2LJlC5dffnl9XCJwgVt/JSUlsWbNGj766CO7WRNsgYYBAQEApKSk0LFjR8LDw9m5cycPP/wwU6dOdbhx/fv3Z8iQIUycOBGAqVOn0rNnT+bOncs999zDt99+y8qVK1m5cqX9mMcee4x7772X3r1707dvX9LS0vj4449JT0+v0TVs+e4N/APq/8OpFcJ17rpQH22qqisy7M7CNCzKMV5OzztZ9bc2PfrYNmeLpScB5dyGzZ0LedOuZaxMmQD0RwU27bTVqUNV7WIuvscEe/060NquORYStrV489wTVnteleVQ2zd2xFagD7CeMU8NwWJVsFhB+r0KgvBXIjQonJF3LJZerueACyroli1bBkCfPn0ctqekpNhVbUZGBjNnzuT06dO0adOGJ598kqlTpzqMP3DgADk5OfbX3bp1Y/369cycOZPZs2fTtm1bFi1axLBhw+xjhgwZwvLly5k3bx6TJ08mJiaGtWvXcv3119f5uqorE+ItNtFVs9IlNstR9XNXJerciblTbZNIaKtfl+N+T2LPHatSB5D9RTqKoti7ODifvzohpKcqgefpGO2cWl04gLRdS+2CzrbfNq9t21L7eVZV9KrVSqRoPWGd1+8sKMFWqkVRIG2n5w4TK5PXk7xoEH+e8qOk3ICIOkEQ/kqEBoX/Twis880Fd7lWZdYEeOGFF8jKyqKsrIzffvuNadOm2bsyaBw6dIjnnnvOYdutt97KTz/9RElJCfv27WP06NEu5x85ciT79++nuLiYvXv3cvvtt9fbtXkT2+UJZ4GilSOpLlbNuQVXTdboDZ6KJZ9q61jMuDpGJ25hjyna435nd2V1ZUiqE7jurHcaaTuXOozftGspm3YttZ/XnfvVuTSKNwWF9YxO3EpC3IQqaun1Z8++RUQ3LsXHKN0kBEEQhOq5KJIi/moMHZtRpwLDWhC+JjycW1bpuyRo49auiHHopVqfok4TbM44l0OpCWtXxHgVe+eps4W2zZ3gcs7Q1T+P7+EqpKqyBmoCT6sx6G6cNmd8jwlVivehYzPslkF91qvzMVpJk/DQcsICzR7nEwRBEAQNEXR1pH+3h4jvMcEuLDSRVZVo8KZWW3WCTCvmq6/BVtPsSm/QizZN/Gm17XLaVF63fpy3a7hzVgzNDi2tfiCe75kW5+Ys7GqSQKJfb/x14x3GxFckTagV8XV6F2naziX2dm+APXNWn00b32MCCW5EpDflUkxGlchGZQT6SvFhQRAEoWpE0NURBQVFUeydIsB9+y0N5wxMd0LFGzGidTfwtuVUVXhyD2uxc87ktJlgLzmiub9r6nbVuHNWDMtX3+j1eHcZrFAZE6eJLk/ZrvpEB/32VW/2Jf66cSioJPQYR3yPSmGnuWX1x2rXOWbEVk58+TQJPca5xM5VWuRUt++pN3F+oYEWWkcUE+gnok4QBEHwjAi6c0B1osbZMuRs1QHbl31VfUm1Me6sO3p3rTc0PbjE3sJLi9VLiEtyK+aGRWEXsPpYRmcRWxNht/nblax7NoPlb/R22L78jd4u21al9ncQTPryIQlxSWzatdQhGcX5ubt9AGnfLGfMyM8ZPfJz0nYtZ9OuZfZ9zhmveoaOzSCyotOFp+sePcJ932H9GjxZIMeO2ELjIDOXRRYR4m9BRJ0gCILgDhF054Dq4tKqCtKvCc6JExrVuWudY9e0bhLe4GlcdeKzKtauiOHOWTGoqsqyVTewbJUt09jW23UHy9/ozYo3+7AypT+ah1MTcvp4RU1UVpew4KmbhLuxWgydPm5RG2+PXfxmOWm7ljvM5XwOTy54T65y/WtFgZAAC63Di/E1SZKEIAiC4IoIunNAbRIi3H3xO9eg04smvcVJi6eDSqGw7lnPFjJvxVtNW5Y5C0x3BYGrYvzoL+zPk0el25+Pe2gHn32zArC5ITXrZVX32dny5Vxg2HnNzsLK2V2rJT1o53S+Nj0r3+zLyjf7AhB/3Tj7tVQn3J0tj+5EXbPQchSpYiIIgiA4oaj6qG7Ba/Lz8wkLC2PXDxsIDgmyb69LdivUrCuEhiZuVqUOIG3nErug81a4VYX28XAuFdP04BKH+bXX+u3uxKBzjT5nlq26weH1qV1zaBb3DAaDEcVgq8lW3T2u6h56U8POHc7u5IQe40CF0SM/dykoHH/dOPvYTd8sdztHVetMHpXuUNZF734vLVf485QfJ/N9pfCwIAheU1xUwJR7+5CXl+fQuvJcUVJSwsGDB2nbtq1La6v8wpNSWNhLqrqPzlzQwsJ/JfSWm9q4UJ3jqTzVXnM3v97lqHUzuHNWDOueXVLxM8Ot+HJ+7bw9becSezarM85iUXut3663HFZaF6u2+G35/g3Wrohh2aobKix2fVgep9hcrSps2rWElSkTHIoRO1vrnO+PVry4tmLu/9k77/go6vz/P2d30wMB0hEIUZAmICjdDoaiKMj3+OrlDgtCaEqxIHcoFu4A0RM9IRQVvN+hXlE89KuAgmADRME7FC4qJNQsKaSQnt2d3x+zs5mdndmWTQgwTx+R7MxnPvOZyWbnlXeFhpInrlg6UYq7m5ClLRyVQs61jjduQRBEECTDuNxpQv2zXvj6TRrrkoR1hMVBp4QaaupMlFZZABEBMJtE5yijw4SBgUHLpbyykDfefwi7o77Zzmk2hfHAuD/7LeqWLFnCe++9x3//+1+ioqIYOnQoy5Yt82jtBZLRY8yYMWzZsoVNmzYxbtw43XlFUWTRokWsW7eO0tJShg0bRnZ2Nl27dg320twwXK4hJJDuEHr7fWW8+hKLytisjVYpiUBPfIH0Btto1bYsyokRWtY5b6+V299blOOyHKrr6OmtHyRhp0QURabev52MQdMo+PJJ13ZZKMouaXUsn1Zsn78/I7XbVo6lGzV4GlMe+MxtjOxmVVrn3MqXOLeLCM4C2p7n0VqTvE+uWycIEGZy0DrKRtsY6Su5TR09O1RyVcdKuqZUERHm8HpdBgYGBueL6ppzzSrmAOyO+oAsgrt27WLmzJns2bOHTz75hPr6ejIyMqisrPQYu2LFCo9npB7PP/88r7zyCqtXr2bv3r3ExMQwcuRIampq/F6bNwyXa5AoXa5zH9rtEg6NcQeqx/lj6VNap+SCxFPu+1SzpRbAe4tyKOo8A0EQXCJJ3gaSa1VtqQNPq56/xOeudLUFk1uEjRoy0207aN+P1a/dwLQHP3e9XvvGLRR89RRJ1z2HIGi7XvX636qF0shB05jqFGXyOCUZA7PY9s0a1+tRg6YhCiZAZKoza1X5s5Rj5gDXvFo/w7Vv3MLUB9yPl+fQE3MN1zYcARAQcYggig1/kZmd31TVmfjxZCxVdWaPe2NgYHDp0lJcrmeKj/LXjx5r8vOr+c2Y5STHXx7UsYWFhSQlJbFr1y5uuKGh8sL333/P7bffzrfffktqaqpXC50oirRv355HHnmERx99FICysjKSk5PZsGEDd999t+Zxhsu1GXlo+k7W//U2ry5XtTtVvU3LsufPAx7wcDWOGiJ3JJDEm7rH6kYrZLKK4nSpxMfaN6bDMek83v7KCFTMyXXylAWH5bXI4lDqDSu6dU1QIme4gsC0B3c5hdBNrPXSblcZSyijFtHSa9Ftv/J+ZwyciiC4/wy2OF2osnibqrLQKcWhjNbPSxZzkuDWTobRE/JT7tvOa87esyYBBEFEcLpWBUESeIaj1cDAwCC0lJWVAdCuXTvXtqqqKn7961+zcuVKUlJ8t03Kzc3FarUyYkSD1yguLo5Bgwaxe/duXUEXCIagayR/zr7JzSKmlSmpJdz0CuTKr/15wGshCTz9osbK+DqpeK5AUeeGmLRgkim0rHeSxXIExeAUbg0xeeqxa9ffgsNuc7PGycjb1q6/RdJgguBWRkSNVMYEJmR5Xrs7Dtd4Ndu+Wevcpz3/1r05HvvUQtzXz0zqF4vbMeq59NYvIoIoizrFIEG6RYbJ3cDAwCA0OBwO5syZw7Bhw7jqqqtc2+fOncvQoUP97gFvtUoWjeTkZLftycnJrn2NxYihCxGCILg91NWFgdUPeb2SF95q0/l66KvHbrS6x3HJa1i7frjTWiYgCA1rl+eMz22Id/MnXk5PAG7ZvdLtC/CwGILA1j3ZfLJvndtWZUHhNa/fKLk5BcElmrVYt2GEh1D2dHne5NwmsvaN693ujfI4mYxBWR7bAFdMnPK+6WWx6r2We7/qCX29YwW0ramiCNV1ZhwOw05nYGBgEApmzpzJDz/8wDvvvOPatnnzZnbs2MGKFSvO38I0MCx0IUDLKiRvkwk089WbYPPHAuRNGCTkSa7QIkB20ikTKeRxU+6DdRv0Eyq8EZ+7UrfAspZFz9t6sybDmtdvAjxj5JSo3d7q7hAAUx/Y6fz3C7ex6nM2rGkNIwdNY9QgAClOTs4nHTkoC3AgiiLbvnktICsbyK3EtBM0tFzwAA/et53X1t8sZcuqHKwOEc6Uh1NrMwSdgYGBQWOZNWsWH374IZ9//jkdOnRwbd+xYwdHjhyhTZs2buMnTJjA9ddfz86dOz3mkt2yZ86cITW1oSzVmTNnuPrqq0OyXsNCFwKU3QNk9DIX1VY8JXrFaoOpTafHu2u6sdGKKzFCfQ512zBlcWG9bFYtvAk/f0Sh7Gp9d0031rxxMyBQ8OWT+MrhUcek+ZvJqv5eeezWvaulbhB7VzPlgc/Yunc1W/euwVVLRcHIQQ8GtCa9n7U3l7sgeMbKueSd4W81MDAwaBSiKDJr1iw2bdrEjh07SE9Pd9v/xBNP8J///Ifvv//e9QXw0ksvsX79es0509PTSUlJYfv2hpjx8vJy9u7dy5AhQ0KybkPQNRLRjyeoVgydknUbRrgyVKXEhpmax3rbpjWfGmWvVrXLTu7fKh8vj5W/n3Lfp9z1TOMFpRK5lIme+F392g2sef1GCr9aROHXi0ga9qxm5q68ZqUolXvTNpQVucVtvFpU6ZWH0RN5GQOzXD/5bd+85iEM+9nyPc6jnltru1Lo6wnBj3avdp3b9e4TXSGGBgYGBgaNYObMmfz1r3/lrbfeolWrVlitVqxWK9XV1YBkbbvqqqvcvgA6derkJv66d+/Opk2bAClMZs6cOSxevJjNmzdz8OBBJk2aRPv27b3WrgsEw+XaSB6evguLJSIgN6h6rJSZ2SCmvGVoaqHO0pRcvd4zYuXjlOJRLmOiV/JEXptcdsRbsWK9bQ2Imtckb1vz+o0AJB5fC0Of1jZLKdYlJ4NIruJPWTw5n6TOImvXD2frnlVMfUD7PHqWPK1yJ++u6caa128GhZwSRcgY+CAZAwGuRxRhzevXs+0bd7evP+8PtfVWrxCyJBYFREEqKiyvpqQyjIoao1yJgYGBQWPIzs4G4KabbnLbvn79eu677z6/58nJyXFlyAI8/vjjVFZWMnXqVEpLS7nuuuvYsmWLz3Ik/hK0he7IkSMsXLiQe+65h4KCAgA+/vhjfvzxx5As7ELhlewb3V4rC93KaFlp1PvVbbJ8WYi0LHZKISAX2tVDtrzJiKKIIDR0VdA6VrlGvWLFSres92SJVZr7JmTlsPaNmxAEgcKvn3FuFch64DNX/Tc1cokUaLgXByypTL1/Owl5q5zZvNooLWLeBKZ8XwWpEJyrRt22b14DUfpX/sqa/IXfyQ7+orw+uS2Y6KxFB5Koq6ozU1UntUczMDAwaIlERbbCbApr1nOaTWFERbbye7xU/N3zy5uYE0XRw9KmPkYQBJ599lmsVis1NTV8+umnXHnllQFejT5BFRbetWsXo0ePZtiwYXz++eccPnyYyy+/nKVLl/Ltt9/yz3/+M2QLbKnIhYUHDJqHxRIB4LIGgWf5Cm8WGm+159Tb/bH2+NqvVZpEFEUS8lax0SplX+q5NpXr1Up62LJ7JSMHz/BZOdtXqzR5+5o3biHxWLbL3Sufu58tn6TrnkXO1AXBJTil0igN7cq27NYvc6I+n7f7rHS3yoLu1gEPIgDb9r3mMaevn9GoITM0ha1eQoT6vTFmyHQERFcNuuPFkeQVRmEIOgMDAzUtpbAwGL1cA6HJCws/8cQTLF68mHnz5tGqVYPqveWWW3j11VeDmfKiQFkfTctlB7Dw1XIWz2rtYWHTc68p51Lv8xaLpcYfl19R5xmM7Ow5Xt0FQ96emSIJqLue6eYSKAAJeatcglEu9Csjiy69HqjKa5C7Kqx9Yzpr35Cr5g53jlBmeUr/ygKz2LVfYuTgGcAqryJNjTcLq7KDxCcaQs4bE7JyGDloGlv35riJOa2ft9LaKo9ZPHmnq9erlOkqUWszUVLRvH/1GhgYGARD65jEC1ZgtWSCEnQHDx7krbfe8tielJREUVFRoxd1oaEV56Z2tUkuTknQrNtwFzBCt8yGepvytfJ8WuvwxyKo5QpVW9Tkc2emQDEjnK5U97nlNl7wKSMHz3B2fOjGKIWAk8WclkvZVwaqiMiaN252dVdQXytoWwm94YrRe+16sh78wu1+6VnpAEYOymLqAzt1y4so1+VLqMJqD1Gpl+2q3nYAyd06Zsh0/u/rbG4b2tA71jDMGRgYGFy6BBVD16ZNG/Lz8z22HzhwgMsuu6zRi7qQkGPo/I2RUgoQOYtUS8zJqGO4vKG2qCktY++u6abZvB4a4gUQRabc96mbJe6uZ7p5JFMo16TuG6u1RrlDBOD6Vy/ZQ4qhk+q9Cc7/vF1rIKVUlGVhsh5sqEOnZM1rUl+xjAEN5UdGDprK1r1rfN5/eV164+RED72MWq259LZ9tDtb+t4ZRxdhcdAm2uZzfQYGBgYGFydBCbq7776b+fPnY7VaEQQBh8PBV199xaOPPsqkSZNCvcYWzXany03PyiJ/6RXDBfdECi3rkFa2pFo4rF0/3O21XGpEjUu8qUjIW8UUnbi5CVk5miVL5FIhSuNeZgrO+UXicxs6RCiPl0WtlnXt3TXdGvqiCmha55Rj5Xl9CTstl7UW2/a9DkDWg1+47vXUB3Z5nceX1a4B6b5LovUW1/frNgz3adVTJm+8tv4W17kfuM+zh6yBgYGBwaVHUEkRdXV1zJw5kw0bNmC327FYLNjtdn7961+zYcMGzOaLv3SCnBSxeM1YIqM8Y5dki5gsqrxlnKrdkSCJHeV2PdfehKwcZ4wYTL1/u6sUiWwVUycTyGNlF6tcqsQXSnGpvq4tu1f6jNt7b1EORZ1nuJJG9ASn1rH+rE2+Fw0iUXpb68WpabmmlcIsY8CDulY8b0kLDS7d69i273UyBkxGTo3Nmvy55lxr19/C1Pt3eBXzIwdPZ+uebI9rf3dNN97YIFk084qiOF4UieF7NTAwUNOSkiIM/CeQ+xiUoJM5fvw4P/zwAxUVFfTr14+uXbsGO9UFhzdB16N3KocPurukvcV6qRMHlOiJunUbhqP+yclJGer4Mrmsh3z82vVSYoEgCC5rnT+iTsYtYWL9cF3LHkhCTk6aUOIt41cWnf6uy1s2qPo8a16/gazJn7tdh+xmlQWYbKXzNZ+/otMfV7ks2uTSLGvX36Ip4LSOfePNmxFFyC2I5uTZCAxBZ2BgoMYQdBcmgdzHRnWK6NSpE2PGjGHixImXlJjzhVrMeXvob9m9kglZUh26Bneop8ZWigvJKrbKZe3aumeVWwzbu2u6uWLVQHRLrABJJE29f7vTQqZ9PoB162/R3K68ni17tOvJycfLYm7k4OmMHDxdsS5tRg2Z6VPEaYlDX8kg8jGymFNehyzg5O8zBkx2O07LOqo8XoksDvXW6u16tu7Jdrlwt+7Jdrsub8f+39erqaozc7bSqBNuYGBgcKni9xNg3rx5fk/6pz/9KajFXKxID+yGLgtK5Nd6hlKl61V+8MsuTmXdOyVr1w+niOEgih5WO6Xl59013XSL9QJMcboBfWdtal/zlPsbxmSmZLPR6v0YJd5EnTfxFkhpEnmfUsCBJOq8JaPoCcZbr51M1oNf6p4rUJTXoZfhLK/PZheoqzeKChsYGBhcqvjtcr355pvdXu/fvx+bzUa3btKD5qeffsJsNnPNNdewY4e+SLhY8BVDp0QpypSCTm6NpSX0lKhdpuAZkyePGTVkpoc4VFrvRg6eDqLYkHigwYSsHEYNns4UL2LP27HQuM4Ieq3H9M7jj+szELesnmjSc7f6Or8/VrpgUa4hNfVxZ+svQ9QZGBi405JcrtV1Z6mzVTb5GmTCLTFEhbdrtvOFkiYpLPzZZw0C4E9/+hOtWrXizTffpG3btgCUlJRw//33c/311we57AsbdRKDEnl7j96pbtvlenC+aqnJgmHdhuGuIP8p97l3ppiQhXO7exKGh14Xpf95E16Sqy/0Ys6b8JFFpIjgV5cKaCgY7M95tCx2GQMeZNu+1zwEl5wQ4U3EaYm51euuY9oUdwudlpjrZ8unZ4dUl8XSF1pJGEo3uuyaffrFeqpqzTiCjoo1MDAwaFqq686y6/CzOMTmK7NkEizc2OMpv0XdkiVLeO+99/jvf/9LVFQUQ4cOZdmyZS4DFkh9Xnft2uV2XFZWFqtXr9adVxRFFi1axLp16ygtLWXYsGFkZ2eHLGQtqBi6F198kSVLlrjEHEDbtm1ZvHgxL774YkgWdqGhJ+aUpMXepbldFEVXDJ0WLlEhaj/cRw6e4RFjJx8gZ77KY+UyIP7EZ6lRihO9ch0jB03zGCf/6+18I50WQW/17ORzyP+q26z5cx65FhwAguBWb06ea9u+11jz2vWaZUnUr5X3/ZNvX2dCVg5rXrve6zXI+IonVF+bcg1qJmTlEG5xYDHpx0QaGBgYnG/qbJXNKuYAHKItIIvgrl27mDlzJnv27OGTTz6hvr6ejIwMKivd55gyZQr5+fmur+eff97rvM8//zyvvPIKq1evZu/evcTExDBy5EhqamqCui41QUVRl5eXU1hY6LG9sLCQc+earz9bS0a2uindqe59TuWHruQekzM7RWfcmzTHDESxIStVRPo+IS+H/YmpbN2zirXrZ7jqwMniYuTgBiG3dv0Mpjpj2Rrqqu30+zqUYtBbHTxXwsUDIHeUUK7Jm8h6b1EOd92vf25v69LaprVv5KDpbN2bTdZkaX0TsnLY9s06135lmRJZ5GnN40tgvbumGxkDdJcNwAFLKgdU1jmluNOz3Cnvv9a97372ZU6HPU6d/eIvG2RgYGDQVGzZssXt9YYNG0hKSuK7777jhhtucG2Pjo4mJcWPv8yRnu0rVqxg4cKF3HnnnQD85S9/ITk5mffff5+777670esOqmzJpEmT+OKLL3jxxRcZOHAgAHv37uWxxx7j+uuv580332z0wlo6/sTQaZUvUSOLNmVdOMAj2UFZykO9X6+mWmPi2PTwZjnzFpemnsOb67UpUK4vY+AU5Jov2/a9RsbAB9n2zWuucep1ZAyc4ib+1DF1bmMV7tpAkUWdUtB5qz+odX0dLnuMsioLRhydgYGBkpYSQ1dWdYKvflrW5OdXM+zK+cRFdwzq2F9++YWuXbty8OBBrrrqKkByuf7444+IokhKSgpjx47lySefJDo6WnOOo0ePcsUVV3DgwAGuvvpq1/Ybb7yRq6++mpdfflnzuCYvW7J69WpGjx7Nr3/9a9LS0khLS+PXv/41o0aNYtUq/TIWlwLKeDi1mFPH0AGK8iPu9eBGDp7ByEHT3YScIAjOL+X5ZrgseJkpkgVPfi3/2xiUVi+ldU7psh05SArgU27XcsnqxdjpCUEt0SffD7XA9fc6ZLY5O3xkDJwCCG7iTBljB7iJOW/r7GfLd1n5GiOmfbli9e7ju2u60SbGhrlRxYgMDAwMDGQcDgdz5sxh2LBhLjEH8Otf/5q//vWvfPbZZyxYsID/9//+H7/5zW9057Fapb/Uk5OT3bYnJye79jWWoFyu0dHRrFq1iuXLl3PkyBEArrjiCmJiYkKyqAsZdQKEUtR5s9ZJVjopmcFlpdsrlRdpcNPKNLhpp9y33dX2qzh9JludLt5RQ2YEFEoViKhSs3XvGmQ3q7tlayqZKWvZaJW+z5qs6FgxaCqiCInH11LYKYt31+z0uiYlIwfP0CzXEgzbvlmne43b9r1GxoApIAhs+2atphDtZ8tn4es3SfuyfK89Y+BUQBLn0n1rQLbMaQk6pZiWX2tZCVtHZWA2idgdYFjpDAwMDBrHzJkz+eGHH/jyS/eEt6lTp7q+7927N6mpqQwfPpwjR45wxRVXNPcygUYWFo6JiaFPnz706dPnkhVzIwZM0dyeFnsXnWLGM3LwDEYNmcGoITMlq5uGZUm9TbbEKfcpPeOiKLq2y1Y4pWVwy+6VbNmt3ZtVL/ZMSmjI0hU3WkkUSkGx5vUbWfvGTS5rHcC2b9a6RMq2b9ZKNd+cgmbr3rWu/VmTd2qeU4tQCDnZ4rZt32uarmLldW7bt45t36zVneuAJZXFk3f6PKeriPE30nV7i3RQuly9WeOUa5f3f/3vP5PUus6ZHGFgYGBgECyzZs3iww8/5LPPPqNDhw5exw4aNAiQ3LNayLF2Z86ccdt+5swZv+PwfBGUoLv55pu55ZZbdL/8ZcmSJQwYMIBWrVqRlJTEuHHjyMlxFxxHjhxh/PjxJCYm0rp1ayZOnOhxQ7Q4deoUv/nNb4iPjycqKorevXvz7bffao6dNm0agiCwYsUKv9cu8+k+T3ccSKJq6x7JnarsJ6olSORx3ti6Z5VbfJ3yGOkckmVQ7Q5Vo3aHylmfa16/0S1ZQu1qVaK2DoEkVLbuXeNhdVLjTRwp1+iNxog6X9m9yutVJnTol3fpxsLXb3K99setDA33wZ9MV61kD2+Zt5E5jxEbacfIdjUwMDAIHFEUmTVrFps2bWLHjh2kp6f7POb7778HIDXVM7QKID09nZSUFLZvbzC0lJeXs3fvXoYMGRKSdQcl6K6++mr69u3r+urZsyd1dXXs37+f3r17+z2Pr9TgyspKMjIyEASBHTt28NVXX1FXV8fYsWNxOBy685aUlDBs2DDCwsL4+OOPOXToEC+++KJbmRWZTZs2sWfPHtq3bx/4jQgAWeDpocyEVf6rFG4CnnXlEvJWBRxPBg2CI2vyLuf30rz+iBn1NikOLXAyU6S53EqJqNYnI1s6vaGVUatVN07LVal13TK+sm0XT97Je4t8J0FoiUJf3TPU2cV6mbfK7w9YUkk4Ns+IpTMwMDAIgpkzZ/LXv/6Vt956i1atWmG1WrFarVRXVwOSoem5557ju+++Iy8vj82bNzNp0iRuuOEG+vTp45qne/fubNq0CZA8b3PmzGHx4sVs3ryZgwcPMmnSJNq3b8+4ceNCsu6gslz1ePrpp6moqOCFF14I6vjCwkKSkpLYtWsXN9xwA9u2bWP06NGUlJS4snLKyspo27Yt27ZtY8QI7Yb2TzzxBF999RVffPGF1/OdOnWKQYMGsXXrVm677TbmzJnDnDlz/FprIJ0imgplVwhBEFwlUuTiwoHirZCu1tjGkjFwiltvVW+iRRk3pyzirDdeSSCWM+Ux/rDmteul4EcEsibv0hyjvi511mww59UqMqwmNXU+FTVGOzADAwMjyzWQLFf3mPUG1q9fz3333ceJEyf4zW9+ww8//EBlZSUdO3Zk/PjxLFy40O3eCoLgOgYaCguvXbuW0tJSrrvuOlatWsWVV16pu5Ymz3LV4ze/+Q1vvPFG0MeXlZUB0K6dVM25trYWQRCIiIhwjYmMjMRkMnkEKCrZvHkz1157Lb/61a9ISkqiX79+rFvn/gB1OBz89re/5bHHHqNXr14+11ZbW0t5ebnbV6jR6hihjL1TWuLk7wVBICGvocAueFqd/BVfelYsNaEqLZJ43FPUaJXjACn7V7ZWKYs4e1uLL3HkLT7Nm8tZZvVr17Nt32tkTf6cbd+s9bA0Ko+V4genuKyZelZN9Xn1XN5aJVOU6wfIz19GjOF6NTAwaEGEW2IwCUHlYwaNSbAQbvE/zl8URc0vWZh17NiRXbt2UVxcTE1NDT///DPPP/+8h1BWHgPS8/rZZ5/FarVSU1PDp59+6lXMBUpI7+ru3bt9Kkg9tFKDBw8eTExMDPPnz+ePf/wjoijyxBNPYLfbyc/Xzxg9evQo2dnZzJs3j9/97nfs27ePhx9+mPDwcO69914Ali1bhsVi4eGHH/ZrfUuWLOGZZ57R3KeV0RoM6m4TaoEnCIKbkJOPkcfJHSK0BAoEVptOy8337ppuLHy1nMMHA7kqfTZaYc3rN7isdBmDppH1wGce8WF67k9vLsgJWTm8tyiHjVacLdM859QSRWox5+3eCYLgNl6Ki+vG2jduYuveNW4JIlv3rmHbN+vchJyWpc6biFbXv9NK6FALwOHi83xsfoJ6u2GlMzAwOP9Ehbfjxh5PGb1cm4CgXK533eXewkoURfLz8/n222958sknWbRoUcALmT59Oh9//DFffvmlWzbJtm3bmD59Orm5uZhMJu655x4OHTrEwIEDyc7O1pwrPDyca6+9lq+//tq17eGHH2bfvn3s3r2b7777jttuu439+/e7Yuc6d+7s1eVaW1tLbW2t63V5eTkdO3bkH19MITo23LVdLerUsXH+4Ku3q5Ip933qesg3tPxSCD1RagU15f4dmhYpX9aepiYzBe56JvDer8r9eu7HUUNmsGX3Kte/8hhf+FMgWc7YVSd5+KqxJ1vqAJfAk0un+BKrenMrx44eMoOPd7u3ROvS+RHOlIVjuF4NDC5dWorL1SAwArmPQQm6++67z83HbDKZSExM5JZbbiEjIyPgBc+aNYt//etffP7557rZJEVFRVgsFtq0aUNKSgqPPPIIjz32mObYtLQ0br31Vl577TXXtuzsbBYvXsypU6dYsWIF8+bNw2Rq8Djb7XZMJhMdO3YkLy/P55rlGDpZ0B0+mO8W2xUI6pIjgQo6mfcWSbXo3FAJOrXFSSkalJbGUFkd/UUqZyKw7ZuGLFm1RUqLYESot5g65Zx6FrzFk3eSMORJpul0hFBbN/0RzFpjMgZMZtu+1z3W7OuatEhOnk9VnRFPZ2BwqWIIuguTQO5jUC7XDRs2BHOYB6Io8tBDD7Fp0yZ27tzpNTU4ISEBgB07dlBQUMAdd9yhO3bYsGEe5U9++ukn0tLSAPjtb3/rkVAxcuRIfvvb33L//RpNRf3kWMV79OidSqeY8ZoZrXrWOmViQ7DWuQlZDWJuy+6VZKZAcfpMtuxZpWvtUW/ztwhyUyAX7l37xnQQQEBg5GCA4by7xrOenjca3NLSa2XZGNC3/HkTRBkDHwQEMgaIiFzPJ/teQ9mzVmt+rRhGb5Y3tZjzNqe3moBa15GWWM3P1mhshuvVwMDA4KIkKEF3+eWXs2/fPuLj4922l5aW0r9/f44ePerXPDNnzuStt97iX//6lys1GCAuLo6oqChAyirp0aMHiYmJ7N69m9mzZzN37ly6dWt4oA0fPpzx48cza9YsAObOncvQoUP54x//yMSJE/nmm29Yu3Yta9dK7rH4+HiPtYeFhZGSkuI2byAoM06PV25y2zdy8AwS8lZRrHitFHxb9wRWekS2yqnjqUY5S9m8u6YbozaM4KkFpxl6h3bwf6jcq5kp+s3kA0VaU0MdQ1mQrdswwmfmrixg3QswN9SsU65TFkbyNjnWbeoDWuuRxVzDoqZN/hxZzOm5fPXur56wfndNNw8RBw1WOnVpEl/uZuVYALJeISXlcaegM0SdgYGBwcVGUFmueXl52O12j+21tbWcOnXK73mys7MpKyvjpptuIjU11fX1t7/9zTUmJyeHcePG0aNHD5599ll+//vfe5RFOXLkCEVFRa7XAwYMYNOmTbz99ttcddVVPPfcc6xYsYLMzMwgrtY/jlW8x/HKTR5iDiSBtz8xFRBd44JFtsqpUcbPTcjKYcvulQy9Y5PfZTqCJVRiTmbqAzsUrxrEh691b7RKlkmtfrda63x3TTfuekZKjNi6dw1TH9jJ2jdu8phX7vWqFEFrXr9Bcz1NFYOYMWCyR8as/K+6Tp0S9evE1nUe98XAwMDA4OIgIAvd5s2bXd9v3bqVuLg412u73c727dvp3Lmz3/P5E763dOlSli5d6nWMVszb7bffzu233+73WvyJmwuEHr1TPdyWatefjL51TnQdo3TFahW/bTjHSrdxSpGx8NVyOkZNBda6Wakksdn8blY1ksv1FrbuyWaU6p74m527ZfdKN5erMiFCRq/e3da9a5iQRUA0RsR5WvSu83u8zNo3bmLqAzs1M1/VllnLoflEdVhBVa0RS2dgYGBwsRGQhW7cuHGMGzcOQRC49957Xa/HjRvH3XffzSeffMKLL77YVGu94JATCzrFjPcplrQKGW7Z3eCK3bJ7pYcAlh/YsnVOHZsnCzaAkYOnc/hgvisrUxY1G63QMXLMeRdzMlv3SpnLU+7f7rXenF4smXYtP0/BrCXE5HulLGmCzh8dGQOnNNoi5y1mzuN8Tiud8vxyX1yvrlYaftYHLKl0aFeD2ejzamBgYHDREZCgczgcOBwOOnXqREFBgeu1w+GgtraWnJycgKxilwKyqOvRO9X1pdyuhVzEsEfvVFcMmJYVT35oT7nvU7fOCcp/Zevb1j3uJV4yU2DNa5JF6ETNR8FdXIhRuxBltuxe6SrLIrsetSx2mSkNLdaU+lgUpfun1TdVKd6K0zzNc2IjLVmZKQ0xerIAyxjwoNsY5bVs2/c62/a9TtaDX7pey2QMmOyMtXuQbd+sQxAEV+9cf0qtAHQ/+7LhdjUwMDC4CAlp669LCblsyZ79mykWtuqO6xQz3vV9Qt4qijpLCRL7EyWX7MjBMzysc8ofyfHKTW7jlAkR4B4g/96iHO56Ri7+693iJrtaG2OZk5MKQpkYAb5LcGi1N5PHN9Tew+VVFEVZlols2bNa81zqDNFbB0xl2oO7WP3a9ZrW06zJn+u6bkcNmQGiyJY92YwcNA25U4Msvvzl3TXdXKLbHYGsB6W2dnIRY1+xkvI6+9nyye+wgkrD7WpgcEnRksqWlJ/Np7qytMnXIBMV04bW7fSNKC2ZJilb8sorrzB16lQiIyN55ZVXvI71t/vCxcCJyg+Ijg0nLfYujlW857YvLfYuN3FW1NnTyqYlFo5XbtItfTIhK8eZJesZIL/RipuY06sl16N3KhsP5tMjMZArdSdjwGQ2Oq1HhR0ng/V1H0f4RtnpQC2w5H2jBs9wK9eiHANyDN10Saq46Trtv1v0hM+0B6W+rJ/se81VskTG3/6zowZPY8ue1YwcNI2te1d77JfRE8QTsnLYti9H0x0rFzYGGDUoi3fX7NS8JnX3iAOWVLpG2aiuC8dh/ClnYGDQzJSfzeeNxeOx2+qa7ZxmSzgPLNzkt6jLzs4mOzvbFVvfq1cvnnrqKUaPHg3A2rVreeutt9i/fz/nzp2jpKSENm3a+Jx35cqVLF++HKvVSt++ffnzn//MwIEDg70sD/wWdC+99BKZmZlERkby0ksv6Y4TBOGSEnQyWmJO6QZdu344giBIWa6JDW8quZCwMl6sR+9UjlducnPLysLPW506LXeuVpHgUMTLKV2Byu8bi5aoA6VIET32addf87TGeUNdAkY537ZvXlNt8ywboo30M/Mm5iA4K2fGwCku16kIrH3jZqY+8Jlrv1bNOvl17M+Pcq7DS1TWNm8/RQMDA4PqytJmFXMAdlsd1ZWlfgu6Dh06sHTpUrp27Yooirz55pvceeedHDhwgF69elFVVcWoUaMYNWoUCxYs8GvOv/3tb8ybN4/Vq1czaNAgVqxYwciRI8nJySEpKakxl+fC7xi63NxcV+223Nxc3S9/a9BdbKTF3kVabENLNHVA//HKTS7Rp7Sg9eid6jZWT7CJosiW3Stdc2jFg8koBVuP3qmkxYzTtNIp/21JeCuQu8UZC6jcp7RAgSSjtuxZzejB07yeZ/Tgabpj9MqSaHWBUAvMLbtXsWVPtmutjcVTMEumNcn4K7J17xo30ajnRlauMcwsome1NDAwMLiUGTt2LGPGjKFr165ceeWV/OEPfyA2NpY9e/YAMGfOHJ544gkGDx7s95x/+tOfmDJlCvfffz89e/Zk9erVREdH88Ybb4Rs3UHVoXv22Wepqqry2F5dXc2zzz7b6EVdiByreM/NSqclmGTBpxZRyrFqS5+Msnbdlt0r2Z+Y6pZoIc+RFnuX2/cAxyrf1xzrjfMh9HwV5X13TTdGDZ7u+l65XYlSSI0ePI1Rg7IYNagh4UF+LYoiDoVLXBaGep0c5DFapUH01uxNeHvbp0Zb1IluSbjq+nR613LAkkp0pGcdSQMDAwMDd+x2O++88w6VlZUMGTIkqDnq6ur47rvv3DpUmUwmRowYwe7du0O11OA6RTzzzDNMmzaN6Ohot+1VVVU888wzPPXUUyFZ3IWKLKTShkiWtf4pq9h4MB96a4s18E9A+WNVUwpCPXHYvzDflf2qns+XW9Zf16Ac9xWoO9abC3NCVg6ieLPbaz2350inYJMRacg23RJgcoJeyRR/0LpX/Wz5HLCkuu3Tu6fK++3vvfTWA1dee86RP5GYNJ+aerNfcxoYGBhcShw8eJAhQ4ZQU1NDbGwsmzZtomfPnkHNVVRUhN1uJzk52W17cnIy//3vf0OxXCBIC50oiprB/P/+979p165doxd1sSALqqLOMwJq7eUL2b2rdPEGglLMgVSHrmPkGACvFrxA4ry27XsdhMDfXvK59YonT33gM5cw84Wo+PKFv3M2N97ut9Y98tXBQi7T8u6ablwWX4vF5MBwvRoYGBi4061bN77//nv27t3L9OnTuffeezl06ND5XpZXAnritm3blnbt2iEIAldeeSXt2rVzfcXFxXHrrbcyceLEplrrBYPsfk2LvUtT+IZifuW/3kiLGU9azDivY07UfOSqRXf4YL6HdS4zRfoq7Oi9+K2abd+sc33vrwv38MF8r31JJ2TluJX/0LOWBVoipDk5YAmNO9ubu9d30gh8f3gFnRJrCLcY8XQGBgYGSsLDw+nSpQvXXHMNS5YsoW/fvrz88stBzZWQkIDZbObMmTNu28+cOUNKSgCxNz4IyOW6YsUKRFHkgQce4JlnnnFr/RUeHk7nzp2D9jFfjCgFl7IeHaBZ5iTYub0R76x5B9Ap+k5A5HjVZt3xWhmyhZFjOFHzEYcDcJ9mDJzCtm/Wuc2nJeq0XLvqhAdZyEk113Kc1jT/BZvS9SoLbLVFzh8B6DurNXACmdNfC6lWjUL5tfrcZK3gml6zyT0TRb3dqEtnYGBgoIXcQCEYwsPDueaaa9i+fTvjxo1zzbd9+3ZmzZoVsjUGJOjuvfdeANLT0xk6dChhYWEhW8jFgrJMSINLVORYhZTUoI5fa6yw00OeV3mu41X/AqBj1FhOVH/g9Xj5OjpGjgmqLIlazDUGWaDIokspvoIVWco5/HW3hlLMDew1g3PVYTz8jIXqunGcLVrm8xi5vIn8vZKMgVMAE9u+WUPGoOkIAry7ZofHHFolX4a/Vk9MZDillQJGsWEDA3C3WBu/E5caCxYsYPTo0XTq1Ilz587x1ltvsXPnTrZulZoIWK1WrFYrv/zyCyDF27Vq1YpOnTq5ws6GDx/O+PHjXYJt3rx53HvvvVx77bUMHDiQFStWUFlZyf333x+ydQeVFHHjjTe6vq+pqaGuzr2mTHNUoW6pKEWMLNSUsW6ywGoKEafE2/x6Yq6j0xIH0nUcPpjPYfTFnDLxQR6v/DeU6Ak3f0RW4vG1FKVl6Vrhmss928+WT/kVy6motfCT1YTd0SCgWrVdwLmSJT7nUAs5WeAVAiCSMSiLbXuzGanIBvbWB3dCVg4zHoT3FuXwSfh8quuMDhIGlyqSiBMEaBVpJzbSTnWdidp6EzX1JkUhbuP342KnoKCASZMmkZ+fT1xcHH369GHr1q3ceuutAKxevZpnnnnGNf6GG24AYP369dx3330AHDlyhKKiIteY//3f/6WwsJCnnnoKq9XK1VdfzZYtWzwSJRpDUK2/qqqqePzxx/n73/9OcXGxx367/eIviSC3/tr+9YckxkdxoipwgaYUek0t8AJBKewCKULsr5jTKnbsjZGD9MWYFmrXZFO1Jutna1j7L4mvEGYWaRtbz+CaFzWF1/et5nC8KMq5Rf1QEAkzO+iSXM43P/pfv07r2qR2YwJTH2iw0Pnq9Spb7rIWjqfWZljqDC421I85z/d3mNlBclw9kTmPusW53tjvIcqqzRSfC+NcjQWHQ5pNcJu15f++tJTWXxdCp4iWRJO0/lLy2GOP8dlnn5Gdnc1vf/tbVq5cyalTp1izZg1Lly4NatEXKiuWneaJZ65slFVKT8wp3bGdYsa71aLTGuttLplO0Xeyde9qr2tVijlZpMmoX8vbtL73hn9Cbjpb92YHbEGTXZOFnaQ4vlCKOcAl5sSrlnCsMBqb09JWbxcoKAtnq+UJul1RR86RP7mOKUybTn2hN+uXQL3dhLUsWme//2zdu5qRg6ezdv1wtu5ZpSng5OtQx9d1zJ/NqctWUFNvQhRb/kPKwMBfYiIcOEScVmg1IhaTyOEjL4IqaWnXgT8zevAM2sXWU1Nn5mylhZo6E4IgzVVZa5T+CYTW7VJ5YOEmo5drExCUoPvggw/4y1/+wk033cT999/P9ddfT5cuXUhLS2Pjxo1kZmaGep0tlkmP7qNU/DeZKXA6YgLW2nf9PjY+d6VHCRE9vIk58C7klHF7x6v+5SG6Okbexoma//M4TqsAslrcqfElbNVu2VC0IdNioxUyOoV+3n62fBKGLqKsKpyjZ6JcYq4BgVqbwOmzESQmzSfDtIyNVti2N5vL0x7xMbtAWVXgcalK8Sqz1VlcWa+jhZ6reuHrN7F48hzOdHyJczXyg8oQdgYXNuFmkbSEGqrrTRSfC6OyxoxdYbSLDBMpKNCPY/3Y2Vd79OAZxEXbcDZp4WxFGD9bo7A5wPg98Z/W7VIvCYHV3ARVh+7s2bNcfvnlgBQvd/bsWQCuu+46Pv/8c2+HXrRstMJn375KYtgEwN0CpSda9ifqC5rDB/M5VvGeq4yI+kuL/oXa24s7z3Db3yn6DvcBPj6HlLXpevROJWPAZF3R5o9I86d4McDWvY1rnaUUOKGgny2fxKGLqK6zcKI4mlqbd4tbTb2Jj21PuLbY7L5+3UTKzvpn4ZZLyQAUdnzQbV/GoCxXDJ2Wq1UWdnpxiQcsqfz56X8RF23DYrQIM7jgETGZRCxmkeTWdZw6/TylZ5dwrmQJd0QsISbCQWGBf7937fJWIQhgEsBkgjYxNuKibU28fgMD/wjKQnf55ZeTm5tLp06d6N69O3//+98ZOHAgH3zwgVspk0uRertAO/P/AH/2a7yeMBo1ZKZHj1flay0xdBjA6r7d7bjespXOvWzJier/051Tb73+ijZ/kcVJUdo0NvpoZu/vfKF0tUpi7inq7SZOFEdRUWPG91/kAvV26NjhMU6cXM71tuVs5ndBr0G+JmXLsI1WwPqa27hte9cwctB0Rg2e7tb7Vqt8iVZXCfn7l5/azJKXR3G6NIJz1f5cr4FBS0MkNsJOats6vvr3Kx7t9qTPCN8Z5m7jrasYM0T6I9liFmnfto6qWjPV9UZCkcH5JSgL3f3338+///1vAJ544glWrlxJZGQkc+fO5fHHHw/pAls6OYesbuJl97//zFn7PxnS92EWz5ICT/2JK1MLoGMV7wXUexW0e4PKYk49h4eVzs91yh0lAj1OC+V6i9Kms9GKW5P5lkTPDqnYHSZOl0RRUhmO/x/cAuVV0t9N3gWmSGSYdjKR8j7Jok7+0iPhmCTkRg3x3aFEL8YOYMHsLVyRXEVspB3DUmdw4SBiNonEx9rItz7P/sMrAO+/M8Ovnen37B/tXuX6PjbSTkykI9iFGhiEjKAE3dy5c3n44YcBGDFiBP/973956623+Oyzz/jxxx9DusALlVLHP3hvUQ4pEf6151KKIn9aemmJqEAsUnrFhZUiUusc2/a97lGXTs8ap5xDKUrkbcr1Nta92tSc6TiVonORFJRFBJws4BChTbsFmoJbQnr4FBY879qitsLp1Z/TQhZ9snVO/7z6KF2xkWF2IizGA8vgQkAKEYiNsFNavIS8E8vd9o7x8gfO9m9X+hyjRCnqAq8VYWAQeoIqW6LHv//9b/r3739JlS1ZvGYs/QZ6Rt/LQf+LZ7Xm5TUZFNb/MyTnVYunUUOkvyrlVmNKt6z8YA9lTbhAkhm0yocUpU1zvQ7WGteUyRRaZKbAT/GzyC2I8RE3Fyyibg06D/eqap+WwPPlbvaV9aqVPJHW8VHOVoRhuJQMWjYirSPtnMp/3vdQH/j7R9TowTM4XhTJieIIxBb8+9FSypYYBEYg9zEoC51BA/96o6umuJBF1MJXyyms/yftzP9Dx2j/rHWgb6WTBZzy+y27V2quQWnZSYsdT5qq/RhIXSP8QXa1KpMjvJGZgkcG70ar1Hpr697Vfos5tXWpucWcjO8kiGCRxFw/Wz63XhtYr1x1PF1j0YuxMzC4UDAJhETMgXtYg7ffs4/3rKJdbD0RYQ6MsASD84kh6BrJ4y+c000UeP0Pg13fL3/2JOdqzH6LEXUZEjm7dcvulYwaMtND2Mmvlduh4QPpWMUmjmmUPvHVAgzcCw0rY+jUblmlq9ZbBm8g7E9MJWPgFI9M2+ZkoxWq65qi1pQk5jJTIGHwkySdfN3VfUN5bplgxFuoBJ/F1JJtDwYGACLhFodbwe9g0PqdKUn37ob94vs/k9S6HsH4JTE4jxgu1yBRulwjo8L8Fhlxwq94bOZWJmTl+DxGWVhY7U4Fdwud/FoWfMrtgQggpXjzti1QtLpDaNWjkz9M/anPp655178wP+RFhEGyUs17bixnKxvvcjxX8kcAWrX9HQIiCa3qSEs8x2ffrSVjwOSg+uaq0Xog6d0XfyxwE7JyuDJ9HtYg4gcNDJoLAZGUNnX8lPsiIGWmH7A0/o8/ZQiDt3CGfrZ8itP+REmVhZYYmtCSXK41FVbqa8qafA0yYZFxRMaG0J3RjDRZp4i77vLuMiwtLQ1kuouCbj1TiI4N91pQ9/U/DGby7/cAUCb+A2jNDf0f8hpXJ/VR9S7IlEJO+Vot/JTCMFD8FXPK61cWMpZRije1Va9/YT79U6A4fSbkuq/dG5kpsFFZ78/vIwNjQlYO7duOoKrOTE2IShPIwq68BI4eh4wBD7Jt32s+jvKNL4ucP+Vc1LF0767pxuLJjxGeuqKJ3M4GBo1BJMwsMtqylEM/55PZIZWNVtzEnLrkj79/+AVS/uiAJZV+x+ZR3X5FyD4nLkZqKqzsee9uHPbma/1lMocz+K53/BZ12dnZZGdnk5eXB0CvXr146qmnGD16NGfPnmXRokVs27aN48ePk5iYyLhx43juuee8lm0TRZFFixaxbt06SktLGTZsGNnZ2XTt2jUUlwgE6HKNi4vz+pWWlsakSZNCtrgLCa3YLvm1LOZklHF1HaLv8lk4+PDBfERR9FnCRHa9Kh/qo4bM9EvMdYy6HcBNvGmVKPGGXLh4o1U/81UZx6ccU5wuidLizjM8xKBewWQtK16o3LHvrunmdh9jI20kx9ViEkDOpPMP0fUlizgtZDGXMWCyh9vVH5QPKm8PIPW+CVk5bl/gWZtuQlYOC1+/ifhW9c5HlBEnZNBSEImNtDPastQl4rSSh2R8/X6oUcfQ+Tr2gCWVwoJlhBkFuXWprylrVjEH4LDXBWQR7NChA0uXLuW7777j22+/5ZZbbuHOO+/kxx9/5PTp05w+fZoXXniBH374gQ0bNrBlyxYmT/b+uf3888/zyiuvsHr1avbu3UtMTAwjR46kpqamsZfnIqQu10sJ2eX6jy+mEB0b7tcxWla8OOFXxEba+fQb35YprdImsotVz1qnPq6pULtRlefVstgpcUsAEaUPQhFIyMv2epyWaAx1QWEtOnd8lKo6M3U2AbtD/itc+de4FG9mNotEWBxYrYEHaWemQGFHyQXr7zWpXUMQmFVC6X5VijuZl7JvJa8wirIW6lIyuNQQiQxzUOilZVco0Pr98/U72c+WT17yK87WgC2DluJyPVeUw74P7m/y86sZMHY9rRKCT/Jq164dy5cv1xRu//jHP/jNb35DZWUlFoun41MURdq3b88jjzzCo48+CkBZWRnJycls2LCBu+++W/e8RpZrC0VLWJWJ/yD5uP9uRpn43JWaLtYtu1e6xdFpkRYznsMH8+kUPY5O0XdqjukYOcZlofPHUidbD9ViDhqsb2r6F+brWt9AKjasVQBZPqapkiR8WcjyTrxAwZll3Ba2lDsilpAcV0erKBuRYXZaRdm4I2IJ5SVLKClaGpSYk5Hj6fwVqOo4n0CFrbpNmLo12Nzpn5B4bB7hFsP6YHA+keo2xkbayTC5i7nGJkRo4a+Yk39n3l3TjQOWVNrG1CMYvycXPHa7nXfeeYfKykqGDBmiOUYWyVpiDiA3Nxer1cqIESNc2+Li4hg0aBC7d+8O2VoNQdeEaLbnUvQxlb+Xa8Vd3/8hQFugjBzsnmW1PzHV5WJVu1l79E4l3hmLphVTdaxyE6MGT+d41fuAJJDk8iUdI28DJNdroO7X/oWeMXLe8Cfxwddxale30iIVfIanf39V3/VMN+56phu/5L3I6dPPU1iwjNOnn2+UhTAzRRKUwc6h9bAJRNzJAk7tfpU5YEklsXWdYZ8zOA84iwZHSkWD8zXKkxywpIa0lI8W/sSgAhw9/gJjI5ZgEow/gC5EDh48SGxsLBEREUybNo1NmzbRs2dPj3FFRUU899xzTJ06VXcuq1V60yQnJ7ttT05Odu0LBYagawLU7kel4FBaldQWpjlZ2xh29UOaVitBIx9etszF5650+5BJi73LJXq8ffh0ihnH8ap/sT8x1VW+5ETN/2mO9ScxQk+gyUWPlRw+6N06p4c/x3iLodFCvd/f5ARl3FlLIRTuZmVShLrPK0BUzmNERxitwAyanzbRNlJOzHW91nq/N3XIhR5anweHTuZTdnYJEYZV+4KjW7dufP/99+zdu5fp06dz7733cujQIbcx5eXl3HbbbfTs2ZOnn376/CxUgSHomgB1Fiegmeyg5PDBfBa+Ws5Z+z85mvywx0NULh58+GA+abF3kRZ7l0uIyC5N5Xnlc+m5Xo9Vvk9CntQaSu3WlN2tslWusSVLwFPUZTqzWvXcsW7rcSZsQGCJEPIHu69abufrAaDFRqvkan13TbegkiOU9LPlM2rwNEYNngZI1jZ/eruCu/tVnTRxwJJK6sm5WIzAb4NmwiRINRtPnFoeklIkzYW81o75s2kTbcNsakiSMmjZhIeH06VLF6655hqWLFlC3759efnll137z507x6hRo2jVqhWbNm0iLCxMd66UFOnBc+bMGbftZ86cce0LBYaga2bUwk5L6JU6/uHV8nOs4j2OVbxHcbqUDBGfu5LMlAYRt2X3Sg/homXZksVRwrE1qjGCh8u1qRFFEf38HMk6qRR2avxx8za1KyaUTMjKoXD3YqDBDRsoydc9Awgu6+6ErBym3LedUUOmB70uZYxQx/gaI57OoIkQEQQRi9lB6ygblxc8fL4X5BdadR3vGDqDA5ZUEo7No7R4CQmxcgFi4/fmQsLhcFBbWwtIlrmMjAzCw8PZvHmzz2SF9PR0UlJS2L59u2tbeXk5e/fu1Y3LCwZD0DWSnEP+m3e8BfGrt/XoLcWC3ND/IXr0TmXk4BlkpmiPU1uYRg2ZyUare8kSb/Fq8j7538QTr7li6ZT0L8zX3O4vxyreo39hvpul7ljFe654Py1EYNs3awE4Uf2hmzBVi1T5nqm3yShjyZTbW6rQO2BJdcXTbdvn2UXCF1v2rGbLnmysXzzl2jYhK4czitcyyoBuLbT2/SdnBZ3yZxuizg3pXljMDsLMDswmhzMw/lK+P9L1mwRRcS+07knD9jCzSPlZKbHo1OnnPaxyLbUlnfyH+B1DPS3h8jXknniB8rNLjNImLZgFCxbw+eefk5eXx8GDB1mwYAE7d+4kMzPTJeYqKyt5/fXXKS8vx2q1YrVa3ZoqdO/enU2bpO5MgiAwZ84cFi9ezObNmzl48CCTJk2iffv2jBs3LmTrNsqWBIm6U4S6NMTIQVkAHK/aDKCZ/Slvl4vrguSGVNeNa2f+H6IjHCQdk4SPLLyU5UDUnRbUwkWvuLC3kiIdI2/jRM3/0b8wn8KOD7q+DzaZQUYWdLLAkynqPMNV50yU/mHr3mzd7hH+rEVt/VT2mFXHNsrznY9esf4SaDeJ0UOm8/HubI/towZP48yXiyQrnijfcemjYOvetW5j1XXpZORtT71wGyeKWnZj8qZHxGISaRNjIzLMQetoG2FmEZtDoKrWTHm1mfIqC/V2rTI3FyvS+ykyzEGH03M0XaWh6uZwIdLPls/py1ZQVdc8RYiNsiX+ly2ZPHky27dvJz8/n7i4OPr06cP8+fO59dZb2blzJzfffLPmcbm5uXTu3BmQRNz69eu57777gIbCwmvXrqW0tJTrrruOVatWceWVV3pdSyBlSwxBFyRqQQfaNdi0xIHWPrWVSCnajiY9TG29QHxrGyer3tMVMocP5jNqyEyPJAkZeZ/yWOVcsrjan5hKx6jbOVH9IeDu6pS3NYb+hfmawrV/YT7FnWdwrHITnWLGgQgJxxrESDBCUinS1G3C9iemuglKOUO2JcXUqdF6AGYMmEziiQaRV9RpKlu/WcuowdPYsme15jzq7FUlIwdlsXXvGs1jtHhxVQY/5UdTe0lWx5c+PqPCHVzWrpb4VvWYBRFBAEFwllUEbA6Bc9Vmis+FUVoZRq1Nu36h57aWjP6jw2ISiY5wcOq077I93t6L3vZdDPSz5XM85WXq7AJN/XNvKYLuQugU0ZK4YATdkiVLeO+99/jvf/9LVFQUQ4cOZdmyZXTr1vDgOHLkCI8++ihffvkltbW1jBo1ij//+c8e6b9qTp06xfz58/n444+pqqqiS5curF+/nmuvvZb6+noWLlzIRx99xNGjR4mLi2PEiBEsXbqU9u3b+7V2LUEn06N3qqvd1+GD+W5iTWkdUou44nRPwRXjmEi34pd1xymFibJkh9Y4ZQKCv90jTlR/6Cbu9FCuo7EWPJAycOWkjcJOU9n2zVo365rynN7WAvpCUC1m5fIxSmtnSxR3Siud+nsEE9u+Wdeo+dWiUflQVYq6tetvYer9O5iQlUPvK+dyojhSUWj5Ykb6yDSbIMzsIL5VPclxdUSFOwB0G7SLIjhEqK4zU1JpobzKQnWdidp6EyIQbpGEYG190z/cg6ehaHZMuAOTScTuEIiwOBhS9wLQ8DtzsYuxUJGZAtuZD0BtvQmbQ94T2vdASxF0YPRyDYQm6+Uaanbt2sXMmTMZMGAANpuN3/3ud2RkZHDo0CFiYmKorKwkIyODvn37smPHDgCefPJJxo4dy549ezCZtEMAS0pKGDZsGDfffDMff/wxiYmJ/Pzzz7Rt2xaAqqoq9u/fz5NPPknfvn0pKSlh9uzZ3HHHHXz77bcBXYOyl6vM4YP5umJOFhn9Ve1oMlOk8iOnO8zi8Levck3P2XQ/+zLwspvlqEfvVKh4j2NKkVbxniRMrO7WJqxSckRa7F0Ux+Ieq5Y+E0QREZHjle97iJvCTlNcQ+XYNS2RJG/3R2jJ+5T3Qk+QFcU0vJZj6EASmYnHGwRLx8jbSDzxmts8ynVutEIm2udxc732TqVHorvVVFmoV8tNe76Q/wS79drJZD34JROynNsRSDreODH37ppuvEs3Fk/eScLQp/nkmzUeYm7t+lvYuiebrXtyAGmb5dDjtEl/keKKMFquGGksIiYBWkfbaB1lJybCTlSEncgwBwL6Qk5GEMAsQEykdKzYtpaqOjNHz0RRW28iPamaertAQVk41fUmbM1gtfEP6bojwhzEREhr/+HnlyhRjTqq+F4p/A1h551DJ/OxWpYxcsBMyqotnKsxU3QurNlcseeDyNiUC1ZgtWRalMu1sLCQpKQkdu3axQ033MC2bdsYPXo0JSUlrr8oysrKaNu2Ldu2bXOruqzkiSee4KuvvuKLL77w+9z79u1j4MCBHDt2jE6dOvkcr279JVvklOg9/GWBILsB5X9jHRO5UmWNUyIfo7ZUAW4WOFm4KQWJnBErv5ZFYlHn6R4ttrTEndJCJ22byonqD3Rdtnp4G6O28vUvzKcobRpb96722r5KKXb1BKPW98r4RZdYdqL+2SnbmJ1vq92t10rJEdOmfOn2oLx1wIN84mcNPX/JGDSNbXslt60ylk4t8hZP3kldj+c5URR5kcTSuX8sCoIUC5bcpo6k1nXOgHbfIk6Pj3evcrMA97PlE3XNEr7+9yuuMf1s+Zy6bAW1NhMOD6tNc7hnpZ9kTKSdW0TfBbPVws3XawNPxg6ZgQiUVlk4WhDJuRozofoZtyQLnYH/XDAuVzW//PILXbt25eDBg1x11VV88MEHjB8/nsrKSiIiIgCora0lJiaGhQsX6hby69mzJyNHjuTkyZPs2rWLyy67jBkzZjBlyhTN8QCffvopGRkZlJaWar7Za2trXSnLIAm6jh078o8vpnAst9j1wFe7J33F0GWmwOF2s+lxVhJyarepEn9cmbKgKeo8g617VgG+szi1xJyWUJPHus6RluUqebI/MZW0mPEgCLrJF0rB6S3BQZ29qq4jpxS2MrLA1Dqvct3qa1Vfk3w+pdCWUb72x1I3Zuh0QOCjr1f5HNtSkR/CIwdN81AvU+/f4fp+QlYOvbrOvQgEnUi4RSQ63E5kuIOocAcmQWo1JVnk3K1xH+8O3c/WHxd/UvJ8autNlJ1dAkBq6uPYHVJP4XqbEMJ7L7l/42PryT3+QqPWbBAYdwyVRN3ZCgtHC6KorDWF5OdqCLoLkwtS0DkcDu644w5KS0v58ssvAcli16VLF+6//37++Mc/IooiTzzxBK+++ipTp05lzRrPwG3AddHz5s3jV7/6Ffv27WP27NmsXr2ae++912N8TU0Nw4YNo3v37mzcuFFzzqeffppnnnnGY/viNWO540bpwS1zovpDj4QHpQXo8MF8BvR6iCuL/+zfzVGgJerkrFGlZW7k4BkIgkB87kqXdU5pmSt2ulzj81Z5WKdkJAtZFserNtMp+g5Xxq77/oYWYsrteiJReR1qQSXH/BWnz3CuLdtD4BalSf7FrXvXSBZGhahUfq+8V1rnl/fLwlA+TyDxf95EnSTmJD762jPLtLGcD2uHfM5+tnySrnvWFT8nW+me+dNojhdFNUEcnYjZBBaziMMhJRi4f2qF5nyCINIuxsZl8TV89X3gv5uNZeSgGWzd2ziBmJIyn+o6k3R/FEkZDagtfJ7bzSaIi7Jx7OTyRq3FoHHcPnQG1XUmThRHYC0LRxQb9z43BN2FyQUp6KZPn87HH3/Ml19+SYcOHVzbt23bxvTp08nNzcVkMnHPPfdw6NAhBg4cSHa29oMyPDyca6+9lq+//tq17eGHH2bfvn0ejXDr6+uZMGECJ0+eZOfOnbpvdD0LnZwUkTFQsv7J1jn1w/7dNd1Y/upw6mxmepS4PyyKOjfULErI0/9AVwovWaQoa7rF5650WeZGDpb+lcWQ8hwAxys3kRYznvi8VboiRu4gobTCeYt7k8co16fep+dydU/aEJ3xfZCQl01R2jQSjrlna8rCTibh2BoPi6G3NWrFBOq5aNWoy534FnYXtpUOPBMjFk/eyQFLKu+u6cba9bcAksVuznN3UFppIbSuQJFWkXbiW9cTHe6guk6KLxOBqloz56rNjS4HIiAS38q7NSpYAinNMXrIjKCtfrKw1hL6HS57jOo6M3YHiKJARJiDgjPLAEkEOkQwCVJ26kk/MlP1zn+puFSbq9zK2KEzqKk3cfhUNGXVjXO/GoLuwiSQ+9giCgvPmjWLDz/8kM8++8xNzAFkZGRw5MgRCgoKKCoq4v/9v//HqVOnuPzyy3XnS01N9Wii26NHD44fP+62rb6+nokTJ3Ls2DE++eQTr2/yiIgIWrdu7fYFUlKEnktT7tc6oOdM/rBiBFcUrqJNdJ1LKBSlTWejVfoVTchb5VXMgWRBUgsQpXtzf2IqCXmrGDVkJgl5qzzcIYIgdQ04XikVOzxWuclNwKgtWMerNrusckVpWbouS+X5tbarUc/hOb4hGLwoTbJ0FWoIOAmpflpR2lRkq4N6HepzKLfrbfNlqfPH9ap8X4z2s+VWS0O+BvWD+oAllYzBM5iQlePmer2sXQ0RYQ5Ci8C5GjMniiIpPhdGQqs6OiXUkJZQw5WplXRvX0VqmzpiIhyYTVKHASGghugiraLspCXWNHql/Wz5Hq9Trn+u0fP6QqukjHLbyVPLKS5cSmnxUm4PX+IScwBW6zIKzizDal3mJubGON+zWp9vWtsuFjGnvrbMFP170NRFyT/4epVUxy++1ihEbOCT8yroRFFk1qxZbNq0iR07dpCenq47NiEhgTZt2rBjxw4KCgq44447dMcOGzaMnBz3D5effvqJtLQ012tZzP388898+umnxMfHB3UNOYeszub2H/L0wiJAesi/u6YbUfV30b8wnyvPrqRHieQOTT21xiUaEo5lM2rwdN251cjZpLJAUYo6rbg12eK10SoJRjkpQj4+LfYuKe4N350kEo6t0XRbpsWMcztetrSprV9uGb5exZNIfO5K18eWXIdOwNMqJ+1f6/qS5+pfmE+n6Dt03ay+kO+PnjDViq+7WNGLj3p3TTey7t/Otb1ms+SVUS73a+3+3xET7iD0Dx4pTqygLIzcgigqa82ISKVDWkfbSE+qpmeHSrqmVNEluZouKdUktKrH5FXYSfsiw6R6aTu/ezUkK1WK9wOWVKxfPMnoITOa9OGv7Ler7OqhzjaFwGPetMZfLHFzsihTfh1NfJhreszhmh5zGNx7tuZxPTukcqjNXI/43lD8jPvZ3OODP/h6FfGx9XROrCEmwoHF3BS/XwYXA+fV5Tpjxgzeeust/vWvf7nVnouLiyMqKgqA9evX06NHDxITE9m9ezezZ8/mvvvu48UXX3SNHz58OOPHj2fWrFmAlLE6dOhQnnnmGSZOnMg333zDlClTWLt2LZmZmdTX1/M///M/7N+/nw8//NCtpl27du0IDw/3uXZ1litAonks1XUW9h2SrGOn20/BYnKAIJB0Qjv7UM4yDQRlzJks5JTiSHbDqnu6yh8+ygLDaTHjOea02PlCjqmTxZ28TSs+Tn2ccrtn7NwMRNG7u7kobRogusXIue9378yhPI8SLZGn3q91XXqFnMHTWnfb0Gn839eSi1iOpVPG0Slj9qBxD8fzGZSuFAsTsnLo2WUeDhFKKpq25IKASFS4g7TEGtrF1oMgnUn9SVZvFyg+F0bxuTDO1ViwqwyHJgFXckEg+ONuk0VdoO7TxrhcZfQ6esjfy1wqCQ3q3zeAIwmzOVtpoaLGjEMUJJe9M+7Q4QCHM15NECDc7MBslt53ERYHggCVtWZq6k2EmR2EW6Q/CkwC1NSbCLc4qLMLxMfauKrsJbd7HKirVjn+9iGS+7Ws2kJ+iVTaRkqEAX9+1wyX64XJBRNDJ+jk/CvbZTzxxBNs2LCBs2fP0rlzZ6ZNm8bcuXPdju3cuTP33XefW9brhx9+yIIFC/j5559JT09n3rx5rizXvLw8XWvgZ599xk033eRz7UpB96cnEvjjiuF8d3iV33+hFaVN43jVvySR5Ixv8+VylVHGe6XF3uWWNaqXAKCsZTdqyEwPsVfceTrxGsJSElJwvOpfrm3eatJpFUf25cbsFDPe57XL65BoeMsqBZ4s6tQxf2p8iTqt8Uq0ypyo8VayBrx3pVA+gHw9cJVZv82JUiDIsVNd0h+hoDTc7wdM4xCJiXDQNbWKmAi7ZvkQLWHUPvVxHKKA2SSCAEmt6zhweEVAZw6F6GrKub3F0l0qqEXcydSHKHEKuJp6E1W1ZuwiBP4+1SsX4/kYFZCKRbeLrScuyoYgwDc/6pel8oc7hs3AIYLdLlBTb6K4wkJ+aTg1fnRpaUmCzigs7D8XjKC7kJEF3U+bxtIqJszn+MKOqvZMaVmAiYRjnpmcgaC0yGkJKWUyhFzGBHAlTYwc3NA/9Vjl+67jijtPd72W3aoAxzSKEHtLQJDXqLdfmQihttIVdZasW7IFUxZ1spgXRdGVLKFMnChKm4YAxB9brZkAoYd6rL/Fkr3hq1SKWripRVxjrHiZKVB2+TQ+/Hq178FBoLbQ9ek2hxNFkdgczRXJIZLYup7Lk6tddeGCEUPX9JzNd4e8P2jlWDjrF082aTD86CEzaJe7qlGWs1DXf7vQLHmy27S6zozZJFJdZ6LgXNh5bE3XUHTEYpasy6lt6vj20AoPD8qN/R6iQ/6f3bapuWNYw2e6Q4Rz1WZOno2guCLMaYXWvsaWIuguhNZf2dnZZGdnk5eXB0CvXr146qmnGD16NABZWVl8+umnnD59mtjYWFeXq+7du+vOKfdyXbduHaWlpQwbNozs7Gy6du3qdS2GoGsGlK2/JqdrCzr5oV3YcbJzi0CiyvWqFi3+oGWZA0/LmeySlS1ncgydzMjBM9wElLdabXr71edWH6Netz/17UCdlSu6/GlKy6xS0OmhJzz9FXe+5tPL7vVWukVLsIHnh7e/D1K1IAQ423ka7fJWs9EKtw9tHlEH8PAzd1JebXa+avqHZ7jFQXHhUrf1BCNeel85l4M/vRTKpTWKQEWUVtFn5fZQ480K2JwCUJmE0rNDKseSHqam3sSx4ghq602ufrrNYzX2FxGLSap3aHcIUhIP0CbGRnm1BZtdykIWRUg+MZeeHVI5nvIwYWYHqade5dDJfDrcICXayNdXZxc4ey6MYqcVss5mUoQYSNfdUgTduaIc9n1wf5OfX82AsetpleCZPKTFBx98gNlspmvXroiiyJtvvsny5cs5cOAAvXr1Yu3atXTv3p1OnTpx9uxZnn76ab7//ntyc3Mxm82acy5btowlS5bw5ptvkp6ezpNPPsnBgwc5dOiQV6FmCLpmQCno/u8vVzEhKydoK1swcXSgL7DUgg4ktyZIFjB5fFrsXW4xeHqCR7bW6YkV5THexIwsQpVr17omea0ysgURID4vW9c9DNqFmWWXpLKThNZ5A3HDysfIeKt150vsquvueUNLvMmohWJp+jQPV2QohZ1WZqX8gI9rt8D5IG1612tctJ2TpxqyM0PZ7N0fF2goYiEbO19zCTpf82mtXRZdobZs9rPl07NDKkcSZlNaJbXMqqozITqEIN2p5xPlY7ihJmBkmIPocAcVtWZMgkjbGMl12yrS7kr6MZsaZnA4oM5moqbeRHm1mbOVYdTWC9TZTFRWVjDnf282BF2QtGvXjuXLlzN58mSPff/5z3/o27cvv/zyC1dccYXHflEUad++PY888giPPvooIHW9Sk5OZsOGDdx99926571gerleLKx57ToSTzRfvIqeNUj+V12fDqS6c8rs0v2JqWzZvdItQULeV9x5Ovt53018pMWMg8Jst/NrrctVT06VrNG/MB8KV3qMV44p6jyDNAHic1e5LHSC809QSRiIHuJXbeEcOXg6xfJOp5rpn7uK/ilQHDseCldpCi+te6l3fcpMY/U+JSXp0+ifu9rtGtWuVheCwP7EVDLxbC2mZ8XbaIWMAe6ufIBRg7LYuHcNWN3FW1OXWAClyHuP3y27nZJKCzV1oal0r41AZa27i1dLcPgbV+bZ1myVx3Y13jKB5Xp93lBbtLwJOT3rl7y2UIs59Ry+5tNa2wFLKpkpcCAEgldpkTP1XsbOsnAqTptxXHACTo3W2gVq6s3U1DdYfPJLpfe6xSRyuiSccItIUus66mwmbA6B2Ag70RF2osPttI6ykRJXh0MUqKg1c/SUvZmu5eLCbrfzj3/8g8rKSoYMGeKxv7KykvXr15Oenk7Hjh0158jNzcVqtbq1K42Li2PQoEHs3r3bq6ALBEPQNZJuPVPYtk96oAb7wAzGOgee1h+l0JItYccU2+R4tS27V9IjUQrqP1bxHnLBFtdcztg5WVTJdevoPAOcBYmVmbFKS19RZ8napBSXaqFT3Hk6aTTE48kIgoAoiu5iTvoGRNF1n4o7z3AWHV6lce88PxiL091rwOlZ4tSCVysOUEvMKvfJx5SmT6Ntrqc1TN4vv1eKnYI0PneV6+egJeBkAejW7szpyne59K3S+3DLXu1M4OaMg1q7fjhb90iZ6Ckpj1NdJz90IdQPXptdICl5PgVnlvkUMf6IHK0xwQijCVk5pAx5DnxY+M6mzwBrwxi1lSszxTkG2Kgxl55YDYVlLlTWvVC896T7ksqPcXMpOhfGuTMXg5ALFOlabQ6BczUmQKS0yoLDIVnoLCYRi1kkIkwkLsqG3SGQ1LqOuCgbVyRXn9eVX2gcPHiQIUOGUFNTQ2xsLJs2bXKrb7tq1Soef/xxKisr6datG5988oluhQyrVfoFUFbUkF/L+0JBiygsfCFzWWSG60HbECsXGLKVKRi8WZPkfWmxd7mNyUxpcMHK29Ni71IkKEgIgkBC3iqXte+Y08onizn52Pjcla7zJOStcglAb7XcQLL6FXWe7hJE8bkrSchb5SqALCNvVyzMe1asIOh+xqvFnXKbnsv5bOdpbteivqYrWt3pca1tFGLubOeGDF3lORoecqLmupQJE+o/Fgo7PQjgss7J//rzR0Wo6mVpPezlWmhT79/uqoe28pl/UXZ2CVHhDjf3eegQqK03cW2v2R5rktegZcHyhlYdt2BQu2v1CkyrRbxazH28e5VX1+/5yGhtDotvZgoMumo2XTo/yk7T42y1P8HRwkjKqs3O0iKXkpjTQqrPKDqLsdscJmrqzZRVmTlRHEF+aTg/norhyJkojTZwBt7o1q0b33//PXv37mX69Once++9HDp0yLU/MzOTAwcOsGvXLq688komTpxITU3NeVyxEUMXNMos15ru00g88bqboJNfq91hvih2iTuFoNERL8EmJ2gJBGXpFLn0iHwOt3g6p+hTFjKWs2mVbl1pzukgNhQHdj+f8zpV+4s7zwBnD9pgKOo8wykGvb+t43NXOa9nhuuDTkskalnq5Ndll08j7qi7Fa40fRptcldTkp5F29wGS5mcpKBFcefpHo3vG9Y3nS27s90tc52krhjbvlmnac3zFYMVqpgvZdxWIDz4+/HY7KH9W9IkiHRNreLbH1++KFtQ6cXGXYzXKr8/85IfIr8kgpJKCzaHId4ah0hcWAl3j8owYuiCZMSIEVxxxRWaPeTr6upo27Ytr732Gvfcc4/H/qNHj3LFFVdw4MABrr76atf2G2+8kauvvpqXX9bPsr/gWn9d6KitJFoiLnDrnaj4ktBy+8mWobTYu0iLvctt3/7EVDerm7wvM0USZuoesscrN3mIubTYu3Qf/PK59ydKLcfUGZ/eXckCCXnZJBzLdncV561yE3NqqyE0iE91f1r5Ovz5G6XBKii3XGs4pjh9hq4oVr5WiznAJeaUS9ATc7LlLj4vW3K5Kr4aEBg1eDrFCitf4vG1JB5f5yHK3eoKqrpq3D50muurNF36CgXBWLDGWJb6HhQgUeEOWkVKMUKBCpwLoS2bUjg31mp4IXA08WF+tkZTeC7MEHMhQaCkwoiwagwOh8Otn7sSURQRRVF3f3p6OikpKWzfvt21rby8nL1792rG5QWL8RMOEYUdJ3Oi5iOo+YgTTiuOUtj5Y6mTszeLFS5YZTan2uWnFBfqbFVXpmssLpGmFieyW1M5Xk6QUL52xXspxF684jhvJTpkwaZXPLio8ww6IboSLpTr2Z+YCooYP/W65ePB/6LMyjUqOV75PscV1+26f52lmnZ61jUtBATaKsarjy1OyyL+2BrX9uLO04j3Mr+3jF4l8s+psNNUTMDowVKWa9vc1Wz8enXIszG13Jv+4yzLH0JMJtGjNp6/NFepjUCKRqvRSk5oDutcU90brXlHD55BXrXUt7e6CbuNXIrU2o176S8LFixg9OjRdOrUiXPnzvHWW2+xc+dOtm7dytGjR/nb3/5GRkYGiYmJnDx5kqVLlxIVFcWYMWNcc3Tv3p0lS5Ywfvx4BEFgzpw5LF68mK5du7rKlrRv355x48aFbN2Gha6R/DtBekomnnidjpFjfMaNeSM+L5uitGm6D3DQzzDVOu/+xFTic1d6tXgpX7syVNG2Bqrr3umtQ/mvXAxYFlzq1wl5q9y8o/tVokrvXhanz3QJu0DFnPs8DdYZ6folF6yW9c8fSpwuV2/EKzpZgFTaQy+O0t1aJ6FXtqSw42QyBkxGvqHt8lZ7JGY0lWjRajelx0YrJLaul7o1hCieLsziwCSIbj1NlWvzJjY/3t24Qr6BxJIpk1yCJRg3d2Pi3ZpKzMn/pnd6lK6dH6FPt7mcPBvBkTPRlFWZMcRcqGkZ9zMsMg6T2Xd7zVBiMocTFhnn9/iCggImTZpEt27dGD58OPv27WPr1q3ceuutREZG8sUXXzBmzBi6dOnC//7v/9KqVSu+/vprkpKSXHPk5ORQVtbQDePxxx/noYceYurUqQwYMICKigq2bNkS0rZoRgxdkChbf3VLGOdmgdNLVJBj6go7PuhRYFiNS/goCud6i43zFuulFewvxZpJ2+JzV7lZxbyV7tCaT30u9Xk7Rd/hsx2Xv9ejFqSiKHoIOuW1qYnPXeUScco4OuU9cGXZOl3eeha6s52zaJennVHqD/7cC3XPV3UdOtmVL7//1PGRzZXZqo6n0/teZkJWDn27z+HU2YiQVPBPaFXH5cnVbN8XXOylL/yNVfNmzQq2rVdjzq1+L5zPrg/yWn6Kn01heRjVdWbq7AI2e0PfVJBriLcM8XEx0VIKC4PR+isQjMLCzYBS0F1X7ap8FlSB2saiFDvxuSvdCgqD964IDUkEuMXOeTtOr4Cu+hi9TgqNQVmguDh9ppugK+osdb7wJei0UFrqRFESc2pLqewqVX/vMZdqX1FallvPWa1r0rovupY4Z1JE4vF1unOqj2+Oh7i6hpsyaF/LFSpvm/7UOOptAg5RCLoMhUkQiW9Vz9FjL3jsa+rr9+bKVmapXmgttEKFfH+OpzzEybMRlBpJDueFliToDPzHSIpoRvoWWf1qKVXQ4YEmX4ss4uR4OX/dv0q3rF6rLGhIpFB3cpDHexNvjXFFa61XPocgCBR1nuGWKBGMC1Yp9PQeM0qRFn9sDUVpUzXHiUBRp4Z93sScN5TlRaRrlNyyclKEN7QK1QbjdgvkGG8FaNUxX7LQm5CVQ8GZZZQUL+X28CXERtqxmB1ER9gJtzgUbln1353u2x2iQEmlhSF9HnaN6GfLp58tn0Mn813fq69JWag2GPTuj1LkySvXKk3TXISqVE2w/Bg3l1+sURSdC3P2+jXEnIFBqDEsdEGiZaHzx10ZKmRrnDd3p7wWZcstf4/XOh/gMY+Spr7u/Ymp9N/dj+Jb013rUFoltdamLEsCuFnw1NY61wNXlP7nLZZRSVGnB0k47t2F3hwUdJjMJ9+6J9+0RKuQlvtVrzjutb1mU1JpoaRCynY0O1sdmc0iYWYHNrtAvd1EnU1AEODypGq+/+8KoKE1lJpDJxu2HzqZ7+rkEMi98jZWvU/KKp/BliDcraFCXlM/W35IWnD5ulfK0iMnz0ZSWmm5BIsAtywMC92FidH66zzRIWI08IamqCno8ABJJ99w/RsMcrao7CItTp9JGni01FIit9xSCx5ZBPVXbFPXm3MXSKLPwpSBijl/BaAswDqJUHxrw7Ur0Ur8EEWRBB0Xq16rHQARMaDuHQnHX6O404PEn2dRd7L2I90HbaBiRUschhp/Wkp9+6NUn2lQ74exOwTXa5l+tnwqur6AtTQci0kkItyhNY0bSpGnFDd68Wda983bvVTv22jFrRNEU6Il2JQJCButvsWc3nvFXzGojJU7bo2kyshWNTBoFgwLXZAoLXTRsVLGzuGD7t0YQskvCbPoUvSqW8ybTLBFeP21KMpJA94I1tXpDa3zqq9f79p1LXbOtmEguWsDuXeyaFP+C5x3IXfmsgdIPvUGBR0mk3Ty9RZnkVMTymK4mSmwzTGfmnoTyXH1dE6q5tNvVrrt9wdvIvh8JJk0NYEIfNkt7U9PWpmvwh6jvNpMvd2IlWspGBa6CxMjKaIZUHaKaBUTpjvuTIf7ERCCtsqBJLxaixPoUvQq0CBq5B+dnjCRkyN8NZHXGqcniBpzDY11xyp7vPoSclouYtn9KgvPUF/j+UIWdEoaI0TUmbTnKzvSn3N26fwIZ8rCiQxzUFiwTHceX4Sq16g6K1np9pX3Ka3LW3aH9v0XzM8pkPqEWvPL1/hjm7lYS8MUfXsNIdeSMATdhYkh6JoBtaDbn5jK4YP5HiUmQoVsodMTZIBHLJle6Q9/xFUoLG4FHaeSdGKtX2MLO00l8fhaCtOmk6jRKqwp8CcuMNTIVrTzcR5/H9ggvVcuCx8FCJyq+9j13m4OV6wvC57s+stMgS8sj1FSaSEprp7BNS+4xcTJqH8P1T1y1fFuvqx1oYiza8kEar3r2SGVvZGPUnQuDLsDDCHXMjEE3YWJkeV6HuhfKD3wrJfdB3g+RBqT5arOolVmdCoL4Cr/8i9On+mW7KAsFOyPpayxYq6wk3YGqB6JxyXhpyfmijrPoDh9ptuXjPq1PxR1nuGycHo7tiiA6yjyo71boGJO3aLNX4IRc9DwXjt8MJ/kU+v59DspJvTWaydrztsUTMjKcYv7kv+VXX89O6S6tsfnzUMQoKrWxEartlvQn+QFOQtUFm3K31/3GDTff6ip/6gLJMNUPa6fLV/32ED+YNRrE6d1nfI9UWYGa82XmQLhVy9ll/lxCsrCsBulSAwMziuGoAsxKac2BHxMkTMWyxtKM6qyy4KW8JIFSnH6TA8BlxZ7l9tYX50fAh0nk3h8ra51Tm8ub+eQOkqI4OyZB6Jn1wun8PEm0IrTZyhctwCiTwtdUacpmmKtoIP7tgQ/2rsFSnzuyoDEtTfxon6tfKjL3x8+mM9GK/TonerR1aCgw2SXSJEFXmPREiXK8iIlb6fSs8tcvgp7lKorl3Ntz4c5dLLh/dyzQyptom1U1phpn/o4g3o/7Dmhj/NrrUHtOpW/5NfeUJeMUR6rdX7lOtTjDlhSdY/1VkTY21h/hekBS6qmQFYed7QgkrIqs7P8toGBwfnEyHINMWcuu5/kU+s9tqtj6ORs18KOk0EUXaJOr/xFsB+Xynpycsarej/4ttxpFRIOJCZOmd2rd5xyu1RzTXATM/EaHSGUiM5tWvdKdkXLAQYCzgLCPm6s6ByH6OnGbGprlVu2rh+izl/rkVqYaAkGdYLPRoWbdaMVMnmdW69tvPvVlzg6NCmT4uKGGFWTEEFkhxXUtarj6nMvAXC9bTmfRsznXI2Z3IIojzmU19zPlk9mh1Q3y5zWmvRcsU3lRlVa84KJd/TlOtb6uXv73tf5rkx/hKJzYUbSg0FQ2KsLcdSfa7bzmcJaYY5KbLbznS+MGLog0UqKkN2qsnDxt0SJun2TGnVShBqlRUqZ3KAUXcp4MbUlzHuGq/c6b02FUqzpiZnizjNAkSDhb9yfnOkqiTn3LhlaFHSYAkjlMJrD5ajG1QEjbToJx7Jd8YagnRAB2uJOjvMEfSGjRVOIGG+xarIFLvWL/uz+n3udhWiVSB9Z0eEORgjLXONPtl9BTb2J1lF2ElrV0jraRsW+hbp15nzFuypFX0nnLBAE2uau9ojBU46VCabemz/JCY3JuNW654EmRAB8F/0I+aXhOERDyF1ItJQYOnt1IYVfPwSO+iZfgwtTGIlD/+y3qMvOziY7O5u8vDwAevXqxVNPPcXo0aPdxomiyJgxY9iyZQubNm1i3LhxunOKosiiRYtYt24dpaWlDBs2jOzsbLp27ep1LUYM3Xki6eQbbgLO38zWxBOve4i5Qj/isdTIHSJk5HZgaheksmuDLytbc2eBunrYOt3JSgtasSpmUNRYn1/xZoLgLH0iuHXJ0Ds+6eQ6kk6+TtLJ1z3crM1JwrFsCtOyEEVZZKIp5kBboMhxnuBpmbG2v48evVM1j20Ki5QswvQsimVXvMDuX93rbBGlRvrZVdWZ+NzymCuLNMO0jDCzyLkaM3bRxBcHVnLAksqYz6SvQOrJqS14IiIf7V6tad3UEoRNIeb82e9rfvU2b+5gLfZEPOoUc8Gtw8DAUX+uecWcdNKALIIdOnRg6dKlfPfdd3z77bfccsst3Hnnnfz4449u41asWOFRRkyP559/nldeeYXVq1ezd+9eYmJiGDlyJDU1NQFdijcMQXcBUZg2jaK06Zr7lJ0TZAucVvFd5Tat9l6gHcumJexmrvVsAdZYEo6tdnstig0iS6Sh0wN4Wu7UMYUeMXaK12oh5w/NlaEK3i2USSfWknTSe+svb+gFyMviXm3FCmW2tjyXLHhkMSQH4P8QN4eCTi9RWB6Oze6rIK1AeZWF72LmuUTdaMtSBAF++OklVyxe/vX7yb9+f0DlS5TXvdEKH+9Z67Z+rTGNQU8Y+hrrLYFDi2DWLB+zL/oRCs+FGSVJDC56xo4dy5gxY+jatStXXnklf/jDH4iNjWXPnj2uMd9//z0vvvgib7zh23AjiiIrVqxg4cKF3HnnnfTp04e//OUvnD59mvfffz9k6zZi6JoZf92waoudIIgkHlvtEnRKd6rSJRqfu5J45zHq2nLyWCVa7cH8KzY8k5VTm8d6J/drVSN3kNBzm3p7ra5XJ8epeXPZNqeY04uESAyyL6wa9QP/dP1WtgdgwQoWZSwbQNkVL7KjzoT9MoE6mwl7AQQiFhwiFJaHcyBuHmEWkYKyMNrF1FMmdeNzunCdAf4qq5uey1e9XvV42bJVevl0/u/rwErseHN76r3WW6s3tFzLgc4jH5eb/DAniiMoK7EYyQ8Glxx2u51//OMfVFZWHhXJRwAAowpJREFUMmTIEACqqqr49a9/zcqVK0lJ8f1XWG5uLlarlREjRri2xcXFMWjQIHbv3s3dd98dkrUaFrpmRhlf542CDg9oul0TnGU9lHFyMuoPazmj1VdZD3lcUecZbLRK/yqzYZVZszJN6YotSpvuZoWTzyU/SpRZvqKob23zds3yeClRQhJPUiKGJwUdHmxWV2tC3ioSj2VTqLDGBlO6xBvq94oyCaKp6dE7lfIuL3Ky/csUlodRUWOhus4cQNkLEZMgEh1hJyrcgSCIlFRaOFdt5hbxedocfcStoK+y1ZcsUpSZsrK4PHQyXzNJQE/4tTmaHVA5En/EnPrceufXO4eeWzlYYf5j3Fx+Oh1NaaUh5gwuLQ4ePEhsbCwRERFMmzaNTZs20bNnTwDmzp3L0KFDufPOO/2ay2qVfgGTk5PdticnJ7v2hQLDQnee8GWlc2XAOpFFh9pyprTSqR8OSsudv3XaMlOgSGO7r6QIOXC/MC0rKCuSsghxgkYtOm+WM29r09qnjpnzlUiRdPL8tPZKPJbtWl+o2qqp66wFmhnbWMZ8lsrBDr+htNJCY9x27VrVk3vsBdf6EIFaaZ8rfu2kJOrU4igzRRJ5PV1bU13Habkv5eOU/3pzaaoteVrHqS1/3qx0vuZUX5u3ZA1/kY/PLwun1mZkshpcenTr1o3vv/+esrIy/vnPf3Lvvfeya9cufvnlF3bs2MGBAwfO9xI9MCx0LRil21WOu+wUfSfFnafpWpPUKC1R3sYo653JVjFfnRS0Yu3UYs7f+nVJJ9YGXIxYRs896W+cXKitXy0ZvUxPb4RKzA27+mF+mfxrzlU3TswJQEy4Xdc1KRfjlS1z6pp78jj1cVrb9bap9/kSZ/64Vb2htvCp4+fU16UlPL25mLWE7E7T41TV+opjNDC4OAkPD6dLly5cc801LFmyhL59+/Lyyy+zY8cOjhw5Qps2bbBYLFgskl1swoQJ3HTTTZpzyW7ZM2fOuG0/c+aMXy5bfzEsdBcYctJAcedpjZ5Ly3qlJ+K04s+UlkI9C1IgterkUhyB4UcxOR2UQi4Urc6agqZYk16cmK9yGcGUyTh0Mp/UL/pzavr/knMqkjqbQGMTJC1mkb7OGnRa61K6WGW8uTr9TUZQz+fL0qllhfNljdM7XnkNWtesd3698erzKsfmxM/mZHEkldWGmDMwkHE4HNTW1vLMM8/w4IPuzQB69+7NSy+9xNixYzWPTU9PJyUlhe3bt3P11VcDUumzvXv3Mn26f8YZfzAsdM1AQYcHgmr9JR/TvzAfQfXBGp+3utHr0rJeKa1aetYttbiD0Fm5Au1IITjvTKCtv7TQyyC+2FFaabSyJuXXw/vf53MetUjo2SGVsjkTKCyXXHcijXffmQQ4kvRwwAH+gVojtbJ91denjE9Tx6oFkn2qt2a9197WI3/v61xa6/0u5hGOnomi0rDMGVzCLFiwgM8//5y8vDwOHjzIggUL2LlzJ5mZmaSkpHDVVVe5fQF06tSJ9PR01xzdu3dn06ZNgJTYN2fOHBYvXszmzZs5ePAgkyZNon379l5r1wWKIehChD+CrTH9XGm0XSM0qPvHyuIuVJYktUVPfT55m+v8eauQHzyBikr32DRRM3bvYkLPzaiFlgBKOb1BV+zpzXmm0wzOlEVQUW0mVAKh1iZQVB6meT413q7ZVw06Ga0sV/U+5b9NUbdPPr86hs6XO9ibkFTuG9b3Ib4Me4zTJeHU+ywXY2AQPKawVmAK8z0wtCeVzusnBQUFTJo0iW7dujF8+HD27dvH1q1bufXWW/2eIycnh7KyMtfrxx9/nIceeoipU6cyYMAAKioq2LJli89iwYFgdIoIEq1OEU3J0cQZXF7YNC7B4vSZiKLI8cpNdIoZ7yHO5AdDUefpJOR5Fz2FnbI4Ub2ZDhG3N6pWmhZyW694Zy06dc05f+PlWqJrVU1RWhYJISpR4gu9eCt/rUl67jxrxxmUVlo4XhRFTX0oRYJI6ygbp04vdzufei3qmDN/0bt2vetUuza9ubRDsQ6tff6uTf5e5r/xc6isNnG2Iozqevnve0PMXYy0lE4RYLT+CoRAOkUYgi5IAhV0ej1e/aHk7VRKHh7fZIIOfAud4s7T/HbzKjNWDYJHKepCIfB8CQo5g9pfEaRlyZLPUdgpixPF0VjLIrCFvN+nSFJcHYNrXnStw9/s0UDGKAlWHHojmNg99XH+xj+q2Rf9CCWVFurqTYquD4aQu5hpSYLOwH+M1l8XGW0H9HN7XZSWFfJzqMXcWUXSxdnO0wL6qD8fYu5izFQNpZgD78JloxU3MefvfGpXo/y6stZCSWWYH90egsPkDEHQs4j5W7pDT1BpuVXV+JP9qrUtFMJQfY1q9GIG90XPY6tjPvkl4dTUmZ39WI2yJAYGFwOGoGsmgrXOaZFwbI1foq44Lcv1pcSX+ClOy3KVApG/F0XRbT45y1ZZPqWpYof84UJwowZLwrE1QZd0KXnbe5KJXokNX7Fx6mPk/SVvp5KbNIO8wmgqa81BrNg/quvNrnPrrVFP9PgrpLRKhajPpRfHpnWOfrZ8PmU+A696WPN8vmLi5DH+Jlgox+6LeoQt9ifIL4mgNqTubwMDg5aCIeguEATB4fbaH4tN/LE1iHimU3h1raZluY4rcn4vv3b7Pm81xZ2nuWLq9iemOl1t3oWH9bL7fK7bwJPgSrrARzf7VzYmGLcdaIuQM2WRlDey1pw3TAK0jXFv7q0ndIK1gimvy1s5kEBxOOBcTUO1KK1M2mDWqER9H76wPIa1NJw6m2GNMzC4mDmvgm7JkiUMGDCAVq1akZSUxLhx48jJyXEbc+TIEcaPH09iYiKtW7dm4sSJHsX5tDh16hS/+c1viI+PJyoqit69e/Ptt9+69ouiyFNPPUVqaipRUVGMGDGCn3/+OeTXGDI0Ih39sdIlHFsTkLsu3mn9Ux+ndv8VpWW5YuqK06a5slP1hIcs5FJObfB7LU1BUVpWk7isWyqBZF2qxUR+6iTA01WoFjv9bPn0s+VzQ98HOTH1fzhbEU5TigaL2UGf8hUe24NxaQaaJesrEcHbfAcsqUSGOyDqbY9j5C9fFlW9c2hZVr+JeoSPbE9Q4mrbZQg5A4OLmfMq6Hbt2sXMmTPZs2cPn3zyCfX19WRkZFBZWQlAZWUlGRkZCILAjh07+Oqrr6irq2Ps2LE4HA7deUtKShg2bBhhYWF8/PHHHDp0iBdffJG2bdu6xjz//PO88sorrF69mr179xITE8PIkSOpqalp8uuW8ddaVbLvgGbRkqbKgtSbVy+WK95Z7FiNukxLU1jn9iemBlSDThTFZssebSkEa6XaceAvbsfLPU/VwiH1i/6E913EseLWnDgbg83RlMJBpFWkzU0EydY5dT09JfI4a/v7gIZ/QyH6lPN7I7NiDL3/31+h+h430an8anuPtkVVS1h6s+jti3qEgrLwJkhIMTAwaKm0qCzXwsJCkpKS2LVrFzfccAPbtm1j9OjRlJSUuLJyysrKaNu2Ldu2bWPEiBGa8zzxxBN89dVXfPHFF5r7RVGkffv2PPLIIzz66KOueZOTk9mwYQN33323z7U2a9mSX8aQO6QT6YXawqklo8zutV52X9AWOnUP28aMbalZuAUdJpN08nXfA5uZ/NR7AUjNf9Pt+9Mpk2hv/QtfmOdRVWehzm5GbNKMSZHYSBv5+cu91oZTU9BhMp98+7pUSsUp5GRSTm/QPU6rNIhW+RH1dm/JCiVvp3Lo3kyG1b2gv2Av65Hxdr3/bTeHI2eisDepsDa40DCyXC9MLtgsV7kIX7t27QCora1FEAQiIiJcYyIjIzGZTHz55Ze682zevJlrr72WX/3qVyQlJdGvXz/WrWuoiZabm4vVanUThHFxcQwaNIjdu3drzllbW0t5ebnblxaBdjrwH33dfT5ciLLrsihtmtdxymSQxrhbA2kh5mtsSxRzQIsUcyCJt9T8N9lobfgeIOqlT/jSMpdzteFEhdspP7uEOyKW0DrKRoTFTpjFAZpRnMEgOQ1vEaXac1oWMaXFzu1IUWR4//tdYk4WcXpiTm9u+V9ZtHkTk8r9ynXlX78fh0MIKoFIyyqnnEd21xadC8Ou78AwMDC4SGkxgs7hcDBnzhyGDRvmaqUxePBgYmJimD9/PlVVVVRWVvLoo49it9vJz9d/aB89epTs7Gy6du3K1q1bmT59Og8//DBvvik9iKxW6VMwOTnZ7bjk5GTXPjVLliwhLi7O9dWxY0cACi/7rds4WUx8HzMriLsQHKFwIRalTXMKtKnOL++xZnKMXYLC3SqLu4KOwWVkqgk2s9OgaVBbxdrek0+bqGpKipZy4tSLrnGnTi9npHkZo81LuePEv4kMk4VdsIgIAoyNWOK2DrXA0evWkHzqDVJOryfl9AYPMecrQ9VbnJz6PFrJGEp3cGaKFEd31f/7q1cLXiDI8/yUMJtv757E5+bHqagJXVcOAwODCweL7yHNw8yZM/nhhx/cLG+JiYn84x//YPr06bzyyiuYTCbuuece+vfvj8mkr0UdDgfXXnstf/zjHwHo168fP/zwA6tXr+bee+8Nan0LFixg3rx5rtfl5eV07NgRtcd6f2IqkQf2cyY1mpyEaXQrCZWbtOk940phGGjts6K06SQcy5ZEmHOpBR0eIOnkG0GvJ9jMzpaK0t2nZx06c9kDJJ8K/p41B26lPFjNVd7cjF0+IjG2GyWVYdQ6i9g6RAH3Xxtv4kPEbBK5LWypxxrU+OuS1DpOq7SJPy5Ub/vVljyZ/Ov3czRmOddU/snjmLb35AdVcLikwkJ1nYnqusCOMzA4HxidIpqGFiHoZs2axYcffsjnn39Ohw4d3PZlZGRw5MgRioqKsFgstGnThpSUFC6//HLd+VJTU+nZs6fbth49evDuu+8CkJIifVqeOXOG1NSGv4jPnDnD1VdfrTlnRESEm+tX5uy3L3BF144cOilZ5iJP5tOzQyqnRTGEYq7pkDtAyJa2wk5Tpcer2OCzKeo0hYTj3tt4yX1QlSKsMWLuYkQWceo4roZtwgVjV1EKjkMn88nskKq5TxInL0kvFJ82u8yPEWEROXLsBeITn8AkiNTbBbe4L5MAkWF2RgjPN9VluK1TvXa1WPMmtHyJP3eBmEp6vYlDzs8KrbHqeb2d80jiw1QXyzX/LpR3kMGlir26kMKvHwJHve/BocIURuLQP/st6rKzs8nOziYvLw+AXr168dRTTzF69GgAbrrpJnbt2uV2TFZWFqtX6z/zRVFk0aJFrFu3jtLSUoYNG+byJIaK8yroRFHkoYceYtOmTezcuZP09HTdsQkJCQDs2LGDgoIC7rjjDt2xw4YN8yh/8tNPP5GWlgZAeno6KSkpbN++3SXgysvL2bt3L9OnT1dP55WK9Kf5JiIG8QqBamdg+HGbQHHRMgjwr2xvpBc2jbVKq51Xgsoy5kvMBUNLKWNyPtCyznkLzm/ptB3wBBsPvKkpaPREzo325WCHwSlwIrWCjvmvegSAbLTC7QH8DjWm84I/cwZSyFd5jFosvrumG4/8QXK/uv/ZqX3+jVbo0bsh0WejFUYOns7IzgLkreJYUSSVNU1XxNnAIJQ46s81r5iTToqj/pzfgq5Dhw4sXbqUrl27Iooib775JnfeeScHDhygV69eAEyZMoVnn33WdUx0dLTXOeXKGm+++Sbp6ek8+eSTjBw5kkOHDoUsaeS8CrqZM2fy1ltv8a9//YtWrVq54tfi4uKIiooCYP369fTo0YPExER2797N7NmzmTt3Lt26dXPNM3z4cMaPH8+sWVLc2ty5cxk6dCh//OMfmThxIt988w1r165l7VpJqAiCwJw5c1i8eDFdu3Z13dz27dszbty4gK7h2trVtLI0ZLluLHB+cDfBw8UXRZ0eJOH4a42ep7DjgySeaJgnVPMquRSFnBbW9ve5We4uRGGXmv8mw/vfx8b9G7yKOiXK/a0ibZrz+ltSJBghp7cevfl8uV215lQepzx+QlYOecdz6NE7FfxI9slMwW1cZgrgLOh9JOlhak5LSlgAREQMK52BQeMYO3as2+s//OEPZGdns2fPHpegi46Odnn7fCGKIitWrGDhwoXceeedAPzlL38hOTmZ999/36/KGv5wXpMisrOzKSsr46abbiI1NdX19be//c01Jicnh3HjxtGjRw+effZZfv/73/PCC+4p/7JLVmbAgAFs2rSJt99+m6uuuornnnuOFStWkJmZ6Rrz+OOP89BDDzF16lQGDBhARUUFW7ZsabRSbgorgb+EQnQlHl/rEnNFnR5sEjHXVBSlBWZdbQkoBZyWmDtzWUMtPy1XbUthu1PMgXbsmDpxQbmvTe5qt9fqAsFq5ExytTvUX4LNMA1kPnXbMbVgfHdNN6i6J/CFqDCbRCIsIklx9XRMqMViDlVWsYGBAYDdbuedd96hsrKSIUOGuLZv3LiRhIQErrrqKhYsWEBVVZXuHMFU1giGFlWH7kKiuevQ0eWjpj1HC6GxiRQGTUtTWRGV4kdZR1Cv5ps87vDB/ID/iNISmv7Eqvk7r1ZChdrtutEKV3R+hNa/PKoZR+eLos7TScjLpjBtJonHVgKQ32EWh0/GUFFr9Go18KSl1KGrLz9K8d7Hmvz8auIHLSestX7svZqDBw8yZMgQampqiI2N5a233mLMmDEArF27lrS0NNq3b89//vMf5s+fz8CBA3nvvfc05/r6668ZNmwYp0+fdovbnzhxIoIguBmx1ARSh65FJEUYhA5/BZFWFmtBx6kIONzcreeDwo6TSTzRMmuyXeqoxVywLk+9OTZaAWs+/TVctx7iCGmc6zgn/q7H3/g4X5muWtegVUrF49w1L3LIv6VqIAk2WcwBpJ58lZ/Mjwc9o4GBQQPdunXj+++/p6ysjH/+85/ce++97Nq1i549ezJ1akNJrd69e5Oamsrw4cM5cuQIV1xxxXlbc4upQ2cQGpJOvuHRcksL7ZIk599Ym3TyDUPMXWAE48LUQ11XTl3QV97u7biNVv0C3+o2Yf6u3ZdIlNuiaZ1P7xyHTuZTfkXgHSMAEj7N09xuNp3/32EDg4uB8PBwunTpwjXXXMOSJUvo27cvL7/8subYQYMGAfDLL79o7ldW1lBy5swZv+Pw/MEQdBch/oo6Lc63dc7Af+Q2XOcTpTiytr8/4ONLO2fp1muT55f/1RJ3euvR6xaiaSmj8aK0p0bZFrV41DqmpDIsuHN3+UinK0YQcxkYGPjE4XBQW1urue/7778HcHOnKlFW1pCRK2so4/IaiyHoLlJkt2sgwk5oJgtdQYcHghacBg3ILbhaCtv3rw+89Z0guQ69CR/wbaHzhj+CSSsTVz5W2b1B2cZLK3nDV0swNSLOBAkva9drQ9ar6zz69Zjjtk1KijAwMGgMCxYs4PPPPycvL4+DBw+yYMECdu7cSWZmJkeOHOG5557ju+++Iy8vj82bNzNp0iRuuOEG+vTp45qje/fubNq0CXCvrLF582YOHjzIpEmTgqqs4Q0jhu4iR7bW+RNX1xzWOXkthqBrHOe7xIlezTUK83UL5qqPB7its38CJNDOD96O8Vb8Vz3upn6T+eGy1sS0e8dl9fNW+DdQsRlmFpmQlaO731vJl5IKC3U2E8URj9Grq53DYQ6GnH2Bj8xPYLMbSREGLRNTWCswhTV7YWFTWCu/hxcUFDBp0iTy8/OJi4ujT58+bN26lVtvvZUTJ07w6aefsmLFCiorK+nYsSMTJkxg4cKFbnPk5OS4+tODVFmjsrKSqVOnUlpaynXXXReSyhpKjCzXIDGyXIPHyGS9eAkkSeLQyXwOWFJDXurHn5Zd/s4DkJz8KCOE4GLdfPFN1CMMrH7R90AfyMWHiwsmUVNnctraDVFn0EBLyXIFo/VXIBhZrgY+Kew09bz0SlVa6AxRd3FR8nYq3Oweu6ZXtqMp8cc1G4jYMwmhyebVIlRJDJkVY9hzricOh4AgSGt2iKIips4QdwYtB3NU4gUrsFoyhqC7RFGKueYUd7KIM8TcxUfbe/IZ0eFBNn77mqaoUrsqb7vuaXrmaWVbn1/U4nN3uL3Rlj6t40veTsUxObi1AfTpNpfyajOVNWZsnQXMVSKJKW961Ob7OvwxzlZYcIjgn7ATMZvkzhMSgiBiFqTXNruAKCpz4g2xaGDQEjCSIpqJ/YmpAQeMy8eU7DvgM7BbPbc/r+U53cRdxwCfMAYGCpJPvsatA6Zoxn15vIeF8ycEfAk0ZaaqSQjOiqZllfS4B6L3e6BMiih5O5UeXebS8bLHSEiaz+mScPKOv0CH03MYY1nKSNMyzezeoXXLSW5TT0SYiODntciWPbNJxGIWiQ53MNK8lF4dqunQro4ws9gMMs7oemFgEAiGha6R/Cd2KjHRMTofOw0feUKVNOJAjPsIr50Xq0BA4PAkM13NIt+ZHK6x6mehUNUwtyCImKrh+9iGuc3V8O9W0nwA5hqBXl2Ailfc5kk88brhDg0x5zuBobmQLVFJJ9a5vZZRl/Mobf4l+kSrNIqI/y5jXwWO1du0Pjfkc5e8nUrmgH7s69Odz6ot1E0UqD9rIircTsfTc+jZIZWN4JGAonXeAVUvcLLDwxyxRlJWrfexL1nmYiLsWMwi5VWSVc9hFxhpeh6AjvkvY0uajbUsrInj9ERaRdqps5motTXleQwMLh4MQddI+lSspZXYkBShbFskv1Yj75fHqsco94vA0Mp80EkIkoOh5XkOH5SOVW7Ton9hPl9aHtHcZ4g5g0DREm96VmV5XJvc1U1y7sbiIbpEwW27r/NpWeT0xoeZRbc4wzGfSSLu6/CeVN1jxuGAiFoHp/MlQdXPlk9R2p9cIs7fNQF0OP0Kp6MeobzGDAqXqcmplQQBLk+qIal1PQ4REo+/CsDnlsfB1jBPesHLnI56jOJzTff4MJugY0It56rNnCiOaLLzGBhcTBhZrkHSrFmuTcD+xFTSX5HinnxhWOwM/KWpkgcCXcOIax4g+dQbXnvBetumZHf4XIbUveTXedXzyDXsPro532MdYz5LJffBe0h/7W2OT72b8moLtfUmTCaRlBNzNUu/bLRCcvJ8Vj37Pu8t0i934u26vol6lIHVL7Cd+ZhNIjc5JLH4mfA4N4vPexy/y/w4dofALeIyt3m22p+g1ubyGXhdi/9Irty4aBs32JezL+oR8kvDXWdwtwpKr0yCJEbtjlCu4+KjJWW5GviPkeVqEFIMMWfgL80p5pSCpeTtVHLunYgIXNlZpLSqlvC3UxkDlOD+h8tdz3Rzq/3mdc2/jIFe/q1HOU/J26m0vSefA7/+DQBdI2yUrH+nYeyAfnz266uoKTNRnvkbbOcEIsIctD8luVLRqeOXmQL8cpDEF0az8eccv2rtqYXdwGqpBMtwloGjYXu7WBuoKkl8E/koYh3cIi5jd/ijDKlrKN8y0rwUzLDNMZ+aehONF1OSyze1/QaXl6KixkxUmINbTcs42Hoep0vCqbNBuEUkzOKgVaSdNjF27A44XhQRonVcrBi2m4sdQ9BdAKjduAYGLZVQWOj8nUM5pu09+Rw5/jJpHeY6467MlN73KwRBQEDEZJKyNHt3dZCZmUvJZ+WuY0sUcyjdxLf0n0zk2x9BT89ODkpXqrru3UYr9HgY2hZCv7f+CsCeX91L2d2/JdziwOEwYTE7uNn2PIesUhHmQyfzqe62XIqL83X9XT6irLqX34WT/bmXh9vOoW/Jn9y2ZaYANS9I15qCm5hT0qFdHYXnLJxzxubJGbAmQUqqcDgE7B4ZtiImQepsIW+NjrBzvW05FEqvv4+dR7zJRp9yaV29y/9ESfjjtIu1c1m7OixmkTCzA5MgucXrbQJ5RZGXYPuzBkulxSxidwgqa6V0r8OMLiIXPYaguwBoqWKuqNMUEo6vO9/LMGhBhMJCF+wcmSmAzekadeAW9yVz6GQ+hyKh5z3uFrCvwuYC0Lmj9BgUBJG8IpHqezKx15j4oc1MIiwOEla+D8AY53ElQL/r91Pydn8y78l3JTJ8W9GFz4RwbP9rwmwSiRTsJJ+Y1+BGda5Nfn3AksoVdsGrmJP3ne4wC6wNlsZAXcqy9VBJj5IV2if1g56lznse3rDtm8hHGVjTIAA/FedTVddQVCEmwiFZCJUofl4HYufRr+JPbLTCQaT158TPIaLSwWXtaomOcLiEo6QVRaIjJHFnv+h1i7sYHmleyldhjzGsfrm02wwf1C1wCluRqHAHtwrLOFffjJ0ZDM4LhqAzCBpDzBlcaOi1JBtW7x4jt9EKSUmPIQhw2em5cFrKS2rrFIJfhc0DwCEKwD2cu8KB2SRiv0+grDocsVJgpGkZh04726CJ6LpRQUpiqi337iqURdmsKZ/w+B9v58nlt9EhfjgcW+UxRr4G9TbwL262Mb1zATcxBzBCWMYn4fOprTdxe/gSn+eVrWzyuY8mPky3whXSi1NQevkMqYAyDY5Eu0O4ZLyKt4cvabAmp8Cw+uWue/ffdnMQrCAilZsZISzzOtf5oKqggNryct8DQ0RE69ZEJyU12/nOF4agu4RpO6AfEDrr39nO02iXF5rMxWAoSpuOiAOcFfKTTjR/JwwDiZaQHNFYTCaR1lGS2UgpBKVr+5MrsSHnvrtpdWS+a7+rY2SHVJ89beX5xrwN/870ryzohKwc6mxjqa4389xj23lvkd+X5DdN8bNrFWmnVaQdan2ft3+lu/vXrHIXtjm6irLLZwAN4s8hXgp6TiQmQgp81LPMRoU7aBNjw+4QpBqKGpbq80lVQQHbpkzF0YwWQ1NYGBnr1gYt6pYuXcqCBQuYPXs2K1as4OzZsyxatIht27Zx/PhxEhMTGTduHM899xxxcXG684iiyKJFi1i3bh2lpaUMGzaM7OxsunbtGuyluWEUFr5Eef0Pg0M+p5aYK+w01e+iyoUdH6Sw44NBnz/hWDaJx9aQeHytIebOMxe6mJPWLxBusevWecusGMPP9/8vcdH19HSKN+VXIOf66OZ8auvdP469lX2JbbeRunoT7y3K0Rzn7zZv20NNtw0bGVzrX09cOTtYJs36Z48xH369ytn9QhJ1DodAmFkkNtJGdLgd4aIqTCwiIBIXZcdqXeYqOK1lhU2zvsJ19cu50f4819uWsz9GsiYfT5p2HtbtSW15ebOKOQBHfX3QFsF9+/axZs0a+vTp49p2+vRpTp8+zQsvvMAPP/zAhg0b2LJlC5Mney/M//zzz/PKK6+wevVq9u7dS0xMDCNHjqSmpiaotakxBN0lyP7EVCb/fg87uvRkX+TDXsc1lhPVH/g9NvHEaySeeK3R5zQwCAXDWU7fc55CAqQHacm+A5RVh7P/8KshOZ8giPTtPsf1WisWTqZ/Yb6UZaoxTrnNn+SIlii+C2ZN9DkmMwXa5q6SirMLEN+6jp4dKunVoZKeHSqJb3XxxIyZTZDato4bHc+TmYLbl1qQq1/L1s5OBefPe3KhUlFRQWZmJuvWraNt27au7VdddRXvvvsuY8eO5YorruCWW27hD3/4Ax988AE2m7ZJVBRFVqxYwcKFC7nzzjvp06cPf/nLXzh9+jTvv/9+SNZruFwvQerK/pfBdSvgl0NsjP2In/QGWvM5rLHZW9FYrTlSUx7D5hD4vnUNV6s6UxhceBw6mR+QBepiJDMFGNAPgdAIImmOZV7bZ+gJvAtBqJW8ncqxqffQ9tyffA8GuhW/7Pfc7XKlGMKz6TMIM9sBCEckvpWNsxVhLivehYzF5ODaqhfJS36YzmfcP0PVCS+ZfsRIGvjHzJkzue222xgxYgSLFy/2Olau72exaMuq3NxcrFYrI0aMcG2Li4tj0KBB7N69m7vvvrvR6zUE3SVIbGQd1AFdPiIzyDkCe1gsl2zB34+BLkGe0KDFEIyYU7rQ2jqzQZXftx3QjyNDuiAgxa7Frfin2/H+BPI3O10+YgQfnbfT+/rDyt92ZU3Nyfaz6HDPq36LuUCR48fa5a7ibPoM1/bYCDsRFgfV9eYmOW9zUmszsU2YT3ihSGcv41rk78kFyjvvvMP+/fvZt2+fz7FFRUU899xzTJ06VXeM1Sr9QiYnJ7ttT05Odu1rLIagM2g+upy/h5+Swk5TSTxuxNgFzS9jPDcNvhyHKFBvM1HvMOFwSBmgDodAvV2g7tcmbA6BcLODPhv/St6UuzlXbSHcIlL3G4GqWjP201KWpyCIRP76t5gFEYcoEG5xEG6RaslFWuxEhDnosueI+wJayHtLprmSQvxtQQbNsyatkigdTofGJa2H8pqUoq6mXpAyXy8KBGrqzdTZRP4dP4++QYjjfye0IJNtC+fEiRPMnj2bTz75xGd3hvLycm677TZ69uzJ008/3TwL1MEQdJcY+xNTifCSZXYp0GLF3C9jGoSJ8vvGzBcAOQOvoM5mwuYwYXcITlEGNrvg2iaKIF4uiTW7wxl2LgqIp3HrD9qA+wO1GhO7/+deHGcFpytM64ErUGHXCu91Nn4S4L+d+rq2mkwiFkdvTIJIRJid620vAuc301brvIVp00g81rRxTN6uuTnuRUuwELXLXUVBp5kUnQunzn6xCDoJhwgniiMoDJ9PfGw9/SoahJ23n33J26n0veN4M63ywue7776joKCA/v37u7bZ7XY+//xzXn31VWprazGbzZw7d45Ro0bRqlUrNm3aRFiYfhvQlBTph3PmzBlSUxs8FmfOnOHqq68OyboNQXcJchGElDSKorQsEo6tOd/LkPhlDN/17YbNLlDX3YTN0QsBsHQXsZi7E2YWMZnALIj0OfCTtshTCbfvr74ShwiOPjgtZCbsDhN2EUSHLMakf0WxQZRhbajy70moHowCtqCtJtJx6jU67AI2KXSKqjoz28Lmk3H0IGP2HWDjzZLAaEox469wFLzcw1CJz/PtXvWHxlyrr2NlC2HSjly+TevDxdYGTHBeTlWtiZq6CKpjH2Wos4OHt/vS9p58zlU2wwIvEoYPH87Bgwfdtt1///10796d+fPnYzabKS8vZ+TIkURERLB582aflrz09HRSUlLYvn27S8CVl5ezd+9epk+fHpJ1G4LuEqN/YT4/tL60JV0wYs7v9msqcbW/75XY7CZqbSZsdsmqZVO4JMWOIJ5VHuHeeFy59Xinvgj1fZydDBr2iWk0WMpEEIu1FnZxPdj0EaipN/F/aX2IubIX3SNtXPOfHPhFykpVEiprkr/iJOFYttf9zWlRbGnWS2XsGzTUlhPAlcUKMDodikX3caJznF0UqJhtJr/eRH6XcGy1F997PjbCzs3i867XX4qP8XX4Y/R486+u1nXq+yuL3NJ/XgBqv4XQqlUrrrrqKrdtMTExxMfHc9VVV1FeXk5GRgZVVVX89a9/pby8nHJnWZTExETMZilus3v37ixZsoTx48cjCAJz5sxh8eLFdO3alfT0dJ588knat2/PuHHjQrJuQ9BdggjCxfdBFwhqC52uWFOIs/6/APQD4KdBXai1CdjtgrNvqOSOtNsF6tMVYk1UirVA77n7eEmwAeKl/bPzD0k4l1ebKK+2cLpTX0yCiJDWB0EAs8mBxSy1TzIJolR8FYgIc5DSppaIMIezhpng/DE4Y/t0ziY6/+/NAidNoLVfOs+odOnbYkFgy+6VTS62xnyW6uphK1My+1eIorTMti//Q1fwKsWXS3gJDeJLjV+9VXXGyGJNa46qOhOnzkbicEjnr7cLVNaYsTlDAy7GP2JMqpt8nbPd1zcPPMLA6hfJTGkQcCVvp1L40ETqppk4YxYRHyqHjee/u09E69aYwsKavbBwROvWIZtv//797N27F4AuXdwz/XJzc+ncuTMAOTk5lJWVufY9/vjjVFZWMnXqVEpLS7nuuuvYsmWLT+uevwiieOm1Mg4F5eXlxMXF8dOmsbSK0febtzT2J6YSUTeeXmWrfA++CClKywLgeNVmQNEnVyHeDvbvis1hos4mCTa7Q3DFkbmJNY/ZL74HyMWL9k8vOsJO66h6zCYRQRCcAlAkMsxBVLiDMIvDJQAbbKmiYgZZAzb/e0FwSiqHKCWiuP7IsEvXUV0nvZcraszU1EsWY4tZxCyI1Nul97hDlMaGmR1ERzhoF1tPdIQdsyBlWkaF2zEJUgP4cIuI2dQQ16iOoZRvQVM8YUQgvySCvILIS+r30GJ2kNqmzi12TskPbeZit4PNIf0sB1S96Nq3L2wKd9w82lVeo6mpqakhNzeX9PR0D8FitP7yH2/3UY1hobvEkFyu53sV5w9RhMTja0hwCrj9ff+Xipowai53WtkcAmKh8sF08T4cLm08f64iUFlrprLW7DHSZBKJsIhER9ilTgQRkpXPdawzeSQqXNouCUI/liGbxFwr8P/9JorSHxd1NunhjShQXWeitMpCZa0Ju90kxUo6JPOZw+H5vq7TqoEqgt0hib7SSgtmk2TNtDmkjGOzScRmF4iJsJMYV09ctA2LfL0qdaUUc/IfQSaNS3QLIRDdt8uva+ulTGmLSaS82kJBWTju0vrix2YXOFkcQXnU49zokFyvSjfrVaUv6R7bvbTl/BEfnZR0wQqslowh6C5BLiWPq9Kd+lP8w1QUm/mv5TGqLzdRZzPhOAuX0gPBwBfaQs/uEKiqk9x8RefCXCJHiVxiJSLMQesoG2EWkehwO5HhDsBp7RNEBEGlWBAQEBFlC5+gSP5QWL0comRFq7NJrsU6m0B1nZnqOsnahnOdmtnDQVnJpLkcikzR6roGsVtTb6KsykJctJ2OCTXERNgRBFwi0ua0BspW7po6SZBFh9uJCncQGe5wbQszO4gMc7hb/BS3qKrWTH5JOFV1ZsItDpe18dL73ZXeKedqzHwd+xhtYmxkoi/iDC4tDEFncFFjqr6br8LMVNWZqbNKddEM65tB8DQIJ7vG3uo6E9V1JsoqLQgCrhp6ImrXrUiY2UFtvQmHQ8DiFH8RYdK70+aAyhozJc5OBw6HZCGrcybXNMSJua+reRGwOaC4woIoRtIpsQa7A86eC6Oi1ky9M77U3TIIZ7Fgcrqy5VI4smtbjsVDkOStHMJotwuuEiR1NrPr/JcqraNtDK1bDnXw33az6X7W/84aBhcvhqAzuGDZn5jK4YMNZSlK3k7leNbdnKs2U10nWTDsxfKH/qX74W/QnDita0jWtZp6MzWu2O8GB6EgSAWUJVcpzrg1kTaxNgREyqosTsuW9vwtB2k9ZystVNTGIIpScoJynxZqy5+oem2gj9kkcoNtueu1Usy1lO4gBucHQ9CFiIIOD5B08o3zvYyLnrue6QbAhKwcsObT+8o5nKu28Emdmbr/EbAXXopuGIMLA3exp8xYFkWotUFhmZRgpV90uaUiuYINmp4Ii77/3BBylzaGoAsRhpgLLfsTU1k8S8remJCVA0gfVk+/OJqKGjNVtXdSZzNxrFC45AKjDS5WhIuikbxBU+Jnso3BJYkh6AzOO1ribczb8F7mFfyn35VU1t5OZZ2Zj+pN2IuUsUPGJ5uBgcGlg0mA4SwjN+lh6uwC3YqN2DmDBgxBdwnSUioPKt2nC1+VSqp8HzubiloL397tzI4rUoo2Q8AZGBhcqojERNj5wvwYlflmzIJIN62WxwaXLOf17bBkyRIGDBhAq1atSEpKYty4ceTk5LiNOXLkCOPHjycxMZHWrVszceJEzpw543Xep59+2lkUtOGre/fubmOsViu//e1vSUlJISYmhv79+/Puu++G/BpbGvsTUzXrQDXHeWeuHc9Ga0Pg7nuZV7Bo+UjSO87jbMFv+b/6JzheHM3ZinCq6yzYHSZw5boZYs7AwODSpqLGTEmlhcgwB7ealrE/Zh57Ih/hh7g5Xo+TP3MNLm7Oq4Vu165dzJw5kwEDBmCz2fjd735HRkYGhw4dIiYmhsrKSjIyMujbty87duwA4Mknn2Ts2LHs2bMHk0lfj/bq1YtPP/3U9dpicb/USZMmUVpayubNm0lISOCtt95i4sSJfPvtt/Tr169pLjhIznScRvKJ1ed7GUGx0QrvrunGhKwcJv9+D/13j+GrHj3YXm+iNs2MvdiIgTMwMDDwjeDqSiLXMuxf6ewYUeP9yMwUOFfZlGsLjPris9gqmm9BltgYwuLbNdv5zhfnVdBt2bLF7fWGDRtISkriu+++44YbbuCrr74iLy+PAwcOuFqVvPnmm7Rt25YdO3YwYsQI3bktFgspKfopP19//TXZ2dkMHDgQgIULF/LSSy/x3XfftThBF0ox178wn0NxIZvOhVzAV11KpPeVc0j/g5TEYD1t4oOOAmIFGALOwMDAIDAEAcaGL2Ff+CP8EDGHmAg76Wf+fL6XFRD1xWc58rtnEeu12pQ0DUKYhSv++FTQom7p0qUsWLCA2bNns2LFCgCysrL49NNPOX36NLGxsQwdOpRly5Z5eAOViKLIokWLWLduHaWlpQwbNozs7Gy6du0a1LrUtCgPvNzEtl076abX1tYiCAIRERGuMZGRkZhMJr788kuvc/3888+0b9+eyy+/nMzMTI4fP+62f+jQofztb3/j7NmzOBwO3nnnHWpqarjppps056utraW8vNzt64LklzGEWkzNXDveJeIi6iZyeadHSEl5nI/qn+BYYRRF56QK7zaHCdFwnxoYGBgEhwh7Ix9lQPWLXFW64oITcwC2ispmFXMAYr0taIvgvn37WLNmDX369HHbfs0117B+/XoOHz7M1q1bEUWRjIwM7HatkuMSzz//PK+88gqrV69m7969xMTEMHLkSGpqfJhY/aTFCDqHw8GcOXMYNmwYV111FQCDBw8mJiaG+fPnU1VVRWVlJY8++ih2u538/HzduQYNGsSGDRvYsmUL2dnZ5Obmcv3113Pu3DnXmL///e/U19cTHx9PREQEWVlZbNq0iS5dumjOuWTJEuLi4lxfHTt2DO0NaGrk5vNdPqJn2cqQTLnRKiU2TP79HjIrxvBt1FyOFkRTeC6cylqLSsAZIs7AwMCgMYgoCzcbNDUVFRVkZmaybt062rZt67Zv6tSp3HDDDXTu3Jn+/fuzePFiTpw4QV5enuZcoiiyYsUKFi5cyJ133kmfPn34y1/+wunTp3n//fdDst4WI+hmzpzJDz/8wDvvvOPalpiYyD/+8Q8++OADYmNjiYuLo7S0lP79+3uNnxs9ejS/+tWv6NOnDyNHjuSjjz6itLSUv//9764xTz75JKWlpXz66ad8++23zJs3j4kTJ3Lw4EHNORcsWEBZWZnr68SJE6G7+Oagy0chmWZ/Yqrr38yKMbz2xo1Sr9QuH1F4LsKwwBkYGBg0IUYB5+Zj5syZ3HbbbV7DuwAqKytZv3496enpusae3NxcrFar21xxcXEMGjSI3bt3h2S9LaJsyaxZs/jwww/5/PPP6dChg9u+jIwMjhw5QlFRERaLhTZt2pCSksLll1/u9/xt2rThyiuv5JdffgGkzNlXX32VH374gV69egHQt29fvvjiC1auXMnq1Z4xaxEREW6u35aKshl9KLnrGSmxIfOXfhTePIb+J14H+nHybDT/MT1GVa0Zm8P4oDEwMDAIDSLhFhFBEKmtbzBgVNSY+Tz6MW6wL/dybAMbrUYHiWB455132L9/P/v27dMds2rVKh5//HEqKyvp1q0bn3zyCeHh4ZpjrVYp1Tg5Odlte3JysmtfYzmvgk4URR566CE2bdrEzp07SU9P1x2bkJAAwI4dOygoKOCOO+7w+zwVFRUcOXKE3/72twBUVVUBeFj5zGYzDodH88QWj1LEhUrMufUE/GUM72UCFVdw6oZOlFdY+Dn8Ec6lW6grNjnr2hlizsDAwCBUmAQYZV4qvXDaEr6wPEZZlcVvMQeGmAuGEydOMHv2bD755BMiIyN1x2VmZnLrrbeSn5/PCy+8wMSJE/nqq6+8HtOUnFdBN3PmTN566y3+9a9/0apVK5dKjYuLIyoqCoD169fTo0cPEhMT2b17N7Nnz2bu3Ll069bNNc/w4cMZP348s2bNAuDRRx9l7NixpKWlcfr0aRYtWoTZbOaee+4BoHv37nTp0oWsrCxeeOEF4uPjef/99/nkk0/48MMPQ3Nxv4wJmZvTF6EQcbIr9fDBfDIrxpAp7/gF8m/sRFWdmZKKcEpPhVFTb74Ae00aGBgYXDg4RPjY9gQmAeJibAyueYHrbcv5ru0j7LU/wqCaF8/3Ei9avvvuOwoKCujfv79rm91u5/PPP+fVV1+ltrYWs9nsiqnv2rUrgwcPpm3btmzatMmlNZTIVTfOnDlDamqqa/uZM2e4+uqrQ7Lu8yrosrOzATwyS9evX899990HQE5ODgsWLODs2bN07tyZ3//+98ydO9dtvOySlTl58iT33HMPxcXFJCYmct1117Fnzx4SExMBCAsL46OPPuKJJ55g7NixVFRU0KVLF958803GjBkT2EUczQCn+FTzS4IkMLvsOcqRIVdwxe4j0nqHXIEkhvRbNgiCZMEEuKLw1cDWFCAbrfD/2zvv8CiqrwG/syW990oIIRAIHSH03hFpP5ogYAFEFLGBfoCCothQRBRQkaIoTUBQQHpRioj0EiAFEtJ7NnWzO98fSwaWBKQEkpD7Pk8e2Cl3zpk75cy555w7nGsePl0vUjv7YZQl8vVqMnO1pCdo0RVobgjGFYacQCCoisho1TIqCQqKHuTz0PTsLzJKqCWZ9BwNqE1rmubM4Zjdq5x2mkS9jLml7v2gQm+qCp07dy4RT//0008TEhLClClTUKvVJfaRZRlZlikoKCi1zcDAQLy8vNi5c6diwGVlZXH48GHGjx9fJnKX+5Drf/Hhhx/y4Ycf3nabm7NKbkysuBXBwcFlMzNEjW1gqy11Vc1iG7MmBCWb/oVr/78N/7p70yTp7m/GO72Ji71xxdsO1/UiNcAPkHC9FEN6jiWpOi1ZeVoK9CrhjRMIBIJrWFsYqeZWQLpOQ0auhsIiCYNRKtPnpEYl00tr/t47Yv0azfJMXrnGus9uu78w5u4Pe3t7pdpGMba2tri6ulKvXj0iIyNZtWoV3bp1w93dndjYWD788EOsra3NnEIhISHMnj2b/v37I0kSkyZNYtasWQQHBxMYGMj06dPx8fGhX79+ZSJ3hUiKEJhzrzfjrfa72dBrkhwPl3qR2rkPIGHwl8jLV5Oeo+VkrVBy49UYjCJbVSAQCMyRyClQozdI1PDMR2+QKCySyMrTEJNiSUGRaZv7xUIjE+46idqpc5VlhrtIOqvIiRAaO1skreahFxbW2NmWWXtWVlbs37+fuXPnkp6ejqenJ+3atePAgQN4eHgo24WHhyv1dQElgWLs2LFkZGTQpk0btm7dWmYxd5J8J24yQQmysrJwdHTkwvo+2N/CQ1dW3I/7vHjmhuLkhps536wmaTkmb1zhAx1CEAgEgkcBGQdrA3V9c7HUyugNEinZppCUNJ2W7LziGGP472fpja9fyWy5pUamu/q6l+6kwyuoVFAv4/N7kjo7R0+t/pvIzMxUZl56kOTn5xMVFUVgYGAJg0VM/XXn3O483ozw0FUC7saYM0tu8IImBxvThMZwCdK7+GEwqtEVqEnTaUnP0ZKXKBIcBAKB4M4xeelSdRq8nPRk56uxtjDiblWEm72ejBwNmbkasvJMpZyKDOajHSpJRqOWKTJIWGqNGIzSTbXlTNU8VSqZ/Zo3aFtkymhtkHVvhhxAsv+zWJ2vOPOBa11dKq2BVZERBt0jhmLI6XopRpzzjlji2lUnI0NLqk6LLr84wUEYcQKBQHC3GIyQmGmBnZURfZGEi10RkgSWWiMejoXUSZ9rKtuvgt+Mb93gsQMHmyLaFX2iJDkcd3oVXb6ajBwNRtn0TO5jOdu08g5GJe90eDXFbySw6W7UFFQyKsxMEYJ7Z0XCtbpxl3oxXNfLbGg1LceSI/VDOHPVjsgkG9JztMKYEwgEgvtCIjtPTVy6qYisSrpusUk3PFrPOU9CJck8YfkBapUMyCZj7gYaZX+Gu0MhGrWstLNdnnJX0hSPzNwK95jFd9WeoHIiDLpKxr/u3vzr7s2Eb/pfL/6rMxly6V38SO1cjdi2gZxsXIs9tUI5H2dLfIYleYXqa19/wpgTCASC+0XGNGuDJMlmj1SXqK+V/9dJn4uzncnN1ls7G3srA8fsXi3RVu3UL1BJMvbWBmwsjHSVPrpjOYZ7mcJySjPqkv2fvXOFBJUeMeRaiViRAL/MdGDguHC+Grve5IkzzWZGfPvqZGVpSNVZkJWnEQkOAoFA8IDRqGUcbAyoJFMh4BuNuWJaFnyq/L+j/DHobtGWSkaWwdrSwF+8QevCu5vaq7RY6xs9c26xy++oPUHlRRh0FZziLNViPprXhcy8nuzO06KvocJKa8BCI5N7VU1eoRrDHWdXCQQCgeB+0BskCvUSFprbP3EvuL5MrdQvlN+RHhOpkTTPbJtOfMyKOJNxdtz+Vf51vF7dwGwqRszj5kqLnxOFhasmwqCrgPzr7s2sF02eOBLiqVPfG2POULLyNFxMMGVOmZDI1984ai6MOIFAIHg4SOQWqIjPsCDQIg/3yyW9c8XcaMwBJYy5YoqNs0bZn0F2yfXFhtyNRpxZaaprCGOuaiIMugrChG/6Ex9/VjHi1g1vzL9BvcjI1RAfp76hqOTNRpsw4gQCgaB8kEjXaWl+6pwyE9D9cvOoTGnc6KEr3vbGZbf6v+DRRhh05cS/7t4sfr8FrZ5YD6DExJ2t052MHC1b8zQUphV734TRJhAIBBWRgiKJrYEN6HEJqLn5ttvebGhByd8kmLxtN6+/kRuXldj/FssqEqKw8INBGHTlRJPkeM49sZ469U2xDkdtJ5FR00IU+hUIBIJKhURhEWyp3oCe/2HU3WyI3WyEFf++cfmtDLXbed1KG5qtKOhT04j4v3cf+tRfQR+8/cgbdaJsyUPiX3dvpV5ccXp5w9oT0aUNZ0vRm1xNsyan4MbSIgKBQCCoHEjoDSp216pHnN+Ld7RHacZbaZ630va7ldfudl691Ul3JNYDp0iX81CNOQBZX3RfHsEPP/wQSZKYNGlSybZlmZ49eyJJEhs2bLi9HLLM22+/jbe3N9bW1nTp0oWLFy/es1w3Iwy6B0yxIVcctDpc1wuDbijb5clEJduSkatFb1Ah6sMJBAJB5UaXryY6yYp4vwm33Kb4w/5mD9qNy4t/l8btvG43r7uxjcEeCO6BI0eOsGjRIho0aFDq+rlz5yJJd/bu/vjjj5k3bx4LFy7k8OHD2Nra0r17d/Lz88tEVjHkep+ccPOiTV6q2bIbg1qHE08TXS9ONglmj05LToAGQ4Yw3gQCgeBRQ5Yl0nO0eBQUkhb4Qql16W7F7eLi7nXo9Mb9KoqHrjKh0+kYPnw43377LbNmzSqx/vjx48yZM4d//vkHb+/bz9YhyzJz585l2rRp9O3bF4Dly5fj6enJhg0bGDp06H3LKzx0ZUBq9fEMmFlb+cIKnGfyxD0WOpEDFq/xR436XE6xIStPi8FY7I0TCAQCwaOGwQgZOVqKDJBa/QWzdTd75krzyN08BHunxtyt4u6KfwsP3d0zYcIEevfuTZcuXUqsy83N5cknn+Srr77Cy+u/OykqKoqEhASzthwdHQkLC+PgwYNlIq/w0N0n1Wx7M+bpXQwcF2668S714tiY2pzI1ZCTcLtyIwKBQCB4FEnO0uJgU4SrnZ60QJNR5xL1dQnjrDSv3N14425VYLi042Q/vKTSR4KVK1fy77//cuTIkVLXv/LKK7Rq1Urxtv0XCQkmK9vT09Nsuaenp7LufhEG3X3ivDuGdcODOF+3B3/pNGQHailMFUacQCAQVE0k9AaITbVEo5Kxty5CreKWQ7D3UyeuImaxPgrExMTw8ssvs337dqysrEqs37hxI7t27eLYsWPlIN2tEQbdfXKodm1kjSMFCSpkUW5EIBAIBEjo8tVciLfB3aEQX5cCtGrZzFsHpQ+zFnO/cXSioPC9c/ToUZKSkmjSpImyzGAwsG/fPubPn8/48eOJiIjAycnJbL+BAwfStm1b9uzZU6LN4mHZxMREs3i7xMREGjVqVCZyC4PuPknL0WJtoy5vMQQCgUBQoTDVp4tPt0SSwM8lH821V0Wxt+5ODK7iciR3a6AJY+7e6dy5M6dOnTJb9vTTTxMSEsKUKVNwc3Nj3LhxZuvr16/P559/Tp8+fUptMzAwEC8vL3bu3KkYcFlZWRw+fJjx48eXidzCoLtvhEdOIBAIBKUhYZRlEtItsNIa8XAsRHXtlXEnWbAVuUDwo4y9vT316tUzW2Zra4urq6uyvLREiGrVqhEYGKj8DgkJYfbs2fTv31+pYzdr1iyCg4MJDAxk+vTp+Pj40K9fvzKRWxh0AoFAIBA8MCSKjBCTavLUudjpkQC1Sia1+gu4Rt/aqHsUDTmNnS2SVvPQZ4rQ2Nk+tOMVEx4eTmZmpvJ78uTJ5OTkMHbsWDIyMmjTpg1bt24tNU7vXpBk2RT5Jbg7srKycHR0ZO6qPVjb2JW3OAKBQCCo0MhYaGRsLAyoVOBkq8fdQY9GJZsMvbuoWXcvZOfoqdV/E5mZmTg4ODzQYwHk5+cTFRVFYGBgCYNFzOV659zuPN6M8NAJBAKBQPDAkSgskigsUgEymbkadPlqvJwKsbMykBb4AlsO3llcHVTupAetq0ulNbAqMsKgEwgEAoHgoSJhMEJSpgVZuRo8HQvxdCqkR4sXSEXGNXrBf7ZQWY05wYNDGHQCgUAgEJQLEvl6FVdSrcjM0+DlWIijbRGp1cez9dB1o04Yb4I7QUz9JRAIBAJBuSEhyxIZORouJVgTkWBNRq6GrmEv/PeuAsENCA+dQCAQCATljkSRUSIlW0tWngZXez2tG71E9YQv77m4sKBqITx0AoFAIBBUGEzJEwnpFlyIs+Ffu1dp1+RFeu32ZsDM2kDpM0sIBMKgEwgEAoGgQiEhX4uvu5pqSXicDVfGDWFxrawSxpww7gTFiCFXgUAgEAgqJBIykFug4UqympRhT9HQqRDfBasYcMGBgePCxTCsQEEYdAKBQCAQVHBkJHIK1EQnWZM2YgSLf/wRZ6/KWY/OkK3DmJ//0I6nsrJCbf/oTwAgDDqBQCAQCCoFEkYZMnI1HBw0CjdrPb12/8SKjvG3NepWJMAT9g9PytthyNaR/PNaMBge3kHVatyH/e+RN+pEDJ1AIBAIBJUKiSKDioQMC44OHcljdV8qb4HuGGN+/sM15gAMhvvyCH744YdIksSkSZOUZR06dECSJLO/559//rbtyLLM22+/jbe3N9bW1nTp0oWLFy/es1w3Iww6gUAgEAgqJRK5hSqikm3hUq8Sa0W5k/vnyJEjLFq0iAYNGpRYN2bMGOLj45W/jz/++LZtffzxx8ybN4+FCxdy+PBhbG1t6d69O/llNPxcrgbd7NmzadasGfb29nh4eNCvXz/Cw8PNtomIiKB///64u7vj4ODA4MGDSUxMvG27M2bMKGE5h4SElNju4MGDdOrUCVtbWxwcHGjXrh15eXllqqNAIBAIBA8OU5mTrYH1Sf/ZmxUJpWe+rk56+JJVdnQ6HcOHD+fbb7/F2dm5xHobGxu8vLyUPwcHh1u2Jcsyc+fOZdq0afTt25cGDRqwfPly4uLi2LBhQ5nIW64G3d69e5kwYQKHDh1i+/bt6PV6unXrRk5ODgA5OTl069YNSZLYtWsXf/31F4WFhfTp0wej0XjbtkNDQ80s5z///NNs/cGDB+nRowfdunXj77//5siRI7z44ouoVMJpKRAIBILKhERhkYqjQ5+ieeiL/LKoNgNm1uaXRbVvaeAJ/psJEybQu3dvunTpUur6FStW4ObmRr169XjrrbfIzc29ZVtRUVEkJCSYteXo6EhYWBgHDx4sE3nLNSli69atZr+XLl2Kh4cHR48epV27dvz1119ER0dz7NgxxfJdtmwZzs7O7Nq165YnGUCj0eDldWs/8yuvvMLEiRN58803lWW1a9e+T40EAoFAICgPJHIL1UQk2vH6+4/jYluA59e/sBn4ZVFteo88Xd4CVipWrlzJv//+y5EjR0pd/+STTxIQEICPjw8nT55kypQphIeHs27dulK3T0gwWdWenp5myz09PZV190uFckdlZmYC4OLiAkBBQQGSJGFpaalsY2VlhUqlKuFxu5mLFy/i4+NDjRo1GD58OFeuXFHWJSUlcfjwYTw8PGjVqhWenp60b9/+tm0WFBSQlZVl9icQCAQCQcVBotCgIiXbgogkO44OfYqa1SexuJZ4X90NMTExvPzyy6xYsQIrK6tStxk7dizdu3enfv36DB8+nOXLl7N+/XoiIiIesrTXqTAGndFoZNKkSbRu3Zp69eoB0KJFC2xtbZkyZQq5ubnk5OTw+uuvYzAYiI+Pv2VbYWFhLF26lK1bt7JgwQKioqJo27Yt2dnZAERGRgKmWLsxY8awdetWmjRpQufOnW+ZcTJ79mwcHR2VP39//zI+AwKBQCAQlAUSBqOK3EINiZnW/DVwFB7uL5e3UJWGo0ePkpSURJMmTdBoNGg0Gvbu3cu8efPQaDQYSsnSDQsLA+DSpUultlk8YnhzDkBiYuJtRxPvhgpj0E2YMIHTp0+zcuVKZZm7uztr1qxh06ZN2NnZ4ejoSEZGBk2aNLltrFvPnj0ZNGgQDRo0oHv37mzevJmMjAxWr14NoMTfjRs3jqeffprGjRvz+eefU7t2bb7//vtS23zrrbfIzMxU/mJiYspQ+/vDztoCB1uTF9PWSouTXelfFHeLpVaNi701klQmzQkAG8uy6x9BxUetknCxt0ajfrCPWrVKwtne6o6OY2dtgZ21xQOVR1CRkDDKKnL1apydnUWc+B3QuXNnTp06xfHjx5W/xx57jOHDh3P8+HHUanWJfY4fPw6At7d3qW0GBgbi5eXFzp07lWVZWVkcPnyYli1bloncFaKw8Isvvshvv/3Gvn378PPzM1vXrVs3IiIiSElJQaPR4OTkhJeXFzVq1Ljj9p2cnKhVq5ZiORef8Lp165ptV6dOHbOh2RuxtLQ0G/q9kYZBngT7uiJJkJCu489TV1BJEu0aBuDmYINRljl3OYWzl5PvWOZb4e1qRzUPR7JyC7gQk0rDIC8eq+1TYrvohAy2/XPvrl9PZ1t6t6iFRq0iK7eANXvOYDDKd92OhVZN45peBHo542BrSZHBSFJGDhdjU8krKMLb1Y707HwuXk1FvvvmHxi+bvY8VtsHC43pxjUYZTJz8olNziIqPoPCoruvo1Tb35V2DQKQJInY5Cw2Hy67+kM34mJvTWh1d6p7OWFtqSU3X09sShYnIhJIz87H38OBOtXc8XN3QKNWkaHL53JiBiciEskvLAJApZJoVz8Adycbpd0CvYGs3AKc7azQatTkFujZdSyK3Hw9AZ6ONA/xRZYhIi6NY5dMMSG+bvY0qOGJm6MN1pZasnMLuJKUyb8X4sm7dqxiJAnqB3oSWt0dextLUjJzOXYpnqj4jPs6H63r+ePjao8MRMal8+/FeKwtNXRoWB07awv0BiPHLsZzOTHzvo5zM9YWGgZ1CMXKQkOh3sAv+8+SnVtYYjuVJBHs54KTnRVXU7KJTb674TFbKy3Du5hKKhTqDfyy7ywajYp61T0I8HLC5oZrwNpCg7+HIwDHLyXw9/mrJdqTJAj2daVOgBueznYYjEZik7I4FZVEXGr2PZyJ/0YlSdQL9KCWnysuDtYAJGXkcDkhg7jUbAI8ncgt0BMek4K+6PYJcXeKlYWG2v6uaDVqLl1NIyungLYNquHhZIssQ3hMCqeikrC3tqBdwwBsLLUUFhk4cj7ugZ2He6W4z5ztrYhLzSYmqeQ15OPmRFxc3C2HEAXXsbe3V0YKi7G1tcXV1ZV69eoRERHBTz/9RK9evXB1deXkyZO88sortGvXzqy8SUhICLNnz6Z///5KHbtZs2YRHBxMYGAg06dPx8fHh379+pWJ3OVqqsuyzIsvvsj69evZtWsXgYGBt9zWzc0NJycndu3aRVJSEk888cQdH0en0xEREaEYctWrV8fHx6dEiZQLFy4QEBBwVzpYW2ppHuLLjq2bWPrdQmr7uVLTx4WQam4EuNuzeNFX/LVnBy3q+qFW3Z+ry8pCQ+8WtXBU59Ms2JOQam7U8HZmxYoVfP755wBs2bKF6dOnU93LCdV9uNYCPJ24GhvDwIEDcbCxxM3R5r93ugmNWkWflrUIcLViyXcLeemll5g+bSr//LWb9g2r06N5TWxlHW3q+VHdy+meZX0QNAvx5fLFsyxe9BWLF33F6hVLSbocTpt6/gzpGIqHk+1dt1ndy4ndu3czefJk/Nwd0GrK/var6evC/9rXxVbK44vP5zBhwgS++PxT1AUZDGofyhOtatOjWU1SYi/x9vRpvPjii/y0/HuquVgypEOoco36uztQy9+V77/5WjkHWzeuxVFbhKuDNSuWLcaQm0GHhtWxt7ag22NBHD38F0cP/0mzEF80ahWSBF2a1uBq5Dk+/GAWEyZMYOFX83C3gSda11aM5WI6NQ6kSU0PVq5YzksvvcThP3fTpUkN6gd63PP58HS2JbS6Byt/XMqmdat5rLYPbo42NA32QWPIZfGir7hw+hjNQ3zv67yXho+bPVYWGtq0aYNsLMLf3bHU7YJ8nGlV1xc7cugVFoy9zd15z5qF+JKYmMiYMWOw0KppUsubQe1DsZXymHftGpj72Seo8tPx93Dk8OHDzJo1i0Y1vUp4i1WSRPdmNWlb359/Duxl0qRJTP2//yMtPorHW9aiSXDp3of7pVMTU99vXLeKSZMm8dprr/HHpnXUr+5K39YhuFrqaVjdhYY1yq6gWos6foT42ONtB92bBeHn7kBtfzeWfreQ7Vs20jLUH3sbC5rX8aUwO5XFi74iJuJ8qR/Q5U0Nb2fa1PPDVtbRs3kwjrYlnQ+BPq7Ex8czaNAgwDTU16tXydp1d0J4eDjyPX6Bq6ysoBQP1wNFrTYdt4ywsLBgx44ddOvWjZCQEF577TUGDhzIpk2bzLYLDw9XcgMAJk+ezEsvvcTYsWNp1qwZOp2OrVu3lpmRXa4eugkTJvDTTz/x66+/Ym9vr2R6ODo6Ym1t+kpbsmQJderUwd3dnYMHD/Lyyy/zyiuvmGWkdu7cmf79+/Piiy8C8Prrr9OnTx8CAgKIi4vjnXfeQa1WM2zYMAAkSeKNN97gnXfeoWHDhjRq1Ihly5Zx/vx51q5de1c6aDVqJEli0aJFHDx4kMaNGxMc2gQrCw2bNm3i7bffplevXjzxxBM0CfbGz90BdydbCvUG4lKz+Sc8Dgutmsdq++Djen1ulsR0HScjE828E/UDPVBJEn379mXZsmW0btQIgODgYCVzJjU1laioKMD05V6vhgdBPi7YWGqJS83m+KUE4lOzaVzTm5q+LjjYWlKoN3A1NYu/z10lM6fg2jmC/Px8Tp06BUDf1iFk6PKJiEsDTAZfgb6IA2diyNDl06ZeNTycbcnOLWTfycvkFxZRy88VWwsVjRu3pF27dnTv3p20tDRWrlypGOQtW7bkzJkzdG0aRFJGDnkFelwdbLCztiArp4CohHT+vRBP3eru1PZ3U15AhUUGkjNyMBhkPF1MX9RXkjI5dDaWgsIiQgLcqFPNHTdHGzJ0+Vy6msb5Kym0rGsyHtVqFUZZJievkKj4DI6EXzXzQFpo1Ozdu5eVK1cybNgwrl69yoYNGzh9+jSrV6+mW7MwVu0+TS0/V0KqueHqYEN6dh4Xr6ZxIiKB6p5ONAjyxNPZNNVMQpoOLxc78jN8adGiBQAONpY0qeWNn5sD2mvGTbEX0NbKwszIzczJ52JsGscuxd/Sk2lvY0GHhtVZsmQJb775Js8//zydOnUiIiKC7t27c/r0aTydbRk7dix//vkn48ePp3Hjxvz9998MGzaMrVu34mBrSXp2PhZakzxTpkzhrbfewtHRZAi8+uqrHD16lIKCAp5++mm2b99O39YhXL58mREjRrB//37iU7MpMhhRqyQstRqOHTuGq6srISEh7Nmzh+bNm3P27Flq+btyOspUHMvN0YYgHxeGDRtGfn4+Q4YMYerUqURERDD+hQmcu5JCkeHuPTPFerz77rvodDq6dOlC3QB3Qqq5MWvWLD744ANee+01wlq0JKyOL9U8HHG2tyY3X09Mcib/hMfh6WxHgyBPxYg3yjJxKdkcvRBHYnqO2fE0ahXNavsQ6O2sDGsePXoUWZYJ8HQkwNMRXzcHVCqJhDQdp6OS6Ng4kCtXrtChQwdiYmIY1qk+SRk55OQX4uvqgIVWTUpmLhdiUzkTlcSN3W9rpaWWnysTJkygffv2ACajZOlSpkyZwrhx45RroGfPnpw8eZJmzZoxbtw4RowYQcManuw9eVlpr0GQJ15O1nTr1g29Xs/zzz9PZmYmgwYNYsiQIbz//vu4OlrjbGet3Iv6IgOxKdefH75u9tSv4Uk1D0fyCvRcScrk7/NXqVfdgyBfFxxsTMZGgb6IuJRsohIyqOHtTP/+/SkoKGD06NEUFhayY8cO2rdvT7Vq1XjmmWd444036NatGw2CPCkyGLGyuP76SsvOIzFdh7eLPU52VqRk5hIek8KZ6GQstWoa1fSipq8LtlYWJKTpuBCbavpg+f57/vzzT77//nt6NK8JmMJrbG1t6dGjB/UDPQnyceHVV2excOFC3n//fcbVa0jLUD+qeTjiaGuFLq+QmKRMjoTHEeDpSL1AD1wdTB/ABqORqynZHDl/ldQs8xqnapXJKxnsa/JK5hXouZKYyZELcdT2cyXIxwUXB2uSMnI4fyWFK0mZtA71J9DbVA9NlmWycwuJiEujcbA38fHxtGnThoSEBIZ0NHmXsnIKlHAcgJSUFLp27WrqN72eEydO3NX9VEydOnXQ6/WlDj3+F2p7O9yH/a/SzeW6Z88e5f/+/v7s3bv3P/e52eiVJIl3332Xd999975kuRXlatAtWLAAME2hcSNLlixh9OjRgMnCfeutt0hLS6N69epMnTqVV155xWz74iHZYmJjYxk2bBipqam4u7vTpk0bDh06hLu7u7LNpEmTyM/P55VXXiEtLY2GDRuyfft2goKC7lmfAQMGsHTpUpYuNemzdOlSBg4cqBQrDg1wZc2aNRw/fhx7e3sGDhzI/9qHkleg58L5s1w4lU5ycjJHjhyhffv29O7dm30nL3P+ikm3+jU82b9/P8nJyfz000/s27ePgQMHotVqsbAo+VX/v/Z1SU9LZcH8eaSkpNCtWzd6dewImGr8LVu2mIsXL+Li4sLQoUNpU78avx8qOQx49OhRVq9eTfXq1Xn22WexsLDgt99+IygoiNb1qnExNpVafi4sWLCAsWPHEuzrwqmoJNwdbThx4gQ6nY6FCxciXfMYPvfcc4CpbE1ubi7ffvst9vb2jBw5koLCbL5duISYmBgCAwN5+umnCfSui4ONJatXr6ZRo0b8+uuvZGRkMGbMGBwcHPjs008oLCzk+eefp2fzmmTo8gn0cmTDhg0cOnSIWrVqMWrUKB6r7UN2djbLli2lZcuW/PDDD7i6uvL8889jZx3Ijn8jS+het25dXn/9dYoMRjRqFYsWLWLEiBFERkbydI/G6PV6fvnlF/755x9CQkIYNWqU4u35/fff2bt3L5Ik0bFjR3r06IFarVaG7ge2q8v58+eZtWAutra29OnThzNnzvC///2P+Ph4Vq36g6CgINasWUNAQADPPfccllo1B8/Glnr91fJzJSsrkxdeeIHdu3fTokULYpOzGDhwIOPGjUOr1bJz5042bNjApUuXsLCyIS07j0GDBpGWloYsyxQUlhxKHjt2rJIEdPHiRXbv3s3LL7/M+vXrWbhwIePGjePZZ59l6tSpBAcHs3K3qTyCwSgTlZDO+PHjlbaGDh2Kj48P586dw9mtmrI82NeFK1eu8Ntvv5GYmIiNjQ2BgYEMGTKEl156iWoejkTGp5eq953St29ffvzxR6ZMmYIsy6xYsYK+ffsCpg+zAFcrVv/8A+Hh4bi7u/PUU08xoG0dLLUa9u7dQ6yjI0eOHCE6OponnniCvq1bsulgOPGpOsD0EdQrLBhbrcw3C+aTmprKqFGjlOP7eziyd+9evt25k8LCQtq2bat4SNavX092djbz5s3DwsKC559/nhMnLvHT4t/IyMigYcOGDBs2DAcbSw6cuR6/W9PXhezsbH755Rc++eQT9EUGcnN0jB8/np07d9KqVasS14BKpWLo0KF8++23vPfeLPafvoLx2sdMSDU3lixZQlJSEseOHUOXX4SVhYY+ffoQHBzM8OHDqVu3LuvWrSMkJITNmzeTlZXFk08+yf/a1eVERCJNanlz+PBhvv5sPU5OTowcOZKnujYEYPny5bRp04bVq1eTm5vL6NGj6dS4Bnl5eWzYsIGUlBRcXV0BGDFiBAD//PMPV65cYcOGDZw/f56ePXtSUFBAYmIiubm57NmzhylTplDd3Z5Vq1Zy5swZGjVqxLBhw/B0tsPT2RZ9fg6Lv1lIXFwc7du3p2fPnmRnZ7Njxw4iIiKYN28eQUFB9O7dGzDFYa9evZoxY8ag1+tZv349PXr0AMDGSou3vZoVy77n0qVL+Pj4MGrUKAa0rYOdtQVbtmzB19eXvXv3kpCQwP/+9z8GtmvMuv3nSMk01SmTgJ7Ng3G21bB27Vr+/fdfvLy8GD16NCO6NKCwsJDly5dz6dIlGjduzODBg5EkidTUVH744QcaNmzITz/9hJeXlzLd1Pr168nJyVEC91944QX+2LyRhg0bsmnTJlQqFaNGjVKcJcWcPHmSn376CV9fX8aMGYOVlRVZWVn88ssvPP300wAUFRWxaNEiJkyYwIYNG5BlmS+//BKVSsXYsWOxsrJix44d7N69Gw8PD0aPHq0859LT03F2diY9PR2NRoObmxsZhQXk5uehUqlwdHTEzu7RnmP1YVHuQ66l/RUbc2CaQy0hIYHCwkIuXLjAq6++qhgGxURHRzNjxgzl98qVK4mLi6OgoIDY2FhWrlxZqqH25ptvEhMTQ05ODgcOHKBNmzb3pU/v3r3Zu3cvOp2OhIQELl68aNZmamoq58+fp127dnh5edGjRw/Cw8OxttSyb98+hgwZwpEjR2jevDlvvfUW3333HWF1fM0CnW1tbdFoNDg7O+Pu7o5Wq2X37t2lVppOT0ulefPmGAwGmjZtyuTJk/nhhx8AGD9+PKdOnaJ79+74+/tz5coVLLUl7fuEhARmzZpFWFgY+/btUx6ycXFxvPvuu/i42tM42JstW7awatUqLCwslC/RfH0Rvr6+pKSksGDBAuLi4szadnBwQKVS4erqiru7O2q1mn/++Qdra2s6depEdHQ03bp1w/6ap2Pu3LmMGDECV1dXJEmia9eujBs3Dl9fXzIyMujXrx/uTrYE+7nyzDPPsHbtWlq3bs3p06fp168fsiyTkZHBxIkTFe/s4cOHGTNmDDV8nEsdpihm6R/H+fdCPKNHjyYtLY2///4bMNUi+v3332ndujX//PMPgwcPBuDXX3/lnXfeoVWrVrRo0ULxmp48eVJJvImOjqZjx454eHjg6enJkCFD+OKLLwC4fPkyL774Il988QVNmjRh/fr1TJ06lfo1PEsMVRbj7+HIb7/9RkhICC1atGDr35fYfPgiS7YcIzolD7VazerVq3nyySext3dg9Z4z/H7oIit3nSY+q4j9p66QW6Av0W58fDxXrlxh9+7dnDt3jsaNG6NWq1m6dCkzZszg//7v/zAajUyYMIG/Tl8h65qXF2D7P5EkpOlIT0/nwoULfP/99zg6OlKnTh0ycq5/oTvYWnL8+HHq16+PjY0NZ6KTaNasGbGxsaSmpipeHTB53TydbZU/Wyut2W/tLRIDRo4cyfLly5FlmT///JOaNWuaZZddvHiRzMxMOnXqhEajoVWrVhTm56JSSaxZs4a+ffuSnZ1NaGgoQ4YMYe/evbSsez3bPcjHBQ8nG7p3705kZCRNmjTh5ZdfRq+/fk737t1L/fr1eeyxx5g1y+T1AdOohEqlwt3dHTc3NwD+/PNPAgICaNOmDevWrWPSpEnUC/QwS2jwdrVn3759hIaGYmNjgyybPiRq1apFq1at+OPI9WvgUmIOp6NTiIxPp0OHDvz++++oVBLu18IpnOyscLCxZO3atTzzzDMUFBlZu/csv/51Hj8/P3r16sUvv/wCwFdffcXAgQNxdnbGy8uLjh07cvlyNE1qebNs2TLGjRtHo0aNsLGxoXXr1qSmpgLw/vvvM2rUKLy8vNBqtbRv356CggKsrKzw9vbmo48+4uLFi2aeDRsbGywsLHB0dMTd3R1LS0sOHDjAiBEj2Lp1K02bNkWSJLp3787Ro0dp3bo1v/32GxMmTKCmrwtyUQFhYWFkZmbSvHlzZs+erRgj9vb2WFlZKTMRFTN69GiWLl0KwObNm2nbtq3Z+jNnzlBYWEjnzp3Jz8+ndevWaCSTB3nZsmX069cPSZIICgri8ccf59ixY4TVuT6sX8vfFS8X07RP27Zto3379jg4OBAREYEsy/Tt25c9e/bw2GOP8d133zFx4kTANEw6ceJEPvjgAxo3bsyuXbuUdaVdQ1988QX/+9//sLCwIDg4mMTERD744ANFjoyMDKZNm0bz5s05evQoAwcOBExG2I3v1KKiIl577TXlOGBKWnR3d0elUrFgwQJeffVVGjRowNWrVwkLC6OgwPQcSE5OJioqCo1Gg6WlJYmJiaSlpWFvb4+1tbWyneD+qRBJEY8KFhYW9O3bl7Vr15KSksLw4cPNjE9vb29mzpxJbGws/v7+9OrViw0bNjBlyhQAatSoocwF5+vry+jRo3nuuefwdLbl6rUhnrAmTXB2dqZnz57UrF33ttlq8+fPZ+jQoUyePBmAoKAgxowZw1NPPcXFixd5+eWX6d69uyLjsUslS8Hk5eWxePFiXFxc6N27N76+vly+fJknn3ySadOmkZycjLu7O9988w3jxo0jMydfCRi+EJvKoPahrF27lg8//JCJEycSFBTEG2+8wXPPPUerVq2wsrJiwIABWNk6Ym9rSf/+/cnLy+Py5cv4+fmxdu1aYmJiqFbN5M2ZMGECo0aNQpZlvvvuO0aOHEmfPn0YPnw49vb25OTkEBsby759+4iIiECtVtOvXz/q169PeHg4tra2FBQU8N133+Hg4ED79u2pX78+AM721sqQc2lcScqkSS1vAgICuHLlCtbW1pw8eZJz586hUqno168fNWvW5PLly1y8eJHatWvTo0ePW8ZHfPfdd4wYMYIJEyYApljPG7O8VSoV33//PVqtlpo1a/Lss88C4GhnSXJGyYrk1hYaoqOjlXOVnGkaDtQbjJyOSqJhkBfR0dF0796drNwCCvQmb1xWbgF/nb511va4ceOwsLAgISGBFi1aUKtWLfRFBoKCgvi///s/pkyZwrlz50hIy+FMdMnEH1srLWtWrmbhwoVcunSJmTNnYmNjQ17B9fR9KwsNycnJODk5AZChy0elUuHg4EBycjLWlqbalPbWFgzqEHrbbM5CvYGVu08rCR7F+Pn54efnx99//83SpUsZPXq0We3JZs2a0ahRI65cuYKvry/btm1j7969SnhA165def311wFTXcq5c+eyfv16U9JBgZ5qHo4cOHCArKwsvvzySyRJok6dOoSGhirHePvtt0lOTiY+Pp7x48fz/fffM378eGUKwmHDhilenAkTJigZ9a+++ioDBgzgyy+/xM3RBl1eoXI+wsPDqVGjhsnDqi8yuwaSMq5fA0cvmO7vxjVNSWXnz59HlmXsbSxJTM/B+toQ5uXLl6lWrRppWXkYZZnMnAKKDEaqVatGdHS0osvo0aOVa/Ly5cssWrSIjz76iOnTp7Nt2zZlusWIiAh+/vlnJSRm8uTJ9OnTB4BVq1Zx/vx5GjZsyObNm5k2bRoNGzbEycmJZ599lnfeeYe6desqRmPb9h2xttQCpljor776CoA//vhD8RoB9OrVC29vb+bMmcPixYvp1KkT06dPB1BKVL300kuEhYWh1+uVcJxi6tWrpzgRli5dyksvvcTy5cuV9e3bt6dFixbKtbJp0yb++ecf5QN+wIABir5paWl8+eWXfP/996hVEgajTHUvJ7Zv305WVhbLly8nJTMXa0stdtYWHD9+nNOnTytGUMeOHfHz8+O9994DTMbVkiVLsLa2pkmTJnTv3h2ATp06YW1tzbBhw8zCE8aPH694yc+dO2emZ25uLosWLcLb25snnniCgIAAzp49i63trWOEO3bsiCRJDB06VBlynT17NuvWreOxxx5THBPbtm1TEgu8vLyUqbPS09OxsbHB0dGxhHNGcH8Ig66MGT16NC+//DJpaWn8/vvvZrNhxMTE0KdPH/z8/PD29ub06dPY2FxPNih+8P997ip169YlKioKWZaxtTIZbXEp5plV0QkZ+LrZcyvOnj3L8ePH2bt3L7IsYzQa0WpND8NPP/1UCT7u2bMnM2fOxNO55Dx03t7euLi4cPhcLGF1/AgKCiIqKoqAgAAGDx7M8uXLGTJkCIcOHWL16tUcj7w+9J2enc++k5fp3LU7vXv3Ji8vj02bNjFq1ChCQ0PNUrUj49NpUMOTlSt/ZubMmTRt2hR7e3tyc3NJTExUXlBBQUFk5uTjaGuFk5MTNWrUUH7b29uTlZXFuXPnyMjIMAWjX/vSl2WZlJQUbG1t8fDwwMHBgcuJGXg5OytBq7fy7BTj4mCN0WgkMTERNzc3zp07R3JyMq1bt1aOY2VlRXJyMs888wzjx4/Hz8+Pxx57jMmTJ9OpUyez9i5fvky7du1IzsghO7eQWrVqma0PCAhAq9VyOTED5xvktNCosbO2oKCwCP0ND259kRE3NzeSk01Glb21JXkFJqOmOD6zeL2tlRaVSsJolNGoVQT5OJOWnVeqobhx40b8/f2RZZmnn36aadOmMWfOZ0TGpRMWFoaHhweBgYFsuUXW7qW4NJ555hmeeeYZUlNTady4MQ0aNCAopCExSZmoVBKFegNOTk7KtH82llpkWSYnJwcnJyeuZpmMTx83ezRqFXXq1AFM3oJDhw4RGhqK0WjEwcGBw4cP4+ViR3RCRglZRo8ezVdffcX+/fv5+uuvzQy6w4cPK9emq6srV65cMasZFRoaSoYun8R0HXXr1mXevHkA2FqbDDpbKy2RkZHUrVsXSZI4fC6WZiEhykvLYDAwfPhwoqOjqVu3Ljk5OaVWiI+KT8fN0YZp06axceNGGjdurFxXRqN57JhapaKwsBCtVossm2JLb7wGHGyuXwMBno6mPpdlLCws0Ov1yLKsJMIUZ267urqSkpKC/TWvqJWFBo1aRXJyMj4+1xMCQkNDuZyYgaVWQ926dfn999/R6XTExMSYjbLk5+fj63vdO1WzZk0uJ2YQ4OmkXNc5+YXUCK7Db7/9RlFREfv372fkyJH4+voqQ4oAcanZ2Fub5Co2GDN0+Zw9e5YLFy7QsmVL5V708PAgKSmJs2fPsn37dmWdLMulfmTtPhZFx8bXE/NGjx7NJ598wunTp+nQoYOZQbdz505eeOEFGjZsiLOzM0lJSWZ9GRoaSmK6jryCIuXcgKlkTGZOAfbWlly4cIHGjRsjSRIbD4RjMMr0aVmLiIgI6tSpg0ajYf/Jy7RtEICnpyfR0dFYWFjg6+uLtbU1lxMzcHFxMQu6L+bI+au0DPVXztOlq2lk6nK4ObXNxcVFSRbUaDTUrl2bqKioEhmet6OwsJCYmBizferXr2+27Mbz7eXlxeXLlzlx4gR2dnb4+PiYvQcF944w6MqYRo0akZWVhaenp2KEFLN48WIef/xxZs2aBVAiFrC4WHKDIE+iIy/h7u6OJEmKp6F4EEKSJIxGI3UC3FDfpqaQp6cno0ePZtq0aSXWtW7dmiNHjpCSksI777zDK6+8wurVq7G20JiVk0hNTaWwsJCGQV7IskxCQoISizh+/HgGDhyITqdjxIgRWFlZcSE2Vdk3yMeZdg0C0BcZSMvKw8XBmsGDB/Pll19y9uxZWrZsqejSqKZp6GvGjBmsX79eeUFv3LjRTG5JkpSkAEmSSvwu1tvLy4sDBw6U+AKMiYlRlskyd/yF+HiLWni52LFt2zaMRiNt2rRRhsRKOw6YvA8FBQVs3ryZJ554Qhl2KsbX15fo6GjcnWxxd7Jl5+/RJXQtTc7eLUyGX5HByPajEUqJgrjUbB5//HEmTZpEdHQ0nRoHEhGfhreLPR5ONsiyzBNPPMGMGTOYNWsWvcOCSUzPoaavC9YWamQkftxxkkJ96SVZJEmifv367NixA5VKUhIOijHeFACsVkn0bR2CrZWWmKRM7G0scXV1JTQ0lMjISNq3b8/Ibg0V3TJr1+bMmTMYDAYaB3tz4cIFbGxs8PDw4EKSyYNYPJxfPORdzKFDh8x+p2WbB6AX069fP8aPH8/IkSNLlCGaM2cO06dPZ/jw4QCK56OY+Ph4nOyssLbQcOZIPB4epuzb4vszX1+Eh4eHch83qulFYmKiYmAcOXKEixcv8s8//yBJEtu2bVOGy4rvAzBlrWZmZjJ//nwSExOxtLQkNjaWb775poQ+uQV6/P39OXz4MCqVRIYun969ezNx4kQiIyPp2CiQiLg0vF1N1wBAVm4h8TFR+Pr6olKplGH2tOw88guLePzxx1m3bh3jxo2jc5NAbK0s0Ol0/PHHH6xfv97sfDzu6YTRKBMfH68Mhzo4OLB27doSJaiKKe2etbWywGiUScvOw8rC5JXq168fZ8+eNTs/QT4uSjsajen1VaAvwtPTkyZNmrBly5YSx/P09GTgwIHMmTOnVFmKz3urUPNi8cOGDePVV1/lzTffLFG77cMPP2Tu3Ln07NkTgObNm5utj4+Px9PZDn2RgZ3Xzg2gPFvzCvV4eXkpZbJahvqj1ajwdrXH09OTq1evIssyTWp5U1BQQEpKCp6enqSnp9/yuXCjLs1vGN7VaDRKjOTNZGZmkpOTg62tLbJ8vR+trKyU2G9A+UC4+VhqtRqtVouTk6kkSnE5satXr9K0aVOz7YuxtLSkVq1aGAwGUlJSiIyMvCsDUnBrRIXBB8DevXvNHnzFODo6cvz4cZKSktixYwc//fST2fo9e/awYcMG0lKSmDp1qvJiKR46y7v24A0ICOD333/n5LWEg1vx7LPPMn/+fLZs2UJqaiqnT59WYu1++OEHoqOj0Wg0ODg4KF9Ihpteynq9nrfffpvM9FQ+//xzXF1dqVOnDmcvJxMaGoqnpycff/wxY8eO5dLVNLNhLj93B06cOMH7s97jSmQ4V65c4aeffuLEiRO0atUKMA2brF+/nmPHjlFQUICjoyN//vknycnJzJgxg7S0tLs59YCpYreVlRXTp08nLi6Oq1evsmzZMrMH1J2SkJDArl27+HPXVt58800GDx7MnDlzsLCwoH379uTn5zNr1izi4+OJjY1l8eLFFBUVsWPHDiUb1NXVFUtLyxIZYaNHj2bx4sWsXLmS3377jfnz59+xXE8++SSnTp6g5g0vuIuxqfj5+TF+/Hj69evH3l3bcLXQc/b43/To0YP8/Hz69++Pi4sLgwcPJvrCaZw0+fy+cT2jRo1Co1ZhZ1VyCP/AgQPs2rWLFStW8OWXX9K7d28KCovIyS9ZU+1GvFzscHO0YdmSxaRcjSTxqmlY7vDhw0oi1IoVK5QPnHr16lGrVi3effddIiIieOutt3j22WdRq9VcuVYjLiUzl1//Os+pKxnK31+nr5j9Xrf/nFkc341YW1sTGRnJRx99VGJdcSZvamoqP/74I/v37zdb/9NPP3Hw4EGuxl7hgw8+YPjw4eTkF6K7VlsuMS2H9u3bEx0dzc8//0x6agrTpk1TXmaOjo7ExcURHh7OhQsXFL3B5E3S6XRs376dkydPYmFhgSzLHDlyhKtXryphGTeTlJ5D27ZtOXLkCLIso8srxNfXlwkTJtC/f3/27PwDV0s9504coWfPnuTn5+NkZ8Xff/+t9EHStUzd4hqCzz//PBcuXODll1/GmJNKbOR5Bg0aRIsWLZT7FkwhHefPn+fkyRMsWLCA4cOHo9Vqee655xgzZgznz58nNTWVP/74g9Onbz+PaE5ODhMnvsT5U8dIS05k+/btrFu3TpExICCAP/74g3///ZeMjAyzfa8kZvLEE09w8uRJvv76axITE4mOjlZi4EaNGqVMy5SSksL58+dZs2aN0u6xY8c4fPgwcVfNww5cXFy4evUq//d//1dCXkdHRw4ePKjEB9+cLbp48WKOHTtGZMQl5syZw/Dhw0nPzlM+luJTdfTq1YtLly6xYMEC3Kxl8lKvcuHCBWUY+KuvviIzLYWpU6fSsmXL/5xNwM3NjYKCArZu3crpa9UJ/gtJkpg6dSqJiYksXLgQWZZp2rQpHh4eWFpasnLlSqKjo3n77bfN9qtevTpr1qzh2LFjGAwGRo4cyRtvvEFsbCy//vore/fupXPnzqUeMz09XXkWazQaUei4DBEeuvvEcO2LqFOnTvj7+5OalcvF2CxkWSa0ugVBQUFKXMXzzz9PVFSUEtP1+eefm00hMnToUPbs2cOnn35Ku3btmDFjBqciE5Uhk5x8PckZOXz22WfMnz+fTz75hOnTpxMSEqJ8AVavXl0ZymzSpAm//PIL8+fP5+2338bb21vJurt8+TJLliyhoKCAJk2aMGfOHC4nZCgPHKNRxt7enhdffJEaNWowcOBAqlevzqZNm0jX5XM6Kom6Ae7873//Q5IkQkJC2HTQvK5ffqEpKUKv1/P666+Tk5ND9erV+e2335Qhs++++45vv/2W/fv389lnn/H9998zdepUfvzxR5588kkmT56szO3btWtX3Nzc0F8bGurduzcODg7KUFH//v2VuX63b9/OZ599ZorPs7KiRYsWaDQabGxslCKO+iIDKpWKIUOGXOvL68as0ShTp04djh07xnfffYetrS1NmjThxIkTBAQEsPdENPUDPdm9ezefffaZcuzWrVujUqkoKiri3XffJT4+Hn9/fzZv3oxGo8HPz0+5HkJCQti0aRPLli3D1taWl19+Walj5OrqSrdu3RQ5HW1tlViuoqIitm7dyocffkjWDd605MxcTkQk8Nlnn7Fx40aWLl1KbGwsvr6+jB8/HisrKyRJYseOHSxfvpy3336brKwsQkNDFW+x7pqRVvxFP3ToUH799VfA9IKbO3cuffv25eDZWBxtTR634kzRm70AxXE8KSkpvPbaa+Tn5xMcHMzOnTvxr2aq92hjY6MEm6dl5/HLL78wY8YMRowYQY8ePZg8eTJnopPMvMaJ6TklyoXcimKZ+vfvj4ODAzFJmcSn5lFYpKNVqD9NmjRRhoPee+893njjDR5//HE6derEnDlzzJKpxowZw4IFC7h8+TJPPfUUo0aNYv+pK4rn/NyVZBrU8GTbtm1MmzaNRYsW8dJLL1FUVIRKZRomnjFjBmPHjsXZ2ZkpU6awa9cuwOS1WLVqFWvWrMFgMLB48WJ+/vln3n77bTQajZk3/8bzHJWQTt/WIdSpU4cDBw4QWLsBxy8l8Omnn7Jx40aWLVvG+++/j6+vL+PGjVMyHFevXs0bb7xBXGq2EksJ8E94HP3ahPD333/z9ddfM3r0aKysrBg6dCgjR44kLTtfqUk5duxY3nrrLbKzs/nkk09o1aoVqVm5fPTRRyxcuJAXXniBvLw8QkNDmTp1KgCPP/44Dg4O5Fy7Z7t06aJ49vz9/Xn//fdJSUnB29tbuX8BZs6cydy5c5kzZ44SiytJEgaDkbOXk6kT4M6ff/7JnDlzWLZsGfb29kp5juDgYLZu3coXX3zB7NmzcXd3Z+jQoYApHuy5555jwYIFNGzYkFdeeYUhQ4ZgZWVFVHw6yZkFFMTn0LZ+AC1atFBGXebMmcOUKVN44okn6NWrF7NnzzabDnLcuHF89NFHJCYm8uqrr9K3b1+2H71e6P1UZCIh1dzYuXMnH3/8MUuWLMHHx4cPPvgArVbL5s2b+eCDD/j555957LHHWLNmDZIk4eDgoGTi6osMWNhZKokMGo2GNWvWsHbtWgoLC1m6dKlyfg2yEaNRNtvf2tqasWPH0rhxYwYNGoSvry9bt25VPjzXrFnDzJkzWbx4MW+88Ybi/QPTx82yZcv47bff+Oabb/jwww/5+OOPGTx4MH5+fuzYsQM3Nzeys7Oxt7c3+5g1GAzExMRgMBiwtLS8q0kCBLdHku+1OmAVJysrC0dHR+au2kOv1vUI9nUlv7CIPcejuZJk8iYE+TjTtn4AGo2KCzGm4baQam6ltvfll18SHh5u5qU5GZnI4XOxZnXHbK20tKlfjQBPJ7P9DQYjadl5ONhaolWrOR2VRFRCOmF1/PByuZ4SnlegR6NWKXXPirl4NZW/TsUoxpGzvRU9mweXSLqITc7iSlImrUL9MRqNdOnShfHjx9O1Zx9W7zljtq21hYYWoX4EebuguqGoclJGDofPxZJXUESbetXwuSEOsLg8yI3k5Bciy6b4k9x8PduPRtC0lg9+7g7o8grZ9k8Erev54+lsR1ZOATv+jVRqjd1IXGo2TnZW2FhqSUjTsePfSHqHBeNsb01qVi4bD4QrVejrVHOjRV0/s/OUoTPViDt/JUUZGmpR149afq5mx8kvLEICLG+IdUrNyiU6IYPQ6h5YaNVk6vJxtrcmOjqa6tWrk5eXx5AhQ+jYsSOvvPIKufl6bKy0RCWk8/e5q9cKzpqGCI8ePcrSpUv58ssvWbPnDOk683pOwX4u1A/0NCsGnZ6dx78X44lOyKBhkBd1A9yxsdIq669eqyOWfC0g30Kjpk+rWko9rWJSrhmNEXHpeDjZ0u2xIGystMSnZvPboQtm16okQcu6/oRWdzcbcolLzebQ2Vg8nW0Jq+OHSiVxNjqZYxfjaRXqT5Dvda/j8UsJ/BMeV2I4905RqSRluFyXV8jWvy8pw7GNa3rRpJY3smx6wbo62lDNw7z4r77IgFaj5oUXXiA0NFRJYAE4cCZGqaNXjIOtJZ0aB5YoPJ2enceluDSaBvuY3QtguqdORibSoo6fMksCmJI7bh7WTsvOY9OBcDMjbEDbOlw4c5xPP/2UdevW8cu+s7jYW1Mv0AP3G+RIz87D2d6a06dPM2nSJLZv3872o5ElYg2tLDQ0reVNaPXrBZ1zC/ScikwkKiGDoR3r0blzZ9566y26dOkCmK75/acuEx2fQYMgTxrX9DaTPS41GwcbS+ysLdDlFbLl74s0CfYmyMeFAn0RGTpTHOyN8YFZOQUcvRDHlaRM2tSvZjbcCibD9kRkAkfOx2FnbUGLun7UuFajrZjjlxKISkineYgvvm7XY4QL9QaOhF9FrVLRqKaX2XGLj/374QvKzB5hdXypH+iJwWjkREQiPq72Zs8tMH3cq6+VhOnbt6+SaFFkMPLX6SuEx5iHXNjbWNAq1N/sWZ6VU8Dh87HU9nOjmuf1a/FCTCrnriTTuUkN7KwtiE3OYv/Jy/RqEYyjrRVJGTn8eyGeZiE+Je7Z4mdmtk5HuzoeJUKBHhT5+flERUURGBgoZqe4D+7mPAqD7h7JzMzEycmJD5f8jpWNLeprwcY3n01JMlVfL/b+WGjV2FtbossvRK83gARDOzdh7cofuHjxIp999hk/bD1CZk4+hv8opKpWqzAajUhIIJkecDcfD0x1k2wsLcgr1JNzLTtOksDB1gq1SkV2boHi9SrtGMgyjnbW5OYXkl9YRJdmtShIj2fw4ME0a9aMH3/8kd3HLnEmsmSAd/Gx7G1M00Xp8goouCn7sPg4xfra21iiUavJzMlDAuW83nyOizPGSmsDTEVeHW2tMBhlsnLyFaPg5u1u/l2MSpKQVMUB7bfuC61GhYOtNQaD0ew4tlYWpqm3CgrJzdcr50IlSVTzcuGJNvXo1q0bV69exWg00q1bNz766COOXYrnyLkrJfpRrVbRrE41wuqavFtnoxLYfiS8pEDXsLW2wNrC/PjFFPe/Rq0mOzf/lnFz6huM69LOgSSZsnFvd35uvNZ0uQVm06apJAlJMveOWltqsbGyICsnr8ymebplH6skkK/H/1lbarGx1JKVm4/BaAqgnzCgLa+99ip16tRh+FOjWbf3JJm6vNsamTZWFlhq1WTo8szOj1ol4WBrjb7IgC6voMQ1fOP5lCRwtLVGRiZTl39LHXzdHflfx0bExcXh4+PDml3HiEsxxVVevwb05OYX0rdtPVztTB9pOYUyq3Yeu+05c7S1wmiUyczJQ5ZN9+Yzj7egd+/evPbaa4Q0aMr2v8PJ0JmHM0gSONpZo5Yksm54vpS49266p+2sLbGy0JR6zRbvX+wpMsVxmfeBhVaNg40V+iIDWbn5Zs9ja0sttlYWFOiLyM41H5JXqSQkTNfhrc6zWmWK/SvudxsrC6wsNGTl5JuSS9Qqxvdvw6hRo+jduzddevRm019nyNTl3XZaQysLDXbWlmbP52J5rS21ZOXkm2Wt/tdz78Zr6Mbzm5+bw1vPPE56erpSeuRBcjtDpEinx5Bf8j3woFBbadDYaf97wwqIMOgeAsWlR8qCr7/+Wkkr37Vr1y1jDyoKzz33HN9++63y++eff2b48OH3PBVMVcTJyYkjR45Qs2ZNs+Xz589n0qRJZkPxN6JWq2nXrh0ajYY9e/aY1TgTPBj27NmjzMIwf/58XnrppXKWqCTdunWjVatWHDt2TBkiLw0vLy+lnNLSpUvNCrLfCWq1mqioKOXZN3HiRKVUiMA0QXvDhqYiyu+9916J2LOKQExMzC0TVsqSWxkiRTo9sesikA0P730hqSX8BgRVSqNOGHQPAaPRSFxcHPb29mVSS0etNk0hVlT08L5aSiMrKwt/f39iYmLMCmneTLG8RqPRLLaiMnCnOj4MVCoVKpVKKStTlrdjRdLzQfGwdNRoNMiyfEtD+0FT0fryQZyPiqbjvfJf56a89JRlmezsbHx8fB5KIsKtDJGClDziNkU/8OPfjE+f6li6Wf/3hpiqLcycOdNsWe3atTl//jxgipHcsWMHcXFx2NnZ0apVKz766COllE5pyLLMO++8w7fffktGRgatW7dmwYIFBAcH31aWuzHoRFLEPaJSqR7KV0554eDgUKkfqndCVdARqoaeVUFHqBp6VgUdoXz0fBhDrY8KoaGh7NixQ/ldXCYHoGnTpgwfPtxUgDstjRkzZtCtWzeioqJuOb/txx9/zLx581i2bBmBgYFMnz6d7t27c/bs2TKLMRQGnUAgEAgEAsENaDSaW5aKGTt2rPL/6tWrM2vWLBo2bEh0dHSp04zKsszcuXOZNm2aUhVg+fLleHp6smHDBiXr+n4RBWAEAoFAIBAIbuDixYv4+PhQo0YNhg8frhSBvpmcnByWLFlCYGDgLePqo6KiSEhIULLCweQtDQsL4+DBg2UmszDoBGZYWlryzjvvlKii/yhRFXSEqqFnVdARqoaeVUFHqDp6VmbCwsJYunQpW7duZcGCBURFRdG2bVuys69Pv/n1119jZ2eHnZ0dW7ZsYfv27VhYlD63evG0cJ6enmbLPT09S53+714RSRECgUAgEAjKlMqcFHEzGRkZBAQE8Nlnn/Hss88CptJlSUlJxMfH8+mnn3L16lX++uuvUuPhDhw4QOvWrYmLi1PmzgUYPHgwkiSxatWqWx77bpIihIdOIBAIBAKB4BY4OTlRq1YtLl26pCxzdHQkODiYdu3asXbtWs6fP1/qlJ+AEouXmJhotjwxMfE/p3S7G4RBJxAIBAKBQHALdDodERERZt61G5FlUxHygoLS55AODAzEy8uLnTt3KsuysrI4fPiwMlVnWSAMOoFAIBAIBIJrvP766+zdu5fo6GgOHDhA//79UavVDBs2jMjISGbPns3Ro0e5cuUKBw4cYNCgQVhbW9OrVy+ljZCQEMVjJ0kSkyZNYtasWWzcuJFTp04xcuRIfHx8lLnFywJRtkQgEAgEAsFDQW2lQVJLD32mCLXVnZs7sbGxDBs2jNTUVNzd3WnTpg2HDh3C3d0dvV7P/v37mTt3Lunp6Xh6etKuXTsOHDiAh8f1+Y/Dw8PJzMxUfk+ePJmcnBzGjh1LRkYGbdq0YevWrWU6z61IihAIBIIKgCzLZTLrjKD8EX0p5nItK8RMEYJS2bp1KyEhIVSvXr28RXlg5ObmYmNjU95iPHBEXz46bN++ndatWz/yuhYVFZlV238UqSp9eb9o7LSV1sCqyIgYuipAZGQknTt3plevXpw+fbq8xXkgREdH079/f4YPH85LL73E2bNny1ukB4Loy0eH4r7s3r07Bw4cKG9xHhjR0dEMHTqUcePGMXPmTNLS0spbpDKnqvSloGIjDLpHnBdffJGQkBA8PDxISkri8ccfL2+RypwjR47QokULLC0tadOmDZs3b2bkyJFs2bIFAKPRWM4Slg2iLx/dvryxgvyjxK5du2jatCkGgwFXV1c+++wznnrqKaU6/qPQn1WlLwWVAFnwyLJlyxZZkiT5m2++UZadO3dOTktLK0epyp7p06fL3bt3l/V6vSzLsnzx4kX5qaeekn19fWWDwVDO0pUNoi8fjb7U6/Xyt99+K0uSJK9atUpZHhUVJRcUFJSjZA+GcePGyU8++aTy+9ChQ/Ljjz8ut2rVqhylKhsMBkOV6su7JS8vTz579qycl5dX3qJUau7mPAoP3SPG33//TXh4OADNmjWjb9++rF69mhMnTtCuXTsGDx5MvXr1mDBhAkePHgUq31dycnIyBoNB+R0ZGYkkSUp8Ts2aNZkyZQqSJPHGG28AlU/HmwkLC3sk+7IY+Vpu1qPal0eOHCElJQWNRkOLFi3o2LEjmzZt4sKFC3Tq1In+/fsTGhrKu+++y+XLl4HKqeeNUyMBXL582SyQOywsjPHjxxMbG8tHH30EVE49AVQqFa1atXpk+1JQCXnw9qXgYRAfHy8PGjRIliRJHjZsmLL84MGDslarlV1cXORp06bJ27Ztk7/44gu5RYsWcseOHeX09PTyE/ouiY+Pl9u2bSv37dtXTklJkWXZ9JX8+uuvy127dpWjo6OVbYuKiuR58+bJ1tbWcnJycnmJfE8kJyfLP//8s7x//345KSlJWf4o9WViYqL8xRdfyBs3blT6Ta/XP3J9GRcXJw8ZMkSWJEl+9dVXZVk26fPzzz/LWq1WdnNzk6dOnSqvWbNGfuedd+TAwED5mWeekXU6XTlLfnfEx8fLrVq1kp955hk5Pz9flmVZLiwslAcOHCiPHj1aTk1NVbbNyMiQp0yZIgcHB1eqazY5OVnevHmzfPz4cUXHR7EvywrhoSsb7uY8CoPuEWDy5MmySqWS+/TpI/fo0UN+6qmnlIdIbm6uvGDBAnnhwoVmQ1Zr166VGzZsKC9YsKC8xL4r3nrrLVmj0ci9e/eWr1y5IsuyLBuNRlmWZfnnn3+W69atK//0009m+5w6dUpu2LCh/Omnnz50ee+Vt99+W7a3t5fbt28v29rayn379pVPnjwpy7IsZ2VlPRJ9+eWXX8qWlpZymzZtZHd3d7levXrytm3bZFmW5ZUrV8p16tR5JPqy+L58/PHH5dDQUHn69OlKv8XGxsqzZs2Sf/jhB7N9Pv/8c7lRo0byxo0by0Pke2LKlCmyVquVe/XqpdybxXrOmzdP9vPzkw8ePGi2z+bNm+VGjRrJK1eufOjy3gvTp0+XnZyc5FatWslarVaeOHGiHBERIcuyLF++fPmR6cuyRBh0ZYMw6KoIJ06ckB0cHOTQ0FB59+7dsizL8tSpU+XatWubbZeenq58URYbQTk5ObKfn5/89ddfP1SZ75bc3FzZ399ftrOzk7dv364sLywsNNuuTZs28sCBA+WzZ8+a7Vu/fn153rx5D03eeyUzM1N+8cUX5ccee0zevn27XFBQIK9bt07u0aOH/NJLLynbpaWlVdq+lGWTd6Zp06byV199JcuyLB89elR+7rnnZDc3Nzk8PFyWZVlu166dPGDAgErblwcOHJAdHR3levXqybt27ZJlWZafffbZEnFjsbGxSqxVsQGUlpYm29raVgojIDU1Va5WrZrs7u4u792795bb+fr6ys8884yZtzkrK0v28PCQ169f/xAkvXdSUlLkp59+Wm7atKm8Y8cOOT09XV6wYIHcokULec6cOcp2lb0vHwTCoCsbRAxdFWLFihWcPn2aDh06ANCkSRPS0tK4ePGiso2TkxOWlpYASrHL8PBwJEmq0HXMjEYj1tbWdOvWjerVq9O+fXtOnjzJmDFjmDhxInPmzOHUqVMA/N///R/nzp1j0aJFyv4FBQUUFhbi7OxcXircMWlpaej1el5//XW6dOmChYUF/fv3x9nZmby8PGU7Z2fnStmXxezfv5+IiAj69u0LmK7XBQsW4O7uzuTJkwGYOXNmpetL+Yb67NnZ2SxevJhTp07RsWNHZFmmTp06ZGRkEBcXp2zn6+uLhYUFYIrHAvj333+xt7fH1dX14SpwhxTrKcsyLi4uNGrUiNDQUNq1a8eJEyd48cUXmTp1Kj/88AOxsbEAzJkzh19//ZWVK1cq7aSlpWFra6tcyxWJG/syJiYGg8HAe++9R+fOnXFycuL5559HrVaTkZGhbFcZ+7I8KdLpKUjJe2h/RTp9eav8UHi0qzw+YhiNRlQqFXq9Hq1WS4MGDWjQoIHZOrVajbW1tdmUIzfur9fruXTpEpMnT6ZRo0a0bt36YatxW4r1KCoqUh6MCxYswNnZmYYNG5KdnU379u0pKChg9+7dLFy4kOPHj9OzZ09OnjzJDz/8QIsWLRgxYgTr16/HwsKCdu3albNWJbm5Lz09PZkwYQL169c3W+/o6Ehubm6p+1emvlSr1YrRqdPpSEtLw9fXl4KCAiwtLfn666/p1KkT27dvp2vXrowePZrly5dXir7Mz88nOzsbd3d3ALp06aJcu8XnwMHBgczMzFIL6xqNRiRJ4uzZs8yePZsOHTrw2GOPPVQd7oQb9Sz+mPj000+pV68eLVq0IC4ujrCwMM6ePcuyZcuoW7cuv//+O0OGDGHv3r0sXryYbdu2MWLECBYuXIinpyfNmzcvZ63Mubkvq1evzgsvvEBYWBgABoMBtVqNp6cnRUUlZzqoLH1ZnhTp9MSui3joU3/5DQi642LGM2bMYObMmWbLateuzfnz582WybJMr1692Lp1K+vXr7/tvKyyLPPOO+/w7bffkpGRQevWrVmwYAHBwcF3rc+tEB66SsInn3xCt27dANBqS16UxQ/YDh06kJycTExMDHA9u6qgoIAFCxYwevRowsLC8PPzY+XKlTg4ODwkDf6bG3XUaDSKMaDVapk7dy75+fn89NNPLF++nDVr1vDLL7+g0Wh44YUXAJg4cSI//vgjNWvW5NdffyUgIICDBw9SrVq18lSrBDf3pSzLWFtblzDmAPbu3UurVq0AlMzewsLCSteXxVhbW9OuXTsWLlwIgKWlJUajkQ4dOtCxY0e+/PJLoPL05XvvvUedOnXo0aMHTz75JOfOnVP6Dq7fl126dCEpKYkLFy4A171A+fn5fPLJJ4wYMYJmzZpRrVo1vv/+e8XbU1G4Wc/iYs/BwcFMmzaN7OxsVq5cyU8//cSuXbtYtGgRsbGxTJ06FYDZs2fzwQcfoNfrmTt3LtWqVWPHjh0Vynt1s45nzpzByclJMeaMRiNqtZqCggIOHDhAs2bNgMrXl+WNIb/ooRpzALJBvuupxkJDQ4mPj1f+/vzzzxLbzJ07946nePv444+ZN28eCxcu5PDhw9ja2tK9e3fy8/PvSq7bITx0FZzIyEj+7//+j127dpGSksJXX33FhAkTlC/FYoovKr1eT9OmTTl48CD9+/dXXi6WlpbUrVuXtLQ0pk2bRmhoaLnoUxq307HYGHjuuecICgoiLCxM0TU0NJRRo0axZMkS0tPTcXZ2plGjRvz444/k5eVhbW1dnmqV4FZ6Fr8oilGpVMiyTFRUFDqdjhYtWgAo21hYWFC7du1K1ZfFhnmNGjVo3rw5u3fvZt++fbRr1w6DwYBKpWL48OG8//77pKWlKcN5FbUvwTQ0/OOPP/LFF18QGRnJ+vXr6dGjB1u2bKFu3brA9fsyLy+PkJAQTp8+TZs2bZTlVlZWBAcHk5SUxJEjRypUXxZTmp49e/Zk8+bNhIaG8sorr9C+fXuaN2+uPG86d+5Mhw4dOHXqFDk5OTg6OtKrVy+6detGXl4e9vb25ayVOaXp2Lt3bzZv3lyiL0+dOoVWq1UMvRv7skaNGhW6LwV3jkajwcvL65brjx8/zpw5c/jnn3/w9va+bVuyLDN37lymTZumhJssX74cT09PNmzYwNChQ8tEZuGhq+AUT++0aNEi3njjDWbNmkVOTg5qtbrU2kZubm7o9Xol7urGbTp27Mj06dMr3IPmTnXs2LEjFhYWSJKkLD958iSenp5YWVmZxb5URAPgbvpSkiTCw8NxcXFRhtV37drFO++8A5g8PpWpL7VaLXq9HkmSGDBgAE5OTnz22WfAdY/zuXPn8PDwwMbGpkL3pdFoJD8/nz179jBo0CCeeOIJJk2axJ49e7C0tGTmzJkl6o/VrVuX7OxsZdorg8Gg6DhgwADmzJlT4fryv/QsrrNmZ2dHu3btFK+60WjEysqKc+fOodVqsba2VnTVaDQVypi7nY4WFhZmfVmsw5kzZ6hZsyY+Pj4A7Nu3j/nz5wMwaNCgCtmXgrvn4sWL+Pj4UKNGDYYPH86VK1eUdbm5uTz55JN89dVXtzX6iomKiiIhIcFsFhFHR0fCwsKUWVPKAmHQVVCKHx5du3bllVdeoX///owYMQJXV1clePxmiofk2rdvz549ewDMhn8qGveiYzEqlYrjx49z9epVRo4cibW19R27vh8296rnr7/+Sps2bcjIyKBPnz5069ZN6eMbDZ6KwJ3oWHwtNmvWjJEjR3Ly5EmeeeYZjh49ysWLFzl8+DBt27bFysqqwvYloMQ+njlzRomPys/PR5Ik5s+fz+7du9m1a5cydF7cZx06dGD37t0ASkxhReZu9Lx5v8OHD1NQUMDTTz+NSqWqsLrebV+C6b5s3749ycnJ9OnTh44dO1JQUABUvPtScG+EhYWxdOlStm7dyoIFC4iKiqJt27ZK4exXXnmFVq1aKd62/yIhIQEAT09Ps+Wenp7KurKg4r7tqzjFD0Bra2vFtV+zZk3GjRvHDz/8wJkzZ8xeFoDZsJ0sy0ocXUXlXnS8cuUKa9euZcKECbRr146aNWvy5JNPlov8d8q96JmVlcWePXvYtGkT3t7eGI1G4uPjmTVrllmbFYU70VGtVlNYWAiYPBnffPMNe/bsYcSIETRv3hw3NzemT59ebjrcKUajEXt7e5o1a8b3338PmEIaZFmmW7dutGzZkmXLlikv+eL7Mjs7m8LCQlJTU8tN9rvhTvUsjgGKiIhgy5YtTJw4ke7du9OgQQN69uxZnir8J3erY0JCAn///TebNm3C398fWZZJSEjgtddeAyrefSm4N3r27MmgQYNo0KAB3bt3Z/PmzWRkZLB69Wo2btzIrl27mDt3bnmLWQJh0FUSigPne/fuTfPmzXnllVeAkkYcmIZwVq5cib+/f7nIeq/ciY5paWls376d8PBwtm3bxuLFi7GxsSkvke+JO9EzJycHg8GAp6cne/fu5ffff1cy7yoDt9KxOEBco9HQpUsX/vnnH1avXs3BgwdZt25dhRqOuxXFMY59+/bl5MmT7N+/H0mSFANuxowZ7Nu3j8TERAAlG/L5559n3rx5FSoR4HbcrZ6RkZEsW7aMEydOsGXLFhYuXGg27VdF5G51TExMVEIIdu/ezW+//Vap7kvBveHk5EStWrW4dOkSu3btIiIiAicnJzQajRLnPXDgQKV82M0UD8sWX0fFJCYm3tGQ7Z0iDLpyJD4+npUrV3Lw4EEltuZWLvviL7/q1aszfvx4jhw5wq+//grAn3/+SUJCgrJNWFgY9erVewga/DdlpeO+fftISUmhUaNGvPfee+zYsUNJFqgIlJWe+/fvJyUlBVdXV9asWcPff/+teLzKm7K+XgFcXFyoX78+ISEhD0GDO+O/9JRlGUmSaN26NY0aNeLdd98FUIwXKysrvLy8lHjC4gd+ly5daNiw4cNU5baUlZ7FtSA7duzIxx9/zN69e2nZsuVD1qZ0ylrHoKAgNm3axMGDByuMjoIHj06nIyIiAm9vb958801OnjzJ8ePHlT+Azz//nCVLlpS6f2BgIF5eXuzcuVNZlpWVxeHDh8v0OhIGXTkxefJkatWqxaJFi+jSpQtjx44lIiLCLOC/NFQqFW3btmXgwIFMmjSJPn360K5dO7NCwhWFstSxQ4cOnDt3DgAPD4+HpcIdUZZ6tm/fnrNnz2JhYUGjRo0enhL/QVlfr5cuXXqI0t85d6LnjVnWw4cP58yZM7z77rvKkPm5c+dwdnauUB8cN1OWehaX1dFoNBWqrMyD0NHOzo42bdqUj0KCh8brr7/O3r17iY6O5sCBA/Tv3x+1Ws2wYcPw8vKiXr16Zn8A1apVIzAwUGkjJCSE9evXA6brbNKkScyaNYuNGzdy6tQpRo4ciY+Pz21r190twqB7yKSnp/Pcc8/x559/snnzZrZu3crSpUvJyMjgu+++A+4skSE5OZnLly+j1WqJjIykbdu2D1r0O6Yq6AgPTs+KVDxX9GXpeha/8Pv168fs2bP58MMPadOmDU8//TQjR46kV69eODk5Vbgg+aqgZ1XQUfBgiY2NZdiwYdSuXZvBgwfj6urKoUOH7mp4PTw83KzA/+TJk3nppZcYO3YszZo1Q6fTsXXr1jINSxB16B4CxW59gJSUFCRJYsqUKcpLbdCgQaxYsUIJvL1x+5uJiIhg5MiRxMbGsnv3btq3b/9wlPgPqoKOUDX0rAo6wv3pWRzvaGlpyahRo/Dy8uLEiROcPXuWDRs2mJUnKG+qgp5VQcdHBbWVBkktPfSZItRWd27u3DhN3Z1QmrF/8zJJknj33XeVYf0HgTDoHjA6nY7CwkJcXFwAcHd3Z9KkSUqdouJ0eFtbWyUD8MaXY25uLlu3bmXAgAGAya373nvv0alTp4esya2pCjpC1dCzKugIZa9n9+7d6d69+0PW4r+pCnpWBR0fJTR2WvwGBN31zA33g9pKc8fTflVqZMEDY+rUqXKNGjXktm3bykOGDJHPnz9vtt5gMMiyLMtFRUVy9erV5RUrVpgtl2VZ3rZtmyxJkrx9+/aHJ/hdUBV0lOWqoWdV0FGWhZ7FPAp6VgUdKyt5eXny2bNn5by8vPIWpVJzN+dRxNA9AAoLC3nqqafYvHkzixYt4rnnniM7O5uePXty9OhRZbviOI7z589jNBqVwpY3xnc0bdqU9957T5l+pqJQFXSEqqFnVdARhJ6Pkp5VQUeB4K55CAZmlePUqVNyaGiovHv3bmVZXl6e7ODgIA8ZMkS+ePGiLMvXvxJXrVolN2/eXNl28+bN8gcffPBQZb5bqoKOslw19KwKOsqy0PNR0rMq6FjZER66skF46MqZzMxMwsPDzWpOJSYm4uLiwp9//smOHTuQZVn5Sty4cSMdO3YkKSmJrl273vF0IuVJVdARqoaeVUFHEHo+SnpWBR0FgrtFGHQPAAcHB+rXr8+0adOUZYsWLaJHjx5Uq1aNDRs2YDQakWWZlJQU9u/fz6pVq/Dz88PR0ZGUlBTeeuutctTgv6kKOkLV0LMq6AhCz0dJz6qgo0Bw1zwQH2EVJy8vT16yZIms1WrlsLAw2dXVVfbx8ZGjo6PlXbt2yRqNRs7KypJlWZYjIyPlgIAAuU2bNvK///5bzpLfOVVBR1muGnpWBR1lWej5KOlZFXSs7Igh17Lhbs6jKFtShhQVFaHRaLCysmL06NGEhoZy7NgxnJ2dGTRoEABHjhyhZs2apKenY29vj7u7Oxs3bqRBgwblLP2dURV0hKqhZ1XQEYSej5KeVUFHgeCeeQgG5iOPXq9X/l9YWCi/+uqrSlDuzUycOFF+4oknHpZoZUZV0FGWq4aeVUFHWRZ6lkZl1bMq6PioITx0ZYNIinhIGAwGZFlWJt+eO3cubm5u/Prrr2aFKyMjI4mMjGTy5MmsXbuWp59+Grj1xOYViaqgI1QNPauCjiD0fJT0rAo6VkWKdHoKUvIe2l+RTl/eKj8UxJDrPWIwGJQpY3bu3Mm4cePQ6XR89tlnjBo1SnkAARw6dIjZs2cjSRKrV6+mdevWALecLqmiUBV0hKqhZ1XQEYSej5KeVUHHqkiRTk/suoiHPvWX34CgO54tYsaMGcycOdNsWe3atTl//jwAHTp0YO/evWbrx40bx8KFC2/ZpizLvPPOO3z77bdkZGTQunVrFixYQHBw8F1qc2uEQXePqNVqYmJiGDt2LDt37uTll1/mrbfeUqafgevzBfbr14/AwEBatmxZjhLfPVVBR6gaelYFHUHo+SjpWRV0rIoY8oseqjEHIBtkDPlFdzX9V2hoKDt27FB+3/gBATBmzBizeVltbGxu297HH3/MvHnzWLZsGYGBgUyfPp3u3btz9uxZrKys7liu2yGGXO+RtWvXUqNGDdRqNSdPnuSTTz4xe9DA9a9DGxubSvmgqQo6QtXQsyroCELPG6nselYFHQUVF41Gg5eXl/Ln5uZmtt7GxsZsvYODwy3bkmWZuXPnMm3aNPr27UuDBg1Yvnw5cXFxbNiwoexkLrOWqhhNmjRh3759j/RDpCroCFVDz6qgIwg9HyWqgo6CisvFixfx8fHBysqKli1bMnv2bKpVq6asX7FiBT/++CNeXl706dOH6dOn39JLFxUVRUJCAl26dFGWOTo6EhYWxsGDBxk6dGiZyCzJImpUIBAIBAJBGZKfn09UVBSBgYFmQ4oFKXnEbYp+6PL49KmOpZv1HW27ZcsWdDodtWvXJj4+npkzZ3L16lVOnz6Nvb0933zzDQEBAfj4+HDy5EmmTJlC8+bNWbduXantHThwgNatWxMXF4e3t7eyfPDgwUiSxKpVq24py63OY2kID51AIBAIBALBNXr27Kn8v0GDBoSFhREQEMDq1at59tlnGTt2rLK+fv36eHt707lzZyIiIggKCioPkQERQycQCAQCgUBwS5ycnKhVqxaXLl0qdX1YWBjALdd7eXkBpvmGbyQxMVFZVxYIg04gEAgEAoHgFuh0OiIiIsyGS2/k+PHjALdcHxgYiJeXFzt37lSWZWVlcfjw4TKNERUGnUAgEAgEAsE1Xn/9dfbu3Ut0dDQHDhygf//+qNVqhg0bRkREBO+99x5Hjx4lOjqajRs3MnLkSNq1a2c2vVxISAjr168HTNnYkyZNYtasWWzcuJFTp04xcuRIfHx86NevX5nJLWLoBAKBQCAQCK4RGxvLsGHDSE1Nxd3dnTZt2nDo0CHc3d3Jz89nx44dzJ07l5ycHPz9/Rk4cCDTpk0zayM8PJzMzEzl9+TJk8nJyWHs2LFkZGTQpk0btm7dWmY16EBkuQoEAoFAIChjbpWdWRlmiqhIiCxXgUAgEAgEFQ6NnRa/AUEY8ose2jHVVppKaczdLcKgEwgEAoFA8NDQ2GmrhIH1sBFJEQKBQCAQCASVHGHQCQQCgUAgEFRyhEEnEAgqDNHR0UiSpNR1KmskSSrTybAFAoGgoiAMOoFAoDB69OgyrYt0t/j7+xMfH0+9evUA2LNnD5IkkZGRUW4yCQSCe0cU0rg/7ub8CYNOIBBUGNRqNV5eXmg0Il9LIKjMaLWmpIfc3NxylqRyU1hYCJiejf+FMOgEAsEdsXfvXpo3b46lpSXe3t68+eabFBVdLz3QoUMHJk6cyOTJk3FxccHLy4sZM2aYtXH+/HnatGmDlZUVdevWZceOHWbDoDcOuUZHR9OxY0cAnJ2dkSSJ0aNHA1C9enXmzp1r1najRo3Mjnfx4kXatWunHGv79u0ldIqJiWHw4ME4OTnh4uJC3759iY6Ovt9TJRBUedRqNU5OTiQlJZGamkpeXh75+fni7y7+cnNzSU5OxsbG5o4+csVnsEAg+E+uXr1Kr169GD16NMuXL+f8+fOMGTMGKysrMyNq2bJlvPrqqxw+fJiDBw8yevRoWrduTdeuXTEYDPTr149q1apx+PBhsrOzee211255TH9/f3755RcGDhxIeHg4Dg4OWFtb35G8RqORAQMG4OnpyeHDh8nMzGTSpElm2+j1erp3707Lli3Zv38/Go2GWbNm0aNHD06ePImFhcW9nCqBQHCN4onnk5KSylmSyotKpaJatWpIkvSf2wqDTiAQ/Cdff/01/v7+zJ8/H0mSCAkJIS4ujilTpvD222+jUpmc/Q0aNOCdd94BIDg4mPnz57Nz5066du3K9u3biYiIYM+ePcqD/v3336dr166lHlOtVuPi4gKAh4cHTk5Odyzvjh07OH/+PH/88Qc+Pj4AfPDBB/Ts2VPZZtWqVRiNRr777jvlYblkyRKcnJzYs2cP3bp1u7uTJBAIzJAkCW9vbzw8PNDr9eUtTqXEwsJCeb7+F8KgEwgE/8m5c+do2bKl2Vdi69at0el0xMbGUq1aNQCzyakBvL29la/z8PBw/P39FWMOoHnz5g9MXn9/f8WYA2jZsqXZNidOnODSpUvY29ubLc/PzyciIuKByCUQVEXUavUdxYAJ7g9h0AkEgjKjOBC6GEmSMBqNZX4clUpVIvvrbj0AOp2Opk2bsmLFihLr3N3d70s+gUAgeNgIg04gEPwnderU4ZdffkGWZcVL99dff2Fvb4+fn98dtVG7dm1iYmJITEzE09MTgCNHjtx2n+I4NoPBYLbc3d2d+Ph45XdWVhZRUVFm8sbExBAfH4+3tzcAhw4dMmujSZMmrFq1Cg8PDxwcHO5IB4FAIKioiCxXgUBgRmZmJsePHzf7Gzt2LDExMbz00kucP3+eX3/9lXfeeYdXX331juM7unbtSlBQEKNGjeLkyZP89ddfTJs2DeCWAb8BAQFIksRvv/1GcnIyOp0OgE6dOvHDDz+wf/9+Tp06xahRo8yGdLp06UKtWrUYNWoUJ06cYP/+/UydOtWs7eHDh+Pm5kbfvn3Zv38/UVFR7Nmzh4kTJxIbG3svp04gEAjKDWHQCQQCM/bs2UPjxo3N/t577z02b97M33//TcOGDXn++ed59tlnFYPsTlCr1WzYsAGdTkezZs147rnnFCPLysqq1H18fX2ZOXMmb775Jp6enrz44osAvPXWW7Rv357HH3+c3r17069fP4KCgpT9VCoV69evJy8vj+bNm/Pcc8/x/vvvm7VtY2PDvn37qFatGgMGDKBOnTo8++yz5OfnC4+dQCCodEiyKOMsEAjKib/++os2bdpw6dIlM4NMIBAIBHeHMOgEAsFDY/369djZ2REcHMylS5d4+eWXcXZ25s8//yxv0QQCgaBSI5IiBALBQyM7O5spU6Zw5coV3Nzc6NKlC3PmzClvsQQCgaDSIzx0AoFAIBAIBJUckRQhEAgEAoFAUMkRBp1AIBAIBAJBJUcYdAKBQCAQCASVHGHQCQQCgUAgEFRyhEEnEAgEAoFAUMkRBp1AIBAIBAJBJUcYdAKBQCAQCASVHGHQCQQCgUAgEFRyhEEnEAgEAoFAUMn5f2YJt/QU46DDAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "agreement_map.gval.cat_plot(title='Agreement Map', \n", + " figsize=(8, 6),\n", + " colormap='tab20b')" + ] + }, + { + "cell_type": "markdown", + "id": "bdcbfb8e", + "metadata": {}, + "source": [ + "## Comparisons" + ] + }, + { + "cell_type": "markdown", + "id": "4a1f3ecc", + "metadata": {}, + "source": [ + "For multi-categorical statistics GVAL offers 3 methods of weighting:\n", + "\n", + "1. Micro Averaging which sums up the contingencies of each class defined as either positive or negative\n", + "2. Macro Averaging which sums up the contingencies of one class vs all and then averages them\n", + "3. Weighted Averaging which does macro averaging with the inclusion of weights to be applied to each positive category." + ] + }, + { + "cell_type": "markdown", + "id": "66235a0a", + "metadata": {}, + "source": [ + "### Micro Averaging" + ] + }, + { + "cell_type": "markdown", + "id": "4f258087", + "metadata": {}, + "source": [ + "In this example we will consider classes 1 and 2 as positive and 3, 4, 5 as negative classes. " + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "936f2dea", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
bandfnfptntpaccuracybalanced_accuracycritical_success_indexequitable_threat_scoref_scorefalse_discovery_ratefalse_negative_ratefalse_omission_ratefalse_positive_ratefowlkes_mallows_indexmatthews_correlation_coefficientnegative_likelihood_rationegative_predictive_valueoverall_biaspositive_likelihood_ratiopositive_predictive_valueprevalenceprevalence_thresholdtrue_negative_ratetrue_positive_rate
01382.0733099.0481259.01620.00.3969870.6027490.0022040.000560.0043980.9977950.1908090.0007930.6036930.042240.0170330.4814680.999207366.9925071.3404020.0022050.0016460.4634440.3963070.809191
\n", + "
" + ], + "text/plain": [ + " band fn fp tn tp accuracy balanced_accuracy \\\n", + "0 1 382.0 733099.0 481259.0 1620.0 0.396987 0.602749 \n", + "\n", + " critical_success_index equitable_threat_score f_score \\\n", + "0 0.002204 0.00056 0.004398 \n", + "\n", + " false_discovery_rate false_negative_rate false_omission_rate \\\n", + "0 0.997795 0.190809 0.000793 \n", + "\n", + " false_positive_rate fowlkes_mallows_index \\\n", + "0 0.603693 0.04224 \n", + "\n", + " matthews_correlation_coefficient negative_likelihood_ratio \\\n", + "0 0.017033 0.481468 \n", + "\n", + " negative_predictive_value overall_bias positive_likelihood_ratio \\\n", + "0 0.999207 366.992507 1.340402 \n", + "\n", + " positive_predictive_value prevalence prevalence_threshold \\\n", + "0 0.002205 0.001646 0.463444 \n", + "\n", + " true_negative_rate true_positive_rate \n", + "0 0.396307 0.809191 " + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "micro_averaged_metrics = crosstab.gval.compute_categorical_metrics(positive_categories=[1, 2],\n", + " negative_categories=[3, 4, 5],\n", + " average=\"micro\")\n", + "micro_averaged_metrics" + ] + }, + { + "cell_type": "markdown", + "id": "895d3e57", + "metadata": {}, + "source": [ + "Although more neatly summarized with macro-averaging, one can do one vs. all comparisons with micro averaging, showing the detail of each class version. (Macro averaging is essentially the mean of this data.)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "0da150e7", + "metadata": {}, + "outputs": [], + "source": [ + "comparisons = [] # List with all comparisons \n", + "\n", + "for idx, positive_class in enumerate(classes):\n", + " negative_classes = classes[classes != positive_class]\n", + " df = crosstab.gval.compute_categorical_metrics(positive_categories=[positive_class],\n", + " negative_categories=negative_classes,\n", + " average=\"micro\")\n", + " df.insert(1, 'negative classes', [negative_classes])\n", + " df.insert(1, 'positive classes', [positive_class])\n", + " comparisons.append(df)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "d016aa30", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
bandpositive classesnegative classesfnfptntpaccuracybalanced_accuracycritical_success_indexequitable_threat_scoref_scorefalse_discovery_ratefalse_negative_ratefalse_omission_ratefalse_positive_ratefowlkes_mallows_indexmatthews_correlation_coefficientnegative_likelihood_rationegative_predictive_valueoverall_biaspositive_likelihood_ratiopositive_predictive_valueprevalenceprevalence_thresholdtrue_negative_ratetrue_positive_rate
011[2, 3, 4, 5]6.0172762.01043592.00.00.8579630.4289840.000000-4.932603e-060.0000001.0000001.0000000.0000060.1420330.000000-0.0009041.1655460.99999428793.6666670.0000000.0000000.0000051.0000000.8579670.000000
012[1, 3, 4, 5]1043.0561004.0653360.0953.00.5379270.5077410.0016935.488593e-050.0033800.9983040.5225450.0015940.4619740.0284550.0012570.9712260.998406281.5415831.0335110.0016960.0016410.4958800.5380260.477455
013[1, 2, 4, 5]318274.0462496.0422623.012967.00.3581090.2583110.016337-1.754014e-010.0321480.9727280.9608530.4295790.5225240.032675-0.4409832.0123600.5704211.4353990.0749190.0272720.2723220.7851070.4774760.039147
014[1, 2, 3, 5]516572.03775.0693617.02396.00.5722100.4996020.004584-4.554762e-040.0091250.6117320.9953830.4268520.0054130.042339-0.0055431.0008010.5731480.0118910.8529160.3882680.4266570.5198760.9945870.004617
015[1, 2, 3, 4]364147.05.0852206.02.00.7006220.5000000.000005-2.626158e-070.0000110.7142860.9999950.2993760.0000060.001253-0.0000721.0000000.7006240.0000190.9361120.2857140.2993760.5082520.9999940.000005
\n", + "
" + ], + "text/plain": [ + " band positive classes negative classes fn fp tn \\\n", + "0 1 1 [2, 3, 4, 5] 6.0 172762.0 1043592.0 \n", + "0 1 2 [1, 3, 4, 5] 1043.0 561004.0 653360.0 \n", + "0 1 3 [1, 2, 4, 5] 318274.0 462496.0 422623.0 \n", + "0 1 4 [1, 2, 3, 5] 516572.0 3775.0 693617.0 \n", + "0 1 5 [1, 2, 3, 4] 364147.0 5.0 852206.0 \n", + "\n", + " tp accuracy balanced_accuracy critical_success_index \\\n", + "0 0.0 0.857963 0.428984 0.000000 \n", + "0 953.0 0.537927 0.507741 0.001693 \n", + "0 12967.0 0.358109 0.258311 0.016337 \n", + "0 2396.0 0.572210 0.499602 0.004584 \n", + "0 2.0 0.700622 0.500000 0.000005 \n", + "\n", + " equitable_threat_score f_score false_discovery_rate \\\n", + "0 -4.932603e-06 0.000000 1.000000 \n", + "0 5.488593e-05 0.003380 0.998304 \n", + "0 -1.754014e-01 0.032148 0.972728 \n", + "0 -4.554762e-04 0.009125 0.611732 \n", + "0 -2.626158e-07 0.000011 0.714286 \n", + "\n", + " false_negative_rate false_omission_rate false_positive_rate \\\n", + "0 1.000000 0.000006 0.142033 \n", + "0 0.522545 0.001594 0.461974 \n", + "0 0.960853 0.429579 0.522524 \n", + "0 0.995383 0.426852 0.005413 \n", + "0 0.999995 0.299376 0.000006 \n", + "\n", + " fowlkes_mallows_index matthews_correlation_coefficient \\\n", + "0 0.000000 -0.000904 \n", + "0 0.028455 0.001257 \n", + "0 0.032675 -0.440983 \n", + "0 0.042339 -0.005543 \n", + "0 0.001253 -0.000072 \n", + "\n", + " negative_likelihood_ratio negative_predictive_value overall_bias \\\n", + "0 1.165546 0.999994 28793.666667 \n", + "0 0.971226 0.998406 281.541583 \n", + "0 2.012360 0.570421 1.435399 \n", + "0 1.000801 0.573148 0.011891 \n", + "0 1.000000 0.700624 0.000019 \n", + "\n", + " positive_likelihood_ratio positive_predictive_value prevalence \\\n", + "0 0.000000 0.000000 0.000005 \n", + "0 1.033511 0.001696 0.001641 \n", + "0 0.074919 0.027272 0.272322 \n", + "0 0.852916 0.388268 0.426657 \n", + "0 0.936112 0.285714 0.299376 \n", + "\n", + " prevalence_threshold true_negative_rate true_positive_rate \n", + "0 1.000000 0.857967 0.000000 \n", + "0 0.495880 0.538026 0.477455 \n", + "0 0.785107 0.477476 0.039147 \n", + "0 0.519876 0.994587 0.004617 \n", + "0 0.508252 0.999994 0.000005 " + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "all_micro_averaged_comps = pd.concat(comparisons)\n", + "all_micro_averaged_comps" + ] + }, + { + "cell_type": "markdown", + "id": "79761a73", + "metadata": {}, + "source": [ + "### Macro Averaging" + ] + }, + { + "cell_type": "markdown", + "id": "790c56df", + "metadata": {}, + "source": [ + "The following shows macro averaging and is equivalent to the values of shared columns in `all_micro_averaged_comps.mean()`:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "7e64eb9b", + "metadata": {}, + "outputs": [], + "source": [ + "macro_averaged_metrics = crosstab.gval.compute_categorical_metrics(positive_categories=classes,\n", + " negative_categories=None,\n", + " average=\"macro\")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "70537719", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
bandaccuracybalanced_accuracycritical_success_indexequitable_threat_scoref_scorefalse_discovery_ratefalse_negative_ratefalse_omission_ratefalse_positive_ratefowlkes_mallows_indexmatthews_correlation_coefficientnegative_likelihood_rationegative_predictive_valueoverall_biaspositive_likelihood_ratiopositive_predictive_valueprevalenceprevalence_thresholdtrue_negative_ratetrue_positive_rate
010.6053660.4389270.004524-0.0351610.0089330.859410.8957550.2314810.226390.020944-0.0892491.2299860.7685195815.3311120.5794920.140590.20.6618230.773610.104245
\n", + "
" + ], + "text/plain": [ + " band accuracy balanced_accuracy critical_success_index \\\n", + "0 1 0.605366 0.438927 0.004524 \n", + "\n", + " equitable_threat_score f_score false_discovery_rate \\\n", + "0 -0.035161 0.008933 0.85941 \n", + "\n", + " false_negative_rate false_omission_rate false_positive_rate \\\n", + "0 0.895755 0.231481 0.22639 \n", + "\n", + " fowlkes_mallows_index matthews_correlation_coefficient \\\n", + "0 0.020944 -0.089249 \n", + "\n", + " negative_likelihood_ratio negative_predictive_value overall_bias \\\n", + "0 1.229986 0.768519 5815.331112 \n", + "\n", + " positive_likelihood_ratio positive_predictive_value prevalence \\\n", + "0 0.579492 0.14059 0.2 \n", + "\n", + " prevalence_threshold true_negative_rate true_positive_rate \n", + "0 0.661823 0.77361 0.104245 " + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "macro_averaged_metrics" + ] + }, + { + "cell_type": "markdown", + "id": "ef8f72ab", + "metadata": {}, + "source": [ + "### Weighted Averaging" + ] + }, + { + "cell_type": "markdown", + "id": "e182a6f7", + "metadata": {}, + "source": [ + "To further enhance `macro-averaging`, we can apply weights to the classes of interest. Let's engage in a quick arbitrary exercise to establish weights. Our first step is to calculate the mean candidate raw elevation for each class in the candidate and benchmark maps, and then the pixel count of the presence of each class in both maps." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "248f0bad", + "metadata": {}, + "outputs": [], + "source": [ + "# candidate zonal statistics\n", + "candidate_stats = stats(xr.where(benchmark_r.isnull() == 0, candidate_r, np.nan), \n", + " depth_raster_r, \n", + " stats_funcs=[\"mean\", \"count\"])\n", + "# benchmark zonal statistics\n", + "benchmark_stats = stats(xr.where(candidate_r.isnull() == 0, benchmark_r, np.nan), \n", + " depth_raster_r, \n", + " stats_funcs=[\"mean\", \"count\"])\n", + "\n", + "mean_difference = np.abs(candidate_stats[\"mean\"].values - benchmark_stats[\"mean\"].values)\n", + "count_difference = np.abs(candidate_stats[\"count\"].values - benchmark_stats[\"count\"].values)" + ] + }, + { + "cell_type": "markdown", + "id": "1d7e954a", + "metadata": {}, + "source": [ + "First we will calculate weights based on rudimentary normalization of the difference of means, giving greater weight to the classes that have less of a difference. (Similarly it can be done to do the opposite.)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "67684e18", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 1., 35., 1., 1., 1.])" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "weights = 1 // (mean_difference / (1 * np.max(mean_difference)))\n", + "weights" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "0eae1cbc", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
bandaccuracybalanced_accuracycritical_success_indexequitable_threat_scoref_scorefalse_discovery_ratefalse_negative_ratefalse_omission_ratefalse_positive_ratefowlkes_mallows_indexmatthews_correlation_coefficientnegative_likelihood_rationegative_predictive_valueoverall_biaspositive_likelihood_ratiopositive_predictive_valueprevalenceprevalence_thresholdtrue_negative_ratetrue_positive_rate
010.5465730.4989180.002056-0.004460.0040920.9804970.5703930.0310670.431770.027492-0.0103461.00440.968933991.0017790.9753040.0195030.0270720.5171550.568230.429607
\n", + "
" + ], + "text/plain": [ + " band accuracy balanced_accuracy critical_success_index \\\n", + "0 1 0.546573 0.498918 0.002056 \n", + "\n", + " equitable_threat_score f_score false_discovery_rate \\\n", + "0 -0.00446 0.004092 0.980497 \n", + "\n", + " false_negative_rate false_omission_rate false_positive_rate \\\n", + "0 0.570393 0.031067 0.43177 \n", + "\n", + " fowlkes_mallows_index matthews_correlation_coefficient \\\n", + "0 0.027492 -0.010346 \n", + "\n", + " negative_likelihood_ratio negative_predictive_value overall_bias \\\n", + "0 1.0044 0.968933 991.001779 \n", + "\n", + " positive_likelihood_ratio positive_predictive_value prevalence \\\n", + "0 0.975304 0.019503 0.027072 \n", + "\n", + " prevalence_threshold true_negative_rate true_positive_rate \n", + "0 0.517155 0.56823 0.429607 " + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "weight_averaged_metrics = crosstab.gval.compute_categorical_metrics(positive_categories=classes,\n", + " weights=weights,\n", + " negative_categories=None,\n", + " average=\"weighted\")\n", + "weight_averaged_metrics" + ] + }, + { + "cell_type": "markdown", + "id": "4cffc0fa", + "metadata": {}, + "source": [ + "Secondly, weights will be calculated based of a rudimentary normalization of counts. In this case the attempt will be to give greater weights to the larger differences to balance the impact of each class." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "02fa92f9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1., 3., 1., 3., 2.])" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "weights = count_difference // np.min(count_difference)\n", + "weights" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "9a815076", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
bandaccuracybalanced_accuracycritical_success_indexequitable_threat_scoref_scorefalse_discovery_ratefalse_negative_ratefalse_omission_ratefalse_positive_ratefowlkes_mallows_indexmatthews_correlation_coefficientnegative_likelihood_rationegative_predictive_valueoverall_biaspositive_likelihood_ratiopositive_predictive_valueprevalenceprevalence_thresholdtrue_negative_ratetrue_positive_rate
010.5947730.4709320.003518-0.0176610.0069680.8231410.8514630.2313680.2066730.024756-0.0454891.1093980.7686322963.9762530.7606430.1768590.2155970.5848880.7933270.148537
\n", + "
" + ], + "text/plain": [ + " band accuracy balanced_accuracy critical_success_index \\\n", + "0 1 0.594773 0.470932 0.003518 \n", + "\n", + " equitable_threat_score f_score false_discovery_rate \\\n", + "0 -0.017661 0.006968 0.823141 \n", + "\n", + " false_negative_rate false_omission_rate false_positive_rate \\\n", + "0 0.851463 0.231368 0.206673 \n", + "\n", + " fowlkes_mallows_index matthews_correlation_coefficient \\\n", + "0 0.024756 -0.045489 \n", + "\n", + " negative_likelihood_ratio negative_predictive_value overall_bias \\\n", + "0 1.109398 0.768632 2963.976253 \n", + "\n", + " positive_likelihood_ratio positive_predictive_value prevalence \\\n", + "0 0.760643 0.176859 0.215597 \n", + "\n", + " prevalence_threshold true_negative_rate true_positive_rate \n", + "0 0.584888 0.793327 0.148537 " + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "weight_averaged_metrics = crosstab.gval.compute_categorical_metrics(positive_categories=classes,\n", + " weights=weights,\n", + " negative_categories=None,\n", + " average=\"weighted\")\n", + "weight_averaged_metrics" + ] + }, + { + "cell_type": "markdown", + "id": "c4546ca7", + "metadata": {}, + "source": [ + "Regardless of the evaluation methodology, it is clear the the candidate map does not perform well in reference to the benchmark. Finally, we can save the output. " + ] + }, + { + "cell_type": "markdown", + "id": "0d5f7be8", + "metadata": {}, + "source": [ + "## Save Output" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "dff8f8a0", + "metadata": {}, + "outputs": [], + "source": [ + "# output agreement map\n", + "agreement_file = 'multi_categorical_agreement_map.tif'\n", + "metric_file = 'macro_averaged_metric_file.csv'\n", + "\n", + "agreement_map.rio.to_raster(agreement_file)\n", + "macro_averaged_metrics.to_csv(metric_file)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/sphinx/SphinxTutorial.ipynb b/docs/sphinx/SphinxTutorial.ipynb index 8cb24a51..4f8cee52 100644 --- a/docs/sphinx/SphinxTutorial.ipynb +++ b/docs/sphinx/SphinxTutorial.ipynb @@ -13,7 +13,7 @@ "id": "a403ee30", "metadata": {}, "source": [ - "# Categorical Comparisons" + "# Two-Class Categorical Comparisons" ] }, { @@ -72,7 +72,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 7, "id": "541857a7", "metadata": {}, "outputs": [], diff --git a/docs/sphinx/index.rst b/docs/sphinx/index.rst index 940661d6..07a7d1c2 100644 --- a/docs/sphinx/index.rst +++ b/docs/sphinx/index.rst @@ -16,8 +16,7 @@ ___________________________________ :maxdepth: 3 :caption: Table of Contents - SphinxTutorial - SphinxContinuousTutorial + tutorials api contributing diff --git a/docs/sphinx/tutorials.rst b/docs/sphinx/tutorials.rst new file mode 100644 index 00000000..847a6575 --- /dev/null +++ b/docs/sphinx/tutorials.rst @@ -0,0 +1,10 @@ +Tutorials +######### + +.. toctree:: + :maxdepth: 1 + :caption: Table of Contents + + SphinxTutorial + SphinxMulticatTutorial + SphinxContinuousTutorial diff --git a/notebooks/Multi-Class Categorical Statistics.ipynb b/notebooks/Multi-Class Categorical Statistics.ipynb new file mode 100644 index 00000000..5258b1a9 --- /dev/null +++ b/notebooks/Multi-Class Categorical Statistics.ipynb @@ -0,0 +1,1198 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "05d93248", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "id": "4744f004", + "metadata": {}, + "source": [ + "# Multi-Class Categorical Comparisons" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "275a7087", + "metadata": { + "tags": [ + "hide-output" + ] + }, + "outputs": [], + "source": [ + "import rioxarray as rxr\n", + "import gval\n", + "import numpy as np\n", + "import pandas as pd\n", + "import xarray as xr\n", + "from xrspatial.zonal import stats\n", + "\n", + "pd.set_option('display.max_columns', None)" + ] + }, + { + "cell_type": "markdown", + "id": "34069943", + "metadata": {}, + "source": [ + "## Load Datasets" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "38473c06", + "metadata": {}, + "outputs": [], + "source": [ + "candidate = rxr.open_rasterio(f'./candidate_map_multi_categorical.tif', \n", + " mask_and_scale=True)\n", + "benchmark = rxr.open_rasterio(f'./benchmark_map_multi_categorical.tif',\n", + " mask_and_scale=True)\n", + "depth_raster = rxr.open_rasterio(f'./candidate_raw_elevation_multi_categorical.tif',\n", + " mask_and_scale=True)" + ] + }, + { + "cell_type": "markdown", + "id": "fa522035", + "metadata": {}, + "source": [ + "## Homogenize Datasets and Make Agreement Map" + ] + }, + { + "cell_type": "markdown", + "id": "e3e5ca15", + "metadata": {}, + "source": [ + "Although one can call `candidate.gval.categorical_compare` to run the entire workflow, in this case homogenization and creation of an agreement map will be done separately to show more options for multi-class comparisons." + ] + }, + { + "cell_type": "markdown", + "id": "2ac66a26", + "metadata": {}, + "source": [ + "#### Homogenize" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "29375e17", + "metadata": {}, + "outputs": [], + "source": [ + "candidate_r, benchmark_r = candidate.sel(band=1).gval.homogenize(benchmark.sel(band=1))\n", + "depth_raster_r, arb = depth_raster.sel(band=1).gval.homogenize(benchmark_r)\n", + "del arb" + ] + }, + { + "cell_type": "markdown", + "id": "4e9e1be1", + "metadata": {}, + "source": [ + "#### Agreement Map" + ] + }, + { + "cell_type": "markdown", + "id": "e2851c9b", + "metadata": {}, + "source": [ + "The following makes a pairing dictionary that represents the candidate class and benchmark class respectively. e.g. 12 represents a class 1 for the candidate and a class 2 for the benchmark." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "de894568", + "metadata": {}, + "outputs": [], + "source": [ + "classes = np.array([1, 2, 3, 4, 5])\n", + "class_mesh = np.array(np.meshgrid(classes, classes)).T.reshape(-1, 2)\n", + "pairing_dictionary = {(k, v): int(f'{k}{v}') for k, v in class_mesh}" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "e248d2cc", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1, 1): 11\n", + "(1, 2): 12\n", + "(1, 3): 13\n", + "(1, 4): 14\n", + "(1, 5): 15\n", + "(2, 1): 21\n" + ] + } + ], + "source": [ + "# Showing the first 6 entries\n", + "print('\\n'.join([f'{k}: {v}' for k,v in pairing_dictionary.items()][:6]))" + ] + }, + { + "cell_type": "markdown", + "id": "44328dcf", + "metadata": {}, + "source": [ + "The benchmark map has an extra class 0 which is very similar to nodata so it will not be included in `allow_benchmark_values` in the following methods." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "1dc16dd7", + "metadata": {}, + "outputs": [], + "source": [ + "agreement_map, crosstab = (candidate_r.gval.compute_agreement_map(benchmark_r, \n", + " nodata=255,\n", + " encode_nodata=True,\n", + " comparison_function='pairing_dict',\n", + " pairing_dict=pairing_dictionary,\n", + " allow_candidate_values=classes,\n", + " allow_benchmark_values=classes),\n", + " candidate_r.gval.compute_crosstab(benchmark_r,\n", + " comparison_function='pairing_dict',\n", + " pairing_dict=pairing_dictionary,\n", + " allow_candidate_values=classes,\n", + " allow_benchmark_values=classes))" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "55606165", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAIvCAYAAAD9IEb7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3wUZf7H37O76Y2WhlQFA1ggIkhAkSYJFhSx4x0BpAYQsAB2IIIIKop0MfF3inoeoMhpkGLAAhaEU0+MiDQhCQRCQnp2d35/bGYz25JNocT7vl+vJbszzzzzzOyG/eRbFVVVVQRBEARBEIQGi+FCL0AQBEEQBEGoGyLoBEEQBEEQGjgi6ARBEARBEBo4IugEQRAEQRAaOCLoBEEQBEEQGjgi6ARBEARBEBo4IugEQRAEQRAaOCLoBEEQBEEQGjgi6ARBEARBEBo4IuiEi45vv/0WRVFQFIXZs2df6OUI9UhiYqL9vR07dqzHcaWlpTRp0sQ+Nj09/fwtsoaMHDmSoKAgTpw44bBdW3tVj8TERIdj2rRp4zImNDSUbt26sXDhQsrKylzOX1payiuvvEJcXBxhYWH4+voSHR3Ntddey6RJk/j3v//tce2nT59m7ty59O7dm4iICHx8fAgLC6NLly6MHz+ebdu21fn+nDp1ioiICBRFoV27di77rVYrX3zxBY8//jhdu3YlJCQEPz8/LrvsMsaNG8fBgwerPceHH35IQkIC4eHh+Pv707JlS4YMGcKXX37pdvyuXbu4/fbbadasGf7+/lx++eU8+eSTFBYWuoxVVZXY2FiuuuoqrFZrzW+AIJwvVEG4yJg4caIKqIB6+eWXX+jlCE48++yzKqCmpKTU+Njhw4fb39vGjRurpaWlbsetXbvWPg5QP//887ot+hzx448/qgaDQX3sscdc9mlrHz58uMfHqlWrHI5p3bq1CqhDhw5Vhw8frv79739Xe/furfr4+KiA2rt3b4d7lpubq15zzTUqoPr4+Ki9e/dW77vvPvXWW29Vo6OjVUCNiYlxu/Z169apoaGhKqAGBwer/fv3V++//3518ODBavv27e3rv/nmm+t0j4YPH64qiqIC6mWXXeayf//+/fZzRUVFqYMHD1aHDBmiXnLJJSqghoSEqF988YXbuS0Wizpy5EgVUIOCgtT4+Hj13nvvVePi4lRfX191zpw5Lse8/fbbqtFoVAH1mmuuUYcMGaK2atVKBdSrr75azcvLc3uvAHX16tV1uheCcC4RQSdcVJSVlanNmjWz/+cOqLt27brQyxJ01Iegi42NVQF1/fr1bscNGTJENRqNaufOnS9qQTd48GDVx8dHzc7OdtmniZSaoAm6gwcPOmzfs2ePGhYWpgLq4sWL7dsnTZqkAmqXLl3UP//802W+b775Rp01a5bL9o8//lhVFEU1mUzqiy++qJaUlLiM2bdvnzp8+HC1ffv2NboGPVu2bFEBdcyYMR4F3e+//67edNNN6tatW1Wr1WrfXlJSoiYmJqqA2qpVK7WsrMzlWO2zeNttt6mnTp1y2Hf69Gn1t99+c9h29OhR1d/f30WclZaWqvfff799rc5YrVa1Q4cO6iWXXKKWl5fX+D4IwvlABJ1wUbFhwwYVUHv16qXOnj1bBdSkpKQLvSxBR30IuhdffFE1GAzqXXfd5TImNzdX9fPzUwcOHKjGx8dftILuyJEjqsFgUG+99Va3++tT0Kmqqs6aNUsF1P79+9u3NW/eXAXUzZs3e32Os2fP2v9o+sc//lHt+O+//97rufUUFRWpl112mdqpUyf1t99+8yjoqptDE7Lp6ekO+44ePar6+vqqrVq1UouKiryab86cOSqg3nTTTS77Tp06pYaEhKgmk0nNycnxeOzatWtrdA2CcL6QGDrhouLtt98G4MEHH+TBBx8E4P3336e8vNzjMT/++CO33XYbjRo1IiQkhN69e7N582bS09PdxilpcVzp6els2rSJvn370qhRIxRF4cyZM/ZxaWlp3HLLLYSHh+Pn58ell17KtGnTOHXqlNt1qKrKu+++S79+/WjcuDH+/v507NiR5557jqKiIpfxffr0QVEUDh06xPvvv0+3bt0IDAzkkksu4fHHH7fHSx04cID777+fiIgIAgMD6du3Lz/++KPH+1GTdevvxY4dO+jXrx8hISGEhoZyyy238MsvvziMb9OmDbNmzQJgxIgRDrFeNYlzi46Opl+/fmzcuJG8vDyHff/85z8pLS21v//u2Lt3rz3mSn+dEyZM4Pjx4y7jDx06hKIo9OnTh/z8fB5++GFatmxpf49eeeWVGsdHvfnmm1itVu6///4aHVdbYmNjATh69Kh928mTJwEIDw/3ep7U1FRycnLo2bNnlfdYo2vXrjVcqY1Zs2bxxx9/sHz5cnx8fGo1R0BAAJdffjmAy/v61ltvUVZWxkMPPURAQIBX8+3evRuw/e4506RJE66++mrMZrPbuMMHHngAgFWrVtXkEgThvCGCTrhoyMvLY8OGDfj6+nLPPffQtm1bevbsSU5ODmlpaW6P2blzJ3FxcWzcuJHWrVtz6623UlJSQkJCAuvWravyfGvWrGHQoEEUFhYyaNAgunXrhqIoAMyYMYNBgwaxZcsWYmJiGDx4MCaTiVdeeYXrrruO7Oxsh7msVivDhg3jgQce4LvvvqNLly7cfPPNFBYWMmvWLPr27UtxcbHbdbz66qs8+OCDNGrUiISEBMrKyliwYAGjR49m//799OjRg71799KvXz/atWtHeno6ffv2dVlDbdat8fHHH9OvXz+Kioq4+eabiY6O5pNPPqF3795kZWXZx91111107twZgF69ejF8+HD7Iyoqqsr77cywYcMoKSlh7dq1DtvfeecdAgMDGTJkiMdjX3jhBV555RUArr/+em6++WZUVWXZsmVce+21bkUd2BII+vXrx//93//RvXt3brrpJg4fPsy0adMYOXJkjda/ceNGwL04OBecPXsWAD8/P/u2li1bArB8+XJUVfVqnk8//RSgTkL0ueeec/vHksaPP/7ISy+9xIgRI7jhhhtqfR6r1crhw4cBXD5fWsJGz549yczMZOHChYwbN47p06eTlpbm9n5oSQ+NGzd2e76mTZsC8J///Mdl36WXXkrLli3Ztm2bx99lQbigXFgDoSBU8sYbb6iAevvtt9u3LV26VAXUu+++22W8xWJRL7/8chVQn3/+ebdzURGUrkcfmP/ee++5zPvPf/5TBdQrr7xS3b9/v3271WpVn3nmGRVQ7733XodjXnzxRRVQ+/Tpo2ZmZtq3l5aWqqNGjVIBdfr06Q7H3HjjjfaA9O+++86+PTMzU42MjFQVRVE7duyozpgxwx5bZLVa1b/97W8qoD7zzDN1Xrd2LwwGg0M8m9lsVocOHaoC6tNPP+1wTH24XP/xj3+o+fn5akBAgNq3b1/7/sOHD6uKoqj333+/qqqqR5frtm3b1KysLIdtFovF7pYcMWKEw76DBw/a3/Orr75aPXnypH3f77//bnddeorpc+bs2bOq0WhUmzdv7nGMdr6aUJXL9b777lMBddiwYfZt8+bNs5+nQ4cO6owZM9T169erR48e9XgOLdngyy+/rNHa9GifAeffLVW1vQ/dunVTmzVrZnddave/pi7Xt99+WwXU8PBwlzg/Lcb2tddes7tl9Y8+ffqoubm5Dsc88MADbn8XNa666ip7Uoo7tN+Jbdu21eg6BOF8IIJOuGjQBM4HH3xg35aTk6P6+Pio/v7+6pkzZxzGb968WQXU9u3bqxaLxWW+Xr16VSnobrnlFrfr0ALxf/rpJ5d9VqtV7dKli2o0Gu2ioLy8XG3WrJkaFBTkIjJU1RYHFBUVpTZu3Nhhndr1PvXUUy7HTJ06VQXUSy+91CUY/D//+Y8KqDfeeGOd1q2/F3qRoPH999+7PU99CTpVVdV77rlHNRgM9oD+uXPnqoD673//W1VVz4KuKi655BK1adOmDtv0gu6zzz5zOWbZsmUu8WlV8c0336iAgxh1xllguHs4C0hnQWe1WtVDhw6p06dPVwFVURR1x44d9vEWi0V9/PHH7Vmw+scVV1yhLlu2zOV3Q0sK+PXXX13WfPr0abfZuPv27XMYt3jxYjUmJkadMWOGyxyLFi1y+XzURtAdOXLEHuu3bNkyl/1+fn4qoJpMJvWGG25Qf/jhBzU/P1/dsmWL2rZtWxVwidFcvny5PcnCOcP6u+++s9+7gQMHul3Tk08+qQLqyy+/7PV1CML5wlQTa54gnCuOHDnCjh07aNSoEbfddpt9e9OmTbn55pv56KOP+OCDD3jooYfs+7766isAhg4disHgGj1w77332se4Y/DgwS7bTpw4wX/+8x/at2/PlVde6bJfURR69erF3r172b17N/Hx8fzwww/k5ORw0003ERkZ6XJMQEAAXbt25d///jf79+8nJibGYf/AgQNdjrn00ksBmzvPOf5I25eZmVmndVe3Bi12SX+e+ubBBx/kn//8J2vWrOGxxx7jnXfeISIiwu16nDl16hQbNmzg559/5syZM1gsFgDKy8s5deoUp0+fpkmTJg7HNGnShJtuusllrvvvv5/x48fz9ddfY7Va3X6e9Gg15zy57vQMHz7c475WrVq53d62bVuXbb6+vixatMjBhWkwGJg/fz4PP/ww//rXv9ixYwffffcdR44c4b///S/jx49n06ZNrF27ttprAptL8q233nLZnpiYSIcOHeyvJ06cyMSJE13GHTlyhKeeeoobb7zRozvWGwoLC7nzzjvJycnhjjvuYNy4cS5jtJjHxo0b8+mnnxIUFARA//792bBhA1dffTX/+te/+O233+yf5WHDhpGcnMyRI0cYPHgwCxcupHXr1uzcuZPRo0djMpkwm80e75X2edJiFwXhYkIEnXBR8M4776CqKnfddZdDjBDYvvQ/+ugj3n77bQdBpwkNLY7IGU9fllXtP3ToEAD79++3x9N5Iicnx+GYzZs3e3WMs6C75JJLXMYFBwdXu6+0tLRO69bTokULl20hISEu56lvEhISaNq0Ke+88w4DBgzgv//9L5MmTcJkqvq/pnfffZcxY8ZQUFDgcczZs2ddBF3r1q3djg0LC6NRo0acOXOG3NxceyyVJ7REDu0eVUVqamq1Y5wZOnQowcHBKIpCcHAwHTp0YMiQITRv3tzt+ObNmzN58mQmT54MwL59+1i4cCFvvvkmH374Ie+++y7Dhg0DbH8kHTt2zO1nsUWLFg6xZwkJCWzatMnrdSclJVFWVsby5ctresl2ysvLufvuu/n++++5/vrrWbNmjdtxwcHB5Obmcvfdd9vFnMaVV15Jt27d+Pbbb9mxY4dd0AUHB7Nx40ZuvfVWNm3a5HBt7dq145FHHmH+/PkehXpoaCiAQ/KUIFwsiKATLgr+8Y9/AJCens7111/vsE/L9tyxYweHDx/2+KVcU/z9/V22aX/1R0VFuVixnNHWoR3Trl07evXqVeUx7oRCVZYTb6wq+jXUZN21OU994+Pjwz333MOyZct44oknAKrNvDx8+LDd+rNo0SJuueUWLrnkEnumY8+ePdm5c6fXSQK1ISwsDKhMVKhvFi5cSJs2bWp9fMeOHVm9ejW5ubmsX7+ef//733ZB17lzZ44dO8aePXuq/bzWlI0bN9KoUSMXi1pJSQkAx44dsyeRvPfeey6JDlarleHDh/Ppp5/SpUsXPv74Y48ZrK1btyY3N9fjfWrTpg3ffvutSwePzp07k5GRwT//+U9++OEHLBYL11xzDffddx/z5s0D4IorrnA7pybkGzVq5PEeCMKFQgSdcMHZvXs3+/btA+D333/n999/dztOVVXeeecd+xd/dHQ04FjGQY+n7VWhWaqaNWvmtWVFO6ZDhw61ssbUB7VZ98XCgw8+yLJly0hLS+Pyyy+ne/fuVY7/5JNPKCsr49FHH+Xhhx922f/HH394PPbIkSNut+fn53PmzBkCAgK8+rKOiIgAbK2zLmb69evH+vXrHayygwYN4pNPPuG9995z6zatK2fOnGH79u1u95WUlNj3aSJPz6RJk3j33Xe5/PLL2bRpU5XvRWxsLHv37iU3N9ftfu290SzaegIDA0lMTHRxC3/99deA58xl7Vw1KRMjCOcLKVsiXHC02nOPPvooqi1Rx+Wh1TjTxgJ268L69evdWmP++c9/1ngtLVq0oEOHDvzyyy/89ttvXh3TrVs3wsLC2L59+wX7gq/NumuLr68vAGazuV7m69mzJ507d6Zp06ZelQ7RvlTduYl37NjhsTQL2OLutm7d6rL9vffeAyAuLg6j0VjtGq644gpMJhMZGRnVjj2XVGeF1P440rvuExMTadq0KV999ZXD71N9rcfdQ+vHetlll9m3OVvWnnrqKZYuXUqrVq3YvHmzXTR7QouBdSceCwoK+OGHH4DK+n3V8eOPP7J9+3auuOIKj5ZL7Q/PLl26eDWnIJxPRNAJFxSLxcK7774LVF0X64YbbuCSSy5h37599uKg/fr1o3379mRkZPDiiy86jE9NTeWLL76o1ZqefvpprFYrQ4cOZe/evS77T5065VBc1M/Pj8cff5yzZ89y5513urUQHTt2zO5WPlfUdN21RYvjqk8xs3fvXnJycpg+fXq1Y7V4qLffftuhmfqxY8fcBs878+ijjzoUWT548CCzZ88GbDFg3hAUFERsbCyZmZkcO3bMq2POBT179iQlJcVtU/mNGzfaY9nuuusu+/bg4GBSUlJQFIURI0awYMECt9ayP//806OV+/XXX6dDhw7MnDmzXq7jlVde4fnnnycqKootW7ZUG/8KcNttt9GxY0e+/vprli5dat9usViYNm0ap0+f5sorr3QJ4di7d6/LHyP79u1j6NChqKrK4sWLPZ7z22+/xdfXlx49etTwCgXh3CMuV+GC8tlnn5Gdnc3ll1/ONddc43GcwWDg3nvv5eWXX+Yf//gHXbt2xWAw8NZbbzFgwABmzJjBu+++S6dOnThw4ADfffcdSUlJLFmyxG5R8pYHHniA//73v8ydO5euXbvSpUsXu2XhwIED/PjjjwQHBzN69Gj7MTNmzODXX3/lH//4Bx07diQ2Npa2bdtSVlZGRkYGv/zyC1dffTV/+9vfan2vzsW6a8PAgQPx9/fnlVde4eeff6Z58+YoisJjjz3mEmR/Lhg8eDBXXHEF33//vT1usaSkhM8//5wuXbrQs2dPu+vMmR49elBWVka7du3o168f5eXlbN26laKiIh588EHuvPNOr9dxyy238N1335Genm6PT3NHVdmerVq1sovJ2rBv3z5GjhzJhAkTuOaaa2jVqhXFxcVkZGTw66+/AjBu3DhuueUWh+Nuu+021q5dS2JiIo8//jizZ8/muuuuIyIigrNnz3L06FF++uknrFYr1113He3bt3c4Picnh4yMjHrJgN67dy+PPPIIYMvuff75592Oe+ihhxzEmdFoZM2aNdx4440kJSWxcuVK2rVrx549e/jjjz9o2rQpa9ascUkSmjJlCr/88gudO3cmPDyco0ePsnPnThRFYcWKFfTt29ft+Q8cOMCff/5JQkKC150pBOG8ch5LpAiCC1pD7GeffbbasVqdqIiICIcG2Xv37lVvvfVWNTQ0VA0KClJ79eqlfvrpp/aipM61srRaaNXVNtu+fbt69913q82bN1d9fHzUpk2bqldffbU6ceJEdfv27W6P+eijj9RbbrlFjYiIUH18fNSIiAi1a9eu6uOPP67u3r3bYaxWh85dEdmUlJQq7wugtm7dus7rru5eeDrPpk2b1F69eqnBwcH22l3e1IpzrkNXHZ7q0J0+fVodP3682qZNG9XPz0+99NJL1enTp6uFhYVu76tWB+3GG29Uz5w5o06YMEFt3ry56uvrq8bExKgLFy5UzWazV2vSOHLkiGo0GtWbb77Z7X6ovg5d586dHY6pqrCwO/7zn/+o8+fPVwcOHKhedtllamBgoOrn56e2atVKveuuu9RPPvmkyuNPnTqlPv/882qvXr3UZs2aqSaTSQ0NDVWvvPJK9aGHHlK3bNliL2qtp6rCwu6oqg7d559/7tW98lT38I8//lD//ve/q1FRUaqPj4/aokUL9aGHHlIPHTrkdvyqVavUG2+8UQ0PD1d9fHzU5s2bqw888IC6Z8+eKq9B6y0tvVyFixVFVc9hKpggXEDGjRvHihUreO+997j33nsv9HKEC8ihQ4do27YtN954Y416zlbHkCFD2LhxI0ePHq1x6zOh4aCqKh07dqSgoIBDhw5VW1ZHEC4EEkMnNGhOnz5tr8Gm5/333+eNN96gUaNG3Hrrred/YcL/BHPmzMFqtbJw4cILvRThHPLhhx+SkZHB7NmzRcwJFy1ioRMaNLt27SIuLo6rr77a3kFh3759ZGRk2GNs7rnnngu8SuFCc64sdAAjR47k/fff5+DBg9VmZgoND1VVueaaazCbzfznP/+5YDUbBaE6RNAJDZoTJ04we/Zstm3bxvHjxyksLKRZs2b07NmTRx99lLi4uAu9ROEi4FwKOkEQhIsBEXSCIAiCIAgNHLEdC4IgCIIgNHBE0AmCIAiCIDRwRNAJgiAIgiA0cETQCYIgCIIgNHBE0AmCIAiCIDRwRNAJgiAIgiA0cETQCYIgCIIgNHBE0AmCIAiCIDRwRNAJgiAIgiA0cETQCYIgCIIgNHBE0AmCIAiCIDRwRNAJgiAIgiA0cETQCYIgCIIgNHBE0AmCIAiCIDRwRNAJgiAIgiA0cETQCYIgCIIgNHBE0AmCIAiCIDRwRNAJgiAIgiA0cETQCYIgCIIgNHBE0AmCIAiCIDRwRNAJgiAIgiA0cETQCYIgCIIgNHBE0AmCIAiCIDRwRNAJgiAIgiA0cETQCYIgCIIgNHBE0AmCIAiCIDRwRNAJgiAIgiA0cETQCYIgCIIgNHBE0AmCIAiCIDRwRNAJgiAIgiA0cETQCYIgCIIgNHBE0AmCIAiCIDRwRNAJgiAIgiA0cETQCYIgCIIgNHBE0AmCIAiCIDRwRNAJgtAgee6551AU5UIvQxAE4aJABJ0gCFWSmpqKoigOj4iICPr27cunn356oZdXLRkZGUydOpWePXvi7++PoigcOnToQi9LEAShXjFd6AUIgtAwmD17Nm3btkVVVbKzs0lNTeXmm2/m448/5tZbb73Qy/PIzp07ee211+jUqRMdO3Zk7969F3pJgiAI9Y4IOkEQvGLQoEFce+219tejRo0iMjKSd99996IWdIMHD+bMmTOEhISwcOFCEXSCIPwlEZerIAi1olGjRgQEBGAyOf5duHDhQnr27EnTpk0JCAiga9eu/Otf/3I5XlEUJk6cyIcffsiVV16Jn58fV1xxBWlpaS5jv/zyS7p164a/vz+XXXYZK1as8HqdTZo0ISQkpOYXKAiC0IAQC50gCF6Rl5dHTk4Oqqpy4sQJFi9eTEFBAQ8++KDDuFdffZXBgwczbNgwysrKeO+997j77rvZuHEjt9xyi8PYL7/8knXr1jFhwgRCQkJ47bXXGDp0KEeOHKFp06YA/PTTTwwcOJDw8HCee+45zGYzzz77LJGRkeft2gVBEC52RNAJguAVAwYMcHjt5+fHm2++yU033eSw/bfffiMgIMD+euLEiVxzzTW8/PLLLoJu3759/PLLL1x22WUA9O3bl86dO/Puu+8yceJEAJ555hlUVeWLL76gVatWAAwdOpSrrrqq3q9REAShoSKCThAEr1iyZAmXX345ANnZ2bz99ts89NBDhISEcOedd9rH6cVcbm4uFouFG264gXfffddlzgEDBtjFHMDVV19NaGgof/zxBwAWi4VNmzZxxx132MUcQMeOHYmPj+eTTz6p9+sUBEFoiIigEwTBK7p37+6QFHH//fcTGxvLxIkTufXWW/H19QVg48aNJCcns3fvXkpLS+3j3dWM04s0jcaNG5ObmwvAyZMnKS4upn379i7jYmJiRNAJgiBUIEkRgiDUCoPBQN++fcnMzGT//v0AfPHFFwwePBh/f3+WLl3KJ598wubNm3nggQdQVdVlDqPR6HZud2MFQRAEz4iFThCEWmM2mwEoKCgAYO3atfj7+7Np0yb8/Pzs41JSUmo1f3h4OAEBAXbBqCcjI6NWcwqCIPwVEQudIAi1ory8nM8++wxfX186duwI2CxuiqJgsVjs4w4dOsSHH35Yq3MYjUbi4+P58MMPOXLkiH37vn372LRpU53WLwiC8FdCLHSCIHjFp59+yq+//grAiRMnWLNmDfv372fGjBmEhoYCcMstt/Dyyy+TkJDAAw88wIkTJ1iyZAnt2rXjxx9/rNV5Z82aRVpaGjfccAMTJkzAbDazePFirrjiCq/mzMvLY/HixQB89dVXALz++us0atSIRo0a2bNpBUEQGjIi6ARB8IpnnnnG/tzf358OHTqwbNkyxo4da9/er18/Vq9ezQsvvMCUKVNo27Yt8+fP59ChQ7UWdFdffTWbNm1i2rRpPPPMM7Ro0YJZs2aRmZnp1Zy5ubk8/fTTDtteeuklAFq3bi2CThCEvwSKKtHHgiAIgiAIDRqJoRMEQRAEQWjgiKATBEEQBEFo4IigEwRBEARBaOCIoBMEQRAEQWjgiKATBEEQBEFo4IigEwRBEARBaOBIHbpaYrVaOX78OCEhIW6bjguCIAjCxYKqqpw9e5bmzZtjMIgt56+ICLpacvz4cVq2bHmhlyEIgiAIXnP06FFatGhxoZchnANE0NWSkJAQAN5beA25bRYSEmChZdMSrCqcOutDQamJkjKFMosBqwogVrwLjZ/RyuXRRYQGmLECoNXU1t4b1Wlr5XtWOUK1v1ZQUFExVOx1Z6lVVbACZ4uNHMv1I6/IhEU+D4IgnGdKigqZMeIW+3eX8NdDBF0t0b68rZ3mER3sx/yZG+373kzti8WqUmo2kF9s4EiOPyXlBuRL/MKhoBLVqIyIZipGg7VCZFe8I05vi615iibS9HNU7leUSsGnOA2sHAcl5QYyz/iSne9LqargGyCfAUEQLhwSIvTXRQRdHSkqMxLpbwYgJbUvACMSPycltR9GXwt+PlbKzDZRZ5UmaxcIleAAC5c0KcVksNqscxX/p6kqNpOcUrnBLucUUFHQ/tVT1X+JasU/+cVG/jjpT36RSWfXEwRBEIT654JGRs6bN49u3boREhJCREQEd9xxBxkZGQ5jDhw4wJAhQwgPDyc0NJR77rmH7OzsKudt06YNiqK4PJKSkgA4ffo0kyZNIiYmhoCAAFq1asXkyZPJy8ur8TUYDWC2KKSk9mVE4ueMSPwcgI07l9nccopKk5By/H2tVDrzhPOHio9R5ZLGpQT6WvSbXd8OVbW7VO1jdGLO7opVbA5X0Ek01fG4glIDf5zwJ6/IVDGDiDlBEATh3HFBBd327dtJSkpi165dbN68mfLycgYOHEhhYSEAhYWFDBw4EEVR2LZtG1999RVlZWXcdtttWK1Wj/N+9913ZGZm2h+bN28G4O677wZsCQ3Hjx9n4cKF/Pzzz6SmppKWlsaoUaNqfA1Nj86k3GK7jalv9QNg6NgM1q6IYUTiNlTAz2Ql2M9SxSzCuaRRkJmmweVOkkp1fK5qNjSlwpVqk3aqioMgq0qSKxUDissM/HEigLxiEyLkBEEQhPOBoqrqRWM2OnnyJBEREWzfvp3evXvz2WefMWjQIHJzcwkNDQUgLy+Pxo0b89lnnzFgwACv5p0yZQobN25k//79HuMHPvjgAx588EEKCwsxmar3ROfn5xMWFka366YxY/5ddGxeiNEAicO3uYxdmdKfzFw/Dp30r9AN8iV//lAJ9LPSIbqQEH8LKrYkBX2cHKh2l6sWF6eqVtt+RW+Js5n1FCrTJew/FQVVheJyA/uzAsgtFDEnCMLFQ3FRAVPu7UNeXp79+/R8oKoqZrMZi0WMGrXBx8cHo9Ho1diLKoZOc3k2adIEgNLSUhRFwc/Pzz7G398fg8HAl19+6ZWgKysr4+2332batGlVBoNqH3JPYq60tJTS0lL76/z8fPvzolIjo0a4CjmNMSO2AvDI87eRW+CD1UFMCOcWheJSA5ln/AiIKMZo0MfDVcTLuflcKIpSGQynk29abJ1mjbPPVJEAcfCEP2dEzAmCIFBWVkZmZiZFRUUXeikNFkVRaNGiBcHBwdWOvWgEndVqZcqUKfTq1Ysrr7wSgB49ehAUFMT06dOZO3cuqqoyY8YMLBYLmZmZXs374YcfcubMGRITEz2OycnJYc6cOYwZM8bjmHnz5jFr1iy3+5bO/pDkVwbx1NRPq1zLS09+zNMLbiHrjC/lFpAv/fODCuSc9aFJcDlNgsuptMipKKqWtap3tFagKE4u1srUBi2PQkFBVVXKzAqHTvqRU+DjJoVCEAThfwur1crBgwcxGo00b94cX19fybCtIaqqcvLkSf7880/at29fraXuohF0SUlJ/Pzzz3z55Zf2beHh4XzwwQeMHz+e1157DYPBwP33388111zjdaXr1atXM2jQIJo3b+52f35+PrfccgudOnXiueee8zjPzJkzmTZtmsNx+sLCpwt9SB6VzlOr+zgcp8XTgc31OmbEv5n3WgJZZ/wotyiYKx6VGbDyga9/FMotcOy0H0F+Fvx8LPbtKqr9PxnVLtVs+1xnqdhf6aFFVaHMYuBQjh8nzvqiqvL+CYIglJWVYbVaadmyJYGBgRd6OQ2W8PBwDh06RHl5ecMQdBMnTmTjxo3s2LHDpYL1wIEDOXDgADk5OZhMJho1akRUVBSXXnpptfMePnyYLVu2sG7dOrf7z549S0JCAiEhIaxfvx4fHx+Pc/n5+Tm4fp0pMyuEXPs8rN7M0LG2TN21K2LsYg4qXa8zJ6exdPUArFYwWwwUlRooLDWRW2CiqEwTqiIM6heF/GIT2Xm+XNK0xE3JYJt1zo2dTjfKXuMEVbVtKyoz8OdpP7LzRMwJgiA4I23G6kZNrJoXVNCpqsqkSZNYv3496enptG3b1uPYZs2aAbBt2zZOnDjB4MGDq50/JSWFiIgIbrnlFpd9+fn5xMfH4+fnx4YNG/D396/VNdw+cj/+AT4oUFE82IZeyLljwqgtrErtj5+PhUA/C00pp1mokaxcX04V+GAWl2y9Y1XhRL4vYUHlFQkSFTY5VZ/Bqkk5VSfw9KXqKl/nFZk4lKOvMycIgiAIF4YLKp2TkpJ4++23WbNmDSEhIWRlZZGVlUVxcbF9TEpKCrt27eLAgQO8/fbb3H333UydOpWYmErB1L9/f15//XWHua1WKykpKQwfPtwl0SE/P99eHmX16tXk5+fbz13TTJyP3mzP2hUxmC2KPXbKnZgbOjbDbrnTGJ1os9gpChgUCPKz0CaimMsiiwkLtGBQ3BVLE2qPQnGZgRN5frpcVcWhG4T+jivon1SUNlFVzBaFrDN+/JYVKHXmBEEQ/iIcOnQIRVHYu3cvAOnp6SiKwpkzZy7ourzlggq6ZcuWkZeXR58+fYiOjrY/3n//ffuYjIwM7rjjDjp27Mjs2bN58sknWbhwocM8mktWz5YtWzhy5AgjR450Oe8PP/zAN998w08//US7du0czn306NFaXYvRoFJuVngzpQ8pqX1c9ifETWDtihi7qNN+jk7c6iDsjAZoGlJO++hC2kUXERFajq9RK0os4q4+yCsy2aypTm29KotQOxYP1mOLl/Pn4El/isuknZsgCEJtSExMdNsAICEh4UIvzU7Pnj3JzMwkLCzsQi/FKy6qOnQNCX0dOpPJFls3dc5tHPlzoYuFTm+ZS4ibQNrOpQ7iThu/KrW/w3GqanMTFhQbOX7an9xCk2RQ1gMGReWyyGIiwkpxDU/Q1aZTVZ21TqGozMDhkwGcLvCRVl6CIDQozncdupKSEg4ePEjbtm3dhjQlJiaSnZ1NSkqKw3Y/Pz8aN258ztfnjkOHDtG2bVv27NlDly5dLsganKnuPuqRaMV6InlUOmVmA2tXxLBg8U0kj0oHbJmtYBNyAGk7lzocpxd2mqVOQ1FUDAo0CjTTJryYIH9pH1YfWFU4XWiizGyg3AzlZkWXcQzlFhWzBcxWA2VmA6XlRnKLTBzIDuSUvSyJiDlBEIS64OfnR1RUlMNDE3OKovDGG28wZMgQAgMDad++PRs2bHA4/r///S+33noroaGhhISEcMMNN3DgwAHAFnY1e/ZsWrRogZ+fH126dCEtLc3h+G+//ZbY2Fj8/f259tpr2bNnj8N+Z5dramoqjRo1YtOmTXTs2JHg4GASEhIcyqiZzWYmT55Mo0aNaNq0KdOnT2f48OHccccd9jH/+te/uOqqqwgICKBp06YMGDDA3iGrLoigqyeyWrxM9J9TWbX6Rh6btJnSDvOZ9fIgNu2yWeOchZyz61VD74JFhcISA7lFPvj7WokMLcUgOqIeUMgr9CHjeBAZx4MrfmqPQH47HsRvx4P5rWL/L8eC2J8ZRF6RFAwWBEE4X8yaNYt77rmHH3/8kZtvvplhw4Zx+vRpAI4dO0bv3r3x8/Nj27Zt7N69m5EjR2I2mwF49dVXeemll1i4cCE//vgj8fHxDB48mP379wNQUFDArbfeSqdOndi9ezfPPfccjz76aLVrKioqYuHChfzjH/9gx44dHDlyxOG4+fPn884775CSksJXX31Ffn4+H374oX1/ZmYm999/PyNHjmTfvn2kp6dz5513Uh/O0ouibElD5um/f0FhzGu89uwGoA+s3k7yqHQaN+pH0uhtQAxPvHgLwf4J7P7vq4CjVc4ToxO38vqqARzJCcBoUAnxKyck0IyvyUpJuXdtQATPmK22Miae8VyPThAEQag7GzdudOmA8MQTT/DEE08ANrfs/fffD8DcuXN57bXX+Pbbb0lISGDJkiWEhYXx3nvv2UuOXX755fZ5Fi5cyPTp07nvvvsAm9D6/PPPWbRoEUuWLGHNmjVYrVZWr16Nv78/V1xxBX/++Sfjx4+vcs3l5eUsX76cyy67DLCVXZs9e7Z9/+LFi5k5cyZDhgwB4PXXX+eTTz6x78/MzMRsNnPnnXfSunVrAK666qqa3zw3iKCrIzkt5rLq2UozcPKodPaYouH7ZQwdaxNvGQdetu/v1H4a171upmyPYxFi53g6gM+/X0Lz6Me5pEkJRqOKv2IlyN9SUR5FhMa5Re6vIAjCuaRv374sW7bMYZvW+hPg6quvtj8PCgoiNDSUEydOALB3715uuOEGt/Vj8/PzOX78OL169XLY3qtXL/7zn/8AsG/fPq6++mqHuLS4uLhq1xwYGGgXcwDR0dH2NeXl5ZGdnU337t3t+41GI127dsVqtQLQuXNn+vfvz1VXXUV8fDwDBw7krrvuqpe4QXG51pFlcx3bfe0xRTu8Hjo2g/geE+yvf9n/Mo9P3ETh5QuZ/cogt0JO23ZF+6ksfu4jQgIsgILJqBIaYHYTyC8IgiAIDYugoCDatWvn8NALOmexpiiKXRgFBASc17VquFtTTdylRqORzZs38+mnn9KpUycWL15MTEwMBw8erPPaRNCdQ7REiE27KuPnNOE2b/pGnqno/frki7cw7zVbqvaKN/uzdkUMT754C7MftZlpx47cyugR2wAIC7DgY5TECEEQBOF/l6uvvpovvviC8vJyl32hoaE0b96cr776ymH7V199RadOnQDo2LEjP/74IyUlJfb9u3btqtOawsLCiIyM5LvvvrNvs1gs/PDDDw7jFEWhV69ezJo1iz179uDr68v69evrdG4QQVdnXl/SkzdW3wDAqtXXO+zTJ0I4twHTb//1wMvMnJzG5W0f4dCJAKYlD+bXCjetPtbuocRt+PtaCA0wI9mugiAIQkOmtLTUXtRfezjXlPXExIkTyc/P57777uP7779n//79/OMf/yAjw/ad+dhjjzF//nzef/99MjIymDFjBnv37uXhhx8G4IEHHkBRFEaPHs0vv/zCJ5984lLjtjZMmjSJefPm8dFHH5GRkcHDDz9Mbm6uvYXXN998w9y5c/n+++85cuQI69at4+TJk3Ts2LHO55YYujoyMelrTCY/kkelM3oUDB3rftzQsRkeO0hoSRK/Hcyg25UPk1dkosNl0xg69mWXY8aN2sprK27CbFU4UyhZl4IgCELDJC0tjehoxzClmJgYfv3112qPbdq0Kdu2beOxxx7jxhtvxGg00qVLF3vc3OTJk8nLy+ORRx7hxIkTdOrUiQ0bNtC+fXsAgoOD+fjjjxk3bhyxsbF06tSJ+fPnM3To0Dpd0/Tp08nKyuLvf/87RqORMWPGEB8fj9FoS2YMDQ1lx44dLFq0iPz8fFq3bs1LL73EoEGD6nRekMLCtUZfWPiFsTvtCQ4ORYR7jCdtl2PAp7uiw1UVIu7Ybhq+Riv/yVjkMMdrK27i0MkAcguk2LAgCIJQNRdbYeH/FaxWKx07duSee+5hzpw5NT6+JvdRLHT1gDsxZ6NSK2sdIvQ4j6/sFNHfPnbf75UZsldePhV/HyuMfZXJY2HxygH4mmwtqErLDRXZryBWO0EQBEE4/xw+fJjPPvuMG2+8kdLSUl5//XUOHjzIAw88cM7PLYKujrz2ehzTpvzgtq5c2q7llc8rBJpzVqv2c+jYDNJ2us6REDcBVbUlVvz82yv2Y55acAvpu21ir3/3JApLjGTn+XL6rA9WVUVEnSAIgiCcXwwGA6mpqTz66KOoqsqVV17Jli1b6iVGrtpzn/Mz/MWZPHEnALHmTLcxclqmq4Z+nPN4d4kTaTuXupQpGTo2g/wiE+ER0+nSYQoTRm0hLNDMpRHFXNKkFJNRRZImBEEQBOH80rJlS7766ivy8vLIz8/n66+/pnfv3ufl3CLo6oGVb1zPHlO0Qzzc2hUxxJozXdys4M416yju3Im6hLgJDtuPHX+RHdunsPfXRQwdm8GmXUsxGVUuaVpCq2Yl+JhE1AmCIAjC/woi6OqBTd+tZmC3UaxdEcPKNypLlzgXGQaIvN4WFDl0bIb9oeGpvyvYRJ3z9o4dHecfM2IrBgUiw8q4pIn0fRUEQRCE/xVE0NWR20faGv1+9t1qm6Xsu9XEdxvluVerUumGdba6gS0xIiFugourtir0Y8eM2IrBAE1Dygn0syBWOkEQBEH46yNJEeeATd+t9rhP74JN27mUVal64dbfZZxWo84dlWJwqX3c2hUxjE7cSvKodJpd8SJFpUZJkhAEQRCEvzgi6C4waTuXOmS6erLMOQs7/Wu9mNOwlVL5hBkv3Ep2nm9FrzkRdYIgCILwV0RcrhcR7sScPq5OL9g8xd45W/OC9z9K0+Byl0xZQRAEQRD+OoiF7iKgUoT1d9mnt8RpP7UixQlxExiduLXKbhN7iCb2j0cwtV/IiTxfrKooO0EQBOHCkZV1hry8wvN2vrCwIKKiGp23810oRNDVE/HdRgGO8XMJPcaBYnBbusQdmkgDvbXO9dhKN+1Se+9YZ3esXuw9tboPyaMexdRhAcdP+4moEwRBEC4IWVlnuO+BlykrM5+3c/r6mnhvzbQaibodO3awYMECdu/eTWZmJuvXr+eOO+4AoLy8nKeeeopPPvmEP/74g7CwMAYMGMALL7xA8+bNq5x3yZIlLFiwgKysLDp37szixYvp3r17Ha6uEnG51gMDu41i03erXZIh0nYt91rMORynO8abbFctW9ZdYWNt2x5TNP6/PoafjxXJfBUEQRAuBHl5hedVzAGUlZlrbBEsLCykc+fOLFmyxGVfUVERP/zwA08//TQ//PAD69atIyMjg8GDB1c55/vvv8+0adN49tln+eGHH+jcuTPx8fGcOHGiRmvzhAi6OtLvmr97PdabciSjE7c6/HRGn0ChvdZq1HkslVJx7j2maE5kz/d6vYIgCILwv8igQYNITk5myJAhLvvCwsLYvHkz99xzDzExMfTo0YPXX3+d3bt3c+TIEY9zvvzyy4wePZoRI0bQqVMnli9fTmBgIG+++Wa9rFkEXR3Z9sP/8VkVZUqgUsh5Y63Ti7K0nUvtblhNCLqLl3NnnXMWhPrXYYFmFEU6SQiCIAhCfZCXl4eiKDRq1Mjt/rKyMnbv3s2AAQPs2wwGAwMGDGDnzp31sgYRdOcBvTAD79yozseDrQ8seM5w1ViV6ppcAZXC789jC8g/PQ9/HytGgwg7QRAEQagtJSUlTJ8+nfvvv5/Q0FC3Y3JycrBYLERGRjpsj4yMJCsrq17WIYKuHhhYkRChJUZoJPQYX2PxpuHOfbrHFG0XZZpFLiFugoPVztkSWFVR4h3bp7B67jpCAyz4GK1itRMEQRCEGlBeXs4999yDqqosW7bsgq5FslzrSP9r/m53ubomRTi+uZrQ0os8b12x2hhngeZuuy1JwtHl6pwF+2ZqPxT6MmLH57z27EcMHZtB55ip5Jz14WyxsULWSTasIAiCILhDE3OHDx9m27ZtHq1zAM2aNcNoNJKdne2wPTs7m6ioqHpZj1jo6kotKvY6t//yFnfWPs0yp/3U3LtakoRzRwmNf+9cxojEz4HKuLz/ZLxCTHQhUY3KMBnFWicIgiAI7tDE3P79+9myZQtNmzatcryvry9du3Zl69ZKY4vVamXr1q3ExcXVy5rEQldHtu5+C/8An1odOywK3qmB6zxt51KGVQh57Th3SRKA28QJTditTu3HJzsz3Aq9bbuXMOi68YQF+nIkx5+iMgNiqRMEQRD+lygoKOD333+3vz548CB79+6lSZMmREdHc9ddd/HDDz+wceNGLBaLPQ6uSZMm+Pr6AtC/f3+GDBnCxIkTAZg2bRrDhw/n2muvpXv37ixatIjCwkJGjBhRL2sWQVdH+ndN5Ktf3qnVsTURc1Ud4y5Oznmb/rUVGBQ3nocStzmMqRR2y7gxdmKFlU4QBEEQ/rf4/vvv6du3r/31tGnTABg+fDjPPfccGzZsAKBLly4Ox33++ef06dMHgAMHDpCTk2Pfd++993Ly5EmeeeYZsrKy6NKlC2lpaS6JErVFBF0d2bo7Ff8AH7u1zZ3VzZMlLiFuAtlfPM0eU3S9rUfLhNUSKNyJvbSdttg+rcsEVFrwbo0bz4hEYOzrdLxsGgUlRqyqiljpBEEQhLoSFhaEr6/pvHeKCAsLqtExffr0QVU9GzWq2qdx6NAhl20TJ060W+zqGxF09YQm2LSfehF3qu0EyHLfwosKMRdrzqwXYaefQx9D5/xTw9k1OyJxm32/f8ZjhLV5mdxC+ZgIgiAIdScqqhHvrZkmvVzPAfJNXUf6d00kODiATd++4bC9KneqltzgnBDhnPHqbYxdVWJQX6fOXaxdVa7ZPaZo+HMBERHTKSk3uEmREKudIAiCUDOiohr9Twis840IujqydXcqt9/oTTuvSsuYu8zWyBvmuGx7J8u9WEuIm4De2qsowM6lbsfqW4Vp59+3L5OOHaMdxjhb8bRjAE6csLULa93yMUwGFbNVIbfQVGFyFlEnCIIgCBcaKVtSD2z6dpXHfXqrmL74rx7nunRgE3LDonBreUvbudShWorWhWKPKZqEuAnEmjPt50oelc7KlP722DqAX3b0cZhPL+LcZcdqHD66gEsji2kbXkywv8XjNQuCIAiCcH4RQVdH+l87wl5KBFzrwjm7NN25PcG91e5UW1fLX6w500EAnvjyadauiLEfn7ZzKXtM0fbzRt4wh027lrrE1unXEmvO9Oh6dXbVjhu1hfQfXqd541L8faxIrTpBEARBuPBcUEE3b948unXrRkhICBEREdxxxx1kZDgKiwMHDjBkyBDCw8MJDQ3lnnvucam07EybNm1QFMXlkZSUZB9TUlJCUlISTZs2JTg4mKFDh1Y7rzu2fp/iEOemF0Ke2n7ZXLA2PPV33WOKrtY1qygQcf0c1j3rvr2XZpVL6DGBhB4THKx0GmtXxNjFnvPatTW56x37/X9fJTy0HIN4XAVBEAThgnNBBd327dtJSkpi165dbN68mfLycgYOHEhhoS37pbCwkIEDB6IoCtu2beOrr76irKyM2267DavV6nHe7777jszMTPtj8+bNANx99932MVOnTuXjjz/mgw8+YPv27Rw/fpw777yzztekF2aacBs6NoPkUen2OLahYzNcxJXW4cFdezCodME6H7Np11IHS57eQqgJtbRdS0nTWem0XrD6bhLaOfVxfp66WKxdEUN8jwnMeezfhASYa9ADVrpPCIIgCMK5QFG9KaZynjh58iQRERFs376d3r1789lnnzFo0CByc3PtPdLy8vJo3Lgxn332GQMGDPBq3ilTprBx40b279+Poijk5eURHh7OmjVruOuuuwD49ddf6dixIzt37qRHjx7Vzpmfn09YWBjJK26rslNEVb1a9aLN3Rh9NqyzwNOP15/DU+05T7gbr23Tz5vQYzwAo0dsY1Vqf4c1tG31KDlntXvg2WTn72MhNNBCfpGRUnvWrJj4/tro/3uR91oQLhTFRQVMubcPeXl5VfYcrS9KSko4ePAgbdu2xd/f/5yf769KTe7jRRVDl5eXB9haZwCUlpaiKAp+fn72Mf7+/hgMBr788kuv5iwrK+Ptt99m5MiRKBWZBLt376a8vNxBEHbo0IFWrVqxc+dOt/OUlpaSn5/v8PCGmvRqdXesPjbOm3NoFjdP7cCc9+ndq85xf5qQTIirFHN68acdc/DIQtqdnEyjQDM+RiuKB0ucj1GlZdMSYi4pokXTUoL8rBgNYrX766KiKODvo4prXhAE4Rxz0ZQtsVqtTJkyhV69enHllVcC0KNHD4KCgpg+fTpz585FVVVmzJiBxWIhM9M1HswdH374IWfOnCExMdG+LSsrC19fXxo1auQwNjIy0t6PzZl58+Yxa9asWl2bJ9xZ3pzRW+m08c7ibu2KGJJHpdu7QzjvcxcDpxdv2nz6zhEJcRMYnbiVhDhbZwltHTZBuNUhRnDtihjWEgNssM/ftvWjFJYYbfXr1Mpvc6NBxc/HSqCfhYiwUkrKjZw668Opsz6UWxT+GlYcR4FqNICp4rotVoXCUvd/RxkUsNoPbYj3wfG6A/2sNG9cSqCfhZx8H3ILfFAU2yjb5wJs1+lJ0DfEeyAIQnVkZZ2RwsLngItG0CUlJfHzzz87WN7Cw8P54IMPGD9+PK+99hoGg4H777+fa665BoPBO+Pi6tWrGTRoEM2bN6/T+mbOnGnv5QY2l2vLli3rNOewKDhF9VY8/X7nscOigLEZPLWij0NMnD7BAaiwtEHaTsftGpqAA1iV2t/+XKuht3ZFZSKH3oI3dKxrRq/t/AuJ6zyZg9kBFJYa0aw1UFE3TwU/HxU/HzMhAWb8fKycyPPFbFGwWJUGLGxs1qjQQDNmi4LJoNIkxEyjoHKMBpWiUiPZZ3zJL7b96hkUlQBfKz4mlRB/MwUlRk7m++qu33FuBTAZVSyqQoCPBV+TitmiUFRmxMdoxaoq+PlYKTcrlJoNdq1UOV193M8KZ7lis7qWWxQMCpiMVvxMtn2+JitRjcoIDbQlzgT7WWjZpAxFUbFYDZwqMJFbaKKgxEiQn9WhDI6qQplZ4UyRCbNFEde8IPyFyMo6w30PvHzeW3+9t2ZajUTdjh07WLBgAbt37yYzM5P169dzxx132Pc/99xzvPfeexw9ehRfX1+6du3K888/z3XXXVflvEuWLGHBggVkZWXRuXNnFi9eTPfu3Wt5ZY5cFIJu4sSJbNy4kR07dtCiRQuHfQMHDrQ3uDWZTDRq1IioqCguvfTSauc9fPgwW7ZsYd26dQ7bo6KiKCsr48yZMw5WuuzsbKKinDIPKvDz83Nw/Xqiqpg5Z061tY2NNWcSecOcKo/zFBvn3EmiqrIommvV+ZxrV8SQEGcbZ7PYZbj0eXWmuuuMNWdyIs+X4jIDoOJjVHnt2Y8cxmixeAYgqlEZYYFmSsoMmK0Gyiu+0EvKbLF25gZhvbNdZ7PQcpo3KcViUTAaVXxNKgbFJkt8jBaC/YvJLzahYBNFgb4WjEabEAwutZJb6IO7/+sMCoSHltEkuJxyi4Egfwt+JgvlZgP5xSZ8TVZUFIL9zZSUGyksMaDds6JSA2eKTDqrmO2eWtWa3lObqAzytxIWWE7jIDO5hT74mqyEBZoxGawoiorRAEaDteJMCiajio/RUvFaJcjPQkRoGeUWA75GK74mtfLtVcFsVcgvNtmFX3GZsYbrFAThYiQvr/C8ijmAsjIzeXmFNRJ0hYWFdO7cmZEjR7pNmLz88st5/fXXufTSSykuLuaVV15h4MCB/P7774SHh7ud8/3332fatGksX76c6667jkWLFhEfH09GRgYRERG1vTw7FzQpQlVVJk2axPr160lPT6d9+/bVHrNt2zYGDBjAvn37iIlxL140nnvuOVasWMHRo0cxmSq1q5YU8e677zJ06FAAMjIy6NChQ62TIrQ2XZrQSYibQNODNsGjF10JcRPI/uJpe8ZpdcKoJgKxqjnAfSKF5q7ViLh+DuUVVjJFAV+jFYuqcPrrpwD3hY4Bh6xd5ar5ZJ7xpajUiMEAPkYrTYLLef7xf3tco2ZZXJliE3kqUFpuwGJVKDMr5OT7UlDhwj03Vqfao6ASHGChcZCZ0EAzQX4WjAYcij97h0qZ2UBOvg8Wa8X1VQguq6rgY7QSHlaOr9GK5rtU3borKzp4qKp9EWaL7T5qo1VVIa/IxJlCHwpKjFistitxnEO7Pts0Qf42i2Cwv5lGQWYC/WyCTWsYolSIPWcXqqFCixvsc3l3Y1TV5oI+nOPP4RwJqhaEunCxJEVkZBxjxKgl5/z8zqSsTiIm5pJaHasoiouFzhlNE2zZsoX+/fu7HXPdddfRrVs3Xn/9dcAWatayZUsmTZrEjBkz3B5Tk6SIC2qhS0pKYs2aNXz00UeEhITY49fCwsIICAgAICUlhY4dOxIeHs7OnTt5+OGHmTp1qoOY69+/P0OGDGHixIn2bVarlZSUFIYPH+4g5rT5R40axbRp02jSpAmhoaFMmjSJuLg4r8ScMwlxE7jTXluuMi5OKycyjKUOoi7yhjkkAE0PLuVUNXNr1jR3QirWnMlTq/t4LF5cVaux0YlbGTqWSjF31XwsVsjMhbwiH4rLDBgNKo2DyykuNWJp8zJNQ8qJ/Wk6YBN2ehFX3ulF8otMlJoNlJ4wYLHa3HGnc14AYNnsqsW3tuYxIypdu5oFT1UhNMBMQUmlxU5VFfKLjBSXGe3ywWxRzmMcXqXbsVGQmdbhJQT4Wh0ETU3/VFIUm6syunEp+q5qiu5fu4SrcnK9b9uGyahiMtqO0e6x3j3fuuVjFJQYKTcrGAwQ5GfhtWc/YvKs2+2W1ddWDsTXZNUlOKjOp6mQkgpgpTI+TqnVO6K55i3Wi90yKwjC/zJlZWWsXLmSsLAwOnfu7HHM7t27mTlzpn2bwWBgwIABHpMxa8oFFXTLli0DoE+fPg7bU1JS7EkMGRkZzJw5k9OnT9OmTRuefPJJpk6d6jBec8nq2bJlC0eOHGHkyJFuz/3KK69gMBgYOnQopaWlxMfHs3Rp7SxhWiyZRvYXTzsUAD7VdgJkVWar6gWfN9Y3TTw5i7o9pugK0dPfPk+sORPGem7hpYm85FHpNO2WTH6xiZP5PpzO9sGq6kPUbc8KSyoF09kSIy06vYiqwqVlRk5ZFFQVissNlJ10LEOiKJVizjmrVtvm3IXCeb9mQdS2x/eYQFhg5djwMAWtHKGq2oTo0VN+WCosjOo5E3Y212qQn4WwIDNNgssJ8PVcF9HrWVXHJ3Yhp6pea9QTXz5tf+7JmgqO3UxsPze4HXns+ItofYi37678wyG+h+dkHr2Es3+eVGpssVRVKCgxknP2oogMEQRBcGDjxo3cd999FBUVER0dzebNm2nWrJnbsTk5OVgsFiIjIx22R0ZG8uuvv9bLei6qOnQNCc282u26adybdMjtGG/qzHnrTo3vMYFNu6p3zWrn1Bc1dhZNyaPSaRKXTF6RiUMnAig1e2vVsiU26OOwPOHnY+Hy6CK+/s9iwFHAeRJy+jhBT7GA2ljtmvVYrFBcZsRsUcg640thie252VpfVjtbPFzTkHKahZQT4GfFZHAUcoqioP+VUip32GZw8+vmfAxqpSNVqTi2qvdeI9acScT1cxy2eTrO+V5XJa6rw52405eu0dysiuZ29ULZqSqUWRSO5vhxLNevFrF+giDoEZdr/btcCwsLyczMJCcnh1WrVrFt2za++eYbt/Fwx48f55JLLuHrr78mLi7Ovv3xxx9n+/btfPPNN27P3WBcrn8Fbh+5H6gsLOycvKAXWVqcnTYOvLcIevpi1sfH6UuKaFYVPZp7NaxHMkdy/GtRKkTx2o1YZjaQmetntyw6izlnAQeO4tOT+NNv165Zn5W7KrUfBiDA10JpuZHCUts6bMkZdREFKqEBFlo0LSU00IxB0TSa65yaQLNZp9QKAVNht3IjZtJ2Ov7nFt9jPAqwadeyGq1wjymaeDx/VjQ8lbJxfu4t+vO5tdwpjk5jbykrN+BjUmkUaCa30HQOLa6CIAg1JygoiHbt2tGuXTt69OhB+/btWb16tYNbVaNZs2YYjUaXFqNVJWPWFBF0dWRAt4f48ue3gMovSk3EOBcFds5I9RQbVxtswq6yW4R+PZqQa9ozmdwCE/uP+3G2xOhQH66+UVWFnLM+FLVYBFnzndx77i1wmrtYj7P4cGdFGp1Y+Xp04jaH/W+k9CM0wMLhk/7kFpqouaywWSWbBJfTslkpgb5Wr12HaV5Y1dyhCbnqrLLuj61+vPP9dC5xUxf050/oMa5yRy0+asH+FoL9bckmpccDK+r3iagTBOHixGq1Ulpa6nafVtpk69atdkuf1Wpl69atDvH/deGi6hTRENny3Rv259oXoj5+zhNaIeDa4skl6UkABXSdy/7MQH7PCiS/+NyKuUoUysoVOneY6nZvfQgIT25C7edDI7YxZdxnHPlzAY2DzJiMVrztO6ug4uejcknjUi6NKCbQ12IXc6MTt5C2cwmjE7c4PNfwJKyce/hWtwbn/r31TX28B55I27WctF3LqUjHrRGKUvkI8rPQsmkJ/j51j1MUBEHwhoKCAvbu3cvevXsBOHjwIHv37uXIkSMUFhbyxBNPsGvXLg4fPszu3bsZOXIkx44dc+gZ379/f3tGK8C0adNYtWoVb731Fvv27WP8+PEUFhYyYsSIelmzWOjqgWFRtgSHpgdt2azeJjrUFH3MnT6DtVLUxLh1W4b3msORHB9OF9TGQlU3zFaF3AITS98YwISHtjjsc4mZG+saz+XOmqRvX+atILEdu4CunR7m+Gk/CkqNeCrTYSuSq7Iyeb3H+TzFnGmFmz3VDazJ+75p1zKbCzOr+ji480lCXJKLm1hPfI9xbNq13P76052252tXxJD6Vr8an89ogGYhZk4VWCgpl3p0giCce77//nv69u1rf601Fhg+fDjLly/n119/5a233iInJ4emTZvSrVs3vvjiC6644gr7Mc4Jm/feey8nT57kmWeeISsriy5dupCWluaSKFFbxEJXD2jlSbSf5wotfs25J2tVX+rJo9IpKTdQ5KHd1Pkgr8jE0VP+LFo+EKgsR1IV+q4X4OpG1sbo9+mPdcfaFTHs/uVVWjQttRWytWNzqwb4Wkl9YR27vprsIOa02nju5tevs6pEjtriTVJDbamJtTDWnGmPj9PEnHa88zwnvnzW7RxDx2bw8dfL2PDVUjZ8VTNXsqpCuVncrYLQ0AkLC8LX9/zaknx9TYSFBdXomD59+qCqqssjNTUVf39/1q1bx7FjxygtLeX48eN89NFHdOvWzWGOQ4cO8dxzzzlsmzhxIocPH6a0tJRvvvmm2s4SNUGyXGuJvrDwHf0eBuqeyapHK7Krr8sG7sWKuySDWHMmjXokc+qsL6cLTOQXm7zKTvWM88ekZvNoxXePH3/RoxjxVN5E/9oTVQmctStiWJ3aj1EV8XVDx2YQc+kjnMjzwWxVCPKzkqWL86sOd9Y5d/vrkjnqDTUVdfqYzZrGb2oZtB6Tc3qMJ62GSRx6Bveq+o+hwlIDPx0Nko4RglBLLpYsV5BerjWhJlmuIuhqiSboflt/GxvO+lR/QA1xJxiSR6Xz1Oo+DtvclfsYOjaDgT0mkH3Gl8MnAyq6AEDtxJwttzDY30Lk0ankXfYSOfk+tco4DPSzsHTWh1UKL+2anLfXRLg4u5wBB0EHFZbLDgsoLjNw6MhCl2Odj6+Omo7VMywKfvkz06XeoKekCG/uh7NgcyfgnLcN7P4Qn337Bt5Qnwk9etwJO6sVsvN9+T3LH7NVnAqCUBsuJkEneE9N7qP871hH/nmi6v3OtdLcoRcC8T0mOAiSoWMzWLG6P68sG4jlivksXnUTyaPSXSxYzmKiuNTIiTxfXUun2rur8nPnEXl0Kk16JGPw0GzKG1QVFi6Nt79OiJvglQjStybzFme3rLbmVan9WZXanz2maPb9/jLRjctcjvNWPOrP4ek6PFki9ePfyaqMrbO3hKtwbzqXAfFWNHojtpzHaGLOm0SM6uaPNWfWKqFDc8cO/7vNMq2qUFRm4M/TvhX1BAVBEAR3iIWuljj3cq0PnN10yaPSCeg6l/wiE6cKfCgpMxDdpIwAXwtgk2hGg0pIgAVFUcn5ytYj9rqrJnMkx5+iUmMdC7LaOiK0znqYZnFzOJbrz/Fcvzq0YrKtdXFFKylwrT3nDZo7Wm+9crYYVVfIWMsy3rcvk9H3z+XLvYvpe+1EPv/+dfvxtcVdjT2wJROMTtzCqtQBjE7cUuX1xpozibwhucrkg6rw1oLmbpy7WoDOx1Tlfq0tg3tNYMNXSx3OeXOPCRzO8efP01JcWBDqgljoGiZSWLgB4alFF8Dpti9x9pgJs6Wyqfqfp/wcbG0mo0qIvwWDQcXQbiHdQ8opLDFSUOKcxVlzfE0qbcOL8b1kLgdP+pKT74ulTvJfqVhXJbURTlqSgt4l6SxKnEXcG6n9eSixMh5RG//Ljj582XExa1fEEGt+koQb5ngV81ib+DitrIm+vMm5wlt3qDsxV5VLfOjYDNsxNRRz1bmJ9WJOI9acycGT/pwq8BExJwiCUA3icq0HqnKrJsRN8Li/KjGTPCqd3AIfyi2Ging120NVFay6R5lZ4VSBrR9rdp4vv2cGcuy0X90uSEdpuYFDJwLIzvPFota9hVZdjt63L7NGmZlDx2bYM2ofStxqd7euSu3P2hUxxPcYz6qU/sT3mOBSBsYba+Gq1AEuZVU8lVvRH1Mbala/rvZza4WxvT2fN4LcmzHD/77V4d7FmjOxXvEiWWd8K7p8CIIgCFUhFro6MqDbQ1VadJz3ufty07JZ9SIgM/oV1BJv5I/jGFsrr/qhzKxwOMdf15Gz7hiNriY+d0kQq1L7V3lfPSULOM/nMIcKo0fYhJ12zysziW118BLiJrBv39OArV3Zvn2ZdOwY7TA/2ERQ9hdPkXBDMgkVbfmyv3jKbeLBWmIqrmlAtdY5TUxG3pDs8PpcJCBoOCdjuDvX2hUxrErpS9oux/fKXT9YTy3nmsfNwqDY2p8d3f60/TzOiSix5kyirk9m3zFTPfbhFQRB+Gsjf/rWEX2nCPAuCUJDsxaNqRAZNrdfJpe1fpTi0ouhPIOisw7WDyaD6lbAOeNOzHXsGM0eU3SVmZ9VWdZGV5SAGa1zvWr3flXqANauiGF04lYeaG9z5+7bl2l/DpXiJXlUOpHXz3HpCBJ5Q7I9qSXWnMnaFTGs2a87f0X8nH4uT2g1j6pqe1afaOJqYPeH7D8Hdh/tkPiRpisW7IxezA28bgwDu49mWJQtwSKi13NE9nrOIZmm5Y22e+ecADQsCoK6zuXYaV/yiy+G3wFBEISGgQi6esadEHEuBOyO0Yk2C92pNi9zIt8H6wVNVVGpca+mGlCdMHFXeLg6F2DyqHS7e1vv5vbk8tZEoa0XrGOtv6dW92HMiK1MGVEp2BJ6TCC+xwSSR6UTcf2cKu/OypT+9vIyUxJn666rMhnC3T3QW7k27VrqIlzrUsNO//mr6v7ry5Z89u0ql/1af1ZPsZ9rV8QwduR2Pvt2Fe9kwZ2zqn6v9XUTB12XxH9CprHveBCHc/wrrM1inRMEQfAGyXKtJd5kuXorXPTtu5JHpfN7+GtcmC8yFZNBpU32w+dsDYG+FrKz59vdqpqYchYrnmqwudtuywh17Z+b/YV7t56eSvGoVFjQbK81ga1Z6TQirredR1Gquje2XylVxavC0Hrc1RQ8F1SXWexNTbqEHhNI8yI5ItacSWSv5zAYFIwVLlewlSjRhHqzuGQO5fhzIs+34o8ZEXKCUJ9cTFmuUljYeyTL9TyjWYD01rmaWKEcvlzN52CBXqHi72OlxfEpHI56FSzn9mwrUzyLOXAfIxdrzqxRqYyoG+YwCPjUy04dmgVNc4vayqPY3tsTXz5NxPVzqhFyUJWY0+asSqQ5txU7V1Q1t7cFhr0Rc2Bz5ya42R5rziSqVzJ5xUb2Z/lyuqB2BasFQWg4ZGWd4b4HXqas7Px92fn6mnhvzbQaibodO3awYMECdu/eTWZmJuvXr+eOO+5wO3bcuHGsWLGCV155hSlTplQ575IlS1iwYAFZWVl07tyZxYsX0717d+8vpgrE5VoPpO1cahdz3vb01Lv59OLuqdV9MCi2+nL+PhbOpetTj0GBFsencCT61XPq6rJYFbfuOm/umXOXDG8ZFDcecCwarM9qHZ24ldGJWxxqxGmMGbGVMSO26hIFqn8/RidutSdcrKqiD+yFpCoXdlVizrnQsSf0YQZrV8QwemQ6n+xczsdfL+Po9qcxW8A/9gUyMgPJyAzklIg5QfifIC+v8LyKOYCyMnONLYKFhYV07tyZJUuqrgW6fv16du3aRfPmzaud8/3332fatGk8++yz/PDDD3Tu3Jn4+HhOnKimQ4GXiKCrR9z1IvWEc5yYPq7Kx6ji52Pl5In5BPmdD1GnEuBrJavlK5SZz2Xckoqi2AL99dYr564X7kiIqywt4hwnV30GqGK/33oLmf6n9tDEnLvkhU27lpL9xdNVXp8ztqza2pUqOZfsMUXXKsmiquxi/XPnBBV9rFxkr2QOnvTnt8wATp41UWY2IC5WQRAuJgYNGkRycjJDhgzxOObYsWNMmjSJd955Bx+f6hsMvPzyy4wePZoRI0bQqVMnli9fTmBgIG+++Wa9rFkEXR356M32VQa4e8PoxK0OgiUkwExJmYGYSx8hK+tFQgMtGA1aokJ9izsVgwLRf06pKN567r5YFSAsyPNfZu7c0OBoTdq3L9NuEfWmALD+3Pv2ZXr1nmjCbujYDBLikrw+h83SZ4u9W6mzzGkisbp+rzU5lydqItJWrL7B7XYt09Vb3MX8aZa5oWMzSB6VTqw5k4HdJxAel8wfJwI4lutHmSQ9CILQQLFarfztb3/jscce44orrqh2fFlZGbt372bAgMo/8A0GAwMGDGDnzp31siYRdPVEdQVl3QkJze2qtx4BHDyykMbB5ZzI8+Gqy6dy7NiLnDk1j7O5todBqS9hp2I0wKUnJgNQWn5uv1xVbIWKAQfBAxVlMXQCTX+/9pii7fu0mnDOuBN3qtPD07HO69D/TNu5xGUt2nbNTas99GgWSL11Tp8J6s7N7G2bL+ds1ZpYhoEKceUo2vRzeBM/53yMdm7n64o1Z9L4uucwXD2PfceC+OnPILLzfFDP8R8PgiAI55L58+djMpmYPHmyV+NzcnKwWCxERkY6bI+MjCQrK6te1iSCro4sXnajw2tPFhLn7ZqY04SIPkFg7YoYDh1ZiJ+PyrHTfnTt9LDDsXmn6yLsVAyKio/JSkiAhdVz19n31L5Hq7colJttMXR6l6s7l507NEudp/gvd+5Qb2XDvn2Z9oc3JMQlObhq9Wi9ZhWqb/PlTSkRZ/SWPmerWE0IP1Ip3NxZD6uaz926nYXlumczaNLjGbLO+PNHdiBnikwUlJikjZcgCA2a3bt38+qrr5KamupFotz5Q7Jc64ziVQcAPZWxYEmMToS1KyrFTUJcEglxoKr92bRrPo2aziDnrK/bJup5p+cBEB39OOUWg63nq2pLqLC5aKloEWYr6OvvayXQz0rGgZd0awHM8GfzRVBeuzvgHbaSKH4+tnWtSh3gYJHypjBwVZ0M7Nt3LnVwXWpytzrrlzfWu6rQx4jZih87CiTNUqf/nOjvQU2TJdyN92aOtStsHTEGYqsRpxXzPdnqIQZ2h5NfpxPeUxPGni11zq5V/bZYcyaY4XDkLLJyAsg561fxx8LF8x+fIAhCbfniiy84ceIErVq1sm+zWCw88sgjLFq0iEOHDrkc06xZM4xGI9nZ2Q7bs7OziYqKqpd1iaCrB2rTbN32Reh6nDbXypR+FSLnBXyM07m+RTR7PFhlMzNfrPH5nbH9kXHuvnBNRpU24SXs2beIoWNhdCJAjC5OzTt3ozPuhG7aziUkxCWh/eH06dfVz61v8aV/7kx1cW76teitXs5xdJVFhqtdmgP64sPafDU9FmxuVe3cJ1tVul/Dez5td7m6iwP1ZBHUi7mga2dzqsCXrGxfCkq1/2JEzAmC8Nfgb3/7m0MsHEB8fDx/+9vfGDFihNtjfH196dq1K1u3brWXP7FarWzdupWJEyfWy7pE0NWRSePTMZn8anSM8xdlfI8JLr1coTKubvSTCr9FPAxZr9bHkt1ictNjtf5QaRxk5qkpnwI2EeBs1UyIS7ILMQ13VjXne6cJKGdhpx07qGf1iQaagNPcrdVb61S8Kce9b18mnXpXFia2FSXuT3wP22vbPfAsypzFm6cxULOCxVqdOW3bZ9++4RBTZ3dpj3U93lPv1lhzJk3jZnM815/MLB8KS42IiBMEoaFSUFDA77//bn998OBB9u7dS5MmTWjVqhVNmzZ1GO/j40NUVBQxMZX/X/fv358hQ4bYBdu0adMYPnw41157Ld27d2fRokUUFhZ6FIE1RQTdBUL/Ja19wTvuW8rKFJvQMxioCCJvuCiKTQGtTLH1rtWLOU18aWKuKveopy4Kzla6yv3ulZcmWprEJdO/m8rW75byQHsI7zWHz75Z6tFK523iAtiEYaw5095dQkMfc1GVqHMWc/qkA72Yqil6MacxdtQXla8r7mX8daPZ9M0q+7n1JI9KJ7LHbGCZXcxl5/mRdcavoo6hIAhCw+X777+nb9++9tfTpk0DYPjw4aSmpno1x4EDB8jJybG/vvfeezl58iTPPPMMWVlZdOnShbS0NJdEidoirb9qidb6q9t107y20GlipqaMf+YOWjUr5fv/Lqrxsd4Qa84ks8WiCqvKuUAlNMDCa89+ZN+i78qQtnOJXWC4s9DV1r0I2HuvAhSVGjhbbKKozEhpuQGrFUABRcXPpBVyhiB/Cz5GK6vefbLWsXWatU/rB1td4KxWJsXTdVRaweZQUGrkbLHtbzHbrLaYycZB5Uwa62zp9Y5Yc6Yuds4m+vSCTr8WbT3accHXJpOV50dOvi9miZUThIuSi6X1V0PpFHGxIK2/LlLc9fWsyp2miR6TUQXl3Opu6zmd3vYFnzwqnTX7bSJHVVWHFluamNOLOw3nUjDu4rr0aK5BzQqXk+/DqQIfikqNlJQZKmx2zqJDRVF8KpJKIMDXwthhz7PinSeBmidNdOwYbe+q4E0WlLtr1LszAzo/T36xD79lmigsNVYUgK5EUeBMUTkvLr6Jxye5FmuuTuTtMUUz7Mgb5LSudL1u+mYVCdeNJe2bFW7F3LAo+LN5MgdPBJJbKLFygiBUT1RUI95bM016uZ4DRNDVkdtH7uff/3el15muziUnqkKbT1XB95zGuIH1HJcsKS4zkH/ZSwzvUkZhiZWp4zcDOIi6tStsSQJVNaevytWo3xZrzqRx3PPk5PmQletDQUl1MV2KPS7OYoXCUiMHsgK5e/CL/Lz/lRpfryYmvU1p14tZqPxs9OoyidMFJo4c99OJONc5VRVOF/hQWFJ7K+s7WRDfGjZ9U5nd6k7MxZozib5hNhn5PmRm+VVYC0XICYLgHVFRjf4nBNb5RgRdHfnozfbcm5RB2s4MtID/qqhJrTC9SPz6P6/VeG36RINqY7/OsQWw3GLgRL4PuYUmDApMnnU7x46/6HDf3MWM6dGyQ7WMWE8uwCZxz3PyrA+/Z5rIKzJVWB9rJjhUVSG/2EhhqZF2bR7h90MvVX9QPeAsSo/mDK7BNSiUmg1Mem4wxzMXuMznDXox52lNkdfP5nSBD0dzAigqk7ZdgiAIFwNSWLiOLHitr9fN5TXcWZ30z7WH5gY1GdUaF41duyLGQcRVV26j5fEpnPuesQrlFgOlZgMFJUauiplK/+4TWZlSaaWrCls3iUoxp+/CEGvOpFeXyViueJE/sv05ctKf3EJTHduZKVisCifP+hLbcUot5/CehLgJxPeYwNoVMcSaM/G7Zh7FZYYaXoNCQYmJqy63VS+vTb9WDXef68Y9kjl8MoD9WYEi5gRBEC4iRNDVkYPZAax71tUKsip1gMem7N5W5B87YgtJz95Os5CaV/zVi0RVVakq90XLED2fBa+tKvyZ48evfwZy5KRflaU73L3WrJfJo9JZ8eYAQrrP5UiOH4dO+JNz1geLlvBQH2u1wsn86hsv1wXbe4S9fE3E9cmcKTRRUl7zX1EVyC30BWDlm+77tTrjruODs2WuS4cp/HY8iOO5mvtXxJwgCMLFgmS51hIty3XR+58T3cyfRc9sYGXKAMaMcB9HV9NuEgDT592KosD+gy/VqkRFQlySXcht2lV1I/tYcyZHm79q77V6flHxMam0iyxm+qS0KkfqhVz49ckUlxnILfAhJ99HZ82qf/xMVtpHF7Hzx5q5vquzjIJNzGnvT6w5k9DuyeQX+5Cd52vPZq0pviYrMdEFPJK02evPTcJ1Yxg9crv9tWOx4Of5IzuQsyUSpSEIDZGLJctVqBk1uY9ioaszCnnFJh6bexubdi2xuw/11rnatAabOf9WjEZ4YcZG+zZvsbUPcxQS8T0mVCku9piiaXn8Yc6929Udth6v2Xm+zH89gaVv3ORxpCbmgrvN5ehJPzKO2Sx8haXnTswBlJkVzhTVXMx4U7du066lxPeYQKw5E58u8zh4IpA/sgM4W1z7BIdys0LOWd+aHaS7fdrnbVCPcQTbxdy5KmsjCIIg1BX5c7seUFWFk/k+XHLJ44wZYau1phdwNRFz657N4Cvfx/D3MfNjxis1bg1VlWjzJkEiwNdK8QWJjVLILTBxtthISICFGS/cahezGlqGZeC189ifGUBRqacSJOcGH6NaZVswT+jvt1bKxNliqqoKpR0WcChTq+UGdbkuFYUys8Hr/q5Dx2aQtmulw+ct1pxJXpGJo6cCKsScuFgFQRAuVsRCVw+czZ1L6gvrOFts5LmXbq71PI8+fxtf+z7KoSMLeHbaJ7WaQxMPWtycoij2R3XsMUVzybEphAZYMCgq59tap6JQblE4XWDiRJ4vz750C+BYV65Rj+fJyfepEHPnK45Lxdek4u9rrXWhYY1Nu5a6dX9/9s0S/H59DLNVE9N1vy6bMLfhKU5TXyZFewyLgj7XJJF/2UJ+PR5cYZkUMScIgnAxc0Fj6ObNm8e6dev49ddfCQgIoGfPnsyfP9+hF9qBAwd49NFH+fLLLyktLSUhIYHFixdX2yrj2LFjTJ8+nU8//ZSioiLatWtHSkoK1157LWDr0zZjxgw+/PBDTp06Rdu2bZk8eTLjxo3zau2VMXTpBAQGV2xVaRRkZtHTGwDHRuzO2Zl6q926ZzPYbnyMV5/Z4LbYcG0q/+uL2upjtLzl0taPViQCXKgvcltcXVRYGUH+FvKKbNY7VYWSciOWc1w3T49BUWkTUUJEWBmbv/G+9VdNiDVnUtB+IVlnatYXuCoURSX/9Dz7a+c4zLUrYlid2pdPdi63r6FZ3BzOFJnIPONHngg5QfjLcDHF0J08WcjZsyXnfA0aISH+hIcHnbfz1ScNplPE9u3bSUpKolu3bpjNZp544gkGDhzIL7/8QlBQEIWFhQwcOJDOnTuzbds2AJ5++mluu+02du3ahcHg3sCYm5tLr1696Nu3L59++inh4eHs37+fxo0b28dMmzaNbdu28fbbb9OmTRs+++wzJkyYQPPmzRk8eLDX11Bw5iUCAp+teKU4CA1NmNnEW6VI07d56njZNL4qG8yrT22wb3Ou8u9VHTknNCGniTm9wPNmrj8OLwQgPHI6JRfIBVtuhj9P+2FQbFmxai3qydUXPkYrCjahXFNxXB2x5kzUK18k91Q9Z9Kq2Gvo6S1x+j8aMr94llggpNvzHM/1I+e4gcJSo/RjFQThnHDyZCGTHv6I8nLreTunj4+Bxa/eXiNRt2PHDhYsWMDu3bvJzMxk/fr13HHHHfb9iYmJvPXWWw7HxMfHk5ZWdWLfkiVLWLBgAVlZWXTu3JnFixfTvXv3Gl2PJy6ooHO+8NTUVCIiIti9eze9e/fmq6++4tChQ+zZs8f+F8Vbb71F48aN2bZtGwMGuC8LMn/+fFq2bElKSop9W9u2bR3GfP311wwfPpw+ffoAMGbMGFasWMG3335bI0EX3OgRh9dFpUaSFw2icbCZbd+9bt+ut7o99/LN5BUOpsxswKqaaR1RXGUHhOoEmHP/U9eEiPFeX48zJ7PnE2vOJKvlK1isynmOr7N1b7Bc0DxsFR+jSnaeL3lFJkICLPU6e6w5k6Y9k/ntuIlSc/3eV0WBID/367V/zsxg7jSfA9k+nC02ndeYREEQ/vc4e7bkvIo5gPJyK2fPltRI0BUWFtK5c2dGjhzJnXfe6XZMQkKCg87w86vaw/L+++8zbdo0li9fznXXXceiRYuIj48nIyODiIgIr9fmiYsqhi4vLw+AJk2aAFBaWoqiKA43yd/fH4PBwJdffulxng0bNnDttddy9913ExERQWxsLKtWrXIY07NnTzZs2MCxY8dQVZXPP/+c3377jYEDB7qds7S0lPz8fIeHO27xmcfhk/7890gQ0dGP07LFY7Rp9SiTZt3OuKeHMO7pO8gt8CE4wMKlkcXMnb6R7bttwq+qgsPVUbXos31Ba3F03pTS0LPHFE1m5ossm/0h7U5ORkGLr/vfqHiTc/IFjv65gP0HX+LISX+uipla67lizZl2aylA057JZJ/xPWcZpIpS+cdEylv9SHmrn/31LXHjCen2PNl5fuQXm85jTKIgCMLFzaBBg0hOTmbIkCEex/j5+REVFWV/6L2A7nj55ZcZPXo0I0aMoFOnTixfvpzAwEDefPPNelnzRSPorFYrU6ZMoVevXlx55ZUA9OjRg6CgIKZPn05RURGFhYU8+uijWCwWMjMzPc71xx9/sGzZMtq3b8+mTZsYP348kydPdjCPLl68mE6dOtGiRQt8fX1JSEhgyZIl9O7d2+2c8+bNIywszP5o2bKl23EbSp+g3GKgqMxIZuaLLHp6A7kFPpSVG2gUVM5lUSXENC+iZdNSHpmwqdr7ojWtr6rivybmNOucvpBwTZIivFnLHlM0+bnzOFvxaHdyksOjcVA5PkYrfyWxFxU13f68TWQxJWUGboidVKu5nlrdx8FlW1Ju4KffXqFN1sME+1swGupPKFtVOHW20o07Yvg2RgzfRvKodPpck8TJsz4cPBFwgbKaBUEQGjbp6elEREQQExPD+PHjOXXqlMexZWVl7N6928GzaDAYGDBgADt37qyX9Vw0gi4pKYmff/6Z9957z74tPDycDz74gI8//pjg4GDCwsI4c+YM11xzjcf4ObCJw2uuuYa5c+cSGxvLmDFjGD16NMuXL7ePWbx4Mbt27WLDhg3s3r2bl156iaSkJLZscV9iZObMmeTl5dkfR48erfaaQho/QeKMO2kUVM6K5PW8MGMjjyWlMeGhzWzatcSevVlde6a0nUu8stZ5srypqkraziX2n1WNrSl7TNEOjyN/LuB0zgu0OzmZID8LfqaGLu4USssrxc73P79Ky2almIyqg6XNW1am9Hd4PXXcZ0ClFfSSJqUV0qru90wBfEwqK1b3J3lUOktXDeC15TdhvPoFMjKD+C0zSDJYBUEQakFCQgL/93//x9atW5k/fz7bt29n0KBBWCzuw1xycnKwWCwuCZ2RkZFkZWXVy5ouijp0EydOZOPGjezYsYMWLVo47Bs4cCAHDhwgJycHk8lEo0aNiIqK4tJLL/U4X3R0NJ06dXLY1rFjR9auXQtAcXExTzzxBOvXr+eWW2ylMa6++mr27t3LwoUL3cbm+fn5efSPn82dS0jjJ+yvB/vNZUPpTMAWw9SqmWs2j7v2SrWhOmHm7IqtTYJFbdhjimbtrA8BeHj27RSWGCrqqzU88eCcUavFRsb3mFCjJAl3AtD5/f/v/pftzy9t/Shni40V7b9qft/Uin9Pfv00Be0WcirLQFGpEbNVqdfWaIIgCP9r3HffffbnV111FVdffTWXXXYZ6enp9O/fv4ojzx0XVNCpqsqkSZNYv3496enpLokLepo1awbAtm3bOHHiRJWJC7169SIjw/GL8rfffqN169YAlJeXU15e7mLlMxqNWK01D9asFHMqqS+sI+CZ6USElZNfZCQr60WWzHK1wOm/yOsi6tJ2LrEnU2jiTstwBcf2XxrOSRTnCu26Xn3GVmz5kedvo8xsoLDEiPUCZqx6j4pBgUA/C+4jJs8dseZMOPAIvjELyc7zwWqlhvdMxWiAsAOPEtT1eY5nmSiy16W72O+7IAhCw+LSSy+lWbNm/P77724FXbNmzTAajWRnZztsz87OJioqql7WcEFdrklJSbz99tusWbOGkJAQsrKyyMrKori42D4mJSWFXbt2ceDAAd5++23uvvtupk6d6lCrrn///rz+emVG6dSpU9m1axdz587l999/Z82aNaxcuZKkJJuQCQ0N5cYbb+Sxxx4jPT2dgwcPkpqayv/93/9VGQBZNSp+PlZmvHAr7aOLuDSiiOVzPuSajlMAx1Zg3uCufZcn9GJOQx835xxHpxdxNTlPbdFcy4eOLGTxsx/x5rx1FdmiF7Mr1pbd2rxJKR0uKWJA94nE90iy3y+9ta0mrldFgYQ4x/Gx5kybgNOhubB/PfASMc2LyTs9D38fKz5GK77VxijahGhogJn8di/xe3ZghZhrmBZSQRCEi50///yTU6dOER3tvvi8r68vXbt2ZevWrfZtVquVrVu3EhcXVy9ruKAWumXLlgHYS4dopKSkkJiYCEBGRgYzZ87k9OnTtGnThieffJKpUx2zDDWXrEa3bt1Yv349M2fOZPbs2bRt25ZFixYxbNgw+5j33nuPmTNnMmzYME6fPk3r1q15/vnnvS4srBHsb6FxaBkLn/jYZV/yqHRMpgTAtf2XpxIlGu7Kj7jD2YXq6ThnEee8zdN89Y12zYuf/ci+7eHZt5NfZKzIsrwYUAn0tdKiWQlNgs0YFJsQsyWb2EZUWkFVQKmR6zVtp+O4Paaqu080CjIDcPLEfAC6XfEwB0/6U1ruLjPWJubCAs2oKpzM90E9hz1uBUEQ/ooUFBTw+++/218fPHiQvXv30qRJE5o0acKsWbMYOnQoUVFRHDhwgMcff5x27doRHx9vP6Z///4MGTKEiRMnArb6t8OHD+faa6+le/fuLFq0iMLCQkaMGFEva77gLtfqeOGFF3jhhReqHHPo0CGXbbfeeiu33nqrx2OioqIc6sfUlhVz/43J5BpbN3RsBhE9khkzIo2VKQMYM8J9skVVAspbYaUJtNGJW1iVanuuz3Kt7ji9CDwf8XXgWDz51Wc+YujYDEKbzKTyI3HhRIjJoJKdPZ/sbIjvkQRUCrkxI7Y6CPGaWOfcCb5Yc2a1gs7ZGhcWZMY3V6W03CYm9WN8jCqhARYsVsgrMl3UNlBBEISLle+//56+ffvaX0+bNg2A4cOHs2zZMn788Ufeeustzpw5Q/PmzRk4cCBz5sxxiLV3Njbde++9nDx5kmeeeYasrCy6dOlCWlpatZ2vvOWCtv5qyGitv7pdN82toANcWnw5U5vYOb1lTxOD7ixyzoLOG8vdhaZrpyns/mURrVo8Rn6x6by299JjNKi0Di8hslEZBsX9Hx56cVYXMexJ0DlnPq9K7Y8CfKqz7kVGTae8ohixn4+VRoFm/DMeo6zDi/x52h+rWOYEQajgYmn91VA6RVwsNJjWX381nEuQqKpK8qh0nlrdx+346tyuns7hjCYanRMj9AkT7nBuSaYdf6FE3hMPfwrEMHTsAi5r8+gFcxdarFBQbCQyDFAc26XF95iAoihO90mtdTigJ+uc3oI5dGwGoxNd3/vsLJsLdt++TCb/PZmcnU/hFzuPrJM+FQkUgiAIFxfh4UEsfvV26eV6DhALXS3RLHTJK27DP8CxB6de1FUl6DRqY6lzzlRduyLGY+KFfr+3ZUycrXnnUuTp+4sOHZtBfI8kNu1awmVtHiUn3+c8W5pUGgWaaRNRQqCflU27XK+7T9eJ+JpUPvtmiX39Wn252vR5TYib4BJXp8e5/6r+8xJrzqRJj2ROF/hwutCHs8VaH1axzgmCUMnFYqETaoZY6C4wenES0WMOrN5a/UE1xFlg2b7kBzjsS4hLYnTiFoaOddyv7dPGVlXGpD7r2HlyTdqEZqVFCpZU/PyYR54fTH7R+RMpigKNg818sWexy75YcyYh3Z/n8El/IhuVcuM1kzBbFXosgfwiW3mTymuoJHlUOmCzxu3bl0nHjtF2V2tCj/GMTtzKqlSbqHO2qOpfO1uAY82ZWK+YT0amDwUlJqktJwiC8D+MCLpzSEKPCYweUb2Yq43r1eVcbsSSLUliAHohp0cTc/qfnubSH1N7tNp4NvHi6Tz6+3HoyAJizZn8EfEaVlWfBFD1ObTM1NqInB8zXnG7PeL6OWza9TodLnuE47n+WK0K5WalomAyhPhb6HDZIzy1wJZpalDAaFQxGBIwGVTWTtzE0LG2uSJvmENChXE8eVQ6qP0Y1GM8sMztfdDQXt/cYxxnS0z8etyv1oWHBUEQhL8OIujOEUPHZpC2K4OVKRMY44WoqwuehNHQsRmk7cxwu1/f/9XdXN6cz2b9806IJsRNQJMdKlotNtXB1ai3bDpYucYCp+cB0KTZDA/WOps4MhlVQv0tvPz0BpJHpXPskkU17lXaqd1UfvndUdRpdeJs69rossahYzM4RaV1bsqcwZRbDFgsUGY2oCgwNXkwJoOKr8lKZq6Kv4+Fsj0zKevwIllnrOz99VVujtOXzVmOO2LNmeQVmzh0MpBSEXOCIAgCF1Ev178qY0Zs9aqocHX9XD3hTYZl2s4l1VrWvImj059LL+a0YruexGBC3ASM2D5sBgU+2bnULuScj/EkENeuiCHWnEmwv3OfPBWjQaVRkJmzufN44/n1vPz0BgCeWt2HS45NoYrKLS6oKpwq8K12nPP7ZStvUrn+RU9vYMlzH7J8zoeEh5bTOKgco2Irf1JmVsgvMnIwO4A/my/iWK4/mbm22IhPdi7nk53LUVW4OW6c289FeM855OT7crbkYqrdJwiCIFxIxEJ3DnFMRPAs2DRrT01dr+eydpy7QsTacy2rVhMba1dUbanTW+Fu6zmB23pO4OOvl2IArKgO7l594H/l/J7unUqAr5Vlsz+seO1oMVu7IoanVvdh6Nh5tLjkcfKLjRX15KoSQVqf05phqzNoe7/XrrDdHy1RYsyIyqLTK960lR8ZM3KrfZ0ALS55jLatHqVdVBE+RiujEj+v6LBReY5YcybB1z7PkRxfsvP9kHQmQRAEQUME3TlAL8y00iArU/pX6XpdldKftIoMSW+FnbfdJGqCd3Fzlb1jtQxab/n460pxZ8DmKFXd1Pxwdr2uTOnPpl0ZtKqITQv2N/OartuERqfe6XTsaCsF8kZqP1QVLNb+FJUVk5PvS9YZ32pj8QyKa324PaZo4t2M1dcadK476O79Hlsh5Fan9mNU4jb7tb6yrISDJ/w5W2yicXC5g/s51pxJaPdkss74cfSYD2VmQ8UdE+ucIAiCYEPKltSSqsqWQPUuVOcvf73gq2uCxPlAuz7tOuorqUOby939W5EygLEjtpA8Kh2f2BcICzQzbqRr4eaXl8VTWq5QWm6guMxgjzM7euxFYs2ZHI56lXKL+2gDo0GlbfZkmvZMZsu3jkI21pzJU6v72K/ZXeFo5wxVPatS+zM60b2oX/Fmf37PCqSw1MhlkcWEBZbz6U5bgkTv2Insr9hXvYVREATBFSlb0jCRsiUXGHd1wxLiklBVlTEjtrIypb9DMeC1K2LsLaXWrohxsLrVh1gaFgWn2nouTVJTtOvT1qkvO1J7bAkSmovRnajTxFxB+4W8MHGj21mGjs3g4InbKShxFD8GRaXrFVN4YvKnwHqmzBlMQYkRs1OCRaMgs80y923VMYkQ47YLiDshqgk/T2Ju6NgMTIZ+NAku59RZHw5kB9C8sUKsOZNmcXM4lONHUalRerIKgvCX4NSZLAoK887b+YKDwmjaKOq8ne9CIYLuHOAs5mzxcY6uuJVv9mPMyG0u7lUtM7WqQsE1ISEuiVN1nsWRyutzLXdSW7HorrCuvlvCqtQBqKrKiS/TKTMbWLR8IEH+VgdhDHBj10ns+1NxET9WFc4WG+1CtNRczMSHNjN0bAatWjwGgMWqoKByfewkfI0q275/3X58rDmTiOvnMNTkmpXrCc3qqq3xjdT+PKQTdW++1Y+Rw7cRa87kZL4v2Xm+qCoUlRo4fDKA6I4vcvCkgdxC6fwgCMJfg1Nnsnjy5fswm8vO2zlNJl+en/ae16Ju3rx5rFu3jl9//ZWAgAB69uzJ/PnziYmx/X9/+vRpnn32WT777DOOHDlCeHg4d9xxB3PmzCEsLMzjvKqq8uyzz7Jq1SrOnDlDr169WLZsGe3bt6+f66yXWQS3wszdc23spm+WocWiucO2vX+trXPOVjk99dHeS2+h0+ar7+QMvViqtIb1IXnUNAzhcx0sZNrYnksVD50lFApLjA7iemXqAMYkwrLVxYwftdlh9LLVA+wdK2xiLtme+ABUdLSYQEKc4rS+SjQXuidX67+/Xsa6Z+H7wAWczPatKMdiW2u5BY6d9tclaIh1ThCEhk9BYd55FXMAZnMZBYV5Xgu67du3k5SURLdu3TCbzTzxxBMMHDiQX375haCgII4fP87x48dZuHAhnTp14vDhw4wbN47jx4/zr3/9y+O8L774Iq+99hpvvfUWbdu25emnnyY+Pp5ffvmlXtzSEkNXS9zF0Dlb5erqKtVaSmnu2JpQXbKEJr404Xeh+rfqcdfaSr89eVQ65k4vklvow6vPVCZEOFtEHWvV2T7eviZbaZMDhxba53S2sOlj4zQ0i5nWOUKrRweVfVg14adfa+WcnuPmkkelUxyzgOOn/aT8iCAI55SLJYbu8LEM5iwZcc7P78zTSSm0vqR25cFOnjxJREQE27dvp3fv3m7HfPDBBzz44IMUFhZiMrnaylRVpXnz5jzyyCM8+uijAOTl5REZGUlqair33Xef23lrEkMndejqAb2Y0LdpqitDx2bUSszVBE9WvAuB3sWq/6mV/wAwGCCqUanDcc4i6nTOC/j5WFEUlSA/Ky2alhLTvIgXZ37sUTRCpZXN8afKlHGfARAZOZ3fw1/j9/DXOBj5GhGR02nT8jFOfPkUvbpMdmnTZYuVrLTS6enUO52Aa+ZSXGZ0k+MrCIIgXCzk5dni/Zo0aVLlmNDQULdiDuDgwYNkZWUxYEClwSAsLIzrrruOnTt31ss6RdDVA+dCcGl16Zy3eUvTg1Vb3PQ17C6kdU5/Te6er10Rg6KrDPzM1E+YOTnN7Vy2GnC244L8rKTMW8eSWR+S/Ni/CQ10LEhc3b3ULHVaEsvaFTEsnf0h7U5OxlarTqG4zMipAhMHwl8j43igi5jXly1RnGTbA+3hjxOBnCmUqAdBEISLFavVypQpU+jVqxdXXnml2zE5OTnMmTOHMWPGeJwnKysLgMjISIftkZGR9n11RQTdRYBevOjLgThTXRC+nnc8fD40Aecu5ut8o3d7uroqK69fE1dayRB345x/mi2VIvCNtyrLi7zxlm2/N/ey8h4pJI9KZ8xTQ/g9/DWnUQoqthIpIY1n0qjpTKKjH+eK9tN4ednAijX1Rx8DlzwqnaCuz1Nu0eL9xN0qCIJwMZKUlMTPP//Me++953Z/fn4+t9xyC506deK55547v4tzQgRdPVHb1l2Ai2Vn7YoYtwH/+jHeoO/X6myJq01HivpEL+bcNaB3jmXT7kf2F085iDdP9eD8fay8vMyxFPAbbw3goeE1F7InvnyK45csosxcnfiyWe4KSowcyfHj1z+DeGbhLaiqYs9uXZ3aD4CTZ/VJEIIgCMLFxsSJE9m4cSOff/45LVq0cNl/9uxZEhISCAkJYf369fj4uNak1YiKsiVkZGdnO2zPzs6276srIujqCU8CSZ8J6gm9haqqXqbunldH2s4lDPPwWalOqA2Lcj9GnxhQG5xjzapyLa9KHeD2nlS2VKvEVuttC2tXxNA6ooQgfwtDx2bw0PAtdsuc8/zuWJU6gFWpA0gelU7yqHROt32ZojJbcWLvsAm/MovN0WrLjrXxSUWx4EKpKycIgnBRoqoqEydOZP369Wzbto22bdu6jMnPz2fgwIH4+vqyYcOGahMW2rZtS1RUFFu3Vobi5Ofn88033xAXF1cv6xZBVw9UJxD0os5dE3tNsMT3mEB8jwlu9zknDHhzXndr0FNd7Jw+YUJ/fOQNyW6voyZoInbtihhS3+rvsl8TbJpAcxZ1oxO3OHSX0NASU5Ie2sxnFZmnmqjTW+c83Ttnl27R5QvJLTRRG7eoyaAS4m9xmDPWnImp8zwKSiR2ThAE4WIkKSmJt99+mzVr1hASEkJWVhZZWVkUFxcDlWKusLCQ1atXk5+fbx9jsVTGa3fo0IH169cDoCgKU6ZMITk5mQ0bNvDTTz/x97//nebNm3PHHXfUy7rlW6UeqK+M1k27Mlzcq3ox42zF8/a8+rIkda1BVx/WOWcSh7uW9bB1yLA9t7lUbbFnkTck67ZtcRFgqqqJw8oCwN4KX22u0Ym2jhTWK1/kxElfalfYR8Xf18o3P73qInzNVgWr1cNhgiAIwgVl2TKbJ6VPnz4O21NSUkhMTOSHH37gm2++AaBdu3YOYw4ePEibNm0AyMjIsGfIAjz++OMUFhYyZswYzpw5w/XXX09aWlq9tUYTQXeOqMp65U5QubNCOZfvgKpFnN61qk+KSNu5pMbWtGFRuO0wEXlDcq0Eobd1+fTxcDYroBY3lwy4JkQ4izpFUVBV1X7P3nhrAIN62vZpFrqqEiI0Med3zTx+z/TDbIXaJi2E+Fu46rqkinX05yG7cBVXqyAI/5sEB4VhMvme904RwUGeOzg4U1153j59+lQ7xt08iqIwe/ZsZs+e7fVaaoIIunOEXvR4K6a8tSR5EkcOLtK2lfFztSkc7FyfThOFdbHueXN9DgJNVb2q0Zb9xVN2y53WL1fDXRKEp36rGiHdn+f3TH9Kq02C8IzRAPNmbGRlimu2cn6RSWrPCYLwP0nTRlE8P+096eV6DhBBdx7wVgzpRVpCXJLXzd89CUZ9H1dPYzytqenBJfVWdNi5g0ZNsNWBm2N/rb8nWvKCs+XOXbyhN9jcvBn8eeo2zpYYqa2YS31hLUPHZvDayomAFVB01jkqYvIEQRD+N2naKOp/QmCdbyQp4jzhjZirqQCpa2KCNoe7bc5irrbWOU9JHJ4yV0HXqWHEVpJHpaMoiltx676zg+O59Nmtns6rZ9++TPKLai/mQGXs00NYuyKGyWM2M2bEVof7FnTt8xXPxO0qCIIg1B8i6C4iapJcUZe6d85UJwybHnTtJqEvtVLVWtxlsHq6Tr0gU1WVFW/2tT93V1DYXZ26TbuW2ve7qztXVewcwC87+tAk2Ay1coqq+PtYWTFnvcs5tWuWzsmCIAjCuUAEXQPlXLQb8yTqTrWtutxKdWvRRJ3eFepOWGk9W20/VcaO/JzwnrMcxjhb8ZzP77zON94a4GCl0/fb9URko1IC/azUTNSp+PlYWT7nQ6f19mdVqq112OrUfhTtfhKTUa3h3IIgCIJQNRLMcxHiKX7OHVrcl3OcmiZaaho7p+3zdJw2t6cuD2ArbbLHFM1tPSfw546nadF7jn186lv93ZYpAV3vU9XqNoPIOX6u8nWMW5e1twkRelam9OfEl08SdeV8Dp0IwOqV7lLxMaq0albqZs2V1zoqcRvJo8TZKgiCINQ/IujqmdoIKHd4iqkbOjaDYVFw56wYEuIcrVPuLGbaed11onAWftUlQujFoztLl7Z9jymaW+NsBZJb9J7jcP7qrnHlm/1QVQugsmJ1b7v68dTiq9Ji595653w+/Vrd7V+Uks6UxNmMGfkp0+fdyplCn4qeq9ooZzlmE3Mtm5Xywy+LAM+CcXVqPzK/SPeihZggCIIg1AxF9aaYiuBCfn4+YWFhJK+4Df8AW/82ZzFXlxIf+vmcLVP6IsHavqqsdOAqYNyN0RIf6lqeBGxWOk3MJQ7f6rA+T1a6oWMzuKnbGEBFUUBroaUYjA6JEe6Enbu59NcFrkJPfy+rysSd/3oChSVGCkuMFJcZKDUrWK22tl4+RpWWTUv4T8aiaq1/Q8dmEGvOJLvVK5wtrkvihSAIQs0oLipgyr19yMvLIzQ09Jyfr6SkhIMHD9K2bdt6K5z7v0hN7qPE0NWRAd0eIiHO1rLLpo0r9bGnVl96qhIB7kSLXoBoFjMNvSvUm/mdLWxpO5ewdkWMg5irqs+qJxLiJhB9wxxUXMUcVHaGcOeuHffQdgDGjtrBya9nob+fzokRVaGdz5OYGzo2wy5etTGerKLTJ6Yx+9F/89JTG+jYopCY5kW0Ci8hPLSc0zkv8My0T11atlW1pkaB5V5fhyAIgiB4g1joaolmoet23TTuTTpkt3atXRFjtyB5Cr7XW8Cq6rGqFxcrU/qj2MxWbsWJO+ucp+4TntyuVeHtOP3Ymmbi2ix0ox22KQooBhOKYvvbozrLnN5656kenadWas73rT4ziTWSR6VT2uFFjp7yRyx0giCcLy4mC11+4UmKS86e8zVoBPiHEBoUft7OV5/UxEInMXT1gL58h83yk0FVsVTgXayds6ioFImuVjNPAsSTmHE+R3Virbpx2nnWPZtBQkXv1ZqydkUMN3WDcQ/tYPkbvQGbpW7Fm30AxaEDhCe8EXPavV+7YovbMeeSPaZoYn99HGPkq1isIugEQfjfIr/wJG9+OAmL9fx5KowGH0besdhrUTdv3jzWrVvHr7/+SkBAAD179mT+/PnExFR+V4wdO5YtW7Zw/PhxgoOD7WM6dOjgcV5VVXn22WdZtWoVZ86coVevXixbtoz27dvX+RpBXK515vaR+wGbBc3bDgVpO13rulUVszZ0bIa9vpqnuT0F+Ts/3I11J9LcuVqrEn3a/KfaJnksKVLVsXqSR6U7DnBq51XV3O4Eq7vn7ix91SVNeKKm9QP3mKLx97F6fYwgCMJfheKSs+dVzAFYrOU1sghu376dpKQkdu3axebNmykvL2fgwIEUFhbax3Tt2pWUlBT27dvHpk2bUFWVgQMHYrFYPM774osv8tprr7F8+XK++eYbgoKCiI+Pp6SkpE7XpyEu11qiuVx3/vARwcFBgK3xbn0lFWhoLlwtvk3DG4uZfkx9rskZzeKldxU7Wwy9cWGuWN2bk1/Pplnc0xVbbBascQ/tcBnrrk2aJ2G6MqU/Y0ZsdVuIuLZtwvTr0L8P3swzdGwG0dGPU1AiBnJBEM4PF4vLNfvUH7z9yWPn/PzOPHjzAiKbXlqrY0+ePElERATbt2+nd+/ebsf8+OOPdO7cmd9//53LLrvMZb+qqjRv3pxHHnmERx99FIC8vDwiIyNJTU3lvvvucztvg0mKmDdvHt26dSMkJISIiAjuuOMOMjIcv5QPHDjAkCFDCA8PJzQ0lHvuuYfs7Oxq5z527BgPPvggTZs2JSAggKuuuorvv//eYcy+ffsYPHgwYWFhBAUF0a1bN44cOVKja1CoiPOqiG/TxE19tOXSGJ24pdqG8vpzu8OTmPPGTeupELC74zx1j/DmeFVVdWLOJuTciTl3rEodYD+/87k06+boxC32B1SKuYS4pFoXavY2AcX5mKijUzEapMCwIAjCxU5eXh4ATZo0cbu/sLCQlJQU2rZtS8uWLd2OOXjwIFlZWQwYUPm9HRYWxnXXXcfOnTvrZZ0XVNBVZ9YsLCxk4MCBKIrCtm3b+OqrrygrK+O2227DavXsssrNzaVXr174+Pjw6aef8ssvv/DSSy/RuHFj+5gDBw5w/fXX06FDB9LT0/nxxx95+umna5FebSutMTpxi70YruZSrYtFzJvsVOf5mx5c4pCxqf+pF1rVWc7cuS2rEjzaOrzpwuCJFattf/WMe+iLii1Vx5c5Z7GC+yxY/Xr0+53X6U4M1/RavHEBr0q1dcPYY4omIrSsojyLIAiCcDFitVqZMmUKvXr14sorr3TYt3TpUoKDgwkODubTTz9l8+bN+Pr6up0nKysLgMjISIftkZGR9n115YIKurS0NBITE7niiivo3LkzqampHDlyhN27dwPw1VdfcejQIVJTU7nqqqu46qqreOutt/j+++/Ztm2bx3nnz59Py5YtSUlJoXv37rRt25aBAwc6mEGffPJJbr75Zl588UViY2O57LLLGDx4MBEREbW6lpUp/dm0a6nXHR68wVNcnCfeyXJvzXN2gVYVZ+YsbGriily7IqZGVkmt1RfAya9nAwrL37hBJ+o84+k+VFXaxPm90VtR3b1vNb12b2IT03YutW/vVvwSARJLJwiCcNGSlJTEzz//zHvvveeyb9iwYezZs4ft27dz+eWXc88999RbPFxtuKiSIpzNmqWlpSiKgp+fn32Mv78/BoOBL7/80uM8GzZs4Nprr+Xuu+8mIiKC2NhYVq1aZd9vtVr597//zeWXX058fDwRERFcd911fPjhhx7nLC0tJT8/3+GhR1EUj667+nS/Os/r/FprWq/fp7fWVRXL5i7Orjor1bAoxxi2tJ1LvLZsaYkOyaPSaRb3TIWL9QuWv9Hbo6tVbwXUX6PmSnU+f3V1/tJ2LrGv3ZtMX0/rcdelQy/ynO99QtwE3skCX5+a9owVBEEQzgcTJ05k48aNfP7557Ro0cJlf1hYGO3bt6d3797861//4tdff2X9+vVu54qKigJwCRnLzs6276srF42gc2fW7NGjB0FBQUyfPp2ioiIKCwt59NFHsVgsZGZmepzrjz/+sKcCb9q0ifHjxzN58mTeeustAE6cOEFBQQEvvPACCQkJfPbZZwwZMoQ777yT7du3u51z3rx5hIWF2R+an3zLd5VC8VwlHejRC5TqMmUT4pIYFmUTXXo8BfA7J154iofT847OUuwphq0qkkelE9FrFgDL37ihSjGnoU/C0B7OgszZGuku09e55py3RZid5/EUO+ho+ZzgMGZ04lbWroih2aFpmIwi6ARBEC4WVFVl4sSJrF+/nm3bttG2bVuvjlFVldJS157eAG3btiUqKoqtWysrNuTn5/PNN98QFxdXL+u+aASdO7NmeHg4H3zwAR9//DHBwcGEhYVx5swZrrnmGgwGz0u3Wq1cc801zJ07l9jYWMaMGcPo0aNZvny5fT/A7bffztSpU+nSpQszZszg1ltvtY9xZubMmeTl5dkfR48eBaB/t4eAqsWcZgmqLc6ipCqcz3OqbRKn2rq3EFYVP6fP3KwuQ9Xba3Ne+7pnM4i4fg5jRn5ub/VVlWVOW5enJBFtv/O53MUNrkzp75IlXJsYwKri5hxrCLqvobfHFE2zkHIUsdIJgiBcFCQlJfH222+zZs0aQkJCyMrKIisri+LiYsBmNJo3bx67d+/myJEjfP3119x9990EBARw88032+fp0KGD3WKnKApTpkwhOTmZDRs28NNPP/H3v/+d5s2bc8cdd9TLui8KQVeVWXPgwIEcOHCAEydOkJOTwz/+8Q+OHTvGpZd6Tj+Ojo6mU6dODts6duxoz2Bt1qwZJpOpyjHO+Pn5ERoa6vDQqE7Q1CZRoCq3YVXiqqp9nly/3sTqVXUN3riTtSxUjeRR6eS0cWyXVZVlzlP8n/7cnq7dnTVtzIitHmvUuXOjujtPdSVjvOWFGRvJz51HkJ8Zcb8KgiBcWJYtW0ZeXh59+vQhOjra/nj//fcBW+jXF198wc0330y7du249957CQkJ4euvv3aIw8/IyLCHkgE8/vjjTJo0iTFjxtCtWzcKCgpIS0urt163F1TQ1cSs2axZMxo1asS2bds4ceIEgwcP9ji2V69eLuVPfvvtN1q3bg2Ar68v3bp1q3KMt5yrJEV9b9Ca1jirCXXJTNVoerB6C52nZBEtjm7sKM9izp3A8pTp62xNdI5hs1nn+tn3J/SYQEKc7V5ros3bvqz6jGLne+jJ9eq8TRs3sMcEov+cKu5XQRD+0gT4h2A0+JzXcxoNPgT4h3g9XnOfOj8SExMBaN68OZ988gnZ2dmUlZVx9OhR3nnnHYdOEto82jFgs9LNnj2brKwsSkpK2LJlC5dffnl9XCJwgVt/JSUlsWbNGj766CO7WRNsgYYBAQEApKSk0LFjR8LDw9m5cycPP/wwU6dOdbhx/fv3Z8iQIUycOBGAqVOn0rNnT+bOncs999zDt99+y8qVK1m5cqX9mMcee4x7772X3r1707dvX9LS0vj4449JT0+v0TVs+e4N/APq/8OpFcJ17rpQH22qqisy7M7CNCzKMV5OzztZ9bc2PfrYNmeLpScB5dyGzZ0LedOuZaxMmQD0RwU27bTVqUNV7WIuvscEe/060NquORYStrV489wTVnteleVQ2zd2xFagD7CeMU8NwWJVsFhB+r0KgvBXIjQonJF3LJZerueACyroli1bBkCfPn0ctqekpNhVbUZGBjNnzuT06dO0adOGJ598kqlTpzqMP3DgADk5OfbX3bp1Y/369cycOZPZs2fTtm1bFi1axLBhw+xjhgwZwvLly5k3bx6TJ08mJiaGtWvXcv3119f5uqorE+ItNtFVs9IlNstR9XNXJerciblTbZNIaKtfl+N+T2LPHatSB5D9RTqKoti7ODifvzohpKcqgefpGO2cWl04gLRdS+2CzrbfNq9t21L7eVZV9KrVSqRoPWGd1+8sKMFWqkVRIG2n5w4TK5PXk7xoEH+e8qOk3ICIOkEQ/kqEBoX/Twis880Fd7lWZdYEeOGFF8jKyqKsrIzffvuNadOm2bsyaBw6dIjnnnvOYdutt97KTz/9RElJCfv27WP06NEu5x85ciT79++nuLiYvXv3cvvtt9fbtXkT2+UJZ4GilSOpLlbNuQVXTdboDZ6KJZ9q61jMuDpGJ25hjyna435nd2V1ZUiqE7jurHcaaTuXOozftGspm3YttZ/XnfvVuTSKNwWF9YxO3EpC3IQqaun1Z8++RUQ3LsXHKN0kBEEQhOq5KJIi/moMHZtRpwLDWhC+JjycW1bpuyRo49auiHHopVqfok4TbM44l0OpCWtXxHgVe+eps4W2zZ3gcs7Q1T+P7+EqpKqyBmoCT6sx6G6cNmd8jwlVivehYzPslkF91qvzMVpJk/DQcsICzR7nEwRBEAQNEXR1pH+3h4jvMcEuLDSRVZVo8KZWW3WCTCvmq6/BVtPsSm/QizZN/Gm17XLaVF63fpy3a7hzVgzNDi2tfiCe75kW5+Ys7GqSQKJfb/x14x3GxFckTagV8XV6F2naziX2dm+APXNWn00b32MCCW5EpDflUkxGlchGZQT6SvFhQRAEoWpE0NURBQVFUeydIsB9+y0N5wxMd0LFGzGidTfwtuVUVXhyD2uxc87ktJlgLzmiub9r6nbVuHNWDMtX3+j1eHcZrFAZE6eJLk/ZrvpEB/32VW/2Jf66cSioJPQYR3yPSmGnuWX1x2rXOWbEVk58+TQJPca5xM5VWuRUt++pN3F+oYEWWkcUE+gnok4QBEHwjAi6c0B1osbZMuRs1QHbl31VfUm1Me6sO3p3rTc0PbjE3sJLi9VLiEtyK+aGRWEXsPpYRmcRWxNht/nblax7NoPlb/R22L78jd4u21al9ncQTPryIQlxSWzatdQhGcX5ubt9AGnfLGfMyM8ZPfJz0nYtZ9OuZfZ9zhmveoaOzSCyotOFp+sePcJ932H9GjxZIMeO2ELjIDOXRRYR4m9BRJ0gCILgDhF054Dq4tKqCtKvCc6JExrVuWudY9e0bhLe4GlcdeKzKtauiOHOWTGoqsqyVTewbJUt09jW23UHy9/ozYo3+7AypT+ah1MTcvp4RU1UVpew4KmbhLuxWgydPm5RG2+PXfxmOWm7ljvM5XwOTy54T65y/WtFgZAAC63Di/E1SZKEIAiC4IoIunNAbRIi3H3xO9eg04smvcVJi6eDSqGw7lnPFjJvxVtNW5Y5C0x3BYGrYvzoL+zPk0el25+Pe2gHn32zArC5ITXrZVX32dny5Vxg2HnNzsLK2V2rJT1o53S+Nj0r3+zLyjf7AhB/3Tj7tVQn3J0tj+5EXbPQchSpYiIIgiA4oaj6qG7Ba/Lz8wkLC2PXDxsIDgmyb69LdivUrCuEhiZuVqUOIG3nErug81a4VYX28XAuFdP04BKH+bXX+u3uxKBzjT5nlq26weH1qV1zaBb3DAaDEcVgq8lW3T2u6h56U8POHc7u5IQe40CF0SM/dykoHH/dOPvYTd8sdztHVetMHpXuUNZF734vLVf485QfJ/N9pfCwIAheU1xUwJR7+5CXl+fQuvJcUVJSwsGDB2nbtq1La6v8wpNSWNhLqrqPzlzQwsJ/JfSWm9q4UJ3jqTzVXnM3v97lqHUzuHNWDOueXVLxM8Ot+HJ+7bw9becSezarM85iUXut3663HFZaF6u2+G35/g3Wrohh2aobKix2fVgep9hcrSps2rWElSkTHIoRO1vrnO+PVry4tmLu/9k77/go6vz/P2d30wMB0hEIUZAmICjdDoaiKMj3+OrlDgtCaEqxIHcoFu4A0RM9IRQVvN+hXlE89KuAgmADRME7FC4qJNQsKaSQnt2d3x+zs5mdndmWTQgwTx+R7MxnPvOZyWbnlXeFhpInrlg6UYq7m5ClLRyVQs61jjduQRBEECTDuNxpQv2zXvj6TRrrkoR1hMVBp4QaaupMlFZZABEBMJtE5yijw4SBgUHLpbyykDfefwi7o77Zzmk2hfHAuD/7LeqWLFnCe++9x3//+1+ioqIYOnQoy5Yt82jtBZLRY8yYMWzZsoVNmzYxbtw43XlFUWTRokWsW7eO0tJShg0bRnZ2Nl27dg320twwXK4hJJDuEHr7fWW8+hKLytisjVYpiUBPfIH0Btto1bYsyokRWtY5b6+V299blOOyHKrr6OmtHyRhp0QURabev52MQdMo+PJJ13ZZKMouaXUsn1Zsn78/I7XbVo6lGzV4GlMe+MxtjOxmVVrn3MqXOLeLCM4C2p7n0VqTvE+uWycIEGZy0DrKRtsY6Su5TR09O1RyVcdKuqZUERHm8HpdBgYGBueL6ppzzSrmAOyO+oAsgrt27WLmzJns2bOHTz75hPr6ejIyMqisrPQYu2LFCo9npB7PP/88r7zyCqtXr2bv3r3ExMQwcuRIampq/F6bNwyXa5AoXa5zH9rtEg6NcQeqx/lj6VNap+SCxFPu+1SzpRbAe4tyKOo8A0EQXCJJ3gaSa1VtqQNPq56/xOeudLUFk1uEjRoy0207aN+P1a/dwLQHP3e9XvvGLRR89RRJ1z2HIGi7XvX636qF0shB05jqFGXyOCUZA7PY9s0a1+tRg6YhCiZAZKoza1X5s5Rj5gDXvFo/w7Vv3MLUB9yPl+fQE3MN1zYcARAQcYggig1/kZmd31TVmfjxZCxVdWaPe2NgYHDp0lJcrmeKj/LXjx5r8vOr+c2Y5STHXx7UsYWFhSQlJbFr1y5uuKGh8sL333/P7bffzrfffktqaqpXC50oirRv355HHnmERx99FICysjKSk5PZsGEDd999t+Zxhsu1GXlo+k7W//U2ry5XtTtVvU3LsufPAx7wcDWOGiJ3JJDEm7rH6kYrZLKK4nSpxMfaN6bDMek83v7KCFTMyXXylAWH5bXI4lDqDSu6dU1QIme4gsC0B3c5hdBNrPXSblcZSyijFtHSa9Ftv/J+ZwyciiC4/wy2OF2osnibqrLQKcWhjNbPSxZzkuDWTobRE/JT7tvOa87esyYBBEFEcLpWBUESeIaj1cDAwCC0lJWVAdCuXTvXtqqqKn7961+zcuVKUlJ8t03Kzc3FarUyYkSD1yguLo5Bgwaxe/duXUEXCIagayR/zr7JzSKmlSmpJdz0CuTKr/15wGshCTz9osbK+DqpeK5AUeeGmLRgkim0rHeSxXIExeAUbg0xeeqxa9ffgsNuc7PGycjb1q6/RdJgguBWRkSNVMYEJmR5Xrs7Dtd4Ndu+Wevcpz3/1r05HvvUQtzXz0zqF4vbMeq59NYvIoIoizrFIEG6RYbJ3cDAwCA0OBwO5syZw7Bhw7jqqqtc2+fOncvQoUP97gFvtUoWjeTkZLftycnJrn2NxYihCxGCILg91NWFgdUPeb2SF95q0/l66KvHbrS6x3HJa1i7frjTWiYgCA1rl+eMz22Id/MnXk5PAG7ZvdLtC/CwGILA1j3ZfLJvndtWZUHhNa/fKLk5BcElmrVYt2GEh1D2dHne5NwmsvaN693ujfI4mYxBWR7bAFdMnPK+6WWx6r2We7/qCX29YwW0ramiCNV1ZhwOw05nYGBgEApmzpzJDz/8wDvvvOPatnnzZnbs2MGKFSvO38I0MCx0IUDLKiRvkwk089WbYPPHAuRNGCTkSa7QIkB20ikTKeRxU+6DdRv0Eyq8EZ+7UrfAspZFz9t6sybDmtdvAjxj5JSo3d7q7hAAUx/Y6fz3C7ex6nM2rGkNIwdNY9QgAClOTs4nHTkoC3AgiiLbvnktICsbyK3EtBM0tFzwAA/et53X1t8sZcuqHKwOEc6Uh1NrMwSdgYGBQWOZNWsWH374IZ9//jkdOnRwbd+xYwdHjhyhTZs2buMnTJjA9ddfz86dOz3mkt2yZ86cITW1oSzVmTNnuPrqq0OyXsNCFwKU3QNk9DIX1VY8JXrFaoOpTafHu2u6sdGKKzFCfQ512zBlcWG9bFYtvAk/f0Sh7Gp9d0031rxxMyBQ8OWT+MrhUcek+ZvJqv5eeezWvaulbhB7VzPlgc/Yunc1W/euwVVLRcHIQQ8GtCa9n7U3l7sgeMbKueSd4W81MDAwaBSiKDJr1iw2bdrEjh07SE9Pd9v/xBNP8J///Ifvv//e9QXw0ksvsX79es0509PTSUlJYfv2hpjx8vJy9u7dy5AhQ0KybkPQNRLRjyeoVgydknUbRrgyVKXEhpmax3rbpjWfGmWvVrXLTu7fKh8vj5W/n3Lfp9z1TOMFpRK5lIme+F392g2sef1GCr9aROHXi0ga9qxm5q68ZqUolXvTNpQVucVtvFpU6ZWH0RN5GQOzXD/5bd+85iEM+9nyPc6jnltru1Lo6wnBj3avdp3b9e4TXSGGBgYGBgaNYObMmfz1r3/lrbfeolWrVlitVqxWK9XV1YBkbbvqqqvcvgA6derkJv66d+/Opk2bAClMZs6cOSxevJjNmzdz8OBBJk2aRPv27b3WrgsEw+XaSB6evguLJSIgN6h6rJSZ2SCmvGVoaqHO0pRcvd4zYuXjlOJRLmOiV/JEXptcdsRbsWK9bQ2Imtckb1vz+o0AJB5fC0Of1jZLKdYlJ4NIruJPWTw5n6TOImvXD2frnlVMfUD7PHqWPK1yJ++u6caa128GhZwSRcgY+CAZAwGuRxRhzevXs+0bd7evP+8PtfVWrxCyJBYFREEqKiyvpqQyjIoao1yJgYGBQWPIzs4G4KabbnLbvn79eu677z6/58nJyXFlyAI8/vjjVFZWMnXqVEpLS7nuuuvYsmWLz3Ik/hK0he7IkSMsXLiQe+65h4KCAgA+/vhjfvzxx5As7ELhlewb3V4rC93KaFlp1PvVbbJ8WYi0LHZKISAX2tVDtrzJiKKIIDR0VdA6VrlGvWLFSres92SJVZr7JmTlsPaNmxAEgcKvn3FuFch64DNX/Tc1cokUaLgXByypTL1/Owl5q5zZvNooLWLeBKZ8XwWpEJyrRt22b14DUfpX/sqa/IXfyQ7+orw+uS2Y6KxFB5Koq6ozU1UntUczMDAwaIlERbbCbApr1nOaTWFERbbye7xU/N3zy5uYE0XRw9KmPkYQBJ599lmsVis1NTV8+umnXHnllQFejT5BFRbetWsXo0ePZtiwYXz++eccPnyYyy+/nKVLl/Ltt9/yz3/+M2QLbKnIhYUHDJqHxRIB4LIGgWf5Cm8WGm+159Tb/bH2+NqvVZpEFEUS8lax0SplX+q5NpXr1Up62LJ7JSMHz/BZOdtXqzR5+5o3biHxWLbL3Sufu58tn6TrnkXO1AXBJTil0igN7cq27NYvc6I+n7f7rHS3yoLu1gEPIgDb9r3mMaevn9GoITM0ha1eQoT6vTFmyHQERFcNuuPFkeQVRmEIOgMDAzUtpbAwGL1cA6HJCws/8cQTLF68mHnz5tGqVYPqveWWW3j11VeDmfKiQFkfTctlB7Dw1XIWz2rtYWHTc68p51Lv8xaLpcYfl19R5xmM7Ow5Xt0FQ96emSIJqLue6eYSKAAJeatcglEu9Csjiy69HqjKa5C7Kqx9Yzpr35Cr5g53jlBmeUr/ygKz2LVfYuTgGcAqryJNjTcLq7KDxCcaQs4bE7JyGDloGlv35riJOa2ft9LaKo9ZPHmnq9erlOkqUWszUVLRvH/1GhgYGARD65jEC1ZgtWSCEnQHDx7krbfe8tielJREUVFRoxd1oaEV56Z2tUkuTknQrNtwFzBCt8yGepvytfJ8WuvwxyKo5QpVW9Tkc2emQDEjnK5U97nlNl7wKSMHz3B2fOjGKIWAk8WclkvZVwaqiMiaN252dVdQXytoWwm94YrRe+16sh78wu1+6VnpAEYOymLqAzt1y4so1+VLqMJqD1Gpl+2q3nYAyd06Zsh0/u/rbG4b2tA71jDMGRgYGFy6BBVD16ZNG/Lz8z22HzhwgMsuu6zRi7qQkGPo/I2RUgoQOYtUS8zJqGO4vKG2qCktY++u6abZvB4a4gUQRabc96mbJe6uZ7p5JFMo16TuG6u1RrlDBOD6Vy/ZQ4qhk+q9Cc7/vF1rIKVUlGVhsh5sqEOnZM1rUl+xjAEN5UdGDprK1r1rfN5/eV164+RED72MWq259LZ9tDtb+t4ZRxdhcdAm2uZzfQYGBgYGFydBCbq7776b+fPnY7VaEQQBh8PBV199xaOPPsqkSZNCvcYWzXany03PyiJ/6RXDBfdECi3rkFa2pFo4rF0/3O21XGpEjUu8qUjIW8UUnbi5CVk5miVL5FIhSuNeZgrO+UXicxs6RCiPl0WtlnXt3TXdGvqiCmha55Rj5Xl9CTstl7UW2/a9DkDWg1+47vXUB3Z5nceX1a4B6b5LovUW1/frNgz3adVTJm+8tv4W17kfuM+zh6yBgYGBwaVHUEkRdXV1zJw5kw0bNmC327FYLNjtdn7961+zYcMGzOaLv3SCnBSxeM1YIqM8Y5dki5gsqrxlnKrdkSCJHeV2PdfehKwcZ4wYTL1/u6sUiWwVUycTyGNlF6tcqsQXSnGpvq4tu1f6jNt7b1EORZ1nuJJG9ASn1rH+rE2+Fw0iUXpb68WpabmmlcIsY8CDulY8b0kLDS7d69i273UyBkxGTo3Nmvy55lxr19/C1Pt3eBXzIwdPZ+uebI9rf3dNN97YIFk084qiOF4UieF7NTAwUNOSkiIM/CeQ+xiUoJM5fvw4P/zwAxUVFfTr14+uXbsGO9UFhzdB16N3KocPurukvcV6qRMHlOiJunUbhqP+yclJGer4Mrmsh3z82vVSYoEgCC5rnT+iTsYtYWL9cF3LHkhCTk6aUOIt41cWnf6uy1s2qPo8a16/gazJn7tdh+xmlQWYbKXzNZ+/otMfV7ks2uTSLGvX36Ip4LSOfePNmxFFyC2I5uTZCAxBZ2BgoMYQdBcmgdzHRnWK6NSpE2PGjGHixImXlJjzhVrMeXvob9m9kglZUh26Bneop8ZWigvJKrbKZe3aumeVWwzbu2u6uWLVQHRLrABJJE29f7vTQqZ9PoB162/R3K68ni17tOvJycfLYm7k4OmMHDxdsS5tRg2Z6VPEaYlDX8kg8jGymFNehyzg5O8zBkx2O07LOqo8XoksDvXW6u16tu7Jdrlwt+7Jdrsub8f+39erqaozc7bSqBNuYGBgcKni9xNg3rx5fk/6pz/9KajFXKxID+yGLgtK5Nd6hlKl61V+8MsuTmXdOyVr1w+niOEgih5WO6Xl59013XSL9QJMcboBfWdtal/zlPsbxmSmZLPR6v0YJd5EnTfxFkhpEnmfUsCBJOq8JaPoCcZbr51M1oNf6p4rUJTXoZfhLK/PZheoqzeKChsYGBhcqvjtcr355pvdXu/fvx+bzUa3btKD5qeffsJsNnPNNdewY4e+SLhY8BVDp0QpypSCTm6NpSX0lKhdpuAZkyePGTVkpoc4VFrvRg6eDqLYkHigwYSsHEYNns4UL2LP27HQuM4Ieq3H9M7jj+szELesnmjSc7f6Or8/VrpgUa4hNfVxZ+svQ9QZGBi405JcrtV1Z6mzVTb5GmTCLTFEhbdrtvOFkiYpLPzZZw0C4E9/+hOtWrXizTffpG3btgCUlJRw//33c/311we57AsbdRKDEnl7j96pbtvlenC+aqnJgmHdhuGuIP8p97l3ppiQhXO7exKGh14Xpf95E16Sqy/0Ys6b8JFFpIjgV5cKaCgY7M95tCx2GQMeZNu+1zwEl5wQ4U3EaYm51euuY9oUdwudlpjrZ8unZ4dUl8XSF1pJGEo3uuyaffrFeqpqzTiCjoo1MDAwaFqq686y6/CzOMTmK7NkEizc2OMpv0XdkiVLeO+99/jvf/9LVFQUQ4cOZdmyZS4DFkh9Xnft2uV2XFZWFqtXr9adVxRFFi1axLp16ygtLWXYsGFkZ2eHLGQtqBi6F198kSVLlrjEHEDbtm1ZvHgxL774YkgWdqGhJ+aUpMXepbldFEVXDJ0WLlEhaj/cRw6e4RFjJx8gZ77KY+UyIP7EZ6lRihO9ch0jB03zGCf/6+18I50WQW/17ORzyP+q26z5cx65FhwAguBWb06ea9u+11jz2vWaZUnUr5X3/ZNvX2dCVg5rXrve6zXI+IonVF+bcg1qJmTlEG5xYDHpx0QaGBgYnG/qbJXNKuYAHKItIIvgrl27mDlzJnv27OGTTz6hvr6ejIwMKivd55gyZQr5+fmur+eff97rvM8//zyvvPIKq1evZu/evcTExDBy5EhqamqCui41QUVRl5eXU1hY6LG9sLCQc+earz9bS0a2uindqe59TuWHruQekzM7RWfcmzTHDESxIStVRPo+IS+H/YmpbN2zirXrZ7jqwMniYuTgBiG3dv0Mpjpj2Rrqqu30+zqUYtBbHTxXwsUDIHeUUK7Jm8h6b1EOd92vf25v69LaprVv5KDpbN2bTdZkaX0TsnLY9s06135lmRJZ5GnN40tgvbumGxkDdJcNwAFLKgdU1jmluNOz3Cnvv9a97372ZU6HPU6d/eIvG2RgYGDQVGzZssXt9YYNG0hKSuK7777jhhtucG2Pjo4mJcWPv8yRnu0rVqxg4cKF3HnnnQD85S9/ITk5mffff5+777670esOqmzJpEmT+OKLL3jxxRcZOHAgAHv37uWxxx7j+uuv580332z0wlo6/sTQaZUvUSOLNmVdOMAj2UFZykO9X6+mWmPi2PTwZjnzFpemnsOb67UpUK4vY+AU5Jov2/a9RsbAB9n2zWuucep1ZAyc4ib+1DF1bmMV7tpAkUWdUtB5qz+odX0dLnuMsioLRhydgYGBkpYSQ1dWdYKvflrW5OdXM+zK+cRFdwzq2F9++YWuXbty8OBBrrrqKkByuf7444+IokhKSgpjx47lySefJDo6WnOOo0ePcsUVV3DgwAGuvvpq1/Ybb7yRq6++mpdfflnzuCYvW7J69WpGjx7Nr3/9a9LS0khLS+PXv/41o0aNYtUq/TIWlwLKeDi1mFPH0AGK8iPu9eBGDp7ByEHT3YScIAjOL+X5ZrgseJkpkgVPfi3/2xiUVi+ldU7psh05SArgU27XcsnqxdjpCUEt0SffD7XA9fc6ZLY5O3xkDJwCCG7iTBljB7iJOW/r7GfLd1n5GiOmfbli9e7ju2u60SbGhrlRxYgMDAwMDGQcDgdz5sxh2LBhLjEH8Otf/5q//vWvfPbZZyxYsID/9//+H7/5zW9057Fapb/Uk5OT3bYnJye79jWWoFyu0dHRrFq1iuXLl3PkyBEArrjiCmJiYkKyqAsZdQKEUtR5s9ZJVjopmcFlpdsrlRdpcNPKNLhpp9y33dX2qzh9JludLt5RQ2YEFEoViKhSs3XvGmQ3q7tlayqZKWvZaJW+z5qs6FgxaCqiCInH11LYKYt31+z0uiYlIwfP0CzXEgzbvlmne43b9r1GxoApIAhs+2atphDtZ8tn4es3SfuyfK89Y+BUQBLn0n1rQLbMaQk6pZiWX2tZCVtHZWA2idgdYFjpDAwMDBrHzJkz+eGHH/jyS/eEt6lTp7q+7927N6mpqQwfPpwjR45wxRVXNPcygUYWFo6JiaFPnz706dPnkhVzIwZM0dyeFnsXnWLGM3LwDEYNmcGoITMlq5uGZUm9TbbEKfcpPeOiKLq2y1Y4pWVwy+6VbNmt3ZtVL/ZMSmjI0hU3WkkUSkGx5vUbWfvGTS5rHcC2b9a6RMq2b9ZKNd+cgmbr3rWu/VmTd2qeU4tQCDnZ4rZt32uarmLldW7bt45t36zVneuAJZXFk3f6PKeriPE30nV7i3RQuly9WeOUa5f3f/3vP5PUus6ZHGFgYGBgECyzZs3iww8/5LPPPqNDhw5exw4aNAiQ3LNayLF2Z86ccdt+5swZv+PwfBGUoLv55pu55ZZbdL/8ZcmSJQwYMIBWrVqRlJTEuHHjyMlxFxxHjhxh/PjxJCYm0rp1ayZOnOhxQ7Q4deoUv/nNb4iPjycqKorevXvz7bffao6dNm0agiCwYsUKv9cu8+k+T3ccSKJq6x7JnarsJ6olSORx3ti6Z5VbfJ3yGOkckmVQ7Q5Vo3aHylmfa16/0S1ZQu1qVaK2DoEkVLbuXeNhdVLjTRwp1+iNxog6X9m9yutVJnTol3fpxsLXb3K99setDA33wZ9MV61kD2+Zt5E5jxEbacfIdjUwMDAIHFEUmTVrFps2bWLHjh2kp6f7POb7778HIDXVM7QKID09nZSUFLZvbzC0lJeXs3fvXoYMGRKSdQcl6K6++mr69u3r+urZsyd1dXXs37+f3r17+z2Pr9TgyspKMjIyEASBHTt28NVXX1FXV8fYsWNxOBy685aUlDBs2DDCwsL4+OOPOXToEC+++KJbmRWZTZs2sWfPHtq3bx/4jQgAWeDpocyEVf6rFG4CnnXlEvJWBRxPBg2CI2vyLuf30rz+iBn1NikOLXAyU6S53EqJqNYnI1s6vaGVUatVN07LVal13TK+sm0XT97Je4t8J0FoiUJf3TPU2cV6mbfK7w9YUkk4Ns+IpTMwMDAIgpkzZ/LXv/6Vt956i1atWmG1WrFarVRXVwOSoem5557ju+++Iy8vj82bNzNp0iRuuOEG+vTp45qne/fubNq0CZA8b3PmzGHx4sVs3ryZgwcPMmnSJNq3b8+4ceNCsu6gslz1ePrpp6moqOCFF14I6vjCwkKSkpLYtWsXN9xwA9u2bWP06NGUlJS4snLKyspo27Yt27ZtY8QI7Yb2TzzxBF999RVffPGF1/OdOnWKQYMGsXXrVm677TbmzJnDnDlz/FprIJ0imgplVwhBEFwlUuTiwoHirZCu1tjGkjFwiltvVW+iRRk3pyzirDdeSSCWM+Ux/rDmteul4EcEsibv0hyjvi511mww59UqMqwmNXU+FTVGOzADAwMjyzWQLFf3mPUG1q9fz3333ceJEyf4zW9+ww8//EBlZSUdO3Zk/PjxLFy40O3eCoLgOgYaCguvXbuW0tJSrrvuOlatWsWVV16pu5Ymz3LV4ze/+Q1vvPFG0MeXlZUB0K6dVM25trYWQRCIiIhwjYmMjMRkMnkEKCrZvHkz1157Lb/61a9ISkqiX79+rFvn/gB1OBz89re/5bHHHqNXr14+11ZbW0t5ebnbV6jR6hihjL1TWuLk7wVBICGvocAueFqd/BVfelYsNaEqLZJ43FPUaJXjACn7V7ZWKYs4e1uLL3HkLT7Nm8tZZvVr17Nt32tkTf6cbd+s9bA0Ko+V4genuKyZelZN9Xn1XN5aJVOU6wfIz19GjOF6NTAwaEGEW2IwCUHlYwaNSbAQbvE/zl8URc0vWZh17NiRXbt2UVxcTE1NDT///DPPP/+8h1BWHgPS8/rZZ5/FarVSU1PDp59+6lXMBUpI7+ru3bt9Kkg9tFKDBw8eTExMDPPnz+ePf/wjoijyxBNPYLfbyc/Xzxg9evQo2dnZzJs3j9/97nfs27ePhx9+mPDwcO69914Ali1bhsVi4eGHH/ZrfUuWLOGZZ57R3KeV0RoM6m4TaoEnCIKbkJOPkcfJHSK0BAoEVptOy8337ppuLHy1nMMHA7kqfTZaYc3rN7isdBmDppH1wGce8WF67k9vLsgJWTm8tyiHjVacLdM859QSRWox5+3eCYLgNl6Ki+vG2jduYuveNW4JIlv3rmHbN+vchJyWpc6biFbXv9NK6FALwOHi83xsfoJ6u2GlMzAwOP9Ehbfjxh5PGb1cm4CgXK533eXewkoURfLz8/n222958sknWbRoUcALmT59Oh9//DFffvmlWzbJtm3bmD59Orm5uZhMJu655x4OHTrEwIEDyc7O1pwrPDyca6+9lq+//tq17eGHH2bfvn3s3r2b7777jttuu439+/e7Yuc6d+7s1eVaW1tLbW2t63V5eTkdO3bkH19MITo23LVdLerUsXH+4Ku3q5Ip933qesg3tPxSCD1RagU15f4dmhYpX9aepiYzBe56JvDer8r9eu7HUUNmsGX3Kte/8hhf+FMgWc7YVSd5+KqxJ1vqAJfAk0un+BKrenMrx44eMoOPd7u3ROvS+RHOlIVjuF4NDC5dWorL1SAwArmPQQm6++67z83HbDKZSExM5JZbbiEjIyPgBc+aNYt//etffP7557rZJEVFRVgsFtq0aUNKSgqPPPIIjz32mObYtLQ0br31Vl577TXXtuzsbBYvXsypU6dYsWIF8+bNw2Rq8Djb7XZMJhMdO3YkLy/P55rlGDpZ0B0+mO8W2xUI6pIjgQo6mfcWSbXo3FAJOrXFSSkalJbGUFkd/UUqZyKw7ZuGLFm1RUqLYESot5g65Zx6FrzFk3eSMORJpul0hFBbN/0RzFpjMgZMZtu+1z3W7OuatEhOnk9VnRFPZ2BwqWIIuguTQO5jUC7XDRs2BHOYB6Io8tBDD7Fp0yZ27tzpNTU4ISEBgB07dlBQUMAdd9yhO3bYsGEe5U9++ukn0tLSAPjtb3/rkVAxcuRIfvvb33L//RpNRf3kWMV79OidSqeY8ZoZrXrWOmViQ7DWuQlZDWJuy+6VZKZAcfpMtuxZpWvtUW/ztwhyUyAX7l37xnQQQEBg5GCA4by7xrOenjca3NLSa2XZGNC3/HkTRBkDHwQEMgaIiFzPJ/teQ9mzVmt+rRhGb5Y3tZjzNqe3moBa15GWWM3P1mhshuvVwMDA4KIkKEF3+eWXs2/fPuLj4922l5aW0r9/f44ePerXPDNnzuStt97iX//6lys1GCAuLo6oqChAyirp0aMHiYmJ7N69m9mzZzN37ly6dWt4oA0fPpzx48cza9YsAObOncvQoUP54x//yMSJE/nmm29Yu3Yta9dK7rH4+HiPtYeFhZGSkuI2byAoM06PV25y2zdy8AwS8lZRrHitFHxb9wRWekS2yqnjqUY5S9m8u6YbozaM4KkFpxl6h3bwf6jcq5kp+s3kA0VaU0MdQ1mQrdswwmfmrixg3QswN9SsU65TFkbyNjnWbeoDWuuRxVzDoqZN/hxZzOm5fPXur56wfndNNw8RBw1WOnVpEl/uZuVYALJeISXlcaegM0SdgYGBwcVGUFmueXl52O12j+21tbWcOnXK73mys7MpKyvjpptuIjU11fX1t7/9zTUmJyeHcePG0aNHD5599ll+//vfe5RFOXLkCEVFRa7XAwYMYNOmTbz99ttcddVVPPfcc6xYsYLMzMwgrtY/jlW8x/HKTR5iDiSBtz8xFRBd44JFtsqpUcbPTcjKYcvulQy9Y5PfZTqCJVRiTmbqAzsUrxrEh691b7RKlkmtfrda63x3TTfuekZKjNi6dw1TH9jJ2jdu8phX7vWqFEFrXr9Bcz1NFYOYMWCyR8as/K+6Tp0S9evE1nUe98XAwMDA4OIgIAvd5s2bXd9v3bqVuLg412u73c727dvp3Lmz3/P5E763dOlSli5d6nWMVszb7bffzu233+73WvyJmwuEHr1TPdyWatefjL51TnQdo3TFahW/bTjHSrdxSpGx8NVyOkZNBda6Wakksdn8blY1ksv1FrbuyWaU6p74m527ZfdKN5erMiFCRq/e3da9a5iQRUA0RsR5WvSu83u8zNo3bmLqAzs1M1/VllnLoflEdVhBVa0RS2dgYGBwsRGQhW7cuHGMGzcOQRC49957Xa/HjRvH3XffzSeffMKLL77YVGu94JATCzrFjPcplrQKGW7Z3eCK3bJ7pYcAlh/YsnVOHZsnCzaAkYOnc/hgvisrUxY1G63QMXLMeRdzMlv3SpnLU+7f7rXenF4smXYtP0/BrCXE5HulLGmCzh8dGQOnNNoi5y1mzuN8Tiud8vxyX1yvrlYaftYHLKl0aFeD2ejzamBgYHDREZCgczgcOBwOOnXqREFBgeu1w+GgtraWnJycgKxilwKyqOvRO9X1pdyuhVzEsEfvVFcMmJYVT35oT7nvU7fOCcp/Zevb1j3uJV4yU2DNa5JF6ETNR8FdXIhRuxBltuxe6SrLIrsetSx2mSkNLdaU+lgUpfun1TdVKd6K0zzNc2IjLVmZKQ0xerIAyxjwoNsY5bVs2/c62/a9TtaDX7pey2QMmOyMtXuQbd+sQxAEV+9cf0qtAHQ/+7LhdjUwMDC4CAlp669LCblsyZ79mykWtuqO6xQz3vV9Qt4qijpLCRL7EyWX7MjBMzysc8ofyfHKTW7jlAkR4B4g/96iHO56Ri7+693iJrtaG2OZk5MKQpkYAb5LcGi1N5PHN9Tew+VVFEVZlols2bNa81zqDNFbB0xl2oO7WP3a9ZrW06zJn+u6bkcNmQGiyJY92YwcNA25U4Msvvzl3TXdXKLbHYGsB6W2dnIRY1+xkvI6+9nyye+wgkrD7WpgcEnRksqWlJ/Np7qytMnXIBMV04bW7fSNKC2ZJilb8sorrzB16lQiIyN55ZVXvI71t/vCxcCJyg+Ijg0nLfYujlW857YvLfYuN3FW1NnTyqYlFo5XbtItfTIhK8eZJesZIL/RipuY06sl16N3KhsP5tMjMZArdSdjwGQ2Oq1HhR0ng/V1H0f4RtnpQC2w5H2jBs9wK9eiHANyDN10Saq46Trtv1v0hM+0B6W+rJ/se81VskTG3/6zowZPY8ue1YwcNI2te1d77JfRE8QTsnLYti9H0x0rFzYGGDUoi3fX7NS8JnX3iAOWVLpG2aiuC8dh/ClnYGDQzJSfzeeNxeOx2+qa7ZxmSzgPLNzkt6jLzs4mOzvbFVvfq1cvnnrqKUaPHg3A2rVreeutt9i/fz/nzp2jpKSENm3a+Jx35cqVLF++HKvVSt++ffnzn//MwIEDg70sD/wWdC+99BKZmZlERkby0ksv6Y4TBOGSEnQyWmJO6QZdu344giBIWa6JDW8quZCwMl6sR+9UjlducnPLysLPW506LXeuVpHgUMTLKV2Byu8bi5aoA6VIET32addf87TGeUNdAkY537ZvXlNt8ywboo30M/Mm5iA4K2fGwCku16kIrH3jZqY+8Jlrv1bNOvl17M+Pcq7DS1TWNm8/RQMDA4PqytJmFXMAdlsd1ZWlfgu6Dh06sHTpUrp27Yooirz55pvceeedHDhwgF69elFVVcWoUaMYNWoUCxYs8GvOv/3tb8ybN4/Vq1czaNAgVqxYwciRI8nJySEpKakxl+fC7xi63NxcV+223Nxc3S9/a9BdbKTF3kVabENLNHVA//HKTS7Rp7Sg9eid6jZWT7CJosiW3Stdc2jFg8koBVuP3qmkxYzTtNIp/21JeCuQu8UZC6jcp7RAgSSjtuxZzejB07yeZ/Tgabpj9MqSaHWBUAvMLbtXsWVPtmutjcVTMEumNcn4K7J17xo30ajnRlauMcwsome1NDAwMLiUGTt2LGPGjKFr165ceeWV/OEPfyA2NpY9e/YAMGfOHJ544gkGDx7s95x/+tOfmDJlCvfffz89e/Zk9erVREdH88Ybb4Rs3UHVoXv22Wepqqry2F5dXc2zzz7b6EVdiByreM/NSqclmGTBpxZRyrFqS5+Msnbdlt0r2Z+Y6pZoIc+RFnuX2/cAxyrf1xzrjfMh9HwV5X13TTdGDZ7u+l65XYlSSI0ePI1Rg7IYNagh4UF+LYoiDoVLXBaGep0c5DFapUH01uxNeHvbp0Zb1IluSbjq+nR613LAkkp0pGcdSQMDAwMDd+x2O++88w6VlZUMGTIkqDnq6ur47rvv3DpUmUwmRowYwe7du0O11OA6RTzzzDNMmzaN6Ohot+1VVVU888wzPPXUUyFZ3IWKLKTShkiWtf4pq9h4MB96a4s18E9A+WNVUwpCPXHYvzDflf2qns+XW9Zf16Ac9xWoO9abC3NCVg6ieLPbaz2350inYJMRacg23RJgcoJeyRR/0LpX/Wz5HLCkuu3Tu6fK++3vvfTWA1dee86RP5GYNJ+aerNfcxoYGBhcShw8eJAhQ4ZQU1NDbGwsmzZtomfPnkHNVVRUhN1uJzk52W17cnIy//3vf0OxXCBIC50oiprB/P/+979p165doxd1sSALqqLOMwJq7eUL2b2rdPEGglLMgVSHrmPkGACvFrxA4ry27XsdhMDfXvK59YonT33gM5cw84Wo+PKFv3M2N97ut9Y98tXBQi7T8u6ablwWX4vF5MBwvRoYGBi4061bN77//nv27t3L9OnTuffeezl06ND5XpZXAnritm3blnbt2iEIAldeeSXt2rVzfcXFxXHrrbcyceLEplrrBYPsfk2LvUtT+IZifuW/3kiLGU9azDivY07UfOSqRXf4YL6HdS4zRfoq7Oi9+K2abd+sc33vrwv38MF8r31JJ2TluJX/0LOWBVoipDk5YAmNO9ubu9d30gh8f3gFnRJrCLcY8XQGBgYGSsLDw+nSpQvXXHMNS5YsoW/fvrz88stBzZWQkIDZbObMmTNu28+cOUNKSgCxNz4IyOW6YsUKRFHkgQce4JlnnnFr/RUeHk7nzp2D9jFfjCgFl7IeHaBZ5iTYub0R76x5B9Ap+k5A5HjVZt3xWhmyhZFjOFHzEYcDcJ9mDJzCtm/Wuc2nJeq0XLvqhAdZyEk113Kc1jT/BZvS9SoLbLVFzh8B6DurNXACmdNfC6lWjUL5tfrcZK3gml6zyT0TRb3dqEtnYGBgoIXcQCEYwsPDueaaa9i+fTvjxo1zzbd9+3ZmzZoVsjUGJOjuvfdeANLT0xk6dChhYWEhW8jFgrJMSINLVORYhZTUoI5fa6yw00OeV3mu41X/AqBj1FhOVH/g9Xj5OjpGjgmqLIlazDUGWaDIokspvoIVWco5/HW3hlLMDew1g3PVYTz8jIXqunGcLVrm8xi5vIn8vZKMgVMAE9u+WUPGoOkIAry7ZofHHFolX4a/Vk9MZDillQJGsWEDA3C3WBu/E5caCxYsYPTo0XTq1Ilz587x1ltvsXPnTrZulZoIWK1WrFYrv/zyCyDF27Vq1YpOnTq5ws6GDx/O+PHjXYJt3rx53HvvvVx77bUMHDiQFStWUFlZyf333x+ydQeVFHHjjTe6vq+pqaGuzr2mTHNUoW6pKEWMLNSUsW6ywGoKEafE2/x6Yq6j0xIH0nUcPpjPYfTFnDLxQR6v/DeU6Ak3f0RW4vG1FKVl6Vrhmss928+WT/kVy6motfCT1YTd0SCgWrVdwLmSJT7nUAs5WeAVAiCSMSiLbXuzGanIBvbWB3dCVg4zHoT3FuXwSfh8quuMDhIGlyqSiBMEaBVpJzbSTnWdidp6EzX1JkUhbuP342KnoKCASZMmkZ+fT1xcHH369GHr1q3ceuutAKxevZpnnnnGNf6GG24AYP369dx3330AHDlyhKKiIteY//3f/6WwsJCnnnoKq9XK1VdfzZYtWzwSJRpDUK2/qqqqePzxx/n73/9OcXGxx367/eIviSC3/tr+9YckxkdxoipwgaYUek0t8AJBKewCKULsr5jTKnbsjZGD9MWYFmrXZFO1Jutna1j7L4mvEGYWaRtbz+CaFzWF1/et5nC8KMq5Rf1QEAkzO+iSXM43P/pfv07r2qR2YwJTH2iw0Pnq9Spb7rIWjqfWZljqDC421I85z/d3mNlBclw9kTmPusW53tjvIcqqzRSfC+NcjQWHQ5pNcJu15f++tJTWXxdCp4iWRJO0/lLy2GOP8dlnn5Gdnc1vf/tbVq5cyalTp1izZg1Lly4NatEXKiuWneaJZ65slFVKT8wp3bGdYsa71aLTGuttLplO0Xeyde9qr2tVijlZpMmoX8vbtL73hn9Cbjpb92YHbEGTXZOFnaQ4vlCKOcAl5sSrlnCsMBqb09JWbxcoKAtnq+UJul1RR86RP7mOKUybTn2hN+uXQL3dhLUsWme//2zdu5qRg6ezdv1wtu5ZpSng5OtQx9d1zJ/NqctWUFNvQhRb/kPKwMBfYiIcOEScVmg1IhaTyOEjL4IqaWnXgT8zevAM2sXWU1Nn5mylhZo6E4IgzVVZa5T+CYTW7VJ5YOEmo5drExCUoPvggw/4y1/+wk033cT999/P9ddfT5cuXUhLS2Pjxo1kZmaGep0tlkmP7qNU/DeZKXA6YgLW2nf9PjY+d6VHCRE9vIk58C7klHF7x6v+5SG6Okbexoma//M4TqsAslrcqfElbNVu2VC0IdNioxUyOoV+3n62fBKGLqKsKpyjZ6JcYq4BgVqbwOmzESQmzSfDtIyNVti2N5vL0x7xMbtAWVXgcalK8Sqz1VlcWa+jhZ6reuHrN7F48hzOdHyJczXyg8oQdgYXNuFmkbSEGqrrTRSfC6OyxoxdYbSLDBMpKNCPY/3Y2Vd79OAZxEXbcDZp4WxFGD9bo7A5wPg98Z/W7VIvCYHV3ARVh+7s2bNcfvnlgBQvd/bsWQCuu+46Pv/8c2+HXrRstMJn375KYtgEwN0CpSda9ifqC5rDB/M5VvGeq4yI+kuL/oXa24s7z3Db3yn6DvcBPj6HlLXpevROJWPAZF3R5o9I86d4McDWvY1rnaUUOKGgny2fxKGLqK6zcKI4mlqbd4tbTb2Jj21PuLbY7L5+3UTKzvpn4ZZLyQAUdnzQbV/GoCxXDJ2Wq1UWdnpxiQcsqfz56X8RF23DYrQIM7jgETGZRCxmkeTWdZw6/TylZ5dwrmQJd0QsISbCQWGBf7937fJWIQhgEsBkgjYxNuKibU28fgMD/wjKQnf55ZeTm5tLp06d6N69O3//+98ZOHAgH3zwgVspk0uRertAO/P/AH/2a7yeMBo1ZKZHj1flay0xdBjA6r7d7bjespXOvWzJier/051Tb73+ijZ/kcVJUdo0NvpoZu/vfKF0tUpi7inq7SZOFEdRUWPG91/kAvV26NjhMU6cXM71tuVs5ndBr0G+JmXLsI1WwPqa27hte9cwctB0Rg2e7tb7Vqt8iVZXCfn7l5/azJKXR3G6NIJz1f5cr4FBS0MkNsJOats6vvr3Kx7t9qTPCN8Z5m7jrasYM0T6I9liFmnfto6qWjPV9UZCkcH5JSgL3f3338+///1vAJ544glWrlxJZGQkc+fO5fHHHw/pAls6OYesbuJl97//zFn7PxnS92EWz5ICT/2JK1MLoGMV7wXUexW0e4PKYk49h4eVzs91yh0lAj1OC+V6i9Kms9GKW5P5lkTPDqnYHSZOl0RRUhmO/x/cAuVV0t9N3gWmSGSYdjKR8j7Jok7+0iPhmCTkRg3x3aFEL8YOYMHsLVyRXEVspB3DUmdw4SBiNonEx9rItz7P/sMrAO+/M8Ovnen37B/tXuX6PjbSTkykI9iFGhiEjKAE3dy5c3n44YcBGDFiBP/973956623+Oyzz/jxxx9DusALlVLHP3hvUQ4pEf6151KKIn9aemmJqEAsUnrFhZUiUusc2/a97lGXTs8ap5xDKUrkbcr1Nta92tSc6TiVonORFJRFBJws4BChTbsFmoJbQnr4FBY879qitsLp1Z/TQhZ9snVO/7z6KF2xkWF2IizGA8vgQkAKEYiNsFNavIS8E8vd9o7x8gfO9m9X+hyjRCnqAq8VYWAQeoIqW6LHv//9b/r3739JlS1ZvGYs/QZ6Rt/LQf+LZ7Xm5TUZFNb/MyTnVYunUUOkvyrlVmNKt6z8YA9lTbhAkhm0yocUpU1zvQ7WGteUyRRaZKbAT/GzyC2I8RE3Fyyibg06D/eqap+WwPPlbvaV9aqVPJHW8VHOVoRhuJQMWjYirSPtnMp/3vdQH/j7R9TowTM4XhTJieIIxBb8+9FSypYYBEYg9zEoC51BA/96o6umuJBF1MJXyyms/yftzP9Dx2j/rHWgb6WTBZzy+y27V2quQWnZSYsdT5qq/RhIXSP8QXa1KpMjvJGZgkcG70ar1Hpr697Vfos5tXWpucWcjO8kiGCRxFw/Wz63XhtYr1x1PF1j0YuxMzC4UDAJhETMgXtYg7ffs4/3rKJdbD0RYQ6MsASD84kh6BrJ4y+c000UeP0Pg13fL3/2JOdqzH6LEXUZEjm7dcvulYwaMtND2Mmvlduh4QPpWMUmjmmUPvHVAgzcCw0rY+jUblmlq9ZbBm8g7E9MJWPgFI9M2+ZkoxWq65qi1pQk5jJTIGHwkySdfN3VfUN5bplgxFuoBJ/F1JJtDwYGACLhFodbwe9g0PqdKUn37ob94vs/k9S6HsH4JTE4jxgu1yBRulwjo8L8Fhlxwq94bOZWJmTl+DxGWVhY7U4Fdwud/FoWfMrtgQggpXjzti1QtLpDaNWjkz9M/anPp655178wP+RFhEGyUs17bixnKxvvcjxX8kcAWrX9HQIiCa3qSEs8x2ffrSVjwOSg+uaq0Xog6d0XfyxwE7JyuDJ9HtYg4gcNDJoLAZGUNnX8lPsiIGWmH7A0/o8/ZQiDt3CGfrZ8itP+REmVhZYYmtCSXK41FVbqa8qafA0yYZFxRMaG0J3RjDRZp4i77vLuMiwtLQ1kuouCbj1TiI4N91pQ9/U/DGby7/cAUCb+A2jNDf0f8hpXJ/VR9S7IlEJO+Vot/JTCMFD8FXPK61cWMpZRije1Va9/YT79U6A4fSbkuq/dG5kpsFFZ78/vIwNjQlYO7duOoKrOTE2IShPIwq68BI4eh4wBD7Jt32s+jvKNL4ucP+Vc1LF0767pxuLJjxGeuqKJ3M4GBo1BJMwsMtqylEM/55PZIZWNVtzEnLrkj79/+AVS/uiAJZV+x+ZR3X5FyD4nLkZqKqzsee9uHPbma/1lMocz+K53/BZ12dnZZGdnk5eXB0CvXr146qmnGD16NGfPnmXRokVs27aN48ePk5iYyLhx43juuee8lm0TRZFFixaxbt06SktLGTZsGNnZ2XTt2jUUlwgE6HKNi4vz+pWWlsakSZNCtrgLCa3YLvm1LOZklHF1HaLv8lk4+PDBfERR9FnCRHa9Kh/qo4bM9EvMdYy6HcBNvGmVKPGGXLh4o1U/81UZx6ccU5wuidLizjM8xKBewWQtK16o3LHvrunmdh9jI20kx9ViEkDOpPMP0fUlizgtZDGXMWCyh9vVH5QPKm8PIPW+CVk5bl/gWZtuQlYOC1+/ifhW9c5HlBEnZNBSEImNtDPastQl4rSSh2R8/X6oUcfQ+Tr2gCWVwoJlhBkFuXWprylrVjEH4LDXBWQR7NChA0uXLuW7777j22+/5ZZbbuHOO+/kxx9/5PTp05w+fZoXXniBH374gQ0bNrBlyxYmT/b+uf3888/zyiuvsHr1avbu3UtMTAwjR46kpqamsZfnIqQu10sJ2eX6jy+mEB0b7tcxWla8OOFXxEba+fQb35YprdImsotVz1qnPq6pULtRlefVstgpcUsAEaUPQhFIyMv2epyWaAx1QWEtOnd8lKo6M3U2AbtD/itc+de4FG9mNotEWBxYrYEHaWemQGFHyQXr7zWpXUMQmFVC6X5VijuZl7JvJa8wirIW6lIyuNQQiQxzUOilZVco0Pr98/U72c+WT17yK87WgC2DluJyPVeUw74P7m/y86sZMHY9rRKCT/Jq164dy5cv1xRu//jHP/jNb35DZWUlFoun41MURdq3b88jjzzCo48+CkBZWRnJycls2LCBu+++W/e8RpZrC0VLWJWJ/yD5uP9uRpn43JWaLtYtu1e6xdFpkRYznsMH8+kUPY5O0XdqjukYOcZlofPHUidbD9ViDhqsb2r6F+brWt9AKjasVQBZPqapkiR8WcjyTrxAwZll3Ba2lDsilpAcV0erKBuRYXZaRdm4I2IJ5SVLKClaGpSYk5Hj6fwVqOo4n0CFrbpNmLo12Nzpn5B4bB7hFsP6YHA+keo2xkbayTC5i7nGJkRo4a+Yk39n3l3TjQOWVNrG1CMYvycXPHa7nXfeeYfKykqGDBmiOUYWyVpiDiA3Nxer1cqIESNc2+Li4hg0aBC7d+8O2VoNQdeEaLbnUvQxlb+Xa8Vd3/8hQFugjBzsnmW1PzHV5WJVu1l79E4l3hmLphVTdaxyE6MGT+d41fuAJJDk8iUdI28DJNdroO7X/oWeMXLe8Cfxwddxale30iIVfIanf39V3/VMN+56phu/5L3I6dPPU1iwjNOnn2+UhTAzRRKUwc6h9bAJRNzJAk7tfpU5YEklsXWdYZ8zOA84iwZHSkWD8zXKkxywpIa0lI8W/sSgAhw9/gJjI5ZgEow/gC5EDh48SGxsLBEREUybNo1NmzbRs2dPj3FFRUU899xzTJ06VXcuq1V60yQnJ7ttT05Odu0LBYagawLU7kel4FBaldQWpjlZ2xh29UOaVitBIx9etszF5650+5BJi73LJXq8ffh0ihnH8ap/sT8x1VW+5ETN/2mO9ScxQk+gyUWPlRw+6N06p4c/x3iLodFCvd/f5ARl3FlLIRTuZmVShLrPK0BUzmNERxitwAyanzbRNlJOzHW91nq/N3XIhR5anweHTuZTdnYJEYZV+4KjW7dufP/99+zdu5fp06dz7733cujQIbcx5eXl3HbbbfTs2ZOnn376/CxUgSHomgB1Fiegmeyg5PDBfBa+Ws5Z+z85mvywx0NULh58+GA+abF3kRZ7l0uIyC5N5Xnlc+m5Xo9Vvk9CntQaSu3WlN2tslWusSVLwFPUZTqzWvXcsW7rcSZsQGCJEPIHu69abufrAaDFRqvkan13TbegkiOU9LPlM2rwNEYNngZI1jZ/eruCu/tVnTRxwJJK6sm5WIzAb4NmwiRINRtPnFoeklIkzYW81o75s2kTbcNsakiSMmjZhIeH06VLF6655hqWLFlC3759efnll137z507x6hRo2jVqhWbNm0iLCxMd66UFOnBc+bMGbftZ86cce0LBYaga2bUwk5L6JU6/uHV8nOs4j2OVbxHcbqUDBGfu5LMlAYRt2X3Sg/homXZksVRwrE1qjGCh8u1qRFFEf38HMk6qRR2avxx8za1KyaUTMjKoXD3YqDBDRsoydc9Awgu6+6ErBym3LedUUOmB70uZYxQx/gaI57OoIkQEQQRi9lB6ygblxc8fL4X5BdadR3vGDqDA5ZUEo7No7R4CQmxcgFi4/fmQsLhcFBbWwtIlrmMjAzCw8PZvHmzz2SF9PR0UlJS2L59u2tbeXk5e/fu1Y3LCwZD0DWSnEP+m3e8BfGrt/XoLcWC3ND/IXr0TmXk4BlkpmiPU1uYRg2ZyUare8kSb/Fq8j7538QTr7li6ZT0L8zX3O4vxyreo39hvpul7ljFe654Py1EYNs3awE4Uf2hmzBVi1T5nqm3yShjyZTbW6rQO2BJdcXTbdvn2UXCF1v2rGbLnmysXzzl2jYhK4czitcyyoBuLbT2/SdnBZ3yZxuizg3pXljMDsLMDswmhzMw/lK+P9L1mwRRcS+07knD9jCzSPlZKbHo1OnnPaxyLbUlnfyH+B1DPS3h8jXknniB8rNLjNImLZgFCxbw+eefk5eXx8GDB1mwYAE7d+4kMzPTJeYqKyt5/fXXKS8vx2q1YrVa3ZoqdO/enU2bpO5MgiAwZ84cFi9ezObNmzl48CCTJk2iffv2jBs3LmTrNsqWBIm6U4S6NMTIQVkAHK/aDKCZ/Slvl4vrguSGVNeNa2f+H6IjHCQdk4SPLLyU5UDUnRbUwkWvuLC3kiIdI2/jRM3/0b8wn8KOD7q+DzaZQUYWdLLAkynqPMNV50yU/mHr3mzd7hH+rEVt/VT2mFXHNsrznY9esf4SaDeJ0UOm8/HubI/towZP48yXiyQrnijfcemjYOvetW5j1XXpZORtT71wGyeKWnZj8qZHxGISaRNjIzLMQetoG2FmEZtDoKrWTHm1mfIqC/V2rTI3FyvS+ykyzEGH03M0XaWh6uZwIdLPls/py1ZQVdc8RYiNsiX+ly2ZPHky27dvJz8/n7i4OPr06cP8+fO59dZb2blzJzfffLPmcbm5uXTu3BmQRNz69eu57777gIbCwmvXrqW0tJTrrruOVatWceWVV3pdSyBlSwxBFyRqQQfaNdi0xIHWPrWVSCnajiY9TG29QHxrGyer3tMVMocP5jNqyEyPJAkZeZ/yWOVcsrjan5hKx6jbOVH9IeDu6pS3NYb+hfmawrV/YT7FnWdwrHITnWLGgQgJxxrESDBCUinS1G3C9iemuglKOUO2JcXUqdF6AGYMmEziiQaRV9RpKlu/WcuowdPYsme15jzq7FUlIwdlsXXvGs1jtHhxVQY/5UdTe0lWx5c+PqPCHVzWrpb4VvWYBRFBAEFwllUEbA6Bc9Vmis+FUVoZRq1Nu36h57aWjP6jw2ISiY5wcOq077I93t6L3vZdDPSz5XM85WXq7AJN/XNvKYLuQugU0ZK4YATdkiVLeO+99/jvf/9LVFQUQ4cOZdmyZXTr1vDgOHLkCI8++ihffvkltbW1jBo1ij//+c8e6b9qTp06xfz58/n444+pqqqiS5curF+/nmuvvZb6+noWLlzIRx99xNGjR4mLi2PEiBEsXbqU9u3b+7V2LUEn06N3qqvd1+GD+W5iTWkdUou44nRPwRXjmEi34pd1xymFibJkh9Y4ZQKCv90jTlR/6Cbu9FCuo7EWPJAycOWkjcJOU9n2zVo365rynN7WAvpCUC1m5fIxSmtnSxR3Siud+nsEE9u+Wdeo+dWiUflQVYq6tetvYer9O5iQlUPvK+dyojhSUWj5Ykb6yDSbIMzsIL5VPclxdUSFOwB0G7SLIjhEqK4zU1JpobzKQnWdidp6EyIQbpGEYG190z/cg6ehaHZMuAOTScTuEIiwOBhS9wLQ8DtzsYuxUJGZAtuZD0BtvQmbQ94T2vdASxF0YPRyDYQm6+Uaanbt2sXMmTMZMGAANpuN3/3ud2RkZHDo0CFiYmKorKwkIyODvn37smPHDgCefPJJxo4dy549ezCZtEMAS0pKGDZsGDfffDMff/wxiYmJ/Pzzz7Rt2xaAqqoq9u/fz5NPPknfvn0pKSlh9uzZ3HHHHXz77bcBXYOyl6vM4YP5umJOFhn9Ve1oMlOk8iOnO8zi8Levck3P2XQ/+zLwspvlqEfvVKh4j2NKkVbxniRMrO7WJqxSckRa7F0Ux+Ieq5Y+E0QREZHjle97iJvCTlNcQ+XYNS2RJG/3R2jJ+5T3Qk+QFcU0vJZj6EASmYnHGwRLx8jbSDzxmts8ynVutEIm2udxc732TqVHorvVVFmoV8tNe76Q/wS79drJZD34JROynNsRSDreODH37ppuvEs3Fk/eScLQp/nkmzUeYm7t+lvYuiebrXtyAGmb5dDjtEl/keKKMFquGGksIiYBWkfbaB1lJybCTlSEncgwBwL6Qk5GEMAsQEykdKzYtpaqOjNHz0RRW28iPamaertAQVk41fUmbM1gtfEP6bojwhzEREhr/+HnlyhRjTqq+F4p/A1h551DJ/OxWpYxcsBMyqotnKsxU3QurNlcseeDyNiUC1ZgtWRalMu1sLCQpKQkdu3axQ033MC2bdsYPXo0JSUlrr8oysrKaNu2Ldu2bXOruqzkiSee4KuvvuKLL77w+9z79u1j4MCBHDt2jE6dOvkcr279JVvklOg9/GWBILsB5X9jHRO5UmWNUyIfo7ZUAW4WOFm4KQWJnBErv5ZFYlHn6R4ttrTEndJCJ22byonqD3Rdtnp4G6O28vUvzKcobRpb96722r5KKXb1BKPW98r4RZdYdqL+2SnbmJ1vq92t10rJEdOmfOn2oLx1wIN84mcNPX/JGDSNbXslt60ylk4t8hZP3kldj+c5URR5kcTSuX8sCoIUC5bcpo6k1nXOgHbfIk6Pj3evcrMA97PlE3XNEr7+9yuuMf1s+Zy6bAW1NhMOD6tNc7hnpZ9kTKSdW0TfBbPVws3XawNPxg6ZgQiUVlk4WhDJuRozofoZtyQLnYH/XDAuVzW//PILXbt25eDBg1x11VV88MEHjB8/nsrKSiIiIgCora0lJiaGhQsX6hby69mzJyNHjuTkyZPs2rWLyy67jBkzZjBlyhTN8QCffvopGRkZlJaWar7Za2trXSnLIAm6jh078o8vpnAst9j1wFe7J33F0GWmwOF2s+lxVhJyarepEn9cmbKgKeo8g617VgG+szi1xJyWUJPHus6RluUqebI/MZW0mPEgCLrJF0rB6S3BQZ29qq4jpxS2MrLA1Dqvct3qa1Vfk3w+pdCWUb72x1I3Zuh0QOCjr1f5HNtSkR/CIwdN81AvU+/f4fp+QlYOvbrOvQgEnUi4RSQ63E5kuIOocAcmQWo1JVnk3K1xH+8O3c/WHxd/UvJ8autNlJ1dAkBq6uPYHVJP4XqbEMJ7L7l/42PryT3+QqPWbBAYdwyVRN3ZCgtHC6KorDWF5OdqCLoLkwtS0DkcDu644w5KS0v58ssvAcli16VLF+6//37++Mc/IooiTzzxBK+++ipTp05lzRrPwG3AddHz5s3jV7/6Ffv27WP27NmsXr2ae++912N8TU0Nw4YNo3v37mzcuFFzzqeffppnnnnGY/viNWO540bpwS1zovpDj4QHpQXo8MF8BvR6iCuL/+zfzVGgJerkrFGlZW7k4BkIgkB87kqXdU5pmSt2ulzj81Z5WKdkJAtZFserNtMp+g5Xxq77/oYWYsrteiJReR1qQSXH/BWnz3CuLdtD4BalSf7FrXvXSBZGhahUfq+8V1rnl/fLwlA+TyDxf95EnSTmJD762jPLtLGcD2uHfM5+tnySrnvWFT8nW+me+dNojhdFNUEcnYjZBBaziMMhJRi4f2qF5nyCINIuxsZl8TV89X3gv5uNZeSgGWzd2ziBmJIyn+o6k3R/FEkZDagtfJ7bzSaIi7Jx7OTyRq3FoHHcPnQG1XUmThRHYC0LRxQb9z43BN2FyQUp6KZPn87HH3/Ml19+SYcOHVzbt23bxvTp08nNzcVkMnHPPfdw6NAhBg4cSHa29oMyPDyca6+9lq+//tq17eGHH2bfvn0ejXDr6+uZMGECJ0+eZOfOnbpvdD0LnZwUkTFQsv7J1jn1w/7dNd1Y/upw6mxmepS4PyyKOjfULErI0/9AVwovWaQoa7rF5650WeZGDpb+lcWQ8hwAxys3kRYznvi8VboiRu4gobTCeYt7k8co16fep+dydU/aEJ3xfZCQl01R2jQSjrlna8rCTibh2BoPi6G3NWrFBOq5aNWoy534FnYXtpUOPBMjFk/eyQFLKu+u6cba9bcAksVuznN3UFppIbSuQJFWkXbiW9cTHe6guk6KLxOBqloz56rNjS4HIiAS38q7NSpYAinNMXrIjKCtfrKw1hL6HS57jOo6M3YHiKJARJiDgjPLAEkEOkQwCVJ26kk/MlP1zn+puFSbq9zK2KEzqKk3cfhUNGXVjXO/GoLuwiSQ+9giCgvPmjWLDz/8kM8++8xNzAFkZGRw5MgRCgoKKCoq4v/9v//HqVOnuPzyy3XnS01N9Wii26NHD44fP+62rb6+nokTJ3Ls2DE++eQTr2/yiIgIWrdu7fYFUlKEnktT7tc6oOdM/rBiBFcUrqJNdJ1LKBSlTWejVfoVTchb5VXMgWRBUgsQpXtzf2IqCXmrGDVkJgl5qzzcIYIgdQ04XikVOzxWuclNwKgtWMerNrusckVpWbouS+X5tbarUc/hOb4hGLwoTbJ0FWoIOAmpflpR2lRkq4N6HepzKLfrbfNlqfPH9ap8X4z2s+VWS0O+BvWD+oAllYzBM5iQlePmer2sXQ0RYQ5Ci8C5GjMniiIpPhdGQqs6OiXUkJZQw5WplXRvX0VqmzpiIhyYTVKHASGghugiraLspCXWNHql/Wz5Hq9Trn+u0fP6QqukjHLbyVPLKS5cSmnxUm4PX+IScwBW6zIKzizDal3mJubGON+zWp9vWtsuFjGnvrbMFP170NRFyT/4epVUxy++1ihEbOCT8yroRFFk1qxZbNq0iR07dpCenq47NiEhgTZt2rBjxw4KCgq44447dMcOGzaMnBz3D5effvqJtLQ012tZzP388898+umnxMfHB3UNOYeszub2H/L0wiJAesi/u6YbUfV30b8wnyvPrqRHieQOTT21xiUaEo5lM2rwdN251cjZpLJAUYo6rbg12eK10SoJRjkpQj4+LfYuKe4N350kEo6t0XRbpsWMcztetrSprV9uGb5exZNIfO5K18eWXIdOwNMqJ+1f6/qS5+pfmE+n6Dt03ay+kO+PnjDViq+7WNGLj3p3TTey7t/Otb1ms+SVUS73a+3+3xET7iD0Dx4pTqygLIzcgigqa82ISKVDWkfbSE+qpmeHSrqmVNEluZouKdUktKrH5FXYSfsiw6R6aTu/ezUkK1WK9wOWVKxfPMnoITOa9OGv7Ler7OqhzjaFwGPetMZfLHFzsihTfh1NfJhreszhmh5zGNx7tuZxPTukcqjNXI/43lD8jPvZ3OODP/h6FfGx9XROrCEmwoHF3BS/XwYXA+fV5Tpjxgzeeust/vWvf7nVnouLiyMqKgqA9evX06NHDxITE9m9ezezZ8/mvvvu48UXX3SNHz58OOPHj2fWrFmAlLE6dOhQnnnmGSZOnMg333zDlClTWLt2LZmZmdTX1/M///M/7N+/nw8//NCtpl27du0IDw/3uXZ1litAonks1XUW9h2SrGOn20/BYnKAIJB0Qjv7UM4yDQRlzJks5JTiSHbDqnu6yh8+ygLDaTHjOea02PlCjqmTxZ28TSs+Tn2ccrtn7NwMRNG7u7kobRogusXIue9378yhPI8SLZGn3q91XXqFnMHTWnfb0Gn839eSi1iOpVPG0Slj9qBxD8fzGZSuFAsTsnLo2WUeDhFKKpq25IKASFS4g7TEGtrF1oMgnUn9SVZvFyg+F0bxuTDO1ViwqwyHJgFXckEg+ONuk0VdoO7TxrhcZfQ6esjfy1wqCQ3q3zeAIwmzOVtpoaLGjEMUJJe9M+7Q4QCHM15NECDc7MBslt53ERYHggCVtWZq6k2EmR2EW6Q/CkwC1NSbCLc4qLMLxMfauKrsJbd7HKirVjn+9iGS+7Ws2kJ+iVTaRkqEAX9+1wyX64XJBRNDJ+jk/CvbZTzxxBNs2LCBs2fP0rlzZ6ZNm8bcuXPdju3cuTP33XefW9brhx9+yIIFC/j5559JT09n3rx5rizXvLw8XWvgZ599xk033eRz7UpB96cnEvjjiuF8d3iV33+hFaVN43jVvySR5Ixv8+VylVHGe6XF3uWWNaqXAKCsZTdqyEwPsVfceTrxGsJSElJwvOpfrm3eatJpFUf25cbsFDPe57XL65BoeMsqBZ4s6tQxf2p8iTqt8Uq0ypyo8VayBrx3pVA+gHw9cJVZv82JUiDIsVNd0h+hoDTc7wdM4xCJiXDQNbWKmAi7ZvkQLWHUPvVxHKKA2SSCAEmt6zhweEVAZw6F6GrKub3F0l0qqEXcydSHKHEKuJp6E1W1ZuwiBP4+1SsX4/kYFZCKRbeLrScuyoYgwDc/6pel8oc7hs3AIYLdLlBTb6K4wkJ+aTg1fnRpaUmCzigs7D8XjKC7kJEF3U+bxtIqJszn+MKOqvZMaVmAiYRjnpmcgaC0yGkJKWUyhFzGBHAlTYwc3NA/9Vjl+67jijtPd72W3aoAxzSKEHtLQJDXqLdfmQihttIVdZasW7IFUxZ1spgXRdGVLKFMnChKm4YAxB9brZkAoYd6rL/Fkr3hq1SKWripRVxjrHiZKVB2+TQ+/Hq178FBoLbQ9ek2hxNFkdgczRXJIZLYup7Lk6tddeGCEUPX9JzNd4e8P2jlWDjrF082aTD86CEzaJe7qlGWs1DXf7vQLHmy27S6zozZJFJdZ6LgXNh5bE3XUHTEYpasy6lt6vj20AoPD8qN/R6iQ/6f3bapuWNYw2e6Q4Rz1WZOno2guCLMaYXWvsaWIuguhNZf2dnZZGdnk5eXB0CvXr146qmnGD16NABZWVl8+umnnD59mtjYWFeXq+7du+vOKfdyXbduHaWlpQwbNozs7Gy6du3qdS2GoGsGlK2/JqdrCzr5oV3YcbJzi0CiyvWqFi3+oGWZA0/LmeySlS1ncgydzMjBM9wElLdabXr71edWH6Netz/17UCdlSu6/GlKy6xS0OmhJzz9FXe+5tPL7vVWukVLsIHnh7e/D1K1IAQ423ka7fJWs9EKtw9tHlEH8PAzd1JebXa+avqHZ7jFQXHhUrf1BCNeel85l4M/vRTKpTWKQEWUVtFn5fZQ480K2JwCUJmE0rNDKseSHqam3sSx4ghq602ufrrNYzX2FxGLSap3aHcIUhIP0CbGRnm1BZtdykIWRUg+MZeeHVI5nvIwYWYHqade5dDJfDrcICXayNdXZxc4ey6MYqcVss5mUoQYSNfdUgTduaIc9n1wf5OfX82AsetpleCZPKTFBx98gNlspmvXroiiyJtvvsny5cs5cOAAvXr1Yu3atXTv3p1OnTpx9uxZnn76ab7//ntyc3Mxm82acy5btowlS5bw5ptvkp6ezpNPPsnBgwc5dOiQV6FmCLpmQCno/u8vVzEhKydoK1swcXSgL7DUgg4ktyZIFjB5fFrsXW4xeHqCR7bW6YkV5THexIwsQpVr17omea0ysgURID4vW9c9DNqFmWWXpLKThNZ5A3HDysfIeKt150vsquvueUNLvMmohWJp+jQPV2QohZ1WZqX8gI9rt8D5IG1612tctJ2TpxqyM0PZ7N0fF2goYiEbO19zCTpf82mtXRZdobZs9rPl07NDKkcSZlNaJbXMqqozITqEIN2p5xPlY7ihJmBkmIPocAcVtWZMgkjbGMl12yrS7kr6MZsaZnA4oM5moqbeRHm1mbOVYdTWC9TZTFRWVjDnf282BF2QtGvXjuXLlzN58mSPff/5z3/o27cvv/zyC1dccYXHflEUad++PY888giPPvooIHW9Sk5OZsOGDdx99926571gerleLKx57ToSTzRfvIqeNUj+V12fDqS6c8rs0v2JqWzZvdItQULeV9x5Ovt53018pMWMg8Jst/NrrctVT06VrNG/MB8KV3qMV44p6jyDNAHic1e5LHSC809QSRiIHuJXbeEcOXg6xfJOp5rpn7uK/ilQHDseCldpCi+te6l3fcpMY/U+JSXp0+ifu9rtGtWuVheCwP7EVDLxbC2mZ8XbaIWMAe6ufIBRg7LYuHcNWN3FW1OXWAClyHuP3y27nZJKCzV1oal0r41AZa27i1dLcPgbV+bZ1myVx3Y13jKB5Xp93lBbtLwJOT3rl7y2UIs59Ry+5tNa2wFLKpkpcCAEgldpkTP1XsbOsnAqTptxXHACTo3W2gVq6s3U1DdYfPJLpfe6xSRyuiSccItIUus66mwmbA6B2Ag70RF2osPttI6ykRJXh0MUqKg1c/SUvZmu5eLCbrfzj3/8g8rKSoYMGeKxv7KykvXr15Oenk7Hjh0158jNzcVqtbq1K42Li2PQoEHs3r3bq6ALBEPQNZJuPVPYtk96oAb7wAzGOgee1h+l0JItYccU2+R4tS27V9IjUQrqP1bxHnLBFtdcztg5WVTJdevoPAOcBYmVmbFKS19RZ8napBSXaqFT3Hk6aTTE48kIgoAoiu5iTvoGRNF1n4o7z3AWHV6lce88PxiL091rwOlZ4tSCVysOUEvMKvfJx5SmT6Ntrqc1TN4vv1eKnYI0PneV6+egJeBkAejW7szpyne59K3S+3DLXu1M4OaMg1q7fjhb90iZ6Ckpj1NdJz90IdQPXptdICl5PgVnlvkUMf6IHK0xwQijCVk5pAx5DnxY+M6mzwBrwxi1lSszxTkG2Kgxl55YDYVlLlTWvVC896T7ksqPcXMpOhfGuTMXg5ALFOlabQ6BczUmQKS0yoLDIVnoLCYRi1kkIkwkLsqG3SGQ1LqOuCgbVyRXn9eVX2gcPHiQIUOGUFNTQ2xsLJs2bXKrb7tq1Soef/xxKisr6datG5988oluhQyrVfoFUFbUkF/L+0JBiygsfCFzWWSG60HbECsXGLKVKRi8WZPkfWmxd7mNyUxpcMHK29Ni71IkKEgIgkBC3iqXte+Y08onizn52Pjcla7zJOStcglAb7XcQLL6FXWe7hJE8bkrSchb5SqALCNvVyzMe1asIOh+xqvFnXKbnsv5bOdpbteivqYrWt3pca1tFGLubOeGDF3lORoecqLmupQJE+o/Fgo7PQjgss7J//rzR0Wo6mVpPezlWmhT79/uqoe28pl/UXZ2CVHhDjf3eegQqK03cW2v2R5rktegZcHyhlYdt2BQu2v1CkyrRbxazH28e5VX1+/5yGhtDotvZgoMumo2XTo/yk7T42y1P8HRwkjKqs3O0iKXkpjTQqrPKDqLsdscJmrqzZRVmTlRHEF+aTg/norhyJkojTZwBt7o1q0b33//PXv37mX69Once++9HDp0yLU/MzOTAwcOsGvXLq688komTpxITU3NeVyxEUMXNMos15ru00g88bqboJNfq91hvih2iTuFoNERL8EmJ2gJBGXpFLn0iHwOt3g6p+hTFjKWs2mVbl1pzukgNhQHdj+f8zpV+4s7zwBnD9pgKOo8wykGvb+t43NXOa9nhuuDTkskalnq5Ndll08j7qi7Fa40fRptcldTkp5F29wGS5mcpKBFcefpHo3vG9Y3nS27s90tc52krhjbvlmnac3zFYMVqpgvZdxWIDz4+/HY7KH9W9IkiHRNreLbH1++KFtQ6cXGXYzXKr8/85IfIr8kgpJKCzaHId4ah0hcWAl3j8owYuiCZMSIEVxxxRWaPeTr6upo27Ytr732Gvfcc4/H/qNHj3LFFVdw4MABrr76atf2G2+8kauvvpqXX9bPsr/gWn9d6KitJFoiLnDrnaj4ktBy+8mWobTYu0iLvctt3/7EVDerm7wvM0USZuoesscrN3mIubTYu3Qf/PK59ydKLcfUGZ/eXckCCXnZJBzLdncV561yE3NqqyE0iE91f1r5Ovz5G6XBKii3XGs4pjh9hq4oVr5WiznAJeaUS9ATc7LlLj4vW3K5Kr4aEBg1eDrFCitf4vG1JB5f5yHK3eoKqrpq3D50muurNF36CgXBWLDGWJb6HhQgUeEOWkVKMUKBCpwLoS2bUjg31mp4IXA08WF+tkZTeC7MEHMhQaCkwoiwagwOh8Otn7sSURQRRVF3f3p6OikpKWzfvt21rby8nL1792rG5QWL8RMOEYUdJ3Oi5iOo+YgTTiuOUtj5Y6mTszeLFS5YZTan2uWnFBfqbFVXpmssLpGmFieyW1M5Xk6QUL52xXspxF684jhvJTpkwaZXPLio8ww6IboSLpTr2Z+YCooYP/W65ePB/6LMyjUqOV75PscV1+26f52lmnZ61jUtBATaKsarjy1OyyL+2BrX9uLO04j3Mr+3jF4l8s+psNNUTMDowVKWa9vc1Wz8enXIszG13Jv+4yzLH0JMJtGjNp6/NFepjUCKRqvRSk5oDutcU90brXlHD55BXrXUt7e6CbuNXIrU2o176S8LFixg9OjRdOrUiXPnzvHWW2+xc+dOtm7dytGjR/nb3/5GRkYGiYmJnDx5kqVLlxIVFcWYMWNcc3Tv3p0lS5Ywfvx4BEFgzpw5LF68mK5du7rKlrRv355x48aFbN2Gha6R/DtBekomnnidjpFjfMaNeSM+L5uitGm6D3DQzzDVOu/+xFTic1d6tXgpX7syVNG2Bqrr3umtQ/mvXAxYFlzq1wl5q9y8o/tVokrvXhanz3QJu0DFnPs8DdYZ6folF6yW9c8fSpwuV2/EKzpZgFTaQy+O0t1aJ6FXtqSw42QyBkxGvqHt8lZ7JGY0lWjRajelx0YrJLaul7o1hCieLsziwCSIbj1NlWvzJjY/3t24Qr6BxJIpk1yCJRg3d2Pi3ZpKzMn/pnd6lK6dH6FPt7mcPBvBkTPRlFWZMcRcqGkZ9zMsMg6T2Xd7zVBiMocTFhnn9/iCggImTZpEt27dGD58OPv27WPr1q3ceuutREZG8sUXXzBmzBi6dOnC//7v/9KqVSu+/vprkpKSXHPk5ORQVtbQDePxxx/noYceYurUqQwYMICKigq2bNkS0rZoRgxdkChbf3VLGOdmgdNLVJBj6go7PuhRYFiNS/goCud6i43zFuulFewvxZpJ2+JzV7lZxbyV7tCaT30u9Xk7Rd/hsx2Xv9ejFqSiKHoIOuW1qYnPXeUScco4OuU9cGXZOl3eeha6s52zaJennVHqD/7cC3XPV3UdOtmVL7//1PGRzZXZqo6n0/teZkJWDn27z+HU2YiQVPBPaFXH5cnVbN8XXOylL/yNVfNmzQq2rVdjzq1+L5zPrg/yWn6Kn01heRjVdWbq7AI2e0PfVJBriLcM8XEx0VIKC4PR+isQjMLCzYBS0F1X7ap8FlSB2saiFDvxuSvdCgqD964IDUkEuMXOeTtOr4Cu+hi9TgqNQVmguDh9ppugK+osdb7wJei0UFrqRFESc2pLqewqVX/vMZdqX1FallvPWa1r0rovupY4Z1JE4vF1unOqj2+Oh7i6hpsyaF/LFSpvm/7UOOptAg5RCLoMhUkQiW9Vz9FjL3jsa+rr9+bKVmapXmgttEKFfH+OpzzEybMRlBpJDueFliToDPzHSIpoRvoWWf1qKVXQ4YEmX4ss4uR4OX/dv0q3rF6rLGhIpFB3cpDHexNvjXFFa61XPocgCBR1nuGWKBGMC1Yp9PQeM0qRFn9sDUVpUzXHiUBRp4Z93sScN5TlRaRrlNyyclKEN7QK1QbjdgvkGG8FaNUxX7LQm5CVQ8GZZZQUL+X28CXERtqxmB1ER9gJtzgUbln1353u2x2iQEmlhSF9HnaN6GfLp58tn0Mn813fq69JWag2GPTuj1LkySvXKk3TXISqVE2w/Bg3l1+sURSdC3P2+jXEnIFBqDEsdEGiZaHzx10ZKmRrnDd3p7wWZcstf4/XOh/gMY+Spr7u/Ymp9N/dj+Jb013rUFoltdamLEsCuFnw1NY61wNXlP7nLZZRSVGnB0k47t2F3hwUdJjMJ9+6J9+0RKuQlvtVrzjutb1mU1JpoaRCynY0O1sdmc0iYWYHNrtAvd1EnU1AEODypGq+/+8KoKE1lJpDJxu2HzqZ7+rkEMi98jZWvU/KKp/BliDcraFCXlM/W35IWnD5ulfK0iMnz0ZSWmm5BIsAtywMC92FidH66zzRIWI08IamqCno8ABJJ99w/RsMcrao7CItTp9JGni01FIit9xSCx5ZBPVXbFPXm3MXSKLPwpSBijl/BaAswDqJUHxrw7Ur0Ur8EEWRBB0Xq16rHQARMaDuHQnHX6O404PEn2dRd7L2I90HbaBiRUschhp/Wkp9+6NUn2lQ74exOwTXa5l+tnwqur6AtTQci0kkItyhNY0bSpGnFDd68Wda983bvVTv22jFrRNEU6Il2JQJCButvsWc3nvFXzGojJU7bo2kyshWNTBoFgwLXZAoLXTRsVLGzuGD7t0YQskvCbPoUvSqW8ybTLBFeP21KMpJA94I1tXpDa3zqq9f79p1LXbOtmEguWsDuXeyaFP+C5x3IXfmsgdIPvUGBR0mk3Ty9RZnkVMTymK4mSmwzTGfmnoTyXH1dE6q5tNvVrrt9wdvIvh8JJk0NYEIfNkt7U9PWpmvwh6jvNpMvd2IlWspGBa6CxMjKaIZUHaKaBUTpjvuTIf7ERCCtsqBJLxaixPoUvQq0CBq5B+dnjCRkyN8NZHXGqcniBpzDY11xyp7vPoSclouYtn9KgvPUF/j+UIWdEoaI0TUmbTnKzvSn3N26fwIZ8rCiQxzUFiwTHceX4Sq16g6K1np9pX3Ka3LW3aH9v0XzM8pkPqEWvPL1/hjm7lYS8MUfXsNIdeSMATdhYkh6JoBtaDbn5jK4YP5HiUmQoVsodMTZIBHLJle6Q9/xFUoLG4FHaeSdGKtX2MLO00l8fhaCtOmk6jRKqwp8CcuMNTIVrTzcR5/H9ggvVcuCx8FCJyq+9j13m4OV6wvC57s+stMgS8sj1FSaSEprp7BNS+4xcTJqH8P1T1y1fFuvqx1oYiza8kEar3r2SGVvZGPUnQuDLsDDCHXMjEE3YWJkeV6HuhfKD3wrJfdB3g+RBqT5arOolVmdCoL4Cr/8i9On+mW7KAsFOyPpayxYq6wk3YGqB6JxyXhpyfmijrPoDh9ptuXjPq1PxR1nuGycHo7tiiA6yjyo71boGJO3aLNX4IRc9DwXjt8MJ/kU+v59DspJvTWaydrztsUTMjKcYv7kv+VXX89O6S6tsfnzUMQoKrWxEartlvQn+QFOQtUFm3K31/3GDTff6ip/6gLJMNUPa6fLV/32ED+YNRrE6d1nfI9UWYGa82XmQLhVy9ll/lxCsrCsBulSAwMziuGoAsxKac2BHxMkTMWyxtKM6qyy4KW8JIFSnH6TA8BlxZ7l9tYX50fAh0nk3h8ra51Tm8ub+eQOkqI4OyZB6Jn1wun8PEm0IrTZyhctwCiTwtdUacpmmKtoIP7tgQ/2rsFSnzuyoDEtTfxon6tfKjL3x8+mM9GK/TonerR1aCgw2SXSJEFXmPREiXK8iIlb6fSs8tcvgp7lKorl3Ntz4c5dLLh/dyzQyptom1U1phpn/o4g3o/7Dmhj/NrrUHtOpW/5NfeUJeMUR6rdX7lOtTjDlhSdY/1VkTY21h/hekBS6qmQFYed7QgkrIqs7P8toGBwfnEyHINMWcuu5/kU+s9tqtj6ORs18KOk0EUXaJOr/xFsB+Xynpycsarej/4ttxpFRIOJCZOmd2rd5xyu1RzTXATM/EaHSGUiM5tWvdKdkXLAQYCzgLCPm6s6ByH6OnGbGprlVu2rh+izl/rkVqYaAkGdYLPRoWbdaMVMnmdW69tvPvVlzg6NCmT4uKGGFWTEEFkhxXUtarj6nMvAXC9bTmfRsznXI2Z3IIojzmU19zPlk9mh1Q3y5zWmvRcsU3lRlVa84KJd/TlOtb6uXv73tf5rkx/hKJzYUbSg0FQ2KsLcdSfa7bzmcJaYY5KbLbznS+MGLog0UqKkN2qsnDxt0SJun2TGnVShBqlRUqZ3KAUXcp4MbUlzHuGq/c6b02FUqzpiZnizjNAkSDhb9yfnOkqiTn3LhlaFHSYAkjlMJrD5ajG1QEjbToJx7Jd8YagnRAB2uJOjvMEfSGjRVOIGG+xarIFLvWL/uz+n3udhWiVSB9Z0eEORgjLXONPtl9BTb2J1lF2ElrV0jraRsW+hbp15nzFuypFX0nnLBAE2uau9ojBU46VCabemz/JCY3JuNW654EmRAB8F/0I+aXhOERDyF1ItJQYOnt1IYVfPwSO+iZfgwtTGIlD/+y3qMvOziY7O5u8vDwAevXqxVNPPcXo0aPdxomiyJgxY9iyZQubNm1i3LhxunOKosiiRYtYt24dpaWlDBs2jOzsbLp27ep1LUYM3Xki6eQbbgLO38zWxBOve4i5Qj/isdTIHSJk5HZgaheksmuDLytbc2eBunrYOt3JSgtasSpmUNRYn1/xZoLgLH0iuHXJ0Ds+6eQ6kk6+TtLJ1z3crM1JwrFsCtOyEEVZZKIp5kBboMhxnuBpmbG2v48evVM1j20Ki5QswvQsimVXvMDuX93rbBGlRvrZVdWZ+NzymCuLNMO0jDCzyLkaM3bRxBcHVnLAksqYz6SvQOrJqS14IiIf7V6tad3UEoRNIeb82e9rfvU2b+5gLfZEPOoUc8Gtw8DAUX+uecWcdNKALIIdOnRg6dKlfPfdd3z77bfccsst3Hnnnfz4449u41asWOFRRkyP559/nldeeYXVq1ezd+9eYmJiGDlyJDU1NQFdijcMQXcBUZg2jaK06Zr7lJ0TZAucVvFd5Tat9l6gHcumJexmrvVsAdZYEo6tdnstig0iS6Sh0wN4Wu7UMYUeMXaK12oh5w/NlaEK3i2USSfWknTSe+svb+gFyMviXm3FCmW2tjyXLHhkMSQH4P8QN4eCTi9RWB6Oze6rIK1AeZWF72LmuUTdaMtSBAF++OklVyxe/vX7yb9+f0DlS5TXvdEKH+9Z67Z+rTGNQU8Y+hrrLYFDi2DWLB+zL/oRCs+FGSVJDC56xo4dy5gxY+jatStXXnklf/jDH4iNjWXPnj2uMd9//z0vvvgib7zh23AjiiIrVqxg4cKF3HnnnfTp04e//OUvnD59mvfffz9k6zZi6JoZf92waoudIIgkHlvtEnRKd6rSJRqfu5J45zHq2nLyWCVa7cH8KzY8k5VTm8d6J/drVSN3kNBzm3p7ra5XJ8epeXPZNqeY04uESAyyL6wa9QP/dP1WtgdgwQoWZSwbQNkVL7KjzoT9MoE6mwl7AQQiFhwiFJaHcyBuHmEWkYKyMNrF1FMmdeNzunCdAf4qq5uey1e9XvV42bJVevl0/u/rwErseHN76r3WW6s3tFzLgc4jH5eb/DAniiMoK7EYyQ8Glxx2u51//OMfVFZWHhXJRwAAowpJREFUMmTIEACqqqr49a9/zcqVK0lJ8f1XWG5uLlarlREjRri2xcXFMWjQIHbv3s3dd98dkrUaFrpmRhlf542CDg9oul0TnGU9lHFyMuoPazmj1VdZD3lcUecZbLRK/yqzYZVZszJN6YotSpvuZoWTzyU/SpRZvqKob23zds3yeClRQhJPUiKGJwUdHmxWV2tC3ioSj2VTqLDGBlO6xBvq94oyCaKp6dE7lfIuL3Ky/csUlodRUWOhus4cQNkLEZMgEh1hJyrcgSCIlFRaOFdt5hbxedocfcStoK+y1ZcsUpSZsrK4PHQyXzNJQE/4tTmaHVA5En/EnPrceufXO4eeWzlYYf5j3Fx+Oh1NaaUh5gwuLQ4ePEhsbCwRERFMmzaNTZs20bNnTwDmzp3L0KFDufPOO/2ay2qVfgGTk5PdticnJ7v2hQLDQnee8GWlc2XAOpFFh9pyprTSqR8OSsudv3XaMlOgSGO7r6QIOXC/MC0rKCuSsghxgkYtOm+WM29r09qnjpnzlUiRdPL8tPZKPJbtWl+o2qqp66wFmhnbWMZ8lsrBDr+htNJCY9x27VrVk3vsBdf6EIFaaZ8rfu2kJOrU4igzRRJ5PV1bU13Habkv5eOU/3pzaaoteVrHqS1/3qx0vuZUX5u3ZA1/kY/PLwun1mZkshpcenTr1o3vv/+esrIy/vnPf3Lvvfeya9cufvnlF3bs2MGBAwfO9xI9MCx0LRil21WOu+wUfSfFnafpWpPUKC1R3sYo653JVjFfnRS0Yu3UYs7f+nVJJ9YGXIxYRs896W+cXKitXy0ZvUxPb4RKzA27+mF+mfxrzlU3TswJQEy4Xdc1KRfjlS1z6pp78jj1cVrb9bap9/kSZ/64Vb2htvCp4+fU16UlPL25mLWE7E7T41TV+opjNDC4OAkPD6dLly5cc801LFmyhL59+/Lyyy+zY8cOjhw5Qps2bbBYLFgskl1swoQJ3HTTTZpzyW7ZM2fOuG0/c+aMXy5bfzEsdBcYctJAcedpjZ5Ly3qlJ+K04s+UlkI9C1IgterkUhyB4UcxOR2UQi4Urc6agqZYk16cmK9yGcGUyTh0Mp/UL/pzavr/knMqkjqbQGMTJC1mkb7OGnRa61K6WGW8uTr9TUZQz+fL0qllhfNljdM7XnkNWtesd3698erzKsfmxM/mZHEkldWGmDMwkHE4HNTW1vLMM8/w4IPuzQB69+7NSy+9xNixYzWPTU9PJyUlhe3bt3P11VcDUumzvXv3Mn26f8YZfzAsdM1AQYcHgmr9JR/TvzAfQfXBGp+3utHr0rJeKa1aetYttbiD0Fm5Au1IITjvTKCtv7TQyyC+2FFaabSyJuXXw/vf53MetUjo2SGVsjkTKCyXXHcijXffmQQ4kvRwwAH+gVojtbJ91denjE9Tx6oFkn2qt2a9197WI3/v61xa6/0u5hGOnomi0rDMGVzCLFiwgM8//5y8vDwOHjzIggUL2LlzJ5mZmaSkpHDVVVe5fQF06tSJ9PR01xzdu3dn06ZNgJTYN2fOHBYvXszmzZs5ePAgkyZNon379l5r1wWKIehChD+CrTH9XGm0XSM0qPvHyuIuVJYktUVPfT55m+v8eauQHzyBikr32DRRM3bvYkLPzaiFlgBKOb1BV+zpzXmm0wzOlEVQUW0mVAKh1iZQVB6meT413q7ZVw06Ga0sV/U+5b9NUbdPPr86hs6XO9ibkFTuG9b3Ib4Me4zTJeHU+ywXY2AQPKawVmAK8z0wtCeVzusnBQUFTJo0iW7dujF8+HD27dvH1q1bufXWW/2eIycnh7KyMtfrxx9/nIceeoipU6cyYMAAKioq2LJli89iwYFgdIoIEq1OEU3J0cQZXF7YNC7B4vSZiKLI8cpNdIoZ7yHO5AdDUefpJOR5Fz2FnbI4Ub2ZDhG3N6pWmhZyW694Zy06dc05f+PlWqJrVU1RWhYJISpR4gu9eCt/rUl67jxrxxmUVlo4XhRFTX0oRYJI6ygbp04vdzufei3qmDN/0bt2vetUuza9ubRDsQ6tff6uTf5e5r/xc6isNnG2Iozqevnve0PMXYy0lE4RYLT+CoRAOkUYgi5IAhV0ej1e/aHk7VRKHh7fZIIOfAud4s7T/HbzKjNWDYJHKepCIfB8CQo5g9pfEaRlyZLPUdgpixPF0VjLIrCFvN+nSFJcHYNrXnStw9/s0UDGKAlWHHojmNg99XH+xj+q2Rf9CCWVFurqTYquD4aQu5hpSYLOwH+M1l8XGW0H9HN7XZSWFfJzqMXcWUXSxdnO0wL6qD8fYu5izFQNpZgD78JloxU3MefvfGpXo/y6stZCSWWYH90egsPkDEHQs4j5W7pDT1BpuVXV+JP9qrUtFMJQfY1q9GIG90XPY6tjPvkl4dTUmZ39WI2yJAYGFwOGoGsmgrXOaZFwbI1foq44Lcv1pcSX+ClOy3KVApG/F0XRbT45y1ZZPqWpYof84UJwowZLwrE1QZd0KXnbe5KJXokNX7Fx6mPk/SVvp5KbNIO8wmgqa81BrNg/quvNrnPrrVFP9PgrpLRKhajPpRfHpnWOfrZ8PmU+A696WPN8vmLi5DH+Jlgox+6LeoQt9ifIL4mgNqTubwMDg5aCIeguEATB4fbaH4tN/LE1iHimU3h1raZluY4rcn4vv3b7Pm81xZ2nuWLq9iemOl1t3oWH9bL7fK7bwJPgSrrARzf7VzYmGLcdaIuQM2WRlDey1pw3TAK0jXFv7q0ndIK1gimvy1s5kEBxOOBcTUO1KK1M2mDWqER9H76wPIa1NJw6m2GNMzC4mDmvgm7JkiUMGDCAVq1akZSUxLhx48jJyXEbc+TIEcaPH09iYiKtW7dm4sSJHsX5tDh16hS/+c1viI+PJyoqit69e/Ptt9+69ouiyFNPPUVqaipRUVGMGDGCn3/+OeTXGDI0Ih39sdIlHFsTkLsu3mn9Ux+ndv8VpWW5YuqK06a5slP1hIcs5FJObfB7LU1BUVpWk7isWyqBZF2qxUR+6iTA01WoFjv9bPn0s+VzQ98HOTH1fzhbEU5TigaL2UGf8hUe24NxaQaaJesrEcHbfAcsqUSGOyDqbY9j5C9fFlW9c2hZVr+JeoSPbE9Q4mrbZQg5A4OLmfMq6Hbt2sXMmTPZs2cPn3zyCfX19WRkZFBZWQlAZWUlGRkZCILAjh07+Oqrr6irq2Ps2LE4HA7deUtKShg2bBhhYWF8/PHHHDp0iBdffJG2bdu6xjz//PO88sorrF69mr179xITE8PIkSOpqalp8uuW8ddaVbLvgGbRkqbKgtSbVy+WK95Z7FiNukxLU1jn9iemBlSDThTFZssebSkEa6XaceAvbsfLPU/VwiH1i/6E913EseLWnDgbg83RlMJBpFWkzU0EydY5dT09JfI4a/v7gIZ/QyH6lPN7I7NiDL3/31+h+h430an8anuPtkVVS1h6s+jti3qEgrLwJkhIMTAwaKm0qCzXwsJCkpKS2LVrFzfccAPbtm1j9OjRlJSUuLJyysrKaNu2Ldu2bWPEiBGa8zzxxBN89dVXfPHFF5r7RVGkffv2PPLIIzz66KOueZOTk9mwYQN33323z7U2a9mSX8aQO6QT6YXawqklo8zutV52X9AWOnUP28aMbalZuAUdJpN08nXfA5uZ/NR7AUjNf9Pt+9Mpk2hv/QtfmOdRVWehzm5GbNKMSZHYSBv5+cu91oZTU9BhMp98+7pUSsUp5GRSTm/QPU6rNIhW+RH1dm/JCiVvp3Lo3kyG1b2gv2Av65Hxdr3/bTeHI2eisDepsDa40DCyXC9MLtgsV7kIX7t27QCora1FEAQiIiJcYyIjIzGZTHz55Ze682zevJlrr72WX/3qVyQlJdGvXz/WrWuoiZabm4vVanUThHFxcQwaNIjdu3drzllbW0t5ebnblxaBdjrwH33dfT5ciLLrsihtmtdxymSQxrhbA2kh5mtsSxRzQIsUcyCJt9T8N9lobfgeIOqlT/jSMpdzteFEhdspP7uEOyKW0DrKRoTFTpjFAZpRnMEgOQ1vEaXac1oWMaXFzu1IUWR4//tdYk4WcXpiTm9u+V9ZtHkTk8r9ynXlX78fh0MIKoFIyyqnnEd21xadC8Ou78AwMDC4SGkxgs7hcDBnzhyGDRvmaqUxePBgYmJimD9/PlVVVVRWVvLoo49it9vJz9d/aB89epTs7Gy6du3K1q1bmT59Og8//DBvvik9iKxW6VMwOTnZ7bjk5GTXPjVLliwhLi7O9dWxY0cACi/7rds4WUx8HzMriLsQHKFwIRalTXMKtKnOL++xZnKMXYLC3SqLu4KOwWVkqgk2s9OgaVBbxdrek0+bqGpKipZy4tSLrnGnTi9npHkZo81LuePEv4kMk4VdsIgIAoyNWOK2DrXA0evWkHzqDVJOryfl9AYPMecrQ9VbnJz6PFrJGEp3cGaKFEd31f/7q1cLXiDI8/yUMJtv757E5+bHqagJXVcOAwODCweL7yHNw8yZM/nhhx/cLG+JiYn84x//YPr06bzyyiuYTCbuuece+vfvj8mkr0UdDgfXXnstf/zjHwHo168fP/zwA6tXr+bee+8Nan0LFixg3rx5rtfl5eV07NgRtcd6f2IqkQf2cyY1mpyEaXQrCZWbtOk940phGGjts6K06SQcy5ZEmHOpBR0eIOnkG0GvJ9jMzpaK0t2nZx06c9kDJJ8K/p41B26lPFjNVd7cjF0+IjG2GyWVYdQ6i9g6RAH3Xxtv4kPEbBK5LWypxxrU+OuS1DpOq7SJPy5Ub/vVljyZ/Ov3czRmOddU/snjmLb35AdVcLikwkJ1nYnqusCOMzA4HxidIpqGFiHoZs2axYcffsjnn39Ohw4d3PZlZGRw5MgRioqKsFgstGnThpSUFC6//HLd+VJTU+nZs6fbth49evDuu+8CkJIifVqeOXOG1NSGv4jPnDnD1VdfrTlnRESEm+tX5uy3L3BF144cOilZ5iJP5tOzQyqnRTGEYq7pkDtAyJa2wk5Tpcer2OCzKeo0hYTj3tt4yX1QlSKsMWLuYkQWceo4roZtwgVjV1EKjkMn88nskKq5TxInL0kvFJ82u8yPEWEROXLsBeITn8AkiNTbBbe4L5MAkWF2RgjPN9VluK1TvXa1WPMmtHyJP3eBmEp6vYlDzs8KrbHqeb2d80jiw1QXyzX/LpR3kMGlir26kMKvHwJHve/BocIURuLQP/st6rKzs8nOziYvLw+AXr168dRTTzF69GgAbrrpJnbt2uV2TFZWFqtX6z/zRVFk0aJFrFu3jtLSUoYNG+byJIaK8yroRFHkoYceYtOmTezcuZP09HTdsQkJCQDs2LGDgoIC7rjjDt2xw4YN8yh/8tNPP5GWlgZAeno6KSkpbN++3SXgysvL2bt3L9OnT1dP55WK9Kf5JiIG8QqBamdg+HGbQHHRMgjwr2xvpBc2jbVKq51Xgsoy5kvMBUNLKWNyPtCyznkLzm/ptB3wBBsPvKkpaPREzo325WCHwSlwIrWCjvmvegSAbLTC7QH8DjWm84I/cwZSyFd5jFosvrumG4/8QXK/uv/ZqX3+jVbo0bsh0WejFUYOns7IzgLkreJYUSSVNU1XxNnAIJQ46s81r5iTToqj/pzfgq5Dhw4sXbqUrl27Iooib775JnfeeScHDhygV69eAEyZMoVnn33WdUx0dLTXOeXKGm+++Sbp6ek8+eSTjBw5kkOHDoUsaeS8CrqZM2fy1ltv8a9//YtWrVq54tfi4uKIiooCYP369fTo0YPExER2797N7NmzmTt3Lt26dXPNM3z4cMaPH8+sWVLc2ty5cxk6dCh//OMfmThxIt988w1r165l7VpJqAiCwJw5c1i8eDFdu3Z13dz27dszbty4gK7h2trVtLI0ZLluLHB+cDfBw8UXRZ0eJOH4a42ep7DjgySeaJgnVPMquRSFnBbW9ve5We4uRGGXmv8mw/vfx8b9G7yKOiXK/a0ibZrz+ltSJBghp7cevfl8uV215lQepzx+QlYOecdz6NE7FfxI9slMwW1cZgrgLOh9JOlhak5LSlgAREQMK52BQeMYO3as2+s//OEPZGdns2fPHpegi46Odnn7fCGKIitWrGDhwoXceeedAPzlL38hOTmZ999/36/KGv5wXpMisrOzKSsr46abbiI1NdX19be//c01Jicnh3HjxtGjRw+effZZfv/73/PCC+4p/7JLVmbAgAFs2rSJt99+m6uuuornnnuOFStWkJmZ6Rrz+OOP89BDDzF16lQGDBhARUUFW7ZsabRSbgorgb+EQnQlHl/rEnNFnR5sEjHXVBSlBWZdbQkoBZyWmDtzWUMtPy1XbUthu1PMgXbsmDpxQbmvTe5qt9fqAsFq5ExytTvUX4LNMA1kPnXbMbVgfHdNN6i6J/CFqDCbRCIsIklx9XRMqMViDlVWsYGBAYDdbuedd96hsrKSIUOGuLZv3LiRhIQErrrqKhYsWEBVVZXuHMFU1giGFlWH7kKiuevQ0eWjpj1HC6GxiRQGTUtTWRGV4kdZR1Cv5ps87vDB/ID/iNISmv7Eqvk7r1ZChdrtutEKV3R+hNa/PKoZR+eLos7TScjLpjBtJonHVgKQ32EWh0/GUFFr9Go18KSl1KGrLz9K8d7Hmvz8auIHLSestX7svZqDBw8yZMgQampqiI2N5a233mLMmDEArF27lrS0NNq3b89//vMf5s+fz8CBA3nvvfc05/r6668ZNmwYp0+fdovbnzhxIoIguBmx1ARSh65FJEUYhA5/BZFWFmtBx6kIONzcreeDwo6TSTzRMmuyXeqoxVywLk+9OTZaAWs+/TVctx7iCGmc6zgn/q7H3/g4X5muWtegVUrF49w1L3LIv6VqIAk2WcwBpJ58lZ/Mjwc9o4GBQQPdunXj+++/p6ysjH/+85/ce++97Nq1i549ezJ1akNJrd69e5Oamsrw4cM5cuQIV1xxxXlbc4upQ2cQGpJOvuHRcksL7ZIk599Ym3TyDUPMXWAE48LUQ11XTl3QV97u7biNVv0C3+o2Yf6u3ZdIlNuiaZ1P7xyHTuZTfkXgHSMAEj7N09xuNp3/32EDg4uB8PBwunTpwjXXXMOSJUvo27cvL7/8subYQYMGAfDLL79o7ldW1lBy5swZv+Pw/MEQdBch/oo6Lc63dc7Af+Q2XOcTpTiytr8/4ONLO2fp1muT55f/1RJ3euvR6xaiaSmj8aK0p0bZFrV41DqmpDIsuHN3+UinK0YQcxkYGPjE4XBQW1urue/7778HcHOnKlFW1pCRK2so4/IaiyHoLlJkt2sgwk5oJgtdQYcHghacBg3ILbhaCtv3rw+89Z0guQ69CR/wbaHzhj+CSSsTVz5W2b1B2cZLK3nDV0swNSLOBAkva9drQ9ar6zz69Zjjtk1KijAwMGgMCxYs4PPPPycvL4+DBw+yYMECdu7cSWZmJkeOHOG5557ju+++Iy8vj82bNzNp0iRuuOEG+vTp45qje/fubNq0CXCvrLF582YOHjzIpEmTgqqs4Q0jhu4iR7bW+RNX1xzWOXkthqBrHOe7xIlezTUK83UL5qqPB7its38CJNDOD96O8Vb8Vz3upn6T+eGy1sS0e8dl9fNW+DdQsRlmFpmQlaO731vJl5IKC3U2E8URj9Grq53DYQ6GnH2Bj8xPYLMbSREGLRNTWCswhTV7YWFTWCu/hxcUFDBp0iTy8/OJi4ujT58+bN26lVtvvZUTJ07w6aefsmLFCiorK+nYsSMTJkxg4cKFbnPk5OS4+tODVFmjsrKSqVOnUlpaynXXXReSyhpKjCzXIDGyXIPHyGS9eAkkSeLQyXwOWFJDXurHn5Zd/s4DkJz8KCOE4GLdfPFN1CMMrH7R90AfyMWHiwsmUVNnctraDVFn0EBLyXIFo/VXIBhZrgY+Kew09bz0SlVa6AxRd3FR8nYq3Oweu6ZXtqMp8cc1G4jYMwmhyebVIlRJDJkVY9hzricOh4AgSGt2iKIips4QdwYtB3NU4gUrsFoyhqC7RFGKueYUd7KIM8TcxUfbe/IZ0eFBNn77mqaoUrsqb7vuaXrmaWVbn1/U4nN3uL3Rlj6t40veTsUxObi1AfTpNpfyajOVNWZsnQXMVSKJKW961Ob7OvwxzlZYcIjgn7ATMZvkzhMSgiBiFqTXNruAKCpz4g2xaGDQEjCSIpqJ/YmpAQeMy8eU7DvgM7BbPbc/r+U53cRdxwCfMAYGCpJPvsatA6Zoxn15vIeF8ycEfAk0ZaaqSQjOiqZllfS4B6L3e6BMiih5O5UeXebS8bLHSEiaz+mScPKOv0CH03MYY1nKSNMyzezeoXXLSW5TT0SYiODntciWPbNJxGIWiQ53MNK8lF4dqunQro4ws9gMMs7oemFgEAiGha6R/Cd2KjHRMTofOw0feUKVNOJAjPsIr50Xq0BA4PAkM13NIt+ZHK6x6mehUNUwtyCImKrh+9iGuc3V8O9W0nwA5hqBXl2Ailfc5kk88brhDg0x5zuBobmQLVFJJ9a5vZZRl/Mobf4l+kSrNIqI/y5jXwWO1du0Pjfkc5e8nUrmgH7s69Odz6ot1E0UqD9rIircTsfTc+jZIZWN4JGAonXeAVUvcLLDwxyxRlJWrfexL1nmYiLsWMwi5VWSVc9hFxhpeh6AjvkvY0uajbUsrInj9ERaRdqps5motTXleQwMLh4MQddI+lSspZXYkBShbFskv1Yj75fHqsco94vA0Mp80EkIkoOh5XkOH5SOVW7Ton9hPl9aHtHcZ4g5g0DREm96VmV5XJvc1U1y7sbiIbpEwW27r/NpWeT0xoeZRbc4wzGfSSLu6/CeVN1jxuGAiFoHp/MlQdXPlk9R2p9cIs7fNQF0OP0Kp6MeobzGDAqXqcmplQQBLk+qIal1PQ4REo+/CsDnlsfB1jBPesHLnI56jOJzTff4MJugY0It56rNnCiOaLLzGBhcTBhZrkHSrFmuTcD+xFTSX5HinnxhWOwM/KWpkgcCXcOIax4g+dQbXnvBetumZHf4XIbUveTXedXzyDXsPro532MdYz5LJffBe0h/7W2OT72b8moLtfUmTCaRlBNzNUu/bLRCcvJ8Vj37Pu8t0i934u26vol6lIHVL7Cd+ZhNIjc5JLH4mfA4N4vPexy/y/w4dofALeIyt3m22p+g1ubyGXhdi/9Irty4aBs32JezL+oR8kvDXWdwtwpKr0yCJEbtjlCu4+KjJWW5GviPkeVqEFIMMWfgL80p5pSCpeTtVHLunYgIXNlZpLSqlvC3UxkDlOD+h8tdz3Rzq/3mdc2/jIFe/q1HOU/J26m0vSefA7/+DQBdI2yUrH+nYeyAfnz266uoKTNRnvkbbOcEIsIctD8luVLRqeOXmQL8cpDEF0az8eccv2rtqYXdwGqpBMtwloGjYXu7WBuoKkl8E/koYh3cIi5jd/ijDKlrKN8y0rwUzLDNMZ+aehONF1OSyze1/QaXl6KixkxUmINbTcs42Hoep0vCqbNBuEUkzOKgVaSdNjF27A44XhQRonVcrBi2m4sdQ9BdAKjduAYGLZVQWOj8nUM5pu09+Rw5/jJpHeY6467MlN73KwRBQEDEZJKyNHt3dZCZmUvJZ+WuY0sUcyjdxLf0n0zk2x9BT89ODkpXqrru3UYr9HgY2hZCv7f+CsCeX91L2d2/JdziwOEwYTE7uNn2PIesUhHmQyfzqe62XIqL83X9XT6irLqX34WT/bmXh9vOoW/Jn9y2ZaYANS9I15qCm5hT0qFdHYXnLJxzxubJGbAmQUqqcDgE7B4ZtiImQepsIW+NjrBzvW05FEqvv4+dR7zJRp9yaV29y/9ESfjjtIu1c1m7OixmkTCzA5MgucXrbQJ5RZGXYPuzBkulxSxidwgqa6V0r8OMLiIXPYaguwBoqWKuqNMUEo6vO9/LMGhBhMJCF+wcmSmAzekadeAW9yVz6GQ+hyKh5z3uFrCvwuYC0Lmj9BgUBJG8IpHqezKx15j4oc1MIiwOEla+D8AY53ElQL/r91Pydn8y78l3JTJ8W9GFz4RwbP9rwmwSiRTsJJ+Y1+BGda5Nfn3AksoVdsGrmJP3ne4wC6wNlsZAXcqy9VBJj5IV2if1g56lznse3rDtm8hHGVjTIAA/FedTVddQVCEmwiFZCJUofl4HYufRr+JPbLTCQaT158TPIaLSwWXtaomOcLiEo6QVRaIjJHFnv+h1i7sYHmleyldhjzGsfrm02wwf1C1wCluRqHAHtwrLOFffjJ0ZDM4LhqAzCBpDzBlcaOi1JBtW7x4jt9EKSUmPIQhw2em5cFrKS2rrFIJfhc0DwCEKwD2cu8KB2SRiv0+grDocsVJgpGkZh04726CJ6LpRQUpiqi337iqURdmsKZ/w+B9v58nlt9EhfjgcW+UxRr4G9TbwL262Mb1zATcxBzBCWMYn4fOprTdxe/gSn+eVrWzyuY8mPky3whXSi1NQevkMqYAyDY5Eu0O4ZLyKt4cvabAmp8Cw+uWue/ffdnMQrCAilZsZISzzOtf5oKqggNryct8DQ0RE69ZEJyU12/nOF4agu4RpO6AfEDrr39nO02iXF5rMxWAoSpuOiAOcFfKTTjR/JwwDiZaQHNFYTCaR1lGS2UgpBKVr+5MrsSHnvrtpdWS+a7+rY2SHVJ89beX5xrwN/870ryzohKwc6mxjqa4389xj23lvkd+X5DdN8bNrFWmnVaQdan2ft3+lu/vXrHIXtjm6irLLZwAN4s8hXgp6TiQmQgp81LPMRoU7aBNjw+4QpBqKGpbq80lVQQHbpkzF0YwWQ1NYGBnr1gYt6pYuXcqCBQuYPXs2K1as4OzZsyxatIht27Zx/PhxEhMTGTduHM899xxxcXG684iiyKJFi1i3bh2lpaUMGzaM7OxsunbtGuyluWEUFr5Eef0Pg0M+p5aYK+w01e+iyoUdH6Sw44NBnz/hWDaJx9aQeHytIebOMxe6mJPWLxBusevWecusGMPP9/8vcdH19HSKN+VXIOf66OZ8auvdP469lX2JbbeRunoT7y3K0Rzn7zZv20NNtw0bGVzrX09cOTtYJs36Z48xH369ytn9QhJ1DodAmFkkNtJGdLgd4aIqTCwiIBIXZcdqXeYqOK1lhU2zvsJ19cu50f4819uWsz9GsiYfT5p2HtbtSW15ebOKOQBHfX3QFsF9+/axZs0a+vTp49p2+vRpTp8+zQsvvMAPP/zAhg0b2LJlC5Mney/M//zzz/PKK6+wevVq9u7dS0xMDCNHjqSmpiaotakxBN0lyP7EVCb/fg87uvRkX+TDXsc1lhPVH/g9NvHEaySeeK3R5zQwCAXDWU7fc55CAqQHacm+A5RVh7P/8KshOZ8giPTtPsf1WisWTqZ/Yb6UZaoxTrnNn+SIlii+C2ZN9DkmMwXa5q6SirMLEN+6jp4dKunVoZKeHSqJb3XxxIyZTZDato4bHc+TmYLbl1qQq1/L1s5OBefPe3KhUlFRQWZmJuvWraNt27au7VdddRXvvvsuY8eO5YorruCWW27hD3/4Ax988AE2m7ZJVBRFVqxYwcKFC7nzzjvp06cPf/nLXzh9+jTvv/9+SNZruFwvQerK/pfBdSvgl0NsjP2In/QGWvM5rLHZW9FYrTlSUx7D5hD4vnUNV6s6UxhceBw6mR+QBepiJDMFGNAPgdAIImmOZV7bZ+gJvAtBqJW8ncqxqffQ9tyffA8GuhW/7Pfc7XKlGMKz6TMIM9sBCEckvpWNsxVhLivehYzF5ODaqhfJS36YzmfcP0PVCS+ZfsRIGvjHzJkzue222xgxYgSLFy/2Olau72exaMuq3NxcrFYrI0aMcG2Li4tj0KBB7N69m7vvvrvR6zUE3SVIbGQd1AFdPiIzyDkCe1gsl2zB34+BLkGe0KDFEIyYU7rQ2jqzQZXftx3QjyNDuiAgxa7Frfin2/H+BPI3O10+YgQfnbfT+/rDyt92ZU3Nyfaz6HDPq36LuUCR48fa5a7ibPoM1/bYCDsRFgfV9eYmOW9zUmszsU2YT3ihSGcv41rk78kFyjvvvMP+/fvZt2+fz7FFRUU899xzTJ06VXeM1Sr9QiYnJ7ttT05Odu1rLIagM2g+upy/h5+Swk5TSTxuxNgFzS9jPDcNvhyHKFBvM1HvMOFwSBmgDodAvV2g7tcmbA6BcLODPhv/St6UuzlXbSHcIlL3G4GqWjP201KWpyCIRP76t5gFEYcoEG5xEG6RaslFWuxEhDnosueI+wJayHtLprmSQvxtQQbNsyatkigdTofGJa2H8pqUoq6mXpAyXy8KBGrqzdTZRP4dP4++QYjjfye0IJNtC+fEiRPMnj2bTz75xGd3hvLycm677TZ69uzJ008/3TwL1MEQdJcY+xNTifCSZXYp0GLF3C9jGoSJ8vvGzBcAOQOvoM5mwuYwYXcITlEGNrvg2iaKIF4uiTW7wxl2LgqIp3HrD9qA+wO1GhO7/+deHGcFpytM64ErUGHXCu91Nn4S4L+d+rq2mkwiFkdvTIJIRJid620vAuc301brvIVp00g81rRxTN6uuTnuRUuwELXLXUVBp5kUnQunzn6xCDoJhwgniiMoDJ9PfGw9/SoahJ23n33J26n0veN4M63ywue7776joKCA/v37u7bZ7XY+//xzXn31VWprazGbzZw7d45Ro0bRqlUrNm3aRFiYfhvQlBTph3PmzBlSUxs8FmfOnOHqq68OyboNQXcJchGElDSKorQsEo6tOd/LkPhlDN/17YbNLlDX3YTN0QsBsHQXsZi7E2YWMZnALIj0OfCTtshTCbfvr74ShwiOPjgtZCbsDhN2EUSHLMakf0WxQZRhbajy70moHowCtqCtJtJx6jU67AI2KXSKqjoz28Lmk3H0IGP2HWDjzZLAaEox469wFLzcw1CJz/PtXvWHxlyrr2NlC2HSjly+TevDxdYGTHBeTlWtiZq6CKpjH2Wos4OHt/vS9p58zlU2wwIvEoYPH87Bgwfdtt1///10796d+fPnYzabKS8vZ+TIkURERLB582aflrz09HRSUlLYvn27S8CVl5ezd+9epk+fHpJ1G4LuEqN/YT4/tL60JV0wYs7v9msqcbW/75XY7CZqbSZsdsmqZVO4JMWOIJ5VHuHeeFy59Xinvgj1fZydDBr2iWk0WMpEEIu1FnZxPdj0EaipN/F/aX2IubIX3SNtXPOfHPhFykpVEiprkr/iJOFYttf9zWlRbGnWS2XsGzTUlhPAlcUKMDodikX3caJznF0UqJhtJr/eRH6XcGy1F997PjbCzs3i867XX4qP8XX4Y/R486+u1nXq+yuL3NJ/XgBqv4XQqlUrrrrqKrdtMTExxMfHc9VVV1FeXk5GRgZVVVX89a9/pby8nHJnWZTExETMZilus3v37ixZsoTx48cjCAJz5sxh8eLFdO3alfT0dJ588knat2/PuHHjQrJuQ9BdggjCxfdBFwhqC52uWFOIs/6/APQD4KdBXai1CdjtgrNvqOSOtNsF6tMVYk1UirVA77n7eEmwAeKl/bPzD0k4l1ebKK+2cLpTX0yCiJDWB0EAs8mBxSy1TzIJolR8FYgIc5DSppaIMIezhpng/DE4Y/t0ziY6/+/NAidNoLVfOs+odOnbYkFgy+6VTS62xnyW6uphK1My+1eIorTMti//Q1fwKsWXS3gJDeJLjV+9VXXGyGJNa46qOhOnzkbicEjnr7cLVNaYsTlDAy7GP2JMqpt8nbPd1zcPPMLA6hfJTGkQcCVvp1L40ETqppk4YxYRHyqHjee/u09E69aYwsKavbBwROvWIZtv//797N27F4AuXdwz/XJzc+ncuTMAOTk5lJWVufY9/vjjVFZWMnXqVEpLS7nuuuvYsmWLT+uevwiieOm1Mg4F5eXlxMXF8dOmsbSK0febtzT2J6YSUTeeXmWrfA++CClKywLgeNVmQNEnVyHeDvbvis1hos4mCTa7Q3DFkbmJNY/ZL74HyMWL9k8vOsJO66h6zCYRQRCcAlAkMsxBVLiDMIvDJQAbbKmiYgZZAzb/e0FwSiqHKCWiuP7IsEvXUV0nvZcraszU1EsWY4tZxCyI1Nul97hDlMaGmR1ERzhoF1tPdIQdsyBlWkaF2zEJUgP4cIuI2dQQ16iOoZRvQVM8YUQgvySCvILIS+r30GJ2kNqmzi12TskPbeZit4PNIf0sB1S96Nq3L2wKd9w82lVeo6mpqakhNzeX9PR0D8FitP7yH2/3UY1hobvEkFyu53sV5w9RhMTja0hwCrj9ff+Xipowai53WtkcAmKh8sF08T4cLm08f64iUFlrprLW7DHSZBKJsIhER9ilTgQRkpXPdawzeSQqXNouCUI/liGbxFwr8P/9JorSHxd1NunhjShQXWeitMpCZa0Ju90kxUo6JPOZw+H5vq7TqoEqgt0hib7SSgtmk2TNtDmkjGOzScRmF4iJsJMYV09ctA2LfL0qdaUUc/IfQSaNS3QLIRDdt8uva+ulTGmLSaS82kJBWTju0vrix2YXOFkcQXnU49zokFyvSjfrVaUv6R7bvbTl/BEfnZR0wQqslowh6C5BLiWPq9Kd+lP8w1QUm/mv5TGqLzdRZzPhOAuX0gPBwBfaQs/uEKiqk9x8RefCXCJHiVxiJSLMQesoG2EWkehwO5HhDsBp7RNEBEGlWBAQEBFlC5+gSP5QWL0comRFq7NJrsU6m0B1nZnqOsnahnOdmtnDQVnJpLkcikzR6roGsVtTb6KsykJctJ2OCTXERNgRBFwi0ua0BspW7po6SZBFh9uJCncQGe5wbQszO4gMc7hb/BS3qKrWTH5JOFV1ZsItDpe18dL73ZXeKedqzHwd+xhtYmxkoi/iDC4tDEFncFFjqr6br8LMVNWZqbNKddEM65tB8DQIJ7vG3uo6E9V1JsoqLQgCrhp6ImrXrUiY2UFtvQmHQ8DiFH8RYdK70+aAyhozJc5OBw6HZCGrcybXNMSJua+reRGwOaC4woIoRtIpsQa7A86eC6Oi1ky9M77U3TIIZ7Fgcrqy5VI4smtbjsVDkOStHMJotwuuEiR1NrPr/JcqraNtDK1bDnXw33az6X7W/84aBhcvhqAzuGDZn5jK4YMNZSlK3k7leNbdnKs2U10nWTDsxfKH/qX74W/QnDita0jWtZp6MzWu2O8GB6EgSAWUJVcpzrg1kTaxNgREyqosTsuW9vwtB2k9ZystVNTGIIpScoJynxZqy5+oem2gj9kkcoNtueu1Usy1lO4gBucHQ9CFiIIOD5B08o3zvYyLnrue6QbAhKwcsObT+8o5nKu28Emdmbr/EbAXXopuGIMLA3exp8xYFkWotUFhmZRgpV90uaUiuYINmp4Ii77/3BBylzaGoAsRhpgLLfsTU1k8S8remJCVA0gfVk+/OJqKGjNVtXdSZzNxrFC45AKjDS5WhIuikbxBU+Jnso3BJYkh6AzOO1ribczb8F7mFfyn35VU1t5OZZ2Zj+pN2IuUsUPGJ5uBgcGlg0mA4SwjN+lh6uwC3YqN2DmDBgxBdwnSUioPKt2nC1+VSqp8HzubiloL397tzI4rUoo2Q8AZGBhcqojERNj5wvwYlflmzIJIN62WxwaXLOf17bBkyRIGDBhAq1atSEpKYty4ceTk5LiNOXLkCOPHjycxMZHWrVszceJEzpw543Xep59+2lkUtOGre/fubmOsViu//e1vSUlJISYmhv79+/Puu++G/BpbGvsTUzXrQDXHeWeuHc9Ga0Pg7nuZV7Bo+UjSO87jbMFv+b/6JzheHM3ZinCq6yzYHSZw5boZYs7AwODSpqLGTEmlhcgwB7ealrE/Zh57Ih/hh7g5Xo+TP3MNLm7Oq4Vu165dzJw5kwEDBmCz2fjd735HRkYGhw4dIiYmhsrKSjIyMujbty87duwA4Mknn2Ts2LHs2bMHk0lfj/bq1YtPP/3U9dpicb/USZMmUVpayubNm0lISOCtt95i4sSJfPvtt/Tr169pLjhIznScRvKJ1ed7GUGx0QrvrunGhKwcJv9+D/13j+GrHj3YXm+iNs2MvdiIgTMwMDDwjeDqSiLXMuxf6ewYUeP9yMwUOFfZlGsLjPris9gqmm9BltgYwuLbNdv5zhfnVdBt2bLF7fWGDRtISkriu+++44YbbuCrr74iLy+PAwcOuFqVvPnmm7Rt25YdO3YwYsQI3bktFgspKfopP19//TXZ2dkMHDgQgIULF/LSSy/x3XfftThBF0ox178wn0NxIZvOhVzAV11KpPeVc0j/g5TEYD1t4oOOAmIFGALOwMDAIDAEAcaGL2Ff+CP8EDGHmAg76Wf+fL6XFRD1xWc58rtnEeu12pQ0DUKYhSv++FTQom7p0qUsWLCA2bNns2LFCgCysrL49NNPOX36NLGxsQwdOpRly5Z5eAOViKLIokWLWLduHaWlpQwbNozs7Gy6du0a1LrUtCgPvNzEtl076abX1tYiCAIRERGuMZGRkZhMJr788kuvc/3888+0b9+eyy+/nMzMTI4fP+62f+jQofztb3/j7NmzOBwO3nnnHWpqarjppps056utraW8vNzt64LklzGEWkzNXDveJeIi6iZyeadHSEl5nI/qn+BYYRRF56QK7zaHCdFwnxoYGBgEhwh7Ix9lQPWLXFW64oITcwC2ispmFXMAYr0taIvgvn37WLNmDX369HHbfs0117B+/XoOHz7M1q1bEUWRjIwM7HatkuMSzz//PK+88gqrV69m7969xMTEMHLkSGpqfJhY/aTFCDqHw8GcOXMYNmwYV111FQCDBw8mJiaG+fPnU1VVRWVlJY8++ih2u538/HzduQYNGsSGDRvYsmUL2dnZ5Obmcv3113Pu3DnXmL///e/U19cTHx9PREQEWVlZbNq0iS5dumjOuWTJEuLi4lxfHTt2DO0NaGrk5vNdPqJn2cqQTLnRKiU2TP79HjIrxvBt1FyOFkRTeC6cylqLSsAZIs7AwMCgMYgoCzcbNDUVFRVkZmaybt062rZt67Zv6tSp3HDDDXTu3Jn+/fuzePFiTpw4QV5enuZcoiiyYsUKFi5cyJ133kmfPn34y1/+wunTp3n//fdDst4WI+hmzpzJDz/8wDvvvOPalpiYyD/+8Q8++OADYmNjiYuLo7S0lP79+3uNnxs9ejS/+tWv6NOnDyNHjuSjjz6itLSUv//9764xTz75JKWlpXz66ad8++23zJs3j4kTJ3Lw4EHNORcsWEBZWZnr68SJE6G7+Oagy0chmWZ/Yqrr38yKMbz2xo1Sr9QuH1F4LsKwwBkYGBg0IUYB5+Zj5syZ3HbbbV7DuwAqKytZv3496enpusae3NxcrFar21xxcXEMGjSI3bt3h2S9LaJsyaxZs/jwww/5/PPP6dChg9u+jIwMjhw5QlFRERaLhTZt2pCSksLll1/u9/xt2rThyiuv5JdffgGkzNlXX32VH374gV69egHQt29fvvjiC1auXMnq1Z4xaxEREW6u35aKshl9KLnrGSmxIfOXfhTePIb+J14H+nHybDT/MT1GVa0Zm8P4oDEwMDAIDSLhFhFBEKmtbzBgVNSY+Tz6MW6wL/dybAMbrUYHiWB455132L9/P/v27dMds2rVKh5//HEqKyvp1q0bn3zyCeHh4ZpjrVYp1Tg5Odlte3JysmtfYzmvgk4URR566CE2bdrEzp07SU9P1x2bkJAAwI4dOygoKOCOO+7w+zwVFRUcOXKE3/72twBUVVUBeFj5zGYzDodH88QWj1LEhUrMufUE/GUM72UCFVdw6oZOlFdY+Dn8Ec6lW6grNjnr2hlizsDAwCBUmAQYZV4qvXDaEr6wPEZZlcVvMQeGmAuGEydOMHv2bD755BMiIyN1x2VmZnLrrbeSn5/PCy+8wMSJE/nqq6+8HtOUnFdBN3PmTN566y3+9a9/0apVK5dKjYuLIyoqCoD169fTo0cPEhMT2b17N7Nnz2bu3Ll069bNNc/w4cMZP348s2bNAuDRRx9l7NixpKWlcfr0aRYtWoTZbOaee+4BoHv37nTp0oWsrCxeeOEF4uPjef/99/nkk0/48MMPQ3Nxv4wJmZvTF6EQcbIr9fDBfDIrxpAp7/gF8m/sRFWdmZKKcEpPhVFTb74Ae00aGBgYXDg4RPjY9gQmAeJibAyueYHrbcv5ru0j7LU/wqCaF8/3Ei9avvvuOwoKCujfv79rm91u5/PPP+fVV1+ltrYWs9nsiqnv2rUrgwcPpm3btmzatMmlNZTIVTfOnDlDamqqa/uZM2e4+uqrQ7Lu8yrosrOzATwyS9evX899990HQE5ODgsWLODs2bN07tyZ3//+98ydO9dtvOySlTl58iT33HMPxcXFJCYmct1117Fnzx4SExMBCAsL46OPPuKJJ55g7NixVFRU0KVLF958803GjBkT2EUczQCn+FTzS4IkMLvsOcqRIVdwxe4j0nqHXIEkhvRbNgiCZMEEuKLw1cDWFCAbrfD/2zvv8CiqrwG/syW990oIIRAIHSH03hFpP5ogYAFEFLGBfoCCothQRBRQkaIoTUBQQHpRioj0EiAFEtJ7NnWzO98fSwaWBKQEkpD7Pk8e2Cl3zpk75cy555w7nGsePl0vUjv7YZQl8vVqMnO1pCdo0RVobgjGFYacQCCoisho1TIqCQqKHuTz0PTsLzJKqCWZ9BwNqE1rmubM4Zjdq5x2mkS9jLml7v2gQm+qCp07dy4RT//0008TEhLClClTUKvVJfaRZRlZlikoKCi1zcDAQLy8vNi5c6diwGVlZXH48GHGjx9fJnKX+5Drf/Hhhx/y4Ycf3nabm7NKbkysuBXBwcFlMzNEjW1gqy11Vc1iG7MmBCWb/oVr/78N/7p70yTp7m/GO72Ji71xxdsO1/UiNcAPkHC9FEN6jiWpOi1ZeVoK9CrhjRMIBIJrWFsYqeZWQLpOQ0auhsIiCYNRKtPnpEYl00tr/t47Yv0azfJMXrnGus9uu78w5u4Pe3t7pdpGMba2tri6ulKvXj0iIyNZtWoV3bp1w93dndjYWD788EOsra3NnEIhISHMnj2b/v37I0kSkyZNYtasWQQHBxMYGMj06dPx8fGhX79+ZSJ3hUiKEJhzrzfjrfa72dBrkhwPl3qR2rkPIGHwl8jLV5Oeo+VkrVBy49UYjCJbVSAQCMyRyClQozdI1PDMR2+QKCySyMrTEJNiSUGRaZv7xUIjE+46idqpc5VlhrtIOqvIiRAaO1skreahFxbW2NmWWXtWVlbs37+fuXPnkp6ejqenJ+3atePAgQN4eHgo24WHhyv1dQElgWLs2LFkZGTQpk0btm7dWmYxd5J8J24yQQmysrJwdHTkwvo+2N/CQ1dW3I/7vHjmhuLkhps536wmaTkmb1zhAx1CEAgEgkcBGQdrA3V9c7HUyugNEinZppCUNJ2W7LziGGP472fpja9fyWy5pUamu/q6l+6kwyuoVFAv4/N7kjo7R0+t/pvIzMxUZl56kOTn5xMVFUVgYGAJg0VM/XXn3O483ozw0FUC7saYM0tu8IImBxvThMZwCdK7+GEwqtEVqEnTaUnP0ZKXKBIcBAKB4M4xeelSdRq8nPRk56uxtjDiblWEm72ejBwNmbkasvJMpZyKDOajHSpJRqOWKTJIWGqNGIzSTbXlTNU8VSqZ/Zo3aFtkymhtkHVvhhxAsv+zWJ2vOPOBa11dKq2BVZERBt0jhmLI6XopRpzzjlji2lUnI0NLqk6LLr84wUEYcQKBQHC3GIyQmGmBnZURfZGEi10RkgSWWiMejoXUSZ9rKtuvgt+Mb93gsQMHmyLaFX2iJDkcd3oVXb6ajBwNRtn0TO5jOdu08g5GJe90eDXFbySw6W7UFFQyKsxMEYJ7Z0XCtbpxl3oxXNfLbGg1LceSI/VDOHPVjsgkG9JztMKYEwgEgvtCIjtPTVy6qYisSrpusUk3PFrPOU9CJck8YfkBapUMyCZj7gYaZX+Gu0MhGrWstLNdnnJX0hSPzNwK95jFd9WeoHIiDLpKxr/u3vzr7s2Eb/pfL/6rMxly6V38SO1cjdi2gZxsXIs9tUI5H2dLfIYleYXqa19/wpgTCASC+0XGNGuDJMlmj1SXqK+V/9dJn4uzncnN1ls7G3srA8fsXi3RVu3UL1BJMvbWBmwsjHSVPrpjOYZ7mcJySjPqkv2fvXOFBJUeMeRaiViRAL/MdGDguHC+Grve5IkzzWZGfPvqZGVpSNVZkJWnEQkOAoFA8IDRqGUcbAyoJFMh4BuNuWJaFnyq/L+j/DHobtGWSkaWwdrSwF+8QevCu5vaq7RY6xs9c26xy++oPUHlRRh0FZziLNViPprXhcy8nuzO06KvocJKa8BCI5N7VU1eoRrDHWdXCQQCgeB+0BskCvUSFprbP3EvuL5MrdQvlN+RHhOpkTTPbJtOfMyKOJNxdtz+Vf51vF7dwGwqRszj5kqLnxOFhasmwqCrgPzr7s2sF02eOBLiqVPfG2POULLyNFxMMGVOmZDI1984ai6MOIFAIHg4SOQWqIjPsCDQIg/3yyW9c8XcaMwBJYy5YoqNs0bZn0F2yfXFhtyNRpxZaaprCGOuaiIMugrChG/6Ex9/VjHi1g1vzL9BvcjI1RAfp76hqOTNRpsw4gQCgaB8kEjXaWl+6pwyE9D9cvOoTGnc6KEr3vbGZbf6v+DRRhh05cS/7t4sfr8FrZ5YD6DExJ2t052MHC1b8zQUphV734TRJhAIBBWRgiKJrYEN6HEJqLn5ttvebGhByd8kmLxtN6+/kRuXldj/FssqEqKw8INBGHTlRJPkeM49sZ469U2xDkdtJ5FR00IU+hUIBIJKhURhEWyp3oCe/2HU3WyI3WyEFf++cfmtDLXbed1KG5qtKOhT04j4v3cf+tRfQR+8/cgbdaJsyUPiX3dvpV5ccXp5w9oT0aUNZ0vRm1xNsyan4MbSIgKBQCCoHEjoDSp216pHnN+Ld7RHacZbaZ630va7ldfudl691Ul3JNYDp0iX81CNOQBZX3RfHsEPP/wQSZKYNGlSybZlmZ49eyJJEhs2bLi9HLLM22+/jbe3N9bW1nTp0oWLFy/es1w3Iwy6B0yxIVcctDpc1wuDbijb5clEJduSkatFb1Ah6sMJBAJB5UaXryY6yYp4vwm33Kb4w/5mD9qNy4t/l8btvG43r7uxjcEeCO6BI0eOsGjRIho0aFDq+rlz5yJJd/bu/vjjj5k3bx4LFy7k8OHD2Nra0r17d/Lz88tEVjHkep+ccPOiTV6q2bIbg1qHE08TXS9ONglmj05LToAGQ4Yw3gQCgeBRQ5Yl0nO0eBQUkhb4Qql16W7F7eLi7nXo9Mb9KoqHrjKh0+kYPnw43377LbNmzSqx/vjx48yZM4d//vkHb+/bz9YhyzJz585l2rRp9O3bF4Dly5fj6enJhg0bGDp06H3LKzx0ZUBq9fEMmFlb+cIKnGfyxD0WOpEDFq/xR436XE6xIStPi8FY7I0TCAQCwaOGwQgZOVqKDJBa/QWzdTd75krzyN08BHunxtyt4u6KfwsP3d0zYcIEevfuTZcuXUqsy83N5cknn+Srr77Cy+u/OykqKoqEhASzthwdHQkLC+PgwYNlIq/w0N0n1Wx7M+bpXQwcF2668S714tiY2pzI1ZCTcLtyIwKBQCB4FEnO0uJgU4SrnZ60QJNR5xL1dQnjrDSv3N14425VYLi042Q/vKTSR4KVK1fy77//cuTIkVLXv/LKK7Rq1Urxtv0XCQkmK9vT09Nsuaenp7LufhEG3X3ivDuGdcODOF+3B3/pNGQHailMFUacQCAQVE0k9AaITbVEo5Kxty5CreKWQ7D3UyeuImaxPgrExMTw8ssvs337dqysrEqs37hxI7t27eLYsWPlIN2tEQbdfXKodm1kjSMFCSpkUW5EIBAIBEjo8tVciLfB3aEQX5cCtGrZzFsHpQ+zFnO/cXSioPC9c/ToUZKSkmjSpImyzGAwsG/fPubPn8/48eOJiIjAycnJbL+BAwfStm1b9uzZU6LN4mHZxMREs3i7xMREGjVqVCZyC4PuPknL0WJtoy5vMQQCgUBQoTDVp4tPt0SSwM8lH821V0Wxt+5ODK7iciR3a6AJY+7e6dy5M6dOnTJb9vTTTxMSEsKUKVNwc3Nj3LhxZuvr16/P559/Tp8+fUptMzAwEC8vL3bu3KkYcFlZWRw+fJjx48eXidzCoLtvhEdOIBAIBKUhYZRlEtItsNIa8XAsRHXtlXEnWbAVuUDwo4y9vT316tUzW2Zra4urq6uyvLREiGrVqhEYGKj8DgkJYfbs2fTv31+pYzdr1iyCg4MJDAxk+vTp+Pj40K9fvzKRWxh0AoFAIBA8MCSKjBCTavLUudjpkQC1Sia1+gu4Rt/aqHsUDTmNnS2SVvPQZ4rQ2Nk+tOMVEx4eTmZmpvJ78uTJ5OTkMHbsWDIyMmjTpg1bt24tNU7vXpBk2RT5Jbg7srKycHR0ZO6qPVjb2JW3OAKBQCCo0MhYaGRsLAyoVOBkq8fdQY9GJZsMvbuoWXcvZOfoqdV/E5mZmTg4ODzQYwHk5+cTFRVFYGBgCYNFzOV659zuPN6M8NAJBAKBQPDAkSgskigsUgEymbkadPlqvJwKsbMykBb4AlsO3llcHVTupAetq0ulNbAqMsKgEwgEAoHgoSJhMEJSpgVZuRo8HQvxdCqkR4sXSEXGNXrBf7ZQWY05wYNDGHQCgUAgEJQLEvl6FVdSrcjM0+DlWIijbRGp1cez9dB1o04Yb4I7QUz9JRAIBAJBuSEhyxIZORouJVgTkWBNRq6GrmEv/PeuAsENCA+dQCAQCATljkSRUSIlW0tWngZXez2tG71E9YQv77m4sKBqITx0AoFAIBBUGEzJEwnpFlyIs+Ffu1dp1+RFeu32ZsDM2kDpM0sIBMKgEwgEAoGgQiEhX4uvu5pqSXicDVfGDWFxrawSxpww7gTFiCFXgUAgEAgqJBIykFug4UqympRhT9HQqRDfBasYcMGBgePCxTCsQEEYdAKBQCAQVHBkJHIK1EQnWZM2YgSLf/wRZ6/KWY/OkK3DmJ//0I6nsrJCbf/oTwAgDDqBQCAQCCoFEkYZMnI1HBw0CjdrPb12/8SKjvG3NepWJMAT9g9PytthyNaR/PNaMBge3kHVatyH/e+RN+pEDJ1AIBAIBJUKiSKDioQMC44OHcljdV8qb4HuGGN+/sM15gAMhvvyCH744YdIksSkSZOUZR06dECSJLO/559//rbtyLLM22+/jbe3N9bW1nTp0oWLFy/es1w3Iww6gUAgEAgqJRK5hSqikm3hUq8Sa0W5k/vnyJEjLFq0iAYNGpRYN2bMGOLj45W/jz/++LZtffzxx8ybN4+FCxdy+PBhbG1t6d69O/llNPxcrgbd7NmzadasGfb29nh4eNCvXz/Cw8PNtomIiKB///64u7vj4ODA4MGDSUxMvG27M2bMKGE5h4SElNju4MGDdOrUCVtbWxwcHGjXrh15eXllqqNAIBAIBA8OU5mTrYH1Sf/ZmxUJpWe+rk56+JJVdnQ6HcOHD+fbb7/F2dm5xHobGxu8vLyUPwcHh1u2Jcsyc+fOZdq0afTt25cGDRqwfPly4uLi2LBhQ5nIW64G3d69e5kwYQKHDh1i+/bt6PV6unXrRk5ODgA5OTl069YNSZLYtWsXf/31F4WFhfTp0wej0XjbtkNDQ80s5z///NNs/cGDB+nRowfdunXj77//5siRI7z44ouoVMJpKRAIBILKhERhkYqjQ5+ieeiL/LKoNgNm1uaXRbVvaeAJ/psJEybQu3dvunTpUur6FStW4ObmRr169XjrrbfIzc29ZVtRUVEkJCSYteXo6EhYWBgHDx4sE3nLNSli69atZr+XLl2Kh4cHR48epV27dvz1119ER0dz7NgxxfJdtmwZzs7O7Nq165YnGUCj0eDldWs/8yuvvMLEiRN58803lWW1a9e+T40EAoFAICgPJHIL1UQk2vH6+4/jYluA59e/sBn4ZVFteo88Xd4CVipWrlzJv//+y5EjR0pd/+STTxIQEICPjw8nT55kypQphIeHs27dulK3T0gwWdWenp5myz09PZV190uFckdlZmYC4OLiAkBBQQGSJGFpaalsY2VlhUqlKuFxu5mLFy/i4+NDjRo1GD58OFeuXFHWJSUlcfjwYTw8PGjVqhWenp60b9/+tm0WFBSQlZVl9icQCAQCQcVBotCgIiXbgogkO44OfYqa1SexuJZ4X90NMTExvPzyy6xYsQIrK6tStxk7dizdu3enfv36DB8+nOXLl7N+/XoiIiIesrTXqTAGndFoZNKkSbRu3Zp69eoB0KJFC2xtbZkyZQq5ubnk5OTw+uuvYzAYiI+Pv2VbYWFhLF26lK1bt7JgwQKioqJo27Yt2dnZAERGRgKmWLsxY8awdetWmjRpQufOnW+ZcTJ79mwcHR2VP39//zI+AwKBQCAQlAUSBqOK3EINiZnW/DVwFB7uL5e3UJWGo0ePkpSURJMmTdBoNGg0Gvbu3cu8efPQaDQYSsnSDQsLA+DSpUultlk8YnhzDkBiYuJtRxPvhgpj0E2YMIHTp0+zcuVKZZm7uztr1qxh06ZN2NnZ4ejoSEZGBk2aNLltrFvPnj0ZNGgQDRo0oHv37mzevJmMjAxWr14NoMTfjRs3jqeffprGjRvz+eefU7t2bb7//vtS23zrrbfIzMxU/mJiYspQ+/vDztoCB1uTF9PWSouTXelfFHeLpVaNi701klQmzQkAG8uy6x9BxUetknCxt0ajfrCPWrVKwtne6o6OY2dtgZ21xQOVR1CRkDDKKnL1apydnUWc+B3QuXNnTp06xfHjx5W/xx57jOHDh3P8+HHUanWJfY4fPw6At7d3qW0GBgbi5eXFzp07lWVZWVkcPnyYli1bloncFaKw8Isvvshvv/3Gvn378PPzM1vXrVs3IiIiSElJQaPR4OTkhJeXFzVq1Ljj9p2cnKhVq5ZiORef8Lp165ptV6dOHbOh2RuxtLQ0G/q9kYZBngT7uiJJkJCu489TV1BJEu0aBuDmYINRljl3OYWzl5PvWOZb4e1qRzUPR7JyC7gQk0rDIC8eq+1TYrvohAy2/XPvrl9PZ1t6t6iFRq0iK7eANXvOYDDKd92OhVZN45peBHo542BrSZHBSFJGDhdjU8krKMLb1Y707HwuXk1FvvvmHxi+bvY8VtsHC43pxjUYZTJz8olNziIqPoPCoruvo1Tb35V2DQKQJInY5Cw2Hy67+kM34mJvTWh1d6p7OWFtqSU3X09sShYnIhJIz87H38OBOtXc8XN3QKNWkaHL53JiBiciEskvLAJApZJoVz8Adycbpd0CvYGs3AKc7azQatTkFujZdSyK3Hw9AZ6ONA/xRZYhIi6NY5dMMSG+bvY0qOGJm6MN1pZasnMLuJKUyb8X4sm7dqxiJAnqB3oSWt0dextLUjJzOXYpnqj4jPs6H63r+ePjao8MRMal8+/FeKwtNXRoWB07awv0BiPHLsZzOTHzvo5zM9YWGgZ1CMXKQkOh3sAv+8+SnVtYYjuVJBHs54KTnRVXU7KJTb674TFbKy3Du5hKKhTqDfyy7ywajYp61T0I8HLC5oZrwNpCg7+HIwDHLyXw9/mrJdqTJAj2daVOgBueznYYjEZik7I4FZVEXGr2PZyJ/0YlSdQL9KCWnysuDtYAJGXkcDkhg7jUbAI8ncgt0BMek4K+6PYJcXeKlYWG2v6uaDVqLl1NIyungLYNquHhZIssQ3hMCqeikrC3tqBdwwBsLLUUFhk4cj7ugZ2He6W4z5ztrYhLzSYmqeQ15OPmRFxc3C2HEAXXsbe3V0YKi7G1tcXV1ZV69eoRERHBTz/9RK9evXB1deXkyZO88sortGvXzqy8SUhICLNnz6Z///5KHbtZs2YRHBxMYGAg06dPx8fHh379+pWJ3OVqqsuyzIsvvsj69evZtWsXgYGBt9zWzc0NJycndu3aRVJSEk888cQdH0en0xEREaEYctWrV8fHx6dEiZQLFy4QEBBwVzpYW2ppHuLLjq2bWPrdQmr7uVLTx4WQam4EuNuzeNFX/LVnBy3q+qFW3Z+ry8pCQ+8WtXBU59Ms2JOQam7U8HZmxYoVfP755wBs2bKF6dOnU93LCdV9uNYCPJ24GhvDwIEDcbCxxM3R5r93ugmNWkWflrUIcLViyXcLeemll5g+bSr//LWb9g2r06N5TWxlHW3q+VHdy+meZX0QNAvx5fLFsyxe9BWLF33F6hVLSbocTpt6/gzpGIqHk+1dt1ndy4ndu3czefJk/Nwd0GrK/var6evC/9rXxVbK44vP5zBhwgS++PxT1AUZDGofyhOtatOjWU1SYi/x9vRpvPjii/y0/HuquVgypEOoco36uztQy9+V77/5WjkHWzeuxVFbhKuDNSuWLcaQm0GHhtWxt7ag22NBHD38F0cP/0mzEF80ahWSBF2a1uBq5Dk+/GAWEyZMYOFX83C3gSda11aM5WI6NQ6kSU0PVq5YzksvvcThP3fTpUkN6gd63PP58HS2JbS6Byt/XMqmdat5rLYPbo42NA32QWPIZfGir7hw+hjNQ3zv67yXho+bPVYWGtq0aYNsLMLf3bHU7YJ8nGlV1xc7cugVFoy9zd15z5qF+JKYmMiYMWOw0KppUsubQe1DsZXymHftGpj72Seo8tPx93Dk8OHDzJo1i0Y1vUp4i1WSRPdmNWlb359/Duxl0qRJTP2//yMtPorHW9aiSXDp3of7pVMTU99vXLeKSZMm8dprr/HHpnXUr+5K39YhuFrqaVjdhYY1yq6gWos6foT42ONtB92bBeHn7kBtfzeWfreQ7Vs20jLUH3sbC5rX8aUwO5XFi74iJuJ8qR/Q5U0Nb2fa1PPDVtbRs3kwjrYlnQ+BPq7Ex8czaNAgwDTU16tXydp1d0J4eDjyPX6Bq6ysoBQP1wNFrTYdt4ywsLBgx44ddOvWjZCQEF577TUGDhzIpk2bzLYLDw9XcgMAJk+ezEsvvcTYsWNp1qwZOp2OrVu3lpmRXa4eugkTJvDTTz/x66+/Ym9vr2R6ODo6Ym1t+kpbsmQJderUwd3dnYMHD/Lyyy/zyiuvmGWkdu7cmf79+/Piiy8C8Prrr9OnTx8CAgKIi4vjnXfeQa1WM2zYMAAkSeKNN97gnXfeoWHDhjRq1Ihly5Zx/vx51q5de1c6aDVqJEli0aJFHDx4kMaNGxMc2gQrCw2bNm3i7bffplevXjzxxBM0CfbGz90BdydbCvUG4lKz+Sc8Dgutmsdq++Djen1ulsR0HScjE828E/UDPVBJEn379mXZsmW0btQIgODgYCVzJjU1laioKMD05V6vhgdBPi7YWGqJS83m+KUE4lOzaVzTm5q+LjjYWlKoN3A1NYu/z10lM6fg2jmC/Px8Tp06BUDf1iFk6PKJiEsDTAZfgb6IA2diyNDl06ZeNTycbcnOLWTfycvkFxZRy88VWwsVjRu3pF27dnTv3p20tDRWrlypGOQtW7bkzJkzdG0aRFJGDnkFelwdbLCztiArp4CohHT+vRBP3eru1PZ3U15AhUUGkjNyMBhkPF1MX9RXkjI5dDaWgsIiQgLcqFPNHTdHGzJ0+Vy6msb5Kym0rGsyHtVqFUZZJievkKj4DI6EXzXzQFpo1Ozdu5eVK1cybNgwrl69yoYNGzh9+jSrV6+mW7MwVu0+TS0/V0KqueHqYEN6dh4Xr6ZxIiKB6p5ONAjyxNPZNNVMQpoOLxc78jN8adGiBQAONpY0qeWNn5sD2mvGTbEX0NbKwszIzczJ52JsGscuxd/Sk2lvY0GHhtVZsmQJb775Js8//zydOnUiIiKC7t27c/r0aTydbRk7dix//vkn48ePp3Hjxvz9998MGzaMrVu34mBrSXp2PhZakzxTpkzhrbfewtHRZAi8+uqrHD16lIKCAp5++mm2b99O39YhXL58mREjRrB//37iU7MpMhhRqyQstRqOHTuGq6srISEh7Nmzh+bNm3P27Flq+btyOspUHMvN0YYgHxeGDRtGfn4+Q4YMYerUqURERDD+hQmcu5JCkeHuPTPFerz77rvodDq6dOlC3QB3Qqq5MWvWLD744ANee+01wlq0JKyOL9U8HHG2tyY3X09Mcib/hMfh6WxHgyBPxYg3yjJxKdkcvRBHYnqO2fE0ahXNavsQ6O2sDGsePXoUWZYJ8HQkwNMRXzcHVCqJhDQdp6OS6Ng4kCtXrtChQwdiYmIY1qk+SRk55OQX4uvqgIVWTUpmLhdiUzkTlcSN3W9rpaWWnysTJkygffv2ACajZOlSpkyZwrhx45RroGfPnpw8eZJmzZoxbtw4RowYQcManuw9eVlpr0GQJ15O1nTr1g29Xs/zzz9PZmYmgwYNYsiQIbz//vu4OlrjbGet3Iv6IgOxKdefH75u9tSv4Uk1D0fyCvRcScrk7/NXqVfdgyBfFxxsTMZGgb6IuJRsohIyqOHtTP/+/SkoKGD06NEUFhayY8cO2rdvT7Vq1XjmmWd444036NatGw2CPCkyGLGyuP76SsvOIzFdh7eLPU52VqRk5hIek8KZ6GQstWoa1fSipq8LtlYWJKTpuBCbavpg+f57/vzzT77//nt6NK8JmMJrbG1t6dGjB/UDPQnyceHVV2excOFC3n//fcbVa0jLUD+qeTjiaGuFLq+QmKRMjoTHEeDpSL1AD1wdTB/ABqORqynZHDl/ldQs8xqnapXJKxnsa/JK5hXouZKYyZELcdT2cyXIxwUXB2uSMnI4fyWFK0mZtA71J9DbVA9NlmWycwuJiEujcbA38fHxtGnThoSEBIZ0NHmXsnIKlHAcgJSUFLp27WrqN72eEydO3NX9VEydOnXQ6/WlDj3+F2p7O9yH/a/SzeW6Z88e5f/+/v7s3bv3P/e52eiVJIl3332Xd999975kuRXlatAtWLAAME2hcSNLlixh9OjRgMnCfeutt0hLS6N69epMnTqVV155xWz74iHZYmJjYxk2bBipqam4u7vTpk0bDh06hLu7u7LNpEmTyM/P55VXXiEtLY2GDRuyfft2goKC7lmfAQMGsHTpUpYuNemzdOlSBg4cqBQrDg1wZc2aNRw/fhx7e3sGDhzI/9qHkleg58L5s1w4lU5ycjJHjhyhffv29O7dm30nL3P+ikm3+jU82b9/P8nJyfz000/s27ePgQMHotVqsbAo+VX/v/Z1SU9LZcH8eaSkpNCtWzd6dewImGr8LVu2mIsXL+Li4sLQoUNpU78avx8qOQx49OhRVq9eTfXq1Xn22WexsLDgt99+IygoiNb1qnExNpVafi4sWLCAsWPHEuzrwqmoJNwdbThx4gQ6nY6FCxciXfMYPvfcc4CpbE1ubi7ffvst9vb2jBw5koLCbL5duISYmBgCAwN5+umnCfSui4ONJatXr6ZRo0b8+uuvZGRkMGbMGBwcHPjs008oLCzk+eefp2fzmmTo8gn0cmTDhg0cOnSIWrVqMWrUKB6r7UN2djbLli2lZcuW/PDDD7i6uvL8889jZx3Ijn8jS+het25dXn/9dYoMRjRqFYsWLWLEiBFERkbydI/G6PV6fvnlF/755x9CQkIYNWqU4u35/fff2bt3L5Ik0bFjR3r06IFarVaG7ge2q8v58+eZtWAutra29OnThzNnzvC///2P+Ph4Vq36g6CgINasWUNAQADPPfccllo1B8/Glnr91fJzJSsrkxdeeIHdu3fTokULYpOzGDhwIOPGjUOr1bJz5042bNjApUuXsLCyIS07j0GDBpGWloYsyxQUlhxKHjt2rJIEdPHiRXbv3s3LL7/M+vXrWbhwIePGjePZZ59l6tSpBAcHs3K3qTyCwSgTlZDO+PHjlbaGDh2Kj48P586dw9mtmrI82NeFK1eu8Ntvv5GYmIiNjQ2BgYEMGTKEl156iWoejkTGp5eq953St29ffvzxR6ZMmYIsy6xYsYK+ffsCpg+zAFcrVv/8A+Hh4bi7u/PUU08xoG0dLLUa9u7dQ6yjI0eOHCE6OponnniCvq1bsulgOPGpOsD0EdQrLBhbrcw3C+aTmprKqFGjlOP7eziyd+9evt25k8LCQtq2bat4SNavX092djbz5s3DwsKC559/nhMnLvHT4t/IyMigYcOGDBs2DAcbSw6cuR6/W9PXhezsbH755Rc++eQT9EUGcnN0jB8/np07d9KqVasS14BKpWLo0KF8++23vPfeLPafvoLx2sdMSDU3lixZQlJSEseOHUOXX4SVhYY+ffoQHBzM8OHDqVu3LuvWrSMkJITNmzeTlZXFk08+yf/a1eVERCJNanlz+PBhvv5sPU5OTowcOZKnujYEYPny5bRp04bVq1eTm5vL6NGj6dS4Bnl5eWzYsIGUlBRcXV0BGDFiBAD//PMPV65cYcOGDZw/f56ePXtSUFBAYmIiubm57NmzhylTplDd3Z5Vq1Zy5swZGjVqxLBhw/B0tsPT2RZ9fg6Lv1lIXFwc7du3p2fPnmRnZ7Njxw4iIiKYN28eQUFB9O7dGzDFYa9evZoxY8ag1+tZv349PXr0AMDGSou3vZoVy77n0qVL+Pj4MGrUKAa0rYOdtQVbtmzB19eXvXv3kpCQwP/+9z8GtmvMuv3nSMk01SmTgJ7Ng3G21bB27Vr+/fdfvLy8GD16NCO6NKCwsJDly5dz6dIlGjduzODBg5EkidTUVH744QcaNmzITz/9hJeXlzLd1Pr168nJyVEC91944QX+2LyRhg0bsmnTJlQqFaNGjVKcJcWcPHmSn376CV9fX8aMGYOVlRVZWVn88ssvPP300wAUFRWxaNEiJkyYwIYNG5BlmS+//BKVSsXYsWOxsrJix44d7N69Gw8PD0aPHq0859LT03F2diY9PR2NRoObmxsZhQXk5uehUqlwdHTEzu7RnmP1YVHuQ66l/RUbc2CaQy0hIYHCwkIuXLjAq6++qhgGxURHRzNjxgzl98qVK4mLi6OgoIDY2FhWrlxZqqH25ptvEhMTQ05ODgcOHKBNmzb3pU/v3r3Zu3cvOp2OhIQELl68aNZmamoq58+fp127dnh5edGjRw/Cw8OxttSyb98+hgwZwpEjR2jevDlvvfUW3333HWF1fM0CnW1tbdFoNDg7O+Pu7o5Wq2X37t2lVppOT0ulefPmGAwGmjZtyuTJk/nhhx8AGD9+PKdOnaJ79+74+/tz5coVLLUl7fuEhARmzZpFWFgY+/btUx6ycXFxvPvuu/i42tM42JstW7awatUqLCwslC/RfH0Rvr6+pKSksGDBAuLi4szadnBwQKVS4erqiru7O2q1mn/++Qdra2s6depEdHQ03bp1w/6ap2Pu3LmMGDECV1dXJEmia9eujBs3Dl9fXzIyMujXrx/uTrYE+7nyzDPPsHbtWlq3bs3p06fp168fsiyTkZHBxIkTFe/s4cOHGTNmDDV8nEsdpihm6R/H+fdCPKNHjyYtLY2///4bMNUi+v3332ndujX//PMPgwcPBuDXX3/lnXfeoVWrVrRo0ULxmp48eVJJvImOjqZjx454eHjg6enJkCFD+OKLLwC4fPkyL774Il988QVNmjRh/fr1TJ06lfo1PEsMVRbj7+HIb7/9RkhICC1atGDr35fYfPgiS7YcIzolD7VazerVq3nyySext3dg9Z4z/H7oIit3nSY+q4j9p66QW6Av0W58fDxXrlxh9+7dnDt3jsaNG6NWq1m6dCkzZszg//7v/zAajUyYMIG/Tl8h65qXF2D7P5EkpOlIT0/nwoULfP/99zg6OlKnTh0ycq5/oTvYWnL8+HHq16+PjY0NZ6KTaNasGbGxsaSmpipeHTB53TydbZU/Wyut2W/tLRIDRo4cyfLly5FlmT///JOaNWuaZZddvHiRzMxMOnXqhEajoVWrVhTm56JSSaxZs4a+ffuSnZ1NaGgoQ4YMYe/evbSsez3bPcjHBQ8nG7p3705kZCRNmjTh5ZdfRq+/fk737t1L/fr1eeyxx5g1y+T1AdOohEqlwt3dHTc3NwD+/PNPAgICaNOmDevWrWPSpEnUC/QwS2jwdrVn3759hIaGYmNjgyybPiRq1apFq1at+OPI9WvgUmIOp6NTiIxPp0OHDvz++++oVBLu18IpnOyscLCxZO3atTzzzDMUFBlZu/csv/51Hj8/P3r16sUvv/wCwFdffcXAgQNxdnbGy8uLjh07cvlyNE1qebNs2TLGjRtHo0aNsLGxoXXr1qSmpgLw/vvvM2rUKLy8vNBqtbRv356CggKsrKzw9vbmo48+4uLFi2aeDRsbGywsLHB0dMTd3R1LS0sOHDjAiBEj2Lp1K02bNkWSJLp3787Ro0dp3bo1v/32GxMmTKCmrwtyUQFhYWFkZmbSvHlzZs+erRgj9vb2WFlZKTMRFTN69GiWLl0KwObNm2nbtq3Z+jNnzlBYWEjnzp3Jz8+ndevWaCSTB3nZsmX069cPSZIICgri8ccf59ixY4TVuT6sX8vfFS8X07RP27Zto3379jg4OBAREYEsy/Tt25c9e/bw2GOP8d133zFx4kTANEw6ceJEPvjgAxo3bsyuXbuUdaVdQ1988QX/+9//sLCwIDg4mMTERD744ANFjoyMDKZNm0bz5s05evQoAwcOBExG2I3v1KKiIl577TXlOGBKWnR3d0elUrFgwQJeffVVGjRowNWrVwkLC6OgwPQcSE5OJioqCo1Gg6WlJYmJiaSlpWFvb4+1tbWyneD+qRBJEY8KFhYW9O3bl7Vr15KSksLw4cPNjE9vb29mzpxJbGws/v7+9OrViw0bNjBlyhQAatSoocwF5+vry+jRo3nuuefwdLbl6rUhnrAmTXB2dqZnz57UrF33ttlq8+fPZ+jQoUyePBmAoKAgxowZw1NPPcXFixd5+eWX6d69uyLjsUslS8Hk5eWxePFiXFxc6N27N76+vly+fJknn3ySadOmkZycjLu7O9988w3jxo0jMydfCRi+EJvKoPahrF27lg8//JCJEycSFBTEG2+8wXPPPUerVq2wsrJiwIABWNk6Ym9rSf/+/cnLy+Py5cv4+fmxdu1aYmJiqFbN5M2ZMGECo0aNQpZlvvvuO0aOHEmfPn0YPnw49vb25OTkEBsby759+4iIiECtVtOvXz/q169PeHg4tra2FBQU8N133+Hg4ED79u2pX78+AM721sqQc2lcScqkSS1vAgICuHLlCtbW1pw8eZJz586hUqno168fNWvW5PLly1y8eJHatWvTo0ePW8ZHfPfdd4wYMYIJEyYApljPG7O8VSoV33//PVqtlpo1a/Lss88C4GhnSXJGyYrk1hYaoqOjlXOVnGkaDtQbjJyOSqJhkBfR0dF0796drNwCCvQmb1xWbgF/nb511va4ceOwsLAgISGBFi1aUKtWLfRFBoKCgvi///s/pkyZwrlz50hIy+FMdMnEH1srLWtWrmbhwoVcunSJmTNnYmNjQ17B9fR9KwsNycnJODk5AZChy0elUuHg4EBycjLWlqbalPbWFgzqEHrbbM5CvYGVu08rCR7F+Pn54efnx99//83SpUsZPXq0We3JZs2a0ahRI65cuYKvry/btm1j7969SnhA165def311wFTXcq5c+eyfv16U9JBgZ5qHo4cOHCArKwsvvzySyRJok6dOoSGhirHePvtt0lOTiY+Pp7x48fz/fffM378eGUKwmHDhilenAkTJigZ9a+++ioDBgzgyy+/xM3RBl1eoXI+wsPDqVGjhsnDqi8yuwaSMq5fA0cvmO7vxjVNSWXnz59HlmXsbSxJTM/B+toQ5uXLl6lWrRppWXkYZZnMnAKKDEaqVatGdHS0osvo0aOVa/Ly5cssWrSIjz76iOnTp7Nt2zZlusWIiAh+/vlnJSRm8uTJ9OnTB4BVq1Zx/vx5GjZsyObNm5k2bRoNGzbEycmJZ599lnfeeYe6desqRmPb9h2xttQCpljor776CoA//vhD8RoB9OrVC29vb+bMmcPixYvp1KkT06dPB1BKVL300kuEhYWh1+uVcJxi6tWrpzgRli5dyksvvcTy5cuV9e3bt6dFixbKtbJp0yb++ecf5QN+wIABir5paWl8+eWXfP/996hVEgajTHUvJ7Zv305WVhbLly8nJTMXa0stdtYWHD9+nNOnTytGUMeOHfHz8+O9994DTMbVkiVLsLa2pkmTJnTv3h2ATp06YW1tzbBhw8zCE8aPH694yc+dO2emZ25uLosWLcLb25snnniCgIAAzp49i63trWOEO3bsiCRJDB06VBlynT17NuvWreOxxx5THBPbtm1TEgu8vLyUqbPS09OxsbHB0dGxhHNGcH8Ig66MGT16NC+//DJpaWn8/vvvZrNhxMTE0KdPH/z8/PD29ub06dPY2FxPNih+8P997ip169YlKioKWZaxtTIZbXEp5plV0QkZ+LrZcyvOnj3L8ePH2bt3L7IsYzQa0WpND8NPP/1UCT7u2bMnM2fOxNO55Dx03t7euLi4cPhcLGF1/AgKCiIqKoqAgAAGDx7M8uXLGTJkCIcOHWL16tUcj7w+9J2enc++k5fp3LU7vXv3Ji8vj02bNjFq1ChCQ0PNUrUj49NpUMOTlSt/ZubMmTRt2hR7e3tyc3NJTExUXlBBQUFk5uTjaGuFk5MTNWrUUH7b29uTlZXFuXPnyMjIMAWjX/vSl2WZlJQUbG1t8fDwwMHBgcuJGXg5OytBq7fy7BTj4mCN0WgkMTERNzc3zp07R3JyMq1bt1aOY2VlRXJyMs888wzjx4/Hz8+Pxx57jMmTJ9OpUyez9i5fvky7du1IzsghO7eQWrVqma0PCAhAq9VyOTED5xvktNCosbO2oKCwCP0ND259kRE3NzeSk01Glb21JXkFJqOmOD6zeL2tlRaVSsJolNGoVQT5OJOWnVeqobhx40b8/f2RZZmnn36aadOmMWfOZ0TGpRMWFoaHhweBgYFsuUXW7qW4NJ555hmeeeYZUlNTady4MQ0aNCAopCExSZmoVBKFegNOTk7KtH82llpkWSYnJwcnJyeuZpmMTx83ezRqFXXq1AFM3oJDhw4RGhqK0WjEwcGBw4cP4+ViR3RCRglZRo8ezVdffcX+/fv5+uuvzQy6w4cPK9emq6srV65cMasZFRoaSoYun8R0HXXr1mXevHkA2FqbDDpbKy2RkZHUrVsXSZI4fC6WZiEhykvLYDAwfPhwoqOjqVu3Ljk5OaVWiI+KT8fN0YZp06axceNGGjdurFxXRqN57JhapaKwsBCtVossm2JLb7wGHGyuXwMBno6mPpdlLCws0Ov1yLKsJMIUZ267urqSkpKC/TWvqJWFBo1aRXJyMj4+1xMCQkNDuZyYgaVWQ926dfn999/R6XTExMSYjbLk5+fj63vdO1WzZk0uJ2YQ4OmkXNc5+YXUCK7Db7/9RlFREfv372fkyJH4+voqQ4oAcanZ2Fub5Co2GDN0+Zw9e5YLFy7QsmVL5V708PAgKSmJs2fPsn37dmWdLMulfmTtPhZFx8bXE/NGjx7NJ598wunTp+nQoYOZQbdz505eeOEFGjZsiLOzM0lJSWZ9GRoaSmK6jryCIuXcgKlkTGZOAfbWlly4cIHGjRsjSRIbD4RjMMr0aVmLiIgI6tSpg0ajYf/Jy7RtEICnpyfR0dFYWFjg6+uLtbU1lxMzcHFxMQu6L+bI+au0DPVXztOlq2lk6nK4ObXNxcVFSRbUaDTUrl2bqKioEhmet6OwsJCYmBizferXr2+27Mbz7eXlxeXLlzlx4gR2dnb4+PiYvQcF944w6MqYRo0akZWVhaenp2KEFLN48WIef/xxZs2aBVAiFrC4WHKDIE+iIy/h7u6OJEmKp6F4EEKSJIxGI3UC3FDfpqaQp6cno0ePZtq0aSXWtW7dmiNHjpCSksI777zDK6+8wurVq7G20JiVk0hNTaWwsJCGQV7IskxCQoISizh+/HgGDhyITqdjxIgRWFlZcSE2Vdk3yMeZdg0C0BcZSMvKw8XBmsGDB/Pll19y9uxZWrZsqejSqKZp6GvGjBmsX79eeUFv3LjRTG5JkpSkAEmSSvwu1tvLy4sDBw6U+AKMiYlRlskyd/yF+HiLWni52LFt2zaMRiNt2rRRhsRKOw6YvA8FBQVs3ryZJ554Qhl2KsbX15fo6GjcnWxxd7Jl5+/RJXQtTc7eLUyGX5HByPajEUqJgrjUbB5//HEmTZpEdHQ0nRoHEhGfhreLPR5ONsiyzBNPPMGMGTOYNWsWvcOCSUzPoaavC9YWamQkftxxkkJ96SVZJEmifv367NixA5VKUhIOijHeFACsVkn0bR2CrZWWmKRM7G0scXV1JTQ0lMjISNq3b8/Ibg0V3TJr1+bMmTMYDAYaB3tz4cIFbGxs8PDw4EKSyYNYPJxfPORdzKFDh8x+p2WbB6AX069fP8aPH8/IkSNLlCGaM2cO06dPZ/jw4QCK56OY+Ph4nOyssLbQcOZIPB4epuzb4vszX1+Eh4eHch83qulFYmKiYmAcOXKEixcv8s8//yBJEtu2bVOGy4rvAzBlrWZmZjJ//nwSExOxtLQkNjaWb775poQ+uQV6/P39OXz4MCqVRIYun969ezNx4kQiIyPp2CiQiLg0vF1N1wBAVm4h8TFR+Pr6olKplGH2tOw88guLePzxx1m3bh3jxo2jc5NAbK0s0Ol0/PHHH6xfv97sfDzu6YTRKBMfH68Mhzo4OLB27doSJaiKKe2etbWywGiUScvOw8rC5JXq168fZ8+eNTs/QT4uSjsajen1VaAvwtPTkyZNmrBly5YSx/P09GTgwIHMmTOnVFmKz3urUPNi8cOGDePVV1/lzTffLFG77cMPP2Tu3Ln07NkTgObNm5utj4+Px9PZDn2RgZ3Xzg2gPFvzCvV4eXkpZbJahvqj1ajwdrXH09OTq1evIssyTWp5U1BQQEpKCp6enqSnp9/yuXCjLs1vGN7VaDRKjOTNZGZmkpOTg62tLbJ8vR+trKyU2G9A+UC4+VhqtRqtVouTk6kkSnE5satXr9K0aVOz7YuxtLSkVq1aGAwGUlJSiIyMvCsDUnBrRIXBB8DevXvNHnzFODo6cvz4cZKSktixYwc//fST2fo9e/awYcMG0lKSmDp1qvJiKR46y7v24A0ICOD333/n5LWEg1vx7LPPMn/+fLZs2UJqaiqnT59WYu1++OEHoqOj0Wg0ODg4KF9Ihpteynq9nrfffpvM9FQ+//xzXF1dqVOnDmcvJxMaGoqnpycff/wxY8eO5dLVNLNhLj93B06cOMH7s97jSmQ4V65c4aeffuLEiRO0atUKMA2brF+/nmPHjlFQUICjoyN//vknycnJzJgxg7S0tLs59YCpYreVlRXTp08nLi6Oq1evsmzZMrMH1J2SkJDArl27+HPXVt58800GDx7MnDlzsLCwoH379uTn5zNr1izi4+OJjY1l8eLFFBUVsWPHDiUb1NXVFUtLyxIZYaNHj2bx4sWsXLmS3377jfnz59+xXE8++SSnTp6g5g0vuIuxqfj5+TF+/Hj69evH3l3bcLXQc/b43/To0YP8/Hz69++Pi4sLgwcPJvrCaZw0+fy+cT2jRo1Co1ZhZ1VyCP/AgQPs2rWLFStW8OWXX9K7d28KCovIyS9ZU+1GvFzscHO0YdmSxaRcjSTxqmlY7vDhw0oi1IoVK5QPnHr16lGrVi3effddIiIieOutt3j22WdRq9VcuVYjLiUzl1//Os+pKxnK31+nr5j9Xrf/nFkc341YW1sTGRnJRx99VGJdcSZvamoqP/74I/v37zdb/9NPP3Hw4EGuxl7hgw8+YPjw4eTkF6K7VlsuMS2H9u3bEx0dzc8//0x6agrTpk1TXmaOjo7ExcURHh7OhQsXFL3B5E3S6XRs376dkydPYmFhgSzLHDlyhKtXryphGTeTlJ5D27ZtOXLkCLIso8srxNfXlwkTJtC/f3/27PwDV0s9504coWfPnuTn5+NkZ8Xff/+t9EHStUzd4hqCzz//PBcuXODll1/GmJNKbOR5Bg0aRIsWLZT7FkwhHefPn+fkyRMsWLCA4cOHo9Vqee655xgzZgznz58nNTWVP/74g9Onbz+PaE5ODhMnvsT5U8dIS05k+/btrFu3TpExICCAP/74g3///ZeMjAyzfa8kZvLEE09w8uRJvv76axITE4mOjlZi4EaNGqVMy5SSksL58+dZs2aN0u6xY8c4fPgwcVfNww5cXFy4evUq//d//1dCXkdHRw4ePKjEB9+cLbp48WKOHTtGZMQl5syZw/Dhw0nPzlM+luJTdfTq1YtLly6xYMEC3Kxl8lKvcuHCBWUY+KuvviIzLYWpU6fSsmXL/5xNwM3NjYKCArZu3crpa9UJ/gtJkpg6dSqJiYksXLgQWZZp2rQpHh4eWFpasnLlSqKjo3n77bfN9qtevTpr1qzh2LFjGAwGRo4cyRtvvEFsbCy//vore/fupXPnzqUeMz09XXkWazQaUei4DBEeuvvEcO2LqFOnTvj7+5OalcvF2CxkWSa0ugVBQUFKXMXzzz9PVFSUEtP1+eefm00hMnToUPbs2cOnn35Ku3btmDFjBqciE5Uhk5x8PckZOXz22WfMnz+fTz75hOnTpxMSEqJ8AVavXl0ZymzSpAm//PIL8+fP5+2338bb21vJurt8+TJLliyhoKCAJk2aMGfOHC4nZCgPHKNRxt7enhdffJEaNWowcOBAqlevzqZNm0jX5XM6Kom6Ae7873//Q5IkQkJC2HTQvK5ffqEpKUKv1/P666+Tk5ND9erV+e2335Qhs++++45vv/2W/fv389lnn/H9998zdepUfvzxR5588kkmT56szO3btWtX3Nzc0F8bGurduzcODg7KUFH//v2VuX63b9/OZ599ZorPs7KiRYsWaDQabGxslCKO+iIDKpWKIUOGXOvL68as0ShTp04djh07xnfffYetrS1NmjThxIkTBAQEsPdENPUDPdm9ezefffaZcuzWrVujUqkoKiri3XffJT4+Hn9/fzZv3oxGo8HPz0+5HkJCQti0aRPLli3D1taWl19+Walj5OrqSrdu3RQ5HW1tlViuoqIitm7dyocffkjWDd605MxcTkQk8Nlnn7Fx40aWLl1KbGwsvr6+jB8/HisrKyRJYseOHSxfvpy3336brKwsQkNDFW+x7pqRVvxFP3ToUH799VfA9IKbO3cuffv25eDZWBxtTR634kzRm70AxXE8KSkpvPbaa+Tn5xMcHMzOnTvxr2aq92hjY6MEm6dl5/HLL78wY8YMRowYQY8ePZg8eTJnopPMvMaJ6TklyoXcimKZ+vfvj4ODAzFJmcSn5lFYpKNVqD9NmjRRhoPee+893njjDR5//HE6derEnDlzzJKpxowZw4IFC7h8+TJPPfUUo0aNYv+pK4rn/NyVZBrU8GTbtm1MmzaNRYsW8dJLL1FUVIRKZRomnjFjBmPHjsXZ2ZkpU6awa9cuwOS1WLVqFWvWrMFgMLB48WJ+/vln3n77bTQajZk3/8bzHJWQTt/WIdSpU4cDBw4QWLsBxy8l8Omnn7Jx40aWLVvG+++/j6+vL+PGjVMyHFevXs0bb7xBXGq2EksJ8E94HP3ahPD333/z9ddfM3r0aKysrBg6dCgjR44kLTtfqUk5duxY3nrrLbKzs/nkk09o1aoVqVm5fPTRRyxcuJAXXniBvLw8QkNDmTp1KgCPP/44Dg4O5Fy7Z7t06aJ49vz9/Xn//fdJSUnB29tbuX8BZs6cydy5c5kzZ44SiytJEgaDkbOXk6kT4M6ff/7JnDlzWLZsGfb29kp5juDgYLZu3coXX3zB7NmzcXd3Z+jQoYApHuy5555jwYIFNGzYkFdeeYUhQ4ZgZWVFVHw6yZkFFMTn0LZ+AC1atFBGXebMmcOUKVN44okn6NWrF7NnzzabDnLcuHF89NFHJCYm8uqrr9K3b1+2H71e6P1UZCIh1dzYuXMnH3/8MUuWLMHHx4cPPvgArVbL5s2b+eCDD/j555957LHHWLNmDZIk4eDgoGTi6osMWNhZKokMGo2GNWvWsHbtWgoLC1m6dKlyfg2yEaNRNtvf2tqasWPH0rhxYwYNGoSvry9bt25VPjzXrFnDzJkzWbx4MW+88Ybi/QPTx82yZcv47bff+Oabb/jwww/5+OOPGTx4MH5+fuzYsQM3Nzeys7Oxt7c3+5g1GAzExMRgMBiwtLS8q0kCBLdHku+1OmAVJysrC0dHR+au2kOv1vUI9nUlv7CIPcejuZJk8iYE+TjTtn4AGo2KCzGm4baQam6ltvfll18SHh5u5qU5GZnI4XOxZnXHbK20tKlfjQBPJ7P9DQYjadl5ONhaolWrOR2VRFRCOmF1/PByuZ4SnlegR6NWKXXPirl4NZW/TsUoxpGzvRU9mweXSLqITc7iSlImrUL9MRqNdOnShfHjx9O1Zx9W7zljtq21hYYWoX4EebuguqGoclJGDofPxZJXUESbetXwuSEOsLg8yI3k5Bciy6b4k9x8PduPRtC0lg9+7g7o8grZ9k8Erev54+lsR1ZOATv+jVRqjd1IXGo2TnZW2FhqSUjTsePfSHqHBeNsb01qVi4bD4QrVejrVHOjRV0/s/OUoTPViDt/JUUZGmpR149afq5mx8kvLEICLG+IdUrNyiU6IYPQ6h5YaNVk6vJxtrcmOjqa6tWrk5eXx5AhQ+jYsSOvvPIKufl6bKy0RCWk8/e5q9cKzpqGCI8ePcrSpUv58ssvWbPnDOk683pOwX4u1A/0NCsGnZ6dx78X44lOyKBhkBd1A9yxsdIq669eqyOWfC0g30Kjpk+rWko9rWJSrhmNEXHpeDjZ0u2xIGystMSnZvPboQtm16okQcu6/oRWdzcbcolLzebQ2Vg8nW0Jq+OHSiVxNjqZYxfjaRXqT5Dvda/j8UsJ/BMeV2I4905RqSRluFyXV8jWvy8pw7GNa3rRpJY3smx6wbo62lDNw7z4r77IgFaj5oUXXiA0NFRJYAE4cCZGqaNXjIOtJZ0aB5YoPJ2enceluDSaBvuY3QtguqdORibSoo6fMksCmJI7bh7WTsvOY9OBcDMjbEDbOlw4c5xPP/2UdevW8cu+s7jYW1Mv0AP3G+RIz87D2d6a06dPM2nSJLZv3872o5ElYg2tLDQ0reVNaPXrBZ1zC/ScikwkKiGDoR3r0blzZ9566y26dOkCmK75/acuEx2fQYMgTxrX9DaTPS41GwcbS+ysLdDlFbLl74s0CfYmyMeFAn0RGTpTHOyN8YFZOQUcvRDHlaRM2tSvZjbcCibD9kRkAkfOx2FnbUGLun7UuFajrZjjlxKISkineYgvvm7XY4QL9QaOhF9FrVLRqKaX2XGLj/374QvKzB5hdXypH+iJwWjkREQiPq72Zs8tMH3cq6+VhOnbt6+SaFFkMPLX6SuEx5iHXNjbWNAq1N/sWZ6VU8Dh87HU9nOjmuf1a/FCTCrnriTTuUkN7KwtiE3OYv/Jy/RqEYyjrRVJGTn8eyGeZiE+Je7Z4mdmtk5HuzoeJUKBHhT5+flERUURGBgoZqe4D+7mPAqD7h7JzMzEycmJD5f8jpWNLeprwcY3n01JMlVfL/b+WGjV2FtbossvRK83gARDOzdh7cofuHjxIp999hk/bD1CZk4+hv8opKpWqzAajUhIIJkecDcfD0x1k2wsLcgr1JNzLTtOksDB1gq1SkV2boHi9SrtGMgyjnbW5OYXkl9YRJdmtShIj2fw4ME0a9aMH3/8kd3HLnEmsmSAd/Gx7G1M00Xp8goouCn7sPg4xfra21iiUavJzMlDAuW83nyOizPGSmsDTEVeHW2tMBhlsnLyFaPg5u1u/l2MSpKQVMUB7bfuC61GhYOtNQaD0ew4tlYWpqm3CgrJzdcr50IlSVTzcuGJNvXo1q0bV69exWg00q1bNz766COOXYrnyLkrJfpRrVbRrE41wuqavFtnoxLYfiS8pEDXsLW2wNrC/PjFFPe/Rq0mOzf/lnFz6huM69LOgSSZsnFvd35uvNZ0uQVm06apJAlJMveOWltqsbGyICsnr8ymebplH6skkK/H/1lbarGx1JKVm4/BaAqgnzCgLa+99ip16tRh+FOjWbf3JJm6vNsamTZWFlhq1WTo8szOj1ol4WBrjb7IgC6voMQ1fOP5lCRwtLVGRiZTl39LHXzdHflfx0bExcXh4+PDml3HiEsxxVVevwb05OYX0rdtPVztTB9pOYUyq3Yeu+05c7S1wmiUyczJQ5ZN9+Yzj7egd+/evPbaa4Q0aMr2v8PJ0JmHM0gSONpZo5Yksm54vpS49266p+2sLbGy0JR6zRbvX+wpMsVxmfeBhVaNg40V+iIDWbn5Zs9ja0sttlYWFOiLyM41H5JXqSQkTNfhrc6zWmWK/SvudxsrC6wsNGTl5JuSS9Qqxvdvw6hRo+jduzddevRm019nyNTl3XZaQysLDXbWlmbP52J5rS21ZOXkm2Wt/tdz78Zr6Mbzm5+bw1vPPE56erpSeuRBcjtDpEinx5Bf8j3woFBbadDYaf97wwqIMOgeAsWlR8qCr7/+Wkkr37Vr1y1jDyoKzz33HN9++63y++eff2b48OH3PBVMVcTJyYkjR45Qs2ZNs+Xz589n0qRJZkPxN6JWq2nXrh0ajYY9e/aY1TgTPBj27NmjzMIwf/58XnrppXKWqCTdunWjVatWHDt2TBkiLw0vLy+lnNLSpUvNCrLfCWq1mqioKOXZN3HiRKVUiMA0QXvDhqYiyu+9916J2LOKQExMzC0TVsqSWxkiRTo9sesikA0P730hqSX8BgRVSqNOGHQPAaPRSFxcHPb29mVSS0etNk0hVlT08L5aSiMrKwt/f39iYmLMCmneTLG8RqPRLLaiMnCnOj4MVCoVKpVKKStTlrdjRdLzQfGwdNRoNMiyfEtD+0FT0fryQZyPiqbjvfJf56a89JRlmezsbHx8fB5KIsKtDJGClDziNkU/8OPfjE+f6li6Wf/3hpiqLcycOdNsWe3atTl//jxgipHcsWMHcXFx2NnZ0apVKz766COllE5pyLLMO++8w7fffktGRgatW7dmwYIFBAcH31aWuzHoRFLEPaJSqR7KV0554eDgUKkfqndCVdARqoaeVUFHqBp6VgUdoXz0fBhDrY8KoaGh7NixQ/ldXCYHoGnTpgwfPtxUgDstjRkzZtCtWzeioqJuOb/txx9/zLx581i2bBmBgYFMnz6d7t27c/bs2TKLMRQGnUAgEAgEAsENaDSaW5aKGTt2rPL/6tWrM2vWLBo2bEh0dHSp04zKsszcuXOZNm2aUhVg+fLleHp6smHDBiXr+n4RBWAEAoFAIBAIbuDixYv4+PhQo0YNhg8frhSBvpmcnByWLFlCYGDgLePqo6KiSEhIULLCweQtDQsL4+DBg2UmszDoBGZYWlryzjvvlKii/yhRFXSEqqFnVdARqoaeVUFHqDp6VmbCwsJYunQpW7duZcGCBURFRdG2bVuys69Pv/n1119jZ2eHnZ0dW7ZsYfv27VhYlD63evG0cJ6enmbLPT09S53+714RSRECgUAgEAjKlMqcFHEzGRkZBAQE8Nlnn/Hss88CptJlSUlJxMfH8+mnn3L16lX++uuvUuPhDhw4QOvWrYmLi1PmzgUYPHgwkiSxatWqWx77bpIihIdOIBAIBAKB4BY4OTlRq1YtLl26pCxzdHQkODiYdu3asXbtWs6fP1/qlJ+AEouXmJhotjwxMfE/p3S7G4RBJxAIBAKBQHALdDodERERZt61G5FlUxHygoLS55AODAzEy8uLnTt3KsuysrI4fPiwMlVnWSAMOoFAIBAIBIJrvP766+zdu5fo6GgOHDhA//79UavVDBs2jMjISGbPns3Ro0e5cuUKBw4cYNCgQVhbW9OrVy+ljZCQEMVjJ0kSkyZNYtasWWzcuJFTp04xcuRIfHx8lLnFywJRtkQgEAgEAsFDQW2lQVJLD32mCLXVnZs7sbGxDBs2jNTUVNzd3WnTpg2HDh3C3d0dvV7P/v37mTt3Lunp6Xh6etKuXTsOHDiAh8f1+Y/Dw8PJzMxUfk+ePJmcnBzGjh1LRkYGbdq0YevWrWU6z61IihAIBIIKgCzLZTLrjKD8EX0p5nItK8RMEYJS2bp1KyEhIVSvXr28RXlg5ObmYmNjU95iPHBEXz46bN++ndatWz/yuhYVFZlV238UqSp9eb9o7LSV1sCqyIgYuipAZGQknTt3plevXpw+fbq8xXkgREdH079/f4YPH85LL73E2bNny1ukB4Loy0eH4r7s3r07Bw4cKG9xHhjR0dEMHTqUcePGMXPmTNLS0spbpDKnqvSloGIjDLpHnBdffJGQkBA8PDxISkri8ccfL2+RypwjR47QokULLC0tadOmDZs3b2bkyJFs2bIFAKPRWM4Slg2iLx/dvryxgvyjxK5du2jatCkGgwFXV1c+++wznnrqKaU6/qPQn1WlLwWVAFnwyLJlyxZZkiT5m2++UZadO3dOTktLK0epyp7p06fL3bt3l/V6vSzLsnzx4kX5qaeekn19fWWDwVDO0pUNoi8fjb7U6/Xyt99+K0uSJK9atUpZHhUVJRcUFJSjZA+GcePGyU8++aTy+9ChQ/Ljjz8ut2rVqhylKhsMBkOV6su7JS8vTz579qycl5dX3qJUau7mPAoP3SPG33//TXh4OADNmjWjb9++rF69mhMnTtCuXTsGDx5MvXr1mDBhAkePHgUq31dycnIyBoNB+R0ZGYkkSUp8Ts2aNZkyZQqSJPHGG28AlU/HmwkLC3sk+7IY+Vpu1qPal0eOHCElJQWNRkOLFi3o2LEjmzZt4sKFC3Tq1In+/fsTGhrKu+++y+XLl4HKqeeNUyMBXL582SyQOywsjPHjxxMbG8tHH30EVE49AVQqFa1atXpk+1JQCXnw9qXgYRAfHy8PGjRIliRJHjZsmLL84MGDslarlV1cXORp06bJ27Ztk7/44gu5RYsWcseOHeX09PTyE/ouiY+Pl9u2bSv37dtXTklJkWXZ9JX8+uuvy127dpWjo6OVbYuKiuR58+bJ1tbWcnJycnmJfE8kJyfLP//8s7x//345KSlJWf4o9WViYqL8xRdfyBs3blT6Ta/XP3J9GRcXJw8ZMkSWJEl+9dVXZVk26fPzzz/LWq1WdnNzk6dOnSqvWbNGfuedd+TAwED5mWeekXU6XTlLfnfEx8fLrVq1kp955hk5Pz9flmVZLiwslAcOHCiPHj1aTk1NVbbNyMiQp0yZIgcHB1eqazY5OVnevHmzfPz4cUXHR7EvywrhoSsb7uY8CoPuEWDy5MmySqWS+/TpI/fo0UN+6qmnlIdIbm6uvGDBAnnhwoVmQ1Zr166VGzZsKC9YsKC8xL4r3nrrLVmj0ci9e/eWr1y5IsuyLBuNRlmWZfnnn3+W69atK//0009m+5w6dUpu2LCh/Omnnz50ee+Vt99+W7a3t5fbt28v29rayn379pVPnjwpy7IsZ2VlPRJ9+eWXX8qWlpZymzZtZHd3d7levXrytm3bZFmW5ZUrV8p16tR5JPqy+L58/PHH5dDQUHn69OlKv8XGxsqzZs2Sf/jhB7N9Pv/8c7lRo0byxo0by0Pke2LKlCmyVquVe/XqpdybxXrOmzdP9vPzkw8ePGi2z+bNm+VGjRrJK1eufOjy3gvTp0+XnZyc5FatWslarVaeOHGiHBERIcuyLF++fPmR6cuyRBh0ZYMw6KoIJ06ckB0cHOTQ0FB59+7dsizL8tSpU+XatWubbZeenq58URYbQTk5ObKfn5/89ddfP1SZ75bc3FzZ399ftrOzk7dv364sLywsNNuuTZs28sCBA+WzZ8+a7Vu/fn153rx5D03eeyUzM1N+8cUX5ccee0zevn27XFBQIK9bt07u0aOH/NJLLynbpaWlVdq+lGWTd6Zp06byV199JcuyLB89elR+7rnnZDc3Nzk8PFyWZVlu166dPGDAgErblwcOHJAdHR3levXqybt27ZJlWZafffbZEnFjsbGxSqxVsQGUlpYm29raVgojIDU1Va5WrZrs7u4u792795bb+fr6ys8884yZtzkrK0v28PCQ169f/xAkvXdSUlLkp59+Wm7atKm8Y8cOOT09XV6wYIHcokULec6cOcp2lb0vHwTCoCsbRAxdFWLFihWcPn2aDh06ANCkSRPS0tK4ePGiso2TkxOWlpYASrHL8PBwJEmq0HXMjEYj1tbWdOvWjerVq9O+fXtOnjzJmDFjmDhxInPmzOHUqVMA/N///R/nzp1j0aJFyv4FBQUUFhbi7OxcXircMWlpaej1el5//XW6dOmChYUF/fv3x9nZmby8PGU7Z2fnStmXxezfv5+IiAj69u0LmK7XBQsW4O7uzuTJkwGYOXNmpetL+Yb67NnZ2SxevJhTp07RsWNHZFmmTp06ZGRkEBcXp2zn6+uLhYUFYIrHAvj333+xt7fH1dX14SpwhxTrKcsyLi4uNGrUiNDQUNq1a8eJEyd48cUXmTp1Kj/88AOxsbEAzJkzh19//ZWVK1cq7aSlpWFra6tcyxWJG/syJiYGg8HAe++9R+fOnXFycuL5559HrVaTkZGhbFcZ+7I8KdLpKUjJe2h/RTp9eav8UHi0qzw+YhiNRlQqFXq9Hq1WS4MGDWjQoIHZOrVajbW1tdmUIzfur9fruXTpEpMnT6ZRo0a0bt36YatxW4r1KCoqUh6MCxYswNnZmYYNG5KdnU379u0pKChg9+7dLFy4kOPHj9OzZ09OnjzJDz/8QIsWLRgxYgTr16/HwsKCdu3albNWJbm5Lz09PZkwYQL169c3W+/o6Ehubm6p+1emvlSr1YrRqdPpSEtLw9fXl4KCAiwtLfn666/p1KkT27dvp2vXrowePZrly5dXir7Mz88nOzsbd3d3ALp06aJcu8XnwMHBgczMzFIL6xqNRiRJ4uzZs8yePZsOHTrw2GOPPVQd7oQb9Sz+mPj000+pV68eLVq0IC4ujrCwMM6ePcuyZcuoW7cuv//+O0OGDGHv3r0sXryYbdu2MWLECBYuXIinpyfNmzcvZ63Mubkvq1evzgsvvEBYWBgABoMBtVqNp6cnRUUlZzqoLH1ZnhTp9MSui3joU3/5DQi642LGM2bMYObMmWbLateuzfnz582WybJMr1692Lp1K+vXr7/tvKyyLPPOO+/w7bffkpGRQevWrVmwYAHBwcF3rc+tEB66SsInn3xCt27dANBqS16UxQ/YDh06kJycTExMDHA9u6qgoIAFCxYwevRowsLC8PPzY+XKlTg4ODwkDf6bG3XUaDSKMaDVapk7dy75+fn89NNPLF++nDVr1vDLL7+g0Wh44YUXAJg4cSI//vgjNWvW5NdffyUgIICDBw9SrVq18lSrBDf3pSzLWFtblzDmAPbu3UurVq0AlMzewsLCSteXxVhbW9OuXTsWLlwIgKWlJUajkQ4dOtCxY0e+/PJLoPL05XvvvUedOnXo0aMHTz75JOfOnVP6Dq7fl126dCEpKYkLFy4A171A+fn5fPLJJ4wYMYJmzZpRrVo1vv/+e8XbU1G4Wc/iYs/BwcFMmzaN7OxsVq5cyU8//cSuXbtYtGgRsbGxTJ06FYDZs2fzwQcfoNfrmTt3LtWqVWPHjh0Vynt1s45nzpzByclJMeaMRiNqtZqCggIOHDhAs2bNgMrXl+WNIb/ooRpzALJBvuupxkJDQ4mPj1f+/vzzzxLbzJ07946nePv444+ZN28eCxcu5PDhw9ja2tK9e3fy8/PvSq7bITx0FZzIyEj+7//+j127dpGSksJXX33FhAkTlC/FYoovKr1eT9OmTTl48CD9+/dXXi6WlpbUrVuXtLQ0pk2bRmhoaLnoUxq307HYGHjuuecICgoiLCxM0TU0NJRRo0axZMkS0tPTcXZ2plGjRvz444/k5eVhbW1dnmqV4FZ6Fr8oilGpVMiyTFRUFDqdjhYtWgAo21hYWFC7du1K1ZfFhnmNGjVo3rw5u3fvZt++fbRr1w6DwYBKpWL48OG8//77pKWlKcN5FbUvwTQ0/OOPP/LFF18QGRnJ+vXr6dGjB1u2bKFu3brA9fsyLy+PkJAQTp8+TZs2bZTlVlZWBAcHk5SUxJEjRypUXxZTmp49e/Zk8+bNhIaG8sorr9C+fXuaN2+uPG86d+5Mhw4dOHXqFDk5OTg6OtKrVy+6detGXl4e9vb25ayVOaXp2Lt3bzZv3lyiL0+dOoVWq1UMvRv7skaNGhW6LwV3jkajwcvL65brjx8/zpw5c/jnn3/w9va+bVuyLDN37lymTZumhJssX74cT09PNmzYwNChQ8tEZuGhq+AUT++0aNEi3njjDWbNmkVOTg5qtbrU2kZubm7o9Xol7urGbTp27Mj06dMr3IPmTnXs2LEjFhYWSJKkLD958iSenp5YWVmZxb5URAPgbvpSkiTCw8NxcXFRhtV37drFO++8A5g8PpWpL7VaLXq9HkmSGDBgAE5OTnz22WfAdY/zuXPn8PDwwMbGpkL3pdFoJD8/nz179jBo0CCeeOIJJk2axJ49e7C0tGTmzJkl6o/VrVuX7OxsZdorg8Gg6DhgwADmzJlT4fryv/QsrrNmZ2dHu3btFK+60WjEysqKc+fOodVqsba2VnTVaDQVypi7nY4WFhZmfVmsw5kzZ6hZsyY+Pj4A7Nu3j/nz5wMwaNCgCtmXgrvn4sWL+Pj4UKNGDYYPH86VK1eUdbm5uTz55JN89dVXtzX6iomKiiIhIcFsFhFHR0fCwsKUWVPKAmHQVVCKHx5du3bllVdeoX///owYMQJXV1clePxmiofk2rdvz549ewDMhn8qGveiYzEqlYrjx49z9epVRo4cibW19R27vh8296rnr7/+Sps2bcjIyKBPnz5069ZN6eMbDZ6KwJ3oWHwtNmvWjJEjR3Ly5EmeeeYZjh49ysWLFzl8+DBt27bFysqqwvYloMQ+njlzRomPys/PR5Ik5s+fz+7du9m1a5cydF7cZx06dGD37t0ASkxhReZu9Lx5v8OHD1NQUMDTTz+NSqWqsLrebV+C6b5s3749ycnJ9OnTh44dO1JQUABUvPtScG+EhYWxdOlStm7dyoIFC4iKiqJt27ZK4exXXnmFVq1aKd62/yIhIQEAT09Ps+Wenp7KurKg4r7tqzjFD0Bra2vFtV+zZk3GjRvHDz/8wJkzZ8xeFoDZsJ0sy0ocXUXlXnS8cuUKa9euZcKECbRr146aNWvy5JNPlov8d8q96JmVlcWePXvYtGkT3t7eGI1G4uPjmTVrllmbFYU70VGtVlNYWAiYPBnffPMNe/bsYcSIETRv3hw3NzemT59ebjrcKUajEXt7e5o1a8b3338PmEIaZFmmW7dutGzZkmXLlikv+eL7Mjs7m8LCQlJTU8tN9rvhTvUsjgGKiIhgy5YtTJw4ke7du9OgQQN69uxZnir8J3erY0JCAn///TebNm3C398fWZZJSEjgtddeAyrefSm4N3r27MmgQYNo0KAB3bt3Z/PmzWRkZLB69Wo2btzIrl27mDt3bnmLWQJh0FUSigPne/fuTfPmzXnllVeAkkYcmIZwVq5cib+/f7nIeq/ciY5paWls376d8PBwtm3bxuLFi7GxsSkvke+JO9EzJycHg8GAp6cne/fu5ffff1cy7yoDt9KxOEBco9HQpUsX/vnnH1avXs3BgwdZt25dhRqOuxXFMY59+/bl5MmT7N+/H0mSFANuxowZ7Nu3j8TERAAlG/L5559n3rx5FSoR4HbcrZ6RkZEsW7aMEydOsGXLFhYuXGg27VdF5G51TExMVEIIdu/ezW+//Vap7kvBveHk5EStWrW4dOkSu3btIiIiAicnJzQajRLnPXDgQKV82M0UD8sWX0fFJCYm3tGQ7Z0iDLpyJD4+npUrV3Lw4EEltuZWLvviL7/q1aszfvx4jhw5wq+//grAn3/+SUJCgrJNWFgY9erVewga/DdlpeO+fftISUmhUaNGvPfee+zYsUNJFqgIlJWe+/fvJyUlBVdXV9asWcPff/+teLzKm7K+XgFcXFyoX78+ISEhD0GDO+O/9JRlGUmSaN26NY0aNeLdd98FUIwXKysrvLy8lHjC4gd+ly5daNiw4cNU5baUlZ7FtSA7duzIxx9/zN69e2nZsuVD1qZ0ylrHoKAgNm3axMGDByuMjoIHj06nIyIiAm9vb958801OnjzJ8ePHlT+Azz//nCVLlpS6f2BgIF5eXuzcuVNZlpWVxeHDh8v0OhIGXTkxefJkatWqxaJFi+jSpQtjx44lIiLCLOC/NFQqFW3btmXgwIFMmjSJPn360K5dO7NCwhWFstSxQ4cOnDt3DgAPD4+HpcIdUZZ6tm/fnrNnz2JhYUGjRo0enhL/QVlfr5cuXXqI0t85d6LnjVnWw4cP58yZM7z77rvKkPm5c+dwdnauUB8cN1OWehaX1dFoNBWqrMyD0NHOzo42bdqUj0KCh8brr7/O3r17iY6O5sCBA/Tv3x+1Ws2wYcPw8vKiXr16Zn8A1apVIzAwUGkjJCSE9evXA6brbNKkScyaNYuNGzdy6tQpRo4ciY+Pz21r190twqB7yKSnp/Pcc8/x559/snnzZrZu3crSpUvJyMjgu+++A+4skSE5OZnLly+j1WqJjIykbdu2D1r0O6Yq6AgPTs+KVDxX9GXpeha/8Pv168fs2bP58MMPadOmDU8//TQjR46kV69eODk5Vbgg+aqgZ1XQUfBgiY2NZdiwYdSuXZvBgwfj6urKoUOH7mp4PTw83KzA/+TJk3nppZcYO3YszZo1Q6fTsXXr1jINSxB16B4CxW59gJSUFCRJYsqUKcpLbdCgQaxYsUIJvL1x+5uJiIhg5MiRxMbGsnv3btq3b/9wlPgPqoKOUDX0rAo6wv3pWRzvaGlpyahRo/Dy8uLEiROcPXuWDRs2mJUnKG+qgp5VQcdHBbWVBkktPfSZItRWd27u3DhN3Z1QmrF/8zJJknj33XeVYf0HgTDoHjA6nY7CwkJcXFwAcHd3Z9KkSUqdouJ0eFtbWyUD8MaXY25uLlu3bmXAgAGAya373nvv0alTp4esya2pCjpC1dCzKugIZa9n9+7d6d69+0PW4r+pCnpWBR0fJTR2WvwGBN31zA33g9pKc8fTflVqZMEDY+rUqXKNGjXktm3bykOGDJHPnz9vtt5gMMiyLMtFRUVy9erV5RUrVpgtl2VZ3rZtmyxJkrx9+/aHJ/hdUBV0lOWqoWdV0FGWhZ7FPAp6VgUdKyt5eXny2bNn5by8vPIWpVJzN+dRxNA9AAoLC3nqqafYvHkzixYt4rnnniM7O5uePXty9OhRZbviOI7z589jNBqVwpY3xnc0bdqU9957T5l+pqJQFXSEqqFnVdARhJ6Pkp5VQUeB4K55CAZmlePUqVNyaGiovHv3bmVZXl6e7ODgIA8ZMkS+ePGiLMvXvxJXrVolN2/eXNl28+bN8gcffPBQZb5bqoKOslw19KwKOsqy0PNR0rMq6FjZER66skF46MqZzMxMwsPDzWpOJSYm4uLiwp9//smOHTuQZVn5Sty4cSMdO3YkKSmJrl273vF0IuVJVdARqoaeVUFHEHo+SnpWBR0FgrtFGHQPAAcHB+rXr8+0adOUZYsWLaJHjx5Uq1aNDRs2YDQakWWZlJQU9u/fz6pVq/Dz88PR0ZGUlBTeeuutctTgv6kKOkLV0LMq6AhCz0dJz6qgo0Bw1zwQH2EVJy8vT16yZIms1WrlsLAw2dXVVfbx8ZGjo6PlXbt2yRqNRs7KypJlWZYjIyPlgIAAuU2bNvK///5bzpLfOVVBR1muGnpWBR1lWej5KOlZFXSs7Igh17Lhbs6jKFtShhQVFaHRaLCysmL06NGEhoZy7NgxnJ2dGTRoEABHjhyhZs2apKenY29vj7u7Oxs3bqRBgwblLP2dURV0hKqhZ1XQEYSej5KeVUFHgeCeeQgG5iOPXq9X/l9YWCi/+uqrSlDuzUycOFF+4oknHpZoZUZV0FGWq4aeVUFHWRZ6lkZl1bMq6PioITx0ZYNIinhIGAwGZFlWJt+eO3cubm5u/Prrr2aFKyMjI4mMjGTy5MmsXbuWp59+Grj1xOYViaqgI1QNPauCjiD0fJT0rAo6VkWKdHoKUvIe2l+RTl/eKj8UxJDrPWIwGJQpY3bu3Mm4cePQ6XR89tlnjBo1SnkAARw6dIjZs2cjSRKrV6+mdevWALecLqmiUBV0hKqhZ1XQEYSej5KeVUHHqkiRTk/suoiHPvWX34CgO54tYsaMGcycOdNsWe3atTl//jwAHTp0YO/evWbrx40bx8KFC2/ZpizLvPPOO3z77bdkZGTQunVrFixYQHBw8F1qc2uEQXePqNVqYmJiGDt2LDt37uTll1/mrbfeUqafgevzBfbr14/AwEBatmxZjhLfPVVBR6gaelYFHUHo+SjpWRV0rIoY8oseqjEHIBtkDPlFdzX9V2hoKDt27FB+3/gBATBmzBizeVltbGxu297HH3/MvHnzWLZsGYGBgUyfPp3u3btz9uxZrKys7liu2yGGXO+RtWvXUqNGDdRqNSdPnuSTTz4xe9DA9a9DGxubSvmgqQo6QtXQsyroCELPG6nselYFHQUVF41Gg5eXl/Ln5uZmtt7GxsZsvYODwy3bkmWZuXPnMm3aNPr27UuDBg1Yvnw5cXFxbNiwoexkLrOWqhhNmjRh3759j/RDpCroCFVDz6qgIwg9HyWqgo6CisvFixfx8fHBysqKli1bMnv2bKpVq6asX7FiBT/++CNeXl706dOH6dOn39JLFxUVRUJCAl26dFGWOTo6EhYWxsGDBxk6dGiZyCzJImpUIBAIBAJBGZKfn09UVBSBgYFmQ4oFKXnEbYp+6PL49KmOpZv1HW27ZcsWdDodtWvXJj4+npkzZ3L16lVOnz6Nvb0933zzDQEBAfj4+HDy5EmmTJlC8+bNWbduXantHThwgNatWxMXF4e3t7eyfPDgwUiSxKpVq24py63OY2kID51AIBAIBALBNXr27Kn8v0GDBoSFhREQEMDq1at59tlnGTt2rLK+fv36eHt707lzZyIiIggKCioPkQERQycQCAQCgUBwS5ycnKhVqxaXLl0qdX1YWBjALdd7eXkBpvmGbyQxMVFZVxYIg04gEAgEAoHgFuh0OiIiIsyGS2/k+PHjALdcHxgYiJeXFzt37lSWZWVlcfjw4TKNERUGnUAgEAgEAsE1Xn/9dfbu3Ut0dDQHDhygf//+qNVqhg0bRkREBO+99x5Hjx4lOjqajRs3MnLkSNq1a2c2vVxISAjr168HTNnYkyZNYtasWWzcuJFTp04xcuRIfHx86NevX5nJLWLoBAKBQCAQCK4RGxvLsGHDSE1Nxd3dnTZt2nDo0CHc3d3Jz89nx44dzJ07l5ycHPz9/Rk4cCDTpk0zayM8PJzMzEzl9+TJk8nJyWHs2LFkZGTQpk0btm7dWmY16EBkuQoEAoFAIChjbpWdWRlmiqhIiCxXgUAgEAgEFQ6NnRa/AUEY8ose2jHVVppKaczdLcKgEwgEAoFA8NDQ2GmrhIH1sBFJEQKBQCAQCASVHGHQCQQCgUAgEFRyhEEnEAgqDNHR0UiSpNR1KmskSSrTybAFAoGgoiAMOoFAoDB69OgyrYt0t/j7+xMfH0+9evUA2LNnD5IkkZGRUW4yCQSCe0cU0rg/7ub8CYNOIBBUGNRqNV5eXmg0Il9LIKjMaLWmpIfc3NxylqRyU1hYCJiejf+FMOgEAsEdsXfvXpo3b46lpSXe3t68+eabFBVdLz3QoUMHJk6cyOTJk3FxccHLy4sZM2aYtXH+/HnatGmDlZUVdevWZceOHWbDoDcOuUZHR9OxY0cAnJ2dkSSJ0aNHA1C9enXmzp1r1najRo3Mjnfx4kXatWunHGv79u0ldIqJiWHw4ME4OTnh4uJC3759iY6Ovt9TJRBUedRqNU5OTiQlJZGamkpeXh75+fni7y7+cnNzSU5OxsbG5o4+csVnsEAg+E+uXr1Kr169GD16NMuXL+f8+fOMGTMGKysrMyNq2bJlvPrqqxw+fJiDBw8yevRoWrduTdeuXTEYDPTr149q1apx+PBhsrOzee211255TH9/f3755RcGDhxIeHg4Dg4OWFtb35G8RqORAQMG4OnpyeHDh8nMzGTSpElm2+j1erp3707Lli3Zv38/Go2GWbNm0aNHD06ePImFhcW9nCqBQHCN4onnk5KSylmSyotKpaJatWpIkvSf2wqDTiAQ/Cdff/01/v7+zJ8/H0mSCAkJIS4ujilTpvD222+jUpmc/Q0aNOCdd94BIDg4mPnz57Nz5066du3K9u3biYiIYM+ePcqD/v3336dr166lHlOtVuPi4gKAh4cHTk5Odyzvjh07OH/+PH/88Qc+Pj4AfPDBB/Ts2VPZZtWqVRiNRr777jvlYblkyRKcnJzYs2cP3bp1u7uTJBAIzJAkCW9vbzw8PNDr9eUtTqXEwsJCeb7+F8KgEwgE/8m5c+do2bKl2Vdi69at0el0xMbGUq1aNQCzyakBvL29la/z8PBw/P39FWMOoHnz5g9MXn9/f8WYA2jZsqXZNidOnODSpUvY29ubLc/PzyciIuKByCUQVEXUavUdxYAJ7g9h0AkEgjKjOBC6GEmSMBqNZX4clUpVIvvrbj0AOp2Opk2bsmLFihLr3N3d70s+gUAgeNgIg04gEPwnderU4ZdffkGWZcVL99dff2Fvb4+fn98dtVG7dm1iYmJITEzE09MTgCNHjtx2n+I4NoPBYLbc3d2d+Ph45XdWVhZRUVFm8sbExBAfH4+3tzcAhw4dMmujSZMmrFq1Cg8PDxwcHO5IB4FAIKioiCxXgUBgRmZmJsePHzf7Gzt2LDExMbz00kucP3+eX3/9lXfeeYdXX331juM7unbtSlBQEKNGjeLkyZP89ddfTJs2DeCWAb8BAQFIksRvv/1GcnIyOp0OgE6dOvHDDz+wf/9+Tp06xahRo8yGdLp06UKtWrUYNWoUJ06cYP/+/UydOtWs7eHDh+Pm5kbfvn3Zv38/UVFR7Nmzh4kTJxIbG3svp04gEAjKDWHQCQQCM/bs2UPjxo3N/t577z02b97M33//TcOGDXn++ed59tlnFYPsTlCr1WzYsAGdTkezZs147rnnFCPLysqq1H18fX2ZOXMmb775Jp6enrz44osAvPXWW7Rv357HH3+c3r17069fP4KCgpT9VCoV69evJy8vj+bNm/Pcc8/x/vvvm7VtY2PDvn37qFatGgMGDKBOnTo8++yz5OfnC4+dQCCodEiyKOMsEAjKib/++os2bdpw6dIlM4NMIBAIBHeHMOgEAsFDY/369djZ2REcHMylS5d4+eWXcXZ25s8//yxv0QQCgaBSI5IiBALBQyM7O5spU6Zw5coV3Nzc6NKlC3PmzClvsQQCgaDSIzx0AoFAIBAIBJUckRQhEAgEAoFAUMkRBp1AIBAIBAJBJUcYdAKBQCAQCASVHGHQCQQCgUAgEFRyhEEnEAgEAoFAUMkRBp1AIBAIBAJBJUcYdAKBQCAQCASVHGHQCQQCgUAgEFRyhEEnEAgEAoFAUMn5f2YJt/QU46DDAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "agreement_map.gval.cat_plot(title='Agreement Map', \n", + " figsize=(8, 6),\n", + " colormap='tab20b')" + ] + }, + { + "cell_type": "markdown", + "id": "bdcbfb8e", + "metadata": {}, + "source": [ + "## Comparisons" + ] + }, + { + "cell_type": "markdown", + "id": "4a1f3ecc", + "metadata": {}, + "source": [ + "For multi-categorical statistics GVAL offers 3 methods of weighting:\n", + "\n", + "1. Micro Averaging which sums up the contingencies of each class defined as either positive or negative\n", + "2. Macro Averaging which sums up the contingencies of one class vs all and then averages them\n", + "3. Weighted Averaging which does macro averaging with the inclusion of weights to be applied to each positive category." + ] + }, + { + "cell_type": "markdown", + "id": "66235a0a", + "metadata": {}, + "source": [ + "### Micro Averaging" + ] + }, + { + "cell_type": "markdown", + "id": "4f258087", + "metadata": {}, + "source": [ + "In this example we will consider classes 1 and 2 as positive and 3, 4, 5 as negative classes. " + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "936f2dea", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
bandfnfptntpaccuracybalanced_accuracycritical_success_indexequitable_threat_scoref_scorefalse_discovery_ratefalse_negative_ratefalse_omission_ratefalse_positive_ratefowlkes_mallows_indexmatthews_correlation_coefficientnegative_likelihood_rationegative_predictive_valueoverall_biaspositive_likelihood_ratiopositive_predictive_valueprevalenceprevalence_thresholdtrue_negative_ratetrue_positive_rate
01382.0733099.0481259.01620.00.3969870.6027490.0022040.000560.0043980.9977950.1908090.0007930.6036930.042240.0170330.4814680.999207366.9925071.3404020.0022050.0016460.4634440.3963070.809191
\n", + "
" + ], + "text/plain": [ + " band fn fp tn tp accuracy balanced_accuracy \\\n", + "0 1 382.0 733099.0 481259.0 1620.0 0.396987 0.602749 \n", + "\n", + " critical_success_index equitable_threat_score f_score \\\n", + "0 0.002204 0.00056 0.004398 \n", + "\n", + " false_discovery_rate false_negative_rate false_omission_rate \\\n", + "0 0.997795 0.190809 0.000793 \n", + "\n", + " false_positive_rate fowlkes_mallows_index \\\n", + "0 0.603693 0.04224 \n", + "\n", + " matthews_correlation_coefficient negative_likelihood_ratio \\\n", + "0 0.017033 0.481468 \n", + "\n", + " negative_predictive_value overall_bias positive_likelihood_ratio \\\n", + "0 0.999207 366.992507 1.340402 \n", + "\n", + " positive_predictive_value prevalence prevalence_threshold \\\n", + "0 0.002205 0.001646 0.463444 \n", + "\n", + " true_negative_rate true_positive_rate \n", + "0 0.396307 0.809191 " + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "micro_averaged_metrics = crosstab.gval.compute_categorical_metrics(positive_categories=[1, 2],\n", + " negative_categories=[3, 4, 5],\n", + " average=\"micro\")\n", + "micro_averaged_metrics" + ] + }, + { + "cell_type": "markdown", + "id": "895d3e57", + "metadata": {}, + "source": [ + "Although more neatly summarized with macro-averaging, one can do one vs. all comparisons with micro averaging, showing the detail of each class version. (Macro averaging is essentially the mean of this data.)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "0da150e7", + "metadata": {}, + "outputs": [], + "source": [ + "comparisons = [] # List with all comparisons \n", + "\n", + "for idx, positive_class in enumerate(classes):\n", + " negative_classes = classes[classes != positive_class]\n", + " df = crosstab.gval.compute_categorical_metrics(positive_categories=[positive_class],\n", + " negative_categories=negative_classes,\n", + " average=\"micro\")\n", + " df.insert(1, 'negative classes', [negative_classes])\n", + " df.insert(1, 'positive classes', [positive_class])\n", + " comparisons.append(df)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "d016aa30", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
bandpositive classesnegative classesfnfptntpaccuracybalanced_accuracycritical_success_indexequitable_threat_scoref_scorefalse_discovery_ratefalse_negative_ratefalse_omission_ratefalse_positive_ratefowlkes_mallows_indexmatthews_correlation_coefficientnegative_likelihood_rationegative_predictive_valueoverall_biaspositive_likelihood_ratiopositive_predictive_valueprevalenceprevalence_thresholdtrue_negative_ratetrue_positive_rate
011[2, 3, 4, 5]6.0172762.01043592.00.00.8579630.4289840.000000-4.932603e-060.0000001.0000001.0000000.0000060.1420330.000000-0.0009041.1655460.99999428793.6666670.0000000.0000000.0000051.0000000.8579670.000000
012[1, 3, 4, 5]1043.0561004.0653360.0953.00.5379270.5077410.0016935.488593e-050.0033800.9983040.5225450.0015940.4619740.0284550.0012570.9712260.998406281.5415831.0335110.0016960.0016410.4958800.5380260.477455
013[1, 2, 4, 5]318274.0462496.0422623.012967.00.3581090.2583110.016337-1.754014e-010.0321480.9727280.9608530.4295790.5225240.032675-0.4409832.0123600.5704211.4353990.0749190.0272720.2723220.7851070.4774760.039147
014[1, 2, 3, 5]516572.03775.0693617.02396.00.5722100.4996020.004584-4.554762e-040.0091250.6117320.9953830.4268520.0054130.042339-0.0055431.0008010.5731480.0118910.8529160.3882680.4266570.5198760.9945870.004617
015[1, 2, 3, 4]364147.05.0852206.02.00.7006220.5000000.000005-2.626158e-070.0000110.7142860.9999950.2993760.0000060.001253-0.0000721.0000000.7006240.0000190.9361120.2857140.2993760.5082520.9999940.000005
\n", + "
" + ], + "text/plain": [ + " band positive classes negative classes fn fp tn \\\n", + "0 1 1 [2, 3, 4, 5] 6.0 172762.0 1043592.0 \n", + "0 1 2 [1, 3, 4, 5] 1043.0 561004.0 653360.0 \n", + "0 1 3 [1, 2, 4, 5] 318274.0 462496.0 422623.0 \n", + "0 1 4 [1, 2, 3, 5] 516572.0 3775.0 693617.0 \n", + "0 1 5 [1, 2, 3, 4] 364147.0 5.0 852206.0 \n", + "\n", + " tp accuracy balanced_accuracy critical_success_index \\\n", + "0 0.0 0.857963 0.428984 0.000000 \n", + "0 953.0 0.537927 0.507741 0.001693 \n", + "0 12967.0 0.358109 0.258311 0.016337 \n", + "0 2396.0 0.572210 0.499602 0.004584 \n", + "0 2.0 0.700622 0.500000 0.000005 \n", + "\n", + " equitable_threat_score f_score false_discovery_rate \\\n", + "0 -4.932603e-06 0.000000 1.000000 \n", + "0 5.488593e-05 0.003380 0.998304 \n", + "0 -1.754014e-01 0.032148 0.972728 \n", + "0 -4.554762e-04 0.009125 0.611732 \n", + "0 -2.626158e-07 0.000011 0.714286 \n", + "\n", + " false_negative_rate false_omission_rate false_positive_rate \\\n", + "0 1.000000 0.000006 0.142033 \n", + "0 0.522545 0.001594 0.461974 \n", + "0 0.960853 0.429579 0.522524 \n", + "0 0.995383 0.426852 0.005413 \n", + "0 0.999995 0.299376 0.000006 \n", + "\n", + " fowlkes_mallows_index matthews_correlation_coefficient \\\n", + "0 0.000000 -0.000904 \n", + "0 0.028455 0.001257 \n", + "0 0.032675 -0.440983 \n", + "0 0.042339 -0.005543 \n", + "0 0.001253 -0.000072 \n", + "\n", + " negative_likelihood_ratio negative_predictive_value overall_bias \\\n", + "0 1.165546 0.999994 28793.666667 \n", + "0 0.971226 0.998406 281.541583 \n", + "0 2.012360 0.570421 1.435399 \n", + "0 1.000801 0.573148 0.011891 \n", + "0 1.000000 0.700624 0.000019 \n", + "\n", + " positive_likelihood_ratio positive_predictive_value prevalence \\\n", + "0 0.000000 0.000000 0.000005 \n", + "0 1.033511 0.001696 0.001641 \n", + "0 0.074919 0.027272 0.272322 \n", + "0 0.852916 0.388268 0.426657 \n", + "0 0.936112 0.285714 0.299376 \n", + "\n", + " prevalence_threshold true_negative_rate true_positive_rate \n", + "0 1.000000 0.857967 0.000000 \n", + "0 0.495880 0.538026 0.477455 \n", + "0 0.785107 0.477476 0.039147 \n", + "0 0.519876 0.994587 0.004617 \n", + "0 0.508252 0.999994 0.000005 " + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "all_micro_averaged_comps = pd.concat(comparisons)\n", + "all_micro_averaged_comps" + ] + }, + { + "cell_type": "markdown", + "id": "79761a73", + "metadata": {}, + "source": [ + "### Macro Averaging" + ] + }, + { + "cell_type": "markdown", + "id": "790c56df", + "metadata": {}, + "source": [ + "The following shows macro averaging and is equivalent to the values of shared columns in `all_micro_averaged_comps.mean()`:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "7e64eb9b", + "metadata": {}, + "outputs": [], + "source": [ + "macro_averaged_metrics = crosstab.gval.compute_categorical_metrics(positive_categories=classes,\n", + " negative_categories=None,\n", + " average=\"macro\")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "70537719", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
bandaccuracybalanced_accuracycritical_success_indexequitable_threat_scoref_scorefalse_discovery_ratefalse_negative_ratefalse_omission_ratefalse_positive_ratefowlkes_mallows_indexmatthews_correlation_coefficientnegative_likelihood_rationegative_predictive_valueoverall_biaspositive_likelihood_ratiopositive_predictive_valueprevalenceprevalence_thresholdtrue_negative_ratetrue_positive_rate
010.6053660.4389270.004524-0.0351610.0089330.859410.8957550.2314810.226390.020944-0.0892491.2299860.7685195815.3311120.5794920.140590.20.6618230.773610.104245
\n", + "
" + ], + "text/plain": [ + " band accuracy balanced_accuracy critical_success_index \\\n", + "0 1 0.605366 0.438927 0.004524 \n", + "\n", + " equitable_threat_score f_score false_discovery_rate \\\n", + "0 -0.035161 0.008933 0.85941 \n", + "\n", + " false_negative_rate false_omission_rate false_positive_rate \\\n", + "0 0.895755 0.231481 0.22639 \n", + "\n", + " fowlkes_mallows_index matthews_correlation_coefficient \\\n", + "0 0.020944 -0.089249 \n", + "\n", + " negative_likelihood_ratio negative_predictive_value overall_bias \\\n", + "0 1.229986 0.768519 5815.331112 \n", + "\n", + " positive_likelihood_ratio positive_predictive_value prevalence \\\n", + "0 0.579492 0.14059 0.2 \n", + "\n", + " prevalence_threshold true_negative_rate true_positive_rate \n", + "0 0.661823 0.77361 0.104245 " + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "macro_averaged_metrics" + ] + }, + { + "cell_type": "markdown", + "id": "ef8f72ab", + "metadata": {}, + "source": [ + "### Weighted Averaging" + ] + }, + { + "cell_type": "markdown", + "id": "e182a6f7", + "metadata": {}, + "source": [ + "To further enhance `macro-averaging`, we can apply weights to the classes of interest. Let's engage in a quick arbitrary exercise to establish weights. Our first step is to calculate the mean candidate raw elevation for each class in the candidate and benchmark maps, and then the pixel count of the presence of each class in both maps." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "248f0bad", + "metadata": {}, + "outputs": [], + "source": [ + "# candidate zonal statistics\n", + "candidate_stats = stats(xr.where(benchmark_r.isnull() == 0, candidate_r, np.nan), \n", + " depth_raster_r, \n", + " stats_funcs=[\"mean\", \"count\"])\n", + "# benchmark zonal statistics\n", + "benchmark_stats = stats(xr.where(candidate_r.isnull() == 0, benchmark_r, np.nan), \n", + " depth_raster_r, \n", + " stats_funcs=[\"mean\", \"count\"])\n", + "\n", + "mean_difference = np.abs(candidate_stats[\"mean\"].values - benchmark_stats[\"mean\"].values)\n", + "count_difference = np.abs(candidate_stats[\"count\"].values - benchmark_stats[\"count\"].values)" + ] + }, + { + "cell_type": "markdown", + "id": "1d7e954a", + "metadata": {}, + "source": [ + "First we will calculate weights based on rudimentary normalization of the difference of means, giving greater weight to the classes that have less of a difference. (Similarly it can be done to do the opposite.)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "67684e18", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 1., 35., 1., 1., 1.])" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "weights = 1 // (mean_difference / (1 * np.max(mean_difference)))\n", + "weights" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "0eae1cbc", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
bandaccuracybalanced_accuracycritical_success_indexequitable_threat_scoref_scorefalse_discovery_ratefalse_negative_ratefalse_omission_ratefalse_positive_ratefowlkes_mallows_indexmatthews_correlation_coefficientnegative_likelihood_rationegative_predictive_valueoverall_biaspositive_likelihood_ratiopositive_predictive_valueprevalenceprevalence_thresholdtrue_negative_ratetrue_positive_rate
010.5465730.4989180.002056-0.004460.0040920.9804970.5703930.0310670.431770.027492-0.0103461.00440.968933991.0017790.9753040.0195030.0270720.5171550.568230.429607
\n", + "
" + ], + "text/plain": [ + " band accuracy balanced_accuracy critical_success_index \\\n", + "0 1 0.546573 0.498918 0.002056 \n", + "\n", + " equitable_threat_score f_score false_discovery_rate \\\n", + "0 -0.00446 0.004092 0.980497 \n", + "\n", + " false_negative_rate false_omission_rate false_positive_rate \\\n", + "0 0.570393 0.031067 0.43177 \n", + "\n", + " fowlkes_mallows_index matthews_correlation_coefficient \\\n", + "0 0.027492 -0.010346 \n", + "\n", + " negative_likelihood_ratio negative_predictive_value overall_bias \\\n", + "0 1.0044 0.968933 991.001779 \n", + "\n", + " positive_likelihood_ratio positive_predictive_value prevalence \\\n", + "0 0.975304 0.019503 0.027072 \n", + "\n", + " prevalence_threshold true_negative_rate true_positive_rate \n", + "0 0.517155 0.56823 0.429607 " + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "weight_averaged_metrics = crosstab.gval.compute_categorical_metrics(positive_categories=classes,\n", + " weights=weights,\n", + " negative_categories=None,\n", + " average=\"weighted\")\n", + "weight_averaged_metrics" + ] + }, + { + "cell_type": "markdown", + "id": "4cffc0fa", + "metadata": {}, + "source": [ + "Secondly, weights will be calculated based of a rudimentary normalization of counts. In this case the attempt will be to give greater weights to the larger differences to balance the impact of each class." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "02fa92f9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1., 3., 1., 3., 2.])" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "weights = count_difference // np.min(count_difference)\n", + "weights" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "9a815076", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
bandaccuracybalanced_accuracycritical_success_indexequitable_threat_scoref_scorefalse_discovery_ratefalse_negative_ratefalse_omission_ratefalse_positive_ratefowlkes_mallows_indexmatthews_correlation_coefficientnegative_likelihood_rationegative_predictive_valueoverall_biaspositive_likelihood_ratiopositive_predictive_valueprevalenceprevalence_thresholdtrue_negative_ratetrue_positive_rate
010.5947730.4709320.003518-0.0176610.0069680.8231410.8514630.2313680.2066730.024756-0.0454891.1093980.7686322963.9762530.7606430.1768590.2155970.5848880.7933270.148537
\n", + "
" + ], + "text/plain": [ + " band accuracy balanced_accuracy critical_success_index \\\n", + "0 1 0.594773 0.470932 0.003518 \n", + "\n", + " equitable_threat_score f_score false_discovery_rate \\\n", + "0 -0.017661 0.006968 0.823141 \n", + "\n", + " false_negative_rate false_omission_rate false_positive_rate \\\n", + "0 0.851463 0.231368 0.206673 \n", + "\n", + " fowlkes_mallows_index matthews_correlation_coefficient \\\n", + "0 0.024756 -0.045489 \n", + "\n", + " negative_likelihood_ratio negative_predictive_value overall_bias \\\n", + "0 1.109398 0.768632 2963.976253 \n", + "\n", + " positive_likelihood_ratio positive_predictive_value prevalence \\\n", + "0 0.760643 0.176859 0.215597 \n", + "\n", + " prevalence_threshold true_negative_rate true_positive_rate \n", + "0 0.584888 0.793327 0.148537 " + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "weight_averaged_metrics = crosstab.gval.compute_categorical_metrics(positive_categories=classes,\n", + " weights=weights,\n", + " negative_categories=None,\n", + " average=\"weighted\")\n", + "weight_averaged_metrics" + ] + }, + { + "cell_type": "markdown", + "id": "c4546ca7", + "metadata": {}, + "source": [ + "Regardless of the evaluation methodology, it is clear the the candidate map does not perform well in reference to the benchmark. Finally, we can save the output. " + ] + }, + { + "cell_type": "markdown", + "id": "0d5f7be8", + "metadata": {}, + "source": [ + "## Save Output" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "dff8f8a0", + "metadata": {}, + "outputs": [], + "source": [ + "# output agreement map\n", + "agreement_file = 'multi_categorical_agreement_map.tif'\n", + "metric_file = 'macro_averaged_metric_file.csv'\n", + "\n", + "agreement_map.rio.to_raster(agreement_file)\n", + "macro_averaged_metrics.to_csv(metric_file)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/notebooks/Tutorial.ipynb b/notebooks/Tutorial.ipynb index 8cb24a51..4f8cee52 100644 --- a/notebooks/Tutorial.ipynb +++ b/notebooks/Tutorial.ipynb @@ -13,7 +13,7 @@ "id": "a403ee30", "metadata": {}, "source": [ - "# Categorical Comparisons" + "# Two-Class Categorical Comparisons" ] }, { @@ -72,7 +72,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 7, "id": "541857a7", "metadata": {}, "outputs": [], diff --git a/notebooks/benchmark_map_multi_categorical.tif b/notebooks/benchmark_map_multi_categorical.tif new file mode 100644 index 0000000000000000000000000000000000000000..941e1f23f68b40321fdc99d7ff3b0c887fbdeaa3 GIT binary patch literal 3920033 zcmeFay{|RTvfs7OejY9taRo*)wva$Vf&h^^0U^t_MB>DWEt!anfYcHhB!D=HMZ}+A zAri!OhDGAs5|IP{3y6#eM|Qn*byvSm_q?n%YtMJi@2u&ruCA{B%zCettID3kc>S17aIpSbeB^@rbI|IPQ; z*Z=vie0}}fPX3od`4{Q`Wh%4I|4rq8*XjIiSN=Ethd=vb-M{~DetrG-|Kp#1{Rx%- z0hRxcKmPjq_o@6(sr=`E{If4I^Ys_W<$w6c?=N!k>p!G24iEqV5C8!X009sH0T2KI z5C8!X_zVL7*Z=fi{XhTR-~Y>h?LYcEe@V_;UjN1a`v3bEfBt8G_aFb0fA&}Y|NrzK z{nfv2`hSqm@$|X)H+_<)&&u@SoX+%_oj=)s{qKL_4}ba(|Hz-L|3vEl^MCNK{pp|o zk=y@uIe&fqZ~y%N{a^mQfAII%-e3P;|IUB$H~!Y&_|N~7zw+OHecQpG&~bnO2!H?x zfB*_GqoKmY_lfCx}Rpt->>BnEgxfB*=900@A<;|XBL;PGz( z0003H009sHfkc4z3&NHGKjM!A1V8`;KmY_l;L!w-7d-m%WAY#X0w4eaAdnN_#NZe2 z8Q>9v91Ln800JNY0wC~20`VDxCr%!71_2NN0T2KI5XcEgV!%5FNsPUN!~!J{009sH z0T6f=0lklqrKp+4DAOHd&00NIAAW48dQ@|SrbVy!+%;0hF1xy$OKmY_l00h4Dk%9n1^Md#a zJRkr9AOHd&00Ivqz`FzSQNx%LSm9wXFkKJ;0T2KI5O_KP`4dXvc>?)Hg5?ByemWk^ z9|S-E1V8`;o<%^D0iClwT;OwqXVJiHK>!3m00cnb;RGZZ2oE1Nb`0!3m00cnbNd)*Ok@=80j}imiPI%JW z0&@ic5C8!Xcq#!+3uY1nWCl-tk6_*)00JNY0uLe(5`(R$4@K=kSTI!(009sH0T6g5 zfo#X%%W9qTGZA6dAOHd&00JQJ90HaC=!~t_JwFEwW(ooz00JNY0#78sDF8o!sB`Zo z1hL_Xj4)>q009sH0T6f$0nQ8P*AJ%?13ZHGn70Nd3IZSi0wC~20=yNlvSVN=#1mOz z&L98+AOHd&@Z$;CJ%TV%s}9dU9ttK10w4eaAOHeSC14pqn7>uW=cmHLyg>j2KmY_l z;HMLa8GueSR>y^(P6hJ=0T2KI5CDOP5{L;vn18H~3lF7*X@dX=fB*=9zz-+z%YM`- z%yXO%q}Csf1=9lo5C8!X0D)%`psyc>XdmXEV*f_znY=J-5C8!X009vA=>&Er2KYsT zpZ>8;VcM%00@8p2!KFEpbY)0P)cX( zm3at200ck)1V8`;K8ZjX^40fJI$i&ysl!(g009sH0T2Lzl7NJK_eg=ZJHd2L5ERP+ zPzM1J009sH0TB2c0%hD+&krO9^jDd1fB*=900@8p2z)4kc4AOUm+Bu%0&ar<2!H?x zfB*#Ar)Eb_KGAqVjCA zm^}!900@8p2z(%cB9{O9t#kPG>$_}8by5ixR!;J&q_*%10w4eaAOHd&@F@g3!MqaZ zf|w1&Lf&q*PoV%mK>!3m00ck)1cZQv@OTbfxc=SUHHi5@+eS2oM-cHg0|5{K0T2Lz zk0Ov_xRrwYR&AU~BS=NJp^-!%1q05400@8p2!O!T38WBiB_q;*%)rtD>LJS3vwb#u zID-HPfB*=900`WkKpo7Z%l#iSU=`^oy0wX15)GmN0w4eaAOHd&aB~8A4Ck72xR)AG zRuFa#NV&F9N}NR$K>!3m00ck)1nx|r4C3D*F$iB5+pJ+PMk`6FP!Ne}=55C8!XcshY9lq(Ruh44Fk(l3-$g@yBp0rm`@{!YXEK>!3m z00cgQKoRpTesj>5I|yMCrCO*@-bfJbkH7&ZK>!3m00cnb*#wG+A7GHwe)iDtv>!t( zx(};n31<)h0T2KI5CDO@639b&@RHL4I;4$W&G%e)N6if33<4kk0w4eaAaG9tS$GdF zW-_is*Q=IAK{SK{2!H?xfB*=9z#R$r$R7OjqEM!13C#Ipw-n3@&L98+AOHd&00MU; z;Ie?=o|9PdOP@F}|4qE-Y&LKP0T2KI5C8!XxFLZQ+=FvT5KHu>#PGm@O&~U{7t93C zAOHd&00JNY0{0^jBYSWy)?63+QZ#}B2!H?xfB*=9zzqnv5MKuPabDm$ZY!2~LCPv_fB-Il00@8p2!H?x7y$~| zp}3wGq`qV#i~U;_8y#m5009sH0T2LzTM;;x7jOcQrbB;XVJjn`cHBrv#83hO5C8!X z0D+qku()1D^yb$QDlHYnId$3#v8Ypq5WArO0w4eaAOHd&a4Q1keFVxEifEpyt(G{M zq}DF+Pbjjo{sG6>4FwPY0T2KI5CDPu5UBEkU#;k`p}tHR!mlOU)frDpflJK>!3m00ck)1OfpUnq#p_3@D~I z9y^Hoqe2C`t6XV900JNY0w4eaAnORvZaWSB6`d~~b5ngPZG0T2KI z5C8!X2m~w`%ekKykha&%D!yU5Y!~2ntA{n>3<4kk0w4eaAn;lOJ}&3M-?x-o3A+-5 zvXf0T8%QhGgfj?$00@8p2!Oy#3Am^{$P0?ZfIV~_w~Ae5n`ymmU@bU<00@8p2!H?x zypli)>fP`yD&$jAUHc`((34J?2{jkz>a9~b%25CT5C8!X009tq9f1^&$3JXD9wk+Y z+rH|`#ixJyvy5pvPSJ|7kp%wdlA|025C8!X009sHfmac*@Lb$1h~iLScbqJ*QA11z ze#erkXY+6tvZ5(*-;^7e6lV|s0T2KI5CDN!5r_fW$Neab1$HM^sE}2t9@BwXFzsw2 zCalg;i(4!=h(Z)V00ck)1V8`;UPHh_^zcT4xMG@eCP`Mee8A4JF`Gq{N@kH;a8DKR z?9Sq>{5BHEiCrmI*9sQh= z?Envx{|)GvO?kqWVrBKTsdofz;>8qncw;hKQ}2!H?xfB*UIhYnK>!3m00ck)1T6T+u+4!!2*Xo|l}gm*!mc|BoOdw$%+hoPR}BO}00ck) z1VG?20%bg=XdMD}ek%21y^inkCPCCG3iR+I&!>=1S1)4$!yo_xAOHd&@OT1MI3^+@ zv%tL>zgf|59BkhsIFuHUbC17h0006Y00JNY0#^~}B?guk*#1GK7X@_7fs{Fa_{}-N zc3xojDx!t;!c{b27X&~61V8`;9!{VUl;x)brV|5x6oIn>P7mlF!FFCi`vsdf8ya5a zqK98KOdkY500ck)1TG?w$JG00ck)1fETxj>AbJ&jM_GyqE7TP^720{nbqj)KCJQhL|c*M;RbfPS#KY0T2KI z5C8!XIEz3QY#Wv0gLn1_vYHegJA={0kG7A9+fB*=900@AzfqvL+efaNcQ*OZDPM|)N7UVr^ z|GHLI8*0;#fB*=900@8p2pl7@8jYL!>;mTodT3@KWfO&#%{voK>s?{AiUJ6L00@8p z2!OyD1UA2Q&<)DX21yAd`nR2Hb~+$zj{+$OfB*=900@Afo`-t(on>I=gtwU{l0Dh6hQz4KmY_l00a&Y=ttZAEk$17ZYWeO`v=K-ejgx! zt{?ycAOHd&00NOf7GHhk%orX=JJYCl*5w{?EEGTh1V8`;KmY`G5Xb{;s+||alT+u} zOn!z^8U!T}009sH0T2Lz{RFBId$z#+ron}Y0Uklz{}w<`5C8!X009t41g7!;|2>1L z4o)cz)%@d&PV-pNje{ZxfB*=900@A4Z~*mr*QhN|S;rxI=o+(;;b z00@8p2!H?x>?6>Lw=omofF=g9+SBjIy-OXHN*w+SQzhRN_`y&H0T2KI5C8!XSS8R8wJs6R8w!2ZVT<=@ zs3?u1ZE8DiC-~7&1_2NN0T2KI5LhH&F}OVQEsU21Fg*%FR>bw-331V8`;KmY_lV2eNzg7pt3 zSBU|ADM8YOawnna-LAG>U|q7=?y@B%lOvV(h>(H+2!H?xfB*<=5y;~!MQS;6sYLKj zOR3qahpxqm(}H1mZ4Q@_?=t|zAi+&dG+uO5{7g4gPe2{{OW00@8p2!KGJK#ZkfOMo+g&cQ!_n4U{y zJ;@|G+L^dF{$RA!pEnE|sR1igV%MuTCgdOh0w4eaAOHeg0x6P8l<#H*tjAwjv`|jx z@StL{&@ajG@q>PJrr#lJX>J;@1{ul}^GX~B1rPuM5C8!X0D(yY6iY)gKppzK1srlU z6;N%-3tF4}d2Eg~GS20~so1%x`S*CosESG2!H?xfB*=9zytw_@RAOsk_*a3k-wdw zBG#52fVt>yF+B5Vt}Bhly$Vkzs@YhmfB*=900@8p2uu(N>3}^xz~}D4Urg}L)R#u^ zl5W@7khv74;{x{?YqVRlu}}d45C8!X009u#CcudSY0*}Iyx4|7E7GzWX~{zgtQQ_W zTnpN{M{`NVuB zErs)BHZPn(00ck)1V8`;<_Oq^K^F9Tp_xtc9s{>W^S^h0q9+r*kcQF}=69nqXAztgNM;bX3>F_VaMm?380=Cw-95z_0?+{g5C8!X009v2 z1X5xkrA7djEdmYS)RCS+=4Ag1W6R=Q3TbD`l&q+m7|>RL2sFHMM@6*YE+bE7r`=zW?&u(+0dwcwoM)Cm(=sksy5U42Fa4~qP80^mW(bQm8yV4u5 zKoban00@8p2t1xZObnO=Rb)FL{l>B0NYL8{rlE?qWuSWpY^I9AlLEFo+Ak>D_9X`2 z-`~G}@r#Ux7Z3me5C8!X0D&d}$pz>|w*V-(Yrv-jAqIL5`rMc9({oX_3{>JQa>L$3 zZ1+018i#pA+mIy&-`~z@6hQz4KmY_l00eRZ9O~uZn+cp3gq;AAS%i%W)F^oYsf7GN zY)Ox#Zr$e3G;~*)MyT6bvRbQW;2a?S zT_n-rE?m&;Kwec8r8rx7Iy-G1gVs46+xx(+I4m^u{>4a#KeZ5>Tr@0Pa6jafB*=900@9UA|QVSfvX($HT28P1d8}pmpuV%vXIQJ zp&Z(+Y8umL%T2ll*u80MONwk62MB-w2!H?xfIuV=KCH`wgpv_ZV3kNOi9w9AB#LDz zsE(+H4uwLlzEu-{21-|D2Ka^K_)b6p1V8`;KmY`ofW&jj3#i1EumPau5UWKVnMN#2!H?xfB*;>0Zj)uoKkG2IISPuS;_)C zq%OIGN!;1#Iq6!F$14u;kY!XTn$D>j0-Qkr1V8`;KmY^+0oy2WI|meXIS=4NG6l{S zq#_NCn9PdpVtcahx|42gHttiFY00ck)1V8`;Kp-Qa4+%)%50RO(0nG&{A>jXU zexNx5%Ug$buUqI38+3Y+ebv{s@THx3HsQH%0n8i(KmY_l00bNX3DHvLJp-yybPr)W zJy>9S1tCpnhjnRe?ijT7Un13+P7URtpa=pW00JNY0uLoXn*|g#W%6>{fGU<4aG;mx z4*6b#rUY{8+(`(x8)EmVV0^ifUe>u`9{Lu*v_Sv_KmY_lAQ9l0Phpb;8v4U4M^Y)$ zDWna4*T4d;?Ja0sYL-@*%A3z&rgL5-EGU5h2!H?xfWU(ZP(;^+AO(NkDzGF$9zjTT z62~~3iYjB(*m#SAT-I4n9{e7_)Ik6QKmY_lAQFgqflCG~EuhfPdND~5T?w?BPUJCH zRCCcaHJ_b~M90%Seee! z&(*Ig@;H~+mI>em1V8`;KmY`uN`UtME!KySPbUiYagRWywof26>cH6m>y-y%Y=}#> z!*v?wu#KjHr@jv`Zx8?h5C8!X5CSP1C`zr&KvXCqYf8{a4EPZP%?sqUq0x-SOG38H zt}k_(R~9OG0Ra#I0T2LzhY~2#0jtWdAzCG#Dd@{j7 zw*;mR0w4eaAn;@YSz^$tSYDuQe2alM0rErcAcRK`=-Z9fXemOaZwmK3Kl$x|xq|=* zfB*sAfj2+g;B(8@z%52!H?xfWQL@ zPS21V8`;KmY`uL_kA2M}EB_5b}X=lEBH)oZDH}jHD!YHyDBn8|H($&?^h2x0#^k zwlVF_2Bo|7_ zlC3NyA#b^7CNtfG=jag%AOHd&00JQJ!wL9AfTJq?PY;fzk{EE6gLx5LQ=JooR5LY} z=7&aoHd`69PIOLvR49o@Z0EZSQsE3E<_IE*9i#Gzg=icF5C8!X009vA(F8OL(AR9g zz(TzSaaPFVY^=7o3>whL1WCzC2=0|h8^HR?5L$^%nhxk@L6#U;C(}InZ02zW0T2KI z5CDN6O@Jdl1!@laQsk`x$pI`8&~r=!>Uc|?g^+J)A*1$?5wtcKTyHfeCM1=hWFm^x zNZ6pr_bIr8SP3U*@r+_?N|1p72!H?xfWS{9pm~8rR4z*3)w4#^a3jB;7+B2q!M6cP znoXD5x!y5a_V$)znO)8MOSfOYzQZ|co>eH_LLCG^00ck)1b!d^&IT;_bCJSm47p*m zfTej1cCj|bdMEP_3It@KzXKTJx)}~$*e;iy8T$?Kd!RSifUkyXllw4}PM6ZEM>mR0Ou&77UHy9L~-6liBrmu7G5^s;${ zGYEhH2!H?x{7eF}bI-d1bnpxBHbaX@%CUHG*Gr4J z-K^%E72UjXT%!(Sg?4M@9t0o&0w4eaAn=n2Xkx%=K}-x>6xZO$P3i5s#}O#Y@un?aJaO6Am02LTWO0T2LzpF}_s0=IQdHc!m*6xd zFUW!?St3F{HAw1Nsm+m8*uS9ZiYyUv(JyEYPK~^P|AdtMe|j=kG^&4YT28y|U@z3<4kk0w4eaKa4<;6mXRj1Dj#U2SCdY& zD9W~ijT_J80J-E6gQAyg8AR0OH^_QZmOB^>t?r{ZbB`GV0Tt?NWUW??wjW*L= z)bRoWAOHd&00KXZK#>@PoA&%6oe%oxAA+QvW6Y%1Sat;;-mPouE3Ho3io7S_d&=Ov zO%S>cb_~=++Zi+8J~w7S>Ba1pLEKbPU-1e8AOHd&00KXPK$#eXNX%iHcMG~Z1~Pe8 z=9nJCavt47JXSlwaCv86blN0ikK{!=!tatspM7t2BuFgrA)!gEAoaG_kb(dRfB*=9 zz$X*P69c}V&(9cWULcha6H}B{fz6q9I5*%7Ax{fpIOPu9Xxk52gJc$FES~exB(oqz z+dl{{u_PX@7-hpk;YH9@52!-TF$*wNJDc6;E(#z30w4eaAn;QNNW?B)I0Vyv0cQvn z139wCGKI}hGg*^H(Oq=;Mbe05tkKuZnvxDKeND7^E^SmD$}rCg(HAO8jS~d=dyUeW z8w)E@9|aHq0T2KI5cnAcikyHym2*bG0Z__Xlxn=uUqp7*O+nSbq^?|Yi3KZY=D}U- zjz#z-KS&b$`-tz$Vr%847)H9P?=BMv0&dLO!ayp+D+qu92!H?x{1gINVnES19Gn$c zF~mR#ja-fiLTZpwfkcu4j@)FY&Lz)&GeH%I^>O+=2E2?h5MQ(X2Xg39_iJ6PBz&!=n%RB@MQa1yNs<=Mh9ue;a`e#eVkO zLfC$w9^Oh++fi^25m@gqJ*%cnK^(IArDiUf6lV|s0T2KI5cmlMQvA%4N4f8+knTr0}O<{fLOi^8J%zJ^}C=$P5xAlt2Ik zKmY`O009cL;n2MT`9!Xgw0V$6LQWM#gI@E`?-`G%6?^A7hWw&YXv;cgp_zuFTNfOz zB`uJFr4v_oA9?ssW>_x6n-AhxXpc@NeJMpb3LpRiAOHd&@bLsJEr@3c`W*1&GdjJ{ zAvF!nk_-f8Zj;a$Upx+KQoWcwG_*rc->(eX)Mob86B$!&6~mj})>(#YDalye8X840 zRJ1IwA$y1xToZ~Q00JNY0wD0w1VW6r6UTjx_Z;*su!krtC)p(625pVOQ45|$=+26T zR;Z>QM)KWaR8}n+N{T!r6*|U(&6!get*06uK1e>9Vv-a-;(mfhgE9z!00@AE&<{S^5y1RGIR%!H9ysJTmQKEFWQ z0k$KcUfB?_Mg^0#&S@?vfdB}A00@AF$hl8wyB{OCP|zO3LpRiAOHd&@M#1j z42K^q2vJ;4F*S&xUBWVjXX>FEQlfAe8YGEunSlh#xRsE?W-KWx?ah&v>)c4+P86Xj zYK2}iskNSV4x{TINf4{w;$dR|^R&@KBL3S7(i1Nr00JNY0wC~l1SHaP_--8`^t(KO zKeh+WaJJycfm=T52Lv3&NjH!2rYvVx+>Z6^pdPVcf^*O8POxYNC(6c3nweND-+WM! zJL3QW5C8!X0D%u9z|ovySSu~aWfJBk+H0P`uND?Vk?Qnc0HFF}*wpef-*t!<@+Mc? z)^N(cXu;jfQduUQs$3GkMP&Iw_*+W3nyS{aB;l+;jt_e)z+Dgk0T2KI5Rmvt7$nwj zy-=`|3_$gGJ3tZv{#`;g5u#yA3`Ctb7_22fbEjNV*JQjP?%64Nsm(3hjdu1Ycc`q# zkqW&iuL@!lFCYK{AOHd&@HqtdbNggsz)@P00)FMRfDTR$bhg^+b__yF&!3m00cnb_5}DV z0CO7#oD9&xk(v$*-7FIuWQ2=0VNsPAQRY%{@VJG@(g6}{6TRwSEU2`z-Z5H}T@J|I z`vCHEVcE)VXXd2R5V5?aT6b1WHjD!VKmY_l00cgU0LR^SVqhr%Yc!4&2{~X>LLhP5 z5(BMB3-wL9u0)7jO^c*z+M$y;SLumB`v)rwJg9|Ithaj?QtMoZ8`U&Wqp=pTW5r>2 zTM99%AOHd&00JQJegch`-gJK*rL~ z?^<*|P_bcNhU^XOd>9lLdy8Ymi&!sYsDc0pfB*=9z%2-H(9MsqQ_$Wpa8lmfmmqGD zoa3E-JyEs~Wb>dI&^7GR^tBLQ)m*5$iWFTvb_fKe&Sh%|#aK6aHyMcvn}syUrm83e z7t_giOH!0T00ck)1VG>(1oEUH)b!4Nvx$V99PmAV)$)Oka{;b%Vvues_{70!lY*<2 zMHxedu2^W1g)kzYqdhCwIrbV27?s9_%H~jAyvkon{k#=55C8!X009tqF9C|WjYGnE zL!OId`@jb}o(k6~=38da`k=2}#)$#%M#PLF7W`mVwrC&5Cb1Be*Qi5EDmBU8a~fsB zf(%)_w7L~4sDc0pfB*=9z}pB=z$_m=lz7h$Wc+3o<3VX&!6zndn7?B~fm%*@^9x5OJ0w4eaAn+yv6t!vOBIv8I zB@T*`J8+q^0{x<*>=S6@}ShmbQMpplzco zRWse@yg`(Umt3Q&722qR00@8p2!O!L2~dcqF*%GE2YXV8@~Vb>)(QcRdq|NB6xZb- zK`i8faC9qyx=_EMzb7x?%)kxD9{IX!N<~o`YE7952Gv^rn#Ssv@*b#x00@8p2!OzA z3H0&;P8Y_Bfdp^SilHz>bMDFM0OtfLEwDHrW1@uWN*bGY6xbU&q-T~0L}_hQdiWQ; z5n*QP4l@#O&y{DovX1M5A_#y02!H?xyp#YZ2Ktdcf7NdlkSutUw`z?7zqA(dPQS7k zJ4k9kDwYD+IsZ&w*w|M!a#`<|i%G${G|x$GrPMT)zCST(s%-^Q5C8!X009uVmH>Y` zjWL`Gp+eD%gFXxF@LEz1I_ZPIhJ5P5SwPw>Fy#;tV`4xLCrk#(Nj3AdxE;XahJ~oT zRcQ1biCX4ZzwO1y5_S$+EFl8{5C8!XxRd||rkD*_77&6Jk82|Fp-2r_P4WgG-$fAa zAE>@og3atSN({WstW&q*Fm-iegHxU;Qn&B;$CRUuvd}kFYOd7#R?%{I0&|%iy&LX6 z5%>oJAn+&x5~Fl$fD;5N#XbL!F*qE(%)osh7j3V{iAU%0!R80~7&M(DQMOeON5*E= zgqzeXGDC$thNC9l^+4>_P!vonCsC)F9d@ z3PVeU?#}9P2sGY+K>Nb>9AoX!<~sJYAqN2v0D;#L&_#(ucQZ&g9ARBOq;K_^h?4-* zh-Dkbt$|!5^M%B!_OnY?pF8*MW&Inonh@nCY*pXv7(YE`{dZM1$AZGk32a`->K_QX zIO_EB8DKyV009ul34|r8ce}r}s`;o-IY4et?n)#LEAcQ~u2#g}B57u;4r9S^$>n#D=hzl6Z-1UjKg%eMw1C5GbD5-j7-E}ViAqzYB^;@K51#|LjQ!b(0Z;ofXJL4QKO9~IpuUR`Prl~I}iYYdlKMpD%wI93oPJ- zpn85F%t1rE#c$P((~FJ1z*`Yqx1rp*kr{+mcEKs8Vq2Qp>r(XYm4(`kt0b?S)lVI( zeQo?~+ZtC(y$2|R00@A-q5hN&ZVczt2YzY~>SKf_NQaSnPl zySZ)`XjPs-00JNY0#^}8c|m(M(_MjL%fQ9`td}@RLEW|UzJeT?VpbvJS)D4D7-S7> zofRF5vR||A^j}_VI&`h@<#YU`0T@O^Lf)w8_$czZFX_nJ91AYRk2xkr)Ie8aU4jQoT0Ql4PF0rSi7SfN;EJ!tWkb-UjD< zvJX>fy|LaWdpBQ<4+0?Y(+PwqUoCU|Eyfhog#xQ`A#|}*)>RS(YT>?oG8@TMrXDK& zRlJ3tJ56rrwz|Ju_MW>5k@L&v`=$ZogysD)`3A{4)fJvfEq%M>O@uKl2!Oyt2sFbx zt$al!4;u@l9d;P3pG5z(Qp(>rupNUW-YRuhUw;+&^Y3&@AS3$T?<>D&%Yf$_vA=Kf zmyaChm=)xm;t6D}^OX}!%n!Drc{x`M00JQJTmly0+lvyX2a+PB#K1aGiV%ufSGp^Z zG_saa#l^5(&0UzhVWQ^xzPC8x>**>y-+A?$k9vMWWu%O zcXK#8em$eEB%}nLcUHICXEhwdH!c$Lp}-|Lb&bMe3Sq&!>~ujQ=XDx4M*Y1_VIhqX}4y|I#lR#AS?c2FPv!&CYbX z=a@!N53;~|(a>B$KG$`+CBCz^QjhzT=6rvH)_W1rgw26#=Khq#AaOLFID-HPfWSTi zd9aUbGmDeKT&Y=;p43A!0@jG8rV9NH-{b|ACTwN;H>ymy{yvqLbMjM-gL~mw<*E0~ zS%baZPDF_U2!H?x>?e>#c`_prorKuBYb9yJ5D1iV7fWSTidb_})z1=k+TO1pbi z)9Oo#WScX~r9SsirmeEQj+}TAVG0C5;CTe{Krb5wPE^)ilP}WxMSBEZvc6@ocMZ(? z-TV4wuHLnB7~u^krg_2gd-B~gIh4*EzK$>e0wC~M0(ms2THG(FTKWQh#31e$sM_kH zdT0@}!ESyP&CNTXcO$&@r0(oo$2YwYu~D;{>JFVgfD^Uy!tQH{jvxR64=0d^dxDV* zW^37&fj*0vuTmSeCnN^DcZN6Eo!PwWU&EOWTw%-JTvc4XVz85J@`Z4w+KGYacs199 zi@UBSI)MNPfPf4A0>jmJ7G?XOSfaM7*($iD+-<-4)$ICxtA=%mw{pMXjJ>%&C^4Xm zz+t^HnOwvdE0+{CR=@!QAOHeu1Y-1$-J)cnU=JQzmtuL^u8xr*PN8Xt|zoX00clF-8*nB_C0D~Nx`n= zwzqaKt;%i+H!Utr=UvLv?7qLhqmQl_Wp^pio4n~tTiR5e5c02uUU~S$AdFKb5B2!s z)ASXEA_#y02nYcU=p~F8=9dfg;xr-YEZq}5lS(;-JJyr8_bttE`$b8C95Rh>s@``# zb6<5m$^Xle1NwKk$HmZT=9)qW1V8`;0)Y_tOCHPlfOXjSx#@(&pq#-y>w6aWSNGW< zXF0*!6NBkcIq}K*)r=eC5%z}EiQ0dj+$ju;8&?(0AOHd&5C~W}x8FI8U}D2^VYoW= z8n@QOUO$sZzi(eKkMDdQLv)FOP9kLpH=Wecch};yrW2OjE>X_~R^xwyT<$8EVtvkc z8OGNYtsnpbARq){*e`j+hV??dJZ(#QYvOiK)+n97bA4_`Z`Nu96sKZZ;BFthVI00?*j68OD9%Z+?s_BRfy zRcb;oz2Y@&)z05p(wM*vMNNX@CnW)t8~pn9_J<1Upx5VkUO^+N82&{y0OH~Kz0Q=-(@)cI&4LA^LRNLfXiZ1d_u2m&Ag z0)apX?#81X>s87+qjqac3(!JocVb|kf5>?O$$M2xp4sh!tnw~DUA)|KVfVXh%doT; zv3J2QZ=Qksx+}9q9Yl0CA3_Ws=pQg~c3iQ%yr_c!2!MbikfQ!p+^0?!{0C>Z`pgz- zTe`OdOI!je9&f^S!8r`{i`Wbxg03{MA5o)di*lDbn9O%G+4!u+yF>WS zL@rhp6kb691VA7W;KU##1c&khT58f_6IY$h0(~)l*R6y!fy+w#BR*&61t~^sl6kX2 z#QJ7G#=~=Npc?s`&jsVLf!(b-Za%6QGlzm@=D1^!^=|4)F?wg@giRFUwMGF1KmY_H z0bVHdc>^u&dfk^8@Dm3+md@z65bgebrgAg75DO%&*S$o%%fecaA?fb{XX8?NN&+ZFSTNdt9a1T7_5cU8r^p zZi-i@Ape5J>MjT9LSOJ^he;3sfzKr1o-sJGXRx`@wGX~6~i1>|ji zRyS(VZ;mkA8#&c*r4t0jZGC4nI-Mqx58kBtI9%B5zr-T=SZCn_{LpDE&-2p2qG5L}G2xP5^gE}Ybip%A{W z+KIyc&2XV}GI}1A>EA_vz)@Sj*JjIMv+gQ;awvlU2t1I0J zjb;YjPiT_FKpu)b!B}k~&f@k3^1bjee2=7%zNyM@&F0Xac~fCoSPdkChBP^pN;X<0 zsRX7uf7XAV^ZK|9v;dd00Ivqpi2t9y2QX0W3v>LO)iVIY+aeDY?0owvDN=z z`!$apCa1Qh_x|<}|Jh}7CVKvU$Givh{`1wW99=Fmn@nrIA|v_XXl$ygB*{ycQcG*7 zf&VS_Yh+dKN5dp~D1iV7Jd8jL?5QwJ43b(^T3fT`IQMPN_1~{`$=4AwclvX?M~h1g zGQYoW^(BRI*bR=K3p5ScjOx^!G&V=>surK&Hx0?7kP})Bl~!JW#2|muqXq(xB2dNm zy@JMq(-*BEZdzF}ut%3R3@%<8o71|HP@b_Mf9kJg+$u2`6APDqthCx1V|g<#P;06a zHCKnw5A5r`_Vl11F==#@-;CVzF9&@<00cgtz}`Hd>epCYx}sg!GHbgm%y*)AcyV6P zT8y(9E>~!MKi{Z4Y7w}xM_T04%^pEym#V`#UbUSer~-c>D5@(%it8&K_Ubm%0=v)w zAWk3v0?#5)1^C^9g_UVH;yA``3sW8WyNVYl25}~*6?kT+8HlKLaYe4MDxN^B}ID;rND)&U+@1!wCdH;DH2oX8}b=`kfcQCYFm) z@#*pqXtjOF#AavtIJ~KKM4=>fMm_j*hN)!3Wd%Vf!$_IhlHwgpmk^nrXz_1E{(=dq|W zwcR{1Feu}hUe>xZKahWl!4vNnk!72%3t?{~l6U#}<~cyQ98- zzo54y&oAngW`bHZoh{&@g3Wtp2FB!U0F(9>{zNpsV`q#}`WUzZ@1nO%1D!zGs;(20!?2HRRQ#iv+W8!_o z_GZEv1VG@a1SrVYj|(&-KPk%5X>6=LZPEQnzu-=Sed2B-T9#S}q>k~!{IZd{Lp%EO z1^lF6F*uV*WVDhPFs~!W(f+Nm`!3mgi7zt_5CDNE60j)GbGLH)EOdC$Xg9YOpQcRg z;HAlCRVaZw`v%3?i9zcb1G;#tj=o1fzRTV-eEg_?0-R8#p{9s2!OyX z30Rb8=d9d5Z#4U5XIQ=^hSxhK&+ZLD%{21&0xnDp+WP_oYsR;?>%@ynpYG{B{c?Z8 zh&3*jEF&Dn^3|!0Y(;7)fB*<&l}CNYtvIfm-C+G)z#DJTqFiv?Nb|Q zE~nbN$XG-k?N22KXH8B9V^9UG;8t|X3Wb`9-T9=)4ThI5LPG%rK;W?iLK499Z|4J( zQn!4Ki;pE;Ongi!Z*2qwi(YR@4EPxg^DsSz(7NkjT5mZ=;>GCW^dL>G=(bwb#Gp3E zZnd5SA*8i(F=*qRP-yt70Pq4SkG2c=%HjY45O_L)lo(8A0ByBu_2~+p4&3J71ynas zmok>ovmW|00{%`y_1UyGb(Vx&a;Dgc`QJ1M1YG}%iaSv29rknlDX*DY?ay9Yw#KgB z3cU_Cdpc(-MKx(%cep`0{c6eY>n`U%K zlWnCVIWrs~bwCLOK;Xdy+8Y3C(#^HZDLfc;F?9!JT$FxkWw$l|H^q>Y7i>G*nN8V;fBHX4;mktrDN3MWi!vtoT&^`icA|75CDPa5@?0` zCE41l`&`h~%;&*zSEo&P66mu!2OillpwH=rg44aSXkKYzAX$L!U^EA1AKOQvPLs=~ zTQo0J!*Ht~-977t(N13k4m6rK!TN&zY^`1sE9f`L0xmJ#qNMYWn( zZp`+UsV+Yc<=dThwkVG)WTQ}MMx8=uTs>}q?91eMoUl`%ldT5+{_au;4XF$5hKMoA zGm>~$sWQIH%Fa$Lz~qoxi#&E3w{Fo6r}6wFPWH3qt|2R0$LfrnJ>!H52t1oWC*t#V z!Ni_HwZ8NO&xYKZeUDT_PTd>QBckD!@`_=d8OL(&W%CT%7-nd^Um%@y--AuWyg*Hw zja}#9-LAezJGBx6z2{?;_GkF1bUI8c~%fCOGD$O=~hDzA`k$9CleSZ2E*qM>6>L7ns}*cE;oKPdotnn z+&!Ifnfo_2l>R3B@S#4rAp)~V;t30;-8r*|6wgDjlaZWe8hKozE^0?p183m_i!G=T z3|-GyK7VdQ%8lWM`e+0J5O^SgQDV@&nV`=ca#zj{8f#4@dLY^Hlq*7A0omd2C)S5Z zC-65NQFGE%TV9rs9sa=2=IAU|<%JEU+C(WmVX*82b(nf9?lHXFr{@Xrk)wG*ZIp=4 z1Z(FZ=Gw8LIvPO$1fED>lo$|?QFF)(>ZPVy$4KRgY)5mh81)2Zq;3!C!UliqpP#jp z%4*B&68WgF7dgue@=>>ImKdyiaIYS{iz0gkJy!`L|1bVq>FI6A$CQiCV`a3000=yi zz$o$)kU_KDN#O5D6-!N{N-B4U`)UUplsY0I*V;1>^7J4Gx!&nY;tqG|FzD7d*lwX= z_$dP(E#6e<3_TQw2MqYW#77_9e-zu-%I3`|8K~8#&qKh4V?$juf&d6Sl)xbJE0L~3 zNDOB7Z;=>O@2=@(K7{s`K4CSot!9>0;|4)bf47_in9mHlBlkQKxosGHdR{QX*bes` z|J}7=r67^Q$Y9wvB%CD%LrpY-00=ymKpyu;I|R9=)+9M77pA&y;p@JXZBc%mhc%_X zguEIw4n9|QrqegJyM;W|Xih`w=l#yuBXRhpB;GdI?Z_=UX5lyYh(HN~QW~zX+)MCn zr0lCRsxZ8j#GIi*vW3&~w!`T$Luz@Z$v| zPG|#xM-wQb{o;Xqn2qJ%aOcsK!{7%&Q7 zpD5EZ!?7uS4zY!&Jl`2}yu15CCrdt~`iO4G4BFkt^J(|lE2XidD<*%|XWd^ccFtcUw zj?g=OT`8}b);&#eVV&Qvy6NqH({)c8jD_~PId-LB8wR!M+e^aS%})!zR?p96QoyYw zYl+8(aN>iwV z00{hS0x9-~c_zVTiI+)Q3~fE^FJHV;-V)ztzkhU$asB{Wf^8wGO&5rE!J|HoeAjAJ4Ce->WOr+m> zpv9p^5d=U01V#jgk$+OSYMFL-%#)pr%&>coL1KI=LNL-SlSi>FlP$2Lt# z3~sz>FaYg{@qU}D?kQf97Z_!nK>!3mV3WXH>>q0JN2K9msEy7QUM^krO~v;*ao__o z^W;Ca%m<@v9ojnm+A?uWHa&DuJT}_(y@&5`H#|+p)oxP6cM(?Kj?f2zM-v!^{9z-l zdG_IGW6^9T2Jg=d-kO|n#5nTtIJ{}Az~kP`+~%so;vruuCqy9QO}lXW2Mjjeczd7enSsU#tn zT*IiCcRF5^`SHtW(A0MSuPRO_1~lX2_)fKuFrx$lAOHdr1jezy-O3pO9eV#@X2DdQ zA^6(1fP7|HJinG*82X7$PgUTvxqUVt~5{ zbMHWCfdB|30`1U0A*F>?;{8lwpqgpWuz)+k8;Uf6H;k%7T2$&L2Bc;>&2#2?<5%`w zr%bh9xhgT3f*dytxtAuSfB*=9K%2ls3eZ&1U4!XG zju$ZRKNtO8TGr1%5bduK=dHmOon2#3b-#M{vr%A=p znB)b6s2UYF3kSX?G3RQ}1MWST!O(ctNCRZ`H&r&g*l0e{=^k*%K>!3mU`Sv(2WTpW z=MN_rv&@muCzHLfBE!FMymF{9GSMEXm^sZ024U3{x6hmy3=ECD8MO@u9(7!AqoLM2 zo!?{Z2J<+7%!WlC2nPs&00`_L(2V!f!p3?u5_$jPeybP0t}Jf8Zn%1+5hvQr7&ph= z4*IOU5zgz8dy-4G3}mq8-ptkv_q5Y!d%B(5XXu3TICsF>nv8-M5C8!X*hgSG2k0rv zsuZJqy+)ZtzSZb`bbY+|HD&SYHAD4A31IeqNEfpPcW~|vU&{wZ_BYWm+BuE4-`G}9 z9%D=A^7aiUHk!|HkB7hk0w4eay9xB-{giy|P6Dra-cOeqWOA=_Rk`%#s&NK(LkKwK zvAbZac^bHoH#K`7719v?IuFh5&5^v(w> zw4NAb89*5^Cfq$qg%|6SOzk!k0){3AXT-!h0;y!y!(RVmavuGdg_Yi~9INSfvSP=L~OPIVduUNOBl%@x!uoL>$@o^N=`VsqkM;X4z96tq)vu<{vSv2>@#->XPN4AefM$=(9* z@)ge)*cHGT1VG>z0a{Jg5`&mRNPe)s2zqzhy}ib{cF`qoforza0}@X}nW|CqcWM&|TyBF*yZk|iZ`ml|3i00JPe zO@KEHR_`c;T?1S4iaf!@&9if;+0H_zbGS&x@^KDZJZL}?gW2esyS}fs?eEwwYUGB!tf-S! z^Wl1Uk&Qce&zs8HdE?@u83aH81a=Zwd(0rlp>R)OxRUvmP=i78ao91b?Jl+K?>2T) z$CgirWd=E3natwQ^GtJ8k;H(Kg6X`#vb(m?c{A<)catjQ=#~4EqEW_$_7%!hmMX(* zi$)Lt0T5UtAjyDrncODeOu&MWta7e0v7TvSknV|YbTQ|4ocoq{7(2B~-?O7F6pK0! zdJHD8FeqQWjlbKJS+h|y;g7AzY~4SH^e&ILvJ{BZIS#`Z;|u~I00L(a_$A**h?W|u zL3olNZ}E#6w^%(Ef}pIM9-Y&ePS`HW2vL8c&^F_w6E-eXagOB0@=1uib*7f3Y(YQkiunrVy;#8zkE^~LB#Q6NtW$!4{MyMF~bQ{5aT zSCH-h$$J24#N5VDt;u`QO)kw}udS;)ts_OZC*h2v2m&Ag0{aQ!0T4KefJSsNrlEfDTHI8i$js}TzR)Z63^kK(EPply zv9O_gaP)wJvOzAxK)0CkK(o=L8wL8sgz)u*hL(x)p-lRqbIg5(1WlX; z=e^x?^EqwQKmY_lU@w8NO7m)^3zj4X6y$jo(-)J-Swz*+u3eM3sihw@{T_61y6m0o zTvpnP>x_QgC;HX+Wpg&e*&Iwbai;4h-${^HE&7Yuu#k<^+}>IFdP8G?+lz7nQakV6 z-Y^ak2!H?x94DYltKF*B*w3#lmoxuZ3)khf;iDSE<1s5_90D%(-gpGob z8SqKc09m{=7YMH`=Vu7`e;mnYqxneB{6A@_oHvvGxd!v%Rp+jo=0I2BtOgrsK3Ho; zK%eh9Kj8n!m2m1im4?w$Uo&gzBpW0S1~cuOS4sv{KgZ*SVTeEg1VG>v0%4Vsj6j0D zOh6jKi#2g|`WWfjhn{I;=P8~7Zh zsIQlJeA}Qb$w%FuTdUjOE@?hIkbBLw(Lad!In;I`0Ra#Ifs+ViOOdQu68^PhjVUn* zxq~${&u->4FMKC~ z(}Vuu+?QfsGi$NLKupsc>$|iQ>shxqSIDWR2hmwA@IMq$?Wi|xRKmh2svrOYAaEvu zu;xfMAo+kM2K>qifF=c&8iepKdc|VJx+3D&pcm_fE>|U@JS;KbX*W(CJQ`Rh0v$7-uQ7}vl%Fp>zW9bNS0FR(5Pa1rQT92i7I{bSgk^B*b-F|tSD1!h9 zfWX-VLKF`P04D<>9gt#{7)ZDeIYMJi(0{kO^2qz?OY#Fc>Kj87P%aYI`#)VB05gC_UIw@1qP1lB?ko zPdNYet9&=uCR;Fy69|9+2%JxVmOx&y_=j|5<VJ3Kz%1I4&&j5yI!Uckx=dBLfB20B^i`9;M5b<29`PXAh< z1q46<1kNKMYZC>1wkUzd5`f-WQitA(rWSgwwLHw@Xn?B?Z%WQ1xL|41D^tj9n$Vy5 zdina!GLI9x^5=Sv%Guzf3hByz!Hyk)IA~Q6FJ^Bfh+_K$j+6sCe1pRZCvD&^@{fnyh@?)~X>)sFGhUxPauQ$(2bZ zWBmA;i{8OVO5|3oHgstqm2!xm&k4-GkQzur(XhTxM4p)asq?;3q*u@W0h8^nmI@GU zP7cDjn;D2*9X8tY6><;&0T4Ks0IxU_|H&*BxEw|6d4aBaY+&-x$xJGrsdg^KIctml zi_s7d%B~^KYzCIHUsdNpbmDCbI+in(!pwGcI3a7?HZ!eZCgrTXBv+U= zu#6-d5fu;s0T5Uq;3Gf9eM<~1@c8CbX2s6YZD{MOr|q^&r3;8oRF$3g`FYXEq%7ml zcUseA<41#z?iz$~4{jao$_rNa420;!%Noj&c0QPDvTXXFOKt!)5C8!XxR8M60vzbA zq-WbK;7p-921_964qB@womnNmUT`7Ok!j8hmT$m(KaTtwoN>e9lM?wnuAe%%N%Z+>p%~j#^|bmR%tmB>mHAE4zMN%=)4N0w4ea zR}+wUFHv4g{3^E*e4-#t=|$Ep(QBs%Y27PUxT$rJjxY@?$sss2g=aPR7!qGSf#&+aRz zo?5aMaIj+QVrhymJnv$4L8s&Q3U>;`jU}iv1DVU}8bDzYzt)fTY^g@f;T<%b~ zf+`4r00>-7AVqv$v0N<`N2SzB7Cf)2O)8ex#>=}BgR7}7*gqIb8&Eez3*IfO9-GcJ ziNW$D>JFPsrxg5N+IEN93rIi!1VG>w1Y9VmrOMSNi>Z_LHWTsyA}@r)#ZYIsy+)2S z8oRb5b!mGA+1W8Ro!wI4fwpv9`>bF4^o~7%cu8WgZz6dw$L~OK_-~=Kn>&CS2!H?x zyo`X4|9cVxe#Sum3r`z_%pfjv+#H@ph_YDFX~ycFf|ywC_%ggx10B4dKx53$f6Ac) zO7otyG;f<2ED&zZYlrN>H9%Jo009s7LJ{>S+*))hd2dq)9k7qo4 zD69@O=1;q_-^=#9Y`?v{XWQG0r1{XOfdB}Az)K16YAOL-5`*x< z0e$vR-PD7ZO6kk5Y+BCk1ypC+UeMb;Dyf(tsX-HkiBHg`f0y&IhxRHg4Z*8s+8BC9 zWZA?4H(SFTFqe028NW)FkBk}!fB*=*nt;UREDcCeJ`*=9UYFKMNd}yvES)TD9S1iI z)Fk2J0=+tLthXUWpm$j2_Cgdxs&d8?< zdHZ550h;NUv~N?IaeG}S+e&%ST-nQge@*Ee2P36(%!!rL-lx&IW+7~&o#;4BfdB}A zzzza2GdLkJAQSXlL75pyJv7;Rc*>mwGnSq*p!p|ZzqA9>^&6J|?yk(B zVQYsd(%R9t+a(&kvd|qJ4IlslAn;-Wyw-&s1I`kLTLZ(!PTy$JEvjLPPI9Q|h|Sn> z>US#6xW1Sl#`k%hw@q!{#i)6HVsP^8qo-FDa2w&|D+Y5Q00PGd z@b>@C#9%ueaH)YUs{>Eu}H&)7LxE#kj!?EIg@I)Gno=2v1V8`;-c4Zdy@V9>H%oNef!EZN@`B#45zH*x z?}j}Zf8P`RZq_5?FKTn%EENy9=f^ovZ98> z;P~p=!8K#J)AbhO8UOn_pFM@W-g_Q$BtmltBOlK;R7o zX#MI3{yi} zai-9+a6_5*xm~`U(``3brCZZV_O>+7YEL7cQ98>j*Z~0$0D+SUG&6%;SwPi^SI;0c zrw=|}K>Nj`Eo1u7Xe%}iXvNOiT)O|cGl3|+-3+2<2MdFVWtIner#5AS9;~$f-JR+z zjDY|MfWU47jTK6s6s+R>sz6pw?PSg!TuiyUnQEM+QHIdQ@n{VLcNKlsL^M5{`;O&! zX4aani%IfxYQMIWk9w?jt*5XK0w4eahX^z>gYaO0ecoS930R+(&CoA;cWf!u-nJ1C zjcP&m5>nbA`NPI=g@rp;2Q#^$+xlw~6TiqbnATF$s~9XfHB^3;#~23$KmY`G5y-x@ zs96GsbXwR#VBd9;b&-1}pN322WMjHRknB<^-J%dN8>7P5W@g~#mF`UL=(lbebX`8b z;bjoca{XlvV;~R!0T9?nAO-JO+La5WPPTwXd*oP(-PXGEtcJ3wQud+7zCuvq`bJ(r z9WooYu5?h{)905b1~0pkoy)K$zUM`QS0DfaAdnHT_-$uuJYl;Fx>#%YWK0w4eadk9EI;L?Jb#Grqp z!In?A2GV9il!ii*Sj*&@EVbq+LNl?wTcDaPLpPP#)YAE;jOq`6&kGj|jFZ~EJiFZzDM3mBw%?I`8{z+T`j zh5!K&0D&U}inM?q6`V*7beABlk&+rnH7$Zv<-Gxp{r={G$d(d)0++6N-!0Y9)&;bNM00iDiAjR?Mg>D9fU4YIh>gamOTA`H8Xz~zRicG-N zmzLXTx+*v`vv(3gm&z0b2MMHWQC#!XuvQvxI~??Oy8D{XPJ4O;D1rb8fWRFHRNDpY zR3{hch;<3HKp*oA7N;ImPD>>fT`kEsOX1;x3S8cinsdRpR#}7K7y-l0SKrFlosapt z(0lI`7KVT-2!H?xyq`cbFIY?r;`+~FppzF!h=@@_14gVauec?*!T{ZhFC^n?X%6*+ z1oRVrd|!;|A8bA7>O%Kjj>dlv3j;wF1V8`;?ni)^^!_0m0rKK?!m??Tp=#EupB?QJ zq@8!IwJG_~!OY0oK7sY(vpJ3PNdyEgUw=>elJZFo&zM>Ff5s|wKmY_l;1dY=h~6sa zG2b+3-Ao^kxKbRluBJ$lO6v=59?7l0{PN-2UP0{o376%Ad<<9L@LqR*DU-!%ywo=g z1_B@e0_PA&fjqNUMD(&s>tiVjb+aNtztoXs)u#i#+*)%7?KTjdt!G1IO%rF=8^sd{ z=sRQr{DO-6>Z5H%oZ#t#i3ML-b-^-JK>!3m;3fo$a2~xXLwa7PC65JFauBj+zwJJC9VYvXExk-iX*Wa?n(hGMBDsC`K8gfy*ztFbXm3k{E zA0yC(d}hNj7ngg_y1r}}9Y6pCK;U)+EOJN3G+BrXp|!Wqu@@JlPg^gh0HMHIoEgMn zngzAaO{C1HY`D6jnFK5DIBIi{>?E**{&JU{uI=nL@7~S<&3IO8G)6$p?G=bngOrfB4iA#^{{bm^0YX+Pr6x zhC``IpbK`r!RM3GyE)*+!b!I;_5$WX00cnbVgeGJo7q7Ywz)#BZsmTd~^MZiy0ZL#|Vbmk@#iW*fcJJ4m<9CC}W ziMG$KQ&E(@g{)cK9t0W{Opl~Vb&rsY=H2`#FDmB_bZRg11;c;<2!O!r2n?ft$Bno~ zrYxXQ3ORs8f9a9(0&U{DPYmK{yl)W3h_dZM^r|XI-%8pNY>xsBCcy0C?+(PTQ?PAHxXJF zZWSeM4$Ex#9szxNM%7XY7RP*~I$zj$cmh#)s8C-_KgR3ITa$R5Cm0C? zKmY_@O2ESO#Gw2EpO0{3Kr4e+$qQ(C)j(1y^1|z4j3x&0`-#hWfo(Hvt>;_q6Cj?h z;;veLnYP%@v@2Y%`6k@ng+}>JUSU`e009tq1%VW@`=gPL^!K7Z*mF4f&d7B zz-a`^yP=I|3tV)shvkLQDM*m_^+B081vDcNC1*yAW=pRAe1Z(Mm=}=CnWdwZ8UZ93 z0T0+Wc=?`k^Ew8hALj+-f%`8Q9YcTs2!Oz~1oA{6uep&!e0LHq@~s0G&j(3Br-^#& ze?@z-^71ADY3g8w4}+?GWG$?nSEaEtV*_6v(?l1^9e&zQd|J_606)~#<*xr%4-ESt z00JQJ0s=l4@a65HIRxl^fFi6fRK)_nWJj^?iYt;qu-3L?szFAgYGLrgY8>*Rg*-2C zmw`qYl0zJ*`9pjb(bp@y#0Dc=(j%_B8fK_n zZY8kd28tAkq^oL2b1x}uc=*$sOU7=#Wz$04{j^n0z)ALJ5gmDl60T6g4 zfsh%*1Yu%qc{GrMxJB~ygdk)9W{9h_+6Fsu-IX99Lb{be$IvxO3aDdH5pz0w8b+0bbU&qOKoUgKiAt z61Y!zq1D!`@WPuS4CNnOomqW34rwgX?&Nm4h`*xlX+5r-E}Wuv0QR%zoUrcA`&Rkk z2D`ABk2%g)FLVQ@K>!3m;4%V|7))D_i?N0AW9OI+I5T14wG4z+C^gvjF!YmeG)kGf zP@<48%N6I}zrMd;vNdsq z^RNj5AOHfJ1VX&;=~-H!k0Jd2?VlhEALfsrDEfy4Ky2~)Zy`JwA14N;EP+F2;u8ZG zPBKL&zp&T?`-9~b%{14lX+~h(Gu{4%K~S?^=bvc+BnIbWg+&kmftwHrai79(+aZ&4 zd?t+|u!g98_#{htW_PQ`fFZoo2eP7(u+ z`vY#Gpms8?U^<%2L-XF_?R%)O9|uNbb_c*?IP02?Rg@ z1a3qieGaFvT>9li9JH(b0$Lwge)u3OY$_U)Fu_$@e5HMRA(npGBv?WMX^@vUaN-E&o(fIBJjUsi+r1F>eR1)JxYYMUP>O$t-&#kl>r}?g8PCZ?Q$40DS zY|ymMJM*K5aq#oZ!V(C800`WUK#>?wxK1ugTlU~#SdGt145FowA@B#n;J|PBW6LfS zB*$V&!cnYo!ArDniXiRamD;ZK0g_)5ZQ zC}9W$K;ZTSd}csly7ITV{>FHIT7ie*2oN1`<5oT;0c)iiKQxgGxXoF5OVRoFGmAvE z2;Pyin{brP6}EczuPeU?;@ilXIa2(MuPPqFhrS>H0v|>oB?GOzpuOUsmJdWj94%xl zc_D;yV}W-KeBhrzOZ^M25Qy~og}JD7u2$jCkE;%7xw#IsT1}fhdkG&WhiB&nU-&+P zyB;Wl00{hi0wFVKr3KxOWig;1Daca>!2rbuTF>2M1`;fI{Nsx}?R2+7&x>V0_l-0F z=_fr?HXC%N z_tlL7xdRYW1YPpOU4h+8vIQIYBMP(u5q2a@{QC3Hd*_51jZnHtkJRcm*Rh=fw54K* z69X=g4L*BQD1!h9fB*k!HqF0Ra#I0T5UtVC$=%xo<8BwN{+($<%>Ht85I2+{WN6MA8CE z7uNg^+98eM8f60E!{SYH0-fZpY5jyw{L6vUM>gSBFS)>t2LFDII+-<8KmY_l00ia< z)C(-LOJxZ%3CBU_)9Ihr8Rkb zD1!h9fB*iK4Ir;sMJz`mnys6(2Am@F7eh^=gJhXX{}b>5WLNJLMD>_ zmlvfa^s?~Jonx7Ykcr3(X>#juUgpEA&f?G~y+klAr(>fO3XQyRqt?HTMOHWZhQaM! zCGUnHD_rVVJGp4T16n`;1VG?J2{e~fS~;^|PD(tzrfw9b9;};c^CkHx&+5@;7?=&p zp$+3T+B&n9)GvH%QEn-?-#;V;)4$8veEyVkn=9$J~NlG4_Uv<&HW9n8&KmY_l z;3p9X%cMkYEjI$Vte$B>?UYhS0+cG#B~A_KAbtKnhjt&?-J-t1KiKFm`OdDU5uFLW zQM@t5J2gj2O{ZdODmc9)+*=}Jvt3Kg(ABxqD`uHwPYH4m009vAAq2vzs?l2lvKHMd zsn7=|`?x+>hFzaMMH-!ll9WJSePY1RAM)56+|>vt6y7P{Qox(3JVFYqGb8z zc6aG@L=Zd6c`jJKNr=F|5dkA&+?SWU*UDh9dB-iLWr|aS&jr>_{j&%12m#oiP`y;r zXz6MDa*0*Hy3pQ#=XkK~|JNAf#a}lR9%W6gMfX%V`;BSY%P1gQ=^;v{b|#{D@q2^` zE>sZ#BJl4;;DEC2tufw4({rcH2DxlrU3(@>9 zT>lBb?HsmUt39&Gw>RD1pT3UzS0AOqWh{`2S>4I#hjT#(3b#an2>ivp~S^G8x$ySYdFOA7OVwyE$}*xy%x`

@07=_mSYxBDLPH#4P9DG~u9Km`6H2n6YFR(o3&JWk$U zH+fD?`gMZT(gy~30Duch`IX7WUm-k6@Jl@xvjKwrc|o{m>Z-b5DE-5JFD3*_=Si1g zudiL>aK5?q$lyG!dzSVo5CI}U1pYe+7?*DE^-c2Rjdh#q$e0HM%muo)$v_)uUmTdHU1<9_kXVnyFBf?|$n~8nh?=)w@74*3xV!bS>JC2Lrr>@xnGGo^JG6f%J!@ zwM|MyfCvzQ{|*9|R9!!1pFJ`#8ox|?;o#pS`11nf)L(eFpS?D2$1-(5oS4jtJATQ9 zTrT=vmtS|Ao%uKFM&L@9ZnE$0i}vHep#Iy6@$`S};Xo5VQjq=}!t^&%ZJZJjAOb|- z--^HmL95x{SbugfaKNoUeB4*omv!+<_(7EN^FsqWfldtaRQh_uyc0 z=HI1GKqj&Dm~`ni%-Z|%A4~&y#pF`?ehQ7KbAfD2#}tSF5g-EpNd%lvw~N2qwjZw7 zZ^7GK*G736GO_#582A?oiyt7sOQ)IfEC7NkFb3H3fb@U>-%X?|4+iB&8)44_L-PMi zBF^*6uLUxt>ufJdf&UXimtZCG|5E{f>%jSyo&TiJ)Eh-2Km>@ue-VLeqAo=GLxVvx z706414wdY&u0PI&8zuw$lLnb1bQrML7wR|@Y9+V$4PaH0;TMR}+b><02-SYGOV$3* z$Af`BGRQQa3$?O(ZCy8$XX=?E5g-CY;9raY`1JC!ch`nP+c(^HcbV_Xp~JhncLv#( zH*#^(A02?R4F;GH%H=wVfXW901Q(CV(2;C^UmVZ=i!@7ka*xTWQE!<#1+7FRTiJTO z)WUzOX(abWnFtU8BJkftppx!J(sx(Er+=4S?Ki1TOwB9d%wGn8#)#($rtq;qA1ye= z=ea;SjX)9qPrhM@g!K&JfK|UqI6rVr@`(g|HyG#sewn;Jb=zq1%W9?SVtFD+HiX^y z@k7ialX)b!MVSZ?0V41pMc{;}?SuE}Hwp5Vdz5tNq%Vdz==TVlS4Lcf@bw7*o)d_G z|Je^HssO&g%uvSyW#5z%9)8WWVf}$s8(7v!?fous+42A4Zy9K=a7{{AtvnMN^ z{x*q7lj5XzgxiE5Tg??K#)9B-Gvn`3Zg0XgrBsmI(un7Qo_2II^sHgQH!7va?iR)G7@RJd9-&nH$v+U zziC-FyX?0;$2Nfudevj3a<%Edm|(BY!lS0BPX}CApH%!NSlJ5^AOb|-?;)^d=P=?u z^wwa2&+hMCm=XMPpro64uNRGeiJ(2|Lj(V@1Bt*>gBDtNjT*~U^l&ki-i^z%CK+#v zQDX>0dN&TXq=@)mvZl@^;!%@}xU9ATZ~2{qJS9M-95I(MH4KjwisGnSIuQXPKm`8% z2n6G9SG>;(6#jM_@6*1`3$oaLo9~uU*nJob%3PqlA00$md(}!SLAW@9cGthEayUs5 zTFn+`wbY1w;fe~jwh5)eOx-%kuFdh6ciP?RLweBlMUTS?U4gKbt=C(LUYqxLE`Slh z)-ntvmu`Z*=$d9CKm>@uzZZcZ)9otnpFkkJjV{DGGi>ucH~I@938VwL<6(mKg61@B zc}CzqqW2(iFjwE};@0qit{y_&-@E0yJ(|h3FPI$vx_I3wJTBVYC5h0T5Ath~;ah?f zWn)2A=roh(gQ&!n2oM1x@SjIO$@JR#)J;J=o`NUpcEwrK=$)fM}!VQ=a^fE6M zjR_(QJBxA`*{aIbsG@U?Rnt@VOsdv$sK-geuiB5fY$9j-EZhHUoN z9WR}#{|A3l((36&`hy24NAf;zk)A|=2oQmPI|5Fo7mG4ydP_YJFETzb*Ox+qWfMQh zfM(pLSxts09?7T?`ar>c3c+WJh}AHe6heJ)#(OS8VBV%JDSA*O+bA|!{@!M6ENjr0 z@9(#m6J^;lB~2*;%kGguiV@LAf|v{}E$>8t2oM1x00fjuFK^4iVDriPGU-i+`g%!G zq4pGB7#F(mGdl=DHAT=fLj_GcIGA=f8F&~%A6=+WF3q4jZSh9JlHzX)`+m_`_4uUE znk6L5hFyG<sOHP)0yWp$_gn9#h-=kVmJ{X0z}~7hCrdvt$?>vIr;dm zI@Rb0bFpkwo)~L}1p62WqiCy7bwL->w?D z`q*8`bSBBWDu{P@bDb(cz4}0Ymg!Wd-yVmvy;8#Fp=ehzLxBaJ)rb*573jb83Mv<^ z9SH&Tvet`d6)ajDjq(%>xk*RWXDSuYYLQlwD5QOQwaHF)QR&3@$|rISs{{_Z3&mBf z!S4B7pLXM4V>B(TlfjUc3L-!Rh`@gwfl8tmlF{fD4aOU=eT=?Hxij0#BI(RYw;R`QB&IS|gI3tTjrc zlYmQ~CS%rM~fQl3kdj5UQc%dLn3Z;6-XRy7TeG89!)Wzv`HLT$J9` zq=%{}^KTI9$0hP0+Y z{K9muK5oJsQ(`NRxnSByofmGFpgR#D0z}|HfWU-F*D87I1tjSm_)1*o+FL-h{%;~n z!Q~GZG)d4}qp*z+2E}46%NG8_1*<+*zyy&7131EjslhTNTD4R<8@R1qhANgU<#Cd3 z!;W^d+@o%iDt?N8biSjRB!&tp7N&Fcoj&@4P3*E{=GFVxB@^g>1Iy06%jE#npecNi&$i=Yg6gC9h>5&FiR7 zGPN;hyA-|>7m4Jb512Q$$}`n3lEZgldaCw6L}209y=0HJWJ;8sC=&r9Km>?@BCz7n zxgHETf5*>^o8O1$c@DLbsJu+qAM1Tkof&V-L z*L<5ij7OFKdJ?of9>RB)6nupHw|9rx{m)Wa7%Ss&) zAOb|-zlFe*JXcCUGo?RQ%96f=x3}q4t|NVVEsp#Tob>U5Jwr&@i|8ka!Jz1aTZZ!? zm7szL2LmsSij+^qb}qQjrG373gDudm{KIKb0tq%Zo4A8FZB> zP%DYl??rPL;3i+Yv37TN{ptKR=;m&fUDK?LU(h#g*ZlGObwIW8=Y|Ln0U|&I5(4Mc z3Qlu2tfW}qgGCyx(41FjJX4SOH2(gjAMtAyIi7T@{H|Y!3=f)dR6P#_INEV7B9Kwr z#Vyr@XWhDV5#E}I=%Q%-7Q0WM87$J;sg}ks7|O9juo^KLbQQyiD-j?9M1Tkk2%Hlx zLd9E`?tM0IjV_Htp+7IsdDd1>|007f!FG$oSaTpTJAed$?e*INRQI1jh!LSVC61{x zf#0+7K=#AI)5W?Rgjbgu)=JeQr1Zo1p~9+v2~Zn*W4B293kHLDP4ih@zHvUf5&MW%mjdk%mwst^zQ^)b|2li0)jx_hyX`zyDZGGP| z_C2pL`cXp!hyW2F0u2H)Iv#ZP9t*}a(ihg8zwItqa!7cl@J7#^?|Q}a0>ljuBxC|8 z-!$OJ=mfI^Wc*;FDheu+0eZv6v^VaOEPY@{t(5&BPrRI0uH9e|VY=q2qA~0@o06V( z>Y5oi!N;!}Hz72$^lfcRG^FhGEx`W@@db(H;D)NmCIdT)027`#mYZ^|ndMj_L-5YLpiOy`3 zJ|}?_FRF+D5g-CYphcje!}X?plLg)TjL;g|T~u19{Y4fd{nAjK3q++h9SU%($HH+f z0!w@N<6WfFRibQv94a`t{gZ=9?R4K1?ohGFP91VnNlfOyu?-6={llM#v zpl3GK<)0A@=YAE(UUjiA0kgV@o$0@$n|9ikDnF+=^`(*s5CI}U1RQ}vY*#|O%Yyah zZ}~kR;-j^2X+V8d;5XU9@}-|7iY^TRFch~&uVD3f1cKAGoet&zPXkry7_S|wC0>qk z#h*_YwHr+t3}zDm;%e1zOVcjQ zG^kwP+NQfYM$8H$WTyX$ZrWd0e(pmp5g-CYfC#h*jKp`T5k445P~Pn|Z#L*)VA*Uo zcu3Kg4ZZ15dMv`2T@I^C{QROxP<%{y0$}3hyXgS`RgAtw>zfV+mF?G#W|3;)GAj(* zO#c;KG}5k3sn*0D5g-CYfCwxQ7-{cPBM$(a1@VJ;L5QATwvwO}lecEiC#oV}miSc; zae~^EA4HF&MS~0r-k7@@8b*F zt~cN2LURvli2xBG0z{xkpt9Ym1R}6^eCL0C`<1*xh<$ePi?rqtyMMx3T2IZI4tG0j z99d=|_0sPdoR4H$$jo#mCj`#|%*$Sii-?qaE_(dj*lX2!L;di-Xy`q2-<NkVx-T1Q~+zKt}p-KsJ!^E?j2?wLs%nQ#h3W+*MAdCr-zbqsnoC!t*Po zyTz&&cTqPdpUa+LZfvy|wd@a3UO2sHZhI@cQow&-76Sz$Km>>Y5m+JcgqnRakd!_W z;4ctf@mLh-8wmaHUCT@}v^YE*!TIrZ0*I)L2JvGDu@;uv2tW}?>3!qZnEv=Y)+onK z{|Zd@rFZLM;t{GbeXoIMulw3Q+Ui#?*sHlG0z`la5P>BE1L++olr``~0CPc5h`a?) z7_esRzhwYW*q!aEPpQ6lFCYu1QEX|Xfd~)*B0vO21i)!`uXwLD0#qtgvE-S4*3Nu@ zq2eo7d%&-h(Cs;x*yr?*HI?OconXZ%>2FrhzY-gmCUR(l$> zUsB}8S{V;>co6|2Km>@uIRekPQ-%Ry_Wn)&B3E*k{w|y!nTKOP$}$G^gU+%}84P?- z5}eYhvBSRAH4e8o_BRxup{vlL>6v2I+RQI>o1)@Uth2Pm_=XVua3umnfCvzQPZ1bd z@I;f}%gdYoL7>M;(+AG?T;@RB%W>>2{g--jewQ&SX^Ma+pz$^SP-CdW?SmD6C6Qcc z;4(|;cqh!WY$E0XeM>JMc~)@KA5BDn2oM1xa1ViFF6p z)X$Ulj|oyH^dAL7ZHMx~Kp-)_95~?7vkO=-IAX6Y+RR0^X!v4XWm$$T0^q+ey{=yN zMgtKb0z`la+(saH?e=Q#?jEL_vlRAO^33|EvTz0(|R z^^evad7e7$VK~il$FF{o5K-eZkP#f?LycJdsDZHNed5Ho35vml#xkc+-i2xBG0z}{q1cKRqa2-kXqv97Re3W|`97X32&B&A|1Ytst zP^l%xyCZ@Bd;u2!XA#?c-7Z?*uU*h$dodYki4@u zDFSn5`=%D3ZePrQeb5(+l~kpw{rv?+?}B{pS4r+M3D_P_1n@t-n(q_}c_u>Li#{0O z^Sg-XXzO2E-U{0kbK_813ru~Z^!>w5(}^-NawP&pfCvzQmk{VF?fZLwGk>Sh0SfOF z>aygzok_M}u|bO=0doON`m4+Z7NJpyJiX#$yAB9C8EhkS%S-uo6DWynHPCX;TFF&s z_6IsXFvy@%CIUo&2)u#7z+YciIFr2c*x&?#uN){osxBWG*kB-ME#-YMh@rq9C4|E% zCzfGC0`xnCKmOd{rNQ8|kJb+_LreztlC<{NrI#z*!*p|vha)K?MIt~1hyW3I1%bj_ zKPZ3%wE2%~o^ym=@v-hVYoKDa#*B1~M1;WB^2` zAw_utR&l;3XljI5ja6{&VC8eB_oL>7l!*WlAOb|-6$FCGes;yXKidDa>JbD(krxUF zeGR!y5p#i?!`oMz5MaYo1f2+)p`mkcwmx3yG~nMQ*a9dT&tY=_)(~^5XmYQElH1^P z3;`nTs3{#qB0vO)01jP=vx~jee?Au+{^(hAI7P0}JlZJJPa?DMqt8i-&Yx{{-Xzj9Y{uE>S6Oi z$7(SVh(}ne6q@tZU(Wp34$Xt}>pqj`QRiCEnU00nsFaU*@ukOgNhFBGT!{b?AOb|- zO$2rX_e~q#*FVpHh(s!6pEHx<8=?{$60aGqHSK-ZSzs{?n!k>46|jZNg4(`Ti5B{t z-(9jwmX^e>&kH!49qx{!wSU3Sldi9tr-VmN5`TQm#aR2oM1x@Dc(ali#tyh|-bM?{gN` zQ{h1Mc-K+^APari^Pb9si=2LtrJm~gx~F^j+nhKT45(5;1c(3;cn5(G8Sr7a^!_li z4Lii35>5$d^Q?9fxH9$nFK5* zg8_fSpo5fKB0vO)z*`9P{PrVzY5tu$hbRc|NX7Q)^GO5BS0|444MBL`q`8kK13-DN zUcu~M*hBA9Z6-X-8UL8%EG2bBfCvx)BJd#sL1sU=qT}@W`jg6shnJB+K4In$nI}an zZC!a6Pjf8WL!o_ua2Vunish}4!0cAgW9O(gT_0!V7YS25sU!kKfC#*Sz!m4cZ$AaG>4vtpA+2Y#JKEg*%%5}0sq*$f4$KZ*UvPk$Bc%L|qfq3m#JJD9h5#4t|tF{yhcrJ}Y^c zbLlpHNluj4?VV(y4-p^&M1Tl9LLgZ1$5!c5Ne+zoPSMr5Kh3^mycZ4H<5|8HUE1-_ za>NfAta6=ZIq+M(Do6T@{6{(HL997M+Arf5g-Bw2pqEH3vSkoCc@kP zYYz;Nu^#k=MlHpypXpN`lejIPO^nj_ji6I?ErS{@buy!5k_ zj3NR=fCvzQBLrR}(yK($P2xcJe(B4Em<+CZxMM#X3^IX9_IuoV>v_R8HD2niLo(`b zi?siOs3ktTZMym_F{6n95g-CYV2{8ZuKdV%HW$48QwAS3*aiz~8*ZAK?u`XD%t*|= zuxVxc(Se1jSL63XuX}gD{~dQ`-E?%8fL=s^2oM1x@C<>L4!^gP?$Ud`*AdMt731iy zB(o%KzoqphizDh5$74{!Gn8A88UCzF0D;ovg>b|5BGb%_PTsg?xlQ**cIF@gM1Tko zffWKTa_Ke|cu=l*yZ4O}qspJ%{B)ZnR(|8qnIvQMx?6Feh}`)Nwt`2+Wbm0P3WSXn z0O-$cG}_7Lk9|cyvAm=5SK@_b)z1s5nSuxq0U|&I)(8ZveS38xlrnh3_iFgK{7zvz z;5rxVYwKW9_Z2f`eMDy6iR}HT>zwMBS*DW&@)?xNI5*Uv-MjL9Vn-kETuW5mNzW`q zfCvx)BCtRpnC)zpByjZQEXKSvP#%OUt@%yf`|qUK`)+&E!|&shRlRY$q(%w4^qD#U zjxPOis+nVSd(ck&xrBq`O|CGt# ztlBzLZ%MelAWpmET<`+2OhE*Q01?St{I-oX8*g^p z0M@c!^S2&N2)gw?-eD$~65%|<;A;o;zUMJT>px|nFGx|oA~d*tyqV&`!Qf+DnSclo z0U~gLK*OIGo1E&xwVF%NTR%=vQzxlZfsphrs(Dn;HBGMWBe*0lpX(+1IiJ>0&4R4{ z>m+Aixfu+a;boG|&o{ArqH0llV>j!jJneX+0CNxlB0vO)zyyIgH_o*=JUm1f;%u!U zV*TPH1JtqaID{j|MzoDlJ=N5fP0IY_Hn6(>S;K6*CnJS@b5L>7Z&yygPH4)tgTa0> z@KecygEz0PgC4{u`)PYm5;2Ad5CI}U1a2TO<;I1wNvl4lS-3+D2Q`0jDCo+MbHQbo zIfFT;d*!D}e)=~GDYsYaJ*fukU{K*XO;Zy{gtlv7tGG_0AGz1&rR{{wMOT;Y7Nrr`Ru zfPL9=5n0SNPM%)We)Iq-eerjpdiIu2_FDDb+x!gg)?hXwKm>>Y5f~5{sd23tf{S7o zQwePC^`2!i7u-r-j#Pyp%&Ji-)KAyICDz055Nf#+Xb%kB;9ZWin%b{9-jUMCl&X9x zPJ8<_DdUL%5g-CY-~xd=thq_GOar1Wl-K_J;a8p^d|@z%pFix5Kjp1+r6AThyQWun zUU}=T+F0mImpM*jW@qI;ztS_(g z-d--kbVPs%5CJ04BXGo);nWA$eRvG3Jm$u8g63U*aC%2!-IQF7>4^qmLm1??@q&IsSkQ__nOCdSGATG;%WSBShQA!3A0U|&Ih`<2?g-1_>b-rbE zHyG%Muyp>=pzV2%EZ<2xIigckYnk)bq1GCz&fZ{EoJ;;CK@-q+I_?_h&o^U%7c`5u zUdYT8M1Tko0V1$P;6u{%+`BCLLk4iL_xhdd$F}m6;GnO0u?bktQLSY`TxV)4U48XS zgaD|jPbBNA^K4t~cb)U6+dlm(`*~CRdkRjsxi%p>r5L>!5h<(ev@z(+Ia<0c53@m3QfOh(>s5-Pnlm7 zS53WGf~klA5g-CYV2VJn)MlN=CFLd*Cj5*+j08FvT=;)t)~-;~uiLpIFs;T>C8b&X z@yCk4cKXtj|44z2O1p@Kt^8|9qdm3Xi~sxX-+0)ke`i0Q$TaU{XBHwr1c(3;*dS17 zYAtM{)wGU;MSu7Z1A%@rPLn|r_ZjY4E+J z*N2#Cc7OM;LY`H4LDwHA_AjJn3L-!RhyW4TBanD%CGHc5brq<3nA0P3=X1aD1OJFl8B9qDC@Ju)bniZD$xD80u)Z;Et+M*P1w9~d;5 zU)(ItJ_^rHW-w*dM8HgcTsCwQ+wiObBcRS>>E{+ z+Be=fc4*nR&z7e2hq?Uc2-c0v4kNnHPSBQHl=xiTmPxzMQ!@h*AOb{y2wWi0kkx8) zk;Axn5v+f~5k4xH_jh%a-6CMG?pqnW#Q{3?8;n~;pBj5_8tF>^5b9|f^?ZY>{c-1> z=UO}9&VP2C?i9Q51KYg9=h}7Y&vP>a5g-CYfCyY5u%*hz=!u}~b2fh6X8e$<4)2Tw z(nv0sTFmN0xj$9vTurxzfq~rGCemo}EG;@3YP5>+JeMJDg6&RzR$*4)4c)Tt8_Ai2 z2oM1xKm_&(w0w28>oabnoL-gw?6!5^8vDY!kBBhF{`MLP>gt>w3jN%_WUalS?I!!) z9Sr{9#|P2Ubzn4J)?D{Px%`=klKd@U-Pl_dn1=`u0U|&I)(EtOb+Q|C?V{`>y}#Fk zS@luDYtIYNjF;EGcCB35#)J81au{#|NpSBw1V6UNdVNh}mTPKH8A8-QRuC}c zg|AM9G2J#&2ZJC&(4#S=N-l2Wt8pw`G~(p4yN9JlA4w5bR`3)y##hgIT;fXuz(BV6 zpInyt_Pz9U5m`>6!vDVdw;Q#&U)kL{%_|j|ga{A;B0vN>1PWgr3z0wqRNM#p69c^C z3kkwE_|W4LWnN{9%EKCC0Ss9-$9>vt9TH2|n)8CN4$QfXP6L<;Y%X{(9N?S>Md6aq z56VX3AgI_=cK&VT%&73s3{zc2Zfbt4ta)FNF8g?Y6nUj@CLsbufC&7{ z5NH_dd{g=UBBna_Z~O?<#|3)BW}WI4(AVk1GL-p0`@r3|zS-kU;}r#bg@Zb#{TQ^= zpv`HSMMNCyPRt@zR!7=b)|_}Db1--XX(k~8M1TlfAkb0P>sypZ(pc?HKUfj7K+FR% zAG9r8w13asrXF^SWcH|I!B%JLp_GJyrbUkgc87FyNuT#P-VSz@`-am3u4n3_y3bNG ziU<$^B0vQ0ATUtY+lscCh607%bRSAB9diOUZR{Jn&FPlu5p%>_OQ%Uy3s6J0D$WdVZ~b1wxG@uCd4TYZ zu|U9C9d3i$@mPRCXU1%kniYjvz+NY8$YGtn?=WM1Tko zfd>doNb8F#X;3-9OX#O&QOLGX1K8EB2d6m+@$Bug2`rsG71~O=^Hd@~NE#sC2z^p! zonHR#Mf~-P8_e#S*0r+bZdUpe0U|&Ih`<8`Cam>El{6^t^id$a>H9bUW0)Tt<}@T4 zh;=Sh9)9F1c<;t8-d`) zpIHSf;n|>mtyw6?ccqbU;%a>CbeX^C$VKZ&fS%=&8@lt3i%?E59|FQZxrJDhh2~&I ziwACBbdje8_$h;o)ray~vmX{=I1wNMM1TmKAW(StM+E7pt5YZeB@ zuyPv|#iF@AS5j_7d`#C5>KmV_sq1O#b3>_LB)s~>;H1In%S0s+AOb{y2)vDeGSd&< z(Ep@d&=Ppn&2OKy&lhAg`zAqKKu;oAYtYEfbS{{sd2HYwZZYrWgMY1}dBxG5m!!Z^ zjJaT$a12pRoOEHnuf~razB(8jwa~wS+!FyJKm>@uHxLMN`mt3HQ9gG27*L1-9Hy=4 z-$ne51J|5|@~g_4b1YmfZu+0Kh4xCfja;=^im0p$Sw{_bKnc0Rv|iEG+B&ryWSzz> zm3UIM8TNCFNd_065HSvk&t7qujOz zVP2FnH*}lknS+@?NiB}4o9^a^_4C@n4T8=wZ{?JEdmzU#4_r@N>?aK5=MUfe>BEz< z@VWg8Gk^#X0U|&IZX+P9^uw37Xf^R>FA^3fT@`hE!Pd7AIt_5nyr>lfZhZ;Wui4uV zQ;s3RhR0*ja5Msn9No(}Mz6cr`yns9?wIks;O7T}7blVFZw4xf01+SpL;wgFC;j9- zs^T-Zau!ynNTXnz5`O0OF+RMQ41|iUL7NDyVUeA37tHHwCGueN?3#`Z{I$j{C-Dv(QRy!Hy6^(!S`tH?w|fCvx)BCtZ>Cr1LUg+`Q7t+LGq`XL+&r3l=wsCspt zyLw^glWIB_z%edJ+U)#hM!kDS^`Ip}aS$K-4}-zx(w{t3YTP*eh{*1`<7^ zb17EU(P830eFTBO>q##~0mt54J{RC8{#@KRf7@iE!D}DjkJ}9-xe@^)Km>@u_Yf#N z_cMYV1ch`G03YZOpu|w>8%?ZuJR#u`NwXH!x0o%`w&(?o6yr=#(pEQwDxVvhTeFrT zWUMl2V7$Rq@jW0$-CRBmAlb(2hfMy=;H^KGaMraTP@tqh1c(3;AOc@Q zz?kW$?s5!eK)nec$ZD*R8!&x3@$B=wMW&7ai(MLV_FlbToeeAw z;hMk%+v!{&S#df!vbRBWF5I;b zxOW`hZgo_F3K`YpDdikmOSZbIk4k!CleTvx+B*D@(I2u+L7K)3|0f^nMsufAu-f0>Jr(=~gN_|ud^YtSG^BV5bjCSO7y&DY5 zC=lIg3_6Vy)Ky%39*~S`M-^PBUAXotz@uw-HEO z*NZv{NPQtTG0o;Fw`nWW=-f+4y7RYhJNp$X9qau2@O46PAM{WLXLPqJ4eBLyl7(4=) zK}3KE5P_QrH0;`JnnXr#eh)YCfF`yVtL9T5;R0n?V`|7MSwZor+g(bFUU@{dNqcyt zU(I;hFG;NU^6ouFbJ}yIG_h(orb*eLPdOt(R0!#^gmt}2+}ill7EA^|`oQ3gYU#zG zNCb!g5g-Cn1m?s#xMq6mjl!z)EUnhUiq1cJD?u8qdR}}w2hCz@-q_(+ds$G{O*H5& zb!SDr5cF0g6zf$71MR_@(NcwqW0on3NYso4mDQysxcb>k)TJP4FMWQ>;jO>>@Vwtw z=8$-0xDo*(Km>@u0)b4dN$$LjL6Z`$LafTIDQqV?NrsCN0w~o;R!bOB`^aie8#Zz-d$JQHz5Kc7BuR_xOW~uu8tU)6Z-D zae)_Z4|-#Fv+*05=}H8M01+Sp&k)!!?mXcp;L6mE21=A5SWv9oq@Jv}8|f;qnhE#w zOY$p~jj`Hsr2-hd8w?VuOMz2L%!2_Ep2mIRhl5>R zwH0*OAa=gFD$>}c&Ut2f5&|_GL2|Rq(5t2l z29eXWvAbF=t$3AwbG#@~2<_}H6sbMhC}3%dR3)h=!&FrZ)RNnk$#mxo-*gR*I z%rl-XxcP92Y%_OsGri1N{@9_90W}z8C0gYy)0#`-eYNEW1|mm@*`D2%8HYO0a&=L1 z64e}KAI1U+ouar^b{(8-xA|x!0z`la5P>%ksD#%@ZE7(UvTod-Y;tPEC+6)Y19%P< zgg*w|UNPpV{!*a!Q`HSUdWXe|`o?0>JQO4Gr_AC$`J~@eIpIa5nUV5g?A8s(+d71C z)&YJJvEq0pMZOy=9~qoMOD`fo1c<;V2!IdzYsl9-e6~;Njf#*?*fxI3z#j684vuQk zdO{$+>T-RH31T@ISbij`Qp1jm8rp|719$v~3k+uma;~eBfh*btMO)4F4*zb^wbu=g z+GErDGK0J#6B~Za;LojpQ)!aqT6L=e;N?XGhyW2F0{0P^l3$ai^H}n1=eOP>yK!;L z1@*Z^sXt8;j6XFdB|gQ=g=%^Qm+J-{nA)~!<6T*_-Glq#o6C!9xM@_&n#id~Y0v39 zSf+-Z@=44xpY|5Fw)JU@9A>J=RDkRJvB4tEg_?swyjWa`01+SpUqnD@akw=F8*4+S zjpfe9zJT{n*`QXT1c{fjmc{GOQ#J%Yb1{dY?8sU;TtlK##J78V^bd;)ky4atpS)l| zOyM^CaYfzW=L=>R4m;EDbP}^OAKP$R$2gYD*j;TI3iPSL*=TV4*xuW{hZ1oxu0((c z5CI}^3xS}&vJTP3q5>GD)!g5KKv5<|IuEzXWWObXx+}3GRBI`tmqfXGc*xp16>l3} zYF3>AdS{Il3wX?7+|jLcwKGp_NIFqJQF(v1qtu@2rv^>p*=AMYKtD@I9T6Y` zM1TnVeFQ39UP;pH!lktY9k<#==!sfbrqVXDr#`G$QXpY!w4Eumnv#}C(PtIZ96maa z$Qi_4?s^^2-KopF`MkfgNdxGdwkdvidQc%Kl_03);f+6h*g(k*5g-CY;427JUNcFG z;KMwA#T^W)yWV%bucW&SM0#9>YIPS{-F$M>&+R!uZOM7RD%{OF(R(u*AeAzHX;sbP z6Iv%bgG!7zxm>}4w}>@@nibjZuyYeU+h~h3L#Iop=q$6X4Fz_e*+0;6Fu?BtUPOQh z5P@$aklC}D0E9WUcI$AoQ_{sPn$I8DEdwlLuBmc#+iO7CMnBbWOgt+e{z3LOw`eZO zs6z})eR6~qzQe&V5BS+buL#8E!RlEbM1B}jXPdJ`<);mNLU?gR;J=ojzYBOH0z`la zd>4V>!n#(zmdaJVm0Cyb7{pj7gE5slm78YQ-L}phV`XH=I7H`h`aa{OLpezX)$cfCvzQuObix zI9XA5qMoQ)$9ca)*rD4HcdP(67w5@IOr&iur7(9ajDKIyc^@MjGC|0Z0B01+Sp-$fvE zTq_^X1rk<#m(8}h>#jsr)hklV;$0Q|2*5=ZeUyM%z?f<6U70J70y;)y(+9F(`a$$G zG>$bjs`3j(*ToJk{40)@|M#MS2oM1x@FD_h$~&?c!|GkQcG=fD*A+vrBOhCY?k@)e zPY%kussk7NS3ZU#po|oUq_=hxOxMPTmeT4f9xvp|_Sf|ME@AoqFB*sd5g-EZA#lZd zS9VMTHV-_R3MBhq7!1zm0%Q0s208)gAOL6V!u=fr1+4F6N?Ekkv>!zL2D_XdhNv$q z_+`R-|G#G@B0vO)z#4&|v4^WBF2lj3%vIjMF&G>_FHokxIDxXE`AA+I$2Bj}q+t3| zCZvhxwybY2m@=&m0+tDA7zu8P_ZCl@u_YkqX%X4xIn;z7Fwje0ruQZSXKl$j9XwbD)H%K{i{6Ru=_wDtUnnEnu6{r15$9X^Jlkx zz^X&an>n@2-mR40iudqm2j< z0V41g0)^~8`tV-5(R5{Zo%8n&1~w1)P_TMtpa&Emx%3Mak%EI`y~B@V%twQP4Fvj< z)GpF?C>JkW_5NK_^v9J55CI}U1ipxX5{2A^YLo07>r< zZz&%^=vw7i(QC*9vf4H0-^z`l=x^tJ; z1?&p$^(O`mmr5x1M$L`oa3lE-J=G1ZcK+JE8{Ony;@UaK@3KzaW&E4l=#VQBAOb{y z2z&zpqq13Mp$<_ir+oGHa*cO876QCFJg^HYRy1Q1d$DP9`=JQw zS=5!=?F>+b4jSKw$`YX*F5CUayY%5=;^k~G&9%Qw!p@m?ktRkdeW zdEL+pkuJR3Qo^h5Crl`kGO)66!@v#WUUR0@xOOTYC~Cj76?te-YHQuPvsOzWhKSM` z5Uv(TIBBc-yF2v5iwF<_B0vPbgMd93*yhGW(773}e15+i3_1tv^Qx|Tq2(*b&+Hv& zWx^8Dl*CHW%AXy}ZaB3Nckz)LMLrUcLW|4sLHFqk4I5P=3(g)gsK3g?HwQQXTUC?YFB{lG0 zAOjJ^>0}Ff)~)YNP8%rtD>Jp(2@`ML8qE*4_qcu3l%7|y{bYA`KuxxnM}K# znObFbcYCiw?p}AXN2lU~U)q`Umm@uk0W5L z*RtZPyEV(>)A)Qcc(s9pWOWR1=WbH)S4E6LfQ6b}Q4G3ocM&slMdr?az12|#Zu;jE zkYZjiYp=^7k6+g?QY6_CW8;c9EOH4L}ttc0b)NjxiK$x5ofCvY(E z*OdzqAOb|-`v_nrh`FE;@OOw<4)cuBpT<3_rcApFO?ZJ{?T;`hX?hf%>Q@r3GsBu# z)9YLV*Y2amXM&gu1Tpu~)0mtaIT}BrtFhdVYyL>ZXoo8iAOb{y2z(O(<1($FBf^dm zKeRm@3v_Jx_8&LskCq<~^tLib*$*FzS--tE-o*yNPMyA%eZ#2XWIr^B*Pt<v@Uik?$W!f7-xb z7aan0gfMEe0YPMx4YpIE>_Uq*`5<97-IOK0zJlJDE~R7epQVOhyK`lPF6>W7AW zI?6uyHHLPv2E9ByNr(UWUrq+y3(PGMAOb|-I|vB1 z{lHK5y}-rFeXraE$j|fWzmp)$s6T;-3Bg%1)h23Fh03@WS|IveV$&0+OHE#NZX^)#dZ9F$3-6H*{d`{Qg}=tBZ2Ql{tWv|yB&~^?JoTT=1(PgVLvO~j6PKjYmp$$Os>s1WUk=`g01+SpUq&E4 zXzpmRw6Jr!upJXRC~g>2N(Ulb6gn}#lO<>wPvoO&VoqgW+b1zOK$JMwpr_7wxs?DE zmU{*WnU>#6SPi+u!#49WpkeVj86V~e-qt!&-ATD60z`la5P_Ew2ucZNo2<3s#CWK> z!RJzLNLpKfG??!xo~G#Q+5-dQW{|Tp7sOLiEROmzoJL70bG0WHQn*j(Mhxy}AZ zU~DzrPI740PW|_`eyH}S+z|mHKm>@u%LrsjS<-8*xpcWQ^rX7>*J7QyHZZex&R5%$ z!9qWX_le>RvZ4*ANbs%_bfN1z+$lB0-Cl(oaY6QIaroN3&(jP5;;(!80sltd2T9gZ z^;b2~PxqUFTOvRNhyW3I6@fGu^gLMisbW>$l1|82=oUFqtk0bqn3;R`?S7Je>z|C# zpMOFJvHE9r8zi3crXKHtrrX>;7)WmdmO`RA^wxUnPW(b!1Y!Ophxr$;F&GSkP(3;& zB0vO)01@~UfxC0TK-q~lcj953xZyv!+GPDPTkE}DpZi|4cv~~^V-WFdL1qM87!}Sh zcG#N(U5}CG(qVq75b+R2K?I$%40{k$b>2$Hy{xiWD}o260Q(Zb#{p;G#Jy9JE=qMox>F|0W5C=0yaE01+SpUqB!|Fp%u=AviN)6m<#`rzh8W6xx_w z(MPN^pF`cE!eO+yX%DgrRpMrW#+#};eQ5A>Et-2*)h>QcBFeWl&l=y1gq7Ug^h}Raq6hDyf~w%7m~cw&E%W3VH3_ zTS^3ugOB{CsFOkJ1*YN;S#3#U4L~hd=iC?mxxJjF9%oW^^BaLCB0vO)01GMH;KrI7Vwy-qTe;Y4uF z@e|iyqniE}pppm>0U|&IUO~V(WqJSbYXr&r3J+U7upc@s+_@laLltjD1 zz-WF(_M!7|FgOmQ>dNK!iC1HhRPtG}l0&t&^QxhVW{Rr|XldTeDx%NuV|#$diwF<_ zB0vPbfIy;*m3YFUt61odXn2vJtGxwakz%5jG!yMTm8MAFALvJQW7Rc_qJ)2@uX6z= zkjI2-O(TUgge>-*1{8W}Vv*DYjVp9%ZfaA28?|jd=x~zl6_ovI;44z~vkr^^*tE}ixcn!&#@0N2VdaHsxq^@RN_ry7*jBGA}+5@4#Gxy%{< zjZh?!QX$G3a-(fLtarF#!U+FJF(|_DSJ&>z|~MRB7iO zHwneux+wBZ&<}02FmFVF2oM1x@EQVz-d+_dYiinV`?%ER)O9XMl>NBSRiHG2573!= zod+kXjv>WE{?~JF=X9}EQcmS%FFzZAAkB^?S$h({NG@i5oZ%TY88UmAbnXv3LR0@C zT4*CA=9j@M-u_cGM4zwOaz@?3}j5g-CY-~|NUqR>81Hwmm6whwIgLz=~rgPPpjCV9NubS;HEE#?5>N&HW) zdh03BSrbuWLVWLWytf>dD3=5Z$QqWMa8b<|UX2pl(Ld1Cd=Sj$K--ahJP;Rkn3wqa z0|PmwmgkKK5CI}U1l~XZ9P^DUXftvP!#ue9sP@F=lWPCzR@@#G8$vc&as^{zVZ}Ky z20It4)WOsE-C*EThKH8OnyRQo06p6;g$GW>91&&hEI2d#aaR=0Q4{&iL$%@1mvlww z@)kWvJ8ixtMq^xw01+SpMBpO?KnvfwMot|y2bCqLjcbnUpI#eXYz~s|U62TW0B~{T zwvLAEe$EYaz)2=d-~;n*!h^ zm8P`Qsh9vSom>h(G8m-J0tc={fCvx)B5)sp1?hdPMkiyEnQruIGa=G68*1m6?dm=ythyW3|k3c56S7mKw%y_}IlYnuSsHd!7Bvf6M z#$-1&`(~w(+|$geqyFUI|N^WVeHNUv%gH(1tR+hyW2F0z}{=1cE@`U!|={(wT1JwpG;w&)6zi zw^=TY)BbamIs^p^m5EI`6s(r1wqv=N9`O0TGcC8CE^(`gdiS2>fkBQ(H>ryx#z2w1 zliY&}6Ao5^bt%P+B7AgQa+7RFr?)lU7#AWy1c(3;c#J^ixtHZBuf8!CREDb341mo~ z2OJ$0Id_h&S-I1=7%ZxkXZMc%;A2)v(Am5yvYj3?y_WPXu4;dfoec(>_3~z)>xY8g6vC6Z?#${GfK7bOUcClZL;<}!c&+DlnHUS z|K{vvPI8X9SyMT!`?7R|LE4&dJepmF!BVWf7rIiT0<9@zYd^vexO9o(*{Srahe)lN zMwceU5)5h5cNmTPZsX;+5CI}U1c<lB!ELUv;C+EEvV>3|0z`la5P^FL;0^z0t|h$+ zKl+aef`G04c}pe5^%*@+%C=(nX{oNj)Te)xkmwhj+%Z+VRWo{&%&jGMqIXJ$CVRo+ zztq`nieW^@3LDbYBJORhulH*6D2y0YX_6u!_6$rE(G_QD6z#_2in8Aq!(6ED+wr3Y zdjJ>Y5x9xKg7Lngo)UAks|8~t>#TvKhG#?lP&8L(m3-5jvpUcrR}3lhZrsZf zfT@*nD>qiDvQ?GTTL*)xYo&&qGqYPQD~E|e3R&q1F?T&_D9T7ooUi-w1o_ktOX|hs zs0Up1zm}j4`xMoS=1`w0^!whw+q=8`Ma`XIxs3>}M1Tko0U~e<0eQdwp=;pf+-LNl zy4dt<${>Cn^XF_cxleYr2RnL+^-O^_^3}3b{@C4GVu$#UhgHLiIg&vkGA@h2YW(lH zOz(Gh^5iv2*k2RDkb3}hNDqCDP31gLyb?ttN)jdw;`3!5K1|4uD_pqeP?I$RVmpwG zj-iQ)T!{b?AOb|-907g5|Djt)p{N>-;uC1SmYc>SD(2O+tIXpzxzX z&j=(+%Jv+#Gl%4}^&T^Xd#t0!peZFO5CI}U1c<;P0`jK*bJv_-wbOnu5T*8I$FLUt zNU2}f%olK7ccsv45wYi9=BteC^8q;1eigoQdXK%aEy{%EVvTrZer%#YiGwH$T1M4y zRYOYaZt#RwE9=cZ!9$1H0&85z*C@1zXu#0OCsy47u?QMhSp6D}U(!TDu0((c5CI}^ zih#YZ|IB^Cv)by=fjp*$&dw35?7ANlSfBI5xnSPa(56?GEln$}^x|x%uqXtN2@cPxZqw?c68)64vzj>s zj>^VKX}o1@x#uwTK?-MQ@y=mc&IZ*R9eY_XDLZMW)--F~S4sTJ#?r|aoyg?|2@a{a zhLiSL>~4<0>|JHc?RThCsp|Ez)D-202oM1xKm-mDaAK(oV(RWyX_b0fFZG_97+sTJ z7Av(^Ep#c@LNuREqr3S02TsAH7nObArAURr>v?~@Zga-st1y`x1 zJEXHH-KvA{YqB&LAc0+olrg7xxuH71qE31GDDHc~;^MBp(dRz!6Kj;?N(6`i5g-ER z2o&~k-mC;yE$>N%Jugz${*N7N2-t1Bl)o>s6`vBm2ym3t%?5+&C`{(0t(+FLJ0UpZ zbZd6zHq&W#7|iHpJ-O|qId367>35Gm7HETkrjZ!8`Jr{2GT3R{N5aJo8w-orVqQH7 zD2S>6_afBTEIk-La=6KDRqluY5g-CY-~@pn6Zdtd`POna8ARXLU4&<|#%K7d#J3Q- zyT}M1xYS4)GR7D#3AOb|-5P_CN@#dee;NPtKNIpzx&9{||>`Vu{O0!e8M{>__Y;(?c;cM%} zM-9+J08{#<69Gm7xrD?Dr>+Ri+~A2!gL}*Cvm{!jWU<1w)fS~O=YIr4*42vztGnJJ zso#k{LTaZ#el{f)O2wJD>Ogg;ZkjFh$9>u%D|-CJID=2oM1xaE5?VTXDrZ zKdwS`h4M`Q`TZ;*8d}wIn>&=&lhB^Y3`Ms}oAoJ|h}mLt*e$8*lz;VREdYu{& zBZYd~*&e~}2@#iUar1u;5xa2E7VS)`GB*|DRPDd&Bo3CaxGTSF4X7fs%o9iel`Nsf zHeX(2Wj5FHT6w;l;I`})xex&&Km>@uAp-eL*g}K`RIpX&5jj{!7fA4%g>nkAH;r)=X>KPo_3PKS{|vdf}*LZ1Rvv?9H>+eas|c9#3wl#3z} zAOb{y2wWpDBhfM#Shx|*Yxf1=pXS%O0Ay`>CMTR7DZ5!E(X2{lXOojBxUavIZ(-Efk@M|zT7lq zu7x6gtU4yCK5A={74Pa~QpdeYe#W9BTSAXSJwuM3y+^;72oG|`maNjRxy9P14S(^0 zbDy!0Kjs%SnJzhLj<7Ei)ILemB!*L?Xf~-tqkptX$tV&5B0vO)z!d`hJ3ah6T~BzQ z?$?ZbE3@=z*VPfnBVE)P5*Gi#k`?&yoGx$}wpc2kshIX*fu|&k?MJIm1SJQWM9D(o z)>Y|CY?F=A|Y2IKm>>Y5x9#${Y(e~ zk)1BT>!v-)!L+~Y1J)y{@AfQ{Y~epKxyn&$1_Pl*BS$6NOtDFJQ7Y(QfPn8@L9ua` zSWykt{j#1-8M52joAOb{y2s}U_ zzx4-u{K6Gawe>nUVm=bw`{QKQBwcZz*q{Ofg4k!5kQhkU92!O|TnsZVn+zJC_cqd{ zCW{_X6J?_`wz%XTjbRO0ZFo^%}H|B1V};`Do)U zaUlXkfCvzQM+jsV4I25CYZ?r4&yz!U=I%5WV9H6bs3Kr$mE>Wcu9aPtK<(x^$7^L4Az>0*LOD*w32Jp&P@d&|k?!>*-PZWG^-X&KTtlNl~*)HY+2^EIdoA4?A zHzWL1pz^HxKITm6HDY5dKxywsP3X)X6-19+$wK3vI1y*z(u|cAqY5*p(7{>#R1u=bV~aBJoWPyq1;XrMF6x&b zCYa*;cSnN@5g-CYfC#*RKycQtTgxZ@f%)504`w+@@u*T!O$0srL~p7MGKF#BWBdo! z%rxm*PlAl2^#OD0EFj60hG!YU*8VFdgu$&<$PNncG*;x${`6GZzowPK?ujz}1;6>c z(tEzLw{pA_0U|&Ih`<{N)OYt^D&71dK`@bnyn#&3afOVtX-ou#ODpM>44QN#(&~98 z1?eK)BtpxHJ_=zU-I=>;iUyE%WSfTj}(JNZ}^8A6zQk}PrD4d*!{q21$id| zM1Tkoffo?K`}}Xb>gUnzA*Un2+k=60Z~{>wz>z79Ns+`)GjS>52SPgzL^9)c3D<71 zmQkszF<~3!|gTg$NJJ=(d9{15|1MPNp)&TUZPVL_>;!Xei>y}&5zR;z25vy%CN4w4Oml@Z^P7!jh zn(-Zo*7T1@gX_6K3$&zfbY4hQ1PlOnw|)xww}XL&;N;c8aWJ3?C^`Axkk_vpEku9_ z5CI}^3xV>^{!KwT!nf0f_{Uo4Icc-JBmbRk3WL{}+Afr-Jt5V!Gch!_&bSd2+>ZuM z%QN@6ZuyM9CwNp!SJ`UoJ}GGDa1tTsx|W+vC~4BuxgZtn#8kht9Bj{m zFJ4iai2xBG0z}{xf$~oOJ;7Sp8K9c06rsxOvN7(g+9E0OZ`e#7 zl@K+#6Y>E=ip%nWfrXbIAj~uN7TwE`f)%q2;;Ixmq*Hb9n>G%chQQy-**${V6}Hnq zs?bIr?dl6fi3kt@B0vP5BjE4z-(Jw*rbcUSUB|P{n0)kFX}pbMo@I+44lGU(JkUsU z`n8DhBlu5z_hbei^{^5b-j>U|*(I(RcV4-GHHiAwrtITvh=QxyL|d}>vw=XtT7hG| zu*o4M)&<0tu?7ixhfnv84;Lap1c(3;c!WTGL;n#;dfe8@<}6PrddB2;Ah144#4O!Z zSNm5!Y`d(+A_>n`VqKG7G;--Hj_WLLX^Jm0iVyf45xU6ECHXurHDC#=yJ?RBim#SJ z?v_pk4f9sIC5~xo%c1fnrb}_PjS^gm01+SpMBoVm_D245cj<9kteUH&0Z$IMk7?2d z-Q|#}uIs+*va@0sf{H~?F_@Z+8U~gTjm;HN++C_=N87!Ur zg@^GEC`F?h3#(k}rE7`pg@UgQ9hwb3n*;YLF88Gd1tLHMhyW3|kAS|R|KRPKNTV5? zC1kAK+4_BFKG|w^bDUOCi)l-fOyE#GDKU&d~K!|AtJ_Z#Ls$ zflz$;;l_L(Jgh*EaxTYBqr=6<2OK&l?BwQ*I1JLgdbJg}BLYN#2oQlg2*g|Z?^v5j zpxH=&?XkLTYdqfJ*l_N%Yl2w`(?yuMVOOsh973Zkxn;_c6g4kyGlD&%QHz|#_vI$N zS?_R+Q`o}*4Fy;j9O~;+y?kuSjrZw0R8KnWJHFf({3s9sB0vO)z+D8&8~?8mD%WJ* z@z(Ah?T&xPRvJ3hxiSwD6}fIE$lFUU8y&p=-thM4YqT!|Kq})0QVopy%gA4JdMeoJ zi{&=))W->EJm=Fye)B`srE~1IIrN5H(^Db>M1TkofqMuz2mFdf*hHH5R`eKMTlr`+ z*3R}MAGl_oFOieD;-{aC-P1oMcg=R&mU<64uCxNdVv2B;;*eoM=5bXiG|h7XoCt>U z8VyHOqc+_?CWwS;Y;R$Db8RbdM+Arf5g-ER2z2l5e|KwbTMv0iNL|IrCZrvvScAkh zI+Tm`Ae}}gKS^uJWK9jOM5Db4^*2N$(U3%={WAH>gMJ?RoC=Z)jKKGp-2RX01+SpHxTIG-~aMnJC7b#A53A_vEkyJ znkP7W?i)NGYw`-(PbxH2x7r4_s?%cHSeEP&yYQM4=jv1Rj^NBztBQ2({=}n_FM5s3 z3dc^@WNq{q3d%PLVwpCP4kGsPFv;$srkN+3R&eE*h#De51c(3;xI&>S*~isoB$A>2$|r8`~dTuzMpL*E=R- zTe(}CDHIO?Olv1}hjg5oSQ|8aG+|Haegq$Hx*?|+TOoCJF19JSBLYN#2oQm51ZMB; zzgTBnEXRr-`x91zc8fV;1F3iSM5?aFDvkaUQI(Tt7Rsfm&C;nhB9w;poY}Ic4hA+H zpa+w(!(-Wds+~chm$WNcLETm1Qo8^YXyC1vw1}8#PX)r6)xwAS%=J=EeS;D7fXA40*(w~Y{M&Qqz-%jp6keI`=&gQqq1=m`(K^)9 zJo4!oiZDA-cmO{=9Fia+E=RB|jWL|!Clrd83k&BO7EL<{wJ)iJh<062(V4LR9#AmGuI`4Mw}UN{yQlGk3HmdYuD& z25^<`K<(y`v=CPpQrYRpgB6sDFh6@SS7Fxrp{^#OLO-!Bnunt38m|>V2y(6?UyAfhw^h^fT&mgN0oAv#0ErZwT#0(d8k;L96V1HeKzii01+Sp zL|}yg-p*mGZ|lE6!uR!U8|W~1*_q*tQ^*yo?NsBbOj8`aMD?pu&5^u|d8Ui*+(}&Y zKU*fvwx@FzzC9pFwG&p{`=n3xM!wdYH{%;+{zCG0wsHoz){V%9f+ubmy?|JRWpl+t z1)Ecr&R2#u8Fxg02oM1xutorH=&;JIytn^-0Sz^mAHa0M!i`7SxNBO%lvE+s5g;^J ztF}tjzSK#b;^o{~k0D9XM^$)Npj6P>6Xug@SB!XR&%B-Tg&H#p{==nh%C`h^N>dbV znF}Bo2Ij5@OFa~PLP)k=3>QCSN!a_H>}xJcM1Tko0V1$Nz~0~8BfZ)GWf2W^Ef`s= zax^x+eww}LUvETNoZ;` z8$DSqZ398{2V%w%;`n|%buY>=;+SS>`MlU&Xv){hA*okvqeki2xBG0z_bf zKrofPt@|7OuUM2emz~H_mbOYBi*lZKAO$oQT`(37gJ{qL{C=vl8Km>@u5&^uu zr}uGtxBr#*ID$4O8~fO;-S_>5tFMi@v5BSG*MONibhDVE(~O?BDJ&kk$6Yen7Acb# z2=o?HN_a!MhnvK%TCVOTU*s%(<-x#?P`mbr30@b?;6T`lk0i5Wx;Yj#>Fw5GJ-jv> z`3~1wmJ$&l0z`laj0k|7f~r)=1XVcUR|%zIVOE`HoTa)Z;g+w)oDGnj!aMa`>rOLc z(WPQbK$~JUKLmv9oiEI9BP} zxx0Oq(E8z>2oM1xKm?`;;O#rj1xpgM_y6Bi@eCqj%S_K=ATHV!d z78AO*pIWuiHwBUf1bUD1B-33^t^SKo-YH}GkwYC=YNvXD&}rADZFh>P0M88a*ifr~ zCM|luNZJ6;4G|y$M1Tl12-J6Z>5P# z$n`VwPPFHICyCCTJ5S@)kzLW8xvqa3z^9uS>{&+*u@pA9j77R$PPfrn^miH;e(0MQ z5g-CYfC$VHsBhsSWp-)|zkD+?aih_b>k;M{*s%xOelQr^lLECgX}x6x9p)4OF?rnl zA^{)DgY(W;t+)Qp0xd~0A@kIjh|RWb+Z=NMlGr1K^S%x|C28w*cjVB%cq0NtfCvzQ z83N6_J{%gwKWnq;ec)nY?lK3(sat$b=YpMI!EbD>Ev7s5MyJMl$83lGTcSMK3B`lM zSFY#?wsM4CKzRIi2`@cnY$QOBB|l!EW$eDHcSo;j+ko{!T0h%aU%V3mB0vO)zytw% zyN4m($4&E3x?A(9;{zH_-o{_SVu8_&?`Jy97wb#PSTp8UtIk5;>r^ZJwWREx>Ciy0 zJKAeEOV7w!dv2u?Sk(4s64P8@(BOfF@HX5^%x6Nhmb2W;E*W?c0U|&Ih`<~HeOp(P zNLW?zkGeHoPy5&NHMe{~GZ-fqCnL48T?%`@(Q1X4>0p41@MxyJiCi2IF|nVhN{-Q4 zI~>1BsJNAoqVnH65@f3IfZkN0`N|5^hHIjNkDiVU3Cj!tHvw!if(Ub8Cb4S1mz*LF>E&;70ZlEH9i`0 zj<<%=-5zL!!o7Wq1Ua#GD7I~5uNaSO#PPTi0U|&Ih`kMq()rSDk+>u@y~7zN`b zlF(eEZA+~AwWJ=n)tLy$AA z8g&CEfqZrD;#G2}TkCC+r@C54s?_?^lJ478FQ=(Iwvg;KQ{#@}b9DGwKiM*oh1Am% zhUN(F9qE+(9U}LOeEP30?9WuPSWLH#L}?Y^mQGSWd9K9zGEpJ|M1Tkofdv9}GH4j! zmv1l>$blAJ+ELZmoVsyGFs$L`+a{o!EZpWy*m{;-DuVE|jY{U~SxlL{R-9J#8gDds zLWT$oKh#m$uh}}unwvi|sChg{jwk-IL6n^#(#7!%=FqN*Jv??Rs;upLw6$3+$iRyT z5CI}U1hxp^?OYw~ef{^}K}Oo8biM2rCo-d+t=v+8IV3Nqvf>NjR9Ax#F;uCF;ux9T zq%p!>!QdN$(-cbY<;nfVyO^X9mg<2oM1xut5NC>0-w6Pr0JoZPVt|9Xy{f<_pyUfzB7(Q(X-m zz$|4noeyD6>e|$f^omVuVJ`4r#jq39SBY{z7=Xtmk2uw?LJGc})bUrurhp2D{!5Ma zDv1ZI+QKBknQA{4Acyq2PgR?vL~yqlu4w&qS82Q& zXS!;QQ37R(7Ed_vpIk*d$4w~QdS*1->)3!xrB=3j7ZcGA7Hb>atTHfV{~y2iLU zNsnWydNQcPmbK>h{C>)i*{{}j0$*~P8MHeMlD(|Bs{qmVoS|6d};c`NsurXCM-LEU93 zVjr!Q@2fOR)I7w<)s4Z0y_U2F8&V<)vM#veioF@?WIQvhS#~E z+J*JgNljF%W|0~n{wal8X(o-m!fR-V3L-!RhyW4j5$N9d|211XCyrAkKb$Dm#|&>< zoBNFKPjxj>j%eEuIu`B{-Hhmx4!QJ$b~_k&vgFvNH}9(t=r$Cfl`dMhDY=XKp|+j^$z>qjhAET-CLk`(u_=@KE^9;N?! zgnU|&)gaNTMy>1{+22~_2z{#54n-nB1c(3;m?JPHfRB{H$R8zn5}XR_S&>6%(a)VT z7P8Drli?j99;r*o(Q*b|`d-+4<;79krki(6!+~>4l!*WlAOb{SL}0@L_f3-CNi||s6Pp*- zj!fH(dOB74IU&1P8>wDq4wvX$OVlWrQl4U)>84K`N<<@Qr+x#Q7gpXaCirmBl0Xp;6tfO_Gh(lC?E?($=F^MNVHTnINWl%2o?!(R9J4RBexP$bNiDcxDrmLx2@ zB!jKcd^EC|42tiNB`Lg1)zp@?Z)@J33q-lJO6Az$ls0a~p?+X>Y@-LRM1Tko0V3cC zq&N95h#BTDq`#jsH>9$s*bPW^dP2nPfx%3t4-pFY4RtM*22M@^VpMfu$l_#~ir)Q- z`9jdFLBmKDUnQi3sEzGKs%%zgOCh0d(Z8!;@>e0-3DO<^nv(Wn8Gh=nqd{teA`u`0 zM1TkYf&BLVwyfDJ%x|ZElCO57lB59BgP+f`iC>oj+o?_yPMoXCJm!U+UV|jV$$~?x zYnTpKj}h)i*AfJU-qhkZRUc;59O|p75b9~Cz|`}1Qm+3qvb5Uuz%3CV0z`laoWJ=$ z^UMf8%dm~o^jnX{n7grA0C(Z9#%sH2Q&|0p4l2wWy9;&HZ7e9%8tm$9>&}w3Bh4|` zn0caCmFAP1Yz%@fU){nTZpT-oMsiKlpI(%`%J+B)YULl3@Y?et0z`la5P^)q@tgh= z$6QF{Cn>fuB|pgh;!=kapn^tVDmZD)ecBBB-38~MeC?xYKj>H)wu}hy9_h0Q)D38L z)E14iuIy3W5~4<8V^@}tQz4}gQ4d#cZYz5gR4GkhZ8~u8uP-NGb+j#WM+Arf5%`xQ zaQc@2$gjihQI2hp&|1_O{B#m0d(3GlFMMwgz82NUEsyGrckLlbJ%bOIfX2GC@+By(`ZoDYD7?* zSxdYN#;&?S8WV7LSryoZV5>EJ1u__0FK{L@VAJuQIdq1qoJdGuYV;zKmZ@o>frB}@ zs|9TD;+eSJ&gpket}F~m(a<8+2m*2WqVm;Eo4j(mvSZR}`s9WP5CJ0apGUxntb4x~ zSY8_pq5^V$;nJ-8)bkfvCn7g_U((>JN7LipWlIXnqTfuYQ!>fE5A?>{f{BD73a?pG zTcdPKcjnP?YAB~G;@yD8Yzh!X$s6Jr9dV<@H6@2Nt6LHMd51mnkead=tYy~GgeB;P zfOI%Eap6g7(GEP5oACA{tPKDM52 z44rBs9!8J!58~L_G@yDJ5LBU)g7_*iBgXzy>)|ceIt&@yVooWzQXm3EfCvx)ML_tW zdA~2PG};FnNhDEre-M5gva3)I(+HkgbrX44xy{q=5ZBBK#jG4$c2$^G0#U-COjc+c zng}fXJCGd|<^})7WrKsdMS2N~q?O$><1bQ)+Omb+IKUUxqf~e#_G5b+a z!b0xct@Q_iO_4gMcr#px01+SpM8FV;_jF$?ES=%*RubI}dE~z-Q_s>$R!4OZ-FQ?z zCyGGRX{M5F?N=LDN_EhQfKbA`}H8g*2g! z$R24+ZP}`uRx1S~YQLr=d&jLcKrGoP5CI}U1c<=@vv(!ht=qb`>%R8?fB9i!BEUhS zWI2fwsEr6>=9WdkvXdhSblW_b%v#lzPX9+w53Vug-BxPU#$tlY+!p{ZDT6_U$zIRo z2hp@jb7dnn8`%Qpi;`!a!`KB05|ByiQOvtZ(HQJD2WE@Wx+IYF!vUosuul;#wghlW zhb+RMaR~F`*&!5XbuI)7fkL1VFa&J#|DB_)axz-gl5v0e?#diEgNUIA0AtDoe|~5Q zM&09_Hy1+p}DdZ)b4 zm*0YHP$8)vlbRO-g+L+jw-LCoJJgeQ9yxb*T3!^?g8M3_MX=N0jm(`+-pD z$c$pdT5G~FPD@6DwYgDTp;IQ@d}s%f1l@$9b{wB_OCwov^8-~)Qgy_b9k@s}_6GRb z)0}I?*2=J`u@EQ(3V}j^5b(|XmlAsyxm!GpI#!;t*I6ANd1N@|kiF#@S5>@mr;0YI zeNaYvx!z4;j8Uf?a+Ko3FU3y0*@V?*0`M$3Bnl)4mllMBoA!l~17FbZRXH)>!2%F< z6as}nAy5ba0p7KFll`ryz3beq-i$hSm;$@87?Z-lXP!B&R5bbjuBd5P;f^_2 zh~05)43N=IW3b9xI~yd(Nx&T+Vj!;D%3Lf;duO=X)0}H@VkD}@VE1)WdWAqC@K+F! zt@?%YfB(H;{1v8~S2A}2o6#oqpD z>{g$L%(pLIw2VfP4;nJ&u~IK>lIBBA0%K|wnOa1_%B4+u0b)0AuTnAYK8>{I+9>x6 zQD}M4f$%|2gg8CZbAS70z^=);PtkZ4!?G^~3V}l4*B~(8+V64?>hoQfJ9fAlE4}?I z6+MU*ILR|daT$nc6ll@0vo;3o?Z7D5bKRp8vAWWh>@C1+V~o2`Q(jBuwMhCoK%eoLK1PXy)gurrdKM@QSkudr9U;kLai4!-^h&lGc z)rD)-Jg5;dl56P$@H+-jWu<15s2sJq5q?sgPqE}cNp+R40K z2d4MTa|Nr;<~5Ef)%ir#Av8->#58cVfiNW&hKZ8oWYHM7`=&XXE5|#6TryKOOJjMK zp^MlV)^G4R##sL?kA6uCQA09%ZZw*Lw6HW8Is>WP#(ugnu&*ub0987LKp{{F`~d{k z)nzT|V4*ssrD$#PMhRuJ^xkDUow{*zBYGl8?y*wWcOoS~^5ZaO1}&rKBbUNhGlBHh zG0kAfq!9Rj|FG1@bTmeAHT7#nesAoa800=-&&8pZ_+P?PfC1UwB+6S5+@q6VIn;1PXyd;7=of z;&fJ@(w07!n!s_gGkJW<*KFxkt|-LwYa1j>AKL0Wot+8K60si4rem#W9k2oWSwrBQ*o@@xkB;s1D3i zMl}WpFOL!x0)@aILqKZh_1_yrJrJm@zG3#CqDQi^BD~09*XCH_EIhW7>y+l@>5*ls zXbVpp>@E{b1rgY4JPier9VW5)Y|P~>7|)bfJPULUN1BCp@RY z{OyjYlw`Y9mpJY>Y62}7v#sZ|^u$Hf3mp})1I;6mM_LmTb8bpT{>zO5e^8Oi@y?_b zd}zlRUHH5=`$s)=q68)F~i0r zJ(|D()_j;^ni$i@pekfKvzGZZldTbMpr|V$Vld-Kf$yqq2@V4h=5g@Dj99~3(7EoK z%PAe623xM)0~d^;UuX-Q>W|F0s9idC0%T+LoYBKP_;J0-|CU0);>!@OKc{+seEB-{F}RUK0+U zQQ1^D$PO9i5u+(K3QqBVJlFz^XsR^pkp8j?z8D|8!h$`JQik!|Cnh>NASW2#)2q}Y4GzK2X0%FuyHexz91|uh>$c{7T zY=%`KlpcYEK)Er`SmDhokGV0BM+VVKdIHuW$8IaMg%oxQT$4he5GVxxBm!sqxX1~b zpy)tN3yw*HK_gYz7^f60`VyL+5X|GTRkJfC9#3Pg6cP&Te5Kj=osGUh=O-2ozNQ{1 zlu4eVX6br@_!^l2h|WTO6y}=Ke{ZCf+XA^B))8pG5Q?{y>;8-^8?RSK>5sjF$q_4< zH3yO6gz8iX6at07Uq;|!B@lH5Y*BYz%E~kgF&yf^J0aCRSSF8TEu!p3!@5->vg+mx z9y-;5(aCvwq$F9*tmNH0^#)P`$JkS&Bc{X}B6@lp>&QWqy_602J6ekgQ1m?T?A6)o zxHASq5^;8}_SAW$zJR>D=9I|dh*HsoKp{{F{7D4bZhwVhsH`H-aZ`7y8E2Vw99DFx za^N8W9jhh)qWEdK(QGuFj$#Roy=s|HjRdrA~!FAy5eXVFYGd_XZD$ zX^~!l$4*QZJPIo?=A>30)yBZ#MA@s7)QF`^{^puU(|I29I(M@?db%xwvXE6{b`(Eg zXWsq4Zj@bGNlo0C0gA2{-lRnnxdhBTO1n23=SU+|X)WD)g`y-VMN&NqD^-5$D##a0 zDdlLmLu(o}6as}nA@FAr7`N@jS^XmlgxB!{1F3fr)})Urb9k_vP8Nuine2>mfGkA) ziSkBgz1y={LNjOmQZbkH_mXJM1)57aQD<;P!zs;!&J=1y(3l(6Pg% zkOb3+##BR0 zBX7=#SjTG^J#q7)-G>zGy>1{Bc6G`>30qs=nG0IQ15XUj zqPW~pa|Q@mLc1QuQ9;r@oZw*rDQFN}qWq>`I45V1z}DItP>LsJn__u|)VUBS1PXya zi-2#kOJdp@oZ;o(riv)&t}zmjg~BN=Mm5%I{s#pr1jMuVzfJKt_~2&AI9x-sN@_fz z6KB(Ojwr6B$;pxSYcfCv(2fqk#}M*(q&b&aeI}`rS05QPzw7`FB;{g$Ump3|)Tt0C z1PXyai$L3C=hV;^C?f%ee@!VJ!B^tTgv(-3=}CKMDtswJi^|x%_f9b98pnlIs$J7Q z>Pu#x?(!&NFy;9CAcPjB4@81EkjR%R9G}5XZoqir5Kyuw#I#;2OE8l(G=L}}94dsJ!+ z(l-dP@RK8iIMKW(#yaaL1PXyd;LjouHrahLp!Hw(v>-iU2zr6k>O2cag$IgFbnw3V zpVk<_sM(AZl_BX1AVP>y-n9=CqF>JVUj1KM@pY63vtmXi7`ka!UZ(=#RWY-2QP z`cwZ+`~}pI0T=^wnFv=lYYgzn;F}M*9uMV##sJNZb_bWL_!I~CzzYN!Z##|6w3M}hQI{=Z4wqM2ZrFcNf$mtD&suh2)fCj8(!{W^<(iuDy1dGE# z3*+&^X_Z0yfarp=sVcvA>Qo360)@ceL}0bap7FU*%^+*tLZfDS;Eh2VE7-{#!@b?fn-C=u$SQ%z;wZ{aFn(2Yp`wsJH64*kjuP%L{XrF29ZsW`HLCU7ot1to4&06W0XS0 z>(C6op*dg_?*KqHw18tvS>baZCA4VVQyGM*;%`pctEZ?!pb#ho{u%;pGu@;FAbBi4 zg4GIgqed;`9E3C#9iwI^nrJ|~Y0>1QLYY3sCyv*9463OpZr&Dfkv%K4Nd0C<(pKF; zMKCtmJ_RqF^MQ%f=y^JJ>^I6l_v+1MOUd^TnH2bg}@&~Aa0|e z0YT3j=b}S@lsF?6x`9rT^>h~f4nf_5JViyOT^NX7$wWQ>-SaWqdl4yrd0K#v6{I8J zPZ!R-!S11hA-wAgIa3kW)F)n0uCITPu+bZ}SO{_Ru$NDbg+L)t2>dk!+9s+L02r7( zgEi>y9ChWto1S9X+#+ZfSglu|n)l9|FQdfY`C?4}nQ;TXoj_Qgeu}`Q5GD4g%DPWk zwNGCmkOLjJTu8Ehp7}t6ChXie~~)I8U#DFF{JRBB9BmUt(g6qFOKO);D; zRgZ*}IxZg%SjN-|1gO8<@9<>rG;B8 zg6A2wEcLLN;LIt1>J03uM^=!TEwEdxv6th_*NV4vaww1`p+7&1$nW5r5S=8Ll}G>WV7(ux|>;;j{W#_k?GYq;-=Lu{up7)30VS2 zD#%Y9aD^8{e{IOO1{$M;tT`8%k9zSr!L@H1%zUkQEt|^}udq&qKp{{F{5=HnjykCT zSs~5N(b594P$Xwov7s^eCWiB~6sp;2GXA#7nB|>R6bmk8^59_83oHm1)m}Wo-}IFM z?u{6HFcC2voU@#8fmi`bLB&beB~7O{2zRhUZ1`KK};+pol}r< zaT(NuUzUYAEa~Uy=|y&zY`<;dMfsHsXkl!g3zm7D)>sk3!2gyL=+_R;Ls9NLfvYTh ze=r<~YKfENC-|3bm=t|0);>!@W&81-&)ri2`aon><=>SS#cgb z6Fbb9gr@M=rWa?=gY=simhubXec4(rZ6KGYwcdWQ5e>poO`fIKz;04Tet^Ga$k$iZ zxg%&@0TtVS=|MpAHBeHHxh;?o^ZGn+2SqPx*j*%>?2E7OA)u0T}hLZA>R z1b!z1=ez4a^!Ezrux|s9fiN;2>uvNvLLw{smA#hSh5%^zCKG7I( z&V3EjqN(diWuH`qje&o-LaXZb5HBd94m)G15Be?uvw}-#_>>Z%hXn1D0T)aNSs#D9 zz`kNYp88eK<`ZX2*35pB=ZiNGYAgf_fkNPKAh6t0Rp2PNqH`iK+eJs7)cj}{X{$pX z3DwD;I0P<8HVix}Dqsc97m`|+AIU)15UQ6{ORD(HlVuTU1V6pkhCtUWLQ~lTLV>0= zkbb~X=7KGQ9zjMDZLVUg^M=YizAO-}K+|_BtbQct{)jsZIGS&A>Mt4iNeA%|bOx$}4_SdTpX5>4`{K z7fQO!@EZ}B?5NH{h43{S7af8yl|!?pIdDdj@zv`@QkakzFmUNjAAeSf zi!e$&k~P6(WIcQzft-QXLD`4H#M_Kzt332|DAWblPzV$Pg}~oJV78?ykAUzdfaqA- zgOxl87(he$&j)NsncSGKEcaOqM9f%vLR=%&%%<-e*F_E}NfNKcmO{p5mPxBw+5^y_ zlnL6%GKs#p}v{w4ungKZZFEklJ!O4)5@&czP zq0#fccK&F1UJOd9)G<_MsfKiRZm4lACKY{q&PpfC7f(wiyp3nr)it*Pq%D^snrXXW zEK#se29VSG@D=FC2efQwoe^uVQ^}dTwcHj|VzvWjs zxSgtDH}(Z2>2zgk7HMpnVAE3u3e|X#q9R8Bee3Z|c&(#?5*4e~4|s1d)=sRON-CX? zs&GQbS_m+wMiknwg*u0>@IdjwQ=6zCX(+hRl4P$jkg`nP*Y&xVSk%q2H@`4<9EvCe z3V}l44g2TAERmJ8eRgJwE7LkBt{7vIw(da#{wD zO}3=_863H@;!57AbdhE&V3BTIP$VIw&Fx_+7A4rQ9j0@A`$QmL44GLZ9z$IB#9t+3 zX>34}879cx4(T}(%S7{W@U~R1pW{L%S|;3sGw_2?@N0>*LRll zzMz$`=zIotlxu8?G_fb+to!s#>-B-#M>F8{NSO_#D_7Di0DP1kdIT@e2iZc2e_+!a zh%9yn<_S@j3vE3BdBkB>t5LLYHouK?POZEy_~#DS8j@a}3xPtQ5cpFFEOt|6=eln* z9sSz{6CVo{HU?CKfi$%RQqy_$M|Bxq z9ioo5i1CV;E?-ZZbR*jdPhE5h!_*@2;|`zf5`(*A#;)6`9dAo4mZ_Y zg!7Ev$hU7E3|{D40dp7!&0{r^c25ezXBzOu3WL)xWIWcFaKX05AXh28w_hAu#aY^~ zy0riBB5RI5QzR3T6Z z6as$*f#WSzrSdkN8iTGk7~a1}ZyCY%HWWJeDx=oGtfn)6DnRqx7^o%m7GFDvIeY>A zP-CD4l|hlx9SRi}&#{6shY@3I7_i?kDPVloJ}Sk4_Rma z4&{zP5rse@Pzd}L1Xf!rufGZ7Zz&4*s4E~1Y9k_qY2pHS@<}G7&_NCrD29WdH@JQf zd;>Wo_eu`5CNl4z7{DXd>8_xHL#he`kF1DOIAEvd;KIlTs)!uwLn$XlcDt(lorK6$Rlp8Nl{4~P%{xK2$ zV@pBbRh!>0q$rWoXq@a^E0_ne)oChPXaUl}H5~#&mMSe2h@XPk%tvUj8r!-BB3MKk zX+dH^TFA-FlW&`loL8qO%E%=1k%E#coiQRCoiJy85(HYLx$_BEmb`X+ENKCYDg+9F zLg0@eaQH<5-Ddgy{qU6nuHKW4*jVA$5>n*=u%=^mtp^)&)`Mm=P*cQiHfN;>-rjk{ z^~5-mAvmnT(0DoLhp*v<%e} za$cSBQPW!y)0*BGLP1F|fmbfJV$baXble@Oa#1Ev&ePcHT*5)98f?vtfm_T83JzVw z*KFo`aLq?-1n}g*+XNA>&+J};EJG{=Yo{j?T~ZB&Kp{{F{2c@q8);@+{bE?Sq7#)> zhFOC!e+?0QQf4uXnqH&CnJ7X<=JE(aXg!}Lk(A#y$yxX^JjaApnD_z>gp{FHEUKnj zyHVU*8B<-9ZjQ)G%!ED>_|bz&HfDxSMJOIYOCup?H4i>Sdv^9hFNu)DnHC4&V6HEp zB7|vM-JGH)6WV<&A}rZ+e>+^ioJAA@g+L+jM-W(Ur9nVY=(h_56cT|58Urbcsvajy ztAl|b7_1UMjqny?i1qD^gv5XgEh=Yda~oCKO}id|sx6hVz_jw~e{F!`#ENWkt@jcH zE|kF(CTv7!R7soWgwJMd$V#|?Yi&fJgO!Y2J}}^XM2oY8Ax|m5QIL6fadhX5Z0jfl z3V}l4FCl=p<9N?G-%s0aFB%CMessWp{%|x7it;`(FxXX^Pbd6)3k%5@@D}HA+4~+j zNl~A899arL7ogW`Rg7w+{NGrh)L!31!`!bTD~g=;;6NTD#M%#0a|9h$?(*80S}M5I z2kM*^pGc2K{6fNoCkEm`zWHzvXC`W~uTs;OU@;4ULZA@%y$Iwt<>QumymGP5Upugm z8V)QeOo)4+I2Daa-sK!su}eOw9#X0&buoCvy24aQ(ivNanpr4>*fhA0h+CuDMZpzE0vK>#3`FKZ0A1BwZ3)3{c36as}nA@D~L zuy_Bl(Dwy={{DZc2EAEE6zZaJ+8{tR7-Ra>L2e&&#g1O|m(5Y8^?-9LzRZFor*3O8 zHp%gyAMnPL&QKyi0*k?|+do1`Fg;Vo6q2q0EjtNLCv38t5Z22pKXtoQ2rs`P3xPtQ z5coR?SfR#>Cwne^e~=3~T818!iF(i))I9 zot7#wu)2-{P8<}xc*M1k2vuHN0cde~>@3)t1?C4PV7%+-N-w1>*Bwz;2g|a;1gUw( zycR|R2;4p!@QV?cZ>eY8P|Fvp2HCPPUa5vFEm^Zu7h^E_eLGJ%q6pq`_5~@S*SlvA^IX;G z6_AsgE{s&f505?@eD5&2*Jn)&fkL1V_}vKPJ$8Ghpse+^bvWw_$WQ;`yzbqqAx#T9&ZqFw> z|7-#kx*2@zT>p&*e8C_#29QP9WbcoT)!TV)2O5$OA|5Dxn!@JkU0 z`|0E4yf4t|r(YxBE}&sM%fX8{sm$vWC1qu1?$na9xvkyi(hw%pEQK zvBrQCIEu6>YqgfIwoY$6GMLA+<^@op51@n3h{JsW11IRURD_yyv(~i5<(1T_5GVu+ zfnSCIc2KI(TBb33@|b}&^Y3~yq4S{SlUE21cgKO1pJ@9ebYXd@OIoogniV^J)2mf4 zrqR=(GYDj_wK0Fq+5)sP%MS_Y3NYumF_>3ub4jCi0Ft6!9Lu-$1pp1ohG)y=0>!VH zIu!ziKq2r45U@AyVYj_R#^?T{VGrPci{Cf!-*OmT5J#Ro*e4ECm5WT|bmxc>w#I!SLsap>)E>#*SxP-P0 zfaHb460WfjC4H}IaxW3?U>JE~k<>1=Ua$s#TgFifWL1IJi? z`RXx)s3_Q`<^8`x(^hNG4cw1*0?=^Y9x*jxkn2XLED?}Qh<51 zC04+nX;Na=sQewAS<-j%So)E-zHmtejXi5&Yq)@`GgkPKr%5@MoF{@)7O&9I=$G59 zV>fWUF=&1o)j%(*5GVu+fnSWk3r`GaPo7lsey84=6TlNaVm9QZ{QaoDV3P7Z)^zo7 z<&6QV6Z^I@rNBtMG!fR1I$P2_wo7{FfdPL-K^I3K7&z6|%R#Po0x84gB&J?;Ay5bu z0>2f3wxQmj2$UOE*#w^u$X`#+{Lm8^_S}a&5wnYQWBS^ImOkJDMk;&wpIZVyTh$_b znj1l=&3_nWIn!v@lE=V5AXAZt9jz{^bN^&3=5H4eY^0EsdV@IMrc?4YDFh0ELg1Go zU>oYau@$EmDy1Xaav*QcMIDew2aq$nDSijlzU=T=^iboI&-TQCs+_e6TF0WIfE77E ziEf3rT~xV_O|nOsy+Oep0yhD=UTvbBAKWhcgrIXqTKpOdfkL1V_{9iV0l8V&37MOg z7PxBxoEQ-n~pxF=vct$kL?I$w-e$NM2u%eZ}vV2SZ{bn%LSHe|6c zAWJLq=1fNU5Mf^b8B6lB3bet`Im8!f(S<-EPzd}M1my1?qBXeF9uNv)U!Hh?JS#PQ zfso~fW-k=J`t?x3q4S#Mo2khnABdQ6G=KKySLP^aL~)5UjW`BWBK!MktG9eHb2@T; zO<^&LQh&Dc9sxlcH9uHDvFFkY+&+z(7XpPqA@J)E$bSx*tKNmur=KIpA63q-xB@U- zxfb|Lp-hbdcu-JTP+>DIpYajIw4!>9HxL)lxe|ToaQFd%R66m)3@dOG*9zT4^35zO zySSQTDtHiJ8ndx`E$B;v237_h`s`p@^eJ9*+9rY7#Cudrpr}Hi5GVwGCjzMHQtO3YV=)kp0y^&esWD)`-Y$?b{%;34X_NO-(-l4ya##lX0PO{0460sn8tL0W z+%}BS*R&N}T<=kfe^G%xY%(n$`2#3>jkJ#;ltZpqlN}NyZk7mQn@A!j>Ai_3P(&e6 z2owUp69NAyf#2_I?R&BW&WZtT(no08Ke;42uAGcypEnH}h4Jh;Jp*|Xlu4S)1uPqZ ziIY35W#Bu`W;RxT`C^R<+8Nj*0IvAm%Y*8>T48+hH`c*RDALY9(YNn2N>w9;vEaPOq3$F>kR~tso|!LJ@b0#N z(VgY<9M4NHuH(e5%K0kObtN4pb$|hB2rHkh%-h%=4|qs^zQQw75>G*PkDR?8b7D0s z1PXyd;FA%+69Ya_2dVg3{j+hhk-x~gh?Yhhtw@l{Oq#ry<2RW1>1#*uC5=HJ``P7t z`NcJyxi$r~1pjgi;HBQ*ibNk;Bq0S(bDGR@DPAE^2owUp1_A2} zv@K}wlGmNVS~A=96YmCWZa=eip*&Uy(-+CGMu8+SUUWS-UzAKz=6AX837Z@EpmNma8{{!?vkVvs{W-2owT^z;8hS4S_#0Ai^G? z9~44b`gD6gXWjuVd+j}tlv#St$}i0N<=QT-Xty4!ktWANt1N?Dc5w7_bpyfa3-(C&)~ z_*8u*8UuWv-RTTC!kA5;OU(;`LZA@%JqSo+U{4LKO~76|IcVAV_m1e82+vt!dhwjy z^505y4=nQ;5n1`>jQWf7&gZEnq~*9s|1E6+MU`+0Ud!SQl$2GDwDdlf-Wf-;ZLZ{s zXH{wr5T^A5GBqVm!6xS;VokI{I~tQJx)3M?3V~mMfVBc?l>K{B`=~AWPg(;yi`Iqn z9k{Z4jcJZVXfqmVzs?4CW|MW_adX`U3s@Xfn--FLZ2ro>n687~b3IsbU6qS8$c!1pH4R;)f~scT6DKOheXF=R%+mC%p?aAXE_}rce@-TRbej&^j*JrDxU-xv~BByV~O$ym{Z-*8R)XRV! zh9M#9s$TlF>a6&#cnJ?EaR||t27nm+$N(=Fiz!;HdaW~@0Ss)ao>~KsM%AQCOcJtub)c zClXXx^->*WKQF%%Zs-C?sxvC}fsew^u>hw~ICHna9PJOn#C&w3V}l4 zLlBrW2KcyutK(228<$o$NYl38malC21fsDwspOP5}t8dOwi(5Tz)Ta5fYK#k9 z&f0<*@7eHg@aBENA+oFbJMg&y@Gig!)N1@FaDtSA*?d6EhmB2imD+p(ms%lE2owUJ zhCtsKNZAFqD-p8?1o7={ryg-&QDj`8lUuT*Ul=$(lELu=i}aN;jh^V(<_n~0V#3U#PjV$9@2yNU^80`B79D%b;vx*Sp#dH2ve3VMz;tLZA@%SOicQ z^+1u-uMZHVA0r&q$?(*mSIc-nnmOCERQB-HVdjXuQwaD>>c^8G&;l$IWOzv0H3q0k zOPf={C3H@`?JMwNHm*&pxrY>LdnomS$zY-BDUey*S!dz)Z1zI5rPf#o6at072P1$M zKpO)cuo!L(PPTsjY+#`?0CMMp1nj)g|KQXZQE8X{$!!6zAurzh0Vj4B`t5ppl{WI& ztI6mK&@rvGrJo|X)b2s^$ad{@kl4$w#zLSFC8w^N5EhD zk->Ia9=WOp42TJvpc8~QNUbZupODcN=^&u62F)`@%=JunDSvZgfVEj{Upc>5Htx02 zeVE(e|C*y2v`rGBc2g>W5DlONnl%XKiXFnfkrQT9iiSM&6`uoi6^r0PgD=Ce21v5Hd8lqNlpyPo4$_CQY4xjYiH@CK>K@rk-2_W4G#j8L>lt?2%2IIM&~x@ z^ki_IMg2l+UI-Kdg}`q>pl=Llj%DG`8!CZ1I@VI+fN2nn3MRQRuB&}>b{JcB|J8ZS zb*1^e{I=Mhx|$d4{Zd6|R~>EX#{e98%gU6z^y2ZqPXb|zDx@h3Wqm}m94ue4xlzTr z+Yq56*ZTcRYhDNx0)@bDKp-{-@{I!iO952!d0%C*Z^d3xOK)~+si+Is8X{%XO^RJ*F&rdFRlV-e9*b@;_dQ#3(n zD*8p+Hx1yRxqXT1L)5$wCgOV(CVqa`y@@`DFjW5 zZC8$)=$QF@G^ZY!7<0`Pcb4i(_lWttLT4U&mj3fy@8x=@UFN|O#LLL_+l25 zNw_tUm29aVC_UrlAOJ*%z@6B-c@ke_d;}Bqs=I3X$vvWfVk2C zkSS}xl;{Wgg7!s*W#|$V0);>!@L>p8W56Tlj^9_r!L0&zVTdr|uqOpP%GVP~)y1M@ zXLfV#WTwke-9b(y{VX+?g0`Ba%7$RE<_*g$Do5yT`(d0Wo;Do>$dB-z1Q6C{n5Z@@ z`py$Yo{oz%>t9{QXXb6@j7EDUCBZlQVy zGsSZrxtbik?=+w2pR$gsv>8LE)pw>++&qCC-6VAf<{XZU#+W81=#`9bV~$d@LZA>R z1U?>t)Cf%b0^5dlBm;C0zHoNX>FCsTwu!kP<|ZEpdV8Xm>-x(Mj`EDo)4Jp2$U!fg zHU^=>2eLOE=F`p~CN|Q8k8_5VT^nP~R_jqTMot`gZo+2#1q1do?*`1bD5qIJNg--d z2owT^z~>`?x<38%fD8WYfjJx47ZIjaLN@L@*c=p$=PDpD_$O{w+iXFOAXsHQoypR`3}|TX>=_ zCNDie@_>nWabnM@nKkXfZ_j9|+mux1*bpeEdC+eg@Ib;o=zJb3K6e;lev_QXDQ+Q9 z2owSzia_iGv;%NfXb8A(pdA@9oOE*@ON8&*=XgN1eI&v9Zaot2ZxqcqEysxzjn0Jq zGg-dyOk7PiTelhc@dpQ+KD(>FQ<675C$+9j}XC3VYLhd_RP~!gm0`u-q3??$u zIUa}SFb&+I3V}kP5cog@Q0e`ka_KY(ZUn3w;0+mHJcQu1u67lFhKy8!BuRy#n@Bm@ zDPo%XN|nU;`sBwP2_c)@%HE9A$aU?KyVMv+(M%pElS}?h8Lp{r>q7%@nZaiXD<6(% zvoQV<2v+0$LRwBw$#t(U#s7`rt}ju&++(d}`inECdRHLf}^*K((Hq5`;$ufs~d( z6tG2W3qd1q*axRWaNx+^v`57Qe-J_SM1{mHw?;*))6}E#&!8hlN?%J1xJ{fG>zXsT zatkY)=4v^*#U??HQMaKjF=%937|NuMfaQnF3prW3?7jI0o3+es&^srC{~`;4LZA@% zd<3j92%}ej+Bl7kJrpej7&tILJdThdYyN#lb9r7Cp{*A{EYyGP0YYe6nAGyK1zJY2 z@*|_>i#6IbQ9&*7WwIOFa;UKoC!I(TCM zDVhW@XvIv)rmbgINSvcep{1L)b3F`2n-8NZ4Ez}bZc}qGD7C~;cfTtac8Woqrnf zVhZmxcdVqW?S~46Bf0NJHHXIFyf|NuL3JO!0soI0j&B%(#Rn7Wa`qPtAR5=n9Cb05 zn*Y;YASuj!6}J#51PXzVL_jM4^vv7tD3QhhWmikC3|5EPYP~B1B=i;ZLnR#E+Xil? zH%Io>r$N33mgapk%r~3GSJ{PBPQS5#!56Mrs*9M!yr%S}0Hhoq7^pu~dhHBYjwc54 z;{iPl&d=F+D$piY{2RxqVOe_&w=bd)C9I^33jlod=y|(zL3(85Uy4L3qgf1s*<8I~$S7q0Q#L_smUA8=xA@fi{TcPUfSR4Zaq%~6R-qx}$xrhu+* zP6;Y-r0nK1Q!Jht58jrH?678qKp{{Fd@=$ktNHN0AhBsD#;+>!j_tp)NE$ zOGj|V5v>=|k$769@qV8UFapmjIQ&q?Ja?a=?Ep`O=Fx305bnB&LZA>R1U?=CuKxTK z!21AwMu0i?a_93G4|&1=Qad1Q6j|>M z6i#i96)u;$V|On}0pON{^%Y?cn_f87_?i5n^S%6h5y=-?k-j02Zh%TRo1lbCU1z%=mA1<4`b;pgt~K14r@{f6at07M(3O_WTkh3f2E3EaC=X6Cz*ErmeiHt(ixy;Yb9NJ z-MqY{=J5w#DEKVZU>sC^;bXfKc~^fxzY&UBRp`5LcluAVz2t)I`>DSpR3v z-Jnmn=7m5ZPzZc10;taD3}nn_F1uR)xqIkV>AbEscWToqZRhaJySgZ7MX-Io8>I@f zrb;X*_rQNTP%g8!f<#!$Ju~?C z{nksw#_XketrjI}fu1C?6V3a5;@CtUQ+TdOl$FydGz{GOB;iXFOM}Lj{5)lRmPg3< zki3}>p+Mzx?Rmp(Ft+Cq&Z2ko>H$T%^#M|{(IT`%c=7CR8o^?jc8QCjd>t`5Ii;KP zq6&dRpb+?Q1hlqlKY+z}wT;BtD)GU9wFYOph=CvM=BX(_wTE$F1`-lB;VK}H3CM?L z$-#4T5NG;v2b;cpl0=XXj+foN?%+HN&h+$jI};?Z_P*hEZ4B4^P(W)l(eQ@`fd^t^ zuE(T+Ph6uLATvn1#=z#}ZsO{IHHlKJLZA>R1U?giSpBsMXO_&)7N>97xfY-4lHB(3 z{3j2iWLpo;R90_i1~Uy))nxIf-2e^RA{e_VD%Bh%iY$2!ttbGSeGZOa+c;aiRL{mv3u_5qxV_!LZA>R1U>};6jnPpXPt1xWm

zuCY|J?G}6lrD_DEZKtb_T?TL@K!I zf#cf#xq_%@uwg*3#uN|6u(8R7N+!MV%KU1f^c&A&g)FUCX;O2&H8*yJn>VkLZA>R1U?Y~e#VYkyEtS` zdE>Wra+TL-2K*R+eXy>nV3an2E4cb;)f_cm+X$k}ig+}e9h#+!^kW5m0AW_7B^nrn zhM`;CC-!Ub{TP=m3ASw;gILA}`2`o-v92hlytLLz3GNFqc_q2}Cc;SOKp+gO*BHql zt~AA(PNH$5`(%P}>Zq87Kp{{Fd>#Vw>ATk3$)GEuT{qNKUnUv&;{q7Fk`{Y=gdp2E zYoJoIrp(A|2+>I0_|rhTXar!*2X_SsDjerFBd|0nD5*x1U#1rI^L59UGYJNST9_S? ze&L#uu-g2)C{GQm@p>N$uad}*NKO+KUr9|HhWfwi``|CM7->PXU$@*N>~*|wS?off z5GVvb2mvmc%abldH(nWhaf6k22CR~dL{|zs(cBlU)!0JdjQ?#0 z1wX_cOPzO<*e=00{ogVp)OPIrs&(p{<~t!?(Fy6H5~IN5GXo(p$iX3)M1vqdLs;gk zzS_mVf*e9E$UB|E@Eyj5?_w7Mg+L+j^AXSzi$RhN3}eyW+sd_ktDt?iAn9|BCUtVf z8@8JzEt^1vgR+`odgoY+iy0`38%5kSr79~$r<9hNO5WUt|Zr+Z{qQ|~!>+-fH) zx)_FTAAhT@=#3tqTXr;BE$8;2H3-@caAcx&oFtO$t;PrcE0SG_u(_C1q&f&zZi`}jcIu5a1l?2JZ&I*p&z~e{-IeM~32_z1S(D?Q z0sKX>QnlH@K3ed`$OC0UgD_L#4W-{0b8&W8vqGQ{CdT)a3?*3N$YX?6Omqus%_`a@i2tLrM1zJW zafLW?U9v);5GVvb1pzCV7+cQF_09m571h}K0-3OmoLCs2n6dd)2tYK=+pZUEya;8^}-l~66-CJzx0-7#SZPIiSW!Hkn z#DCj_-~M|gMwK4=g4Gj(Nlq}ALtLIcF~D*)9{ouqPvZg+04uT(C~D3ojtTP4(;nvzm;g8l$vOP%w@ zoSA%r5FBqbY#~?2ud0#zd2MGTz^Y@iO7k(EUI!XtLow<-#@VdEd-13zfIt7J0Zl?% z(V8MF`F!Fyn?>KS_FIxdpb#hoJ_Z4kbjpuR?CMvx31*!vC;7V7*=5W&-@oZSm6$U4E#o*n#`w8*eetqwsU!Rnt zAnwT~xpUu2cqP_~?(gtJ)^80+S3outby58}pSdi-R+B=Y5GVvb6M|J)JFifo!%gD$KI>dk&6`wi-KI0^B>||;-Xb0>NXVw^4i(r9FtBul8=p3Oq z#_iL79ljmnqT!tnH@ep!@M#FN3VJ}by;tk^fo>AfR&0OhIPrC&^&alkF>z$#>Y*oq zkeU}gL<1AoZIrVz@oHOu+S0)I8PuJO3_~5cWVY3G(mMf~vpp)8Uf5(#o9+2?Eix3E z#$jC(hDUayg$@)yiU@NhCk~5M2owT^z^5UQ3ul{!dJLvjZZ6wae`&4F07ZK^xZ(_4 zXP5&W ztNzwX+9z=>Sh$`8NuDRp-rNsaX$>7fc*7pJQ0&)!WzNRr0wcSk6RnLI3I&H~O$nx# z4(l)mWQ$P<6at07ry!tpax%~gsOaZ)w7Lks2`9!sl7(gfiSg43AufHIaH&4N`CWFb zhnMm?u3UKQ99;`N{Gs`9 zX(OY{@M46{`h1Ev@%k>^x`2N4%6#taM58?pU`1XVIuoAh;{=|0$ZJHzvFJje5GVvb z5P?=CXH;4c9uU|sA3`uQ_#r%Q0M2tEH7WNdZLheEE!2j2EX5>vwP--YHtnA1h-Uu%x$4hsNO0?jd0--w!!7H?%G#QA-vTHFL z8HBkT;cDHbNvgO~o*OeuQMw;GD87QnPSJ_DcVvVxDYMPV39=N@7QnARE|4g~x^Ui0POi!Y zxAYJrUCH@m>hRgdKniUvzD!Gf=E^)N#nZelGQ9zi&cGfGAUb)%34zt=B!?5$9MIwx z0);>!@F56TwVaN=29^4ph^fI%Cj2&2&>E>RU!nR>NZ7eKlxYdzK&r5tc%j~t}7I!5iru}2_{^8z)gs9>SudP@NJ zN$-VtgDLd`1Og&>Jc%WmcwE3oN?>cU!nXK@Kp{{Fd;kI$YHhcg3zjFUaGX_IsLVf` zxf|Nhn{FT*Gf=$yk7ZbrfbeELBnRvoy@fq8;9|c~@yB$;)$!Q^9&4c-9v@5lTOHEe zTVG+V0k9G6fm&LpKqhlvce!|P&$b+aC`}4P^Vw&5K0inJ82^$M0);>!@QnzB`glwZ zIUcKDl9KOU-@^6$!@2vxrhcf|gj}*iK;o+H}l?XI$F*QKzAXI>09$$)nF8 zxo}W{=8VV$Zsl=7h$68p)CI@Ks+)zIQ(K+vgLgy%0vK?@;e5dW%z`E0Q-QEPBZQV0|Rg}{$SV5nLPhAhHAbElF?oQ3XH zw)(zm7W9$HOWEMbfITqqW`I{{HRIAKE25%fkNOz5YW1H zI`DEtOIBtTFIwJg6~s54qpw|>jHpQ=?PLwsRe%1m0XhTvk%VH|*ro*{oUsgsD&u7{ ziRrD#b^ul+_nalywp`%O9JK^DsWXQc$0GdHSgQfYlbYXa=8d@Ss##_y*SG!gdSf2cY5KYYM|8FySD#v`OP3W>7@xFm%@ zAy5eXTm)j}+NF6lw3#OTu*AgQn6T-F-b^Lff>afZVLCIM@vIM^_xS886pTwG)e`w1 zK{8A!EQu)O?aqKp)}_Q$nL#@`Njrc=fU@S`PN=!fw2U4y{Y`swnDmJqdxoZUiQ>-; z6c}zY$R|%zto_Lm#w9BR3V}l4ha!*))y9MhCa(n5%*rsE2^Yc*FP#dUcC5{*peo9s zL0JkmZo0x-cR92#u<7NIN-4#}g8&ZA<=?27OjAH}aO1fDCLUNF9hQvt9#A#b6XSkq zHBE{tq=mP9n9EF}On7trKl)t3QGpLQXU5sH0nTD_a&JWx0);>!@G%I)LN%qixXE%z zuIqxPRJ~>ck!m#Nn<qEX!^)Q-rbXv`$>r<|2l#>7H>ME24N$~tn$DA zwLU}L)KCZ%0)@bjM_^g5VqqIsF`7Y#xlW8a4|6mv^NRTL6Ed-`!IV}bsx!ZD$2)y; ze5=BEV*p|mDf0QL0%_iSVsQWO3Mh2*VX}5noCt2Pa`D`r=_7-#EwIG!9m3c90$L3| zO;A{*-LST3JJC*Yj&X4dfkL1V_^}AYGPR_~>?f+E1g?J6ptFhIb1cM&g&%1m13nPO ziM^Ow%&9uuYz(+cQY_T_t;Rrf)!;^rz1P3+0tKbnd71|)PWjiFUEMsH`f~!+vobv- z{#0Xt{zIL!OAmCC=vwR^iYNpMfkNOT5a9Q$r*+eoLW)8zExOXY)O$i8UBKW888Y)E z)xprJIf~D%H}TvNkXvpHwmJiTS^$H4$K7Hr$jr|7^0;8NE}&CMYz$h-o@V~)0|WaU z!utYRmC*zH2 zKNaprk|sA3?_jl*(Ig;P<1DF#uVNPhg+L+jQxT9~^4hOsvW}s;IioMME_egc)%1CU z!-TM!-i%mO*snDP)C<4@Mlv?11EYzUvRK?xTr6yN9~e*=xsHD3z&yK{!bSCE`8*O> z74DPv?3H-p7Z$Oe_?Q5$ospB|rDxV`c9wO&ikcS!g+L+j-3a`LcRpRQI+#kjhYIO) z{{zjJMPpIFTwTFaqMrwx=JH5mK%NN*_D{nL zE~hDW%vt3;GWg3hZm2yhlz2z(9# z{ab|3$^3~-vAcEE@n9+u*9wrYr9Vg_X%5NKHcm-~9e+YP>L%kS1qR~VFB7r!uT3g)9qdDbbPah$~j}bUqgvpT( z7Gd6MECdRHPeFih=ub)Z@jTHJVTZF4bv`16rIzNml>ZPxTSH!p)XKBIK*|g+l}K8W z)*W4(fq4N_^Kh+zz0eqlDJ|jMj|lRL7RB@MvwE)0oA0_&taG`}@waFCI;KC4EV+#t zf|K1X7Dw#O>@{c&g+L+j%?S9-{LOiMTX_Eb^jc>yK7O}y-&SFqA30K*Ew6q8S>Es$ zGcvSK0L*~AGOKytq|DJG)W{a3NB%Ac$$$0X_Zkzc2k%*nX7Z+87JPbseN9&F@r(dJ z-V%hb9{K`WxFPM#I8D413V}l4ryvkFr=OD37w17+8y*^9JKQW{OSPQ&Qti71lx9vL zFig@m{Bw%B0<;5Y4!AGK&QE6iyn%Gi!$b{1I&!Yk~LEp?NBMFb*Q>26px$AJ8Jy{1GZtNNPx)RJ9rdy*2K7f z^vZk*&LRQ^Qj{}Wymn%5uerEp?Kd2m$u*svy&AhV%I`$+h;=QmBW=!t`exf1LRNvK z{ezqY#+*D#xnzYvA@KbOv^!U}1)B4n{r#DJc?P;KQe1QfSL)le5_b7dbw=joO}r_I zL%dBE&Vj0##BruR z$;Q%Y7sSKxSB|g*{PpC8tDfJ_gBcvkzrP?%o(K6MDYm`JA}uKM0Z8zw*g5#K1OEI# zabvoVcrf1y!aC2s#sBJ067;6S)jK(IV}Kj<#Gn^%Bf3)Lc7%5ZWR342hJ7KmEhN@0 zMAvsX^oiEI5GVwG4gz*-V_(q5K(+|n)jucAFUo|LjK{efp12fENo=Ft5&vqV1Qc?9bUcA5ir=a}s^1+Ff}^4i-tKiV05%daW&#XLX7 z>WW+R+#+dgKzXWy6l|a1bXtU%9n)|I^`t*&fzg~4RR|OUKMeuCY4vvIcL%&r=&k(I zl6`kRw012}Pjm(?TdBZ{vsHN&({x&@AvOU#^IS(Y?S|-Ba-p)~K3qAfIa3LS1E^So zz^{(QLj-@mB38Yx=yH^ijl{sm5gTpDlkf5YjxOvA2Hacw^}VaGavd+6UtN$Ec~650 zi?7>67_1|(F^C4zywq3-6aqgD0lv{`_mJDxwh_CDe_FP0&PV%#@XUZ~+*ro;ILH>C z*RQozA!@M6)B^74AQ}CLNi^(jL{+(B$n|K{>p4D`)!U2WcqAiMe+4l_fS--yxk}F8 zSJ;U7gbLqRwLvR;p#|e*k&5-QbhGIth&&j_z(a!+38AOQlW*|>%QVR2OuefR z@WSCWR$h}AEJ^j%HE@a7GEcsE1>}{UdH5FL1jLBvj5FfeQcAlJCd*;b7G5VpG6$z-8foPQY11PL?l}U6(fJS!jF$^u@Cu~D^o^w4ReWWxoa|;q zW>@T>`}%4SU2DCUd?zfmFj7RD3E@*?xAE#~O1}^&1ik_R+_czj_+}292;aMMM}I{c zKO{!3SN6?+%K5l zDP-0wsL%$C?onF=pRb4~DxUi$q?~>uA@%TbX{Y40lG06j+4}YMXmAXch`xmglH26v z1^tk%qS7b?ek%g)KF2*TEdt;A*nsRH(QjSqK7=51BX9M8r z!J>l*CPMM&gB=*nJq3AU&*pMte6p5*U1Me5B zfj14r6$a)T2iq<5ZbDLKg+L+j1_XwCmF{%og(n8QX}lr)k93(E1AgZ!oq^XhEoYm< znc3dM{>@-nZQJ#EW1y?x+D$Y-!mEM_?h+_6mv?^OpVOGl*w_Sc?%qIb9#7WtCw(2H zf4!)On*_He{{-F^d63Y#h$C1PKwDq!Zc<{uy6; zbIy~+{7GN)Z1p~S<#mjE6F=8{EYjI!BN%kK*2|gWQ;);h@K%u<0e^QP?DlS>Qw!5; zODgR`pb&Tf0lEXHUi7g5iRF&xhJa6#ZDZ=;*D)u30d0!3OnG-4YTJ(|`P!r`i4!Wa ziMF3CkO3+;?9|Q7oypAoY)o0WM|#o8vjcP+lUHD3VJ#0Hk2;&?g)+#O!X3V~Y)@cqYkC;f_7_Q3lC zZuh3M>I+CU+y2fOmnN%a43A($s|BHjO9?KJsmPgS8rehQgo&85%K8-a_eor!tWDFN z^};tD@q(BwzUMJ)IT5IEKft=O?$`=A%u7i0dMxEv1@CSQaD%;k1KFZ*Ww#GAx;bhb zeh-1YfxmM=i=hUA*8~BG{%Fj(yw`sKo^41yg5sXvw+y>koso%G z-|&3GwcwKERjjQaYv;{TSW>xA-ngEr0c36~1ToY?C^dnh{4dgXoV&Nw`pb**>_gMU z6`_pAZoyX3FNgWTm>#5<>SCPAl?h15jFI6%uo4DCqTqG#AnlIzv#0!?8d<+~*xh>R zMtl(&%~-bv-cAU6;cB;le!;d58H8T?iBcTL_@|qXQUjK;>Y2wate1 zkDxa0Cb;``KiG=>p-Q~)SmO+d))}-C#(HK!C5|ebo|*?{lMYIpbHT*_!nP1TzN6~3 z;xE4;iFUww{A9tyZxVckH+3IVvzOIl4!^_^?kvmvh0$`o^z6ZmZjSON6lj~^-GQ87 zw8j9t2c~iBV7+^%7oaKALZA@XLxAsCeVdzaRJ)Jy#Go|>se=f7*-^MLcw%?kOa8mG zc(Go5#Mdu--wrsv$Ds{mbv$yXs0{A<7F!_CPZWI3FQK(i9Ot=Lh8{iA$n; zM(1vq8j8ouxGV#_SAe_fkvpKJx$Ul*+@%kZ6zyf)ra5bL~($_U}0c|wbbDGjZ zz?AapgiN`xYW;T(>Md7W8BaoqbPd@ANzwG{4CL<6OSakJGh2v-Wc6)5rse@ z@GJuDe#BmYhXTAO2;1*o5cmdy>=!!FM6HFbLcQ~0VIMC(oAS@`X6xp+&o;q`dM=#- zVTC3D^}Rb-O9iY1IXe+WcA_?FO~sBD53N@Blo6v}q@{mRqp=H^v@^}7T%25B>SW1#H;?;&WL(0_PYzrGAL-8o(x z_Lfyzg+L*234wN7(w&Okplb|*oJiVoSqX}EFe7pCo(rVI?@v4d{?=ibIVpM4d5k@B z^tx_k^Quy6b6$1!)%JYj*ad#zZm|5fT$%Fy5p9hewgu4WEKb6vLBYtjaTw=x+*(&D z6#|981q9lS$oH<@veF~SJ!vYWKn(i&p}eE9d!5-~!Xzy5M#21D$mr8lQ6~H4)0}xC zqZOHg*HkBqOhB`*XD zfr|)O(WhIGw*)%lkpNHpwlpPZ*oO(C&Nj?7N;d(vZ9IEddojC@P}kZV7b`SZOp?lm z$be0Yt1!uCl*+S&zy~5Ir2HnnJ@Gg8n8Y^cpm&j9LI_!8GByU2B9D(y_~2^oVOnAn znl zv^y=_y|@|qzV*8jYWxE>@9)}2G%KRmNJlnJ(%qCkP7hTwtu#!yg3_E8#oSy`yV=+n zkWHt92L)ikBUM0?0<>ikA)h4)2O>0=dGtt`E#I1;Bso(*Sr}nQcwS19&@j*4D9=xr z`7#up>u;Gp^BW0(f(~DSOb^eldy5D=fb1aT#dzY-7S`Cl$=oLnS5(46pb)r(K)w@g zC*Y3?xbC~$+6So6eJ-7W>9^6g0E}$gM4&F^_Cd<4Vns{lD#|EeJs`Te8mC9HpeKz1 zI)lb!Y!C9_6!uQd={{wR0b6(&%ZIqmn-RxSu`nGQdq3!kxH*s)XD@!se3i>1!5)46 zb4GMaZ#aD|dD{WVOCY1qp)v4H<`rUNVWmRnRU}ylIE;8HC=(0W&;YQ@kt}yFb}_gb@k_7UxP`u4Y}X>t%bOY zTZN_20(INVy{Wmau@EQ(UP8d00<;@Z?p6K+Mt)bLHOL2P5d*D3cYwP-*vU%?|5)So zqPeV!n5rKw0Q9oft|e{)41D5*BGVOEFQ)7KW)k;$k&x_h#u~9qc*pk(;3!4vW>8M@ zZo-KOZ*ZlmeN)tV_@pV{MS4Y_8w7zaF*#{5Rc5LH%SnHuTZ&=qiW9wAfrGTN-gJfPUvJeXh8S5LpFFW{TXp0_{v z>Se@E{TZ(B9Qg}~v?H__w!5^^HjKtOqfVDr3WY!+aDu?}zM~rzy@5V4pc@f)?r=Zy z?abWCLjxAhPWrCk@kgX5>--w=uwYa|D}JDi=DvuuS$^k)^~~&KokJdtfyTg7YWXyU zK+OW|@~|{no;(GxS-^lI5gyR9Bap`O5rJvK15V=I#Y+6D#sIhB8(z2s)v4DW*Eh}S zFCC>LZ8DQRC&?F+)3udCAy5dMATYbRxGSJWK%W@!0|eZ@uFI6((9Fb60|n(B4bai| z2q&q1px75~wT>$oS1}T$vWK^V%yShd7HpRv5dcm9N^%NknJK6`<(Y|WwA`hv9|b#; zY1LOX@n@ZYM^RYX-16v0Uyp@lhe3;6&@X2M#tY;_ZeGZMP2bWO=xg9;cs1{H`}mw7 zX!{=X0&%pkk`)4lz&Qe~*oPa@T7dk-z_{8caDk^*K$-!vraHH{*~5L0=7DsTbDrOa zY4}R5c6m)C3DI<76+YA2gxe`Y*t5p@^m&2QP6U$wIaoV2G>r$2(fv5a+~SZ&(~~vx zTYD+uCcsGHkR*ma@?y?5Y(^G3X|}wS*BgW8aFNB=vazZ!KXi$9o4#koQ}4bDO*bZ& zo)BLSSOqKueiH(%)^~Rr-ssug<&*_l8zFL*Z?3BT=Lqljh{fOIt+ma%T>Ys&}?DUO7ech!%OmfhgqW zMw~8A^q2%+y6{WjzU~lXMt8hCVbd(AGof5%qY7|o+xi`_&TU6QX%mB z5XfD*%;>D|>g~p)+t#ajzGcxL=uHg){%U{F_1pb`c*9q#zV$L$L0MH$f`V1Jl6hHP zY47l9xl1(#p5#JBXebY!%4a~~61lcDENlPsz#${9`zg((DnAp*HCKxLO+fbUsMQTK5R zwwo9;Kfo3lSfbqCG&iF_MOSS8%Q^!qcjqIjA^lG;E5hMieX7AFds4T}UjSa3kl{s~ zG_Ru!QT_U>4=tadTa?WcHrXEh(*<_Pbe!Vc>7XL&p`qF8B#llC6R>d$V4@NTYwhA&k{FpcGH5~jmfoj!ox6~7OSUwG1x!juybQZL; z=`Kv$D>Wz^_e#h_c;-!F>^?QnjMO-1+ z`uN?PU(w?oVe6z(rn+B=Sj8#?eiZ_#FVKCU?F7<`V{4EdqSv197_yn*m#@z^2i3)m z{cCXLdZ$Zg`uM~Jk{=p~&9U|g*6n6tNZ9^WM^jjI z1@19S$m`mq=*UmJ#|=zI`pc@pEb31vh1U@@=xdC1!F{~|)t#!bmDnTJ-f z?*@_cG3-1hZmAl_$1eh_!W06(4*|c6nCNa@?hB+T(8hoih;pM&f0&+b*6so>9L6UlSh7m!HL zXmhe_lSF+1P!*yO_>~BB_f)z$G0__>^8MZu`N?y}qq4(Z-5n9X1Y%lOD_OCcaqSaE zI19KW!}8fS2+v6YZK20c1jw<(uzfz@41tSPs}0R7o3v@BAk3WEtW(0YnQ>nAl+?*1VR~{Kiw$_#)3E^-$V;Ua$>j)tHbqBAD?#K3ed2*%X_xy<4!U=7g)S&it zfK{YI;CCU=-Bfb)E8H5Y-<7G8-Y>Klc1)lst$5sy@1xa>K{2`+&sLU?VV zsX(c_aJ2F|7;(4J_V>w)S2SYEfe!v+6%TAB4^nVt3hp$BelDw~l>-kt2@oM07Nt2) zSQXzt1aapGSqbiPW;U`I;@%1Jn$6_Gy^+Parat|(>~C3PU+A`{xK(V>Z$zkE7XrT; zf&TVtw=jQ<(8Nt36eK;5=Of$Ru1?j78E^kz0k#z=sw`e&bn&4EHIj=DG-Hu&;+qtQ zrm#DZ%3q}#FVM}ODL<$!T$OVja40Ci4q{B{c|5YPTN%|J?=1e3ZY4p)k zYVV%xT*b$9WHI7SUO?|&-qL^Df#%dv>#+6Ge+;y8R0#YU1k!C4-|M5i=Y|~xyd5a! zZ5F8s`>ZpFS^NfQQA_BEwM8pjV&w^|^Dc}^myNUL$xKYUvWh1WYiLCjucFc?p;qGj zWPr7Vm0N*4GiQ`PmJkqR(odQi)KrzbgA0GkKraShrbFWrI-qQ-TrjjR;Aj^7%g6P_ zdt9Px6TdV8@#K0ZJH*Vrs98JE?MB8v91mXckAqeY3xVH*K&;5&cBQ)wT|mC+hI=;{ z46=@Kwz0%WzW`m-7dp6bS%Ja)Bt$=oQ#mUH{t5#5KC)X=o(9AR{Lo|Rg=WCK z$#~Kl#6&(Hd@eIsw^p3Pp(%+4Z^R7Rp;;25+|EiayGbXm&4w^<`o8lUH$IY2QT8WZ zV$Fn;(*VXh8WVIpp;eH9uEk9;C#KFR3M=s0bk)QM)fIQ{hzRo%dBTRRaU1C#zl89s z^E83%vrk@+u+Soa`jRECgJAcuEh2Xa&NguxyM^Ut)~paH1m*~&yQnMr;a+T?8gx4A zTX~esHy6r)RZ}MOWIu0U|A~&{opUtVAvsIqFiCn_n}3J*ZgcJQF(F zMVGrYyl7fH*i4>Q?0QkXSoeu#J%N{LFkC0TwPj@%F4yCBhdHr%2*S!(VD$TbTCda7 zgCsupYR?NMH}3n_JBg6?h&TZ)&lI|LVZN^776OI90Rq|&@Le@l|JV(1lQ61GZr(%I zWQXx6@kT$$`4dD|XBZ2cY>f6ER^GdlbzhFwJ^)LS#u_Pk=#{~{>UJHty1|&GbT(48 zX-IB&CUD2e$jDRW%s=snP7&@jWCx7vTe(Kjc0c-#Ul$Z(?a^WgkLKPnX&^mDE!z!) z@zK%Ko_R&7Wxi`YPWauw?Ky4}frdR#K8>jRF4rfgDl3rdvUu>JTLOe=5_jSukn|I(?~Kyc)9@-ej<_H3~7pduT)P z(J`jlJBIA(FBqI`Gclbd-FAuG127*s$D?0V%?p7-;1mJ6iQ1hs+=){C`Rvu(m7ci8 z-5H2@I}?4H`%hMAC50A-LU#SIx9-<1)q?Oz__hg^YMZcJ(Yx`CKlQY#NZ?sxGv`&C!)kU3n@5ejx(da@(ym zzni5oIH>;5ZWr-x2K~XXceO>}?U+6drHy%E&IK)A95)ipDAFK2kd)99Wz^E7M|(Z} zFVEE#W0sE}J-ALtDQAG01rka7u3@XEOmV2uI&lu;=+hS%Ku3pb+>I2>6}D z_mJMyDDp!O5Ex88+X?jBNq0kkaA(j}8eM3|#dN4+9YZ>Ua2enVcE<;4&?^}M^yt;m z8>9pCLCH1#jlRsMj}{5)V9H=zRTE!s(-GaWJ1M5p2iW2};FwJTv4X*tcoN*s&|rE{ zoic3gmVv-Tv7jxJ_ns~9hsUj?L(DDx9i{H&ykj!zQfh7X% zzUg{_q3+WSX162}e7o8F9b>wm5qr6WA1>$%jDXd1cji*mda%#x5j^L@+ z637S1lAZ)qVx}s-W|B>w)nQWS&M27?hvZhlS=1VYajC43@k#FH6MbTkuuqeW-ea?L z8J?SL<=5YWTSi}{WLpw;3jVL(KV<$KWaX(4_{|7#iPsYbzmai=9urotFp#ghEy!siaOl=16(0MX4W4Jy0YXNP|I_+G=4}Llb8{~nvu-!NEx1Zt z4X_=Z`Em=8{;Wsw>$!(D=7vyj3#@JT3efDMOiD=~ZeEZ$YxXiDtvF|u_DsIQ>{lhd z7k~$9^$b2tD~9Gn)OH21;H59k-;^J*DVcqkw8;t7K7`kM0r&zzuP@krok=}0c#KsB z>DM#$vHWDSaUbt~FAR$)+(FmDof62W-K>y^lEK1DlEPPZ& z7Ghei5VO0mii~DSGY?BAGtyUZ7R6oyF1G;f9k||n4X|H8_zA-S9z``QByhS0h!*%? z^DL%ZSTTRE67L4PTqf^=zHaZwmbN^ZI_nSr7W1o9{IUCF;8q6u#XvUWu!YzaCjPSv zK+y2`Xa!Rd_AjC99{^hy|&yV8>^6^cdU5wbZ+JHH`#}y%Djx45RJV4px$hBny zmf^obZ9s3ZZ(dSwAitvOhlQR_g5Zp3Pu9RIN&MJ+GVm{Dz&4HUzt}i4;hU@PGUwvf zpf?A;U)jwIn>h;O{JjbAx^lmjyr@wxNm3#t3yY*}Su83nTONen2jt&91Q3$y#?bX7 zkHyHXckTJ7?w#ccUt$ssgs6(zv){$&*@4P74j?#8pNNYfo$}3tPXp(O5D)Nn@Z6phf*I0s2 z!{2Z@U<`4B=>e6;lnL(VYLmhb`;&oxECc`h|6=!8H81@wIb007o*WLscLAUKBq@z#3W*iD%3I@!A^X$CK(7UR2!YlmpXLfYkDy)!U^8osoIb8m zy6o${Kn(Ri>R2u&eMUgN(b2WFGXjn%dO?wN;C`Z6iMQAW{RnYB$L2<->-zhV=l~)v zpTK(T=)h4S0p*D?Q`fWf(fnlKKb3*LZ){`FJE(IGcbf{II3kGAJ(u3K!~Hi+=2&QM z^d%KLZRX)tx>-~m&=Pb2pc*K!QU3H+GDOsG0{kjs(5PLa8lziQt)O%Gpb$JF#!Gvl z=mhYMPFrVOTsw}nXdPQb2!YYm98QcXe1YEnX2AkWC+ymLVg4#h9KLG$1$J^Nki$ZN z%aJjY7Z<{{Tz<4Z8Te;1&^Au&&v^%3;}Fd@WPrU%>^%RyJ-w(e*I6ilp`8?J5*FjF zLIj+E;8H%Cqg?Bu6@gTOVHC#UKT@EerY)Ufr)0!8c0*vdgUJ# zVKNaKFtPPwFx(Ap%}3;QPu#D$hXYgL-rWllK)zu1MJD{-L5_}czAdi^fA18zFs~n# zPX^x0fb7azcclkLXI6#l^mF@t>+{d;>8ZNhW6TxK>{;lpRwB`x+#XMsT{>i?rH=_h zsxj*^p|s9(X)YAW(sc_GxQmNHF`NUYaCN2ObW**azPr(`r+&m)O=Ig+!He|1 z<{o<54DrPvj?CccNd6--IXm=#;~OvSmNVtgog$kl{jfh7crF9ETYanO#X$JZxYedr zBELx;`F}1E--5KOESLG)O2^afTB2FMsz-eGJv8-;foq|y06`;(B4jRw={XH~C!mZ6 zY9}{?ZdiL7NDl`Es_HCg5ACE~SdJ|5w7eJ`X7mMNE4rKkfPlF0aF{wT7qnkd(L}yt z`L#BFdhkxLJk(B>z(@Saz<(?QvR7oM;6L9z((2xk&02W($S@suJizZhiyMB8=8xU> z$D(q#FWIvy)Gf)D)q5$sEGpgp_+r3qA)MU-4p}bPQq@W<^OW6@q>+wQE zVo>hxda(GvN$^;Ey8!PjjRBVf;a^JsT_r~?-_|IE3+@7bg}!C&E1=)PtY?LvZJj5* zKINa@CjGx>x-_i)fE$CD z1|u%_W-ih2&fc!QZQ)$=$#^1hU?ap}7%?$Mg>8SD6>7eYw{>(^U^%>N_D%ZZ`LXQ( zu`eFaR_#ar$-rwF$lZbMnZ2ae+>~#qG<#y-FPtQ-3Z?&A3Vy_DTVGg5Qi@Sp&s)|X zaFqd~D1k;5l2MU_k~4bkz{hxnNOwXp9r)`F`d1tjB;MogBBHApM3s`PHxC3NpbqV& zT3OW$8fvtp|n zV~M}$)J_)2udIZR&L;!^at5#mb7NFGx%O*<*fJZ1qMM}tWk>WM+33WX?k5iIZdri- z#)P#>(mN_e#kl%aK&UWr zC@hT=oiza?KdM>6v!W9Z;+17t_XaVX_i{1lMQ(+nJpJbkfap3wfKk{<>cznIA7~5o z2CWSFfZP~&Hm3*^~Ez(@4Sz`vh? z*kHaTj$3TQV~tVDjjPPNdwA5x7Y`%6^r6-ztcHJJ?s`4xJ^SS8_W;cW%1Bo`>xqFR zLamh^N>QuQj;8uzC=C1xLVQ7BKtSwu&n@RR=V6vLj=EEp{`8@V-|JNHK&rXSFpsD( zJteaCNAj1%Fda*sKg87JeNn)R%?}no7u<50$Aujz)46iA2tKk;2LAO7Y_{4Fd)h-s z%38L)p5NNMv-0L*U_N>ne`4Yet4qHENH#=Ub8={wLK?tCa^cA=q_Wl@rA=Lv$dB(1 zz?K&Uk47cwcA{)5guixX27^$nCZzWmYd~HOEX4EXS_FbAS?LLC34FRkcTa=9h^I+> z(fG)$Z}6daWVn#=I|3X_el!hmpC2Zi?}d-Xzng(+JIGF1@ES|DS?iy7urXC@u|==5 z4jj>gJ26*(VAigc8EVN0(OR~gRWA>eQ=l)`7aK{1T1u@QKKvs~#mGpXl#;{nEi%G+ zEYgMg4B{L*pp&JqRBM5>j_bVFu11Q4=npQ+SP#g{5%|R*)8tA0g7#aST#6f|*3x%L z|GHA&{;-=l*U@0DfB3`60Sm|ni{K;rWZ<99z+yX$+pTZDmwI&%`*t38umF#&-aqtg zs-updP``E#FIO4+1e)i+SYpse04WtkmU2+F?tM08_;Ty~CBSb~HkRTv?8mPn7!;@&~SM%IMhu{zVu zy*=-0J;u%u4&=*ELpK)1NA;6|e<}mH+rF5RP1!w2zid>M<<-52NG><787Z==nGaxt z^aJYG&e`QE14Y~dhQzGxp*TFugc*-0QWjay`N~v5TPtSVCgKMYIGcrQfS?yXhY+-T zcrl=JGpqCx=@sVUVgNsPE(QyTT_ojZV5#zqS>m2=zTCm3kaO={Qoo|)JDba5e!YD) z7|$p8o85dkpA7u_8L+)}yNMFN+Dro)bnObzCG9XUk?-#L%Y$y4Jwme!Jh;MR*dTxT zEJ|(NRh2d0(Ld(WjJglx0x|T>`$dv(Q(=CF4M3_<}VI|1!Y8_DH zB97r92YmSx!a@$}uXhtYFyQj;6UJwRq=jjX#xtp0z89<_{hK7Vp8i_^55-TwvYU0I z!-+hcK6-q|o4RQ4yX)ek|H;7L&p_J(FLf?l3=9_=w!7$CxXZksNR#B7RWV=GcE3A zouA<#2|w`n&V$2az^kv5DEJsp$`< zl>O#Ox=~K07}+3Uq~y`}4Kp-~eqsdJz~%P?@OdI>+=&_SIN3!w%hugZnP{C2u zFQV<##*4wP|Hkp=vi+!kGH{lGwy(ar!#ZAXV5t$ zE;ll#Y1sJQg-qzXxPv|pkKy^fXUF|j`?2_B;3Nan`X9E#lU-~!{8xRlpSzOo&{e-F zFisb!b`7x_1ax!xOZPVdZ>4{zD?^v#)FM-dJZRxEVK;()F%Yh-i)v|f-ZQ`u9U{iP z06l7!Rb`fbJBSJiqbZ(|0i42<`j#U$qBU#={gzihk*n?2v3u=nnS!bnML#r z`9-kr1ZQ6v`2ObNL+36g0qXqJ!^DN)l}`nCeW*Uc>Z^MF(4P$a(;27>|I2Aqb#A)i z$@j0F5RgE{G<1u)jhiQz+ORNv!w&<~Y#P$}g;R=1FBDR%Gd3<7^;+(Qh}8!j;IdG- zL|d);A#}h1gO;R8zjGJD6^3?{(8N4d+E}N}%4T_6I7K>Bm_3mruRD)>!4F)V-nE%J zn-80qyKvvUv6MP9rHX_c2DC2cw(xILkDra;>13R-nVBkM#JzT$LK+)ClBS-dKNxBbY z?_mfX+ODRIeAV{1Rr6NrTI924h^UmTWtrE<{nv-i3=n{5YYM5EMAYwo;er zDO%OL)A&_I+zU#HRNE5X6|w@jK7r6#30>)hw!>xc8u+p(V|=yg=~E;5DdOCm8k^6&lzpfq_%0uWE-Gw8vBm^`(v*vVunMlK_fH(ZV4lmkvfPwfGyL$q zs^^a&z%4dHvJdVgp-=|i>xY)Nf+8C6j~fBLKk|LBL-107PCnA>j1=uCv2PHrXE-~t ztKDszuM#ZC3s1VM!%pr*N%r`aOe8&sp4UasG__fp4b1f|V}bllta2I0enfhGU*3tp zwtF<($q!Ec25_mF`f4ar5Q~e!3!m`e3ZBN%f+hb+C@T>xUVDlkcMTxWXAkn=PKUX1c5g+U z7O+FcEGgV&BM}>Bz$&B96eBxpM>^ zuk>OJK9*1W$-uvn0o|2lt$!~m8;-WFTO!60ndzw8cvv^uXOc2O=>9z}j-d zUMqhCSN5o;)3>4Ya2kwz_av0Ihou8hBErsu!cwYWjdrW!$JJ-u;OG!O?@tE)u?+a$ ziIx7v#N;n82EGkTE5V3CVK~VsTPNanZnl^*{jxx>28hA`gxN2<8D#WAt;>v8=ahyK zi-*>nlv+h$A(Gb`)ouoUFK7kXp^#6d!=VyVd-#O|zA}J_TXKEj}wHR2|^Tw*vCNFc?&kCuN1lLO^QW zF~9-mVi&dF9m1qu1mFzMMW|CXMH@X{xfpoOJ#|qPEW=0_>_x;m;@!Y|wu2QogVgk34FSe4*|IP;m5HKVT7pn0P5{bhpIT@zz3bBDQEg%_jr@LI$`Q zu^0Bs{&|Txm90x`--^<4vb0-n#3jLd_%@DW?xai>NW9dInlA?ad#2T6N6W+A%ZY}F zUQ$s{%*u6p%aQ{u`>#vUgDZInu)O)qI^bBEsBDU@@q0o2B>!&d&e~7!9++Gb@Oby_ zmT2}WV3ob0Jp;w+0%?;%O{WEkQ|^ev*9SQ_s-Ryn7>zj$yWdV=A6krhARx82M|k6z8;80x7Oj6{Fl=!k-_GJ!8Pu??zIfg6BBHL*b4eJP zMQvF0sVrKsaU=4mX&jLYG~`W(D*9p}wqhJU7lah;uqtHmZV(u(spq)C&}eTUov120 z-&M1)mt>B<-i9i|l5R<6{>fPscQJ<#%!&I_0vwe=9F!}yHcT7$w{&d($+lcXRQA0{ zr96j@OL#BPJx!VL{dkZmb1mVmCXjY8qn;9Q!^dn@7C=g@z&^ZB27WpNzVu_cf`Qe% z3k>2={ux3y9DVD?;~<=jRuyb-3imMBu)0K;?*-y6ZQspr!-&&fKO9;?(2#n)F|*D@ z4>bd2Lmw$FN_eq#fr<5Iz!J37t7bJ)+$Y)tMJglM?&Myt+H>GACnA38aq-Cn92pRP zjF#b>WYN??A7QU#Eayc)tWv^_)H&3NtL}uZ>thi0Zb9vWU(v&ML~iW_YcYu^4*;W} zklgWJK%t)+1Qm#R>inbxCIJzJJZ_m@l|Q{_$Ped}fuGKRFW+go76z8PJXrRH`=g`= zBq1;)21eHK@))6T68m6z(iO+K_1%lMKRu)7|8M{(^Y-@vOF_v~zcN`*^i!shDTOcX zp|&JnkRU+}g;_{9Bddf8K(P%D^;9`r6_}f3c!e7T&K8Nd2(%eZwTpfx*jpn;P{(^!X zG2S*$KQ)!z?-0En=zL3=(E>+k3|cSWD%lH8t37D@IZqACHBt23tqU!D=a#UpXk{X_dtdol?UE$>S9|; zM#qqh&0KTqTh`+k;4NehoF!f$Ux()$2sUUWH8?C9kH3qltK39f;*5G*p~ ztt374pY6#mL`HiM*qX}aTRR}VnCt)7i5bO4#xYS(iV&;_EX@`F0*`@wUY`v7f(*zW zXe$fp@RuDS3?Zm{rM?oeB%o>M9Kiz zT28E7s-BjIY9k!g%X*-caiejyU_gyYkhe0uO_ikFrzV!UO^+@#K*G&nKB5G5%I2bU zg;XZLNwD}_{y1u#txt`EvN=sMp%RL2DqN_a_5Cnt}h#n{6z3 zTj@6z^INLn_cfGhqZ$lH0Xhh!rH}s(_qgx%u{E${heBiV zOHn~Ruwucw$X*VwQKngV1`EOA<5gULM*ymGEl+^r03@m;%JsVJb%=nbr)YhMibWI$@HLGg($W4{9A znX>tcX}e;3qJw<&r09Kse9G`u0iKfN)+v0Z*ZNhztNezZ)_adc_O$FvY)9XoAh8J8 z&wZ*N9mEW$pj%rjEK&+Kh#faUgL9e4Fc8`2`DEa`Gr(=KU9Z>{-}GSj!4>!6<34jB zwzbjF-8e$_s}kw)WGD)itOvy~hB)xQdxqU#KksYQLbDu{SBgv@unIWQ5%XY?3*hoKz7r)oMaz_RC8`D!pGz%0`qlGCU#C_7C$AQp0wv zD2R4edmc+Ciulgru0G>65@>Y@}h+T#3U-y!&hdkA31@+#oR>Ju_pA39k2Dos!=r1nQvQ;ixysVa+@@0sH;e;BDAgUD-R1byT z(S5&u3yL5T)D$W%q~A8nOGhXu>&U@X(WC++JYMYsfch$nx0hFOZ#+@gSi*B$3{)dk z1BLg6@RNiBp+15Fpxp*kpl|mpI#fthr#v)Z#8c^Dej|b4&7Dw88VAl%L<*h_D6as( zMK+D2iNli6B!~Y_Xf(h4QoxXTF|eN;2qW$Zwm*?^-JM|cL28fNIt8-HvCUz$c?_9b z9;z=qKYUtXMSh-tGy`0cT*9)-up#_UTc_YR#?Uzw4!ZAjWskjMzO%g#n|A@hw4EP> z1WA?)qC@}Y3`{E65u&mE@K*QZKWa2XZ!fz!6b(K7wQdlAGKE4dsZZ>pVEVP7IFW@I zVkN|^bAVGqaAUm>EG`4#7k0!Flb}0xe6yfNE*v6o_P4c+hTb$Tyrtw~*XA?)tOV+! z_Fjy37eKo0a$vUsy(S3X)|Ny3cW8EWUqUAPRaGvB&l6#LIZ$NL z3CGU4+`{zpd@}HS21=d9a+ejEuf9A}GpW#6utN4EVKEZ&L7yD+6z8!6o(_^Om^saM z^YWV&d_jeM>T1f(J;cvX^Hs!J$LDeI{MRB-k9j@*sV=0n@+v&VBnK5rLs7XXYq$Ht zAuOVRp|U8Nku>@*Gt*f!1)6zK;Hm2{F0QD7pF*{F$WYMGY?Oujl_Z0L1CP$AmH-G< zL9Pf;w9ewfa4A+FB3pP;E1RFv@fovdI5p{kh9>&8jbuv?0@<5LT|E#eyL&O$#|_fj9vGAs%$R?vG3up-9zFeI3sd~Kh!4!&t!mwXQ2nl#z9MINlfhmcK2&gA7yBMInEFLSrW*H4VN6-FWAW=bwvm85!e|N#Q(!v8+ z(Aq!#@v&f!!Hh=@TYU6>p&+*Jk!0!U=ya336FIGPon&Baa;`IUVxBn zE6dcPXAQ_ZPd{PPGS7+6%|KH7d44hjs71LTS4&o6aN*tcyn8++BOzURn9Te?U*-)B6>g7jh=%SVa$rK#4ws3HGF_1ceJ4e{qbVdK$ z2ywg_f3ijAxp;IY1zaK33$q-POktmKDC->}!}@g;aw*#pbII)*n^FIcg2YRW=i)Ah zg6@dovB(ZdMEiMuPX;hqzbBfjk;t0PRi@;$%uS&vrpfQ1FbWQ&4d);>8OvrkU^4^W z0vfbk3TnO<4pey|IA@uMt>V=weN>OBC`E*Qeeq=1v%hdh(ket_N5N2FyA?z|Bexl# z);U*g<~M4c8F||<(2>+^WQGTY<+J0v9qt60_%z>wrHWD;pQGBf{(g*^j+4<`b3`q# z_Q1CMBg0Yj70Ni$aeXy5o6Vd6^JgE)B~A)yrd=saUANChh{MNyUAY>-yX$)^;eMW< z&45hBFfBhD&u#CldRSXrUR>i*0NJC=R@^XDUx(h#E7T?X_7$6ohLAig(%z{`3mU^3 zp2EP$0gJXg+8@lG?9$gB@b>IJV4%a-$7 zY^r5I7?Cgw1cQpZLqLasD4U9@(8ZxJO3wq(?;Jv~(h1=g5r}j@{LQG}iUm{2FOE2= z>H#c1hAcEWD@Ty2@-KVKc9&$zL4cf=(?K_=uG%}vzBIhH`_;$fy6enh#QS-^IRiQ= z?v&-D&69Lo`0LwYrA~#=trRGh>Y$6#dW(f?8=!$^hA@Nh*w} zm;2pg-fI8=PXkcx|GPg9m#IE5>wO4y%b}?`R>6+%XD1Sr?N4YK<-3Ol5VaG zEPQrI2`ol)DM+73wOyHDTH%PA+NpjWU}bvD zn=A*|NuF>bdTjQu1IhW#Gu#hy^zrcHu?pGWyr_&CkaE(>VHib}N{y2984#BqK#F2q z4#Kmzp}U4`oeRjV%Bzp1)dLrU=4x`X_bskhgFEI;_=Ryf>weJ_+hQY*9ZU$)YtC_m zKO@Dy<9d-7&ll<2UX=!v#KlwM$@t&|p8c^RZ@eZ76^qLI5w%DEX`jmgl8pHtCO&dc zLMBZWIvc&`BKabuc`*+|O@(=M&vBM3{RAGzt&hB@$AqjgiP4<@=BoswPTGChB_ThR<-TU#lU{l zA2m{gHZQx<>GkVsTdMzPBBL5vcl(C`2kvZS`0ktA6BvraJtehCt)yBDKzh!+4PW1dP7Xu_*f1qw<1&sCM z9~2=)1t1nG0exI73AZi={JQ~yPVAxRpsKFo)TkbNuZ!(LNpGGJ`~EqQ9$pM~H-kfG z`!Gym^LeNTozU|IkQ_*FKA2)zN;j=;s$=hQk(!;=-Q+EOTR4*?TJ*@jq8NQK>Wt*fydliE=h^LbEP+oXzHFS zOcueofS$UXtr8B55v*vS@h1$92#YyG7b-i7SYd;vNc|n*yG$YkX+b)7+m_L#4wxC+ zH!mnH|9*Ds5stTTbl(ZVN7BDKsB!-L%%C-0wXFh`EkXFt|C^gj4XXy?gX`{pQ#&ug z-cmws@AaKyKF1IvXl@nvBC#4W>RtR`rRO0h>&VwOh!E(6N;ilQ86lqdznPz$jK(8A zXptQ}!+;JfUJ=>;6F*{|JNOl-J2tuPE4AMAc_@_gLClz)&+A?WYPy9kxt%0f5S&xd z8uhF%6J|QgBOQ?IIlUM3)7s0Gip7t?=$J>9Av>kJ9eL5&lQ*mpUOpM1@X$%o0p)5d z?ZVR}Fd>=_K#DC?(yQ~yoVeIzaIS(4G(m+ z0%;|oB~>3dl^#qS%?D>_^4e zE7|v^5fUKfiT-yJ%jK!#kl`++!rYB-E7%zXpPr(3LUiQ_QmqgkSSJ`1n-+8nDV=5< zqJR~-FwtdW2Ix4F(+X?|Gzt~HTQpB9>)xw^;ZvIqeqg-BXk6kH;F^l zHOw&993rw_hb$5=tQ`FsZpY1KfC*JCLENcV{-|X3G}ds3FzXnUw&{{)mOafW+t9c9 z%P#EXIJM_-P#gzY>xG~&4;01$;i{RU4>e@KQ*@!7(&{!isxgiJc0OAFDp&N*|-2*CcLg|UK_b6O5|N~{9#GoGum!ipd= zGZHY0nju0pG_ApG=(>^s=*3`LDx0810Cyzcyj3BK62=j> znNbDwk?ts??Y35mG*V#cFb3`NIx@nZ_H{t3fkAROTwW`vQ7#4%=7!L5YSbH*=h(3a zv4H%be-3^|3WsZgQMd?uiD!~9+VSx}B}X4p3iR_2X3k2&2yPNod1$qn8FjPId0OiF znfcW-$zX52GWt#}htXB;^_awMCN*Xtf*O#eZ@f`rieNVpJIe8FXt_6Vfdit+f^c1E znMZhV=*ms8xv@}QZGd8!U%f~Y-wT6twC_EwFh>rSb}Q&rdN5%Zy7@?t z7lQ&dkhO%Sow(OHg{6TG7X+y0NE`&50e|S425uZ1P3Mb)T64Gh=D^L^-9SS&;~=EP z=rBS)dMOE7FyuGf@z9XQbb9G!lbR(RR@%E{pX!JJrdTR%&LLPm5iW_9#2hZg42 zEvfTCBW?voNPHA7}XDM(gzCq(mg-B;FfxTib+?rforJ$U2)uqZdq}#-(aL zd1kbTBYc>P;;Crs5Z1DyW~BQL$#?B>9{4!DHx6-}%hArqTkYYnm&Z$m*B}*+s>Yp# z#Fu@+2pnr@Jv6cvLftr)(F4vKxZl^%So zAI6*_4LH9Ms2LEN_XULFkLer7ds}bmNU1iYm|qf21Z{CSn%6$B1G*HToFRIsy+uMJ zTo7ISbv->nWUqdmi$u;HPf7%_>61{VrXaaNwJiNNIx+Tl2_ECoT>X=B*i`*`Z&2HQPCYxNgKr%`eN(IMxK9vR+XFVUG z)!Mis0yR9rYoI_8YXsnM7LzwEFo3YA5*#A`tvgpsuUz2HW^3W@YqAapx}dC4tMOd` zN70r3Q4H>%IP@d09G6j=&zQH6yMg69x>us2j?HT5V>(qZN7m?*JiASv4*ZyT;3*XyAdwvVW4$agGac>f;_`OgVYD9}pH;9^RL=D-Y_|B8p}e!pa(YFtS$7 zh$3wK7Y~)BPaZY!lD=qAjXhJxZBKQ~AYckXtI~JUycXwrd2Hdha%pP-#(r{rY_aTU z7x&W#HW48WxX|ZQZUx3tF$_^ry|-=Q1!cZfN{QF-dsu+8u>cUHdN3xNNyUYL z!uR~;1p7dU zjPw$$WeIG^^y#NOYJ;ESkXx-VU6-7m?r|}wwMKS`b@l6k*fB&$F9?fo_-z6jKqoAP zP)Km9uYsP#P#+B@r2*uuN@)I?g!I)IBsC;}?ztJiH}LD$hbiuD#_S?IaT?qQ+0W4*Qa)_xJJQJyTRJ@)K0bl3POO;*m^xCVb-tBA#{(MeMA@qDfmf_ zl=-V{Vb$(s`qsbNR8cJkdUcvD#%d$xMJUEjeyHLr4m)5{P#xT*%LLysjk^G@pEcGU zEs4ee{kdeb!@9=D$x%;(YgT7kYe;crN7K%JJP0HayQ9W)^zXN0Qr_#^xsDkC&@R1O zC!9KwVrt6cC8w}%kXvtOv#UPVS|T&t8){&j`nROWGR z$Fnx%LLz@un`(q%{gf`Aio_jcC@PJ&x#uP;)wfjQ0%SD_9IG=R18ejOVE`4d+urA6&{?e_{NJ^f{?k}9T+~XC0YL_8OeB!SmaOAjd>v6LVWCp##E7XPm_5x zy_0fb9Qzb$Y~wP?us6d=>=GSn@pMcMWAd=*hL+AbZ#^`RaAh&!O1N;d(p~Z!segq!>R&nLL^F<&QM*EMEL;6 zj{SDUnDUbVYVxkqAu?s%k(9@5t*`ovdZIxQt+Dap)xm zA=W_;#8h7g`S2qck?umVpC*lBn^!b-l1H_JzATNL9HJ1Ya#LQZ9CQJw3eVBL1y9a~ zXB@)W5mE#bgiPD+a2V(NAMHmfULhpel5qT2AL(Hhg2kWLNcw_tOoUr^j_E`kv94~(2z-Iz@ zK@Tf`H2 zi~<1B8HhG+bR;|D+0jh4(Hsii$&z0IuqNzcKwr+EhTx2hTbGmbpKpD;KaadZl&!yF zCvQ9(u)s&2^)pBRGPN1}iY-|j*qT?Q+=@oXtEz9B(K?h@1eEJPa+Fi}DkWjk5$y-6 zMnE~HJRPYR_QI>WLZ_A*%DY(FHw~#&aXlgd89*1^$uWGp9wW1kC zr@iP!xi)KPQH4d#9gsV{%#Ez_?ZqHVV|p^)1ZSc7Fv=iaBL(OsLs}h~9s_&)^q!sJ z_bV5pAI4uyj~#9YDKoD(11^EB+AN?IBb24X|H*oBwPoa$Spxs+n?ZH^!}RK`kW6gO z2d`%(SN|TlO3BRg<9N)J^!2!&O_C!@mbc^`Qtm}I8_CtGf#ds+xOF2$K)Qv3f$AUE z%Qh@L8)O8aE9zLihXX?w65h%c7jRNxS`aUE2%L5aO+Oio2au{4s6-QGK`1E-Yj>gP zAlvj*g>qWE=1Hp%#ORvlQkX_%Q&@#mq|`d03h}raOK`r|R*m1*;ur*M6>aQF@#?{eo^{UTvLr+BcsmR9YB)B$; z>I%2%!TWnoa$joJO^^@ z)>fgSFR?8MG|l{_&K;0Dy13XJ2P6v9lleE%>S&s*j8WX3`PR9$8J6bu?Z8a^ivn3J zST9%?09#HQ7frs}D3blP)bf~m)a9Xva@G`*pX63YY)jF<*(qr_CjDG*TAVpnh{j%Y zB6|zjmL>4Z3j6wkiCHcXbdO?Ccv}+6BD4mSs$zWJQF?|DjTjCBQ5d=hsuQobBZT%f zkTN_t7*!9PVp!0Ra4~8=L3uz5C>TP6w+DIrdF^v zL@eCr3DyfQ^W~QeN*xgrL;Jt~wXfXR2{}Ttjz=fDMxNFHx8&!@z&s-i9f8b`Mgq8ev9c5xmIn~P#GU)vodAy?Hd_Sd+PX2ZoobY&SZkEl(!dbHY&Im=pQP~ zQ#NyQ1d`NQ{BLpe?Aq*o{&n`{F;a8%Ptv=LEcx?kilpg(W-zNblBdu6Lp!Bk7+8W) zNgr8{;#6>SF*qOs0d0-5*DaK(J&HLzV}c&#+HY(^5l|4dz5ZSp%q&eIUDH_&>ar`1 z4WjEtdhH<1aTwsh5LMq(;ug{o$2PF zpYWC)l}V>dg`EuQWPLh6)A=DDJGIX2ltfOI@7HVM20s0&oUbCj)2p-+gV)!X10c(8Q>g{jVTc5)Un^wM}L#r8%ju zQDuSXssId}YI_Z|mm{;$(Rt_Eea1#BMs3{JITkfP{<9C3c!I z0ti_!O$jPAQrV!=^rwy~vk`NHGBvnV;LZn+Do}Xw3EbKK%eFs{e*|vlwmQ;|Ga=5! zHI;!@W`;mvdj7n4F_7{G?C}O1A+$(QU$l6Oyh#o^Cz?y~HSpPV3MR?7^AULnH zlAe(5!lX0&b!&xd66&uP z7WQT>*2^m*P>bVCETv+&wWOgPdoVNR#)ntK-&t#A{vLt-p0sw_?| zX1%q83x>HxO#BmCGz)1XXxTVZr=goC_w`l#U(Ra=9ml>nigR8i@}_t6LbN4HprRfK zhs52BL42MT{0OahkTJ<1avTg6Q%q%8Z^J(jjDt6@(E{v|x9Cqg-Hzb$l2JM7$58Z* z@ENSCns{B+P%8n1RpA|xWCvvFHY3kYW7^+L0B>h!`g$(wBJ&;j=#t9_tYkPk zO3jOpj5#b7W&u{=EekXn5_P4!$)Uzzu7T4S(gA0WzY@^|FpM~Q3T$r?LBZWM+1&B< z5$)n9Mv*F0Qj~~1K*2#LU5Cy{Aind5$f8!YBhW{Qs48;o>d9S;2;)$HNIeucSs6YGA55 O#!&Ct|Q(tp#yu3SUdXAu}SZgym3JKC;EdpcFK-HD$Y4fElh$ zBN-uC5WE&Fiv2=$%aT|SpviL>Gv(v(5Yg)Y`}C~)S2%w5m3Z@n0F$Ry?EN@Gf|K&N z2l%NFjGC~2fG%UdM=~+Y>DDgOGpdMWWG(w;Cd;NQ+;>UyYA{$WrKr3M9;m1-E3iIh zU5}l2v&Z<=ruhS_F|>0JJ@yL;gA?2p^56_B;rb4OF)bPjID8B!h00x9`Tk{j_l~#c zeQ zBn%x6CAVJi)2>8;I|fBqj{lYeRi+(Zx&(0@n#Ki2Dk{~Ipe(fmJ&an#6kH3DNY_+% zTD%yjP%@`igvC!2_+?ZEu94bk+YnXfOWqIriQ~z3yT%+`8-iW`TM2^Ki(? z{FkWt+}r14Es-Lz1<6dUZ4bD_Y|C!FKby)c9mEiJph`FRuM?S^6-G}$$zvhA&bp^1 zyUIpySnuOg^{>+vg}D;o8M|oZDtMTZ4a%Q9C@efCRs2UTg?D|J)C9_8^6)4Cm#2A@ zJF?)P?r>JRlKJ=Ux-}(W1LVqcelY-Ad(?~EU`G7P5Q}0aniEXJ+;!+%9TG0`QPI=* zH7AHw9~prV{B9(FQ4|V6g?}ve%H1g>-v-A&9`++k7o=4Bd z{Z?}&NtQ1NgkAz1dMWGeXp-DA(AKJ@U|tf)04P5a;`Exi8`Zr zS6}FM)>YhXfpKDZs&Hg)eq>N*mnx44?UaM$gWulxTu;^a;PN@RW(&8|_Z1!I9jiJ5RNFkl9t zQ`M7@Pwe4>kHo$x_ib#h>iSg(US?S}Ph2m=EZqXL5FM~a^|G|M&ZMu95ct;y8ax7x zVfX-Wn`^@f4de*YU;kh$<7kvXNe%&n$IlRGaImq{%LB z<|W5^NbS;S!Q}S^63s$%%+mQ|1$ub(5mVtY5dP1+aruPk9wEaCgF+^+z^%afw$jQl5oknR37BX?inb_h4XW|4pz9VN0&rJMUs$3k$SeMnC!J(=c4TXe|9a1tap`V51##5 zuUD7eZp9xWQ9E;PAXRc3mj;GgG8fQgoGqb+{|>3ywb@w*e*%AXeyF$bAZrfX!=?9a z!iZ02aEF*_x}jt@vC3fN=<${^n-D5E_bc&Yce$x*`VV>)ln_g_on_ zy>oyg4F$ykXrtEK)s&P?1}^JO_8bB3 zBQmHdzLoZ7ZW07%?DvX**o8p}(6Ueu z@LCOAoVE>wAN7T^5L558GH4{`g`>23SE3D%PMBUKO}LNyhPtT7(wEEeaxsND7ff_6L_?MP4;cBHvJ znWiu{F{yup7{izTF7Sowo@H4Lg|Qz35(h^xCg(uhakBJ0y!?tA29%D*b)yUBrMJW^ z*C8D+0E*Kc*_5sr2#~7Dy9L>MF53CM!!KbC$=a>7ALRSM`4P2{9Pj}EXyS7$muSI4b{ zHwN;C*xG%DgSr~XvwDZu1gt$- z5t7ZAs9^xwMMzCx6VP~XcSa{~0|LOdFQ~)=+0IRN>P|P^$})OA@4u6~2>)mlo~)f& z$~AjM592RgCz)sOu(cUUfS4jHXieLzoHKJ0zwBawkZtz0>Afbp)(HT~QCJAm2X)XQ zmJ}B4-?* zMW>SxD{$w(*JB*G(&yf#lbn(PQeZj}{X~dD z@}%QgD%_O6N{wJ+{}o*BX5G_%R&rwtmTz>xf`_-cU{Cpa^3g_L+qtjn;5X1ZsuKAT zX#pRp46=YnhWM8aJXPKbpZOdNqbqucauIVejO0zB6b`}M`ftXl8H_(irQkIbpObQt2#Xn4+{`ADFh++RuY z9F+ZS=Y2VfapdEO_D7(D$5+|56;Omi#fi4UL;vTpxz_6!~&br@PF~-HfjosgI>lr@Q8l*WE zch=iFw!!pf*LF{bXHSoazwu_k_G#{<@mU$8-5eriAhCqZ7OWARU?|tM2_ja53<~^^uR6XoF&hm1|}zXFLQYJ3#cS1ix!Q#zedMZ5;=P zDgSfEvIW-k#H>8A@)*U+O?W|=4?HpqLBSEQ%*Qm!2N*UiU*bLp4o6?_I}uPH7mqhA z2aJ)OKlSqTaK4ckFf>6SDyiJ1?x8Vj0^yj&L|$4{rc=5z7Uh{Ni7JYc&;rX>4$LWa zO+hb0kAxJP0F59Gy?8{7NRL0@@gPrKYj(YJ%a z`o%&>o5kPS^k7ka?R*;rb6*rOp|fDYK{AD{S)idRf$Ip=Kn|EkpJdeg(}jH;P{}Eb*=|mt!mVkn_INfA?V+ z08vJF!qiL2D9}E{k34kVUM2o0=S4x1T6#0-=Hri1%<7S#e*i>>g`f8L0Fj5%N%qUs z=31a^Wcm&=3XbXvB}5#I*vTR5h}6-Y9)h;<&;I?uc{zL|r$@>j#(m>Kim$8dPY^gj zwbGn5fH4553<}om?54wx$Q7UOTT7wXP2|GSr1LJr14pXh?`){6m}cIR!%(^4buI5g zUmD+JDmLf;@4w1mgv59(bv88XSu2?DPleeV*faN=I3BdOHTaV&fSdHz0EF404D6eR^}HJ!O>k;T*6rte0aw*GjOdG8_`qu0zCWmfSLprHW%^%%EFUucQ=4w+V=#W= zN)<6F=kkrU@O`SgW9kLI1id=-gjd*1&ZH<@%akY2vR=Y~q@=T8_B5M`%h5Whw5#1! z#Meo_?3rX?{Q;~q=h$MbD`S)t*#;C)2b+hV>ryMAhnk7TV3t&k7?FkxP|#$o!y=d2c@ ziST1mTie2u78$OZ(!v1=Yd+Uk!#8PqV7oR$-)S_yM7^@8DPWP7BXFU|M1ik~^d>!6 z*-eH~Vgr+juMCqas6f2`je$l6^p#KY%-cH+1_c)$xQ^z|+fB1wTc;e9j;iw3R|pR0j47|d0=-<27V;&NQGv{p9yU3yYrmNGT zxff3=^R{VjI(8u2!OTONXXZw|vHdWQ_PL#Zbv0el;~5p9ZHP-sX*>Ol0HO&)uKE)% zG7SU00x*AxO@So3ajb*`m=UQyajA%Tk4TX z<%z{Y|CP8f9L2n{IR9B4%K`62p7u!RyQ9u?*rBsc8K~xoBH?ru?YZJu;1ak}inO|g zY~ZU)cNK9cqv9KlP$h#W-xyTvJssZmDlbc>Yr*i#5i#NeVln)}T2I=`0e`Py8AnX4 zW#Za$n*m17aC61@_(hW^9M=$`N3-)j4#qgq*g3S}w)X=t+sAgkkLQv0{S$vekQB#Q zXM(9?5;tnBg^_MoZ$QEv`q~}XU>?rYJHi&gs-uy=<3fhh$GLKIz}x$7Mo<$*(N?iB z*jZ$@VO;1G{6|*qUj~s}4B=~bn8rbJx0~mB$+(dz3ySdGla7Qv2Q)JZ!macKI%sV87pYdxIh&Y+=n^62z9en-oiAc1ClZ&S;! z3@mXrXi3WU{$NGOlc=o+h3t;eiU!0~eueoX+c#4(qlG_G%tz)?pWl{%j ziI;gRnzk0414W^!|N6_((Eg5v|GT1Kek3I1`Mtw*>IW`3V z7lW4{3_py8Ea{M?Ly5-Y3n`Qj2!lD$_&U)z4P`(Z(nluiVfyQdBO3OT#x4>cL=evS zwe2*Vo{}pIE+E#*{Z|?DjxhZsQ_?5S18qx0u@ns}JEW2}(}__by*32eoBO`!?TKED z;`L*{TOO2rimWtjYYhc8hoH@cx7w|thk@N3#Kg=(@+`rb?IWLicU<~Xahn%VUkq6bwpSRK#}n2^mg_2{#Y@*$~3+J_?bC^ zWO01rE32r=Ub!Ym~q{Wky)kx~dd;3TJ0TR~S__4c4un?F&|A1lOob_6a~ zcp{@dfy)+(@?efI>H47eH=c1!9J#-)WnhHpeMv(wk`k6W$x9gfSH7j-DJYdFU}ejq z*EmgBIwLtAsY5)Ti63ZnP zf+^v6BoRYhJZFvv-G+6ca|o{iX}}S70bLpw`FkYMe_(0GZTv`qry0%Zh~HkmK%10otXf!ep@@^5~HWyFplA zL1{y=TGL3$=ijz8Jg{AR!||}zq^kpP=#nC5)wX`fpS}7@hDDi@0H_wOyV47T8-!s0 z%+mgoUO5x*M6O365XyNA)Jw&Bdx~2~46nT02P#0Y;TnvG9?wR8=r>Q|aqA)nqUKx0 zcLX<}@neCU5+BmKjYOUiG)LYI$H$_4@BL8ApWldY1hWl+Bg~~^MC z27|33>5mP}BF$mdU>@!WdIUyd=-zR!_8OoCt=KcB@~8K1aGC?l1VR=?F_u5p5NT;W z`MA#j?zr(j{eukXL>wrbiR>tp^El621>K&`7X+Ne`IHq)!`8;5fAnI&p=gY#Ft`nv zQ_00Tb}33G@N}8Iv)5*~xkSHU6;W84yuWE{GC@lQ@RNclWt6kx0zi6(0ivDv(xAdi}gk?m>}SLLD*P$&n6ZIxxg! zc?!mcFg0t!zOq-A5r+z+`=bP6*$03jLFz**!wR0urnYIc4p8Zs%S1%!K|~@Mu{6gJ zjglApanNq<^-L9U9kDgX25rbTy9b29AfR2!_#b&S6WhqO&KigFLq1E>h+6R=ze zgWr2yM(M#=a6Kj$Ud8R>UKM6R+D?+B7LMo?YSSZf5kk#`q}9MfRSbto?#mRTC>#Al zenSTGc+4^s=kES|K9+dgak{3LX{iYVo{s^S()6+vlPTybq+dDB*Q%8-N4+CU8($@? z4Od)PulOwZYr)9106cBhJ!ooLi(0Y^vykCedC~n5!m`Ft_5t{ibZwQfh`GugAvESWP>wU~X!FoaB~NTaR^InBv(Da@{JaTtt`l$Oc?>49DwAq|LNFPgOxvy-ra zZ!T@{Y{t<~IB>GN7>IJme!a)B{KSg>Z~OEU5WfMa4-REe`@{K65*c+!Lk4L7EJgu# z+Zp6a?rv5x;{pFbtfEr>6;jwj@Q=PuAxr@m0zzyIHW!9j+lFT8vEJOo6^4rTDr&(l zyhf_$V9kMiD~IWkbtv&{{l<{6NF#7sglHtsHL^)`Z^=pYym?2&dvYw+Psb8z8}m`tsOCo>uS=_=50C9AFfK*vI|0020X z!ck8w!#;*n=P@Xldq;@uIMZ85Gz5(!T!;cP<9fu1ZegoJNK*d_wKPKrKe3oUKJ5rB zC!w9A+q3ypph=Yy84D|k#UU+vr;sZJpSzU|JgqJlZUzZpkOM=z2i3~;sUjHOKWgD> zC$}(|Kd0x`lL`sxmRsCVs>W9bf+thCs){in0K1b|ETu6#)uQq$2trhWBM8sQsP4%Lk=pC%b?m|^cujHF zDXw-Zm0#5>?K;By@kRZ;Tj)1=)5&iKp>bX+g|eINt}$e;Gw#} z$0Xh}95D-1Dc&O7TdKtE&-6sDsvAYeIc_6?^8Ghy2{3t;+T%ndhw*H}e2ndxMT@wP z5}o6!qgpO3QI!zW;DD-Fqz`mo5akIgXWr7DXQ4|}Wua)sY}5j8IX+!?8ppRXHuVM( zUVb76vqeEMEg!ZU)z)(5EDwUkrdA=zkmp-nmUOzYwW2z34!WXyLA$1gV2GiHmmVxS zW+AywQR*FU)gro%*-@1H1&RPbL|KY1sJxpKv z$-fl~KjH~qUc)i1WkB}ND>cSOu`p#}!3zUh$ak#BOH;5i1!3dQ9k-t)jRP1}ZS3qg z&S6`#ipZ#3n1wWNE4VJo5Wbhv%<2empdNTH!z$wugCcNp^@A&y^|nBfT%mP~JH0qz z^Q4{3j_Q{HbO{<>8WHVKAV8D5?m4cnZg%6a_tU^d)9O%n$jFNifj? zQ+cz2ifOhK9y8ZL(8h!KTnls!{n#6)a85?0#`F2;z#eofjMQfD2H^~8vDpUei``wN zW-5Up*bAt=H=ToO0*>~R3c39rg7?*Wq2~(Trs68RUaO04BTFU=zi>;2FK;mq@Vi^f zu?z%Lc62cil^j?Od^K(xM5=G8IpbT^mj!W>2QfhH_=8&Qx{009a*$_6euA1$dlr`C z5^+^JfHM!CfSQywUA?e0ni|stTA}b}Jv4Fagsux0EthBH{@^>cz=z_JPov`0l(lh0=+g#lQ0(Jn=;4G~&TLrsJJq|=k;D)2V;NW-tBViY zULr4*4WDT$d#79xg0;FBEbHYZw^Z_i&4M_a)q65kdIU~j!WnN9v#O6=SaIzOv zndybpzfUMyBUxw61ECJ!GPOyK0K5J&oUdg@+~P)(EQMb<8<)_{L6tgKm`)PSJBKYJ zXs=}s4>1mea-zzkZ=9p0L&>`@J%$O~2J!73386h&OBmR$95wxW9i)+E>tg;IIztlx z%@Gi+%yFKa?#R^bthqNPeb!J;iAKj^>qGdlR0i8(0wrjUkE={RR9P)tDccGY&=iYA z)u7@WW0`+&U8uVH4z0@E&_K6G2Q{Yg)BlMK?2f^9IwP>gIPYMpMa!q0z0xrfM}5b7 z!Ic2C=-6477Gtdk*Yb|oC;!NeHJ9mbZtHNr&g=YhsL3W%e z6O$r6A=iTL_-+MRKwPL-MBAnY|u7t=W_tvM}%`<=~bkAN%=s33oQz+2joYvY!MG>oB-yZ6j! zYz72&>zW<)AL%cS*|%_qbNlE1p=2*9r7&<{I^e>6gfwqgQs?E)YMliodEFPaFOBm!;W;69@LFL^?5Ti=w!I+OcW`N~`9~Zybjcrq4u^M@JNcCXut_>yB%1&?+`%n)%LB&ObeLHv)6t?f^(JU@)KZt3~>=-`$mERWkryY>Tr9BNrfGCQ6Knp zu}_3a(vcYmqf7+og0WcxOk`18k)G_j8Am-0Mgrk8N>BP`6}C1EV-plZgilza0|26PFbXDp8(*k&FSMfZ%>dM2f@QHw-blfZJ^3SuqU6GC zix8Q!2XY-M-u*F7LYz~@2}!pY`9mK;Agg!{qSmEKeAERG?2zXo&_RSSN9Z>UA_5Qyu|NFvh@#V_%%hG+ z6G~c7?7rNfbLSq@FUp5s81!s8w3}kt>Ch;deK@C%(Lumdx=OdSn~Cp8 z(^mOi0guB{fZ|Ym7kF)tL-!}XGvK+e&h3r()<4#6YGa4BZDelx>l6&!VvEAW;>6Gx zUQ^b?ud%dqX>p0t!ZcYW5RxgmK^X|r-5zCdd_=R%JF*pGF~L$q!#7*gQMdwJ7Olh7 zwz*$-3K$i#uRysGKh$r@0MA(l;}ryRr3`u7F^s;S$k*D`7m9H9@{-Li%Qf6hRnfiN zb6dS?$T}K%*Wqz|Rzlp-velR=Qn-bd2mo(Si5C{N>nhPIy1gZw5GY{*y4E1=7Xu8F z51cw(TSvLrc4ukS`7)Oyr?ll{t2foO<0JxyIq`~E)XU81=~rZxWC|vnE`i6;TI6IiG@!C%Q) zocvaS2FY2sCdTW^U;~xQ$!xY2e4>$_iTMztMWLNr$QZ5pin|0`E zCAe1~+y&chj1V-%A|$7Sz#eKprxkgQbCCz#fmQXzT14&x#mK`i}zy*KI`4NViD%5Fr*9g9+NzijrfF zElm}`MPdKK68o5ZM+VAKE=RDD^1!!IbQxpq35 zs+J(qw>i=uHmpYA@N4jq+k%A9=PcTs#wdyXisB9r+v>L}N}5sxLH1s!_+5$*fC)3K zy#qLQ3r?#2|4Wh!i6FS#;`gq!#;Hw_ekD1djr2C2wXcT|hj#H)$N9x{dJRg(A~Z&% zEH5oqWWY3u%JaR?0xRalq#2%jcTl*Er_#ZEj)12eR;8K`2$T^jO&*;P9|AjAm=(eh zz#-{3kj#l%<1Gqqsk+|N)}WS6Gj1t>?H8}b5BwV$sHZs&d7bM7bh&caGoec^wh5V3 zx-0jOEuPpxwkk!nJ}JDT(5M0Gu!q$#4>?>{4Upb~5lauzB@FbUr3sU((0!Ik4 zKc+D8yO#H6dq`xA)^N0WGk|M(#tNz2!?!!smeCb`mje5lhv0Hsv$=7%WN$p=u=JLv zGtGAlSa}+`%mKbY(S(bJF9VgvrMSRcAO&P_c4)*S)=$tw&G&`w=6k;}_Q;sHZOCi|N*2UCi^(Ix!3vUTMRq z5;rdf^dpfhs!^>_gBT-n*o zi?vs5!>NrfyyUoQ0uB@+8(7j6E*`y_DJ{9r{C5i;kvJrI=FcZ_*M7Sf$FMlOG4nQz zmz!`4LJJ8g>#?$c(VtWt`MW%Lwb{vyFEMBs=9p~p5oVl_=siuCpFSw>=}Pd3w6b~t z43Ub?iMFQIp*C&UB*BPO-IygmsYXiF299R2GMT>u8j-k?`w}c8g%IJ(E9_(V9T}*{ zuK3H-56+7ar(NrIaS<&^pv@0exkf7X5};M5g+>du$OX8pL7>2ukBlK{IVv_9D8|b% z`}wcRMX!^N>0GD_tzga^+C$->YgjWE90KW9EOn{QCxzw=_FynE2Dx-;JKB}A&8FF0&GsnH`X^-bp&O#N2|catj0Red zuV>`hUUMB)qJ%Q?*hkIqQOg2O9o`sR(pu_=Q4?i{sH&uxDKbig>3WjB%W&6%lVdWf z4Q-Ob(wQxaDsY8$+ss-=^^Jw$Yn~Xb$S5E;6_v@53KW!~2$t!hA)Z<&x4zZ<*;V&J zdpZN{xUFYq9KEJN$3Wm6^( ziaxGvg%3NTC^wK;ju?AkCw$MPmV4l_uL{*x{OtucFM69>;W2v+$*~mW5gf zD$Q6bL+P3aL}x`N6{|v}Pcmu%YJm=@$%g!iTiv`#TNp#bQp$k*vvev%0Y=CfnhpSC z$fwfDHLBRs69)pBSdmsNC6%RosB~o42|F@Mk5>fXsV3ed2BU)DOPAmW{DBPQIV=>m zq(9PuEWan9v!;HdvyM~&u3ZcS!Tbf0{)J^8lIP%M5kd*0ga{@iwL99$uP1sYD!`<6 z&NvJ^qqfjo`y97v5QhKF;v|Y1_cPgN(&Pi0Hjd2=ZnkIxJV zQ_W=13Ww^zW@S`$F!DKK1dhiV?f6^NzIX|K;NQ={aO~#6<^unK&1=J@v)e7%YJ@_< zbO=|t__`h+wbDzoUUYylvMcT&Ypc*d)J*_sgv$aSta7~@I46}}qXc#|G+)97#rLRk zu}^!%Oh^#1{eZ2EI~(%MFa3;4^9V z{bqjQYWZbEJ2!7SeoLK>c|ONlh#`C(;pcyEmn9-p>M$9ZFhuC}MfIxEB|6{@N+Ac+ zubrKkf*MQE2*o-=#E>J-F*c4vANKckLctz!95--s@`Kh|y9g=c)nY)N=Y&UkN=Sq==PME(Vjz z#Na1CQP)q}f*>0Do>Xrz7)jR$iySlydDlMZ(N;Dd+w!XAOC1#9A$j1;B5sLHtTV&4 zT0va#0X}oDa&l-%iMNa9enjGM$Nzrj$;iK&@&Z!ZqpGEP znH7!C`xQm#oB2C2_@c?Eu%L%Ac-I9!RI~`VnyajEoOBRv9fG!im>*Y}T0^7-)+iq7 z=sR)P$4ma`qcV#(q80)IQw%t=VE5I_?}PtL2Kp)cUU3?+*tal2*NAzPo58nT3~XVV z+i2#J#FdYWf!`%G^sso9m_0Sl>t1SVjpi8oYoWDeoehzOsZ?>2dxsK)bM;wCF9vpP z>%*1a)#^PNRz@A0(gJ%K*^f*VHK!}O(FdZ1_C;2L&SUs0j@FA8-d=Pxut>{%16(ux(05NUC6@HrmnM0GQpx(;(e}hV3v# zKS-AW!MuXtP(#THbMv_ueATvl8h1R4i9a&m>ubn@(PGEhYR>}~g9LX_Z@W{*;3Bpn zZ+-1>J;zrDT+ZrZp}S|%_e#9<>0?+KobcKpt>as=wky32?~=zO$rSV%#aiIUjyh|+qKYLfA-8hbG-|3$I|6hK%7Yo5nqGZW-5^1_b>;OR$pq*5W zSWI&W38nV#QjpM1C}e35=2Sfl2Tu(OKUfARBfnt<<|&|Kau@ow3NVdJ1r*CN6^sq1 z1b)!EfB!umuE;=Fy4`5UI8RWMO?}0e!2Zb2aq#>oUMgkBeL^v|QngxextZ-B+O?ZO z@Kyo(?1eqFmNOA=#dByNVpDbKHJwuv5P$# z<^>IS&2m-J4M9nL+mn4o>~{mvPYwf&!$b;4pfJ-J?Ju20HlWIuBg%E-PA#s2QUE3xdWAHGe78N{6?i6o#u&vk0FT=V z7xirP3pXue+zZ6~3*Q)QbRYQOle{YEGjnc*Cq#C-VEooNQICR*!(&lpgfTSJ{c_?^ zDst!CZiYhGKBgm$n&!6gxAJ7=0#zW%l8|tpnvfc$DY`B>GGV?`R@T4gA7_cwYDz@h z!}6~esCBEIETSyI?sT`Py5QNdF5CTt?xApw_A1RKQ)lpWo}I!}lATkzb$aVuZ0Ntv zqGPQPa(<+$m+825jHfRKFqaM0u=9%31l6KD7&iHi$OhZInuN!& zp|H=Y!f}iB*c{Lk=QIT@SGp#s;*5-f3Z$X|7}^*pD0B;U0ut@c!g%`YR0NeCi3%=M z|Huy#O4;-x%Mpfli|Tr`wPe>xoSi0gBbX+tvrL3N&?D`}PO+140wf*&$QbU?GqrJg z^i@2Fa~5gXs5BgLEtjSSMnA< zOu`NkZNHk41OOGGoi)pnUDaJ6Fgh&cU|jRG=Ie#3R_!_@O;l!)utjh-^+tUnMyUz! zJ!FXhjx=00*b;e)0K|k=;FOW2%xaLflu85+g&G0{g27B+Fgc3#fo3j6@=LbT^S2MK zJ5Qgnl*+CIU|4}z6q8H_5isydItvV7=2&PyY86MhQh1k*3AobBM;%jsU= ziNpB9#Xz*ZlA`+J;akYr!wqn;PoMAkK`$q$ub6nyJQG0}0P{pN!j&NBssa_gLrPLQ z76`K+!wrQ8M1&w@k3>gOgckB96?g`=c$A}=VmRwgU=uDw$O%bcWdzYz$p|HEmuTgk z{@e&y(0=|a)!|aO3nXk=@+6c%PF`?~iM$C?2lCuVYWwWP0IuiG>X_WGP&ahu)?VZs z$k1U=Woi{vPHI34pBK%$Tgqq?n2U5{BNwO&23ml6r3(EBq?Cs;49ZDaHgT zP{@ZNq~@?vR$zP#ql%Rx2vHvd>TomqR+;cY79ToMTiwRO2(8lQYBDOQT(t@9#<$BC z!=YJ73f;T49_#PQK&ig)=vaZQ8aktl7N8LLoql0#Lhyl$fYw+RTH=$t$EGbXt3apH z>8q{H%f!^ciwx%KMH^FfTZndO53JzFF9xG~>NxwC7wLmWPKjHIr%S2#WtR6r>dQNqPu3!+&}}5om(xHNhi2KhAfoK7 zm|zIt@v#QUvJbolpBqM#I%jF1<*~Cdi>HA|CMA9ymL-8iQQ!q3%ynkfOfm)^4Qg)h z+g6X|cV-|;DV-K9AlAr)IhcZ6?a!jhdjbBDI;r8P<+7Vzx)^vg+oQy4O>tZ9K5k@d z#YO3FE7D=Q0qmfr;l#xN7q7~0L{zAhuoqWYW#X1;Dyk6r7XwYs(yReuuQj9wP19*O z7olF4#T*JS|6F8xZU&CXRqrh3Wu|vQn43K6lM_wu8(s(vfig3nhEY0c%+rWP$stvC zYvjlcl4oG1rKfif5ju+s;1Q|C};TLo)cmIe%4XP;`5mKhgl`(j{|<7|q~ zRS*iO6kDyrQdv>22SxQNcfB2}{A7q@EXIuw+>~Aehy;4~#!~ZFFwdJNuGe5z%|{;g z6J1>dBrjQe4WW9x~jQZUL(zv6`1C59Z=yT7lXQQth<*DD{Y6xU!2xfh9UR& z6xsDd$weY#h3^IDizbuUc+2#ya4eUo$z~6_96652*h>mU$Q4KAtZ)p)L8Qqk_Xr~j zRR#3<(1_%1z7fGtsNJOBy+Z4ym~oX8WZ1qzZYx}4fkJ%v@2 zE{YZ$7R;4}l0fqB+fk3@cV}Rs-fp$TaaY(jiVhn#0Z5%%?7GNK7(ej44YF->V#CA% zAR<1XlSEV8iFy^7Cs*J&%;92CtImhKmNn7gD-bKdtQ>thgR3nyvvV*h8&2U{w z?{OC8U%O6rl2`&3PRjjdVBJczqe#0mGMzh&5iA$V^ngQ?(h@s4@&?GMglL{xndBa% zGZ!fUd%}qiZ^?B9IwOk%_NY~uGgtCv=tvNip%&>f3iRhs&QOu6Vl||26I2O$zAfz( zlcRUp&Up-dNd{(hIMeUG7|6CNmxS!Nf|;<2vV@3Q$el3JEmIi#MxcwfB3Q%~twDAt z)yON_Yn7ZQ-jGOsvYO;8aIWlP!;69ZR3WYm`n8dK1q64Yl}ca(4u2xi$b1`W{ll74 zlyM1@t(W0yqezjb^j`y3y#xrlnhtoQIr;;R^|?fKu8mniNNNB?OhO4o1T^O(c|STaY|g5Y-%Hxp3LVIHjd;L2Y}tXhpC=FZ$(i>ZTYwY1Z7lVp8MZ`zx?a3j)T8YeoECv0=Yeua%z%X@P!ID3khf4qhogvBHf~iVs zMl7fq^W#(3kqDihtV&{c%RuaqmDuS2xV zFNGzd|9912SEw5bvGO4|MN@}YX`u(QXIZl%rV@I;iC&xR85o9o)|7&+EKAPURH$Nv z7wx8wRx*MJ9VBOWBUr7@0FVA%EQzKWcJl+h5eYFUJ$cr^+!7>|!Z+aF5_9&veq#nE zC9@_+p$&3w2S`gW&H%g^oKd_}2d5wwTpYbR$roZhk=}?L09^Z6!l*LWWqmpUsrD%N{NsJV zSN4U`y}C*3@hJ@T>T<>iaRpqQElQ&_35^(}QNL0;JDZ!>A9c2@Mf<`CBlk^)F%Ja> zp|bV3QzT~ohy}6aHzSc#lTZ-FNd&Dq>a;}Sw9!YY#%qoE7b9QTCXedZW?)=1l^WH( zzZgi#4NUg9v9ruba7qdy#z#6!)bLNZ?|iU7kur1=@3?-!bTF!$5Tt5M|#7KX@#S zV>pRu0^VYTAc9z+R~}juJC*rS01yazNE;9g0Bnbq1ldKqk`C7mbpyqGH`q0+3WNyw zeK3jAtCYLNYD+gcHN}Wh`sx6ZX9|{A1TqS^ELn&NP?Q~dWp_Nf-=6{2(aB4qH%@;u z(3!cS%Q=2%w2Q&G7#*?{@gh2CdR%2DOZIg0OQWb~33CT6ExFqgY9bhlstn%2u8^SC zKv7d@&<<(^V69T}*$dApVrI@f!NH30X3*&FdVwDP$H#9My8aTQ0zdw}RpNse9l@sC zuk-K?WndGM}V zl$RsyBlp?&oH?ZgGL|X)0(FvuLU3SvJfdHpfu@kws6<~XX3eq|(GpML{Q7RxbCA6w z7K=O}Q8jJD4w$lo&?q+O0eh!K;c}#0LLuZY7X|L{WONl9^M_?;4K$rq#(~fR3Hl3S ziz2)fKvsY?vw8>Mmjt{}$bxGIA`cQ^R}QZtFnd=STe8C%FCC~6j?y1(>Ysl?gi)S+ zWyAcETdcOu;i#r%Esa(901^U>ntaEUL>1KbDHdDKLA)|gtC2DfZ^xpB0%1%cJvN~o z^~>1Fb2X{tpb{D7_2jO2)P76`hLtyJwoHQpD5K5O$u#@}s9p?aDO)#03lvvdu4#Wq z-qEFzr^K(ts-foB`p%M%^FooU?mFc*A>nX0hI#=~RVd#abc&t3EiVJ@AklGPV_+VC zFE8Qu#1#q@ZSMMw1HV21<;Ht~eG_%x#lvPa7+B?_)Z;TX8&&QES*vW2gHYA^;7>hd z+hbTi=8LqlsS0hA_OVgcSu{km;By;t$Hd+XjA$4fh#GBdB2&#Ac?NE}^}%V;>@HUkuj!gJvJD38ffXJh1}A zT(hsPKSJO;9!_Wc!rUcDGDpESS`g`ueaw7dpwSm}Ahby`4K*~EJYgBes{28O%w0(W zsER~{0SR-En2Sg{`HPHQWG0$HV^3opy+cEKX3Os`2DG}?^z?231u?8D@{YSf6W;== zf$j)~efa8S!4^B@xxIl{uP78Zof1Y|!7Z_72NouK~vGiH0%tj~V27u`tosve10*^FkLW2I^eV^!c_L1(d0HPW6 z(Zs5Uj00$TctXMfXDHjdo{znYnj%_8P(Uyz)Pe^vL^8Ib4D|^&Lst}18JqI~-_%Gc zfvR~iw=xXft~ps(r5}I!M0#~d#M8#$Yy6DAI0LCtI>^~NvO6A=9+|UmZS_;`Fx4Zi z39V{DS!T*eLXAv`CCPjgv`?`S*z}Gti!wBQs@?{9_)9BPxuKO}V#s!4zBGu6lVwzx zW)k%%=z%9aA(5I`I;|u#07b^A0RWc(+lqK0j_F@$?nP7R4AVZ~wnLx*U;*P|R<9yM zh=Se=-Qau-oe(+OHpNn!T8c_70lsGj z&_U`)C8e8iRqIzL3Bt^DO^2WfFKX2Kjtv4v5PU?&ya+m;mz$|aOagxvAD1+@@a38S z%o1X#o))i|L>h%&U_kMi&*sZ8BGPdT^(sHuZ_Pkd!UA+V3ipG;ZlM>;yLgk_(!n&x zn-`Ndo})OtQYQej035k+{)XY`dmA#ZvGf-xn~MQg3SoB7+?k8I1Z*gbtAX5*Kyabq zyp-wsvoUQ8QJ|E(E8QeAv$8{nITPU|I2oT08A4W$U|>+9w<_dJq**Zy>6@Mp-wUGZ zdr#7)f%kO66e%y4YwiX1^#KeOSzwC~1)*75Xo41vRALbZsA8VRb8t#wz&oy%XW;>0 z9%4Sc0p`lLc&7s?$Fyx78^g&Q)+*`{-s523sRz=RJMA|8?f zKx*enA}*Ya?kF#^QxM!g?E9{(6wQ~?u+Q7gUP%Lyt;o#<|>hdaj^~h#KqqA&Z z?XkA!ovWtmr(4jPZjvuj_CbDPp)vR>I#?h32%ht{w zAl%Qi*6Ha|K&7|`mzP0N@2`G#NWe-qq5oShJ)hP84RIA?f6Ych%4MkEOPMLFv-t+}`rpq1SGpuzP|m#6JOviK}s^+QQpjhW;@x`Y<~ z52|+JVyK~^v*)Id4OMV(?LiV9mNCPE!m#u-1lni&r&FXSSwk806*L6)vW;14(`W^d ztaz-i=mo*$jX3by+G=s!C|cTUxWpm`JR*#4uRu=e#_6u085(vSMd+vUCUo;?zKKnI zQ{BYf@TpM^_3vb?XGT!5x)1PYGLUx0Hdu;jSCk9u6oijxR-dJ2&oY0?^jL{4YRu9c z7_V(Uy$XZv$v05Oi_<1+$8ja@Id60<0}%C2-bkE9kwlQ?)i?#!>Y$RPrGr{;xLs} zY%261be$MgveYYZGI>64h-eT5=7RrhN|vXQ;DDy2NRL>N7B~8a#?1c20Ub%=mOuJm zI|peCVBuH`ZG3~jrGAN2yTZf-3O~>Pf&WYfre(5b*u@||@zvZHF{$+4qQuWM^&>C(@ovPK z)97HtCc{t4NT8<;n^Z6M8pT7xShcI1s$CZvYEhxJq7{s2uHcbcgkqf%=@fWAZxc;! zAZCZR154Sl*yKJS6BZrOmJxg2?EH>FI}>`>pwUWSU`N}SYHl4xEH;h+(oXpJSTtz8 zD7^#?qCaIXqLbxr4dht?ZutohGn!w^qfjBEOai<%w7FNYjTu!ewV8Y`gDFTcQW-TH zCP7T2BG@M4!T&}E7E7n>5td5-K)n!ccz z6!KKE)H$CLL=CqAdn6{DQ~UTs%?&b5AZ2hqh}mGN{45gc5B7GXev^%oLJ-*ArA!N zfCp-|hzpc7JkX!YKvyQQBRV3BEvS~8Uf>l9O0fC#{pe$}7VgEnoPXo(^sp0zEudIY zDeXFzfI$+rY+cApVR;&Sl&+V0)VNDds1cwqp{HCJ;!&w>KAjrM9pKh7BTXQaFMu~J z`;7o8%GW3JO5#EUl4;Gb$htR}PHFeWxM|GY=~@?cM__X(Bz6nFrcNQuC)%Qj+6LgT z)fcB$Kh5Bb>~ZqLKHW(j&XYQW znuTC~h_%*2L?d^0Ufl=&OBwJT(2Q*fwJu_rX}K@rxEQ#J90!YWy%;J6T0pLOcyt?~ zNVDESB#>ad7w~>0UUN18*OVlfBD91hihwD@Lq0_0sg;!0Q!A-nZD6O;IFEGksVVE_ zL>#uvnJ@3_yRK_B5x40{<~c3nUpX{u3WrykPqt9}4fT=z3^e5xfu!ajMB;H`bukdG z7)p&u2~-M&F9hUPAYqrZFD-#iRb~^p^yDxH%5V}AF@46o4TY(t3B#ix+YlEG=b&@x z%7m~NpXYC8!1qTx)+JQ9O3))w)Ql6n7-i?M~O)3{9+5e4@0E zS4_E*xf{v(m3T_6YS#zh)!~=WY+i|7%{2QcO4j)@!4jS9)Lde17QK}YL|-Izp2A*P zF0NY6mCG2-(dnpi!ltFzYS#b!rdBue>~9^G<-@XIR!NDAlkiJH?FnWwI)dP2=s0yK z@~U518C?uSz-^i=hpFYyGt$&v38ti|SkYuKb%oeK7v2FH%ZlnMxEE{x#^Nm|1T0$e zxD}t*AI(5tA%|NF?bx5H%Q*3s5v4Kf`{z4}L~3TWFa^&F=iquCa3gj~AO$*SUbJct zOJ;1gkOeqi45c2hUiEgFScRv!8oCA3P?Nld*%BK3B2@b5#1dA@SBqOl^TU2?DxSxQ zg+eyLtjjzz70HT&=SKMR?{xXcp=tg7(1k?yn?(51!NiLGhpC0KaX~SwlC*YD$=&o1{;R3)3!oib! zMp+kuz}tC30RM{L(o-}DF#^7pv|T8yIAJ#KPhqB6(!d?Ko)}ze;jX!`o}U*s$YV9 zf1rW^PAmbDp_=j{hW6(sn0~M07@I1J%fdBJGYd>~*D#}7nmlbSNe-N<8+{}H{nIbP zU`^aT3@xV3RbXEN(-5dX2=jFk?Z0jYw*gwwMEUjsX2x>{_x!nRD~F80p#CA?qN^j* zT9T?zbIrKyVi2_-(OGjaAmPf?&aFM8pUk|gi$5Dyo0+&OkopCmWZ|Sp(yBh-U(7&T{eb)aU_Ls5F|`w0C&=Zrw5_rRFd#L! z5ENRsyCW&)vIOgKCXC=(Wh7y==tvtf8>}*EUyEj}a^cdoK~RTi_F9WidKZs`o9qg$FgZ3x^+Xm=Z&WS7RkKJyTrD?PzB@N{& z)LKG2h|u&+Vjes%Qeze?P(aAK+v`;O@)Hs>hmDUDV;HX`51?XaIWZ?0>F!IZW5fa`$Trz)SF!?u;(I(-^Rla`2 zWbteTI%MvvZJE4}r*YYohLOj;z|YDv{^<-vrKV(%VhEbk(}EZC}#7k_FlLK(SPq+v_W?ur5}IwtH`1Lh)%F3`f-tD!oJ8=d&MRwVDs|S2GZ$t_8|&Z8?G? zTLbb*lGrK*+7`l034OLQ!5MqKG{UiqJ?iTrltmap^UN?ZXM327D`sl{9skB)*8xm> zG&(kD&0N9sUZ>gVKZiRV-_-N*G;W)Qlt{R6j72L*CjbP}*{;JoVRcf2krC>wL|ReZ)jo`F*98Ypd^ zh9fAF)>9kGl91@&$E)RHK*JC@nyxb4`movZ*kzVe)k(;%nu7B_xs18Va zF|bc*Eb{y%GTas<08!Xmpn=Wpd36dXfF1GUgsN7wtpv<*Vl3{&Bqi|qyh5Y}<|@ir zlNYHyL&x~(Mj(n+x`-5#{4fFA2v<)02jP8J*&t1s6V=b$LokxiE8t?Fe{sTjHRjay zany*>Bf^4z3!tAM?RF4cY2?kaDyuR9k`Nj}h*VE8`t1-eNI6L6OEQ&dKMclFq+8%T z`eqp)^zUZCy6%3FJSu^dY6;%cl=7o@00`FgTC2FwwijsZ;p#3l_Hrk6eu9lN&WnYV zb0#E3x5CW|Exe`Ywv*0S{PGpi=FVim<2YabIb1Se5-K{5F;hEx;Ua)eWJs7qR>>kb z57ij2-V7@Him+WLQ1Q|^^jiTHNb8wFw3x~=w6lPOO|$lro?6RS%3p^JW0k2K2=s{T z0kfw?xe$8$+nPtch7b0qGaz+P>LpT8Dk2kNAJq$W3(^!83G3wO_m$-$ks!Gk&{=&a zkkV_{1vw84P@N3l$=dG$`#LaaN2APG3R0$u)HFRwdIV1Oz~~h~+ElrQSzin+VNDli zceMz`YsxCN*v2#b8;PQ?Ciu?QlHsesYcB@c+|VQ>KK2T}(B=ybp({4~K1x!lLU{9` znR*Xo`#sMQl-W+s>6-i=J^!f~(i>!Tx#%v@jwIr9?6(QZ#F7 z;r9?VIujr)*zk*in3X~;=b^K2=BGoa@CyjJF7T5sQ<

lPv#d2st@A{Y1${ewdpi zI|heZP8_SG9p!@ej7UVeM7AkHABzANF9z6xt(^wvX5ANSw2q+~_A#BgG+LYfp$wV@ z9=!;p(WoV9k-Y#KCo~gG0&z32dq&e%>9?`+Rp>atNmFejUleQA?!&o2o964)d$2#B z0hVgXLN3|*0bWy+>6RCWQvUM|ciGK)>ww<}DoP`ZA73NW=qMjl7#LjzZe~ zCBheio{b!uWhRq;2wZK0KIZWnKh(dQ0WEJ;(_(|SjCl3i9Vu^8Fpx94qbwCAsxxi{ z&CMWN8pAvG-@+cXm&$QYP{qhde_}~V)86ShCJCEK2{(tpvp>Qi*lGnsfKIC+WLbwB zk#!W4UYD+R3^bWDz6A7OI0q21+x(F%4gENOYjnjenOAul{3}-KhQMYgFO1sc@Fpfs zFqS7JZUR!pb=qGu@V}Z+E(R`Xo^d_+re`f0+;;|1k7xt2ZzW9@_#yw@40w4eYD;hNaxuWUX}Q4N(qtT|yq7i(yNO|tqDEp=H`v9}#6@K!Mp_bU zz|Oy_8G-`v z#%xb%1lCa`qLs!apbNAkG+GRM+=Y_l=zz1gP(5BFG15Z9fYS4Yt+eE=fSJ|W2)u}o zp%8RnEVe*Bd@nGYSeWj?Zy4Cz$-|B*LX1__(>^Nv2CD5tuMud_J$@rTLaT5`0>@}* z(y3PyB`#*7H=^_TDsGRi$}2*n)3{MrdY3pB^IN22@(bQDm5tlM25Z6i2Sm2l_~HJ= z3|LLA2G2t#DlJpCVYkus)m}~N37V}vtnQ9rBrD9Zd|NPbga#J_GP8j*uow|FnCi99 z^erVmL^f-vOymGlWIzr&J_R+_7a@lg4&q zE~;xKg7>(R?k1>lZi(1TwnT2_MZc@MUFy>St%GZGR9@ZU>xHc`{R%*}nx7_^5gFjY zp2fbqk`)F5Co96OOvy~kS;c?L)u3L_2YWJr40tWfV^5w*W~~N>3ZI7FqbM9+*(WW* zZK0+Y131Cb$BbZrix#oNkQOvi3)_cH%oHTL8O!KxSt{Z_vsR+QT?nJ88fkSp*+Pa( zAX6yBrxFVc+zZkoFK85zDix0CT?ax+VPZ5?*-gk2+zBE1b=|EI_QL2yFt+Q2Uy&`o ziuNMXHZN_5-lWqgegva846%~?KpNU$a=Hw(JL(zu{lT@1!X%UW5b^@?1?J!%&%oWqdh0b#qv!}^;F zDdR)Ax+WwMpIH6*NE%zMk!!kXhvuGdl`rBIltP(;rZDBNFnl^IvYm`8SEELSog>SN z#pTk1N-;Ge7&A!>cav)#k8t1OWiE5zr8@w!i-3=Ya!{_TYR1;yux5I&R4LJPu>Yf| ze?ej4xXTlxxjLb_uTmzpFZ-1ek@cPEs`Yx1Cj*uNFI+Op4k89lBHs@3VxX?4zI?rk zfCX!VwsC~*lBcJ@NN}3on}sqnu7re-7M5qhnYHbM^UXw`zhuHqI;pbe%)waX6Eu*U zkizeTzen~;wkMbQwtZYx&;XG|4T*OqxgV5SLCDOAjHwu*7??sLIprxM#h9)JyJ|aD zkF&Kyiyqo?doi%q?!B<2XAOc;zjVl$l^Rb;EI_|h2;t~so{p+5$$K)Egli$>8k84I z)CSLCOE-hOSP%SUpkyFbE(gJM`0{aJS}z7sq4~Kk`(=aFh@}o^4q&6$j8f4b&7sq7 zt!c^D_aM|>{053m#b;DJfYKHTl}c0+ijF`kqVI}Pt`0T1(io+Y;!{RtY)z_C@yS%g z9mMxV=sJK==EEo?%&Y@wh0-pmSIcJiS!cG^19i_|JXjSrv-87KIm$on! z;N_{#&MwAy)e>A}`R-z?#-0voRea38RfsDH*2YfP6Wq?KNeJ}WKz42m@iLFSw7=&1DrTo;m zOfEzVfU;DuAykf+*0-V1TZlT7#+ByJf-G~bqHa{m^+Dt-UX3QK7_JqHb`mbc8d4)Q zZ3XkWtjL-SQ~-u*^XVMRj&Ph`dKaNWHYnTbm`4fle5t{M0i+uNK>ILkpk4~f#XuMB z=)38nNxi)osC)fo1C0bBoqE*EDb)of26ZyB1@pIxV3AiGq;-10Cj)f`P_o|mzKn(v=jTb}{%1@e(T7zAKy_1TtW z#Bg@N;;QFGIotqtAJ`Hhy$jpQ9U1CIlzy1dT?`lsF9sge;yhZhYSXvOV|d?3w=OHj zTWY<>;ui%8JHE@o9M`HYnm5>APxk)uDcAE$PmKgmy5@UgSU4#;NgS@ z0EuwswuB;~a1Bpi~7)_@dILk(vKjRn||tJt^_ z=zqGxG*Vui5f;-QjSjem==3vVv07^jU1H={6&h>Jeh;SImt9{!tY?C?W@+9C=7oDf z*Q9;*^FLtV7XcZOvOwRHh%GNoGnL3j(wZbq7J?ti{3u#1(gQph=rT~%*ZUFrZ`|-= zAWceRYnY0HRT!0^BExslVABwkZJw{pOR%175(G?)uK@EbHBwR#Y3h2o&$Q2o)LtN9 zi+Vn`MiRa!0$Y5N&Kih$tw|OsD99iGvOu8n0JiLqOs2*LA%UO_p{xbMi;tK?gm8uN zMQf+krGrTiV<*E)AF<|OB4}1ly_@jDM&riaBOmCj#2eiYpsC4AM1267z=}SUt0WBR zzm6D5eSj8g^Z-u=`V63Ez3ox=tvg%{>{gKa7pp2n0f-{CcK0^K9sk{ROvzy2T}J74AiG zF_3?v7VL^yHHey}tq0N`K{c}YSGHK1g;LqemGEVcDh;rbJkmE*vbx@CDg*T6w)2n6= z>a(4(`=UXyr?FE3Dr8-)*WPN}!*g5iM146oA|bg@FNCC|NDLPm3{yxQp13IlXAG>$ zjkRy0`uaTMlYvPFb}H=-+l=l=DSIl*i^0@H)YL{o%#qU13uHM^jXaK+l6=epJb>xm zKs+?EB;iv%ud{NL&`*^V{XYVTDyULNZD)D4+EN4;hEogVlxplvRO~r2&-q*@I9N3< zqTCJ`0SI_R!u}8u0?GQya3a43A|^9$5Gc2}+6>g%KZeq~l_+{l(lsx!UIHU$04<(*hhUB1kcztBQ>nt;6aG^EH7ovD`OO(%xjOx_%q-|jBau@g@=}zW zrZT!1pmKLs;Vp>Hwh(+!zB7w7j%Z*lVCPrswpn2FFu_K%ileo4EAF$*qkU--Jx6)3 zgwa{3+`VFXS9f!ncD1=_u+a6jfXhen+d8v^$_)gscsR=I?T_98(pw^s-j-MNA{b_^ zYr4hSE#_V*$crqL5OPkGpDAZxd;`g6L%DLhA@?&_$7bW}^NddhW*K1FI{h-M3;OoG z9x9|L)e5{V)Fct(XS_sJUy0zLSp(lmI;MUOd(~5k;_$PQvw~BS@~sjr^nNPC_ad5v z>MgM|BuqjcyC-0NLOv6XTQ9m!;aJEwK$yU*50;XVG9SzdP3n#c;u?SryYw`I=z2=B z0TWv?bg58j#147Stk(1z#3OfW?E2=HJX`{Z^DVEqO1LVx9nqP~qpf~?iMFg*3m)sX zweFiSOWIn*zCO?RWMG(>PX^{0=<4b*0t_!}K-McqQj%JNVlID@HEnZAN|`-5 zi-=5x&XMGaO+zH*AnO|^y8XH$EM>(Yz7K%==7Dod3j$XzBVsZHKNz0d4>c#m7@VsC zo5$;BEmRo7awfa>)s<4Oe7h&JX*=jj58Jl1>sB)9J|HbaTX8Jn-GJW%;kNsbgffs8qvao2PPFPmbi-AxmLJp3miP)&>b;E94 z3tB7y&Q8b!!F#8%Sp>9u_&)|fE48j;qSTso)_cY}i#lDcW7e2VK%&v<13wg+87N9l zDB~e}2ZXWazU&9odQmZg3xF&Z*0M6mS!l+NyqmVascLr-eowI}cr~-V8{~@tVE8Mm zcq`=B0$c)Ynmz*6XoQL1G5}7Z13>J_N={oDU;QyczY5te^CbdqIwqv zNn>|r_Ocf%-K^%`#o}IIf|~NWZ>Ys&iEV&*=R>GYQ&XxOkB$y=gM)^rZux|`I^QCgU@Cmgsra-*1- zStLh;W#1L0=3elwJAtIQay<@T?*sVmV8)+u#_|pI(u+Z3`=_FDejnh;z+MJY&3p}n zqZJDpP$ii@(aAQm?)klwPmqOhk|ZB}YnZ%A;QiR7FMb7Cfnb4``D};dUjE zBA7z|7!49V(z&hx z4%=J^6m9l>Ue1eQM4v-Yd^jf$S?&O$;a?m8 z186fiz-0;p>JCZg-3pyB)S8&%xg!@i?{Le>1w*w9&7L*)>S{2GmW|&TycC!U2V+!1 zF8quqGjPF*KPLW623BhJiVPFBFBo}EqC$%bFL2^y5SoIABzZytT^=6+ZakFTdYLXo z(v3mMY+H2%)-NosP2U?~6_&YSP{f zFQYD(X$vrOimO4J+-=p9qVvFD*xeR@iSUMU@ zLezS}n(kvZ+{9>9izANEz^qwj(T18=VbG&gMcqaazDOLu7i^m~t}J9PCpkluaxoz9 zXpKD}f8_3Q!0cGGbYrwwZ_XlX3wP-tW|KbyBd)><(k77Z0;0Mp`Y=yr;L^o^jQ#cu z^hNV-ierD(G_m)dTO zp{IIF28-}L_X7C^LwaBYeJ}SYECNc+U)4?Exfje6)p6F7rDy(mKN(ocKvy!~Kwx0S zkD#UH3L>0>7qNhbOtrb+m?>AiV7Cyo4_74g=5P*vLJU;Durm65+RM)=5s8bi6pVU{ z20dhVM%-8$8EnG0K$A7ITassZ%%{%djQXAq)}-GT^k+X;7-g6Ijn^5S4Rcqqs(!4< zeLqK-2c5&f?F5p`Eo@nE?*HL*8Hk$j08a)MGO$-x@8MU4TB0nyRuH-@ls1B4W5!HH z5Q99eN`$WMRRi`kL!lG&uqa3zR5&3iebu$u`3noIude9Lb9856j2=^tBv zAp>U$?ZrBh=IEt491uCQgEto0vP3M%`lu+iX+=8iI1X0^$dgdh*34inhp2~0J?#Bb#i1B%y zPudHYf}455*9Guzu@K%=_^C|UpRa}frW@0xOaB=A3mLei^uA_9(rg{KNqB3PU6{lI zsf^&%#k|fISq5_ZPQVXVy?n#gi%}Q z>exd&7KZ7nxihK@IwkT2;Zq`$@QY(CR>FQbXdltha>_oq9-3vzT3y@;{Gu|G|Jn2p zZ=A(@#r3QISp4l7I8|ydRYLi)KH4O^a)bVu2vScH22hk6$`DOrLwU7=a^=zJ;is|I zCxehz5nqSij~kOLsjq-G2J@fZq%3=NUgbpPRu?^RTI9%*DRGVrom~`qh6d{`w5`_43`6 zbTJUuCEDn|>KRM(a?_q_ox+#DV0#U_-rq9IXeN;1zl)7E&|`3(;>1yo4n8u~RT zeA+}6^tU%q$74jlik{^&dnp(<65~tOhRPoOyYB_K_4yJrarzp@XhaLuv^?;y8u1Yw ze|V>jRl5U-X+Nz$Qt^Gj9V`FX{1X}2s)QRnZOgB;L^LsVAbD;LmEZ99qRhsjUW3$X zfia>{fvah%F{C91%}{n%LG_^9Ac!`TP!@*4J{H#NkX0FvB8pD29Hat(Nh~H-#Lqxs zCV(?mwsa6}N#vH~)x2~uK+g8fGqD=3gWopl7Y6D3qFA?!fp44m6VD(67q9ta?k{Cv zzaDlHtf(FJ1OdfZx`L#8p)6XH9e!q;I`F&4F7=)?AF6h07=nu-m%sQqOXG1-~=5uQY99a?0)La zKVcTxCX(ha6b3gfu+c!Vo+}g{IFJBHl;pa0gyRGsr(w9j?g)443y?o?7Z82Yg5VP3 zS-^5F&_sK_cir{^2%>#@sUJ+S%yeOq4pXi`dhW}?iqeKn_D?W6Y7Lfr)( z4e618cLwfS`N!^G$v~=oOQ7dvvkh-sf(bh)=)TfWI|jLySVm{B@`ONX)yYO6upLNVX;S#(^8@tbP270iUu?cS3JShfnAkk7eM_Wq)k{l?=>_Vat(> z2&u|TE3$;Eg;b8ai@}~5>Y`Mepq!fq3WC#p%tuUXn{XiQ79dENk`fxig)b7THp7X~ zu(h9TgY@MWox!s`IR>%n9t@s?!xC?yloO|sfa z?La&xY(tmFr|^rCHy2R&XG2oYpbFB0eHKKegKfO^4++ResNj|WnXQLLwghUPxS~V# z5pNL+xB{q+6xMu+EC}iVGV#|A}4+B`Ni%j*tWez>@LQ1vIUa_kiBd7c(7(t#ejeo-6fB)id(7fw8 z5#*zCcLv_I_>Z4opMkboV!|y=aWL9+j3sxdFp~R0e=$%4JVmIIKxaY}r3}OXu!aK$ zO19c?7R-WdJVLk}Boah;Ur>N{F?;R5P@X--=u9Hh=?2ja9}hb-(+U*5AeI@6mujuD z*DY9PIefy{kb9aaQ#-BuRz>cPyb#|9%gvx(^H{T6fbUDd6VWXT{TTg|8K}yuW}qT% zA*G4T`pH;Z++>DeeS2VI7AbAe+UBwnU|s?;5v2iCRVGGPN{F|xsU5163=BMZkPPbw zS-KB3E9y*kWLyCO;eof=(=wy>7d>4yd($9a6}d`yk?Ej%WjglNgvCT%?e>U0hB#ZD z@1n=vsF(gG?7QavMDxzCi*DLdkJ<0ZKvg3(tctXSM7I&WEx8?Db1{%3E(+e>ISPTH z%?&|}Jv16AfY2&s!`d(g{R5loQbu2gUwKHjjOSmDN%}CB|yj@gAxhSzBSN+y;r-& zcoZ>>Q4A*YLt%K3#|_uDx?H@Sy0HaashGZSh{_)Nl}# zJ;KrOD-pdr*tBcTr?LBkDw#PwSI_+0##rlv9(^0UaXc8|BYsZ?-ninAt3Q;16EzbX zTrzY*GpWFcHqQDR1JJF*5kUU{0W_nB6>sGbp%gUip%PwvLIpti5dk9LT7&9>7}?vE z0t}upVX`V)J;I9tjFN@$XOB*Y_UU0J=dty+7`smZLH3Ua(sO=4Mbk5w=jz^#9q=|F z*7~5wvJ>6~*?~D2=Ocb;2Hv&UkDou6fkD~aBgxiAn)bxD`F1`;sJ<9jWu&soC`Ic~ zZBzJ0Fl!(bP?(08H5s5FL|bM7^&cn5lF$(;%+S3}WPITZbpI9nH;qr1>D4C)egUslm z21W550ZN)JFi|w|)CIiaK|~aDbY|NFn2!gt1Dj$<-*bz*9J8}4_Z0%RY`4c^Ygqhn z-3vO0kWPEJIF4}S7V&*jaT>%`S7f2;@{O52l(TyCYcHmUe{%+&Yr&g${NHjnFO8d= zYc2-jLTX`dy>yB$JujtwTy_F!jj$`*m^6e9%+?tEqGe{3B=6V=)DJEJl4dXczF@{x zI>X2!Fq`qC@T>Yq{rwDitYL~&moyP(AQ#zQB9qa8$JAg8kgaF>4Bodm)QpY#PGA_x zLws8X-nrI~ufLapT)PgyRk=N&7ov861h0RTAjK5*v^`%SfXt8f1mtB8FA*X@E!Q*! zh**JEKJDNu0(@&ggQlp1s?%`Z3r#rWn_0rm3;!@uLmHuK!DhB$Zlv4M)J#YI>jYWF zDg{{8iZDi+1s|ijS;jn4xy_WHz`4S%!J%s2sPBV^p*+MlW#E15{CN7C85q~aJ*wtv zPil*A2S`MuL3d5DJ6=*UA*y!(MQGiq2CG`sU}&fo_+e9FkZ4Ga3YP?maeCz&0|Zz< zu8XmHXr!Wy5%o6aouuAi@?<1mrPka7WNCN8!%nDIdmn?zT1uTHTH^En9XYWKY)$kM zLrUJKZ>(WyKEtpc;(Zx-<1#<4{%8hvs^o;tWKDSMWH~tyP8S2Cv`32H6o{l&YyjQ` zeas}-vIB5tX$uRAvb7ha{)z|>`qpG^Z5M{vEDN#} z@qM!@zbN;q+O-(oj}+ti|H{Zewc3y0zm|cmD)}DX;CBp~GZ}FR-C#=KP9YCqA=}D@ zumCPyT@6$~SfT|@)x!{_+ijJr0{xjV^|G6@Fv8Q=&stc}doBh!Nw(OTRKd2+95!3O zGHu6j*!%|y{^fql)~|wX+rNE?!*bO`zQ>N`@_&=x1^HB(X2ke|H0A<}Ie%=28=}x?E=3@cYQpNo?gfKR z5ElF^0~oMsAGVA}oIG=5Uqy5sW}`p*95AxGkRS?+I$6JmH;ix&y~dxU_`+^YJ~mm| zAqn!$XFJd~OcI!arZMH8W0ZaGb9>vECzRoH6ZsykfBi$ofB)P366mcFzim|?M^6Tr zfvp;O15ZvhUGN znZT-sx>i?LkgHuF1j9iuCh#pq?lQ2%K(ojUR$&y>nZ!fCAp`aLjUDK=vN!feJnVn^ zavB!U;jOX$9Rt}%Tf)n{dZSjm_I`wW-9kkUB%8~Df3aY7G5C_N3_iNf_wS^~!xv^? zTpVwtcAc=f7^GH-^1*V$x?{z}s3b{IFT5ChV09mte?0?xW%7Q0b1_H`Sypg}NicMje+F}R3Y6QK^y@|C$sIYsoxeHxfo<4|C3*d^P7S1xKE6TsicNmxeoKEVv^m+ z=Xd-pA;NipCj)QGz-Ebj4-=Jg?8%D@D$t+`nG$#cTFNNL>OHmzs)#}-n@CeW4?lpWz!Wy0t`w;fDq@ zJ{Mkpr>%T{P-*WVawWjM01x-1?xat=8EBg4bj~|7`Z~6xHuCuu7lVlA0iF!JF9Vwu z@-0mL#-M2&QZLZ$y=-KdE!!EP78$dcDa8vzI|*C}?8BQ_fgX+JwocE{{)-inRcp`^ z$Oh0*=z-!>Md-JOBTbQ0`f2w|d5oQ`%Ko$|*FzZBpL1MbdGy=;PcrVEoEPwIWt z{bk`#Y9h7k7lXUz@Tv8E{QmU}e7;=!#Xt*-oZYIh3bn%J1S+nAij{jonGTLBOcshl zO4Wlb6#XGVpmI?N1#AsL5~WyER){hHy<{X>2dXLe(1q5?{}w_??}uk(OS&6{1|08| zh7!WuBng{7>EO&JYEFK8C1VgY=uM-h?yjC<@*sbjDoOXT7_J+ z$)+LO1%$((s0dvZIf^Gn;I_KViBv~(VH;rx-Wsx_J{iY9G;TzAG9u*qJ0>?zemylt z94~H-z&fB~!&WEN5{}*s^w$pcJA>wL)MCZn`^5C(z_io*vAASdb1Av z_GF;WKwS?%ft8B^%PC80F070ReML)+@(BY}u3Zd>n7m08Qb29Vid#jcB9_s?g+^f3 z%){yepqZZu>QrXj_tCebJQW8LdrI+oC7IodQEr9uiauCKHB<}GgUq;=X|Z%OSo~nB zw}SGKwm!=5#M0Dsnu*ZP^F#PzPWvAVd4B&}x);dAWw~XJd&_++4PKPqxu}n?Cj*gz zl`46!j9m<@bJ+1Ir%a2ip1YuW8S=%P==_P8g6TTu8nXpa$3TyANftYQ@6e3~rs`jK$75cWJYJM@Ie;+1)Fx|Q% zKn{0<5C7gFc1S%TS&=fQ9|_eHkiT)tW3YZP;8J5_UNn34?`QEDpA5V`1MexbTVARk zCCJgz!&QzLPFv{9!9#y7=MNmkLdN7lEi{9aMiyRtpsz;c4LJ=#4`;GK9u~+Pkj3wV zlh76z;RLWH{Slt;ze}Anzn5BkhcQH5A{S`&$-$K^IMV))H-mIB*!=oiF9u(5El58D z(ODr+Km743f@%0y21hOia-{L!HP3S|@H+I2pUOb4Vi&-e#t}0pzNj;~9#*EtDO)lEigG<25cOoM8h2JU_x zTne3NnKN+D$K9cRrG4xM-y#7xfm<~;BDp+d!_FW( zCz_BS4JAZD28aJaAfzBX^OhNI#;rSU&f39Dx+6g`DUq_t<%@yto#rPA=3BHP8zv{5 zWBHj)Z-EY%3u283165j1VI%du=!q#$Cc|yvympVs=E%Fq#W+gd=BZOdu@hxeC73_m zHdl5hB-QM^k<^ zpf9-%=-)mNe!3ahF8cJaeR%5GZD94qfO`&$x1sSi78a4=Ro~{^=f0ZtrLTMcH$qVV<|4@3QqP|ieg)qXCUMWS$|01VB^zD+#doh2@6gyabF8i1>SJfO+T zpl`ewH1Qun?G{88I}^IxwK|#%p~Pqh$U+fz`& zT8Gf|LVDN%U$GvRuK}3nJyX}jo2`6!c^~&r1~da3_3KS6UJT@H;CP5jzHuNGmVqFH zQL2||NQ~MtMe_^Rs>dwASNo8qE{k6?Mu+f8fZY?AyAo4H5TH#7iRLdVfKS*pPLEgh zzgYmV?+Y@M`9k_N$>qd+DSejQC$V8FDp+L~IBRpHwRmBJ@G(lk*gchM#7_?q^l<>8 zTLvXL!-+(Kk6XW1!~b5wPCz^C#h6f0{28X@AwC&+cLp}=*IStBM+qpf^6;RDZyuIm z3@QW`r1u|M!b^?%K{OY^b-oiO_92E=FY5RYK{F13_9%sHCsD+gH;AVIwQ@@JfD+Ti zIUZ2@tSD|^_dJ8GA&z{bU_9tItD5oBEE5xJEvRpt&yLlEQ;|Qq?PGNx(Wh_{DY=%5SO3lFfK9e zHDcuDvS`Clos9>3GVq}c94KTriOR%r=KTE8OFD$Wm5IYcsS*e&1)V^!rsnaEGZ<9& z9h?HFbE=LI_P%>Re-k?yG-g@wQLJ8lt_MNmRTqMR0^(3{AGe<|A3* z<3f(_>A8F}hWZwOX{D$9LZZwz(cb}Xg}KA?P$dI7(i-8}*)jAMw)_?-qvVZELY_FC z(I?__vU|v>dEh4lpUXf~sXlg{LA-;$fW$!wRDtT@3|w=fo(}Edl0LqK{HQ{fFeSI=tD5X zoSH`{z(4;dNR`%N$syWm!f%5jXceGO3j2KnNbPXd){0!2#)|Y&nR~4tjpn#K z^Byl<1}r`1wLUlQi{4653gA1g{<^^U{8y1Ah7h_Bh?$nq4na5+9vxEkz0crcAi=gV zUor#Fh}iesJmZsr4`+ZykueNQ8cwcoF{GA9rK?^vpNfRpwfc(UDWJM99hO4tB{*V5 z@z$9P^B!{QRnTw@mOB*PBAFnwjGLBFDdQ?WCg~|SlpVT^*-ULcjO#Oi_0h~@ci5Iv zkm$NcSK>BvWH82N9q-FgO4BUspMxF@k<7E7+Cu9WVlcdL7omd z-}fxrWA(|vi43raQEybv@FO#Bi@7wfE16FN(dl{LdSrIX>-|755+COeN{3r**#Tg9rqzzmw~kAG%71PdlsEy zm1ib8x~zUj8xYF&!xp^up}YNv_a)^2I7*&D^j}4?uMGa<_c2vuDfkO!aqS{K)}9Pp zlL1ySnj+M^@JqSwXV|V9`7@~4$GOuphBu7pNtB@=6rzK+NRznr5*O&^{vY&xR{f}k zJRS|mqN;sp%qA{KZz@`O6R}RKwwAC)I&lcr+9fUd!qVzI_|+NUD(E(C-r3X6QgWl) zW^b(2sO+tpFvA9$@EVdvxf1Ivv>!&#e_^o+T~@fEoJH~f6!Sb!2EH!?tYQocP~CF` zFBbzI1xjE166ff`bZ<^@%+!kv)tRe&?^az%OLNw&Crfn?hx5|blLrPtCW#)4N*J?> zp<7-v2K)J;ZYCUpTU!M$&>@45@O}oiQd{lNdTnd0b<-$rp}5+vJignzt@t9rz5BQl z%g>gX{4BvHB};k9^y*Ud;vzljPX?~afYvHlla1c=FI)`b7h-r0+RAnXF0R!x-gxxL z;Vpj{RS-cU-DUOzNQqMOG)Ah<4KC#|IWwp&Y?E(TX^(Z|lE8L%RSx`Q+CZP#|a917pL=`=)Py9AKw z(6$CpLSQr+hjvz#@`flJiFhdjPnb_oe1HTL9R!Yyr2Rx=DDDX1MUV6eB%T1>Q5r+& zIzZip(_}aYmB_yUw2bPyZO=zVw`DHp#ugz!^IV{X6$w?}iDn|`1lBJGe#K3j@MSQ? z!YC8|YeD<6)c=X2(L80HN8}^4mzU--@MPeQ3|NV@23gfH+27?S3DUgrcNQ{O9C> z$|}hWCvi=PMI>RR$P$W# zC4)P@GO(aHKM$}>_6($_>Wt>wbiDS-IDfEiuRK~V^6q}%Cj;M*0hF+Ku*Dq#j5A?D z>i&1;iP7zJs=}}uDg(UAqe7`(x&%bPG>OjGlwgW#TfQ-HPcS5Z7##)}5Wm*a5dl;p zq+&nc6>uK_r@aWYxNF1d;-hKnEF(rdHY^&uS}f<_YTJ!H+dj5V4HIY*_)J!0kNCsz zY=H)$)+AL5T0z~Kj_VhL&`T+K2@Hb(a2D|3*x+^Q!E8?{zEdfF$zbbdzytU~R4*;e zqx@vxt_(y$^0P{U?(~17kf2?mPYYP_+xl68hWN^4E?A&* z%lc?N8Q98z)iCVvyubgI|KGI45io_L17a|p02CL7R#J6A*lVjIDrX^v zV~sb^eSjgra{j2pgK4J|CVZY6q+k%=d0^NlwnURp14Fgu_lkolY!ea5Sv$yfo*PF3HbaY7XuGKag6m!Kw*o|+-SIs%MDkY9K|<;=*RdN8uNpgvqr@h)nuq*{a%DC zINnCeviC>rvUiIaR77kj z85bT|(*>zsq}sR-@?_vkGT@g08BvuID&Rl)Ckb*qrUh+*A@dze2?ND2AFM1`j*^5& zhKJ!}mfnP!axo%`VO5vGzB14dZJt05yV&%v%w#jbS#C@tofcc_#chL&#o&=GvecjksojcgqQBC+S8oX9pXU$LOeldu1RXll_R2JyoulDXKE>~<>j$uO{ za|R@iC}qv?J3>>~<TN8zkknLh{>_Ubl&7Z`3E(X5ap7Ezy<6 zRVA;nqZfnRs&mW38S|qirz-2#Smq313M2oCXXh8@^=e?e%1e?LaD$Zuccq%p>#&lc z1U9iRMv@Htd=M#+XF3sOZwQ!Xl9(HtdU+3{>n$?5j+O|i<0R?^s22kWc-ms5mLIxo zLQhJem<%%FJGwBpAVzD6+>-k&4?kT+QVxDo!))wF{#*=V!#%*y%z)ktcDtP&^rM56 zX{jpy9}g7kMk+Ohn~l3brp;kWOa3XrxzHua$^&O_l6(AOoltqHqO1E@ibIhcLfAN& z!GvYPpMa5rDh{VJ5vs|&V2O@+V8?A))V!>HE)F5kScVOSxExP#-KUTuE`p`%R1K2sq;1`)DGryAK@JT zC4&f4k`k~3IK!+rAYl7F&y#^~&46!O8Rd&J$Es+R+8_UmC@fKOU|7^O1hY&UDf&sp z$*821P7(CgH8ERIUEy@{gW+N^KR%|V+yirhp`%r$#;LNXg zAUP>kUJC@rjX;L#>_5npfiKHI+POH}MD3#Nkt(s&fQzBH7{EOvPzOTZ@ldbMV48 zIrpy|^~Tc0Ko6Rp@?KDbuIN0Zpl~`eH1h)GcRcn>1_%CLLN#y64^o45^J@XJhGl#% z2FS|ud~F7-RAE0CF#h=hhHdn_23`zUO6&#@Wd$Bfk-5UZ&yj|Kl#2nnim`pMlE;#r zM7$2%Z)v&`SS4R7hUCa~q5K?6UD6~+-y6NHRN8^lSRp!oWQJqLVQMynQ-|Zc7)~u(F51$))KRpqKUr&TfYg%bV{#!b(*;ou@DWwG4Zx_pW(^Cw`QP})f!62pk`c-vDBp! z0tex}fEW5jakIyMl%SZb5&w@2i3yw@2`FK21jDV~3z{2>M70+fHr^ZKeWxouQ^}(e z2Gi{%lhRwkrF|5;e+1MWeI&6$Ypj$5H&RB1un(2zBQ_o=fmw5*ivLz9zQ}%<;qM zz~cT3IX$OBH7ygvKw-)&Y!W|hxcp}ccE7KFx5;+rGdvmio(%9T&t5xCXQpfU4p}h((1}Mu}j&_^1UlQ~9!bhINr6Tiht!9iuK5-bWw? zAaUS-Yq4-nABpvAoT8ilAOB%L2}#f1*TmKbvfVoUGv~I{4!8cs09y%rX|6wQyWQN2P~a#8OM$jJ3f@IGUs-zp~ACKp0i; zwK13UF}Ne)VAjA)bVjeW6UHEVt)7x}4uIVp59t07(XzF%@xMH1#8;n%jMY6oa}L0b z5l;v#w7!AkKRJQiaJK7!?Kq^So9=|k*s<_=_VqtY&^gJ)z^|xYil6bx!1rVz&Mm*u zD%krVe45i@GcNM4zt=cVES+5h~W zRr-5@Z365kSS#-IcmPMd#w3_!lJOEcq|%dQeh_H?lEJzEyM%V0D0Tcluu?$TdRx$S zf8I|9z9R$a;9`Sj^i8l9Iy#esQpyS{5l>EehtQGGVpc47Ug5;38L^Q#VP_O4i0c!N zqy|eOWqjyeq8c-X(lg@D+;-SAtKUkG-B1VkiH%=JV3<_}Z@RYkbWbk}SK09VBFh7p z4P%y8Vtmo*UsRX;MvA{-{#bC|th!SZmM;b%`_`~CQb|sc>S7R64rAH7`B3vB8ZM{C zoe_4`9Cb-^fgdsAX9%(&2QCI}_UdWMzpV-a6R8}*zpE!a(L5ROmQxP#+aXlJ-l?4? zVHm{2wAR0CYq{pb7PuUA^;H-LwN@Kp)EF_GwqV0W_eb+)147o=_cb4hqZ!DXM|KHx30PgqAb^iQ*-{0@Q@B6;*`@W7)GDgxOBS~Z=NlB8Fj3kmIqeYUD zRAdZVBpIP(j6^aDv(NNtGcL=GSdoCs4%l`CCQJ3V~5Y24th|fZ}T&H}JlYjZxIC2=l-| z_eM~)zImI3vH$(gCO3tqL=uD;!2hfWR0C$fn)sOA;9P z(?QQ8&QL1Y7E?jgD?yZNdNu*I@`5}xHm^Cc&Dkxq4Ob{Bme?Lr3lRu2yHG1js_b_{ z@y1T7SkPOTI;gx7n;#@TlSo2QkA$?ub)~+xOG){^Z<$(=!XB+{P^I)G0}m;`)knkQ zWnKM#0gojaw>DyD5$+%`1_H8VH~B)bGH(;QWbY>%M#NmC<*Fo_OL=m9Euo>P-hFzt8P|gx7^LuShqqRY)9HCd*N_0a|VybDG z$>zB8SuyMysz0pt-PPuwERN`*f%%L4PCiNl>0CTC7Xt&D?{;OC6^mNRrTQ%;FR-p; zkwqWLr9+yjHNPS`eaAq)0l-$1p}v=v!Cas!!45t&SQe{Vl9kJd%uT4G?3d`&_3R?=N2NSs-s(j!R~%XO*wydcl@XnLRu{jh+^&3AEKe^ew~ zboN>;CK^=c$7MpBajDfDb3Bd0v4jK&Y>a>{R=JxMnQ+CK7#Q$=@twu3Bm0L=7%N$V zHK7|D?mYfriS`T}(&l;|XeiVdARs%S@WSt23*tc{TK5N<-(NK6#SM|!Nqbo)k$0W(_m7I`f-Z$_1s6&s$Fb+Dri^E%*zc|^mnI}tLpx3?*^(is>? z%eoKy`?OLoU9|~wvC24w6byK$ZGk~tCNxSutH^McMfOTaVi@7GHe>X!kgU2W)7Wyz@MqnTvvLllyqgSZWv~i{zY*rX^J`D`?R|&?1hAA*SiU zz+m8GoK=o9IE-R~)=g2~M@UPrqNd}?3N!bXm2_oh*P7q_u6|cimIMa+V-5N}`urUQOq;@@NS9x|Fe?kp&2Z zz+gNxk~ou6a-qPW)S$@{pGP8MY6VNZFR9tp7}pqS78qz*(r+>n{c1+2ohU__?f4)G z3HTxq7!iR5PSfR7tpx^2>#K3i)Ip!XU}c@#hl#a{Un}lWpM#DTpH9kWre`N43$xYq2z<2`82g~w>{4epjn!hjmSa3l-(rII*!&Y zm>n1-j}De-93OhUe1MM({B4OA_>*9nEuyXY2xJjruT?Q$KLcw8hhmAunaptSR-?a0|&e*_)Xv5j!ziYHAo9cl5bLS!o3d3~cMHv>$Ce`2$CJZ*3|jv3ssx^ZlkBI`V_V z4FontVEO0S&=#A4!I*sb(6RK=x2Z;4&nl3vj_Ry@-jUoq%m$+}f&#D4b5gI~5i(%HbSDiaV)8 zIN7Y7o}Mfk^x!6%g2=#*Lfl70VDm?~98{Y(WBnHJDp-H7=rJcS)+vadqn0uc-*!ke zLW#8tHMi}F!B_%=c5qgJUlH-&QyGy3j!zOe46?n`bMP~0cD7Os4Dtr^T&1@J@MKN0-xBZ2SDc_P$00(Gj_hV_=uaY=45NpJb2rAMkYH97`{>hP4|)J z8*xEe)S2eL7}%+xg)P_Bqs}^2;uC{HuQVwIXUHLSRr*Ys%!?{7vB`^WswH z^~=6q-vFW(81#-TiiG1wiFOL$4g%vLu<4VSNQ~wvUKfk-z`!qqb@hvWCPkp=PejPi zoZ6+c9i9B!L+y%1Nuh(H-e!cda~3d>7DDeY3GC^=dsynNBZkR;>2Af&$q%^S4WY`&TYMF^~oZ zv=aO42ny2nbR(?61)vKMXcO4GV+gKSaLQa9YuRyi;T6?(Sf_3Kdq{acx(Kdan6vLOM1l@r+bp-3ZKnGHJ~ajc9g z8eR{9;CZqH`3~=iN}ncVs_hH{gEo^s5;=xz0YFWjG|c~!f;j!!2MDBVDoHg>uG|Np z0}yBvSkEC>?}aRa|E}Xf$*vL*uh9D106i}V*WeEm$oI%|hP08;+EfyXL=LiGau44e zbn`^Nn$lZMwI=r+iNlw$p!BdnqCBsXTNZNdGkX~l`$G`RXbWv@BY_Pcyo3~i!G`Am z-H(z$a1E6NeGFA8sfo8WFv!N+2TCj8%35e;ZO80 z%|%7L-WP2H^|zeBW)DSzyIBKhzi-$8bPob$0;zl8bpBSKKl^TKbmx7IyqWGQqbn^v zF&J#*ASXZLI|lX6IV#vsAN>@ZFpWZEhFV-el|sWSaX<(0%wQ#4x2DnZk+dEuEq&s+ z9>-ku|J1$ye?4PHFCfsHfPJ4J_=rYg=raS}ZCi24@mn29;#5mIvfoPuHJS7l9d%7D zmy6@4lSL|LFVvDo1$l)m=a-1evf9hZ2%_aQg;utZfE`i(tInJ)c~Cu|{C;ch5No4- z=casfw(5NwoRxNnDJd;}bv5F<@|HCEVncB48iC2ox$T?EeVCu$=&u!<$3|sD{lsz< z2i4?I5gD!KP*zBEm$oX*@x;LVelaT0!qP7glCJ%RRLRmE54X-uFTG(jxFrOVrMQvg zdXFl<+nP5DQJNy;x0=9Y=6lwr9QXuap!%%dH&-slZ`QpJ1>wv`}gms@|k^l1slbZy$$Vc-T~Cfk{d>I+d{zhQQwui1U>Fj7CgJ2)<+5a{+&88 z9Zt%%NXOidT-ua>4NXgNR)ow}6PQd`AS<(bjKT7DhO-|0Xa7Oi)>F$OB9lpAUzHOEBjum zMVsRoX15hHyvVR`8Ek)GpzkYYKpR%vKQO2V1$2JyISvXWZ0O&=y`@=hWRSe=T6WB_ zC5{5a*eL?(5$rdo?!2@B>9G)?wK*13HfP5SCvvd$$iP1xE7seIz#ur&fS@f2MLiNd z0|RyWrAGyF#va(eZ^(xT!LH2qYU@Leaa|y>-63_M3j$k6Ap0%>KTzhkj(A|OIj`5< zGq1pIjY*U)_{l|Z5yeD1Fes_{r`N=@R5}$|67tC5RJ5Cx1k0n}D{2i9`oN&03O@&^ ze10H?@{8B$Xr)}l2UHl$5(9&zw_qa@Am9lk%cGXGjb>i8c+PR7*wMI?w0=cgnD!Oh2nfr{gUI# z3&aI-$m)h_bMqSwHxMua{nu)HIhE?lUMLl0vZSrbpKnVvvYO>gA8j5n>18K7wT8eT zBQlx{Pn0dv(HOM}LpYG`x+?y$tIAwuU1oHZ&DGh=N`5zIdTfPkXO@P8$j@1(IV>|H zFsM8#&^{z+&~-d-V4w}@Fy{M40Bt0hA=^-`>9PXbaJcV00oy>jaA-eeu97p$zIdIR zH|AvKt(zUnrXUN{4tW)kzOZRQgA(!4gRh|#SV=dxj4l~a>@KE~Vk9?5fG3mAGyLn5 zy26uH-$>5!;eft%oz-xopK)dR;BF3p_qi-sImP&eFI&Qzo98utlu+>P)O^8-=tBhi zJ4UL}_`8)oEur>JQxc`#+6II=jEOI8!`m84t>xu@wXtmuB$FeMtQuM+x`ad~yDV-i zFYCI6E!d^hE~EY37K+3#Te3uq;pI&7u$X;4&L_g8E!AfM?@(U+lqi-<7fDGYnbm5P zA-g&P+wcX0CC~{gzL;qGN9wSsR}&7?F0`_61BEtciuj-{b?k9deP0^+&up`%-~$8s zl0g1(Krtvt|Ei&{BW_{7z#xvq%#+4uyrgK-wEr+76G^)>+C%ZK5zu|Zo{!guUob4> z9KFPSwW?IZTgPr>!ODx8<&8_ks%yrR^&(&ep9qbyjHXscWl~a$bxl~huYp3TTgX6w z3Gm{rUq$~|S8tZgY=2h&%?8(#=W{v-<8!iPQX9yAmF4QGN=KS2Wr2Z42K?xt_}*Qk zg4iG_QgEQEh35@Xu_M(myx4Ek5#=|fgfY7c%*VZ(Ch>d6D`BTiH8Fh>6x*>IP$=NPLN7eK>bn>(C)|r zgSj6WG@GoP=A>pN%^ESU8turyYOeXthOD_ubk~P~?4op;tox7s@$72C2hm%eYwXEabcv zlALpVNduzAWh|%vOvrcAAs~E9rGwJ**BsOhltG|CKvp@wG_Kq~HVS8Et)rQWBU6yW zjd!!Z;z?i^$-}ORb{b;#mhdPYRfC%!xapdg!JKi z$#2p$b4mL^8U&_CAgq0#C>-%km3lrMeqC!uNwObVliXmuW>lTKSkAbl<1`r#gE7JnucYS05hC+fJ(7_<)1R>PtDJYk_lCGyCXJ9CYpdW$lt45?&UZhl)Mu*elxmJ1fFyW^FO zXp0(_gHV?u&(kW;#Y*dRvT?6sL+C!qu~llB2=yhbsfNW|8XCz4WFIBO(vY%tg8&H- z7$*T+s`0*1V32N>%(=w&d#AX*LQAS}aFAsCC;bMe2CYs^kwi}5Sk!j?R;zRuE43hZ zNz`D`+FUD~{uS*~mrHwO5XLO96$6n;#8g1yOrREdyTfCTwn}B3VZcjG#O~MH?NZ0E z#f|AE36rEdd#$e_Fwg+O`VRh`R<+9V4QJtm>Dyh@S(OBK(|3recx`8$bcKwenUdD(vjI~_YMnF z6|vNG8y2T}rc&`+d;S0YWR4)Tm3e8HEolV6Up)+fQp35cH18|xP$i?us!jvSO0r4k z6~HU$7LE2Kpu5Dj9dAQUi*(s9(rUYDUEJESbg6p$s>;4f+#7yPu|m^fvy#gFO5eYIZBRfJ~uB#x_(B)ee<|?N8wKpAPD%Q!fhGy^3sh zQ&(3KcCLy0-KAwyZ61@>rj-|*mWmDx`==7apE4*ulCa(e-6=4L)+TtwzE~34)S+rt z(?lYa`UHuZNLG>0I*uKXIA)OABmoNocwN|D3<)c=f;sQvqj@P5>(lCHIeTa;XIoUL zC1M*}m|aq)RYV@Da8>y)>5()DGw%bfVXxLAS4b?dV%$MsLj)QNm94PFn%%<})HCTu zGVOy*o)~mJGpPE>PU_l`=aFzJ6Kb=FEL(1nnvka)Y*?$1`aQ6>U!0d}wVSR;{4X2o zziE_%sZ!a*$?*8FO5y_3@HWTs#RBhgO&|!vX=qZpuRbinQSj2NH#z~=0ety z_)=R@bYI#0slo*fDcL{u2pj=;Fe3A^Eh4#?t8ryGKSB-v<_cf5?-tO%(3=84_~TLTFAC-s3mLTu6T(ZI3=d5EsiKPiTC0!UqO!MxCw^G&`Y3txb`B ze?a7|GC!bLg-2w$hBg~P|U?47kqZYl?tu-pqC}`Qn5y=bF7j-8X$3LAU>#J%ei>iUn`~>SmyV+=FsK`c5)c>*f%HgE)8h#YiVn4K775WX z1Pc<%zX%9wX+ql+7ej4P3BO7r)oP|i-wXYua!&p=19MOXYe|$o>6jfDs7YDxRLT40 z8IKIIT3wm+3kE@tCLkSTkoyD=E|-OTR;}+mmSJ^E^ZqR)%ewELi|*!8x+DUAH~D>H z+lA&SmvF8iYAcl_%Efo5cpRTDE1JDkgpV(bO7% zd|d==PGo=5yvdzr$LHs`HLFUVU(!|+C3|8}=*pWBEBa;QYio|{k)lKg4ZB&vn#}`) zAhu%ML15ejZ0)!1wuM^-8xW|A6<@2plYbc!C)gCErbmzL-?-E71m$?-kNi``-f8cj zv@$iN4HfL97K>eQ_pJvU+A6(PCPdqBRTHZ#RXRpg^6}IIA9(dzG#MSGR!=5@G6f*Q zea;taKHjy1qDgc1folB-%${1F6^p?)%Au z`-{6#&ixK9)sh;Ch5o($e)}e0*=r{iW+u&=!a=Fe67m-G4AMv4We=b0r#Uma7-^)6 zGt+z`7CtlJF-YC|)E`uZLJvtD8zgBJu=ttbCaR@IRep)i4>9;^cPjNu1-;r1ogguk z0P(F?@w3W{OlHl`9cQDnW#Q7V#9MRQe%-XY5li?b6xrJHCdyh1h3!PFNM*8&b!ctP zRFc(73y=nZ4HB@$-?|r$+?LLY1m&(R8b|^I69qdIWc_$*mIUz9f-jxtkwGxI>sh({ z{2=q->5)?m3{)YEubr^3A7;(A)pAL&wjrj|JC~?Us?M+UA6wMCTD5{gR8HzeCy}_4 zs7aN*MsvC-FEb{tgwEd3O`70JNoQ$MhvO=A1yO$jHWjrRHqkUOG=sc|s0LTkMA(PD z68(HBH(j_2fdQLg7D)}ONOvhyJ2}H@qAPkn=hIRg(}W_ESPAY!3D|TDtq1-23DAxVsUm7dBk{B|lS;bV<0G7*_7$sh;?vjYRG%T;{r)bL9!bppC-xswp{I^%s&or+g@F84wF$eV8+3T}^TP5^3iO!Q zS1wxpWxiIxZ3ra8Ok{+`PE8W>vQHi<)Qdi4WC4V(Bs8(oG1B1rjF79wQRFSJl{m^@8&5Kz{TzrUUa*b*(ewMI!V2}(_ z`s?!e(V+Y}LzMdzHyYrDL@4C*vmy09ygeC-UOFLJmzBUE#06wayJ1NB6R=MODvyau z8zIgcuYa1Z(cbFu626)ABw8UwHp1Djzd;vwLB`I!-M~yU%o-9QSk3g^`tUK z9Aec1j|@WdA>lhHzV%Kzm*mXop-n3^K}CFgHu@!LIW|c3+6=YTLSVqvv>!@wJpqQ7 zxd^o!pPNv4fwmS;mmoLS999Z(PPzclvXGPy)aZ8MSGgN_M8g&-)aSh0sB zLp2%hATS*Qem^&EvUx=oQ(i@PQbT{7SvnZvL=;Tqck%4C8-Js4*m=o4lwFN{eh|A= zYbdV-Q;yn(dieI23|fvew#oMUUs*aCNLti8%>&?LRPRZ(9zMVBB0@W@X0?R-lL-on zl29?3lTU+05D7D`n_tqLR?7=yX!`a|l2n?vja+{MO|;E?p`~=9bav%6-JB{|=r!5u zyfpIv+AWiYD#?;)mp3F?>sD42`a+GKh>j`az7hi9yArIe)79^D*~_+}Yf8;CVRd;P zJMXd3gQhwR6NTo{6RKN6q5}SvgZC7^L8@Fh-v){N4-mq;e>2_R>1GnKMFv<849wob zodN@I>;jJr{O)QS)g2iau52g;8;c^HQYy-7GlgUYr5gn_XaXT!ggUV_ zh>#dapgGwCt3$mvfo$8x44)&7l96zMUV?i0 zxpwOWG=T*Lp$VCc&>AJwl*}M8Pg+P7L%L`?m9nkA-vt5#v4p$GOybVlPL`#51?7;i zl391E5b9(jqf98Eq!E=*WTaBiPSj#=exibsFNseZVy)0L5<>_?*0oflHBqDKrh7P( zl4Ow0pGaG_R-`ZOrd1ruI1x+Z~3zATVkIw1V3gSxiFy zFTFxOB+}B=r={CLeW&EfzUUSbW7)O(e~O5HD_Hm=38Ek`(!{Lqu8FVKI@SxDk<-*s zr1r2x9ieDjRlC=Q9UmCD1wKpAbDR5;e%M@pbp!@cDWDz&S&Ir!447y5NIX_+I51>;5fId!FL^VOw^riGSi+UMV`{k7VvyLfNi?*~R|=K= z0t*#sIZ>S?+sa9k4TWF|B?ttMKIs`r5SR`D-LT1P@L}yuP0Kt{+)#3u34U{%$BQk zmYA_w;U<+~Bw6a8^x5L}Q;zsmiP!+O*>YkKbQ9}yjm;ixn<5EUfvnCp4T+|S)KWqE7SI@e^ zX%F6`MXfdMNcSy}6| zIqX}X(52jzYM#nk1#L-7Wd(wsz3Of?o)U4+gq(Z?a-QubOea)F)-+5ihAN+fq_TEr^U>s!_N-czgM)gR(z)MSwd1X(@x|w zlDbk-r5O#y;+RUS4@heReywV}W^MXAm2rC}jcq65W?)c#U_iC|xJ2kMfrxrQN`kvY z-!Cpd!#tTWSxGfC8d={2bz#+GN+qGd6y(m*R5LWd#?COS+@dT@u1WQ|4MLXnkadp? z2n;6>7U}S+Lu>FhSn%RqFy>1(YRyQM>wD9gXCJ|(fy#Fe>DfYg%=rWa9Up@vc}lXb zN$AbK`Jeh5|EO-&_@j{Uz@sCii25^AY*Jzv>zDeqcJi`bF_2X)-K9C}zUfxDf|WHY z`-v23b0WI}14IV4?7Hs_+`Y5hYNAZDx8NnahGx6jOb}#6vRs;~mJd}(KsI`@-A${< zod?KjI#5Z-Cwxh(Jz9YZ2y_z&YqVQ!38lJ{HOLvbQw+;dcu3<^vCeHyc(`1epN_Kf~E|UeJcTShDYC&1ur1feM zjqYaoXws_T4g!-Q5La?3MO&&Q&Skmp%FD)^3j-7L?L?emuS~1zhWeq3Nz%Cwg>p{C zoTfz6g#7gYZ$|R71Z&i^Dn2em29?JcvHE~itM8UzKx2JWOYO5SY1eIv8f$Q1U|`&B z72w_^(4K+bl15YM?pRft9e4WQjDCuKo}=*LSD-?>S;8QBo>yvTuI5V()nwGcd}F9J z2>A{X2n#tTnrCh-nMO+OA215uKz4e~7$U6Ncsi3~qM)tQR}+W`B_(==x3VaM#Y%AznT$^pJC5zM1gma3rMvbqU;w2?#vv;$C3Y(Vt)p)gG^;f8trm?u?rj1y z;k9V0z|TSqR=J_L@E1*$n(EblsiNOSu_&fWcGgRI=)9GEtXcgkk|JupCaBdSQZSj> z;m1fOaAE1nTPz zK2}d!UShI1mL;`cY@3h_Y@RE$nraDJjT(F0a{?_;{RO(lqdrf9U-v7$l{zWOY!3!w zI+TKrB+BkKek7SA+-xql961n}O(5=B-m+QFXQ+*mc!IKJjl=Kq83cqqpEET*KRHxP zDx6_O|AD|jR~VbBbvAyvKq#3>xLI5WnO9=iS%fn^k80^gFOHr z2=F&!!fNib)B7B$ecBm;PCT9#FvjokMhnEbA>nLMDw@f>XgwC_I}Tq|Xl_iR(r{N` zAJGmJXLgzX;p3)qGheiIqv!W1J1=7DAzLa`Zfzoah;JAQ(VyjoS3`?1Op_VkpD--|A z$A+8|WGANvi6N$@ zCo0l11A>A1`^V%BoQQ78227e;niXgw|Av?!aRohxbMQZ}lUvH;9)e0R^P%Fv2ovL()OqukuB1*;ZPlp}a1QffjWx z>zVUgb|is8gMQC3Ky3#J$eQ=#);+w;zp39i6-JjG=EFM8Cx&`rHa1_ZL>iP~)*>sP zG+M+;iEWy-+Ia`DEcP^^R6dwKhU??&KANKAK_)blssnp(x3ynU$DPrWdLu>=NUno*y7G=%{|w50@i?I#PyC!;8oAyFqFKC52L zCAxe6ZSK6qEsVX%<;P|%s0ru)aR(CH=DD5@@Ub3=U3NO`yOqcjkUSG3< zEJNk=7K2rdcUHXp86Gx`Qf}>s20VTbCVo610wtqmnoe~4%}}fsQuRp>DjQFvgOkTH zsi3cQ<$(@wso)rQUetFEX6X5Kzn&W(L4Gq0=`d8YUD~tq*aCx|W{!SqW*AJrSkcmv^UwL`JixT8qLd(&WpoXDId~$B3V{7Ew_bt9=Q#k z2FuH5u2H50Lj%@u5cEj27x2zY=D}DX?N|NEZqb*QQiX0sE$Sv3A$m__oyiaw46fPP zEDAwj4Fs~yI&` zIw@H(LRs0|iqrE2lQHS^G+wL}_ZjRYTasc49inQj^wWG$wxBMkzZBM^>0H6dg^8&%qWZjid6*!|o9# z^}7}Ol=fY`yQ9~KT3Lr@Tjx003vpL0C6&17B$;l$YBy?~7B6C88W>bNLjeeEj6ivN zvb1W_;PZ`I(%nvp!Ig^@nzo6t^`Q(d$(_;Q>I+neBP%sB*si5Iz>-BPmla2l3hCpi z@VKhKHG@fZHCn)Q2n_mTgXRVZ zWP2n#`x0ZOam10q;ZVs&GM$XQY2jH}g4NW9LRmsvn`=TAV(7jNW}c4{mW^c^J7mpP zhB@m@*o5kW*F7vAG;yP{1Qva%w^uKj)#to5i3m?ddiu`l3gsZMHUhLhlfF17`86LP z%kRz(o7#!A46j>jdl9+fKhXK1`9RxgeiyN5Gj)T>lu%c}%hcNv5|W?iD+aNxr44WS zYj`_av`Om=I@RYnU*e@lU3%d8##z)5H?l1&?mzk-OqyNoiOB zC3ZHaV~NIZ$EI1qC}uN`v*Krb0-wM8QN;yWO*Q>L<@Jd{v!L1n3P4~P1Xi%QC)s2? zZ)TrO>(XfZy0mApcxYfipOB_)SXx$+WhQnPN;H6i*~tbO9vBo`EOauLXp(zm9Y)Wh zsk6e9?dL}(Hks&ACfQuJST9Y5tcjC*T86+N0kbnn-fL?e>^e60B>N~imRYCN=F5wL zL3Jp6mX-_4(#?;rw*|!kcrQX5Z1^LCN(j~4piaeQ{T6qUJFVO3PHt3~Pqcp$wALeZ zSZAq^_cddP(EKK&HJw&MU|>{s;NGz}mOT27o=}t%$d8;^2h=#qDXMH6LQAME6iH29 zQRfq^S~P(IwcZb5@NX4YH+0_P`PxG+5SX#9vK47@@sbbC;muXw-K8#`78JFdNYcj$ zzR#poG+Bkvq_u`yhZYOHAvZO6vB(S8m(F|`t@&%bMX&+0Ym!#)r&Dfw55;e`Ok`Idv!fqo5#YIsRR)Ar9 z4Iofq7{xL*lnoDo!d$H-Q3wpGPYh}XNgH`X9MH>UciNql#}fmOWqWP|_5xJLL4X%u zJbeHEAD-yYumUPCkkf&iq?ZHVWdMfnX!@qsO>v(-v@Zhn_ zUV%Y$_*79wp|0OIlN2XOQlz=W6NAWlvZ-n8NmyAXz{_sdxiseTV1K_+OmeXOhE|v* zd-SZXW$tEzXDTltNc$2XkY&}v+~p#fJF2YG_4f{AE=G)x2r#$z(~@$WuZI1hoa0K;?3&a-MXg=}{} zWBTg#Yi+bz8I3GcHF=)(f;w{$Xv{zw95jlGS?W>cVY6;w!UqPerwv;;)NL5j9J>Hj zrb(c&T#HB4h=gQrKWkF8zIDPw^nP88POCM}X)eiavAVTBc(2*uT7^vkYpSfVMMszQ zUcKquoB5L6G(Z|A?bT8tWE}*E+WIbAw7Bmw0egthJgKIe=SP*jtnaDTtF3h_?edZx z>DbFlK#eVz1*rxQnq8j*SZYsYXP?IaG(f_Ez+fY~$H^|fcMN(1!wDYo#U!Skr-l?ID19}b;iSs_C! z&C<7JhdT&t7lHawyO9$6U_#IL*(Pk)WMDM)8P{h9;uzaX894q@!mI;*T;axzTH>V z9oii;fkrftWE<-u#s;ClL^QtSG~b4#4+(TA_>RFGQ|i}zrDn#rr8DOJ0^2|U1VCW> z2_&IFJJ}e12qsBxQ2|%l#=w9=XaC`W4-8uV3xYaTcH)1Nk1XcrNi@2n-5de1^!@NuPxgbddl75C8!X7!QHyG>M!(@=YuSH-mcy5xlQmq?xkOBb^009sfA%SWL6qNimWj00JNY0;4662LK&89}n=`>8MpY|0gQTKK|A? zh$hXxa4^w9t=H^ykyFpIOuPkY5z-(40w4eaqb3l&d@ZF%yq)vOvxDY)?De{#757Fo zXx!3m00c%)pcW1UdH#ez-dHDP{r$#xG_!{THM7XA(cB?0 zsPSpb!&0XrLmXsCfB*=900>NlK=Q#r@b}e(ybIKC?~6{`J4{7lo~z4Vn!@1Wy7W-S z1a!g22L-L4v`l43z)lbV0T9@A0{tQb(ee)uIIYPkxWpbIKv{(s1_FcLQ%tbpwd{5@EwCW*kLb$00@8p2y735UXcO&3VwQ^_c=Vr2CB>% zBOovsI9J=V6)+MI009sH0U^*G8TbzqBqrcz2K>BWPM15-;S5*Tz-4$nUqc6mz@P^} zTLIWYAOHd&00P@YfE)mOLH}uid}PpmVI{dlTQZ{!40?F9*(wMOx)^DIsBytI?FEbl z1V8`;K!E+cTv=qGj|8+pUroZ%fcOJ@v)JW6Hd(faeOwoTL3Q^0ir{i=AP@in5CDO# zB9MN15S|&N!aOvv5JCJVX9}(({n1*XczvRhaYK4XU{Iqa%YX{EYAawcAOHd&00Kfl zUA><4^e2GD6(q81(m!TsyAEo#E!>EN0)t}Y($^RS1`SdYX)#rnWB-5v2!H?xY$t)- z^UwI2L89Ch7>pz`FhACCZ@se!3=EadJBL}q6hXmuo&^{c2!H?xFoE!?fjas`kOTpx zB>N1Ko9l>oX*Fgyohn$^*CYf6Oe&jv%46Sv00@8p2y8Wh?AWJFj1-zBg?z=sj^VQe zvbJJffANk72CWH4P_WfU0R{&GAOHeFAb&p?ys7vE@t`g5kO}%b*>!3zAtunV^Sfgr zv`*Vc(pNUilp(XQV?Y1|KmY`GfIurQAQvEBz`r#8LpwhbN0yo)AB1~vF5^fG2c_xD zn7bDkwC0$Q?Z8&R5J3P0KmY`oKpGgNpC+^W6xZ7F5}Cj&4RW??R$e4Bpbu6U(V8vZ zV0YQ%N`{QVP5}WB009u#9Rg`wkUt~P5^{=dUy(~%ZfqpKNNCwLhrkC0I}sV=v&uOJ zwmVw^BLx8v009tS0(G~aK0avs43SV}{(tkLR=4HSFCT8pXzJr=PcZ9Zi+}(KfB*>W z9)U_=Kwg0ye%oC%B_&rw5KH1o$|Nw@p5YYcpgE(GXT9Cq3m7p7fB*=901;5<&yFDT z5SnLkF3*%SBTCuJHU$RT{T+kabYg3O00@8p2<$8Y3k=FGf}|E1)B=PoB+$$@1qS@a zdF#G>D4ziN8Q)81p6738w*m$Z0w4eaAixB~-<$JKeFVn@lIK@;7>z=oB{>&nmy*py zQ_XDUA2`yf%OV0l$Ji4f00JNY0y|GY9DdpBdnx&J{}sbxXwY`~%Cs$?qGZbg13!a% za>ePCnc4ZR001BW0w4eaOdxq;kUSIMSU@j%TF~{#z!azG_GjC?O@V;~0?n8}rw@Ap z1V8`;KmY_h0eLLIVSs&dAnt=broN$6-^uPHzQN2=s<5rE+wupFbjli0fleB>0tkQr z2!H?xBm~6YvxnfP0_;BMRdVM2Iiuw!$?j5*%i9dF($y1f}Yz0Y9IgtAh2@; z#Q#e`puVCR518+#yJ`i6kf=W~Am5L`U^4+wj0yJQuM)i}JGaO&U=RQS5CDPx1jK=a z_mATHlURV0;!RXdqliYisZ<=`#3KV5Kf&~$wN!>UIx){s<7!3m zU?&N%r%wi+JOp6h!k2e?mQj)B;_K)<Z4N{Dm&`blAOHd&00JP8 z5THOH^%jNa1?pj=iwUVLu{=LKzLuu*#K5K`|5AY`n#?+qAOHd&00JOTCeVlr^r64G z7rmRK&ZW(qX>I47;7#D81f7%QIROa}6qFY}q#ytSAOHeI0*%iRSSR@`L6Xtaw|=FN z1_x1X8&kq%+yj%z$btg1w>a|f|Q52fId{vwE369rwmDC5Vf{3 zMQBF+#K2EO8Wq?il;#{V5C8!X009sfLV$hB0s7Me`tZO!Om|oi9$82AElQ30I|lwq zL5vCl_#u-HT@U~P5C8!XXcCCuLgc_euKZnc@_c}k;n{-7gFD*F1kuP@jAE32LSjr1 z5j&#PHJMl1#{1a*tpv{4N~eQK9;#G%g6w zu~+RDH_|?T&~yzagXFX1{rV8c*ZtQxPt%)fB*=9z%mJhz(5=jM+ek8`5y0&I8LA(e?4Dal9yZY zx+8%`e_J0Ie3`a1_B@e0w4ea%OXI50lD+wf;5{)1{O20R-(${t%?L%gCWK(*_s5Nx!ruP%bIkw z0|Fob0w4eaH3E5HU~Z2i1NugR`6UhkBnpswDzyq*c_(I@7+1oVliq~d1VRo1AOHd& z00K)PV1MUOoL}@s`iX%#L>~=EF*zu8Qc>BQ)+XHN8u}#8Yv?8KB7w_EEnLckqY)4Q z0T2KI5a=R6UMDF|KO!J!ME`1n_fY1x*h#UU5@+Sh%x{^_w%v)(x`!0VazZ*!CJ9Lp z009sH0T5Uj0r5at>q%^oL@Yx;1cHKWaUuf(AOHd& zuxbMO)<1E4)FI2FSCU+a7AU6z(@7N9=snlk6(d>K)xx^!1%UQJ00ck)1VA7q;N8CX zJ^u-Ty20Gx`*0xKR5f_9b-B&W^h3PX)Nuf+pC6K6(KG5C8!X0D%?(_Wa?Jq;t_pQAx+Kf2=dH8JyjAH*rNllA3RwaSgg)* zuDj(7{K`8wnAB0$F)|34*OkTsNnjw)4??8S)d0%c1O#eZj1LkvumR8|2!H?xfIvoo-t8BErLWO~xPJ=` z$dOr+?pdzn;~*;&hzv{R+2kMt0w4eaAOHfJAs{YFV*yU8@1mF?b^of9y0tVdrFfZ1 zpv8f8nrO&8m~K8P z$bkR|fB*=9z=jB@_xJ8ezjGiCj3gEagoFu9K~&7M;a(*`yf}d3TXN}yt6)Quk8VK# z1V8`;K%hy0+*RVNIH~TR?oqCy#;X*!YR5`Qc|yXiO+#mbo^;1-DB+lJ*O2q_4F00@A4#c0Q3{VHQR>a4`YyAOHd&00JPe zQ3C9|#Q+}zkONEHmbf!@UR+>~-tOf4<^Qp6@P85%M7`hucQV1~5|k0Je`c`J6@bn` z00ck)1VA7q;NQHO=MqnEURf3ql47 z5C8!X009sf4}lm1kP8cDi8E7|ChpCL52=%57502q#Cm!)0*J&ht}7Wo#9vpBt$qwe zRuK7y6cQi+0w4eaATT-t>b%I6#b@36>4Exv@7vhb+(6dmd0lRs$6|ds_$AdF!2M=coyM92m&Ag0w4eaqa(mx zOkA3MoWObS+DLAtCQ3g)u#h5nMAi3|ckLD^$iTxq8-^f20t7$+1V8`;#!P@57rQjR zS!m#0oVv7-@mfBLpc=j;znLHGdoMnCFIEnrNwJiKGZktTmm@b0+FF?MMmETi009sH z0T2LzF%k$-f%tv3P-W_8#ofgifZZI4G?*|~nBF%$Ms>q$el0{K0Rx*7GDv^`2!H?x zfWYVph?{5kCGK6#m86dVtjH^HmM>QEBGL9QTG-=NJ5ohs6snnE_&qeSwuB74)myL} zQ9(d~1PFit2!OyO2(V*gzh<6YjLschrlLh&B%!5DbV^lIbM z*|!{?6-;S2z*Z0d0T9?(0_^lH03eSh9K0(FzcS#wFYxYOHO%*Wml(39q<5)(a2p;7 z=%{P2J~D{KeocA7&aN;F90WiB1VCU)1mZhmN5I6Av$3FS64+KB}1V8`;ngq=Ci=!q#PX7}X%B#56W|U4AOHd&00Pq>5L_51#NA6^pyF0& z;Ki|YW?;ardatRqw(pe#BtJ%*a~q`PaR&hq009sHfvFJCa3Fg_Po^i|EEFfFAp*NU z{=WtgmJq++@w7n7%~fvW-A4s9G@EoCrR8u30T2KI5CDNm5g>mS{58M*CF9lU$M?b{ z)!2Xn1NMWGWhM3cQkK4`f|rEGw{L94>Mo00JNY0w6Fk0zNDthsXY3zhxj9 z@_rT*L~qC?8YuYU?D>G`r7u3@=yIeJDvKkl8a=Vehq)jC0w4eaAkZM7j{wBcvBTGo z%7fqYpCYhF^fGad{78WEBF=&bDa~F&Ql{!}7A0U|9Y~Ex0(@w>4**J8rEvFIH^yVKHg8&GC00@9UlYsg* z2?5y4bFsbzrzeTFV(9FB0jv*zxJ}1M~JQ5l?9^ErAvAoeL*^*>KWf#7QS<%pe57F{AUR{cGU{iNn916jVx~Nl?U;0o0t7$+1V8`;Y6Q$@lONQi-SqCo z>Lp1bx=TsXGlzzRt5H+F6>EKR_c*HD^cqIUK>!3m00cl_+yweQ=4KCAbmJN*Sh&y% z3B2cQ$;pp~FEHjlbuzga6x70-aZf$00|5{K0T9>$0{&ky?i^_n3-FuvE?sut`VqOj ze`#$K(d76(j*_wZA+ch{RN?v`4Sd3t~@Z%7P;rNtqG-*(N(PO!iq8w009sH z0T5Udf#9%e{$64MEfi1R9T-q^5*P4YF1rVBC>{EiNa(X(S91Cy&1f+RxZH?{?!;cg zz$$jz*l-5{5C8!X0D+AX2o9_2@6|zzTNbBQRpj^b-i1p_U7&VAC7R8j1F*~#Vp=5D zE!XsQ4V1Msox6@Pi;;LRVE{HV+(7^YKmY_lV6z0wW6?dlA#Yg3ZaJulE91}k>1yav zR@Kzq#Xx|SMdn4S#jh;2oYu0e%DpVye2*bNjYMOF-e?|+CjF>z0|5{K0T2Lz%@goW zOMG|58hO8N&W(LJJ9NpnD%e~5;IO0bXHm>abrPu5=X^$N3EC`-m-ZO*lSnDMrl~TN z`0+@KB?KS<0w4eaAh3P{>a+N@?xG|J&`>~JyC|!$Z7{h%76vaEf(Q)?q?+&4>uBd$ zj3Ds>tA=JmLV66ju_ttFGTxS{ZFZ1=00@8p2!Ozb35d(`FSSn+^tT24jY4wN=BqVX zwLbBJu?sIWfo8eE=>M%uB$7#5@=5BnEgYppM^iPeN)H7f00JNY0wAy<0>Keeq81or zZ}NR$!0M&%80au^S7?36CkYYasLffsv@q=_ey(6TdY3xX zTP_`CP6ovcQ5R`jXW^$1BydX zQj+)3a03Al009sHfzc7j9kRH4vQb>S`ZRAbztzuz1AgPqB8vxND*WRJ+(7V;=J6ZN zXeU9>v`ifDVn@tU)RJaKm6k#5$!oOBI2tdX#|;EP00ck)1V%+bJ#qF*_KBnB7y8dX zIA9l-smWIeNfL(RlfG_niCHCSGnIs9HNl;Pnpr}+5sOqj((f49*qU(x;(@SEkN^P? z009sfF#+>q$(;iMb?z+WU_hOk$P&Hq);|nS0||~M()aV)hObB^X%pOd5J*?*^-HhZ zjr33|9EGegvPOgxFd+c~AOHd&00Ltr&~#;-mnQ_`q^(rEu6SjWu$sDbE-Q{Mb@QPb zMFFHAvh9R)#Tq`5+(!C{AXwZQOkz7HifE#&#>0A1?GHANYFVjzOVF~@;%iNp!q5~ci$WwcHdhW?rf zuBpn>VCiL6d8y7yWNq8I8)9O;MLbA>00@8p2!Oz-2{e6L$os$`_-A&~F)&D6w!Hc0 zF_IVbwL@SaWr>)}y;_i39e>Yn=2`vSw`aM;iiYAEv$?@$QkeA8!<0~n1PFit2!H?x zjEg|itA#vyR{zLAL>v_GfA++{3)Q=;E-6@Tsp~WBqJ1!6+NL(^u1_1df#Sv0iv{Zv zCL{Jk@jZ`gj$sW5fB*=900{IYPhXak~}w8c-+Lsr6q5HqkZ z4@KPxQKT2{r+sPNwtS6}ruo`+U-r-g0T2KI5CDPE5oo%$kY}gN?mh^7B1*^$l8P5| z43VnRKq;#-_UvgHJNhgynYyUt>64~Q#p{v9;qy@S8r=-TAP@in5C8!X=ue>SpS?s} zH@UhP2UtOn1n*92`A-CQf zmdo#=EWOc-ey|Yr)85yWPR#RWanB>1Uzh{}AOHd&00M&uBp$Aj6d%j7@PHsuFb6E} z*S(L9-kYWLe~JvK3ak2>A;l6CTC38eWm=`y0yn2=PDolRuJI+L36DAOHd&FjfKu_Z&s$kj(+d z=K+!upGex?7yGyGu{sH)j3quIuohFLM!Fe06ssieKlGo-R+Z$i08znM*D~w^0T2KI z5Llc*!zr@|kD|;)XPHcmoj(7cD`r~io=L_<+HTT%>}N)*T*v!jkrFYWvE}CluXU!@zdWh<*JovKKy=^PJ zrKVXo%a{SQ0RkWZ0w4eaBO<^qE_HcbY0(s)Xs$nMtJvo)Fvzn}xsmE^K%<^D&!1sP z|0{dZp6sgy*3F2f5vG6u2!H?xfWVRnu$L=4+?F&^Y*$JOwPMn6tE|;@r(lMCVhi`S zsw+3n_p&7XXa)p800ck)1V%=H9bNAFs<{q5|INc#m32eI9Tj7ZdTLg6DqmGlAYI#| zg4oT-<`Cw900@8p2!O!y2rMNq;4mQd?2-wAL0Yn!^eO^_rlr=$^3bCt5C8!X009sf zA%WhJLARsN0t0cXCb4_d(=IV@PJ4;>%(~F-28%7#dwJceDlqAOHd&00QGA(9eUjdnAt;|71b_>4ALCpLtYY zA(OQ;X*|&`?I{Vadl`wm&(PvH=MGkZ00@8p2!O!y3FMJM*;SK{{NKBK@t3&^jo&sj zc}dC2mU<7~d(i}kH>qWzz2!qkiy#03AOHd&Fj@kMH`E^(WZqFdB?ktq=XDz%H1($I zPY3_KXo5^P7Ie4PMmujX3J9_UfG7rAc-98$z z@mXW5A&yo-00ck)1VCWS1ZG7BX&~U=OLzO~`AX-A5x9!^@P+RFE0cL+W1chE1_B@e z0w4eat0OSeB_|5vf9Lc3SuJaFR#cKzYGizrvQS81mAPq4^L=%+(J}~t00@8p2#lRT z!{K&h^*wrr!di>en$({UOM7FbQWh7CeZpWL2!H?xfB*=rlt6EHE^qYh-G1*{OIEa} z400b93Z&Y>szzY2QqpJ~1V8`;KmY`$Kp;5D8Hr8D1a0$DS3e}3w3Jnw!fe4t5C8!X z009tKIf2AcPAZvs^#Pf5kfGYjDWd}r009sH0T7r9fz(sZonGD(g}yBXr`|iEgA474 zdQ+Jw*a-q400JNY0&5{KcQg$fz7e446a+v31V8`;CQTr5t0PYaho2=f zqmv&sPI^*cJP3dQ2!H?xY>q(YT1TA8;sMDtjSU)`gNdF&00ck)1VCW&1e*SJr1{|X zLr}1nS!(5zpAQTG1V8`;KmY_bOCa;Fqs^G(*SKJhuf$egx>=Cu9RxrC1V8`;wu3<8 zVMm*cfdQGAhXsfVwqqG$6d(WsAOHfRAu!r-AR4CLpY!sxAUrOxfMGN&VF(C-00@8p z2uzj!+Tp(c$2!H?x zfB*<=1p)KGW4$+`0{iC{w}L$e0RkWZ0w4ea<0CNEh(PUj)w)~TsyD|1V8`;KwujQbVdY~ ze-OE|&XNo9uwWZk9mWI#AOHd&Fk%87o?Lz}*ipXnB0MY@@xp;=AOHd&00LV|VCC+8 zz7FuLU`y8)z+mj`U>^v800@8p2y7vNRXh24+ULMv3sGZ8 zAOHd&00JN|0Rr=Q?iJTTR4{>c0~0|21V8`;ww1t&z5E=_Z!2kx3j{y_1V8`;CP82h z-@Vc*lYj;zK>!3m00cl_YYD8>%@1#UYdK?JAOHd&00JN|4FbcR_bO{lgBh#@0T2KI z5CDNKCa_9JKeX*F#*CqX00@8p2!Oyu2n_Y!E7YF|F_;MgAOHd&00P@gV1=H3VAI=7 z8Dj$h5C8!X0D-9x80fxNr#=;6uoDD800ck)1h$*N>U{m6mbV)+Mh5~Q00JNY0+S&y z$bWY!FZ9ngPX-qZ1pyEM0T2LzEho_B?AKPd<%}^r5C8!X009t~5P`M1|9VFgq6Jey z00ck)1VCWh3Dh0-x=Oa4FvbT0AOHd&00L7YurB{!?Pp4`U@HiK00@8p2y8!rs>@za z!S(~j2tfb@KmY_lU{VCu69CkDnG`A*3j!bj0w4eaJ3yf3v)3Zu0lpX_2!H?xfB*|<)6U@r)O z00@8p2!)skHyi*bSg2!H?xfWQ<9 ztU3;8wLe8juo(nE00ck)1a^l&%XP0-usdKeQV;+E5C8!Xm?VK(AaJl&u#kL`h+s4b zfB*=900`_5frT9X(8@c+6+;C95C8!X0D*}T80y^@(4QzFm<<9T00JNY0=qMl{mSU~^;KmY_lV5$TLy7&3jrwRymg8&GC00@ATTn4t5C8!X009t~ zEP+A(eQxE+;(_5H00JNY0wAzs1m<@3Ln`hVQw$dbKmY_l00bsXV2FpGQ+L92U^)nZ z00@8p2<#exy*b@||7yEN6ypT}5C8!X0D&nJ*xOriY%pawupI7haV4#E!d z#E?M%1V8`;Kw#noI5dd9e5t94lY#jl00JNY0wA!91Sl3*QE0G>G%;on009sH0T7rv zft5uDQwIb4K>!3m00cl_Hwo|u2rGDMu$wS3Y7hVc5C8!Xm^=Xq43_>?gUMsT06+i) zKmY_lU`Gk?GlQjHJIWHn1_2NN0T2LzEg-P;u;2jxj=>fz3k(4SKmY_lU}p&|KQh=^ zlo&V&fB*=900?XW0gVin_$926M&)Qf+HkU?3m>0w4eaAOHex;m`mKK>!3m00ck) z1h$F5f)5S02?fRi0w4eaAOHd&;OMD={8fYbK2QKa5C8!X009sHfo&r|p~1XAPS`dS z7!L@500@8p2!Mb-G??p=0pNiE2!H?xfB*<=Ap!n8VV-LXQD8_Q00JNY0w4ea^3Y(8 z$N=O(00ck)1V8`;wv)hI4-K{x1x5t|AOHd&00JN|*Fytf0|5{K0T2KI5ZGD*!yg)K zEeZ?_1V8`;KmY_lVE97=FarS)009sH0T9?`0t0`Yu+1niHV^;-5C8!X0D*xI4FC)T zKmY_l00cl_y9o^XqQQ2f!012#1V8`;KmY^=Ju?6<5C8!X009sHfvqRd|BD7&j{*Y( z0T2KI5C8!XaJ?e~umS-P009sH0T9>$0(~Qc9YBF0f&d7B00@8p2=x61B1nM%2!H?x zfB*>W0s)E)_ImuIO1pppV*~*Z009sH0T7_C8SM3l3;+rQKmY_l00cl_Hwg54WUw13 zFiH>r0T2KI5CDN*&kTSG1V8`;KmY_lU{?tA_%vZxP+*)O00JNY0w4eaj=p9v z1Ogxc0w4eaAh1IOI495b^k)rr4F$#v0w4eaAOHd&;G8@&C_Oj;91s8j5C8!X0D)a35JQ9PLxo*LfiZ&s z2!H?xfB*;(fl_P$FdzT|AOHd&00KKpK);5l0fK(xU}sTa;2;13AOHd&00KlHd2GPH zQ~(nY009sH0T2Lz-6oJeHrU&36c{}SfB*=900@8p{b_^v*Z?>{00ck)1V8`;K*0a8 zxe%}H2`2EgZ^ZR$YlN0$VKD|f!r&5}A?(yb3-C2pw{gU)CKX{a5-Tm*r z(>?WRN4Y~NeFmjp^^84t9;NS1=~qAFC`Zk>AEESXp0VGNiS7lI{(+b77x{IR=j+Q( z!~Z}41VCWh30!%cbKiZLb8o(zb4NYUxd%MfxtBcCxxf8+=Wctwb3gbV=l<}o>15yA z=N^9MKKH5{_ql)ivVHDLAHL81_>=azKmCb)?vhvTbB}%NKKF({+vg7b>^}F^$Lx1M zcgcSDS6{T>-S~k0?#YkY@7_+Q?MW}*?;i5H{q9%Zz2E)AU+s5yqtp9Yr|-Gh`q%;Y&0jd+e)ZIY?(^3kboaW~LHE3e9&{i2 zo`df4=N@$5_40%6ciw!^9r1yK?*5-X=w5upA?_0w9O7=d^APs~_dCS>!M7gbPJP-T z?qM%H#J%#@4{@LSgG1bxeDo0aW1m07{mIFPx{Izk)IH{&hq~93YdiRaL)}+C=TP^v zzkI0s%ilTFUH|?=-IG3bsC(OChq)8ZKg>P&_QTxEzUnad_uq1u`=X~F=AQY2!`yp+ z^)PqtI}US?`p9AKH~yJ?;z@_QFT3h+_fz*c+no0MXFT!<_f1bZ!oB+WN4S4}^%3r#Z$H94 z_rpiH5B}p3?$Q&Ebl-W!k?y~J@saMZ2Oa6|_qZe7i=K6)`}i*$>27+%k?udf_el3Y z{^m$`^1-9rL(e|Sz2fGh+-JZ1D0lZq9OZuW$w#^W^;1W=3tn}U`?j|o}dCY?sl}h_JK#c?|tmi?yb)}+8y_jquqmEf3*9h_Z;p1?_VG7{>|Po z?iptu2VQ(t$id*{24b*Fv&Soa_H9q0b*>BqT$ zy#6?Mk9!~Ip7XHd+y}n*ICt^$j&tAfisRgG|L$?_kPjZ`zUni_xfdRFy!+Ti$GaQu za=iQg`ycQA`?nqMPJH_D?i*foynFd;k9VK>!{gmuKX$zPkuMzY{^zMDxbv<%!F}t! zPH?Y%=m~D$6HjpWdF~1Br(b@8``>Rq!Cn1<6WsTF`ULm8N1W)6x$s2yz&lTLFTLN1 z?(e?!M0dy2PIN!?!V}%QfBi&v<~vVxkND_`?lqr3(f!NGC%J!n%}MS*-SZ^(XWwv= zyX*-kxyL={B=^Q&KFJ;arjy*)y#FNkpFeey`|HC_b~m4YvU|$yC%boi)yeLZN1g1x z@u?@f|MG&9-T(X5lie4;<7D^jkDTn@|Ia783r{-5efw3XxZk?RDel07PjO%I_*2{q zo_&h@=r5k)u6yGt?)%<%iu?Ufp5l%_^i=ot=bq|*`PNh2r@!JVEhsr@B9W z{;BSq*PQCUzm-5=h3x;y>8r@Mzg;&k__C!g;A>8DP2U;3)k z-H*TRboZx!e!9ElbEmt<9(RU&!)0f3-$RGu=Pjc&5ACea>{xdia^{eNQ^mo&S?(x<|kAO!u2_J=5*~ z(3$SbKYONo{xN5{k6dz=yXLNExhFp0EcbhlIm;dU!)Lj#d+}NB7hiXl`_#M7a(90G zEcf(%XS+W-{cLyE4QIP=zW3SgS08q^`~3Hw?e6uwv)%Jvakl%=@1E^0|KQo~yFPQa z`<<>}|RA9&F@?hjsjjyv^T=eUP`>>T&XFP!5( zcj~$BORhWD{n)+Eb${~EbKONxJl8$ux#zmqzx-Tx@Ga-Mul&Hd?q@%JuKUX)&U4pa zc%FOGo#(l?-S0ei!lTb~4}RKt?qx4L&;9+cpXa{lo#(k{e)K%|-p`-s&OPOP_o!>m zcfWDZ^PPLh`R>b}aK8Jg=bZ08{LAONtKM|Jd&2wAcW?RB`R?e$FK}Ob{srzAZoj~N z@~bXzw?FCv_q3;8;NJCu3)~sMc7gk*cU<6J{gDgYKmYRu?w%)I=$?Dkh307lNY+14!y|z$8#@o|Krw++{s^gk$dPP zFLJMV%0=$8&%ems{WTZ4AAS2p?tgvwB6q<*UF5#)gp1wluDICkeaXe{z7M+C{mkPo zcK_#D7rSd;da?W7H(c!A`reD(aesTUd(gp4+%KJdiTl4dU*i7FeJ^p(c*G^{Jx{*G zo&D37xJSO~68CFwyTtwLpI_qs-RCZGKXKfp?$0l~)Ln7+OWoric&U5SV=r|_{>Y{7 z-@oKi_w%p6)cwtSE_Jtl;!^k2z02G?&%Df?cGG3(}Wecu)CTc3A@d+jT(aQlAm z3U{9mUg3WFGgr9(ebkli>Wi;*-*cBM-S6K2N_Wh+U+EtB^ef#yadd@ZOz{{?2U-71E+zZ}+jr-`Qu5s5L zey#hy^RIQkfBUuW_^-a!ef^`Zb-(=7Yu%?`aIL$`uU+eY_#M}}KmN$I?wo(Q)_u!K z*STN6>N@v@dtB%4{ow1|Pd@%S_ZQE;&RzLS*SYV0<8|)M@4L<&^>^2~2ON66d&#-i zyT85ldUxAbUhjVJk=MIFe9HCi^q;xjJ^VG-yH~yadiPHszTSQ5KV9#B{Dd3apI&i; zyW~r5aF2b^4ekw(yTKj$qc^y(e(4SF=iYFG`>Xff;BNfe8{Cr*-ss+b_KohOTW)j@ zx$lkcR~~Vr`-dmr=PGjzx83N@|BD;lqd#|}`_1ESa{Dj8$$k0VZ*tFn z;7#r$kG;uV^CLI8C%)t+_j|9u$sPO0H@UC-#7*uO_ilEdI`d|C=S?@er{Cvh_eT%E z*`4+MH@k2C$(!A;zVc@G`M2Ke?)9OY-Sa+sv-{97x46qMy~TakU2k!}^MG625#Mo( zyZ;a0;$HmXTihpJcZ<8_k8W{4@bO#RAMCr;oqEQt?qN6F>Rx&8Tixd#cB}i6@4MCg z*z<06fAWf3-9^85t9#4`Z*{N#%&qR=(YLv;y!bZvvv;}8{pI~{bJu_SZSF}=zs;CJ2TUiPuu+~0rUHupuR-R_=w-R-ML@6 z-F?|xZg)TRf!p1OKYhEq>c~6X6E3{Nz2(k3+|gfihx^(`-{F4YX?M6!zVHrr`)}Og zp7zc=+`B${hdbk6?{MFA3cZ`X=1%v|_q@~H^C5S-=RV<1_rd4f=`MZQo$j}v{!JhM z{vSQ{u9tnyDRP&$v>h)eeaol6@am%;@TPaX|HjYV{#$pUNKmhR@}8dFBOjo5_4NLj z-l)@^-oNv^eD})Z_8s<`XYjl1LnQxW7ao4ttDnK;N6Ou~m;K`>e&Xzxe&^jtq?Nz|3kjq}0`X$O+KaRpIQZaj@o>0E?^;+032eYZ z+Fb_;2?Gz0j{zS6yu<$z5gA#xuAb>WPxnmanNt-R5g8ek@$2mB%bfFf{?5Pn%fItK z{Iy^H<}bhe`ui`x{_@K&|L8Y}A^#_ke+&7q!}fc~^!sZ~{wII^J?>70L_^@DfSAX#fPQUywIQ*l(`t29y^}kbbwI{8>U;elM+5h(+{ICD=zxnU~Pe1-&o^MU_ zfBqN${r~e1{^IZbAOF(d|5yLk-~QkJjlWF)U&Yry_RBASfH2e$(BKSYP{Ln-`M>|> zuYdg?{S~ag{5AFen}7Zv|LgzouW0`pI{)&^-~W&P)BoZ0Gg1eBt_7R$d|+Uvnj_FTcm$X0&ze_1Z@Su41uQ?8 z?M)xnz8thSw%Ci;djWVie_^VdSbdQoi8Z|3Wnb-f_K?_%*LUOZ?tE2$1Dmk&93Oj0 z^;*at0DIwjclqCMz}R7vR}kS>U%Zp${p@eA^-;o-Sl-g|%~^i{@_rS#GQMjCw3TXy z4PePbh;|k;GVZw$lBBnLtVye1)jeG$t%u)6-~Qr zJl|U5U6yZsT`$F-Uyy5t;}wYgH9;ku+DwhCwp{6c(|2aC*EYwid0C&n0`U(O#aEze zXVv>$x+%c6n`cN*&*z%pT7knA$Pc;vnmdo!RD~>I)sOBLAYNPS;c8ySr>{W#b__p| zZ;f{WKd|ctta>S?JA(_@r&r{f;BWVDZ6hYf_n7 zBFh~(_E%aiVxL@*EBxUKkinT(Zn4~9i&DPyBF_Mq?IQMYK`-NTR{#X^jRI_;V~-`4 zXx>)SAUjFEkbQ1NuIPs=AOIVz!WK*>p9ABNxX)gj?BSYT#wV_TZU}sA73)$V3ybM2O1+ZK4Ieyu6r{EoRVWqFW*mZq~ z@KXwOO){^5$gE8^$VH!ev^C98#n%k3TiJOjuinpC0YQnal(zr?(aqn96|qFNw%;Lf z#E)OEZx;NF5?yoj72p=?cVZiu0(WC~HMxN;hT)sDJ=P^(EAaFc;C(95<4^6RArNI6 zMr*Q+7qCw+&^5ul0t3b-`PP64H$uy99f9SqE6m}p-n9bHU4g=IDdhd^Qm;Ol+RU}!d{x^tN`^u+FBX8n}XQ9g$-_h;I`l*_Br*rqApfo#UvHermB}$=|)ruE&DY1 zH);9WYZ3SAUMujF6(D)N;q}wZD~#sTUXqEbfW_Gj#;2rr1-({aUV#oPWbCclUZ*`4 zdTpun^%hG>AoB)6)S`Rc70gR}^`5Z;B5xeHy{>LyMJ0U-z+k4X4;u-E+q~EHwlc?-_8Ly*{cP>w8HLUV&io+$rv1QI)ms9cmDG%<@U;Z0{UND?1k48 zR$z%D2qmPqLCt}&sp`fxc3Dz<5&MKuowsY~IJ_IVo*Gdq3sA+8R3ex%SwL zu!pYzdF|WjOdf7i!&pAnpqrMs1E{+K@3jf=?>{i$;aOh+zwHXNZBe2@3mC~O#DbL` zQc$BU748WxLFFB+cUMVrxpvxb3)eF)T$I+q$kpy?UJYsbq>g?5ci#k7M3YYLwnmlM zvM0A|i+x7vzGuvW&1?xb6AA@4&xBIw$>J?l{33B>~L=`VABu3J9FI=d{4d}e$~NLp7LH5 z{TWUes0fDbHo(kb#8oZNCYUI%_t@*VzaC!AZxAp5+c+hhVfrJ8?ViagblO<4zd}V( z!15rd)m`nejPwmw_`1Z0t^ldoZVO;RA~lUsa%m|mr@k&Y`x-)SrruS_s`!P*@J5f!>MMuPcV>yX;(qoT{^apk zmW$Y*R)ZPB>Tx3-uep{T0O#3xSZE&kGuhe4EAF4jEra-R(ou2GkL zVf)M~R%{Zs(c%VRSf*P6piCNxrkaiF@nBL_NFJc#4+RZLVy%w+BP0e! z6S@5nEX9TF%_@DsA(mV(unO7|vLbtDZJsmM+Lw8w%7$^QE=%hgTFpFVs13H@dI+>Z z)O^ZoU|Qb$oLB&BXJ(~r;k~m#%7JbIwxG@MI@3yCcS3xiPS=oF0WU09m+Kp(`aEIl zufx!Lzo~|d(pz&MYW%Bl0>soNwy`7L+~IB%FM@Ic!sr%QG8?|n zc7Z8IU|jEwR4?=0E1)%IX~ip+SPG$)%OB_B7ykf3sI(cC8-ffZCuyn2ki>{nTlTS@ z#y`5%PSG-W!!?0b4wX9vCLqE`a<$9)U%GRO)1adc*5K}XTmx>b01KsJC9$f&7O8$C=w&lo{606yn zAd!x!ZTJn*x$6n*RN9x*T`NH5$Opg0ib__^^nvSkX=obNl~3FboS4~M1Py{gM464G zLn(1ji-zaro6O3!p1nurnrd`6X@z+KF{$%k9Jw@iH>}Z#<+xn#U4bZsY7(^abfZRc z(f-5na2AKB<~Fe&#aR*t$qA{o$*Wv$l)ro_D6iBGj6 zxBV+Pw2YjFbU0wsh>OI9UYtF61-#ZQ%)}|)xtjWmk`OsG!K(kv`<}`e*g}jGP4N&H zP4UZ#ii0^k#NK=WJ*a&)&;{&+X+^jy?SjumS8lG~s3LjAUjldl(>iCm7mCCl#40M4 zo{49<=t04)mztgZ3Xb`i0|R($UD(zmZ|myDfV(9oyD^Bf?4-P2luL7N1+>oh)sH|l znz%jQ;B{#xuo1$+7*Lt;Am}s!Ih951!gU!)*Eo2ko8wk62!1x`n$O5ut6H!WbQ%33 zI4_gm%=lbsF0ZW>z>1T%QzZmF(aV-&s*lN3;z9 zY_K(s5znJ<9Xa6x8p13haZPs~VvE(dx_7JqR+aReB9;~5o~JYE34~TWPV+1Lq(KKt z#K9A}gE5q-iJ(x^Vr5Kc8Zoe9(T6SX2XYXHc_?H0()KRU(`xSJVLc=@I9p7`awz+< z^>i!mOZdbJ#L89)ww7Kxk|DYbiM!lEj%y z(Tuj?0c|3Ms6vg^_Z*bm8c*}*UND=_aTKEr;J*>HMaZDjdCR^4vi!$NHC&NMIW)l@ zo7cXv9GB|s3TR!YNf#uqQ%KLJ4JQ$prCd%s`wL4 z0cp*=(qL34ZGFnCy)Hwx%Z*vnGM&9N!#Slqr}MI(dYpGIzOBP0-njx;(zd|cqKE)6 zK+A9lASt$Kj2yIk?|G2eF&*MYC(o13y!u`h6vUfxnU|Bw<3M|86pUB8xY&8JSc+Vc zg>NOa(ytV9GTS;wO@-sAmJQq?}GDPsT&2MBic?XG+{fY3^M7rT*{=9Irjroj)ryNgK+( zOQX`U({5%klQYL(rjfsq6Y%g=U!=kt6Sd@BL407UY~)2~f=LjrU3tvF%-zB#O{va) z&BS2%Yx~Np+?$~3G12bTUxp8^KwIRcsLDtEKd|&Sc*R?>$ydVF5*Scf$z1pk4d_gG z@I!K>$wTzCb5=|nD>T9^W0!45FxH$C?}}{u*k#z1<_Fg7gGKyK!^R@7B$P<|8rk^3 zRv};ymXiBip~h#>)|O0Rm&9I)osyd+59r4Rogv1VTx&;kKp84FEESw?tG0t=`YAS_ z@>}B!=z65CibhOxaP^nzgDcS1eHK+`A3n79;`OLx2Rkgs&e?!cJbHwz$mO?oh=!RL z`0UV0jiYI#MF5X@5qu~XGxaXh;1B*1NgvwTzL>*;jxj%``Cv(|VMi;_R=SH(XO)8A z7B~vAX(JXlhGC23Udh&`CP=}Fw8jo1;iJ2z(;&J+kKyd1@sWkGl-#J)6w&929*h>F zo5iB_a!FgN^33q@^&Po*;_&92n&tjQ+g!;@Ijum}WIA)r*-&e3Dkcw=o`xQE2+l3{ zdQSJ;hD=Ndsj7db=7caSIcI8SPUB?rq&PxFtzOiLarrO~M$umVjNQ&jrB&7A5U&Oe ze2kD;nd1wV2uur`A2~-0blE<*0$lxN)0*q~7hKfZ6Nj^t(D$Y{%IoSHpG}A+W#)yf zkchcJ?#4S3^~?ZDA4_lqJ?jc73TSACw#=IX^6ZbG@<}c|C65fM$)q~FSeM^DD^SZ{ z0*j0$B5)S4_e6wml<>x=dY2%kPJmeV(EKyRlT4xmI9VESA~L#NPaVOGO&OIbMH=DQA6VwbLYC;`qq9!n*MOGsr_{BhF!(k0rj$|@p zEiUQ7E6@tXwI2=hxI+r=nl!PwF$g;sCg3Eh`rwBjNJLs0N?l?UBQQ?s;XqtBh}C-u z@*jaUPlSpImM1uqRkj3E!RePtEyuLk<#y+C-B_l}Jg>mC`Yy1KB!ZQ@`w1=~o99{g zNG0NPmMMwe$yg$|Wv6I{799OPUiH*~+=8{ij*yzF&DTUYjUJQoBWaA?mvUBkP+VW@ zrFqy2v???pw1a7fty_Y#b;#n~%n*+8;Z@5)Vr^v^OK0-L6p>cMHk2GPIkJNdHZO<6 z7BejS3o`?*RfifU;5=?#`Q`A56{s>~eeqUlX73w-9L^W=z*tVA0E%(n=%j~sUo3`D=lSDn-_iQE4~&8>yG?1w85^>_#r6(J*kZLakI8SR02V*VSebD1Bo0xSi~i+9G30PG=2Me5-DCf%w zvOjzmQgi5c1iq|=@2xH$GNuupap}dZ7lpa{x##xPULFryfgp2nVl8sNb_Nj=ZJGGC#DW};q?Chwrju#Ccmxwh9+fIZr2O{z7lF5cQ=b>cnE zW#L+ho2V~u-%L^j>B*Xpixql_7VjjZm5_?nIkv*C4_bN3kTmns@+x(fss=V-{k)>_ zF%W|}96e}nUgzcT@D+&4ZJ&56z~b_T76q!39tfv)SQ3C4d25Nlsy^qL!cIMOs?Wh_ zTbxe;yan2sM_o&J7*if2ZbjGS(knD^%4?^8z8t%FeK?IL0;+VIhuDQ!I~DdEu&16V z#hY$5xXY4>7ChM?H6hDG{lT9k>UP`8H{inn&gyCH#0OqE*?wEUQK|+?6(P@wOcc%V-_ulO>mKm@}d_6bzzg4x|`Q{IXq8VHz&7MLMC0Ib2-V z4Ow%pfW_pQ(}n9#0P@xpEKqT|D{up@!X;GOX8~|)R@vp54;CeX1GDjKEu5JTW})Lj z!~|;2N6{Atc<4!eq0TPn;@{R7~cA zjvEDb_0Q%^@3G0Y@Nu6)`^{LJdp}368Xk3fHw5$*mMw`U^5FzCoNlIbIXrU(P^D~J z#Dsikc)Iv(?Ia&t#0G=?r2W?bUD&7x%;o{T=tjOJu4t!^DdI8Y;3do&J(M>DCBn6Al#D!pVWiWIPsSG z9zM>!>^i(1(0rJFc~PKKK;!}4ja|3Q5;h)``P2gY`Ft+Vr>#JinzRrW0V8zkfHM1~&)UBM#TWWADAB%l`>0khgz@C(AQ!vLtDvjt43uad)!XW4XKE z&nw<0KG6BZu&VzK^iO0$O z6#3{NLhEw1B>t_1`!D7i@st%n^;~Ry%g_7l5V6;3%excVc=G)~!UfYEW052O7o-!d zqVEb3#N2YTj~8lpq;t7Gbp?`Fz6roBR!^>c{lz}&Dy41`P5{wdjKl|0*TDP6odtFm z(`L{mXp6=5$1fV*yWQWH{pEev3gn9}@>$JQBd@$s7&Wwb;+S^@Ke5y|vch#XEcZq2 zt$Ot8!E496R`hay>I&#NAH|FsiCMrKPlbsqHRqmn8#h74Q`2w3+sxbIKBdiqpSIkeX zfQqa-Qu0Ume3Jkr^W8vEFauoblLDp~&&r?5cs*DtP`#Z?UB_))k)$@*c$lrHx-@_G z3IHQhnmBQ<0FbC$Ntej1UQ zk?T~Q6moOTGxhB)i)1y=&s*y&@&i^No*(r_CN@_5&b5fmVn6fD>9RfGN;1SMxdM4jSIJ8vjVZs_tvWXSZNXIk0)y`mFN|jlXScd;{VcR`ed0 z#TDpDE1*vyg)1a|=RZ22@v}hgqEiOVmC%0Z3K42KuAuHEbR6HlD+ zKgBeB=W4HdpMBLe0&?ac=l|la7dj(!mnL50&AjEE?EUj!BYyS@G+-O8)b?th zl{x6{k+^Bjf3EfJtH*pf#yO(5ovd#NXhV{9abu6ggC-+g=NDdq30VK8b*MJ$o|PUO z?8K+c>9ZMNTdCV;!gJ?JVcTpY6dV1`ImQm_>nkVBO8NfD+sv2v(^ep>r!(&fMyrx; z2=Gd63EW)O(sIX{@d)gl$nuwC*f0~0%EZ0xsWVk3pE5mx?7cH{)~o#qDYlnbuJ2Z*PQNo}po4LIQ%&v8y5tNT1{rT8ZvqQ0)6;jcxK1lD z>77$v?tk72R1v+$Hd?Eo&1EI>--PLo4cNiQYSda`cns`a_++RUgf7-nS>O;av>g1$ zNQic&P2uA8&!g`HGiSk7!uDM))>CzF4qIY8vD$QM#AXythT(zin%T967hAFL4syHr zeDE=xZdSo6?$2@bB}Ja$Y8h6V-O@iLO95%4UE{g za=D!3(9IjEep6!Y#POH_2iz6#k&&ZthHW|E>c8{~wBoU<(;hq5cJ{oZM?yLzn?vit zLSHf(t0vm=TQbX)EMfs78iw-divYdV5KIvlU=q01<7mmScxCtBQb^Tt*gGv+x(H2$PSWjgZR`SO3LUU`7z%Cz#&Y z;;!}CRy*H8px7J@T;3EAEVRIna4m@)z{)jK2fZosBQ(YEvPTNKMexnXiySBMo=X&V=H9Ob&y;fjsd)||{ovP5>SXL)$wIeOa_Bx~DUu+R^5eqTApw^#!=dr2I|bd6+6B1Gt52t`%fEE*wgP)}Y0D}jYCln(hBdIC;uf>;UV#5|=MJ#mKx6a7 zNgv;eS3aP4tI&8AuotiIhU9U+Mo-(*<{lboa_>t@+qnZPR6n@UYJcpsYhG zc^;H}bZgZ!I9U~~yn_W^?B%n$KF2Vl+B28L!e1b_RGgt>(574B_bJJh>Cp;w{Dz!l z@+^{2^h)ETv!RtC42&}$IfUL=)KX{WxeW#>xJZMb2&#i>GDRTh+Ucep^ z@Mg9{x&Q~6;30rrW81dY*exsMnRg6~oF>ptNk+k+6o8G->OxfX(TM2w9>@HLjs~of z^oE0Zy>1EK49op=Mb{d`fNsL0K%9gIEKr(FQ*WyS=zw25Ab?}spz?RGNGi8Sq>i}$ zLIC>+Gf<_(H^H`>LcrmA!L?uix3dtV8M6s2n7Bu&?Rf6)qo8PtweASN;E!zL4;$ZH zwKkL(`9pbBE>1{8rW@&rTvN~cg|{oqmGIsQtSM?5KgR-7Ee(>bDpaWjc&qkEj|PN^{!;((KTY z(mcRDu}Ktj-{h+<6U%#8gULR9(1OxD!}pli{P^M8VBZnUy_^Yx`Pn*ZV-qOig}wx7 zcHN{gpQz)luX#lDOrRo*KHd=^PrXe*MuF`Z#~aeQk=&eS-ddx__X!kj@8U20`>ntr zqNGL%bU~Ha5w7KTEEpR2P}p{z`6GS=*7uyc5txP%=ia#1yRWxAsfHkd_bbbl@!kqd zOt{m5B|~o7&*;$28>2&IUP0;}t$rv}c%bUJ_=3yHR&XScug5YQk-hVFR!q&$%kaYt z_AdU?zuyWJ72Co97O2duii_=0(3%a0N;dNja;kktZF96HU(+xMXBwrq6b!r?C zIc%TI|Mf9fuI3jxPn4}X-uMa>VirCLNo=L)&Vy~=+h3R4D`ya{_{abY>n?=>tce|< zv!6+9oXNAZZ(H^ksoA%_j2W|4PkgHOgov$NHYjP(hPAwBL2-Cs#Aqx77}WksmCFLO z`IAoL4Bzo!S>^&ay+vTEzjcAX+QrWxEqiebz`AD}E=x+(x4BHiyGt2s5UUw*&{tNx z#d6E_N3!ihuCX=4cmS-%I{dZ6eko=j8eH3mR%s@(YGTM-Xd!pJiKKN{18^l z%I|4W(2V#N0X+Fn4yJ~)%cN)fePDA>rt<}?R`#nL21N%_Q6gA|qrqgqAq!a4l~&K_ z#D?fq3+AM02x3j+1w9goJ%XvFA{vk!h|Ur` zxW^h>n7(OkzvN|;p=>)W3N2G2$k-P)JZGz|*1-B6K}Pw6BUpuvE&=Q5b@T`Ux%XAA49Wo4Ey35~Hi0`l7cOF#J19}xYks?*dmcRs)#z|@<*&eE zf0QYZC7FB^*0%!Q9gQm2JD%SKpp&6(?`?ue*PHAG?6(7!+gvnmk06a3qfjgwE$G;u zse{+>Vi;0OlmV-M*Dz!I`vZLPCbF2s=;Ewi%^!TjtOvjrv+3e7*FEgF16F7nEF3|s zZ$NXKH95p58#XnIMQU0UinzMf0|AcOM2+pZCE!|zuQ99ao@DOs00fQR;am*6WQOSV|;Wg`GxM@;w^0`WTllw~DP2{HcM6EnNwbWxh2aJ?D$8%5N<&$Lm$s z7lKNvfkx|5MMZC52UD#YT(FViV_9#o-Od=EmjiiUQpn5H zeK%!(@NjLhUkccyPP}!zCb?K`SdjB-&{IxLoUV!9=nabOmHSiL!u!o`xt-;ZqT|BI)B;4lA}ofC3AOcXzd{ z&C1vOXqi||nZPTJ=5KKkpOLS7g0DktQMtuf8AX{%fKIM_dZ!o|HP`egd}ZUCrL+XG zGgeqnJk?LYa!`v7Yp|=+JbXaQ_{no=uO0U5@TzyK1k@q0jR86HK>Wz$L~KL}9pTAF zT#3*EwYUTD_X-O!`l)#YL@L~oDSCZC%8LoEH@3bIt+*6oAvii*Vx=F7vvAHqJO^7G z?>`#Im~%*cMeXc9=NXbK$DT7xQfSYU{| z3oB^fY78JfUb|huei_Wo1qy3n^T@IjJ{-H7UquNE9{jgE%|Yvnans7%_%zCFwtkpSd$iJnGvp z)0b9i8k#{H`-QrIC5_3bop_Y9?UFs1j`3}t(O%_bIzKyN{8C`FLWRHSE~ z!vJnNWe)2b*!sYL4ty!-p_){pMkR8d^}6e8 z0Bal!!p<>jAN6lex+x&CT^HyyRfu@%UpIf3rEsM~Zj>0t0RJtm zY=$icm_h>RDaX7+np_#hkCu!_M`g}48{UrnDrNh=*D-)Pl2C2ceCdO`f!bx$)`?DC zoRb{k;~m!GI2zB`rN=NMM*!!>#Dr;aJqV(X>idem!cJd4M9|# z{0*5H63h%ZApxM)7nbt&c#IHg!6}s)xMG?`c4LfA+hm8D#HvXeym&Ay<2y3oN6558{+dBfAXCkfc*fL~PfwB~ znH4jn$Qxxj`rkpak{)t%{EOIk2G-?ejbp1*xu=6%>_;xjhK^yaJ+}6@@R|Dl_hQ6M z9q=-!?XbZbW{62@E~;o1mXaz93z--usX?^Rx58>#y!CKxv2RRlE4=DCl{;Vn1A5+O z`OyjlqF`kI@M!{+PrgmT*JmckQR29KcUDu9x{*jsXbk}rht{god^tx<>HvdR4#Q>e zy|Rng_a)X$8WS_rG$~Gqg>O(}Qq66#65|H2BzFr}1lC7gV*&lP>mw za?4u+qUly6z%v_NZDA({Rv-#1U>#ZbRaP7rO~5KrYVu4AU*z!u7{m`LOZM?>_%hf< z?7I@1#b%k;O;&!}Z!)omzcLn#+C;UD!kZ>rAcu?GahO7}vqh|&=p3VTjwx&IjOa65 zXi*B~P64q-90leJuM64tM0ONirDVy?g}Q6HCN()IVl4p$>Pih>64>NTA=+W_nJw}1 zEXGXmF-?w-+$w80N~VcMPFBXiR4%k}c(sezcL%mtQ)IBl*~Yv3)QALr>iyWZ%`tG4RN0s>nRFMwbZ$bb`)2jXpe~96-~9!~M6S#v?)d z9cbk{r9A0OCuPRuQV7}oI1VEu|Aady%&{`?5bb(*>rH{xOYO1O#HtU_b)CvNr z6I9_?9bwvF4vYnp-ZwB-Ne<8Wlomh}S8jZUHs<9-#w^h@jZj)aL6QU;ebie9%vKTX z=B^$R?^v+!o^zC!%&Z#mF)KzV0kT>U6{8!%*lle@pClJhNshv~4%%ob_Q#JnlM|D1 zFU~%Z=3rSKo!iV++42H7zX*nWy}R{(_-COf7+Ga0f(!PiMnt0O5F4z1k02FBwu1|q z1Bg@xKqNde#@#Ci=NB7lQh7(NB2JlgGM%d8QjJ%C)F5y+Oko8DO^WXI!t33TRXJJK zVnaf9S!5U8>eQ1kn7C!eI|as;J6Pblq&4-vl_j@*Qpny{wSfHf7&ad*@kW8!8a(Bl z2S&2VA<1j@)5qr=%-GOe?-aZnudJFFU?m40;t@s7`rC!z%#AglcUXdKVg)DVctlC9QK2o)M}1}5pv0!ij{wLA07;GH*0YtI^Do@znAyXF$D{_X+;aIn zD>M@)kv%71lY5#xLq|Gt4<|(MG!a9zU-z@`!K*)Yod6XAQPSY2_b97RT8NyR0R;;t zGI$-N){QPv)s81*B~=j9iIvkYBDAg5a|U2Jd-0Y+qKwIrVn)STkn9ah1&E>?e2YulYY+>A zCdg5yEP5jxq`VXg)zRQNLd}>#;C=!79*+dUz;aSR(VzQ6e{Qn-CNi}rLXeEvp zuHq5cp z63DUJhJ;Xdlog!{j;)mU1&G<_a8{X(l8MAP5KR{lqI1>GKVtN;aWPhDs74}}?~cNI zTz}SEi0En9w9L%V3ysGrz7;`5?W&>=Z_oPG7m;+U7hQ5NT?Ux40p#>}Hvs6kuOlIb zL*xTXJVq2E>C3Z~3{&|txTcU`x!lG$WceNi`|eqyb|_*35`y@kyfB!8VnNmCP~Mla ziA@iKQ=r;UfhbhKF85w$kPROn%)H8=;FFh0FGE%zS`Nq&wC6CU{@qD< zlj~>6R7O^>*EnIV3ah@M?VcKx&+@?wN!TP-^bV9M4gU4w3dHK|f+-i}HYQcd0b7Gk zn$eF4aRE-rmr6%kTZjwTw*t24a3u?kX#*3iHkCsTw4+{aMF_eSnI+_Q+Y|whBKaEy z*z7VcgG7Va)Eq?vlCr)0+@(o$hM%Eqs=1shu>dLk5Ym_5XaQ7#BJBi?R?)`8Rs-Z2foH54{5d)s?-KL^ zPG)HNstYGWha=Hso;oOD8sVY`0@d=CMY7BukRrVd4BGoAPK}F>?c*pZ#-3#mFh7^Qt^xqpX%^M5bC3gemOyz#Muk z*oFz-q+s7YP1a360S-%_t<_mYwyC?*L*6$OQA6fKT^xaMD&-z>4xsycm>Tr zjG=Rn1FK!Yz7McjaM8fp3jty&Osl5s3k`Y5dpZQKaMQjO$Z7;laSsq)!+FHeX8Jq7 zmCG-|YGcM!>`HC`N)_30{K!#~`aMg`O#}4$NqcOtuppgxDcE<<(|Drh{KL*vXllfO z%dH-LqRF2!g+dV=_})}zjq!#Gj}qv;m=9f4gL^Ee%y1>vWSX2aFexR?)E7+`Bu^fi zF?zESlYMs(-sSqq8ewGtE$KuZ1);z*8hy~Dx0pwnk}#d+4J6ZpqJqe3xEML_WE)RdP3FAgKD|4|M(=5@%IcNtb7+PjqN%98{nRz4eF)HGlVbcI*B z(k6%S!fA;Y!IKZs!n;fkCmQ`uRnig$h13W=RWITpy8Up(T>_ut{TH#tUmjrBgz{!u zVHcd;nGPHz-37wCtN;s!zkwglfIP{8TpI(Hb`e8CeqoR{Wqv0HvQ$GMi12sVz4rYN*tTkN~=s$W86#j>~t zkNcoOqYce2uC`sRig7pvRvKBs1Z?>GA)vch1jP0jw+Z3Q7hAZ0HI38}Zbqwy*J4UQ zHkc!ufX}DAkjQIX7~`gA3Z8{N7qD*yEGs`si+7=d6X;!LvcW2|8%U^^&(iSEJ5QYD z)ekX_(~wg9a6)gP5tQx&R=n(rZM0~Gz#$ySrdS408jH+Q<~kq@XUJI;Acj%Ny9$oE zfPFJyU1n7h^$TEmTM)%XSt+x&q(vQ9+GqgSM9X&pRy(ZZ5aET5l$hWzA#5(VC1^d4 z;_uyzMtkI-;SA!8m?Z-`HP79SG$?x>Y7iaNr|Npu^)AG+)@rUFMD2lOi8zq~JvX!F zXnBHLlwL5v(_qwotVM=f5IgEL{OTE5*o>4UyRmXUC zCn&~ORFVjmoQ2OZ6bvlX!c_qJ_S450VO-RqSoa!^XeWMep!Kax48;{x-aL_lHfW_3 z`Pg4rQdFc&lzve70!IE}WHOEQ!0^T4+X@WqmHAd(J zKPj7-?2&Z3FZhgCTJ#DF=cFq*)#qRNx{TUrA&nt5boit%&kW9xYAIg8z6-BLZwoBPf#~UJ@(o-x^)M*UOViY z16#aOAeI5G;3duC!8eY=LBWemg zX#Bv@EODq99u|)}Yin-DL2lO$`?kQMvV2e9yHb|fxRMo1xtoz9Ro}+~A#~ElL2PWf zKWk|qtr;D$Mxvoa|i=WoUk^|V1b($?8|U0dwi0*iVElmTs2JJqbW98mQr zyztyS(Aj_VvWx>Z{HUv0mO`2q9@v%B)9F@ZMH|-i(m5V)&OwPujZoJ;!J7~})pOCo z6Qws=>vOwhk3g{OI=KEj#}2xK8JGLaAlUshL&= z;uC<*lU<#9_|fjHJSPWTd+b|07}izo8dTW#vsA|J1c`L;ht0KDKSi=2Ct8b73}+{P zJWjm;OzA z>PQaD&Oe@bTE7}ub~moVfGS}LjTONvV0Fh@gvmGWJ)`V-A}wwb zcnD3+FbmpYchE{83&3Pij{%UT-9GLqI4h>&!-C^tY)-c7+9#k#2iN%y1^ezfW<9sh zvB8RA9FkZwZ7l0ZMrg3Yz@#i}x2LEP3!;X1FeSy{D;dVHN&y0i)sdb(q;qaj=}J!~ zAoT_8J3JUh1ve$_vBQ#8*Li`8v1#};k!0+*0+JL#lARewlN9}(r=d}~DcQlK`%;dI@^zCN+8Wc?q zOK5RpKx)iNoQhhJN3zMranl(76D`KauvM31VL&KGlMg*88&1s}(}yNc^v)KdhsN+6 zMW1xNh<$Nlv!F+3qEf<JJ{OX9-eJoArm1Tm)4|foapdg@&R-7D=v03(*>HVAH{# z9Fl{eVLnVr#-4(n6;f{>$F(O1Av`m_fc*-r&v1_=C}Pt zkceX}!Y2gHZonBldRn?g^CrwOZkjd|RVap2JetZ0F8=i&`M!9;zI%Eq>fQlt(zN7N zx1B^)KiZl^ED^w8?N)`wUhJl41oDGpK%`Ui=%Oc)tJR!QQ=4ijl?MY>Yoc=Gn6Q^g ziffO3>BmGBbW1R>x@~RH`i-Nosn}*MnA-|;TZcG?%*gH&8xy7j&*DxW(>C<1EQRr` zZnBERpcC@S5uNMZ*tY{V?)bd5t~Xc`!ou1@tq&3~@%u&iZt{|dZz`ioBTmLSBICS;6Z_SNVu+BVzR=>no ziW>vP{D*Vd*XL(!m}hOxuxt+Z2(%-3%8DJ2E>m>x%DA8N`}>Xbv+y|&mFW;P2| zXWy}o?h07d9d!lRtZu72Ej92?p++WnP;3PwbZDejr#1~otaT%Z%=TyOFmS}^=#nmA z-w9Y$bl%n`Vo_!O;4M$`s_N^AlDpRcx=$R#Nu62*$aLn7HNK8JPl92yV)V@A(#$@` z#JHIDBKCEO9TnY>0A=13z)EsW67bZ`?AV$(m_<*xHi8|h_^%zYaRvkmaJGkNKjas+ z*=7RgUK<`jmWGbuob$=X4zhUNdVTxMs)SoY0c)c+)nrLzwL#!#7nkO?BN9`X_>f3m zt=f15gohp+OArxdkwqwYLh71ckyE5DuSu6c!$s`NJ}{O5Edk-SN^aT6B->y@#dYcF zFeLWwX+kN62R@oqdG_KenYF86i1fPGJ3 zy}g1AgOWFxRr>)$ND0(=LwW`;#7E$e#UKc(Ij&9f7RywF$PCGGi-BqK6wyPcO{O3h zu|VBD-#xM9LuV9SKRBSRdA*6<6s+p@-6Vg}H8GU-ogaC@OcY!ZL_07c#JqLAiZIAU6RkM7{$d zVk?xHZ8uo6U&x7dRd%?8$k-Ov0t@|;xZ=Q+_+ENLZOz`p1MLj^l|&<-_~T?5<3 zbu!S}t$;N$vGFykFv)Tr5*m?k<`1GsSjU%!0b)d)hNFWqqNNMiF97T)@1v#SRe{N2 zpfgRB#QHp#lW(y&hNM3<5?g;br8H=FGS@A^YZ9CF@>B0&Nz3(4;Y3jHY84kF2yGrq zf9r;1Fg%9bk~~HU@ZcR5rwiB@2bQ;rc)DLd zNSc;s1Iv36gL@JCio`Cf##deUVX^PMZ&}Sc6eet&Gu^OkM!mfuuOjMp*ug5~*kpB6 zaNQNW9R?p1s+qH*PMo{)-CK|q(UwT!jVy|&m_<8}296D+Gb*Z9M| z0^@ds#Wt7&R=lO*#+jg2Tlgv~80$Gjz@`(~{q@>nKa4DPgAb40ABcivf#&n5;;cXJ z8B8CKJ$I~I517~pw@h16L?8^hr6^VH=+hn9jpy6J(V{+?a~wyHwIQ*0 zdd_+{vMAE;JH%EcH>yn41Z8&eyffy5>T^+NI<;NSs?94JO3jj6tZoSOUcp7|sfW?D zOub-`X`Ae)B5pb%8bWPx)aP8yLEo{NL)J;h<1RYwa++u|* zUxV?!;`)$w6P;N(KluZywyIp`**=fGr>D4pe-6)HpRvowo@?t*(yY)liA(i5n=N9+ zsd=UNpv~c)y1bh&38`f=RI8pgL|ae&XHjWG^~ql~%Kb@r~xW8D>8_XUTrna8TgM!BeZ$osN2 z3GP6)cT#$+x27@f0n)|=&QWhUOjPy`Q*W)J@`9+BBBP@#%|I2v!ovW=c38CUY;4P@ z#mp70^^WcL0c$iu#{Zbr6iabVW9}_|kNfSR(Qk5g2i=&fA-NC{v1wX-L`+^w8@#q{ z)#zGr0lSBrtJ9CQqzhp$!X5e^arYfrJH>v~M|@nqf#4$W4e!R}QtZ4&lvvs2<*2WR zk9X95B(fmoFf0xd;^9JwRuD8*76VBaI=! zQqXF1)dqV3y8&!l)s?t$x3>}DPSrFEpZ4@JW748C)iR7*y5+c|{%6OJ*fW@Wz2Tp? z3BE4h8gSI`z#*F~xJ#)@^tpCEsO>JZ-0Hkd_Uu03p9Y50 zmTobA-Q7cU)+4!O(uNEabEZ-1!j*#I#rV5c_FFi64Y7i|gS}+{P^h0-EYNMMdWEMe4@8q(ukM1_2sbv__xcO)(Ed~A=Gn!RAg1O0Z zVLrdwUyaxCk=9tYA*n#@cGYK>U{t+J@t+WNRhN4LUH=)mkrH7%%Za)8pN8!>M6+>T zxXQIA$Pi`mt$?_th%ldB?XNaoOH~Uv7H&v1c85=Y+BHI3!d`-Q`?g?C!eh@I`?&Nc zDTIpsVINZZ?Vc00t#b@wwC#wYgXWLa9-*P!J<@tR-f z{&5i-4>~R7auGLHJYC|9y@fY%pLpbM%rR7(zwDJM(5=g3m@NCIc^oMjErYbtO-$?V zc^zo&x=XSjME#-U!Lh~aF7{Jv{fRQY+R#|UleK9}&c(z_q>r~&(2d!*Kd7xS8WF>o z)VkQ^ItzWO0U4xpD2eB{MPC)I+DSStTXDVZSHLwkGq3wDbpse zWzF>Z?9{Cs((%T5e}k=oTg+3JyX+@+hnLzXKbp*P>6iUl$St83_ro6`Y(=#$5^3+q z#U{6dyY|-QBl?eRvS((R-jPL3`4dI=DSHeiyAH>pbL0|Phu9h0C)#m2q2|<^k?O(t z>+-*{&xf&JdwpnY_zHtuv=d9b?~*G?4}`mWRrVu0pb8uB$m*7$irPl5tAFOof}5FG z&bq$g*bmpQzh!hRV#-ZovAe>AkUN`j-Nt^)``FDT8w>rRO59KEm~cljD~2n$QAh4l zgmxNVx)LU{JFwB*i48BQn;haeRoD`S?Y5)`*v?2l_&}@+z&nHr7{LBO%6IP!?>>Nw z5GxU{^lMo@C)~L(wp6zAN$6469L6 zXvMd8QS-_aTo&Zh>cfiZHuh%|%e3#T>?hpUb9u4rp<9BM^OJ}B64hi`rNzudhX4f{ z_*~MW`Z6vC1Zt&a+@08CUOqc#gSPxVYsIoqN=9DT?(S{`7%Hd4n4u%L-eQ65&jq%w z?7rH5(7P(YT4ePrg~to`z4+Rl-(^zS=z|LB9obP)ayCXoWKSCDZ9Bf+5kRpx*&KDm zPi#B~{feaKbf1{hk7-kbIBj3`r7(5?%V(Pp((r*{oLDJnU;99SyM}N!HO?uriIl!X4d{{^M zj3&bKiXcWd6)-B~Z!n_6zKO-}!r!&XcM-F2u5>7npJzT)w8)0Ep*p4Tl+NOskGe|H zNvJ@i2wl~WC3F?>`78u{=4CUjbgI7ms2a@?qVEAd4wo)*FynD{%6SaQX@p*OJ9Rf% z?>gwstB98IwgT8T0gFtJmi1w_Wjf|4=6*;Dm;tXMz4ClS2!rLcPwwAwA#Qi7$H`(t%6Lt^U{OVKVy3xmw9GM<;^swRP$0uNic^KzqsYP ziloE|7DmC5LOM_payl{?JFcm6P(Am+R8au_I9ts{JRz#*wdKwsG{Ha_&CV0l%W3@7#+uQ4}Kc2Y5 zBA;a`Mv7h<_FWEcjURxPOZbZI=ELtG>B2*m!a=tLW=zAVhmdBSZJ;tNKFNuPT&J+p zo%5u#qEjWc2G9jfbJ@%wV=|lDF=9As(|<0^cI;_K1B}R%~Lm!vg(JzTNEZJgKb}go%&JH_9RKn%) z0AZQ?VaTJE!ax9!8=reDw9s4d!%w>CQN&P?LMKRUBOKi$(HJLd$}wm$iGxo{23@P2 zqNdzDV49xRmXDItVaqz}$_+a!Zwc;r*@Zy2UmDG`O+BaS#h(m29VEy3G^aS+T8F%z zJnzK%usY&q)-34hST}$jaro<7jLg{L&Ye8gJuK|y$u#7^5onDPc`*`Q>Ol7z9+sTJ zk+SFW&<)8E+-KnJ#_`)0YY&aP1NnwlAaUZJKx?m9MrW@UyVDKB`eIfW5DHBNUU`;0 zf=F78Ti8F-6$Pq{qqqi~kyTgax5M|O_Ergc5B3$}LxRyd9igpH@FKR<44|b{HX&t7 z>{>-3WC|Q43uDw&bXYa%(qf0nE$3RE9cZat_npmJzp2sQN@Tfz;dHRF-4wC3=RsZ% z+ng+wxDtt6z|`%Y!-IP)r!%z+@7qxp18#RKC_O)VsU3Vc=vjH|J!_nC{7yS{Xve z9$OA^@8;3SI?!ogYh%!JHRjkZ!ZbPZ^6tphm@Fqc%97(9!Xq}LY${L8P%aLj6j{jm z%GBcp41w&j{#$Ka>F#$9J?w`*fgK2Nign8`zi={Gqx#H}QK(s`VXb@=(DQ{eH56N0 zbR8POLyyz&pf*#9xS4_UO~)Cs8|UhmuyEM#`i@|uH2W$AYxK0jZqBnzYT4f$)Rl49 zl8=yFnC|jnd6f(ls^R|iFD(wS3WStgROYrEqdxRp#)gc=EnNUBWMF4#Hm(Il&y_@t ziDlt|KK!x72pr-dF)JO`P2r)YF&t7wXGK&f$LvS@V^BIN&F&F~Np;vE1AMk^%xy01 ztlS704jY!UDlX-ABd@fy$H>}ofB4#WM}vipip-aLyQj+SL=E-UHtRYk1`NU$In>!& z+!83iurjKg10MBN{v79dbxHK0cZ}dr`8%@0gc#9>;rBl{EB%`;Md)aAUW_<3kBf9@ zp@OG4yVs6;`sN}Ch{Jur@_uSbkCDPYury559dvfD0|5o>e&ADAT2t?NvkYAQ+kEbL zjKG`MvJTAIHk%-rE!<(%RCrI23S1iI4yy!StbFo7yHxO!C@|mU}tPl1jmTEN1i`c5CJZ~Rjhjm0p<3wy&0sbjbDk^)Ev)8H*(5T}BqHx4k z>sn5xDLrqb#cAQiA6eP$ZS;oJ?HjW03GUrjR&fj!)jR*4U(ctZ*Thv!DfE(yUSo!B z$MvSa=eO2tMSuTe!PAGk841_iFPpt7rl$=OT>L};zOAXlSXpn1XgcC@Jc|aTY*!n2 z!5ry`Jb6eAuzGn6Z;gt1GD74nZNz}Lr_fBCmVF+1uoFcqB>B)BBsSBI7`L(0O5W@! zR);O#b>YsN;?8_f_krc*3#@Jk;+67kUg1)KS(3BO%lR-```Z0ZbQ!b}p?Dtw+O$9255MxB<+u+K4s3h&?ux+50xEk1L z28C-gE+%TTamfxF9NL!mU{YJSKm1#SQ5mHaZ)hV!CUK^5Ve5xA_Qh#vT{Lynz-ZsR zekpC!2o1J$>zDy6Q(Z@nilo?8QmJ1kXk%^+5}7+*Cg`)AW>xPMt`x8lv^72!dyxKQ zEWKbFhsl==&PlnKI-XM=0}t>#Fl|K|F}<+Im-$Gm7MIm>OFI9`7D11)at1G!AJNlX31fH{Gqqvvb*qdm-9xGm_3&!P1Bh!=_Ug@axX9E ztHsEIa?E}UVzn;{*|WcXkT`B^rxkO5T39lxo?n-}NvGFgs4$-M)e1g?!uw(}jaY@M z-jNWD=u*8*g~EgcZAFC^IioJ!!jopdah#5OXQefqiYy@W5)K2ZP<_SUj2HWT8yJOc|9*O1kFMW_tSKYXd?s_P5Dept;N#3|1=Fhr0Ba!+1Hdqm$sd0VlF)~{({x}(dbdlG^7h9yJ(iF!r>qc=kqzH-4pU9laf zQQidU9G*VGv$n?yPay{L6yju_JD9X7TBoa<$5~Os0-x0gnW>gj2V%@NUfJb{K0@;U^)Tpj2XKou?q5 z>Tq4|-3XuNZ-BHIQLm#Dp|af-UHfLKv8-f|4je>5ioi zL7`Z|Fll-Odr%!gd6w*{Jg`Sejn3_G{30yFw*kB2YPR%LiUcARI4fTqZ#8eRV}m_; zPasf5`>hFRKaod;+2obi^RcES(TDo4#4Fy}YPGsg)X+Lq94rr3iJ^*->#w&N< zea9M6!ortbCfO6W3st8YpV|GlQG1(MPl_2dxo29^w(N&1Gj5|=mdc~`(@U4%r%FTf z-4r?SC&2fSDUdI-bG0ZPwWw*j#7IZ5l9x}Z>%u)sbapO`THF&fUL)i^r{xtQ!=Zu{ z9VT8d9o4t-%AGc;y;W!Pp~NMUwN*=9OND7M<&Bo!8zzs~9F^Xi#+Stv?-E3%qF!ea zpnI)hAH;Q_t;b8*CJp2=^(8*@7uxC9fMWyHAN#G1JkuzD4C z>-$?7K>Te3m@YiynzBoA^iu2dA+wWfg`2d!!)5%)*7uXfs7B23h#%VLrlp%z)l(U; zFs10ht?jnvW|6=3--lSc&Feh~?@uaAqbISQ>exG$0~4KisNM3Y;2au@%_U-Q7b0Cb z2Y5-fEb88ISV!NTE~36PukqDxUeyYmg~AS#pVpdgV=z_H4Ao?(t+}haIB?yDDz{Yv zD?B@+T^>VrB!z8}XSb+U!`7Ije&-yt>W(0g)ponP-|z*}JhK*mGd%pdp2K?o88W8W zP5mVdB$Y+FMG+UPnpT_#)wI-BC|K7GnbX{EsKXk~-vulHO@MF5Iq%_1QT>tqR`Zo^ zS%!|Fa+BrZSN_t=W`XIy$V{pcC#051h#$c7)#dpx8Ks&uqcfFi>I@(6n(MtYG?QWKj1V7^R8y62sv%bgZQ6O|x;kjHh1Pcl z>TT47!>0UJaYC`oV$W|gGY;0@DDPGP;DK0rF}(q>Y7E^2=4+>aUiX7j8;v+A?p2xyO^^pTEO0 z`GaJhk-fb#5sL6Y57|lM+AH|GI#PBYj#V*l`dA< zBfRos{fBfE@toIDgvZ-o?Y`}+?hPg z;T&;2t}X~scldZYwHD6nr=_cfTne_Xd}8Tc&*hj^e>HsN@e+!u&?H28lcG%!CUk_#BV_2#g6U|e`DC(rn`M7LjD5XVzVQs#& z=&xOHP$Ej8Dn4Q1D;&qcQGFlDU%<^F7yiskqLC^QLm) zv)^4t+xPs57MC?^o0qK%MVYJ8S@F$tty6rVlSc*3Bavs^n)C%814N=m- zF|Q)>DZlcl#CG_2IrU=M4!XG5DnoOV8YZ_qr$h9Y>hvys2|4hmpIZjLQq~$-RE>4{ zOI5R4On>E{pBlx*%*0ALmXzT!UkljfrlttLIW;NEX&y;mx@Y`urTXQVJWPlgpKDsD zwJXIMw7K}RVPB9x4V^*P;Q_P~> zxR@`9n52mKR!ya-LtI_nR5t}TyU9@;LIvj$JR zHe!G9yFH5Us2JsohEAewv9OL$|7Ba~BJ-tJrM+!SXRa`Gfh%gSYb665^T+S`U&V5Smw|do5_rgXmgnQ*@q;PRW*7EC zY10HPEU!r9jhuLu=bA76z*nnFI~K_cf8hMuCUF-jt{K?Z_|i$qn%4%b=)u2T!$3h& zt%r1;fjUb%b{PtEt!er>WsSyxf2v930lqibcu8|y;)#>5adOmEcTFm|mR&#nAB&UW zMLU&$)q1LWm467ygf3{i)M4TxDZU4rAga`c65SCV(%hrTnx^LvjpEr3siA*soNGJF z7uPcJa}8HZ$5>a7868U5!#PE}z2h;ipw;+5Y;YXa8|wgbu1)^GDH@D}Rw*WlZl98F zz1amCtai2$f;#jR)IP&2raH>>b#1!DQwLtQSEsvsnVTk7W2J8{?<6J)r_QG~t$Z-o za$;F?MI?Hesid@MN#_{DvE>vUX{c3T&NN);3-#+Fd7PQ9=+q%EAI@5bSd8UZu7?(= z40f#UZDIW`>FqHO_lV2$)###b9yabl?S!KUD~4*>7bB` zk(wNmz~+3*#NMV~SAJ8#5-fa{eVggFa$Sr(>>l!JBVJ=4dL70;Wz-euO0x8~&Regu z3Inr7^I2y^yBz~6v9}X)nQotP$ykOHesnqE zcRSM0`QG+c9+5sTxLTJ>IfOqB_g8LoTokdU1;R)wvIVATif%aZq@fz2fo&+pFpZXK zxLebY^wY?<p->X!{Q)9~e&k$ID(xD2UIPjNxYfU!^Zwk9hb#vsqIrvIdb#aw7pF5!?TQ_L+_XiBqSj9k*i&IJnIa!kG#e+8d z%GU-Cpu}M{)+UXio~?Y|dw;!ihxI}{;<#G&M+ALN3>Ta@FusbPDxYyXaBHK2BZl(N zxNwJKNd1Z6>>4~=tQkNGR=HpFExCOe`IhVb_WfGi zAM4>GTxy18)uUza@a=&>IWaUy%lrhA761pKHqAq24k;lOc}7xp%k0pX%A{KR_PE}& z!{*9-gEM!gf@FyZDG*Nq)rk$3_XO1x*g+kMHicwZ&1=wb^ba>z=nq>u8&CQ(s^e;E z$G-Jc@cQ<{RhW!7*KG2B=Z-*efqfaOyFg=KY$Rm(eD(Gn0Wc6qrYLFJSR&7?IYb!` znsCE+OEnP97)Cv6_xd>A&T#9p_jTuP3JUEKM#K%(Fut4=0J!Rv9j-w*@pzKg7~oUD zTk%2|OCyKDY8p82a*%RJrRa|2OgfH?!(q2scngob)<5OEUj9`YCtOxz9;Cq3nmx}I z))bi8Q`@U<2|!K*-4HpXW`Ss3_2|#WVU`pk#5xIV_bM?`O1=Nm_!cmpNwTi{rtp*A z`n;LPPjE;+I2GkYC&&>D!r|op>X!H6dbl?Mwo9}3u16;ef;xI)E%HotuL&)f==n`!y5!U69 z9LrHL&JyFu_$DZxOS3Nbtngikb*)|U1tWq+Y@FrQi)L6wQ=qh>Pt55dlF+#>mBAnR zpX?Tnqi~UIOn}*FI)}mgc#X@wCFL!_Cy1?OzctsNXV0sQ3=%ALTSx5O{)DSIsBj+G zB2AZy1(FGeiR*NNoxfS*E<94tGsl#HHkm7fuOjqIK9(1yJa*o)&g;A7@dCPu0dA$6 zS(~PFZ)k}WUm1c6q{Sq4*#kjM0Oy4#y53=>pN)>p5gx3lUj@@~9kp0D1^#NX7vZMs zdppb=xc;~zp%7OlI6lB@(!^McmL{t;0S~hmH2h^-sTVZocv!2AGJhSZF7Bo@k1H>~(GlEODg{a?22XHP}-7btr9D zk{5UTJgv@c_pj$cPJ{|BjUO1aRlFtUwnvtVr{xM2adHa$lEN4$VAnwue+0I4E2;Oi zFIR29|MP(z71+<}XIU1x-0^w~Tr?C%oP;>8fCl;rXzrixNE#RU$8WeL7~K*faBOey z$>Yte`z0RB9oT2y6wJ%coYtD-OrLE|;1!o3{`#eCUKN$})ej-$&opZ1m)VHx z6!B)|-_+rJaXYZ*M|~wvvg7vS9$*Qb$TPDUqn#DkkXodt2#m4vwFz&;MkS_uSh{DE z^rk%COgk?#&w0`7^91aDTkP%N>*-!n6Bok!SMhb~ZF%ylZPWD4i_v;yG#q)Rh$bBm z5^)}%9BeI-9REOhZdU$H9qOX7B5mB6erc=^S3^~!RIHelmRvGB_rYxRHyDs#mFt5&iTkOr?@8n>r1dpgazM&OtzC7_L zB#Ytsx*ORGL(+>7$vFq@Ci4{xzDWKDeK&Zmcd28I3iVv3Z*=Ao7$0x3y7bM@ z5&EJG6qlF{i~W~&YGXb~9a#IvkzqLWD{#4c4eg3|7s5V^9rlfY-Ku}P?vIH92L?~L z;eR~*t=>XdMdlW{YTQ*zFZ*zkLHn|O;MZ?r6$^E%Q4n@Z{WT12`NlFee;qfm=}KZ@#O*CKUxUlttI&h<)Y2}2eWNWl z3;U3BE|&3ONaI%2bqCLAoKi2WD-|;tn`CKI5Q<}AdxU(-C!s16H+zq_UW8iu%J zulczC4e0{5EsEaR0!_h^sLM`s>te&MsXda4VINY{vqCU%&h@=pjv%&QgUj8kXlr*v zTmpN;{cD?z4z4jMB~3(18lL39E?acM*E%1~s|*?(-ZJ(u^soc(33`Nu%r}L<^d`Hw z-h=LHnZD~iL9J0CCJi@0X#m%3vDs8EECN>UWhf!$aX3C2WZ`M+ojjjMBa22h zx>}ZCIF^VGu*!j|w3dRl{38bq+_;IgzTPYU0z2v6CFn{|9oE2p-+O{a)N<`)>KsC$ zE*x=Qj9e&UFk^UOtNOB{N#DNlTfB|wD7>#ix zBp4qdOwb9DAeyL50L{h3paVq>Xrh7x9|00WaH0&1#tUrJj*uyRne zdDd_Zr+e+m=0yptZXzHtQW0Zi^Zm4yLBY7`Djz@kWns{2}`IWf54F#YuKu))F_ z*@Q90zksO-jny5nrlP+`Y70}o+eQ9B%jv3){Mz2KlYJ_szeI!q5rO6;pCDKnab!<_ zvK8ee9%{e>^RVqUm)YJYYGgC2z(UOf3bXW-ADw}TuNq`oS%U(=zOW*2Z4@Fb)4IP8 z#s+#74_bf)2M5F~pW6{5jglj(sH9)$RpIq#1F+s7&U&t(I<6;h!w#|IY@piN0&m2X zWFxSLgDjkxSu$XQ@$l%&h#6XhM_h$y%hcA{1Hi&xk;1J5f^`KeScI32OJMHgLN}Gh z3^gdhZ*L&4KEQ9X`8K1CRw<~v#|Q4sY@|n^(BQC37ElIKhB8|xwjx?ZzZ*DOFCwk9 znSB9Duq)wwO3V0bsXvc`BmV&Iq=Z{|3}c646LC-pQfjXP@u)u9Z5 z)#1@va*1>50gJyOpz^>h|CnGaS@RrtWRNR7z4>NbtTsqR8|IR5cti)hBWtaww&Wds z26tQb9$DtA5mOeFBm1srzo%()Vv`^{7Jl&79@O02{;lV&q+;~XZ0IKttLRFy;qk zO-)n4^T2>=Ou+=`$~D?-7q!YOJH8|VcJGmOxMb9_@K8CQ!|_#}j2Y}h1H2Tl zo;0f3g6h)pR(k8%XJndvC+Aer$b@@*nLOV;Z@O( zFk#g6CsbIkVJ&JxC_2Csec}kK;$;kOI_s6j}3S3(`U5a)J>K8fAdpXJiL;XvhRH z*AON-ylQ6M4k^VVv_NOJgmSfeRNJ2uD2swFdGR~rc*PZhUzq|Zk%p1fZf@$VJ+3Lt zx53&ioUnbuuS>@*3#=P=$JX}C6)-@=SvEO=x3+;p+&0nQ9^#S}xn~_PiML|Sp;m{{ z!dJ*g8?B?GJiE?i{`^wn6@4Qy?34}`CKX!auIqOEE_Fy3fZbDM(*@@o8R=nI{IP09 z!Pf;=h@2+avVX!dSnfg&{&s+I88-SbET>(z5E@u!}SB!P3orQ6AE$R^KWpqgv zf!$MNy9lS9;5psJQ9i}PX9TNhaed@1SuqoN-})rlNNB3)eGyi&0TR7BVDBGd3Ao1G zMK}Gepzj7Yn^?MRswU%(;U|>5$yNc-2L+M0{zi1E9AV(+``0@stj0mXtG7*9tJXvWY;;IowDX0SH67K%nm!WaDA}*K`DYXHrcAmeE+ivR08j81!=NNM z$j&7cMAfsVfkQY5<0<$_PR7pj62yA_K?xwxHh0~tT1n#h3Gb>5Y}8_qkN8&n4HYN4 z4H@lE-bjsbQoGFTHn}O_G)>7_m{=Ut6jof9GpW|~D^@3XGk(h1JA&*;)P~0lDh(GD za-$mPfwQ85f{Vh%FbLc+Z zY-L^rfYh>i_#}4dpJg&KPQGM&5|gn(5QH zY2@H&-kc;MH#3@`rxTV28MjT@m6KS|HFP*nk$i3LY|vas$~wAgQgxaU#5#PoG`Dde z3_tUNPAq}OgGtDBW>)_4Ex7JY)S;mox8aQ?KXtAQRcAX0}fN7DKJ8K&#>s~e)qUynwWZ0&5~1TVViTo_D2f4N>2k9JI2<&e#+ z^!WngFdYq)00Q}%m6AncEBDs#ftO<=uU|eXJ$>}!o5P7nCt;6rW{cUN5Gsf=j&JLv z#2*jFm>T29J;uAW#b=oI8&>nZL+12mN1spFXsoLkFD?6Y>e3w3vO77qc%Em2ZQ5~} z4s_e+$Jnh2?EGQC8c#G*SeKDljjJ{tJLk+hRKf=Nz-yRd#R*OUHJ#iJ@j5gk>Bc<6 zNxmxex=H+fHPQs75>e1Ywq}f+W-sf5!JXH_l+G>s~RUZt94t=w~!OX54F1lB_XGdJEGC9U}tAZJEc%_>}ANo38<;DO~6n3Gno zjC2LqInRBqSNO_4{0-~C=0t{@SAgyfwMNq+yM=(o&?>Oz=j~8S_`bUjBHoN2vn>Fu zd6A?<)W{NsfQ4@e{eT5~xxlK;*TI+TxHys63a~AA2{f((>%pVgAOJr>GH@<$%_;-iw79_F zDv`Bevcv=w&|v!9HBn}O_A8n^Z%+@qdBfUwxAfFY;?o-s@IrFvLaDuUf9^q$K{7W|aPi8WBiM05N7lEgcNvHao=H zg@6QC;clt|@a_z=d^P(xSXPb);Z9%E#qScA;5v1pq#h`sQ8ar#%m7%ywpz@0uq3t$ zco_wNpiGI&)|7?7LME*=s|Z#MEchH-d9_>blk1(N4od;xsXAb0E&+DRYd1BPhGK`S z+;Oc=gBYL!@UUJTSxu~utU=A}4T8D7wX+GfghRZAB})Opu}uNEm_meV#xaM07-U88 z#YRoXNUOc=RqKY7ivpG^PYUGMV;Fe0R=pDlKHn6O9|*h|kYrW?AkYR%ZNyL-WK%?~ zeOgq=8LB10H9Id-kWs+lYGbOUj;lbv&7s5)dZESOQC!Vi3uO8x*`h$AfX5b;5ws@D z*qURrr}e8jn7Y?56_8u5MrGNzDd5LFjHFP@Fo;hMxFg8zLMpmhtuC4?t+rl@l_+Q91&$!b=8(gD_>W-K zyiyjUi}fg#t8U`0tXs!Vi`2*}KyRloY^8fms}8Y-R|~2MyKzN=7z^n#OWrk@m0t=* zD=@q$@WLi=r{gPPNlA{%$YV^Zf6Vs;@Q&-~PDuq(AgjPOz>W~qKw@~M*vc3>I!($0 z*(cSQQ+=T|tGpCUQy{ukfVd&3v_t0fhR6ILWatCf4Q~c?!FAf4NUf3rL5QWZKJo@6 z8dg0(Evk^ff0^u%TCOH5*OKN^Hba4A8B6hzAjDwm{&QR+x3Dq3`aoxy=UQfTNUDkg zMFj$4F`QD|L{wdnWgPVY_n@I6a|)1U>vf`^g+Ce z0wWaIZi8RGD8AxKVQ3vY!mXH!0!t|X>wWcz> z6ySA%52>HFmtlPx6EC8`dHDf$a(}yy%rM_;Og;M1fPT0RPDshFAgiluwm(j}(C0TPu3) zwg4+c?1TdN8^Q`U0d^;*OF9V(5VHcTu&_G{&|6}5r@PWqQ2@fMh#(4x0-}H@APR^A zqJStM3Wx%tfG8jehytR3C?E=m0-}H@APR^AqJStM3Wx%tfG8jehytR3C?E=m0-}H@ zAPR^AqJStM3Wx%tfG8jehytR3C?E=m0-}H@APR^AqJStM3hcfD>T;!48?{nOJ-vpc zPJaf{Yn?s=WgDGFyJIhX`D&|ffV{6hdaT~$3@C=-Mam(Qm@>o)Hgq-)Vn^f)bo!hb?47P(HE3@?4L?q_xhE3;T_k*qa)^l5R?O(U*_y66hPrdm_ZLT{~-@Ell-Ehy5`s3G* z)Te)Tq+a*@k$U3qN9z3XvHJ7X$Le!8AFIo6KUP1z?^vDx#%Eu?ZW;_kZW5CojG2xoaLeclP>U+<4xYu86hQD4ent%qIW@d*BMDbERH<i7qI*i+5;7L-TTN@kKcp-&j0AvkKBCQ`)@gW{d?|H{|EU@&zS%K literal 0 HcmV?d00001 diff --git a/notebooks/candidate_raw_elevation_multi_categorical.tif b/notebooks/candidate_raw_elevation_multi_categorical.tif new file mode 100644 index 0000000000000000000000000000000000000000..90ba5d3d20cd638a68eda1303cbe69b28fe59955 GIT binary patch literal 1732516 zcmeF)cTknfx+d^NMnpvg%%YgHm__)W7ElZr5EZkSF-K4kK{6saDIiFcoP&U55lNyb z8B~xAlB2{~=hm63`^U`Odv49%dbD@d-h9g1Ea?9AdY^8-)xCZDVpie#sVpHDi-U{B z!D6w(IN6u~yuQu8=KSaNEcWNP{(1e6$MOEB>+u}iEJ^lX%5bq*BLC^{MgMut{xYmd z?CXC#CYOCZ{XacM>7Uo^|CKdXUy${WkBj+PEIk837BBl+hJ77k%*C3;zP`o24mB2J z{p0I}v#-O9Ia%xvtki$}hyFubfVKc_0onqz1!xQWe{TU|r`C5WS^~$sM|%J9@xOY4 zx4MpXA%e=uOH9_z+7K&E{`ccK{v&1Zu~^*foWZW-?C8M$$PNbV8qUG072@CzGiHC5 z#rq$BwwN=DKh*dipCA1nA6YDut9Kk`c-{KP*CQ|XAKI)euQY4J8ZFl18Ni7*YjAd> z6TW^_BLYF1#I-|YbgWX4DO0=l6b!bP44{J=JiZY<^Q#`N*+7=8IW9w&9+spm_G zg|mn-Yc`Si?n%cReZ8Ttx6}YNKn+j>|4jpP&c9{8@0$Y$V<)`uR3{m4G>NY2eWIkS zPA;##jMT~Q?A%Q=9BqSN&wzzV9+)>AM5U@3LIFX@*cDCKUi3d}gP?dH z_4lR)uU;4Gu|I8f}KMvIJeb8Z&f*_Z#KknfkG6LFW@xn$26^W+`iF( zhb>=`{_YzFcNc-NEJfs=I<%en0+!ZiOz&?;rA-@xj=h1g059oR9Yqw?M2PxgF`}_* z6xpNMjgKSk*d5Y_a|xZOoXY;11I1XpqZ)6l^YBbB3aj&Wkr&w>B(}(l=2!YUL+chb zKn+j>)WE-BU{UQUl=)7*)0%gJp+Z6d+?w~l;+rfp-pMt z{rmDRXDW+`*YJ>`rg!k;=tP5mGt5V7Fz;g{F1YkzLQ*@p;#;srr3u~ZJHd0O5s_M* z80cz1(EK`F-d2yR&4Q%7<1JNUdi@!>!(B)_)dY-<%3e{4ctc|Fc%)nWef zMksCkhEI#C@GhhkT^a4j&tZ|t*0YG?>P@8KxCF7697Wz+a+0gMok;oIh5?>dq%h6c zrSTPYA>S~^z7i!u=Ez>?NyMFLcBSLx?;9_)t!Z0R1JuCpWMJ}GTa3%tkNm4@L?Qnk zaejD@G=CAt4VA0#svd=8k(uz5oWQt^JYX_DbTCdcOqgjd4}r7%blr&N+MhaKobERO zhQ&=h773CH(gdl@4=C$zLB!%JyxCic(yKKH7Vp6fnO-Obb|8Mw1Lzhv!_lJxO~noH zAKi$U_Ey-QZ-L>0Qrz~e#+IQr$V;);atGS5F{T*@;%l+WuNh4CH;n9Vz-!e{FdSg7 zqt+Kfg`J6)MK(YnwHcQ z1*Oy}B=D9unUwv4jv+dRe(D(dooX5VS!gz+2L3z)FCvfP@c9a6vw|9_O}R@H*Vtg+ zvwJ9g7sfc9P*2)Fq#<2?!tw-DuRhm&F#rqtHKBC!%~d|%OO&;sM&8eG{{hr$W%P`%a& zyNTu4CEbTT?cd-Kt+G^q4)DEHZ^)Qw!#s2I@_|K?^ z`J8%uEbGR={8l*FeZ(}&N?f1S4899PxF9uzqKW}HcGjZ1tPP{&>!8tJfoW4)Ffr;S zR@j*lzG@$uUFo>_DdUFL_&=}4(>|wt{yQ7s@xFPXGqFS->_&0DT)#CF=FDhsD!S+Bs-cD!)_kubYXja2FxE98J zZP+LH8LwY7LngZe+A@_;+T4gF$1hmu)s3C@y{KQ%2_vo^R9~w_vtlh~WmmxSa52JE zwqh%XFFAMEpXOIOUjEkc@;lcr`m@n|Mh*Pg2Ds!LP-XU#DQ53kkpJKgQHyD2j%CSWX>_h_(f2m}?0+sk4~>)f~rFjIlF(ER2afY7$n`x=icx-&U9H z;$tx^(++FGM|^EZkx+L|a`Qb0xwMFnTreI&-<4X}9Pfh7P8Jc0=OIg9w4%F`gJc9( zLXEQvv$1P7f8nm9VdU=IH9%u&#vvX|7rjK2?myApF*eUVm$V~PL}jvCnJX15LXR@DUa1E^v7a0#2Ri^yMVa<|JV3%0b+^@DcaL3-Bzo6i075 z!sGrUGKD9EjuARW{+2QFC)6$aGtzuU4NwFBFi@Fk1l5`Murl!~xvPGS#Og0Vx2GLb zac{oVs!KBxF5j8QEK@XLM1)u3$Kjih6;g*)?pb`O_hZVhwJ@G!6yDft(EAB!eg4bq z^U>ZEMCHFn(!^9GYON#gkDH;X*oezXWw6l5#qPy*c%sfp<|GWj`Vtpu8Df#%NDiXZ z)Qs0_+mR~DMGh|&4%w2mBx`F*3EKhl2|E>+4u|0^$>PKcv3u-@CVOeP>LM9ZW zY%_~Qp5-Q5T~$z5cZM({e>7QpnvaaCi3NX_05Lk~gf0ry#E4|xMIxznmTW(- zAl>CQBxSzKB3{tqD056RoRO5=1-Ye47#}5tSVwtSR4&7Y!XM0@&0bKj)rY=l1YL`z z8TK#Du>W{XNKE^Li>YzQ?-@rPwa4M&j5uf&vG)ZyK7fUzyJ0iPB7rl^N<#C8jdD7@*#2h)D= ziT;4^BVMvwmxnByJC+FQa})C*e)ig~0C{<=3H4&%aK42_M2814bEqFtXZn!O--`Zy z`AA^zDVvjOhR$zqYdjP%l%m&u;* zmr38pV~HoZA0&#{Z%%~FO(rwZm{}5K!8|Bgj`2@bAhvM|7EGRxk^X(SD3`;`8t2Ju zoWF`@SX!_D@_KFA{|+5bTiExzdO)r4Ia*e|LQmHac1-0a%JcY%*NYD5viAmP-`tNx z(b43*3NLZw@5AH70qkGcjUMer9Njg5p&LCY5E_JPb~Cn*>%vGWi|FOE?>TU9#lG7e z$QfzF*Uzo+m^=WLXl^pKxC&>cc%uEy52!15Ln*clVd|~;c(oU6j`m>n+-8W>*Wz|v z1)_|XknxJqG{4gE@RyGVT2p_$no9eG_6arc_Zf(($VdJCF)%KYghbI*vU>A1aw;iQ z+I3(oUSDfT+`g3qgZkA>VT(8>)Mhe=KaDWcWCRf*x)XIpv(f%!7DjT*6UIAiM(a-Y zd%bAgqIK&pHc*)!51a2D5SSK$GeM7_yniS9rnF#_(hyQ@eqh5$Csxep$4k{-G^g_t zUDgkzydJ_`=X$J<>xZ&bBbu|@uu^&i)hk+%@v$EJr*y!Dy;s53r0)=#)`qRk9oWCD z9_!vVu=jiIN9%@4j9Z!l$E_bRPObqhVV{v8*9V=xRur_f!`!|B5i{cuUbc+5KYB^? z>tAeuzRvu8HG;M^ZEI?P8u(QW)G7qv;5!THSEIx*e*ZKQXLyq&WM3gt_F|YgQyd0? zr!d!45N@#=j0K-Bv+r{hGyO>^vwPGE%te&-GoP$h?K@Ab5X z(;EJlW_kOLSVU;@lNA%VNch_}jM>@;JD(a9c@1FTbvG0rv-co)+J{4LN6_Lw48<{> zm~O{S)+rCbBj5*^Yd>&NrVW=aH9)1a4YS>w5caVXee%_)Wi`O_bqgALz9U7d57`&$ z5VNKYp*qdr;$-hDd#D$0!`t!cY%N6CXDSq@SK;{lYRGP1LkzlUe*INn>*)7I>o7Gy z4NwEWmx03SPx!H{kP+spVVbo|nH7iB$w8jGM2Fj*saPJvOt^UzPuJXs&D!I*t^bg* zvsQ7~`dTrH3~zK&-AMWSrXRnk>z+e_4)o{{9UD zyI5rA#hql5{|9K>^sw(s?SS0#ZwOZF$GDS2s9raKXIDFr=hY86^F9obL4>pK8938C zg!ik5Fe#ja7{_;E!p0w%oY(=qJDuoF@5AmT4RDcY2cJt1R$cExjcXMQcho{B>N8sT zy0FHq9*oj=e7f3u})U#M0;~#BPBRS(p5f1h>~oZ`4_j$t70UH%34I3ds*Xd2CyVA-nq&X699zp*jQcORh-dj+a?PX#u7>qU zPwGZ}_;>c2X$QRXTM>V~AEF!E;9=Bp4@52m^-VH88|wM;{M(Hkn&VO`3At^q%(7FoFJOE9AXT1PD>b@ zEQf2TAp; zLJaV6k+Cl9y{!sbal^45Z`e6>?8kog{R91|VV{Li+1rbnIn`M7y#X2p-w-&b6xEwr z5TMqG#+x0GQf`L9gK7w!t;W~9�RE1zQ|zp>Np<>n`@02z4ch*`I@{=Zmn|_Y_e) zN8i6iYs2qX8)%=>KBWezfnVLg!H(-lD6+v3?kjLU#f1Qo5UHkRmLx~pm@M7B2X<*Y zz`ZOT^D+|>O(0WmYq_I7?aN|4rqiV2vLl?qQx^et#Gty%^ zFxIXMhi+6rF|rP)ottq_yBe25YrxAiqk`3o+T%?aCe=7<*o;*fIK$JOC5Up{;+V{t6m0Y^Ui zlGYr0e!;K&+D5-OT6?JhYJeK}y$$RZ_rb@FF_<|u61VK4kbBeu{-X9|_RGg)D1SU; z9arIY{S6q~=tDyC5*8lQz?`uwq1>?nc>;=9l)D}6lh$L@_KUa{d=mas?qG0@6sjKX zz^({gOj6l|g=+c;e$0#94Y!#tg%8Y!_hv}*6@|)GSLqLyTN%5cjkq`a9=>Zd(=1D~ z?7y64o32-&^#+SfpFD&GYgy#HBquqryacR@AzZcEKyFxfVR>>1P84&IA)^+&UCUmF zO&mvdMNcOyqs9?21#x0j!cF=bc*qRNA2{-P04tw$z@fShNxHSjl`qHno$oQtI1@f{ z+sSJ!U%K{6o&L*CX)XP|Ybott+P~Dm-*4b3vBz<4PlV}SWA8hlhSuaoc&chgGDR$j z%a2%Tw>=(=#V2(_rHCx&mli+6kD2{q=$SSTUB{j9V!#jGS3=Rh z^9tUoZ^pa>iQxOX4X0P>GR8XBV7o&vv2oKXtPYK5!rfjoE6Qq_7tBWH$Q*&hsKfD0 z^cp>^-!zTpSeg(1<$Q3hcM!6?4d96x0?FkeM#IAxKW2!1PQfsO@3M&R*j9YY8G*ik z8%%OIN$0XYtiLjhC-b;T$aEocdenBZZ2uTy6!!`59KU1sP9EHRQV)l9pP?yTgq@!+ z!sd-VnZCr6=2z59YqAQ2=rH_hCN@gB&e6KTNJ!g~7)*i&A zMM2wN3y;0;z|yFfIce3voGF=#g;6|M$PvfrlqX7W+opx;;f;9?`TN&S+Q+nysezwwVCN(DSx4@fOw2kV zJj>XJ!%54qtnw16)^Z@CO2$N6iYqC@ag(&|uG)l}NBz?CCPhhG<}P3^b_Pgac-IiW zCv!0p;fl3yU*JpH9elC$#$y|A%<S zcjNT=6AAOY=VDreAERmLoH%{OE=EyYPx{mTI_Z%8SqVocFT`oZKxWV9{WQzc?C}50 z4$pR&!+2l_g)$sOWx){SS96h<6WAH{We);&bz#*E4x+3x0CQFc=A#RpM&HqMiba|( zu*i@DH&N5&ChDFn;?2JA^;1j>vR<}8Uatx#1d>o8twFOZ_4ohuM{C*7uVu6kXdh4m zf1UwmZ6d5H529uECMd)-GXs_k#BP}}LduTB*~yORrEDU3{2~xh@MaRH&xV(Ql(fFk zRG0>oGWjAI%#lJ<%+eUd^7v>tZAiy`6DJ%MmLMx;=%T1^9!j5Yz~{++jPaVuBtLf! z3Hf3Qg|y2k7LkYA<8(&+NG@Y?Zz6_94Kc;@l@mAkO_6@<`++Igdp@DGV@!hD_dG^H zriWooutkE^C7NYvmiWJBiI!=-@aP=Ig{?z~TEjtZb`D~ndl^pt=zzxJW}L9^2A2jW zxxqDpC(VPfQ)7`36;5(1okea|_TakS4=fYv!L*zjY@gSH-kkwh6lX;9D>e6jHAida zpI0+!pVL0427Vm_L5-0xv$>6>g4^K4A%PE%1+hEEm2o$)C3-A-5^_HsqMSJ-VdhCJ zo}i7o2r2gZlzV)8`zK~<*FIQ2b;FnyiMTp79ES70A?&FkT4Lvuw=!EW=bk>sWNd+g zt}YH2MdRESG4i3g43e+1pnB9EOOzxrF|Ckscdf(K)=dz+v<)*-+)!A$0NH|$QnPEs z5*n({W5JX&5MRaxqwyw~uAxVBEX@@E$4nvFP=f_JZLkdJ!RQH%h*E5W5qmF!_cJ5&@c(^&d~ zk0fjjBpf`4$(5TaOqy5<^JV_zgq=ejOu`*wjO>|8f+L;Lb2uJ-JVSUlE)M?cACS1- z1^X8r!l716j0}c?BWo+fVTPA)#mOX@DbUteMpvacteO`iOh+0mhvp$_BM)A`-OJ?c zUz>1My_wNI?#%qKc#Kp1hp=?bc?d)trx}*!ivKcKj9z&e;|szm?19nG)Q*?;Mb*3Lh- zcGAA5eNPSid;=>3^)a}_m`REgKxn-ylf7a+S*K-2-d{E)yQZ&Vs(pEqjF)rbtoBD{ zwa3%Mrb~N?S>iTwzpWCl99)nivIl7c!<r!SVK}vAzV=sAsrV7L0}axk~o5O23-T27n*U$-t+l?+OEFgnY?jV_fBxK;_5tk!YJeJ`2B?9bZ6G6XI+K^8&3yZ&PlW3p5tI2wL`P&JPRAU9 zz?lU&H~TvKzSTR}nk7Rf4uzwkGz$0Z#Gt|B!RUs)XC`PYWcmyCk>1sl$O98W(xGI; zJbq#hr9&!MBlQqn%h~rD*u-P1Y#!Dp2H}8!4aWOfBgIM|TwA44xlkKFK1{~J3xt_a zvk%86PG<6WRT%BVQcT%}Du(P9C2`ZY5?y%}@?+-#CdqvViWHw>;@xBPcfB;n()l+v zKn+j>)BrU=4g8@7>`wYHPA+(#2c59cI+a>H|~+#+a-uJnTCV6uR<|> zED^VN#3vzJc%FX-nQ{6M`hEmPYQC`FXoS-bjc|DJF6i;JNu^wykJn}jV0mq1B+fKq z#m1SWJz*y?%eV^3Gw1PX{~DZ7yMu03J(^+vP_sXK-bbIGu02o#)BrU=4NwC=-@sHc zO;X=(OwN}ZkeD;FOqv1*_Bky<{&7WUF15tNPDj%5$rmg$Z)~XuLBpPKn7;|Y)B4?5 z7-@@@J@3%`qX4s3f56mqOAKEz!){3q(%UaUlqYN_wSx-8;NB~!iQRyy*gaUBHA3IV zdPaVZIkKgVk$&6}qgPk~YcC-=t(=iiwS&y)V@Q4b3ENIDB=!k~*zfCt^y}xb?BYJe zn~R~eMwNYSPwyw78J5nysR3$$8lVQK0czk6HQ<(PLeyLh$ta!GjGcKLlN`9;=m+th>VR!9pi~gHTIrc#V)vfkDENd^9_pwYf&|(8xz%C zkeTQJUK34RzOWW~Mh76$Z$OsDE0Ir?MQF+0jwLfMGlj9n%)3jsVD`!i8`x{UPOtCa zu4yo!Qp~UxXEM)}*O1rN8DL3CpyuN)j8>Dx>01#@W^WZ!?9#<#@rUCm(V}ayf2dnJ z|NZ&%U)l$>52yiZfEu6%ex`xs6l0=PabL=0u>u~b3t{KU8PInSfq}vl%w8Bk8hw2r zY;K1Kufkz991fdnp5UJR8X^~G5`B9CQd8Q9mHsvG{#ps~vQo(1Nr3@-Eq3!GWlZl@ z#dH2U;5~aCBc_rG%@^kp-n@h4Tha$Ot<#2xq7^!3xHFQ4GLX4vfPk-t$cdeTiJap} zLChNB`0gm~h#FwIxd6^wkcYpj7M9=fV*0+!go&dqN-cD0hNT&n&cCSvYJeJ`2B-mQ z;14ul-FKNen32j%6+SApRmV{J)lDJnx|+)DQdj|DZ(GdX5Q3Ald?Cv3gKqb)7@pXU zmSyk2S~`u)xITi`fI7@PPzuh28JLvw9-76TaFw%QtOk;p9LW&rZ^F{JKe7TcpI1X( zEew5Elu>_P4<%EDNbbHdWJ4MsnXTZ6XL%bFrv!I0R?3y=&yyfq_8-A4=Yx18Jrl1r z_Tx(QFcY195!XH}fb1k*5GyZ?xP{UC3I0H{KXcAUpPQ~ZPy^HeH9!qe1HXoWGnXGR z=T+}80ZAhXQ@$j|f8!8ip84_P=rb*ntL_9*|8N8}zk+UJDvTbcg0EVH@R!dd^RJd5 zH##5v)6x<8a2(8L$)RMOH`CU#5kpby;q>u2vpl(h$-TD>sbT&GkYP}DTlBC zM~u_j3`M(fn0#bDX_68nJ~w4ZM%Pjz**1qnn}x&D%LWf0zNA3(d^&)CHJw+M78o z@`gF<5zO#@8HZUR$xyrCitXBVxGU#|QAS>PJ?ahaKM26>p=?~`tV8F?BrI7Th6gj> z!)eAD=$=`P?VD$z@R|%f)AWE(6S2(|=*teomSjITd--D9I6+u+7D8z23q+iog>oq= z=xAL@N}Vi7ZgH~jGdQw@y#s754D0RTc)iO zpW>Rhv@R`aUDi{nqeDkgm0$@I!7w=85r)dDY$kltJ7$~EVtg_8Vpb2@G4~c0Gm^fe zkWl!Ek+yWBIhN*FI{&5yr~zt#8lVQKfj`K=7LD!9PGKRe+TO<~2M;l~b|@3?<~w+O z)e@&8e4#kg9Y)9X@$%Yp>=^R|h50FXe6A4f4JpvhkHAN>INYC-f<3%hm|CTP24xj| za2SK?S~R(Zsyj;K!V@91F+2 zW_VblgE2n(IGUslJ0Cux!&`vdyB8C88d4Uqe|00CS(AQ7@3 zfrd6T$NoWXf9AZ8J~v%=pa!S`YJeJ`27bN)o)Is`V~hX_%~Kd2>uto2%RxG2)gFAG zd8xiwlW4UguWxAJQep&JcgP>0_ub!@iH+A!$WVu8Y7SV zS&9&P{7nnLWb*k0I=9E+R6+@SU?Xp;=2%XV=pS^ z=rgTy=OHNKPqQq|vUDC!4NwEr05w1jPy@fYfho(|nQ=FSP~fJ79rI_wwA27gd$kb7 zJb^l%A#1J?mU9JQb-6E=g{FXOT@WhWiokWs2M^+c*n46boFc zdlKf3Uj)HDHDI}HhJ1ku_Dv7O{%k#LJLwOb7dM#UN*8cW-irJYPgn@O!d=I3R6hIw zv93HMC!}K3paZ1M5^+ty6CBsvv7IXmSG3#^wbccUnG&Q*EE+cteL$~)HFz%-B&w{{ zz|ig}rZz(f9T&`Lj{VKu()sVtpa0T6pnX6MPy^HeHSjYHv`#sR!kj&r5x<+v`k@7H zA3H2+I}Xl0Ht1ck1AEiFz%mU%S7|mLw1;BJ>uTtoOvMVJAlS0kPruEHK}ORn%r6^) z(PK||?urIiG5dT3y+fEL>4w7@A24rhD6BZQLenrBH37%4qH_w`-Q2MD*n5cUxPm`T zkZ?ICpljz4*2X#^zBL`1p^M0oZ+d9vT1=h|NsyJt*OP7P{6u!k3n+y@#@h#?=#qR2 z*^X(XF4i1(S0^C%q6HkU=P(r_JFzat4r<4IutobN&9gMm(z!S_Kn+j>)BrU=4g6*X zWFsCU`55~Qthc+!;y1BO>_sa`+%my%sW+Z2GQ_1DM&KGwg>+mTPIWtA=tw+DE(j7H ziwH!0{ebIIQPBBV%)WkRzJb&%VWvahSlT@YaMyr z@De%RLD+rD8*?-)a8c(4R5ixo*o!v^vSpD@r$MY4?~lb55fDGL8)Ymxc!la>X@NBc zq{q=cxPCLcKXdL!pPQ~dPy^HeH9!qe13%Y5g7;d;7}hbR(_Uk6))MLWvh%RJ`aCxA z=wikxLj>};qG7cwp1HX|ztj_@cl}WMJq#abk0ujC&0sP+7gf{JVABu_#ok&dNK7E+ z)^E}GY%F=vvl@pQ<{&zph3NJB;Gm=j+46@NouUt~7)?wLu*c~pW8`$1!1AyJVvAMK z;Aw@(U1`v?e~J&?A=tPn9)_ClvB7l#aWr|3l=3meO)wbtZ(o7STpx3fn}c)1Hslov zlWP41#G`%@Y34gfqNKf1w9*=>eZ1JnXT&_e6NLE&v2;zA=2$uprv|72YJeJ`2B?AG zz(8Kq0UUhR!x)X0WI{ssqu*{SF&ux0oK{hS@>^>-d3xYopb?y9U7=NAg}}@(IL{A< zLhVBAJzb1gPj`fczQwJIA_Ul^;7U{)9_~Fz()#yeo0~42PTYo&;WFg5bTL{NCNi1a zos6>_u#!g{D}pWHd*~GAExQFCPF1{HWCpje7vS@0#hI8`l*&3`;-p46@|8eVrxk$@ zUC@7?i`+Ywflr50adDy<>L-T7nNt&9hdr>hc{DamIZmeWD3OUd5qLEA7Op+2WC|Pk zz}o$d+5Yf4Zne##>#@IqTRQjsxpQCI{v{IxvaYuwm28Xex%Ci`iG_R$AGzniMMO@wVtsZIR==1}cz4DlyYdWbLSJGJ z`}uE)#NuOsAGRuHAZ%GO4mGpS_cAhp75lnI`72&?cq4b-B^0#0VBTntN+{R5fs#EB zX^y2imd?Sc0cwC6pa!S`YT)14z{2;s&^>np<=YkDq!8p zfMeq3;4ry@sj)X<`#BR&@1&u6w;jsFb5UHAfm!E#aq@yMZhIABl}jo-{f-jR%p3%% zWj0=I+B53m??_I$`k(Yh08|#Ps?g7|Yoq+&B-% zBRX(Ne-zoUWhHs%EI`cpIZ1&;69x{%!8_Ft3tB9&Y_l2Uzqw+TVHj3xMj_Wr2mA-k zaX;O&9eW-c7OK#k3K(L zgP;be0cwC6pay=PfwFc7Ty8dDXG#U^U0?!;TtRb=3=+HKnOC9is7PTTBd3m~-jA_# zk}R$Yr(rTXuP#o12GNlyh|2mw_-+i2h$bR6DiGdBb8u?75XbF;adO;itag5Z@n;9H zeyuM~D8^#q6it|olfy*UG59h?0W*UAz}(k{dfW|o-LFQGl|LL+lc2HbJ524v!SN{{ z#WLS{xJs}6!-nRmi=ZJ>Kxma?v0L`yl;9=y6 z7nu$aIVp+wC5N$bY93=19?kfu+k=b4fLtgrqZyWFSULx%2B-mQfEu6%sDXb&0~?2I z(0TF+?l1O0Y^x;#ZaLsd?=!5O>Wk$`zEEj2$7F9S-0oRRo*L;wzt#_n&qU#JOa@vG z24l0Y4?HYGu)fL_Uco6SX75o@HA{}X5_kuln+fRfdjjSJFIlJ>fU%+HU>sqO?|V+6 zuK5|VZ?pF&5Osu3zB4|pN=%G8v|>nS%gH3klTajNb$$7P+zr<{AkicQSDc>eSQlG zH*08#xxh|_y&tS)6WZ^MC8T5-iM>3X%xZhh-b1Sl7dLw1BhND^jxvPvo`+Zfa~yQD z#hVm!)Gc>~*mE0I~cqf*1)Fnena_ z_Sb&k^&vrWS0?~|I}*UK&oVgN@dhV@bg(S?G(z+8!LMkDY&CnhiJRe*T^ycPmm_4k z9!m5)uw2X=Tf?JqJzf=M*LPssrP)}y<|*D4Y2l1pF#4B1#rx{OfJ8>y;~t>P#`= z)N_1#k%8)pY$#{jf=5^#Z$#ff_U&sd)=EQQNCCz!jl`gBl??6Q+hV5KYv&0xT1U)e+{~@MCS-~U63DPUQ@bysuJVtBc)k;@P zs(pmy*Eeup;}D*(j$w`EUA(b<0rM~C&~57h?^W)w=zV|_7qz9d$T{h&{o#zT%qf%$ zjv)`$=#y_w^xjxH7Ju$or0q}JpBkVBr~zt#8u;%USTW>=Sr+DKGk3w$hUW<8cS5FI z3{2%yp&0Q23oHlWe=Zl?%?-H3J||0m#w&a|^BR_g@lewDfSPj_CU4EeWb-17%*z6^ zFBZj)!Qgn1jhI(ixS<)2mBYb!kXVVeZKFwIY9>7S#L-QjqRUtfKAY`eEE$4>!mSu( z$w8K1t3X8e3&h$=< z>~RJ5%dK&lJc5IbF%n}8uOVCObgMWd+lwDuOdla+%6! zYq7P+6x}&mL`B1h=GcD|w{)KR-=C+_wxVrC4NwEr05$MC8rZqO9&e7CDM6z!Y-5D-IKy@{#Qp36-PW$P+Bb zY*RaMMYtm-E&yJ+F;Kh`4p*)?c+D)vmV{R@S(J-->j-RAjKjEMQ@m|*!`+Ne7(DqE zSscCCcYhdJ3lor??|_F6emH5GiawQRxW$Tt!k2v9w{?Tfia@**%)-f!E@&&r#hJl3 zs1|&TI$)BrU=4gBH;77f~C$p?FsUv-9B zlnp{8U&6{d3>(UG*?DjT$HxRfsW24$SAsFcEE(2|#*hTRB5Yfpi^;a(*y5axB54nZ z8HL0DLI9k$y@Bc0B=*?`AyDiLK+Ua}SaK#A7e$MpWgNu*d@xp-gyOncI$Dl8;|ePV z3nZ%G+5Q88X~P%@=OCJKLohnm3!iO?cz>D~Qf<~)wQvSGt5k?7SNt(sClT7Bff#x9 z5l`$?27JJ@$8;uhE~0u0v1*)BrU=4NwEWkAc&n z<|xt(LH?*fT(=GiZ>?YT(KR4I}O=LiIy4ZzL7I3$$0p{vCUdO!Mcr&Ef25|brE zLQ=%XCls^nU(s?DM@6 zp*A`Z0!LmW-TNgR8)~siegKW529dg=2MJSW1 zPsXi6PgK0E$MzjwaPo}CVT&*%wDqC>NG;?wvLH0r4vA~s;Fvjq9Mai9QWGPgD3{v52((Zus@F(ykCAy@G$ici+z z!-_7nujL>n{V5Oz3{hPL9NBgcF)mLr#lal9?rxBpc@$;rvuA5MG%!c# z3Y271aU_nt7s63nh;S{Ppda#I-1qp+fOpt5}lQ;GhVjp}) zVYv~~P1Rv1!be7~8PW_(Gc5gG5;Z^#Py^HeH9!sgf(ArQqOjxG3kaQOr0h~O zKJ7`s?%To0mt>zEa3dEI>Tj?;%L3xwVTk_VhLW2>IGK@*iD%Z4n_2G=J~bC_W4iD$ zX*sd@B1t~28BMxpyg{5m7$i)yuzH>c;x>h1{@EAcR(T43*--4v_P~@PUu3nHpr_Xi z%rtrO?dBH@jm<#t*F12(ZpU&JK61ZcGVwWYj-<<_cz!AyyM!YkcgX>|?0Xy{mPY{6 z7N}Zy2J#=b<9Oy{yt!x$1J)C~JDLc+RkyK7WGh~~pGDoX9pEZUfQ9f21nyFXs*oyf zglU3oY>@u6K3dw`hX=a->DXeE%xw0uMbEh)C}`7rWB--;5PdA2KT`wL05w1jPy^J! z-(^5vFAlvTOGr@b3L+b{iku$cC3fT4XA3ljz$D!n7bMwx#;!}nqXs`5zUU5q)t4wM z^TnZiONsZ9aU`uV6E9*jq4c&Bi!xYb|F$h8_^KSK-8-HX7}VqT>oC-xjKs9}nGmn> z#zD~}ycG9`&!qyKJ(L6))lA$H?!e8t=D-pI97*^D?%X%1>)|9poKuO8V;@={jUxN* zK0~CgABvt@;FgyaIGr`IU&jH~W+o^|UW`noYiPc(6P>FA;JNKM5)N3wTyZ<(Y@Q?a zbR{$0Vl4W2JelZmGckXT6Uf-}@N+(dqgh;d{dFu}y?l&SPLDCX_-4Fsz_&zEP800B z{u);rwCP&xFF5!5yT%879{O5L4NwEr05w1j{F(-id(R*$ZN>N$nUBbtmE_2oelY4E zFrhpgtL=k8W_n<>s~zH+N)Q{Bk6`5zJUEgDP0|P3)KHWh-au-_zF_LTH1LUJpo(W5 z;o{m!4ird|qYJ;mTyP$-URZ#@rAhcu?v6)`!f?$Z1XCwOz~Xos9(1H)@55v;i$>$j zQ75R&9>B=68?fAbA9=Qc_!b=u$+1;fW9$sh23MGhIw8$C2kq0H5Y2TD=a!md?wCU` zI%I@d?#57=9S+G|m%vwk6l1PBq3pOR4i{Kpp@1VauBf2YFAOH986;**!8yA%iPNWP zOW(b_6LtDgjBV5|$TKrxet2`Du5})23QfVguocwquW6U|3+)$bfEu6%r~zu=&oz*m z6a($J*SM#YjeGCPASW$B_IG}URChWaetm)Kfmtv&amPy*FIgunLXIh?;(=BP8n2b% z>AZPF{lRV`e0n$GRFx;|))m1*gAjfZQ4&!*m6X=x;QYcKT=q=Ew~ScykIsea{9x>m z34+zZ0w}e#;=6SU`z+ZU)H=Vz8v|1WZaI<xMos_=tU8!DCDrABQc$=}^a8$iod%qS)M0Zv5Rok|h$y$l*Mdusy=4r$x*ez!IE|k1riee{ z1q}@)DBZNjSIbLyV{d>(E7#z|t5;0rnQrFkCUd6MbsOF)2qT+wf^?5XK10&tpmw$t zXZj}6wOG0qOYeoE2B-mQfEu6%sDWR|zybDJ=tiGti1yTh+rJ3=(@P=tcoo^S@Dm>P zN8_CXaA@=>wQ~ z=tDj#5Qu(?xY_m?YiAAN{k{-8XO1PK%CKZ-0(iyM@!4J(CSH1YEh7P+wpYv%5ozQH za*&yGImir^E2!MU&6pgMWlqQ{Vv%A8-mfl3G%F2#TxvAS{z7)?-22a+d(*zBeNPQg z1JnRD@LV$vhh}9#)t-;MU9+BClK6`6EWQgDXf|iY0@PC?)b?4q-|DGM#yKWm&4qw4xji)#iLO}a1SVC7V`6zUdY@=xr`~NG zJ!A`BZFju-u8Z=z5!~80h8Wza!EW<4;GXKwOm~>B_jgTgv)vnH(qbjZ5DA?#iFjg> zjZfC;xH2saiRJMaXBUmB?6VJ6nS_DJ=fkk{FMgQHJ%P PTAFrl~*XW039BWD%L zQM2XBvN#wbn{XA;3thp8?tFy^vY20rT@?FmjhGlWnvbt9H$14oi<`)O7?hsyiOR=U8L< ztdb#yPvIU))Lvpy#X3&U{)74D>~PKw=NRA^;27W-;28LGGVoxIJe_04k*WU^+>^=1 zqmn{o2=SBoT@^Ze=mpxd(lIi$8JR_1IQz63mN)L;<~JEy^`LlPDau)Y><>#;&(_zV1({G@8;-q_ zk07u!3`hN6L-=7X4s6bVRpdu_CYB&*>pL7gR)l4yC0M;B8dHXTBU7*(bGskG@=YRU zN36%19ZR9&dIy&M?hu(JK$%fV5N6{R6erDuO_d*B+T29-bpxmu&xGsK0w#a`L8Ns^ zLy?U=2)$(jUd?Ef&mt5GYQx$xohflug!;l@tZV3oN$NXn7k6Q{JAPs|49sK>erwKn z@w5epN@cO9`)bCvwnk*=ICEN-)3TgB&N09-z%jrvz%jrv@PCj2UzY+@h}J-G%Q6aS z`hXQC&oP|Iflg{RPF#G6i^G%PGB*Xmm3Oi3Qv~*Umm@T2Dh*Ff!rYwO7`;J?_84Vh zQn?~o4lX3s#VVB9REq1OQ;BJwL7}z$v_z~0uYAA2FQN?25pyUn@-D*0vpvAlp2Nzf z0G*qk;c0Odnlr2Md3h;ZZoP+wXbK_)zQFcN177o0;%q_(E_$}XHo*je)63E35(9V9 zD`>oO7x}-UF)#KG9^8$9_lpadKhTT^B}tHw>qqR1Plzlqg~u&#oOQX4cgay0nj%bZ z_6H$w2iRjU+89O(XRti^UlpX z#{kCw$H1SP0hc-BY4z1PWKZ)+RXhpCZY8h_C_sqoJs2F9p%A_b7)ZQ=-1aPteNuyG z^b+wCKf)sBF`n#x2AA_4IA`@5`y~`;&xxPt8s3L}sZBT;`U-toA!|w@ z)=PULOUV}-?hP@6hyC#^#~va(5*Xt?2PXFFWenz*GUc|$XdJ7Ah_z?%EMgnFN7%qH zD-<(dZh(>A75E9Sz}PlLBy~PaS7{r@NW}*+XJeZfndw3>lkjAA{cdGaFE_v_G5}vT zkE5yD9-NNlbS!6&a}00{a13w^a13w^{0}j(eRl&$S&wREe`B_ABQ#vIa5FpwDO8QN znK5`dy%7Ez7nq%m0`is9Q4;V!Gtdl zS9MEa`131fq=}JZi3ok4)rZ^sgJ}Kq8Z#tV|L)d&Tw9aR_I!PU;*B|w+L;Y`g%>y+ zkOSFOuTVIu0O>a#;{bm=9<#bxX<-Ap#jC)d*M{QkFUS#M{kbWiTzE}AZ5YEI^5$U^)G4Q8?c888!Nj|+y=Zy?;$@k2x$!` zG168WxnFIu#lQ)%T^=~8>4M(nYnXS&zKEOb11}9<=D|^W=Jvg-&Dd1vZaLfg&ux2i^Uuvc#{kCw#{kEG zvyVRMkeu)r@EeXnugg-5ji){~Gr` zzr-)zJS08HftFwx&XlD>qFaihLrQRb!2`5^x{sE<)#%tZjFR3<&^5!oq>?m*>WVfv zEvbZl$uk^_jzG!qDpaerVwC16vOH7*n}%#?d$RQhwq{_ZaTaF&OhbA~5!PE2!k>)~ z7@b~>+OAsk_5DPw-&T?svy~DQ>Y?+g4C+5vAMW!+q>c4QmT@f>Z#jX8<9l(eFbl1p zy^tGr0by@1BE{k^^n?R3CV38O->rkr()C!Prot?L{t#lpxi}Sd7K&e^aPtdW3&B2} zjW=+|n8oYT`B;5B^G6^0V?EKFeHTHi65*KV3ds$<%xfV7M#3Wjo2L(8LH#56TlvGl zaVPO~d(-Re>ztP5v@B#;oIcjY>dQie z_Ew=gq!5=h%Wy;DDc-zz4nyT~oRZ6h-KPrF?|6h4!f9AN`xOiWI?yz_4>oVAU~{(v z&t?{5$ovE954=X*u{v}tXM2aSKGRGscPQn1!+l01e(z#yh&_3YLoJKZ*l-`mlmoFq z{wYjzN8-Wv5WL87Wb24|V0X+8T;Jz}2&on5Q*B{dudJbKACFROgCw1}=8Gqn)Da#`x19aW z+20%k90ME!90ME!e{Kdc9kfWYU5ZMd%TsFb8yw*;f|f5EPmoZEd*dGCd`J;a=-0tm zp$6gK-$6BTGi|B81G~TyTpuY(p~IT6ORX2G7FldRtQ2fm&c?kCZ^x^B?@-TH9@zTo z2dpj%QeD0vZPES=hikmFA-NS6-v=SNl7~`4f1=g8A9D-4AQ@T+lZ}-adpi#!hjKCQ zP$_Dj*Rg$I-=aRS3gQ*n7?)j!^u-z2a<34VM}Eb!)vb8`l8xV8%xYqRN?2`q2JMP0 zcytNS%;rj{UuZz&*(&5*Eke?fCy12Gz_|Y^EJ@hzG;Z4=|>@ zp6I+W7TOIP!Q6Ahw>91fbW|n3k6exyx6k~!_Ze>fx%uZ9;27W-;28LOGoZFwha8`Y z(xoaf5^c+XibXM)Q3=@U(FI3cA^NsNiHa`u!*O;q#F<(|BuAooRWr0Af1@Jc2Xa!@b049X{~lj_+1jyvy-?rLgP%T{bpG51+7|L1{5`+$K9-Mk z=JS%BH7{iq2+(*>L0V(nj;?F3A%3qFH_hK8Ot}v8LUYmSpNTVWIk4fcM9}XXg!g8l zNG%;n(?3H|t`!eNTcEr63xcS2T>t$KG@wNIrGJiF8SrJ(vniRP5&nLqus3^)SIw*G?A~k~ zo-Ivx+t<*9gFGa9D;B!)f&#eiGf& zje(Kh@p4=bcD{UvzQr%mzn~e6dkLVOx*5D<>L!HBT$zg3P7Cz&rjm!GbqAWnyuf0d?flVaSrb8#!ouzCx2EzaT3&>T4 zGdkjKI2IoU-=(+Fe8~d^;iKu2P!(KVBH(pfhI*P#Kxuz5CM2XF&Nmvy`vXyGc@pP* zMd)LW1teO7;q_1w-3>b+JNg>bHTlwaCz)W)*DB_#W)IBO9BAcKcdFaM`D6dyHW+t3 z&aUSe;27W-;27W-_;WJQdsvKqsVWkq^b$6QvtTC9YQa`Ms<>H?)SVSbUwQ{0CpDwW z;3Kw=T1Od6+4sICKlTFN@zC~*!|B3; zVZ>X+Px)HIY3U7N@);vfa}SLrWmj2xTO~v4GsMYu%Pg`>`i-x5wc*sX5dMeGLEORx z9U=^30v_U-o*Nt|9Yg7w7FhF1P~P<@?2?X#c#9`4nHyton>mip8jBebr?7JlgUj}6 z_~seO#?zKE`)AZ(k8c^0+u3ni{}b7KPJ~TvoG?Yt$lov%Uz`dK z**K}fNAHBDkT$cKR+tANG_?}>#|+7FI4||z8-#B67ktRnBL~y@bn}`LiSagInQk!_ zhjikCcN(&q+5Q2yN}zFT6e-KT!&D6k@^O@)dt=!8uj_f~i?cKdKbS`o1cy^_VmE5r z-r(lTEZhjoNB+A{aGP0zYyQ1B&@Vvk!cw%adnD<}52K?Wen9l*NUDbFRDe^WIQH@}85YbOMxULYqMPRIU*J?@p;hd2f}1~>*d1~>*d2L4(GT#pKq>TQNj zIprX2{14O^>ChClW;l7XzR$x6n7&(>Y$S)U?^XvI?7!pJ_wOhR5AGUbB)z5^DSeyik(@qx{F+OzkBC#XdjlF5Wn!gu87#e< zpmKoq@5=P!!txFr*&|GsUu5HS{R@;0=b?{BqhY4~7-x>0qbZuduvW4Rr>c}`c>GA3 zox)FcXMSV5r8K4VD3Z{sZ_wYe3Q%=}{IXi6uIV{OZVZQyfjD{XiDcY2vAw%Q&Cs>? z8qDo3qfa3apTD?46S2_c5ht?+cQK|d3)$<6VX!t5GG@|r{ggd!=SbpoZ3XmgU9tR- z(=zKjJoHJHkHY4iq(}DdoIjTH$8zyd90ME!90ME!90ME!e**)fwbZCVq7t2-(s6=U zlV-2Cr1j=Pbkp!X=1pSr`cI3nv8&&q`}-~WZPci4oG3jB{Q^e2vIT zEQ_I^De?y`rD_;&TneUG!{IR-ce zI0iTdI0pVi3@ppTjGqlyBhiL;4=V7D?JaBiS)N`jnnp(g%OFzs1;QP?6y#YAmj&UN z91@F&snhACiU(S84Yj6rkoh_mNv5ti;}iu~*5)L&MY<@vnd zFc=;Mvse7Ibg}?_kcmY6SwqC`Rlwvitw_7S3DUo}BAGG6wyr4V%sDL_n&OO+#|7wY zjy|gNqH$!S3%;3kGIK|XGV`x0BTwN3mR=rU3^G;myeAEh+aJPp@eNG%e}^6Q9+;ok z0Xrub`r6CYFyQu}KhYlaH`w4DCmbgn0~`Y!1Akry9^Gt5VCFJ15qbvOBV%drx^GyR zU5SHLIWTAA0<9N>ig;QJQM0#wT%`Y z41!)mCbUl|(MvfU3Q{njI|^&auafN%tISKvDSY&J`7hk==B27mQM#2ZL^HI7snF*) z^wwC>dl_r`5N1JsK|Un6a4osUci@3z08W_=V0c#!E(oj9wOk$&^ejVH?R9Ve5|>O=Iy|=q}rHcN^=+7RE!PG4NPyj=X_BMtbLFjJnGQLFphoI(!L_=3C<8 zS93_uNWi;`7Ko?|L&f}G*!QplNqqeDr1mvVd+(#C(>Y%(wU;27W- z;28L?Fc2_|JtIH5g6w8VP|ndbj4o_NopU#O`nN)=HW^<_Q}BL?DWWXG@p#q%+n?$a z&Wz5-vyxP7dFqYuxV2CfRz^_BT%;CHLza#kZqz>m|JBVj|J4?%F4d!0**I7z+PFy7VX-ExMiJV-`{II4e|3DbtbT#h5o`2Q??{CKDD?5v1?3H(}xktn9lFJ418Uuj&MmtT~wV zO9?Ccd+=}s~emqm^k zQW(S|3wLVB_2FV>IsY6NC&e+qF~BjvF~BjvG4KZrJU`ihLx$^U)ssjle9|I^J;iwT zFcrb)yTCTh!l5e$_?7Gr{am)stnned-tZQCZr(*$^aV&iK8NkPY6xZs1LJ2SOJgB! zm9Ig|`V-&_5`pPRePVQHl3M*kSn{Uhg=QmOnO&rf_pj1|z+tpr`UAf9N6_i?VEVc4 z3MAQlDxT^%B;DCYz7salnH5H~hpqK``v3O5J`$kimVC5&M;~~5mzz1d@o|P%VEwhOtur+aW-%Zz1Y%=uDNVIT)$2T zjS?g6%e=JU+fIr$wWYv)+vxO?Pq?%v7pL>TqveeoJf@4%cVlA=sXl?q(m=%SyM=_5 z@mN280U8IL(6V?WEmc}chI)=DIK2ZG96XtCdBbqXq79Q53`2ix9K6b1(Y^I16soTy z&hiLeD<8!I$;VJNVg0{ii72tl!qURE`1!;_)J<*$@eMyM)TAso)*CgkBmM5A7UVLZ!Z>3)EM@h*bP76s<+Knj`=x##Bi%rPt@CiygZ9(^PkI+(| zX>`A!1BV%7VpJYNjIB*jRh*0JgiibvZ%60iN}LiMPM-@z$z%Lp(tLJ?CcocI-`b7I zhS^RBRYy|J_Hi_K#2)&bAxi;sc9Efg8|+eNkQJXNRLhlN$M!mi%NYliwprAZu!P>< zxrw#Q*?8Ae4&W)-kE~R23iXPD^Pxnj7YR@g-$fXWNW|}rZ}2iM5H|ZfF(Z(dL?_?E zfpK|I-Fh8G=?|ICFY%CY??%0+1$kO=ak1Rq^RK)2aC6JeEyn=I0LK8wz~92ao;P_o zU!4P93qevpq)fq?IXJZc1J>)e!G2sZg8j6qDn*ly@;2hI!5~!n8u9yg6>{2+W9Os! zxRRiTx>gV9^G2doeI%((Itg=YZy3*efFlEO@QaSd)AIXp5vqrd!6K^30FCO6rD@;# za3Nj%!&P#jU z6llLzFg4#dr7$5AdM{^6LC3AhHfJ>r#j^Qm&VsaEQ-V&5@1z%7`(b0*gRui&kh=dZ zdc_~&%D8NN^oYm(#rjlVZA)=cLiDy}4-KzcN>jz8Xu)$iI=A#QPT8cQ;ot(gs5X*< zY~$ggYDAX{vyu161eY55Xzs}skdG0Aw}T@hDworvn0DsC8F3^v1!5d?0y@$ma5T!m zp{!=?QH;REedUl{bqkdzra|0pA6(Nf;CqBR;^sQw)uY+Sj&+6R&M4+i(`yJ6B|-YA zF=-hrNVV(s`)_>`DpFz0E+T|ojW7qY;;lc-WHb~Q_ufnvm zRD{krH{+A!WvWTLk4uZwk-jDmn_Kv4REi1hnQlVUE?%U~IY-I%#Q~CTJWP&Bx-_p^ zf?{GsNOfK#wBPd3{^29ZebaA@eZ)uF4pOx6SPK+BG+~RKynVZhByy%nG=9`Qqe=`w-*# zif0!O;{cBe+Co$)@+8~8w(9^|)64MVlLey9dJ!%E2#kC`=1)k6vSKi5{Dz=8#S3GO zmtiP05q`y8@UxGCme&AkyPm?j7U*#voe|UX7=c@kipOs;s;|J`q`GjAGEAawN zP@K^X#q;Hmw}?dC@=J7Npaf0Tc_=r2fZ;XeSbO~`{1d8?f3*%j1FF$391g6ROK+W5 zkX7R*>fLNiN~Ss#mNl9(KeGK5p47p6H7`An`iZts9*Q*R#;%NR^rd`XI{_7cqha0SX!JmA0WB^1|v!4<V7jzWi}@{%fpTZXUUL;27W- z__H%$7@dZWb16t0h{Y87w-8b;L-xWJ+&%XaCdbo}`e^_PchezKGl+TREogN8f^ECy zX}@L`)^0C?rP2Tr-^4?;{wc0i7r}gT1x}rALZwG5jM;eBDpo`0o7UkSh$Qi@QXUuPScni{=pKLAKjt1PA%S)y^lJKkQ21bo3q7l!t zG1$+>#)dmk@EmJ;Yrc;HW*JfPlU1~fm!B2|mBWecp(XgL1?JC(k<`AalsNG%Ufj#Z zs7fh1SJVTk1HCXE%EpdneTu(P3jfWaXu2p)mE?;F4woR`a0#b+E8(q~j%6y|$kPwT zse!Es8hXO!g~egNniaR&1mDu32;=$m=0hOL(zZcmTLr>(6XACL zDf6>O6R&E%V!yOA{A#_iZ|@M6SXkpVo8xuh#aHM?DN$agS2W~ z^_~Q+(@U_g#}nq;z2Pg@iuyad{$>rU{;m<7CYRvH>U_0Te1G%x{_JaqyMONa!7;!w zz%jrvz%lTTW5D5YCX!?`U?`S^VG3z*`jLf?dZmzho`+{cFENl+0Xg+jm?pR4oj@hh zJ7e&6-w$Mcm!_twuTVRdg-H>4cw}Dz%O5}CUa3NIqsG#p&QG}f7NYp61JGa7f%V$! zsjFcF)o;E{t?r;tE&b4|8%8E?M$yR`k~DN+2pcjh&_o|_y1EnFWHV92YUydZ9hkm4 zih32ZA>W(}9+d#f6R@VHv70FXY~1S>U20C7O-oJqNZ#!U%-)pYyMQ3&-Ka-Ijv_^{ z@u&sYx)Bg_3xky|P_=f3;4gXT1Ra6G^(9c@xqw2Q>o|F#0$y6DpvKmcoosXsw?sBz z^)yYm?KZ-L3>v;WD`ZFZ53LCzK<7guTsr+^( zYdu2`FL3d;-2U^A+kgHU$6o&P#lLEO{WIPR_nSDjIR-ce{*@Ux7B!DVPbt$Qi;rma zXv7BdY%mJd5cDmCcy}=j5>nA>l?OHDEYyalLTC4Tq=gh?@3S&&%`1TR{U>M<$-oVb zcknsEOGX7e6gDJIqZfTfV2m0~pZ*gjW5&^L_K!jGAqrm{L^YF$%$#{BeC2u?Z6iub zQr|KA(H95_=OFoc7woQmhm3ePF3#PJfXEzNriYaHI)noHH;`eJ3~k=~3NCg0RNhs9 z?wiBuTY?JBPHRH0#5>g5rlP4yf&x=ZvBI$uIi3=~aMt4|4 zOXVqS1#sx1un9@X!@R^sJTD1B zjNb>wN`i+DoE}HIV`HJvJOU>x{(t_Fcy$X@Dt?*)mGwJ^LugA*`pbotU1I(t4>X`L32@`qG zQmdW^jdi}nJ-fNs+dpm2K%CP6L{3bhZnk$!A#eCJWa#<-=7Z9g8wc*?gmPxcsO@{)s$9x;=o{+!ELx zeFG)77L?%luXsAW2G>XNlgR8Id67pws;Cxo%c}7Wc$M&H>04CAWF9C z1YamyZ^~Pk@)oyYMErY9AFRN_1tplT{1r=Hyu|v>PpDINgM5}2B_H>vJLSI+l30f$ z?JcM~eG}`7$`D<72SRxwbiQ7aY|e?0)s#9k-T8oc_Yx?yCL=IH5jm;5N!fA*Zm)EJ zR_|&ER*!&Wp)B_0U&fYq>iBwoBvtUP!j#eb;dieB+qA~g1chrD+C77=I=*KT97V`& zgekVM^=lu0z6AGD1JrFii=2HQm|K?~qd)Z`;*YCShgc6z%SfZW{VoJnm%~<}oEdia zJs#9P!;>XWXw{gEW3%Vt2&O{zU;s|*kHV_)70k=NP579f0}H7K8d^zS8WVn{GQJ<4 zVsE)9mWr&w>lIsJx6}ds1#0*h=FiNWlFsO=@Zt8rd{}Jo!NZ$wa7kQ8kvf;C&(w{M z8My!9vo~<&8!W!;hUL3oGb5uDnA0iKpq)PtV^i(1{DwDnAKFNpt=-5^z~v9G!L9%Q znf0&MxrQ6_f1qZvdu)jU`+2ZfA%*+mL02vlx|m0%0@|B$DY-eoki&4HVz zf8acE`_KQ({=dIi9)GDteMKHLpB2E>EFT-2vROZB4XV5c@Yc2i2ZX<3qEZj8wXdSL zg&LG7U4l1PO=z*N72Pkfr1*sms5~G<6&IgD>Wnxovui=qzPC^{ev2sCF3?~*f@ie? zY@Y(9_s%q6#z#B0Ji)x894PKjLj1H?gw-Wu+OqkSn$JUy-6E6&QF58w1PO5k%62$L z#lolPp->Itszlg&19QED9Q!MF!aAl1VGr^ly2uMgE5s>!bPZN#Rbl2v z2~u@iO_HCT;lf^j?lnIcERDl&mu~nwn6tfQU*rABHcZ;@3qL%Af2l2Y+|EH_>rd<# z<|l`j%W>?n7<_^Q{u2{Y7!!LZ$nT8Va(BmC`g=zi28f*90*}Xh&Uqc z-4bk$_J>Dc0_N;@q4!a)WUu+3pM@Uq^oCNs6UHkkpim);>1xqL^nN`?&T$wXY~sb1 zYrmMGOVQZj%f~&Z|Blb;>va{d(k%S9e7c2R>X3;xf!+*n44XU?GoP%5*IFZlM^1(H zzN-In&fVP}c;z5bZ^Z4WH46%s|x2zcrMugg4G zD6$maZ!s{f9LYe_exq%@Uv=-+Hlk%|yE6HI5&Jw7a)~ua&wGaXe$U`|t_a$aPq7Iv;k&j9S6SV+sG<~V?^@tIxfeNy`6%R2 z2kNXlP}ajsnQqNc(9FQe4kGvDZ0!EHkJjAn#OJP4lpwy97->OzTF*<7Vf84q&%(^O zuZR}rC6BreymT+ev-b)l?9+wMSIg1ec^?TKkCEe3jA{9zR8g6ZDYlQ1I#`UDD-yI? zzYgQYigB#6gsn3mOE;E0!Nq|IbYaCrj45>mEigfkXDs>`S)pt|ndV(oC4(E+@UUeN zVSS()B_0at4ujW=R>;K_VBY3bsBcsu>nT?-(N%;}6NRbBT#81=NztSAl5|O;3#%Hx zKt_O{=1TC9nr$_7Mc8_@I^B39bRC!8j>g2`yU^AQz?3bm=?5DOHD-&Nre~ZCVl>Og z!CHwK3~|+e6oOKfdkA!uiFQ zarm|!t|>+1YxO0pG&_g#D?B(Hqf7WMs+Wg^lxpnowudBa|iJ8P@n9V$iD7BHO z2ouJbusTM|@i@FDuSP8yVu}pg7v!cb?n-LFr+XiIe(pg>kOW9-4UUhPjY(VV|9uY5 z_FPBtfCJKFcc5!K%h!B2YFYQ!#WOEGnEvnAH5H6U_o^6Zc~>HQ<2~qBvT^7CuZFi& zEB&{>2i-}=I{kVi9s7U&{g?OuSzk5$lHlvx@$dIxu-F1u5~m}4f(BA039It2V5Mas zE;ZeRTy-EOW&~hDwiA2?{1M6@f;lH|z}x#2#%*_jtgR2qOPmlcV~uTt*WmhX3aXC| zVf&*b91}{$c!@h0TIPc#A6=l8a2>rqzIg9^8K-mZpvgWEQ+Kz)@XJE_esv|8*K%hZ z|E$b#zw3|pF>Y+QvH53Zppo|na@Nl!p(aV1ytok>_a;!l^F*jjXh1+yH$>Zx(6Y&C z;MLB@;rOS}&nZNa$VRpr+46L>302_0yL$BQW3}t)gXA)(K;Htz$tz|Am3 z>UeQF_AnGfzl&nJK`R0*Gf{Qq6j^j zcAq_KpF#^JPoZ1uRLS-CND7`Ahci}ERN69=io$l%3G-p}`dv4cZ5JW`kh6GI$q(HR z!KruVdSbwSH-wv05gB+B+8>jU7T=GGk0sC-3P-wB1>)AdhM0sZB%-63{OF}PXDf~6 zU3>8OQV;W}^&pgw$D+W{2X=cyk&=54+WXxR>pX)|+SJBmC%Z${*$iR(zoD~Mh$7NF zA-`P_XP0LoYK;xuiTmSo&hWr#cr9Jb97t8c;^ve1=){YXhI#n*Y(83KwnMH`9EmYD z2&wi&vhN(sohyS?pWT@!eaAH1E*3I9Z*MX(J!Ys)s6tJ^lYiF+|Eyg9v;3~P+Q*PJ zdlq`S#bDJm2f0^ArEflY8bfU}V40uDq(5KG@CSb?+R6&KLy`Gfk}9sEF`a z6L4*%9y-!Ju+ZI^?R$I;{23RZlo^NKlclH}Yewp(|GCfokM94oj5++7tBh`;G1f#| zBWH#Y%)<@QeE2f>4xGhp1xIuRoP^{YKXiD7Kx^O~EDN;>ZAvoQ&r4W0T-ke zs6ddd!D9UGCKMk+UUgWqs}t=~JT$PX z7+QP!pcU~RC1Wh;ldu9s3`@tcm{PQNKSiVA2bdnL#Uk%oNW1dTHE(|Ek7MYRnF!Ua z9!5qwyi}k11GB_BF`KUl#eq|4XIdFvjrWEiexQF@5?o{IP;XI!nvN{AeaOIoc{NbI_XaVL&o zi%u_Yrt1SvBWOgyDAK7|LqD_(X{&t)f_)O$=lLR1+95^<`;}>bvmC|9ji*K1_$Xe5 zhuWrh;p4p|eB%j#_l|4$uBuO`eoUv7N#|%*oCS$=Sdz&nD{^>YP2ZAj=!BLno&8}& zpU<495rzk-^v`to!=9ujz(MvWYVs1+|w)WJjdx6Gm`QLNAly2F>Jo-51M~=sk z@mZ!mt&HjT!o~vo+2d5$Jgl8PACp_|Fg!IHpt;I0UtG^brKT`>Yc?ZA{BVX6?*{0b z25Kyf+JTD6>rhb;$?%v~GD8=Hv9lxrrOILdaP9KXv`@KATZ#((6|nH1iOFNWF(VFt zVG0|7(hMmulaAt&?QKTRCre|J!+C7yJC0cfu8cahGPCn*nL?{!kkv?JCXOG6nD7q_ zU!^`8q-?P8tRsA)9PoVpZP?Dffx9jDKwbASST0H5Z5gthbdj=GoF?x_rnDg83%nj_ z|EC&Br&}L6WlLarA_n`6w_;;swJ>PiR)| zM%pX^wm02j2v0O-k|)fC#jZaBn1Z9{#b7^|#KS*vK&$xIYfQL-ugHydN0h29NMfXt(>psI0TbTopgu zG7Lq~y>pl&a~JBN(Kzbjhe<1}Q4tr4P1T{;axe(bmqlXutGh^l8H|-(K9KK;#rv5) zc(*SKYnEPz{ziYi6uOA;o&bct_5h#iBTQFJz+0z4_G}{`8=})tGdTm5){C(3`bnHP z;)4>!YZz}?hSM+DTumNB>c8blLh)Ds)A{*Z$ASC)zxMN*n_q5zIR^eC1ANaeVOhvT z8h7h1Rz+rG>&W9|w{bOnIVeUye#PNysR!KMHd7T_yGqW=o^FdeQc99DNyhATCX5{Z@;}1T=EWHKRGD%1l zWNX1TKR||NIi$zrqOYtBB9_BwY{NTPKY5Pd4Xk#Z?uB2IiVza?471p{g7J8Q?1MQl=zwC37sRq0F#5I!+DU=Njdg`x)igR1k&NJmO7NeOq+)$x5?S;M zrRys&=e;F-gp-UH+G5#&DQG&#$kqTIKqY45kQ^w`~kQpQ?Q`Fv}tlCq&B zR>Kyj+t7MVYx*(XlGZ*wPhotP)T?4e1!C4DGieIxw!cQGcLyeB<>KJFPY7}k!+4js zxHI7;?%aEYhk0L7qVye6o>tV&XG6;sZRy-NJ32-7B&zB_L1!<}9YaSt5PgB_f4b1c z{xZ0Y68Sf6IdpdmBA#hr)vayFs4>CsL@D@6PW}-XIRW# z%Gw4O@Pko@t@*7*WF7N1f7b|s};`G%7lKj5I0 z0Y>exN7ZImJPEx9wLw3`$X$Z};~1=nVPkX^yfN#cGvo(uV9XbPRPJ*_?AdLIGBQH* zzGzr}S_!FL4%pxhi>iNW=E?0JloFHRKR zM*gqsh){9D?VxC^wYUujio>+2cW~qWW%$1K!-_?03=>DS|V{%15^=*#sfEDaqJG3B?n>Eq=_W0?@UiNd64ZnA5Oz^e%O_q9{G=Ygc}cT zJpQ{3C^Xza%r18bmq?Mpm})pG-h^w1F+6oQBR=dHR36;L(ByDjG;^hHHCy`C<3Ix9 zZj^k|ktXeRq*(_Jk?sQ_5@++7ta5rVdCDi`&B%k7fg^2?Uri%+9;9Ci&cr7cObtTS zc+t;8ry|8^{svL{Hba!vW5X!C_6sHq_F>hBZY;H6-?R7$%lEB#?B4?`=UhxOeuQHa z{b}fKE+P~zBJFfM@(&gwbwWNIzLjD0@mGkSE>HXFwou+@LmIZ(2F~9@P<*QpRkI4w z?JG%Ro(98v$Opm7o>+U*7`|*QLO9!JYp>ID1W$g1!RPL{;k1AT#02TwR3RF<^CfE7 z-nr_YJmmd`pEl-nqF|LA)Qa9SYd`VO!LpU4G3Go)E1#w2>t<9r-i+R@Hm4C$=V)5I z1?92&w0f;IeU`Q%nQJy=&-zOjICG|29!N8g6@*hF!u7mro+lmk}^eA z#1X82egLI++%fL?e%Q&aWP(>OhSrGcy<>## zs3C5RzRa9kunp$2syMZ6C#HWtghO3! zNZ!Zb>&9wk^Ljyu>l$Fx{e__pjSoY06(liHyp;fj^Qsp!sY z#9_8(vh=DrRMfx4`6w-NsF0>dZJB7*&4saQItDZ^WBQ3;$UA?)2W>X4z4$P`9$tib zVUAd@5&~f*Pc+Q*#KaLdpw=0SjoZ8sQI`Y*p%`?C--YDhU35$iz%*4qD3qFE#hPQ7 z`@srz%XZ+>hzNwlZ@^IeMJ$}bx<1!TLs^I`W)ASeGkQFf#^}MvbOEGSEQD^p1#ZiD zVuHa)W=y38CdD*kgZ2M+EjQiOLRfdLlljY@mVZDN^27D|Szf?XOP!BaJw6eRd5 z%<>&N`eNCb@^^4skO4c7YX zRQ`a=#rw;=a<80j;TYf;_-h%ci}XSBD>vwk>_?^28BB4%jW;^J@aDY?^_+FM?q&l2 z^RlEXT7$>mPf^lnD>`W7N+NIE$i>%*2Io0Z=-pxTYGEI?Ea*W?Jsid>2f&Ec`5!JYP`G}VF3*;s(GXlvTlYC*F$T9Ap11+_i3Aj@_O`gzNO zDyCQ+!L3tujG15;6M1<$6lUllobCM(`}Q_7{42pDItf=yCXg0;4*u8j`;Y$K zsMQ_ zvS1TB9_C}scRpI{)_~*7!f>WP3WNTyaCc!mUVlA63L!NZjCz3*-%wPuJf!b`j?o4F z*wAW*1oFq0{M-K*d+!-lRkURZgP^E@V8$%wtQatI=E9tFMnOdp10tZJh?29C6h%OC z4w7>a$vNjNASen7BA}pr`_&jVzOL%7uCA)C_g+==3*kC0+_UFCXYRG;niG43ETA*u z88$8PgASW5j3%BQ{48|C5k7xp?tg=or=LQP z>1~ux?#GVpUg(_s5(=_rc+5EOo3nu^P?dtCmN>V({0MX_bm0E+0eqwkxw8fj(AR$j zMZ1i#=Rzc|CN@IN)$^a6Z(Kscq#nIH0lj(|h)nY51Pu7_<=aP2M&uE`3*Ce5XbtpK zoj}6UlUO-d7^B)k;O8HK@s^&LD4LA2Y0t32ARiuL&UiiG0_WYYA=SpT_z^Eqam)px zcir)OfeVCJKZoY{RM@|EMWUG}UM!DB^QJd=yf7DPoe?k}Cc^CFgjNbw?s4SKNE@<(?qFG`8}3b z*D=yz2Am@{}9(1!oUy){znWbht@$gP!*3=bkOY(4!r;^<_pE1 zX&z5eGPn;)2~FTxBuX**S4mn{fa+qksW48RHddebxx!DA(>Ia<^Bk34!%K&H2Eec0$L4sGk+r-I2M5>C@ZG$$_Uvyo zZcV~mp)Z&a)Pp&x$ry2?0OK=DVP5(TYf55}z4AP%xxU8@GhQ<2X~%(s-B8^B5yI-T zDNSk}nK}(8>%rw@ye|X}tZ#T?>}+yw7NO)HO$a;|2Iuba^fqb-%{Atw@CyPsBqfGv zulzAk%uD9upJP$o7)n>EMB<<@p3ELbPM_vL(lQD>Ri@m->>$<`yg{{jcgW$)T}mio zdI>#s8n9OXoA9sAO4^h?O^5cm=}?QW4plNPeCSRWw(n0y=;CHHzNy5CzH11bxCi-5 zWO492SrxY!&!48$-Ukjk|5I5?8&CAf^5w{C;f30;Buf zLVIbbhS@{r7xULm?B~9IXy>-xGsF2KXCS|fL)?*r7&T86qi#9jk%v7-vAUv#!(C|C z5$Qu(xI$Zc`s8@|>+nwG`z4sG<3t9wIH@zj0$dvq_(Pa^Eti6u@e#GBC(w&k*?6@7GX`wmz^Wq@qnoU;WkCVDHa-Mc;E0D(o1v;X7fv*2-Mv-$I8Y@Fk8T%H2+gy;?V}~8WEIDttFLaYVQCIl_ z79sk0B6bSVgO%J88AfOX(WX+4VqrbU~ z8!K>s(jth~SfFgfQfy2-rz{AA5QEE#Cp*L zd`*vl_jX?-UU>tfQfKgKc*EgQ49Zhn5kA2ZEdeZ((D@B4volelzl73nMc^#s=|V0! z2wmWhd-EMpmgR{F+rkj$6a@#ofkxbW+~+GroSFqbFulkr^CWb%_~OR9bi~!GQ0j(Q zIKHdJ0sVHo_5OlA(Zi@WJ_b?eKOlDh3Q|uUP0AY#$#9Y(*?cji%tJ#Q_TRGKhW_sm zXBoo45C;Aw3}jwjMm2XnVA~&gTu!lvzNbBGHZZ<&!vv>O8b6ts1jLKVbgWJ_x!_pyc3*)E6&856bw+=VTld z(!^+F)_N*Sd5YI*JE+j_AdP*nizd%xzPNW(VQsnqzm8cUW2-l660@OOIum2;?!jDn zA)=2AgL%q9WF)(Dg|?a`uNV}=Xm`x8=_vA*z$RUErAzw|5&n zYxofrmo0T6dJC%cUSm;+9$ja;m4E&@{~o@7H%ktmRtjR&6G7Y+T8(#Fmr(Do2%Cas zs6W)mZAc5|v=(q!Dn6Yk^j^eD(==;!RnRcXZYjt z2*!&(8sYA(C%7_j9J^X=@hsT^JTcE>2-bUNB0t@j7G(y*=eHH(zA?zX#&YgfB)}!e6f-1^Fv~v#3a%bV zejJSJW^OF+!xyJ_vEF-;8&1E7guJg0lwy*=b%nvMGZ~W3H;LzmA{}3IjHIU>quo)e z6fu4mS!6AsW}9sM(f7v;eq%gb9|VOLVbJ!!g#LM6;MwPchSN?c@bkdimm0X3zXK2W zbujDuZk!Bo1YgE_%&J2Lx)+pT3j=<%!ey}!ig_MX7bgPqa z>61IeDs14O=K#eB2dFn&VMT;93=c%$alRjB?RkcMr#zr^Gz8;%{Gpa*g=7yK>?-%c z^^A9LC^N+P=vdTBCu97PB=q+3l4c<ny_quXdY)`yEsCv`-3GbP_h zN2O*D_VJ9P)WcTTI@N^oy^SdS!;rVu-@{%W`WuEg(GUjydte}E-fsG^zX~3g)j<)m zsC=uAFP}9qVVEh_NLj(=?jc(6^Co_+yozR32jrNnA`>SY`eq}gv3#g7ZgYo%p=+AkDQwQ&HdpyS=-cFe=swh*m&Rr^RxJR%3 z|81Iq|LlE|8>>sQ26|L*MxUOYFrWjK1{A*E2!}Mbz~I$=$ojaz=>8pi@iIf8h9pYf z>#`Y@bBHNchknKpOsw3?p5+@cEQ|Tk*6G1QZy}~V@umKx8m}ruUyIAgm@9*uJ}N{Q`~z+Jx+7Xc8FHr z;>y0>gTxD%Jx3mZJGdV^|vdvI$!uvMxNpZs57+?qEq|(e* z30<;*$D_x%Y-xq*`Ne2B9E7XI%~-cC28P8!I4$nSd|baE-HMmwST2cl&_{T?=fiby zADwyNk1ZCa7~7JFGtMCx8B_=Hy)Ce=Y(#fSDO{H4;c~-ERILcdsD6K7SRkC326V1i z1a>Aw!ooKM3#5H;VRR_q7J+#)W3lX54A#85Pmi&gGHu-fwns|WrefY}w*E`Pu)gCN z-k-I?anT5<)(2xmW;nE1*2X0VXUt>%89w`fj%8_>qx1ys+7_^%a+u8$K1ZRT9#RX< zP^fqpbKbwise!|YWj?wV^O)E1LQPD`WZBQA&am3?5+-77_K+_OHLIeqBsClpQO9}!{mfS&W=<9?MH8VZ8jY<#Ju!{xkJPlBG1}M_1IwSGG|wOM z4{ab9XOFChO#hqUiu(!yIP$I38)dk4$dbjVL-9w-OGz}-*4 zr@hIbsY$qTG>&<9@zSQJU6^L#f^oYN(ICRS2PTZ8KimvjZSWgnN)3o*7`~X(i18x2 zbn)pFQW2uR%d^=(;(X}qe~)MS&^ivSzyhTt z{CSs)l}q1Zzgj+c0}Ih_-H5WYoe=eEM^Qj3j_+Maf6V{jQ`09nq>ZMF`~q}m%qW^Y z&KeajCeX2UVkEYH1WlHfq1;2qXhC5B+CtKxxA7p}_e4N%iX3QE8!8??h4k(*c&oy) z5r)TN`P)9^9I`{>10POLwUi6{5sZ^5$`sLmiw>tLQ^{O4>RWmD@A4V+W;&bY8e_ob z#tf)^jy{d)dq}0ZOe6dy0hWs+k=tR0@EcOd&tHwf7a8afS%jEt(s-!r0FibF7UxZ&QzgOVu9|TVfMEliq==48~v9D*)fdUKgUOtTX$|`u{_5^tm z!2IT$;IF)nt)92>S@06>SiIsozgJ+A=rJU9aj|f;Gn+=zf<=hZRZ^9 z<>`^?OTLdMG!~cI#zXDedE7puhCRZjIAr_`cI!%Ue&s6KocOonu`}e)!=z#|UR!r^ zNAAXRFQ;wd6b_ehR}W0Z{%Hp>y5%$1`J{%+89ogT{TuOf@H3a}Vus)mTKKco4@di5 zpy#Fu>wzm!ayP`1W;;xT873_;hwQJHNIPPUW6eg$v(SRV+z@O#lZMl0?XZVwP32=M z@Zx<7oKLo5E@OU6#dgUfhYQJ2WPqkg;MwO}OTLn0w- z;D!rUF_7rDfaGTp zP720vUk?PHdqLd_qsdb-7iUAOv5d_zSf2b01p!`KwvV3%w@A}1S>~^Gs|?N;`tjwZ zGr}WHvFva&W+qfZu5CEg)V;?@mVqVVnuBruv2Z!)f)4#SEWYfI@8Wam?-)R%Ef6-%BQV{E?TGTE*x|q6jS#8BGqmh3J50A3DD$B4AfA ziq`I?uJUhKR>nhzcS{q0b{Hl|7((pNR2Uv{fUti#R;oQiZpJgb8|8%^1qX3Re;7%8 zJB{g2w&C}?9t7v!rcdW@)9GcmDfatqI@hiGcgbJ>aerQ%Za}pr1|;!OpGNiQ(imM! z`qCGO!Jmu3?`8p`Z>G@rsEf3sVMl9XQRD(I+h;zjF}f&vHiRrZSni-=5?C;PRClI_3+OoY~1>p`xcwT z)nAy5$dhxJK4t_Q4z0nFBuUsf{pJFg-_*+LDVY13dAdy&Nx0--4LKfVD0aTVdEsL4 z+-1206|WF`&kH}FmSekFG~ymdLZi|ilVFkY#4i*{;>@q^lr5_h``|!#9JXz!f_6+M+W4#4Oj!z+1?FMAvLCu~lA$4+ z2GhAYNb2ULovCfO8JLQc3*p$y&OA?cWZ{UmF$CG%|40`XIMQnb^1s0CRb@E*P7Zq& zyx>~#634SEFf*$J2~wsAEOEvgGdsBQ1>xhD0&Gz_g2crp?0uf$=}{y2oNz_cwLFaN zF@s&~Ybd_Y#i-Z%D0U8n{_|M;`JE3QV-KcHeGW%WcRVSGN4;1o*3WzmcM8X`(bW(! zkfL*9-l%rZz%q7ro%t#WXRZd|+PgOxx%?$`J;HErDXW>ryn?jh8_ZebkFQy7&}6mR zN4lRdEV&Wld*ZRj(GT}-#=)NDvDmjKVMK@%QkQtZQzr=h6?N!6JDY;1)FR+>7sg7| z<9VMDImE=lH17k9_Wy#1+yI92zQY7ggoNUwFl+k{91z+=u`^U?;MrI@2YHfQsY^Z* z`hVB=lz+Up41N9Y%>jnicW8b8D`TJ}q!O9)QgJTb8CSfTF){ENZj7?T-HHpidBFl( zk7vSc!6uquVnwBuYpKAy0sHgcBmHpK}=IcaETvn5hn zW6-i82Tn7x5Y9BOJ*?JSv_g<1yg%bytK zE%!iBb2_xzo*+I`4~~(t@D106yND(p+9_huMia=%Kf&GzCj@z!;Ph<`NT*!I4Bbmu z7k>#=nhtm^X9ugVR(R%WgSX$#qD@#9-t}jt8hCd?aQ;2G=$ybR?+otB>ytR~T^#q9 zd2k1Gwjxqc2-3U{uuj_>AAUV1t>vbFmGy{bXRll*Ygl`p;~v&bg;}UCH(jTcJH2Bu zHYthXkCO&0{jOo^VM*{b><7Qpa~L&Ag4;J8?-m51YJn*AjO)eADXG|1*onAsADHsE zgFnR(y-{JTwNkE_F zJH#AH#>x?eI2ss>stZqXvMCY8j88^{eZaoBBwY7T#r0<`Sam-hHk$&`r<{vvmcleD zJQ@3ujK`<4P|Eb>Ue7BrBQb?}c~oGBk^~Kp>Vxy*3Y4s1Imx!UFm^A;+R*~^uIMBD zJKy1AQWCoNWTN9j8QhJMF(oz$Viq2lvLXO-JCjgr?2Khotiiwg9eTtPQJR$mS34&t zKJ$m%noQtEDvBAeo${s`8)VH97|eXO7_Yq2X9VA=J{Ze#T~*@PeLy}Dypxh~@_ht$ zEsenTZGKo$?}Rj^2wbUsiwWWh@Jsc??8qpDUVe>Vhph3IHyTxY?BPWbu!&nk`l@kw zyE_ql?7kE<(;o}Q@z8m}XzX^+!G1eHG4hGZEN05Y0SEydcT4u(@gN2vh%zWwR>~_;n^t+V~n5jl%J1`X3Bx z)S$q49DN*9i@h6raI_R)5iwV_Jpm0CcZ*Vje%?cyT8h7g(P# zq&NpYYkC=9<|Q8uKC(E~0;7nXSkllA!?~i=t~j1h(>XKTi9THJ8KXg91vZS?1OEkA zA;z+E_g`~`apx_}{Iw9hZFlhDz9de5ZR3VNG=)roBAUvzv0QmSEM);#R^#p8VG7%y z$G{)^1P2WcB6R$BZcSze)YkJ6Px6ERG#)$p{djzQ*Ch4+ej<1Bqgs6Vvq#)^{{qf$ z2DtMsJFvT8Ee?H_$G(!+SW++&3hqZC9eD-aQ(s_>|5+G0{@~(!0&$gV#M+)E=u5f= z2d2+Z-xmR^P9rE!w#TZK?r`)Gpk=QUF#dQkJGYIc&9&?4rtU%NW@o=`^I9RV)d~9} zd{oP36GzUd#cj)S$d4^YPGk+Ll*=HS)rLtog(=Un9^ns@F-*G!rve($w{Zo@3JH)x ztSrf0D}?aRFF1It4m@IC@Sy!Oe)uLqou8jPR*KQ17h_501s^?r-Hxu+>6q+Lhs!?# zk@c+(7ki?RXz>o;XVt)aV=D~&8lcHEMLXFH*Dd)X{5hEg*11PwqYrY^Lorh!8l#?h zz+Air$(n^&kz0-S^_k4~i*a0*zbeDS>YuI&*lWhTqbC_4$txQ>Z9Q>-KM29vURbrd z8D=?5@7kM*gtS2B*BpzrUvi;T7K=1qR}>Co^;^kwY)K12+wUwqXk&TKJl2@Fmie2c zyg~2nnY1MS3(7uw!QHqO%jUPhS7$Q$^yWfqUmET>y+QCscTAj`i}|;OD0Y`Kwt4xW z>xd%)@4KPQ*afzaK|?k&h&$a11)^AiK5i zQQI5`$+gjVD){#~zxdDZD?{H8ag!ko3}N8!5d({|y|D3Q9#YS(Cec4{@%fTJCND4` zD}k?woZ1Cl%~XsIW_``ZGTc-s0C%GmznZFXYh68_=vP7CiDlGeb)zKZ7eF1j5#EN{ zrztSl+KQLY>M(fh6XvZRz+6WGT03bNW%OplDj)-$dUN3hvRtaBi|+*i+a?;lR}F)^n<)uBA${UaGXD`ESEt`+jNCw@Huw-8@af%8)*>tS-Ns%+JSeEf&eQ zpx^?lz0DbgDfanXS zed``hPc%cQ&weiE)qM1vl!1rIIh;D}g@t>ySYP=m4oj#)@PQ?&AKT(xz)d8aF@%cR zbCk3#N1`6nFt5z#e4LcIQ%0Fwz@-&9wM7p5%{_6K~>uxiE*PDStymz}>7`lkn2?!zRsN~z$)gR5AswF6FDRs$OsBVxG=B>Hsm z=FK^*Vw}Is{}{HrDqy0EE`~8*C|?mv%*(fjavQadDtkZ2iUer-5{aLhL#tjDLt#oKV!N8*q9IQX2LvdM`9Hr~*o?Ye z%W2H#B&Pc887zIuyDqS`_kYQ5P~(?z6d?<0g3aDSiAB$_!}-Fw?_l= zfq(FBYzZ#?dX3QX(e!w!IPKY>j&4yKDDNr4nf{S9_sdVjjU7be+pmyRoJ%G3f|PT# z2Wz_;kXR9cxFC1Luij4`>l1KF?ka3oGygw>X54EuBK5;Vc?bWi{W$cqAfR=^ttH zc4DK%|Q2~pV8lf@abOvjmn?yMK+jb5>-h+wlzD!UT7 zij`N8nG%TJjg8pNiJ>|{fb4Fb$4D+1{emf+3ccXQzEGuYX{t1hM~x**s*&Xjwg0Oe z>0eumg$bJE9jHkMk~L{Ur{;g?cdrvNq)q+$^zniY3Gkh!Ywvb&OPiKrcapHw?Cp8n z@dpwZl$wca4`s0C@=eUX9|@I;TEsr;!M8bkxk5!lgz)R4=J-oY|FHtOuLAKX@*+Nc zS4YU018C-V#tTI&xIEOrh8s3mQu`9d!Gvu`}omMU{8tL9@y`DzG+>cHaGB6zL3fE%8>VU~3jA?B*kk{zZMQL z?}jzvXL04JHG&L6am?Qcr(zUvRrdvU>)Im2*alqXw3G}tMvqn+L( zC?K#6RdsK%s3r~L3;$r*aX#7`!9(p;%oE~iDprT~AR}=l3GGUQvdjp&{w)IYMG9e= zWPr;ud7Qxr11x2kQXX=}C^Qep@#wc`sR@LAKp@7KWiyY24jAl+g-K-#+D(U1ctjI4 zLXu!C{s~jBBw^QkPlyB-U}bm~u4LAuwI~%%mE-A}D=$TcCL{GFKk+9FquEP;;7%Fzv*1 zd@)>wkU?L3^=tv((n0JyumsY-d1(BrH8{K=7R4jOI9qFNP@6BL&ig_;eHyl_kAl;Z zX)x?h!{G~0u!ea-%`=j~(qGTHHCnFtB_vF1ZB^-Jhbk$oRHF`+zb<$E3%2C9X_Aek zCgmU3q&g!_>PY{OaoE4S=dgSFshwmX{=t0waR7t9_p6)YTIIM#Rdu6;eFXuX+S>lhkFV4C=j$*p?3uwoyL*iWk_75uH z_i;hgnEPR5brHTbJco>77@U+IVDrTQHrM3^qY*4)?bsyjNZA8X(-8=JA%)v*YjD3I zf-|$5kE81(QNSOGsh6#3quf*aUGsm&V+Dl2bJJ$Ta9XFsF^zu%L|1U2^;@9rDS&IE zzH^rzEO=Yc9V%tKwx4tJJ&IhZO{j2RjJ1D6k#Lsft;#)tz2|A%TcQT{0WYXZ%Og6= z5^c=ew6;VBPp9vLRDFL1=CeTGm!^$;_r-^Zj%Q<%(o3v4LF`S%rQ+?|I}%VW{s z5`w7Tld0A2JZY5h5#OxQ6l_|J?^Y$)G-*0z`4QcCB24?0E5J8C1FN1j;==mRP#UPh zE7t2c?v#qli`i^Z?{xY;tPwx8;-K?^mwMfo)ApX)%rFTFMO?*(Gp!_X#yI zEy!JH2={A6NIQHR#liWw&SuRbSYASMTPloes<3=}E=qURph2$=vhxy{Cq*%?&H0F? zjCPDW#n18;D$v>?YP zXRr+Ix|t2j85)IXmUBzcZWn+|AwPCM3WZu^DEuTNAm|Z^ z4dzoQ>qR*8lr6-)ydyLcq4=>q2@AZ6Va)RbB{_wVoF+nUbxhA~w~J)4i7pJbuwKzE zI;~WRX--`TEFDJuOpl~GCm;KT57R(!4O%_(Q0b9}sglvy*_MX2%UODZ$a58Iw-Y;xkEtz80S`^E#$mx~jB7US*T z*k>x_C+A-Q*whq&hr14tsTIoy8)Jr!Js&aXY=JE`muUV~6RMQ78sf0*e)Zq=89Vg3 zhSqin1OIs#kk_9|bMHq$s=fr`0S{@yy3KU?*Cx7iCKJ*26EniO*SKh9tOvS*gG>d_e&J<99SBSHIm*t|N2j2Qx)u;u{><`OoY zI*D+-=g3xKvwP9WDC7^rLa9l#d7m@uS%=`_%^Mi~O%=Zas=4#e#$u$zXbAS-LN>oO z=1kB<`N2y#Yifq&@g|7XsN=?sK8o$y?pU(i5rt*XFz1aEj@*5U&mV#y;1te$CY&I@ z(+kP*9*}4H&|;o=%sdzdV*K{}u~3ZlGl1$5OIR(oz*Ox3blBcUliEcb-lPi&vF*5Z zyq(MFmWP@5RJ6KRaw{fDBPTc)RW-(B`}$wj6^PtCi%iQMc;mPl`ff|GX5MwKeUcyy z>hEwtCGuQYz9%;!XC8NTo_Ip5^0eiz*CR$*7gkEhdji~W_{efcO86pEZ{4n ziSmhuv98{R<<4bchr1K(yebi+lZ`Uh6hv5LV)_-9i8m-fR=Xrf+k82F&f%qiE%o?g zS&65HeR#H}2c_xXkswloPEKW*sfxX){aN|h+Ir$`rgAeqsd@O z7s4K}{(4IZKL7fJmd82ZD)*4s{mV4_*hf?-v@-4Ob~0MXPh%BRv1SkB!u|2+_Z>lU z?|jfCY78M;*5~*0!j*Zo*f8A<>KzfN)n++aavNz462~q?=M}=KeHh)4{)DQp21w3Zhcmka5UwzacpV^Sjn*iL_J+1zgA1)6edJAE3P4Rhw@6Mdx# z^ZX0&=~6rTG|C{U%5oe{%JFh{349jhK-7LSZD;zj)!zAVk7om3~{pI*xwb8l$0Q><@LguSH76vR)$5BjPbGi z2HY-sFn_O2@j1CdP_my1o=RT$AG45}yFZ*u-?SgKHU^NGYlS-=PPnyq33sB<1*i4z zBjbV#n*6M=TkZ+B?FiGq#^k|0c_a5p(3bO>Xo2(WxjkCp2{yO*bAkty=wzTO)3T|O zzT{t*yZX86lOCr{X*n8{a#n+0eAS?1h7YN)`{Do9=h?DxdL(~IkJ9a~(;e9{cyC|< znGinY_FaH^izD+1jm3rs-=T|S2=7qB@7x%89;n356KeQ!^$rGhO5s+{AI_8aCcggk zK%<2-etwEXPux?i?oQ_>WGmxb{O7m3BEv@?&BGFL;A{qDWpYt4 zCJ*;z6Y!;_7$eHlFiR>NR`QR~@Ae6r`vPDU7Y4Js*CYkLa^D>2IE#c zAng$0jB*9n9km#yy|G+TxI3pL*v?H=Ux=_X#oVk$Wp2=EG6dH6ayO)p!|{YH<_60{ zR8xtCj@?F^TMlM^J%VN1nm0odKBbq>OD+Pcb<99X3^o&}mU| zD!Vm>w!Hd-_9-*SUuZrxu*~M`W?xV>f#pDroJiGDBWW_zs%r6; z#Z{1IrA9%Ac}Qt|FTm8VjWA(*^8L3TNMU<*L@V>xI-89}JpOolC<1q%x}bg7Q5c%# z;7?Ei4n~_GKB*K|AMy}7nU_W_twO;25Hvjfj1$cJt3*JI9yc-$*i(VwRfo>u zLX?r$3ym&5(tT5hNA{<{N$VUx&qX+LiH+@-Dh#dw(%jn)`3n)fz`%|Ycu;A=UY z4z!^$|=8jLSc z$IUggZc#dx^3*}ox&bx|;<3m)0h^An?2}CkDI((xy|C_rNnSTJ8$lj>M95OQ0`1o; zA!Efu@zaE9@2xUuSp{LrT;|=77y~C!74Sqo!BZ_h8W0d6Y8^>8&WO#3PvIr*y z-ot9_2js~VLNT!zC91!m`eiIV)qKzD*21JvTL|MEA+qIuL+Di`_+(t5GwLK&uYZom zG3JP1=e=qD`siBMjcXc4)VBKntbZ_6$NA5z;|yKfp=&#Yf&aP~cyRp&o$33H3mwG> zRt$vL?-b~?oT9M#>998~LLAeui6>M;sey4+^=ho1%-ULBq$!PfV%|M0pIgArYUc`( z6l0nfQ4;58dep&R7+%?fl!oE7zVr}TKMO|S>s&lcDn{yOeoE$T!a>%5G3^`2a@Yc>1YxcE5!aWxy$(8tR_a1(uvyr4)1D9!E;P07_ z-$&XpuUC|=`u;@2&W}(q`;Ak?IOnn)R4?8{N6)UIWai`iW^5hg^M;c)Q5I9?>eQY5Ni&FK_J8$orb2!;+nB%PY!s0nbIQXC-mX@Pz`p7Km6C_4?}A= zw03`M4EV2I*OZU{$Mzi*5t6-K_NCD{)M08TX1O}%klEa#*q`*Sk*e0 z@{Pt*7GEPIwNhBNEb~EkYJg-=EnGxuG1{OTBRtu&;amm2zAV7KPlb5#I|-o*K`fHBV?LZ)N%ZJcx*zorhPM_YLGT!&M*DM5&s>G)=V(q)&J@z?Y%qF-1kU=u zfRb7y%nw-OYmqqiT+u*OxEnHusnVJ=s#F>O*X6KFBK7G#)2SX69Y%Y#W$8_~4$ZgK zqSV5FzYoE`hN06xbm_=-15yY&MiC+egGe)^Om2tD!Zdt6W&!CXEQfxaDa%O9fT~U! zTCRG+ygL?0b2h+*XA^jyjz{mECorlKr-#>dQRvNdp6Nfa%=-!Suel&oGnVL0X-@Zw&ycXRxk zW4PeSx44z7bZ}~=1?8^S`G-38LQ8vOYI>lgD-6dLHo@dKn;$=xh6_R=+)C*{?(pl) z+!OoFX!RZm|C8E~aSq=s>VF#=b5`JTZ4c)(zK9!?e8XMaI|Ij$4REcK7vh5EX=G3_ z_e$#s9Q+ipJAW?@KVf>q5EoBO<$OadLbU>YEbq z@o*a)EqG~n?FH%+K1-qB2XOLX1|&MP=}g!}T9B581?duWSv?okI%CP?RTHAe)?!;y zBjox%!}v}%<``6C(aB0kOixGO@Iv<5LqI_X;?KjdNG%1Nb1_s7#o(6TH@NASVMJCj zB4&L<3#+%P8MUHlQybIVzK4O$1A3`*oD?p1VZ+CCyjGe(n;#02T8aQ2iZ`L~BPz5- zb}q@Jq+`^6M@Y}>hMZ9l%2rmstc4JVr9Qk)^Sx+VF^6WDcs6JN3MYP zBqwrP8<%8FaJAJ8F_Jf#SJVx9z47Kh>9g<1FrwvQT6D(q1fATwfa2&m^pC8Dsgx`C zI_@ky_vLfaiACH4p4~7W?ud+BHrcE`uDtc`nn#S3N)bpizZ~I9Egd9nGiX#mE49!Lwu_Rt{odl z7|gzg#l>dWa{L`anjG;!I}4-ttw&FSDIDt`Lqg~|u8h!!=PX^8krai?tt6M9cv*M$9=ULd^vxL`76o6j4w_34(#Bq97s}BuJDf zIp@sYBngrf6hU$jF=5W>|D1bAf9TPpd))5-J?A}rn@_w$-7mGPRy{RqJ#)<;gig^% zdjWcC!dPq8Rj3?ZhAGUix%19l#vy&kSeyBkIjzTh6|)ezH%B%pOoY=F9>u-NTFE;!UId|5hDfz+;_^K$5OPX@PS)3Art=$g z*Qt^*2GOFRKlnVP4Q+}AsJ!qHb5cf;UVSE{#_y(OX4Yh|$eOmkK1o|e`*2?U6N!5tyoPJzE>bp^qFpKP zp|+_DO$8sYq$CvbC*2_2v4K|THK5_lS8(^=Lm~A!CT2Ilaqmmqom+#&d+Ts)(o?AI z)}gk}1LPJgO!B5>Y$h%MAJ(QI_v?3T^!|Zsnn{QsEkIhCnd)|) zrFknm@Z4R91ebrpI;Tnmo_+$CodV=Lv>T>@O;CQ&fVDyokY}2UD-)WbXY&wCr~up} z_TH}a7)?L#LF-Hg0_VpeBs>}YGi50%?g4I0zk|Rju~2!F%=z^>Luu_GN_^``J5+Dd z4V_zm*ZcmzvQ`XyWQibFU{HmMm=XkTtHMI&k4yR+(>1OL-CZk4GH(&hUitz(@0XM7dFC(3YQpmG#SnRw zfjM>Aa5}=n1&<(Xa7e})`7oSbn1J4svPgJ!35N|LkfS&g{W(h9HSI&lY`cmm-VB`3 zKLwkY$*}bOhNI2~H1?zcm0UCU57+zCK2{{W(vmKgSkUJC<|G{=Nb^$HA6e7(fNK;NZ$+*ae_suI zKl>WB`&(1OlqwiO`rWi_xl zEI>a_ij%<>mTSc3&YvYGVf_3|cwGMgT^dAVKYzuDQ*Ee;%|H*_F)7y>V;*{ALRbiP zZVbhYpP~3L)(6q+jG-~Qm0Qtkh1`Z&nEqCZ_d7|3TUykZ?;PsGn=rhdXEtvy=T~wR z3)EQF@vw<>W`;dQdRUWKu`Q|Iv!!Ltw$zbqOP>!v#P)~3AXr%hz30zx)Z`^sV&R=v zOwpW-s5<7J91Ej~D)<%nol}@Q85vF!@Hu20sIGSa-#ZmKXJmMSaR_?)|6wS#*US0NLkHZyr-(dFcZkXgWg749ae#V{} zQB?z-ULHP*L}B|#;AGban7ni4`5Vt&)T*J0CEvZVUQZUF5$hLciQ2*vK@1`*RP8WqtTo zJBN;a|AB0uFQ~dALNelm$?Ul%HFS(4fhb}6Tqj7op6(%`)APwss0XXRl*0BY^DVGU z)w1x9=u8x*Hs&iGyt4ugY;S#@Im_Pr*o-e?2{12DW1irhXVax4*RX6}8QxUh zMeFPs>|k?=DNeDt>6waj^CW~$D1^bXJK%=q<6$WC(f$m^o&$N1EtVh_#6|u(=};c= z8k6Hb;9(5QLqG=8?-?-ol7={EK4!eiMEm$qtlCdI0?o$i6kkaYYme}HVgY@B9% zgx@TSFsfoVjeOOKfQwf!>AM}ChA)P$6CV-#%5gyS8kK9fP^F#6f4H9gcY1~l9P5DQ z8K{AQ8u+VfKzZ9;1gVwc1e%v`VyNOG56kB`Vn4@wQ7%Hav~2dWkIm)4Ztr8_7gFv zZH|M9g$F*x-h`g=C{zpzM{Rd0_fTOaHkjF>@BJa1QrH8#Bn@P#$D_!~kmkl4(x<^^ z|I_Qe`wuhPFK@wHW)zkoFz^$1`NFez72a&p|q;aD{%u zl13kAd%<)6zWViF>gs2*6?q$4Qi7l|b+TM2#ovd~m@Ub*$Bse%>(f|2*c$Q6j$rxR zZHStpig(q{P+9GU1J7)c7ZU{io9RgC^~6=LJoHm56fQHaTe2`s5w63i;9`u@E`*6x zH=dpqpxYj=AU%B;EqSa8;knvmxnK-ADvzNhNiWzunKMqwWW)7EC9bX0rh5km(ZtLK zOyPTDRr5{kT4{}$8J0Mrr;bW@PnJa$$NQjW#wCsMg>#||oEGr7?e@M9+GWXE-tv`g zV%fF4BI3*q+F&lciR>NyG4`+x-f8g>W|4v4!-|k{IT;@mt!ZZc6_V?1frjyTnxpN` zdZ7|XQSackz7}OO?weuVu@M`?O!0c`A)K}yipsAaxX$HA;r?nKX04kAS=Sew=aNeh zZL!4$=N+IU8_>tRxc7~O@iSEo$A6rIS0BOkQa1XA=|kDU31KSCoA6`?w`$rmoGomF zddLWx+|moTj0l7~I^o8oQCPd|ZN5*GHD}u5!tpM-@Z5$4=U22}M1x-gBEPgFrn?qe zA+NCgW<6RN2kYReT1?#@1v6efB0S@!G$`LuF*+TEAnhg!>a3#u|ujI zduq$!b)p#iB3?o%<1wm3s=2PpTo^dz;J#Bkc6}FNeaL1=7uMi++C%W0?m^$X5zgX; zIM>z&X{A0qPW%i(C3o4cXv^9(MtKjO@| zdU#xU2IKxFXv}WM10TlbTX`4Cx}h+W)g%eWADDkO3DYzNQv`A$;QkQ);}fvB;RcDV zH^Hbaz1$?0+qQl#n*;6B!WE@CxMcJT=juJEWUv?7wj{%0e>wUkLhxmHFrpuyCadWk z@MKxm!Y2yR_WCm(c=SMFUI6=j4bU^p!SMc4WQ@EE$tOJIWjTZACQ2RI?O5~fH6ltL zV(FSj{O(MJjwtieuwzk}>yAM26g-iQ!;p=)v1vyi#3q-(UT!UEsx-i?c|E;V4<6bvCSewRTqsD79)w~4$;s%m^^`rADny}5EH5Eaie!=;$TImRt%>sbPp@hJ zaxV}39MB5`H84;E12yo!YaprqG2|WcF?{@eTztNqRzB`WVk=`=Hr|7(FXQHz3(=B8 zO~?!>gwbdwv-_y%lBAi@!$@GcAoU!p#_!vu@ZDE{yu?hFS)Yzo zlR}{q8;EqqPm>QDO5>(_tAYx^tGoSx?zQ8VL5Z2M+PGP5qxi^Bgq8Cw4*-}mZaE80KCigxXu zOIl;Zuy4{tOjqgRZh8qorLcjM?0m+#YDh6&=`w7(bQKZX!%=7+hA2}HgznEkZh9x% zXBMM2-w!a4cmglM0@Sg+-$6gVBj`{AqGVY{s80co{bv2N$d_pK{fZ?L=ZLe>q1PeD zNM*xsgf`{ikPTy_ZV@KWhdnqrO^_s9?n5=E8;zrraXQ~0gO=Cfwy6&uM!CW7_+EV0 z-iA;4_FRF*b*8_rqj;k|&r(5Awsew!to@29I5i}cs|(rTqt4_em;9zcWha{fN-Vc@3u^45#0g4rC zaJGIlgggY1I%7G0&y&Tr6MNtlu?p2wB+%w=g_@p&(Eqa&{@Zon^Jf~K%@#x3_d?Em zwijN-BxB2(JrJ)8!R0A+*l|h|JB7C5Mt>YeXT-tCV;bFjCrDd%6=Ru?Kk5RVarVo7 z?(8E~Ji5IOmUS`fn#QMbLS08O$hr)?PlXWuP>F5RUt>>tGR{x#f!L}hoa?BEpKu^D z+YJ%2+ZSs$<-=`(3u(sd(S>(cDNu*$UY1w&GPD}6uMVc1ghJHlM?#f+q271{IiDEs zZcrl37LKE#@7f?~@&@X;uV5$h2*=%?;DBla-W_g0*_kTnXR-`|`)uaVnrTh(8aB7t zhA$}}G4nttbcRnL{`|*Sxmk=Jd}KW6-+5SiEED_Oi&2VSl`#x^*Wc0z$A+G#!g=91y$L1?$c0q5fktqRuTt z#~>e6OK4)8(KWofx(2!}t`ziU8MUtU#Gbx7Oq@^&sh@YCc|8kM*@9Wx@8GfQ7Lw}& zu|Yc!of|q3{kaBN7a31hkL9}6_@nt^5}25z=T)U>f0d5hVP)XNJ1}GQT1;cQ-t3qd z8K$xfShgoL_UZ`g&YMJE^o1x@itSs?c7XKsRK32wZSqFcXiP`I-5fOh>ac_$7WDZ{VB|-DOII0wPqLeJ*vE?_9OsC@X zba%E_JqY;?r}6WO0?IWt8UHC1wErx9ZT^2lzy9sMI_P9Vf&2?}-unXWC^Dv3Th0EV z&$5>*t?2b`D@qifNR12a8H*{C^Im?8+lYFud~yw^q`L>apE7vYe+H^<`*GOU28nt> z7+rP>LyO`uZ_P6-ke^QpirG-v=7XIph3QrQIJ*4$8#bQr!iz`&I`g(08p&Buy8Z&G zCQ1~+H=^x(^yvN?Njl;D1cKYMp+CD1lj6#;Y~~QEt$u|Ia~dH!ArIqO7Q(9TO2~h1 zK;o@_tV=nI+9wn6n=hFEM$#6V8oQA2?FX-J&8}L3ENCraeE1JH}IBYI6!F8TZXSd>=RYXc+gi zWhwSQ$=G;o!A$N57sxHH*XO#b4(4BYrwRAU0rD2`cTmqA9Xi!l1(msNcs#ia z2e&`R=(*V_@^!(%C9)XVvKX_s{(+?HbF5#_yaob8Y4y9oZ&hh&RsB>ng) z?i=)A>EK#eIX=NtonW{>ybt?x>3EwSi;-qtcsAuazGsAD>xt{wbZj@KnJ&jKmb-hW z=q5y!7*{Y;op$R7BdX*i$~)t5g)79>^eWhXPsg50FC;0)<8ZAvCNK0xM#D=ss~3uc z*L|>&?~mL99cV07##{eRvw zec+l8T=V})HQ@C;3tUAR3ic18(?g`mB3P8hcGVzpLkVmO8=>KQANTra(fJGI$og1< zf}z<6+He;SXWe773KMAQuu4o*YeH0YJv5qG_9vSqRu3*fcS0J%>@xs;KdiNs#gyK4 zc3i15M@Av;b zuD#SbQ<94@W~?kD8a2p>O1Bu(5kb>`=(B88lO<*Tw4|}Y0`zFa6Zv7|9nemg0@vt;vfOILW28i}Me<2Vu_m1{w8;75v1_Z9MzxOrB-4D39k9#oIo` z9zus_lI8336gMUc*4@#V5Pby)m{+oc%}Yt#9EmB@4{+B9i^I740{2+L4ef#o;Cbe8 zmm|jFzU?Zwud{;EGa-bWu*aZ}9@tkgohNVWhN|d!yrz_y5P59M<=d{uuBvwF_d5t* z)kP6Dd?dyC)}?rK(3=-h zFABxXLCmKr!15aI;Mn)$WT`TUTGsaAyaS({|Ak%9GwX(gWDbrw z*Wigs3nYEIffJ3`IrRyOD_M>~b_M3D#9&Ei4ZaJ!f$hF}_>(ZjZ>fSw2+RD9s@uOFm*MS`jtG3q{S5sGb#rC*?7Ctx z?xOrdV@c#jHl}9mBW*Uzza!rVH@~To*F#n6GQW+Zr}=0+wGBdswUC^e!E*E1o>5OW zj=7!3M}J>T`F;zPj8APmBpI8>J;SBGFOWR!f;C51;)~9D#=T2{m_`mXb(t4+WDhK@ ztDBobVKX=fYY;ZTa2iYzP| zRszH1CJgo~hQWKrpETlOzepi=55I>quNmhtx)kXerTA)I4)Nv+>@bUg)%8@I*^z?s z+3860Rz+&R1(I)_LQ&Bup6WIprxbJrdc*R$q+nh2elg{|?x|z;Y#V&=@EfpUH}q>lwJ8nCG9lTU#>7i9qBo&N^ijk3AF5yf<^E34w@Hgy>`I*-NK+kl4SDeMXf!CMncHusYXsk|USN}4*;glXSPA2@!v zhP|@_P`X-}qKA&Aq62!gwI>s%c!*Rs_dloqGTrUCKtk$qh#eb-ThorxY-xWeOMHe_ z(?jUkr{YLq3MShpqjPyIK9*^rkFndjY_c$I#|q4Ef5v9R*Pzlf0RqCefXpg9Q(Oy? z6F%70E`*Z;2C@ozmwETS1GrN!_e1H+VlMluJ#TuUJYV9#SiW~pF)zYyJioAQHuvC< z5Nv*|LvyVKK4&f>+hykTYj!Z?Rt7@)l`oV>en8MxUu^3;fRk-MxpRWkp;^#^r-p~{ zRcr%3EnUxe8GGSmFcw3Sesl8_Rk&-;Hjqx&q�!vVUnxL2_oaDDpfluS&+C8@jM5 z&Edj}esbf+R-sH;h&CP)C9Rpi7|%2YcUJ`A?KTe-4w(t>K4t6=ngLnyqq1l8J@am8 z+~6FiC_%rhp6h)+n2TB;j?@tqc=t0O3LonsKeruMn3u!hN++9pZ@}|sEPJYgk3A{2 zShVjF^`5e&;%t3N8&in~lWyRXgdNVX^Rrq$6uv%0%C13BpVo`F@_(>qZZqO~dte{- zoa^0RhhdsttnWLRD*RtUr#T(H-|fd)B8RVto)d@TdRd77ePrhW?A&C{xVG@z@F&^mrlz=%the+?8Hl|vX zK$fjh`GZg6>Tq|iusn{t9BGUBRsmRJ9E;lqHrR2^4$WmXT-k($B-e6?hOAa5DYN}# z@!6cpt687A<_%(bLR1+$h`z_>;QP=5^jynE?djFHSn!pzQWE067tcjeM+qu)rjhHM zD^yT=gF^N@k)XZ%Uvl67%l$v_^MCGhe&E^Jl5Yrtzo4{pdlKyMfix*zhPDVKuk z;!Gqi$i=4Zsc`>N1zuMg4Ujmw3scN84gCty@U0aoedVoT{=%sG&Z3vaSu zxR9~V9arJq0!gI2{lVFP)JN_D4V1mu&e7gEvZJF!WWPOH!N1nw$E|NL!s=NejH!MZ zgDlf=seZJ``>CXZqY#2HiM zVq+RR|F6-nfBOz_xkARQKl=6ge8f&1$#DT!Io;-Axc_u4CUmaE_CHs!AkLZ1Qw2ih z>m$re>qN~y0V+PlX7Ek*SzbgxW@(M5EXIGAV*bUA%x7}nVmIl|T|<(iYtVc;9?BXe zI6wUcN!V?s&+}SQul^LG*I5?5*i+=vN7NLQL)bqCjJnA*O(Aw{3dHCf4Sd?S2CtW- z;e+iboX$(b`l3{vXAI99jt@}~^btOWUg#~A$J~omTv5vm@HDpYoJ2<Q+xXZOf!S=#~Vb)Ek9<8Knt%oT7%4-O2?t|g8 z0_^z`h4Yz)oZXH6q}q6xRy{jH;k9a1BatNe!>+?C8}A5%k9qXZSMu%pCWd%8QyneGgBC#Nj$0S!Cgg&p9D4%EOv z4g6oMfzL-uAn#j_cGqawA4|r^>U>m+C*wpu<1FPYr=glJ@!_xt4Pi47vnmtuPM?Qb zUMBVqFEG~tmL1ShD4$aO2enrD#-8_{29*W|m1&~`M&ou@RQhCR)JIJ5sD<;ny zlbyp`5}=FA{>yN+*Ct<*EU>*H0Uwq1sZ`E@6tfNKm(V#{J@#McUO6l`raNDa>3Sy9 zu_yoeHS7@=Q`)|o>DM9?YL+vhl{LoHX#Lme*S~34pUjK2XU=kZVBv(z5XbvzX&3h(vFQ5{>MedlDoQ~uV zUa;v^!q1-(*m{Azi=>*6(svUI-egLnZ<^AY7E^jQ$BeG%n$eFKGYWcXMjou!DwYzOxb8k;LWa@LajZW) zRfNJc9>aQT5tc9G;Y3wDgd5UPE|JUH=i%7XmV>~xH{miW0oIfKA<|Wk@nbr0)V}~j z?$=|;8X;=doJ?9R4d_WWAh@tR+}(3XJ@f*lu?**+?JsaC*%OBtCqXIQ3*zR?!#W}j z=HEg9T|R6xOVL(v8(LnGFuiJnln_gFhbz_>h%8O=YhtX9e(ngU8I`}GuJSClJNG4<1c4$%fpc6Fd>T&w9`#3E-q)E~) z>a;=o00mE3O>cONQ@cDLXTO=kU3w4a(r}M+NC?IpmW6H3JQhwX9O;j^GbuQ@(ryV4 z3alQ`um9Cvz`*AQdWZuxFi->kUJZO2EIkl_6?33;e`BILjDP+Z#h#P=A&r zEBN^SR%R=$Gx)hUGukOy1_n2)ngHlwUVSC9kvW_>$kLn@_ z$Sk5`b*)JKScS8-l~|Mf0BTYq^e1~48Jt`|7lPwqwC@3|BTC>^E=Xr%+Ti5-0#!q@ zu_DMB7oNC5NJD^J%}0<_^C}uVa|g}TRi($4$H}gW<(_T%0DrCDn15~zt=gOgy%p89F1nJy|MwKlVE%E6yiP{!#|qpITxmL-lg-n=I#kx>L+=ul5jwm&n1%SHij+t5_`X!(w!r6w0D{b z$xU2MuFPAxWU4+K`N!FQfeGoVo6yq`6Png0UZ4 zB)`Db%NILzE@G(BJ6zas3qLd~@H)~IKFp6gD=ZW}u^+e+O*I@`5CWa)4^jW>4!*0G zGA%1gXD;Mm^ZYIhnOKJnPVW&r>^=fblCb0><3c~ngX`C7ge8~b%UtGDJ2*o zm4~bDrAS%c3309ztE(%~7}o~fS2uCxYc?A0Mxnki1OoXiJP|F&^s5gT2k;oZG~7(lbKc^+(mtBJSC)QiY7ueHSTNoh+UE+;e<~AO zy(^HK8i{Gq;gB^i#o$^mWUq`tdWSs(Q&}FHW-N?`C9xSSA8bFJ1f$$2*h#u$FUvkC zJZX&Y_rkfHjq7nKSdc26s*opqAA<%9)0X@P5Eq)w@(N_=*%KquS2m!GS{>T_P@8h3 zw5WHw28Af9(zcpibh>R5?H4?St?#UG;mbD2Fh6;3)FYJXSK#G+CED`YiHhZ1N$QE) zK;QNMV!!2|ajhRXrU7j=Py>H$4Wuqi#+flZ?D-spo6Jkr9K!l;FC!2mnGMm;5lFGj zg7G3jvT`ZH*Ui!JiOa&0Zk8o4or2H5gE9ZDC?4(+#h<5gsI)OaLUIo`>JgCJJORF4 zY;GuG4E|WG;?(x5@e_SV@FynB!0}nJ-0C0+Bwm?;ie4A2xNw5)6Y9}x=7IIDIY%?E z|LY#?f2SIm!uoW*p(b?nrU^;2zTM-U%nLiyga-fmYxV2j&f&rH}E32Jx7lj_$glAqVAXd|C1oOP{Dw;EV`-{2GQs36EiSrU)Ag`RMGA zhnP?(vU`N7efCJY6{17oK08QKbvq4n+eaH*Pmq?538|-_BAvL^aI}iVvYd7d@m3}M zKR5AcR4;ZqSa4k@HbI=%!oA6y1uqkQT+&{Ini3u-Js}v1%iOrUgBwxz%@NhL4cruu z!~CTRG5JB7hq>EU*ST9;Zg5goy0WgGW!wnUOE@(+4OS_pWV16IMZsotxM?C4iMK$# z)R+!2|A$(pF%51orcNOfs%HIk3zjcY-eE%hYfY)k-jr_CGe5ydGny-9My>mppWral zu?nmgD{e-ev8LqJV@95O>yR2UAAW1SxbJBx`TT@csQV!Vd;MXkxV;Ijk5}?tq^8Kc zKcEf^_iN~z90KP6QzV?OMn!TylGbFyIhf@+Fs|0cGRD<1{e|P_&SFEo4}#Ji@om;I zlwNkghrnjY#NWpu{vwRaU_9ScKL||shQ_5V2s<9cS2i!V^GOnlf4AaH4j`KZ%{c9iB+|UP+4UT|3x`idr2E^Y1iSCs)1?RS8#gyOZ)L|emVI{3XX6GpC+h#zg7oMdVQu@@WuR{k;Xw#o* znsn~lLGlsVNyg^#RCD(OViLQ#(aXA^Y(E$`orS4R+JVdhoav?UK=#0Yr!{-vSpQlL zGI0I}&j0_P8rWNS2M2`1;m~~tcEbZP)+q|{EyZY$;A4?b29DebLF}<4R1IhI;B7o`_NS)4#ff$)H)yK1cq#YQsfD`xBeWRntGlpM_%}E*}o8%Fd?mp zCNyt>2_0U?bnFHbvR-CFE;CHXag51d`kg{QTG0NQD^$-ik1Dr~WqCw#oc``FTwjSZ z@7M1zZj0A&Sy>@frZZenWhp~O`T1CKVHJ_hY82OKLizjy9246>DGJ@V)6j;P$;CLN z{suFp;-RQrg19TrXuM}iF~K9~@>nD4wBAE|&%T9Ls~_Ws*5KsF>k$7@h10F2NIfb* zqK!vM)<}(x@l~k0=^$xTXwn(h`--?~N$(TgsdjrM2KzHM>p>4-(GBoMMnnJiG>rdM zj1wl4u%`AqmvQ?f+~f~KTUH<8Wr;k?#RlB_N>S*|*Fjn7OzawO&HZu`%oiN7iT}IN zkN5o9a4s~$kxN&4&&gX>@ire;$afOGf{Sfe$nA(D?oGdkCAv(P-eBiIupP@ojLA97 zn6728S^qX;n#SHmOxb(M*oP*xoN3rw%uCSJYD!TP%;?QVGs@axM$ed*b&)WmNz5l} z&HN;dTdra0h&gzgd5ouBe2C{g%ZPVgY#MUEkLMhQFGLDvW2E?6So&{6v4{;e1UO*- zXh*!a_P{dB6l_u8ubyf6b{Ht$#bnm! zoOh?6Aq(mlz_CV3qv_GV$If;r|6^2A=I zLmNdW!f>n{d*{f8x%)3JbEpC~u98KoXf)?v`iA=*-~r#By$Jfve7F|Aj6dvxG^VdR zZWiOE_5-}z(vD8XVd&krjYjV{M-dB7QM896Z14FX`F#K$Zj8c=G8M{Y+^^Acwv2fl zjqmHS(5~%|_jf|EXmANG-YbOc!bsRfvc7k=7j{od!RV8Lm|b%nX;bfD^UqkwPq4#} z1GnMO--uI}QxM#pg&M6&d`#`fo9r^&ne+?}tdAZ&NS`Jy)g==>J=&+QOSN_G-Dn5L?U_(v{{?^w@>Kc6%`nN5-S>RU~d}SK_u?2%cVW#h>UgxcaM` z({&w>(&-<$2NH6e)G7h2y8Vaq{Kn@*401W?M+=amz(IXS9jER1jJLym0pGMqh%b9w z0fR1hz@&8tMo!#`#EucTno)xOuLk6Af0jz-pC@7&s{fhq@XzpX_uCkgzM3(uyJ1ZC z?;6vnZ^pD_k_oxbF`@AJf31G~+xa;yeVIZmF4HIb*9iNX1c5Ibxzr#(>E4n#oYMhg z-ov_sFjI4b;L@`=sdtO9)>yWESRPi+eFUZR4j3aUL}@L2Jem0gTg%Gv(=ZH8KkA`k zoCw>&#h6!+gqK#sX{O*$6d!lM_pB`JJ~@V7tgJ#&OE}6FS3-tm?E5D6;Fj4UimBg4 zn{*G*+i~hNZs|#iH!!3p0+(pHlnp%%_oQf^4}F{FO?8Wg)BgEi(eO4I<;8nZAfSN{ zangA6w4alnW`MlbWtb>B7rH2uedM6Q?I|6}jrbu8;hmPenD=tLkUeMf&plA)50SLv zB^MWS4l+~uFJ1=no<#Zc{E}k1@iC9Nl(WS+X?U6rdZ(e0^;Wxno&?uyOcJ@qv@_J0 zKKL7xM!GQ#WqxeCgC_K*f_X$_OerhEln(qfr9L*(CAY_nmh5K!fi-57JHm`?I!&p* zhxumzsN+iiW!~n9AG{{(L8y5h&;7VJh|}nZmz7}0Id57CPbpmvQ`sEWZ(&C$bXjAw zofo2iL}0#p1rD&xsN#w`$ci=N#AiVoH%Nd|qj;F}rw;SZAA`)0N9C0#c=Ia83d9S%bUr8Sou* zABs+IaN|M>R(+2^nNkeS>$o8BSP<^J#$#1a7|uxN;j7^_7))9Nv6w*Y@K`|Mr+7%P zj)hW+2+cB0#yzbpZ1-PJ#eTDC{FEEqw&x)TuDpbidiU_TM+16aw&UaLY`mCw2edH_ ztzY=eYn+PI`W8$zYDD^)BD}lL7{u*8_~TcGjoaff+aU>y9K5jN@;$uO_s7T0o(QN& zfU9Q!lwRaP+$$JbfeCml5)8LLVffV>holJ(Ag5F$o@coi%p-O9tS?$m`r=zoFf;Ig6(op^21 z31Rwm-h2uh8INCDV@QA5Rq7dUM^;;%Xw=LB{rbG zJLIuoS{zI z0*y#&k}-9;8dFxUF=2`cVfA0HU;lR85hCXFn&s3=onhy4ax=8%#$o>R-8@-|>)f%F zaa@qzV=h4aG{$i*m}2D%5A`HSD%Qf6&DeBtLAb;8!V;A-q&9y-V(}-ezWfcR`(I)3 zFd;f~+!~iuSiVqOC0>^9ry}O{RLw}iz8{4c!{!BF3#P#5pbsi{hC%JQH{-|3Q>6U? z^4B~>xwntg=b>jPXptFBd22j4IN((L1$6;!8Do3Vyd4(~3Tz`Q9cQ7V{_w&STer#_-@mDsS9{KZ z=i@$`C+0L5=S!`4LpnS2%M!ym#c_i8@N+9R*t=szj}P*tZ^I}5Bc6(w(5s~;G`fsk zPd5KU?A_#1r7>m5viB0EVcYhZ(rxA=7`)z$!Y?rYfGzXGo;Ralma}ClW=4W+)@$_} zf2=?CjB8#!jAy)hBsSoErs3sERXcfno6NEJb$Fc)j8g1~!Uh@)c|Gn)AY#HJQOuek~j@1)=Y`)}#D z{&3%O7r%6xkeU^Ykd*<+>NO>9eY#eMT=6fbMWFO_kW{jmee{0=NU zU4TLfN0c@PVS`Q_R`*52;aEJr-`~VC8Zsd+c@IDQYalk;4+o`uFiI~Hzn$~2>p={* z)z@LUSS{)%GB)+Y3OFC`fy=QH)H7WvFPe!>iiOD4kAVNnD3mbIe&n+#+;Vb)hC(U| zkboCPZZP;9geB&_Si!Pv4cAA&_)Rhv+Oiz2QBja*y=lMVSnPb}gYRp-G3-nr%;(iW zaAgQ&Y*X+ctpbySe9^a-&5Iqpj-hpSut~axcOzENnS?_$HOPpTKd>ap`xc}nevR6u z=#pZ`C)}3VPD7lm$WihJoy>C}_cgBnYR&rh){22Y|DW@09k|v5*Lt7^{{A(Pcg-Ie z3nLKK(9e3SWq2AoffkfbB?Es^8oxCNm$L$J&tVMsN6NTMW(xRmA%;6|{Ec&XH5g(c zncUn%4%|tz04#j6MqfUfzfO){%4&Lsf;or(}hMP|A8@| z*uMNfTTQ&*VM^gFGeOkj0`)C3qNw4<)SqBXo?}g@YO4wTVsk)$^)WYGH=|$CCL}rB zh!#&eN7k>cFzIy&r@3q}&wYX{Z(O50w`27TbS3-2^`$*(7lvTmp)0t1y$jZ+UHI}? zkbYZjq}dl9;MXT1s(w9~`263vEGpJC0tJJq4L#b=sq5gyczf4u9%KB z@=2Hu#^qY|2r=4uXc-^FGNt~H^~E?)T?dC{Pf)k45F7i`V3t{jg#qap;h%+B zjR`pIz}_uxCLlNGE)?@`;+H@W!qoyHbRrNk?0qH2)dlJ+Ou*SWV%^4Yj4yLXP_{2z zb>p#KDHkUfadh~4CN91%$A*pZsGSd#l>UJrcU*KGiJ$L6PLPa&<}b|@VZi;E*I5URlHgXMCm24+Kc93NgI zlQCF}&8hx!LAYEZu0F7YK#&Xi*t>bxnp@CwJA%`Gw-Noo9TAt}(AeqDI2tm@)J=n? zNE*(IltTX6SIp>|Nfs5(j0?f$=`@a#t?f0sF~OSR+im{Wy&b0F@|WM^fAtzO@caM% z&+375JaCQ&YT)12z#Uiito#~;gunS>+5TbbkUMail?1=#k(kOmfOT7z;=)(~v|pKy z>eAT|c9@7EP9qsBX(&8`2jg{dH238GLSzkf;XM@7PPn^^1L--(VNNH!!({~YLYGz(i zb5*8$j-98Mug;T#iV@}6nNWxJKbFz@AJt5-?nR1aS+y6Lcc7TG=&l&scdj+2=ZYr( z>sW`e8TS9^^Z%&7d&Ks-r$w@!@N*-Y_IV=BntTKz3wH573R~rC?C9lU^j*1$k;5R7 z|CZ~%Yy_VOLu^XR#*wfhTr-VBZiW{e9U4G7Em*u~0xdTRhVLpNstf;&{2N~(B>WCL zy+r77z-|(99gews0}<>}jz`ihsQdC83s|;r*s2T&UjKxi6Z1(~^DLRowV)`sW8~O*R-a^)e2bY{j^AJD3`)Af@6QyxkY!c$yei%s+y>4dZxr z!+d39gNJcTZwTOSX90J~as}HPSdAi^TFzL{2=~;qpjfqzzMeFrYBr#cl_+oMUZOprp1&JjYI8k>C7PbYfHy?mn zaDnAbEAtsSm7eK;1o?i66!@Mr{|;o~&R9g|<~3ZpHL&>0_%43^`y z-8>jqvqGSND4grKi8RKp2#aozw3wt@P#FbHZSA~4qvN`qJy z#+@2SYTv=3cZsl=nGd~VdDyr<8Hx#!*gSa@1+biyuJC9)cpeVDGFuFL>Vgmc$1$Us z9ZydO(Y+r-1#Ypz)S*cw+WBOxkR1tS?% ztopT&d1o&&@9;u=D*i4LzjG}rXHG|2=5wz6Vle~+8Q0*I7`6IaQHQKGpfrZ1U?z2Q+v`22y}wK0Sn-Xa18s^;b&J;F(UFXPs>H*gIPCScR>Q83oK&qerz zak7=SxNYv?ylSCKvPVAuf9$_g}`>#56s?Nx9Y>(ifbesYeg{GFx0(<8C(avo0$#`zEjguDNDI^W9Z`CFSz?=3LQ~=gF320&eb`z zCVUo^s@vk@n=CX2kD;xf<)}pI4~~3WNsn?;k*ItS(~J(H%IgK#swiv}>4L(YEu=jD z48`SYQO_+C8hhM|ykl(1^{XSPzHp<-pFC;tG#~N_@g|*B-gM31n}i1mk=jsxwcEa(UQTXj1gsTy%B!BxV*(>pT zl6ubiP12)UYkm5@+JI)17*O;q0mY3G&`&P|YH8&@0-keFJ4hD(Yo0LYyM8S1=xN38 zFC)@>4xdvHoqC^*5qD(aGqA<||LEUG}8 zLlEBPWk9+!6n(*QXuFb*mp_Fm*gYA4r$u72O*|^Yld*GeI7*ZfksDcog3W%I{OKK1 z6aCN{7lZVt&+tw*7X^xW=;@5Yp(7rc8I_FBbulPD@)%=7Uf{!(IDC5L2m?HX==@OJ z6lCC{fg7@;0ua^bg5PJ{5o`Vs2GM-CZgvf>DL%lbgUOhaK8rseZGs8Vtn?j&F8Z#qTsYKAM&no_%kO8Cst=7rp2H8S|U)Y>j}*lcj0n7 z8|S$8*Hejw#X~PNG-lwuax`jRXklJ@0Owi6K~y*dJ$_!W(K>*ZW*cnvvVdQPJ-%PC zfMPJu!=1hj@2CG{3L$UVK;xT8obwFl+6po5yam~Nn3MM=OLDQc{|7wbCLGT`NW(LE3?8XX#_7TJY^cb3j7jrgK{wmj+S&GS zR8U5B_j6XR9LF})n!qt^7vfh*Vdu)>P!RdfYA(sKtrN1?7Wb)XZ6|KC&4Z=VkM3(q zZ_rCm7pp4DcvSZzc{t)Gq=(AahK`p8f~)b)TEr@>U64Z z4~0p_K!0C4E-cjIS(N%@qH0VwuT4m=#F!TSb(LN}(D;}4lp8YU6z5?|YIR0bVrD=i z_&!p{kdYKxX+Zj1FWx+?Pfr{F8T$18(#=I5+DX*QpmQ4ai7LKxfPaq}VB-^{@H8)kpz-Jjyj~#xE?doQ;+l z#!NpmlF5HbNORv1$9_LqoZ2%pjZN$EVPhPJK_zu0PLE%Wk0KWM=z0xO>ztu2<%v1n zQTV9t%X7(6aePQLl#XP=Z@~kcUvLk6Scv=PXDG@)1z*SK;9YYrV)cr!`Dp}1v!f7k zCj)1KqhS3!0uyc|VDyGa#BfGh?&T6px9^1JiAo&15Q|xy!4c(W3$P{eHR?kvQ6cpbSt_NlN%??; zhtZgGpa@x$Vi9=N7UGqW82i8m4;+%9*=_{$FNbLAdrO3chT%Ys1IAtP#pTZt_^~k& zVNZkb<)9-L-wwsh3&W_M?`Ihm2cc$c4rI8mVELun(4FWB#esZ}@bw+gDK~iYEZZr4 z50EeKjl;?wc&-uyyBQJa3<*VfM=1Ok-^Ss4&R8=c4I58#y*nfj5!bli*|HWPoTE1F z(OsN1zloJPzu4FXcUZI308E)u%zms&!w9z!WF7i~8`w^#U5}B?6AP+nw<5(g*Z<|$ zn*Lt(zk5~xS@fSpe+~54!2ekTfA(=U&7+%GAyvn=l-y@;FK=Z!En# zMNAvj!8Vm0!igYVw5dB`;ZIWp`AxtU*oDB!;B-dzpiiE& z$+yFGK}heR+eN03!Y`frO04Bv&fioc6NsQ9y1KJUykw?eRMP7#bZ-5|GCq@H>b1B+FOFQHpO@AC zOZ!XaR4Y2M*NTQZS<)O`lwj|8qPK z<$PwHF>4z916k_@l<3EZ@`tgN9eWfampT8gTB6(D4+Bb zBkBSX+clC_?KlUyv&rzkbqCMt{o$t-1Tn5hKJ*Cj_sfCGiYY#Ww~nv_yp z-S`Pg?j^8wOGPu+yxIrDP%y+FcB`{sT&0CLZx76qdxC@In%MJ%vjQBWp}=>tJ{4+V zK{@C8<_6;2%L<&n{S`SwBhh5>2tOuf;g?7f=KpmMs=Gb0rNSS=^En6D#uu1t0}Hbp zG>5;3;P!Fqc07x8r~UXikk4O5!trEg2)3_!2rTqO?4i?+op3maVQ<~h~T*Rdkr6Z4kb2MY;9fb4y&R}4nV zfJnHOnqW&;5Uxdg;qc!Nc}|1@x}x=Xj;%8)9$TYO>K@Jwa%J|5P1ynQVs>n=8|?H~ z&|f0_{oQ9u!bRpJO;!}_VMB$ZZ2wEIFaPItx&QC|y}G{!`fH%S2LAIJ=vg@%UzM`i zwmNC_*cP!+ohR%@@o^m1XlJVKns9h50qrZs_}=CWyG#4fbpIoJ7BU#ln=V4K;}S;y zkf4&s6Ogypot;c`W+M+oveVW|%;o7c9JaohmKJ8pW?k5s(VqGQJC^%q+&>+g(Wfv$ zap>%pj4+?7)J&ffNLIQA$2xt8g}XxXFBdpVYf@c`jI}lTN%*zlLplLgYWp<_~&TY zBclxI+hRj{6>dZmL`~@L5x3EMVwysjiU%vba4P-GpOCcgDtA*8dY0hGJ}q4Jam3QU z@^K@&0?kY3lGmChT=5u7bLSLtR{TqhD1L$SoiPad;{jhW2h5%}kfv;Xg@)`z*!T3p z+E@zaDP9(|r>rVzN?ieZu~V7eEgDG* zIm7AQpIu~FzMMvW_=;WOLS(adG7an-OyBm((~GJlxDq>rvO5;gi=rQhD;P!13x?C^ z$&&Q#xHJt-4uZIh3*VP&!4y7Q-1Uv;EgvgHxKshe56z`(#hO%6_XHvxcTm`)jXq@; zOuMlfkvC?b$wR<02ESvi>NnY=x)?Un_5+jn6^~zYr=TO>hP|oQO*K09o-G&iRcu{% zlGSwyLrHrJDx2rR_V@xQ`5c8>$Px_NWR4Zw$K&-|1NX|W;6Q^dZg1d>+`uF}3gukW z*&)bxdW5|^gTip(82UZs3q}vmL8VF@#QR=jMQ<9e7S*M!o04CxP% zSR+UE)>bs+rUmW4X-U)5`+WobJ@h~Cq5Wsne@6W^@b9Yu={2K}qWp$!=$nVmSb5~1 z;+ZpjADPTRKlXgNExXqF23ZR-aeVe_Y?2xRv%&%Ij_zzU-FdE6W@$|`-WzI{5CeD zSbYR8CK*Be$`*Xt%ja{-8({R|E`NTlNgr3L(U>JyX#RLLlJPIYoFM)j+9wyCo_R1b zDdlsr2sEFM$K?8pWcFO0wC%O1U0IvH9#*Gh8;;s5O6g94zWZJ(P|zod3VoW?!gtm4{yF;fKR#Q5lZ>dX$B-&o z4atB%YZlY8!qPf}v>8Dk(?)A-qpRMm)!_xAELN@(^R= zU!(l|019_nLdAEgaMZmBrwh}teX2itcm~&`&6V)p{Q{@0deLmuhJ$^9nEay#j#>H0 z8)AaTFVpcTIuN@&X3_kxFf2NpgvelfnCg6m*pq_0bK{ zQm}WT_wpXJPsx`q?Yl$oY63|??mj8^3R9V>1bK+aQhNMIx?L+vD^$hFL|ckHhslsx zwG4IIijudK7@d93=dUBAX^mw!j_;GCyYZ4VKa1xul!?=YLo)QzbP!2&2vNx@VVd-0 zARXO2fJ(m#QNa~43S2Hp4nM@`rOPT>?5Ioz%Pvq)q9g_KT&ob7y%^J{4CCATkbk3| zIj;Z2?pCI;ZG~Pe=j1@VE7QUHT1#|oS&nqAe8oob8)@4f4Nez)Z%I?q7>JNj;s{={ z7|Jg!$a{x>ki z$(fN*Rn`Tm*`g{S1nSdQKxc_JGh zt74vEm_q~vJU7^;EDq~-`oXa;1kr;d5&rTX1QW%`{HzxOZr_6U*CLcRT%za=Mx4WS zg087v!a2UTc0zU}0U-!RDB@`LBQo4B$*99;%xxc%G@`o>nMmG+0M ziXUda4~67KFF2(?!1^FQ=YA8&cT4rLKs*?;GrVyk*awG&Jn^-V@0d;0!lF%F|NC2` zn={24!|V_++zi4VcJSo+uv-@$!K#R*`0{NSxHSf!FB5jfic`o48!C^mp_p2m{+TPk zZuIx%{xj&Wf&Lo!r`JIF-6IfjQGoI<&iCm$2kF&{SjP<5fxij+!nPx=U?d{+2BFpe zF;kE7Vjr_MCvBaTqWFA@kK!jPWtB%~A~E^|8u!e{ui14a6U@0=fWK~r;^kqMuCwTPM%ABE=G%G_cW(}Y;sy&0DKkV((oN_N41y%I zVfp+DUAv`5_D<@gK0%wlXQX0D;uE}&2*cA2S=iiA4t=Yacrz~nmIsE>vL-G1c2u7} z9aJNIsL~Pj%M|aXM(0g6$nuCLt*O=|kr~>QJx_<6+O#R(LYsV2bg0Nqmlnk6l1If= zvh&m-Q3)MdzEhX>X&7<7zB!5iZABU(RwQCzN$0;^qc{84lj4;K$O|9DXa{Mubn#pt zzN20gtWR4aIakT&pQT|(2N;vp%xe@@eT^2`&A|2TQS8Dd|MUal&1@&%$GdGd0}~%~ zvp?srW5N3a2s!@(V-|El_Hq_9B$J@@MF(Y3ZU|aEkbD_`Ev>&fBiMuOrju&ufbK>Wb_^Jf!oO-oYwAv z<&=SB_wf`7ZW)qPjy^Rly-E`MjcM;oD>6LlK$G=7=$peGlKdP*U&X`dVM+)&9FQQ< z+QDR<#{IV0<0(0dXDJxTkZ%g-?03u11`|;_vtN=1T;sarK2aZKdUJ4KC4 z-Dx7fZh(#GY^=GP&d!-_#?#V6SgI(2+KHFgLe0xqXC^@1iB;%{*@E4ZWKq`j zh3z_U9SPUZLXp1@GJou`JMRR(JNY7GXbN<11mg0;LOkQyQZuK7V24Z!z9*+(o$7y_ zaWuv^^31N-0Juu$VRfJ%MsY6Hj(tV7#oeH;vW;FhIjfuZv;lnduPn0=f^y=r>d71kQViGZGbTZa>=0NLo z7+%%h!iZyLh=})xvFl@eIn6)2SN^6kZ;nx+<{4TVb_Xx>{qXyC5XK~FVyEO!EHDHN zMDODM#30VbxQ^riAJlt!K|$aQfxZxC=H9~^^;-zkx`SR@Cx}0F#jssY*uEeFZ-wr2 zZ}uJRZgs@m%&Sn~bN?CsnmByH07J_h0bx_9fAHY`0ek#B`kc)wkwe!03bt|n80-u6 zhtlmbOmw#(<+IkbBIP>$y4dd-_^0=*{-3X3SM}FGe+~Sv8psM~I1?z3kzErYAtw%b zK`v`+E@EB2kvP1ogq?A!W>?L@MrjRI^vk@-nu5}pMP>(^dOx2vRZFtN^K2pdYX`hO z>7!bIFBBh)gn19=@l3vpiSnaSa%u>QR&T_7wX@LWJHoMA6Y*wy5|e8Gk}i;&f)_^} zQQ~+Md$$EOMI$?kaQ{>l#PjPQ>HZ1^ zny+w5rUq4qa$w_CjL=zc;kNc0cI-Yu6%#Iz^^VJwHd>wJ%rq%9nsZSXXp%Rd)BaVf zLkD8CsW4xY##d?6Xfr+f^?}b}dv$2n0xc@y`}<=jYS10d82J6hoNlccN~Ie|)7nFA zz|~HkRrV7Xw&ftP#0vLDIH6YEfKKrltYUyZ*G2kdAo%BK*e_$QkyFeyDtu}}()AW3 zQXb4A^2?dS!7&+AybrU}A@|wNz1El!=Y(a7<0*8l49|Buj)Bhuai%8_qvHHAfoBa* z&%Xu3@Bmb2at`U;mz=+pj?<^3ktU;oJ5ArQ!&ih{_iUidw-OXoY>uVh-$Q>_E-VYW z5Pf?vS-D-H>vQLkY5?Ei@vleJ^aKpEbA;uhJdB(B9mi6=NRFSs(AJaG`|S!<=bDnF zv>oja^dL{^dt@~rnm(!hfmx;md8&xemue~M^B7L*^}nIDZ4?=8mZ7Jcf8p~tX|iq* zqxm5sG<@1L5>@(*ppye> zB}n*?BAM(e!={%OSb2OAzB+_4o;#gU2LX;N!ESV_DL5h4l8+vf+6!zQUo*X zWO6?enBUpeIG4B=-5ygBEh~cuaqA(R?T!MW2sB+vfo)hb_TO}diDCrWR6?QrBNb!Q zV!1Ch3}d_>Kr5gO6~i;|le1RU*%ug%OyQo>5a{sT|MBjDcz-JZ%&iDTD|u$Do;wDv zFGT92Kv*jjz;4!kh#LFg!m}GlH1a^su{&6O{}H4YTcPlHC-%Haz|XnA@cw)e_LjuK z+%W^k>%E~I8xG&Kp4ffp9!9No!te-lWC+DVKsS+T<$$Rxr(s=q2Sz2TP@~8=QlF{{ z71JQ(b@O`~;~V6$_Y{q}d7g5#R+79NucsVQI=1T+4J%Zq@H^iz{aPu4@8;lPULY)! zo$z$JAtWO`@%l(GtoS~cd-`KEO9$a>`E8h7w8i#KcIbM$1-|hfa8uEN-6wTyxUYlU z?Yao{bA%Vqn>&!$%6>Y3LR#Q{*yTaaCcN#MtHU*-4E18@7TEs3|hDYJoxW0V^_!g`B6~Z1pt)MAm9$g3=?*QZ6x+akj&IuF zwOaJiMTU8MJ{!=W*{kW&^_eu^a4c>8^BxM9 za`EF=1-5vXz;a?D+-HA)>+%;E>|29ER)zxZHB^<%=e>IdN+%hRYBJAfx~@-4H2yjI z^*`=YcC5HYDUHSyEoDuq@9x6kLKw^qBNhLyc*J&nN=(;ER9Ec1cpV>Qn-Ov0FG|a~ zgCEc2a5iEmx_g~qf6xr5v_h=*OMEnciP$reWW_@9VRa#n4Gf0!>>4ckbqD$Wzfd1D zn|1^Sqt#Z4CMe zG6s=n-$>e_w1g}Z&ya|tK1mJdv+q<7x<2zBy$c>s%wPz8Z;+vrfV`0nu(d~F1^aIVyl_;0wL--5QxE=-paqTiVVY0@?+ zTKq+r+^WRr$4^Nr5B`M9V!bfmGl0H4>A?v5fmHffn8Zf^hU!=eI9c7wmXA*joqq^!D=OLS)_n@^riP^}yd1`|yNXkGHIBlC z6UlfpBphoB5+QUo1hV2@*k>1o=(q=13cml}!+o!6321$j3Agw-+z{v5a$q33Hn<{! z-N2QvzPOhjjzK(cwe@fW7Ox4w{;W9IPV>h@bqnM*+2V2n-{q6C!QfqX7;yU`ZgH); zYpW~Fmh|H0pfGqmjfb=B9hl@-V9-8)v~@;c_LvY9<#8XY>@B!Tgd!#<4?&VPh&MOG zN*@j6MzujcXej+|Q>Me7J$U(A4yqa(kh$+6!i6x_8*&rSp0&GnYaMg)$K4U zYcUc`G@&Z0mlnTcH`)#md=EuqseC8XoVJQB3|Yu@ZzQoTKVB-R|X zqFN%|qW3Sh<=p|ODLNuZPMaKf=2b|U9_4lvVE!O6I+gPc(&3-r|LP;Q%rC?xr5vPg zPD6uwA`I@PU`<&LV$AYjJ>V(6M7=^AeT0>J4Vn}yVKMqMCT10(`p`2NKd8cqXT|t7 zwhEtW`Hl?FYF|0N9rwGR!#=kZPW=CWpIHi){|uV%pX1x77qG1@Lqk|0+#O;t%VspJ ztn|s^63=Mbr%yUt|2Y~qs@IqvFStf4Ul~)@+vDV|7zLT>BAjz-hW#sA6(faZ6&EeN z%goj^u#<1*(BtxHbSZWbjq->Aii9vY@D}8_Por6$&-8rmpki?qB;@bIAUF;4i-OR8 z&;$CWF%VxYO2Gy1QDi!aCXOCR^NwlI)V4rKO^m@LzdQt|{J@;kRxtRZL`zyX(TpK0 z$h|usV-|nG?t?K%Tb>9z*G6nZ5*+TgVbx<(IzCQ^t|?un)lco{@Akpe+%}wYFUXL~ z`O#FbHLgL9U?Lr1a`C2tz>e9HjZIYE?M>P1MTMu-e{zQf=SNjm>Uh9onkXhuXEMvkn< zETthd>BKC$@4AxO|EwmXxISFz9zZ*^MCjv)c3eNygD{64c%SS>(AVEkJ}g9Q#tPH+ zy)x80L4?jeA3$5CwBUoa18z^e2%n^xC=PUEk_m4W?YczR(~kpL>zrj=OD4haP!9`V z<)Qdj+t}3Mv!>(ORZB#)h|>AV<(Tv~9b!45XuQHTs65Xx*z^d=Q=>6=Wh#a_-@!V* z-!x@?5K5nhU|rfZ0y=aH5x2_lwAIT}XQ*07C8% zG7ra%XAkh%$^s)jqOrbj5_B5!ac5Tma(gbi}9djE42z zDBR#N#PS& z*E27c_ezclcmIU}PF8Gu@2m2Ju}R17GvWM&Fd_||-z ziEUbq*Gv7Gyu&cGmra7wnt=#?dX+^lcFt(=f6dAb3*jU1;BysyG{x&+n|J^#`!Im! zzqMnECsoiLxanaIdJuFqL;uR1>3s#6KwTs=@Y}=a{sj z4&S27aQsvWCVr`gURovkS{m@;&j*+ttU&vmm$0%gLDsORm|IkZ0~Uqo_`3qFlZ&A- z<0)LtOOdRchuh(CC^0>TOJDRzO+ufnM{u_Ngny2Pjd3=nv&)TXPJlTDhzH{0$Q~vt zh-FLnd}I;A3GANLF~!OICa25Y)Wku(>2%I{6=hW@&?$?(IJ|*pYw|f;S+g8n&0awc zbqX}-V*!emC16JKeH6RzKw4cR&P^$XiYRC9Z+Zzi8DZ-57bdNV+>h#U6o(}CVwG?Y ze&<`F`SBTS8WxRJ(Tp6NOYzA#0Ukcd@VS}**-jo{c&2y8$aBI z$kzEFy`Mge-gk|lV|#~EY9pr|Ne?5f2q`KK6erOdQIc3DOy%!|>2ITf6g^Owo(M}) zgXAEJngM^=c!B_!#!y*S-{#^yVgJW`CA`ThD4y@K{JyYzL7qy zF{IfhhP3vvA?+12qRY#SX!Rx|x~esf<`3gJQ{n9lm((CeK0J$d1G3WH@w=1rc5QD! z{boEqxZH!MXar`~W}$M64;0?;`?wRF4d#{rf1cgdD6|)qnh$Vxz*>~nUcik!OFa4D zhD-LxFyiJ8tytEG*svV)>IvQRx2jj|kOWYqjn{(}A@iDCwcNMt)o&N|2cBEs5 zmp@+bOT^w|JQv`J2g2SwL{dsPPG8-Ga`|<*r{ar4y+5%&K$jxUy~on)PUv}PYA2s6U>;mH+%8+1Z$ctqo`6ZP|Q_}WKkodnad3`cIw#;w(C$e%W|B8 zW$W#kOzBjtbCkfwfXS%xT!P^qCy_0800wcRsK#jj1;o(?WV+4&lDh?L{2;Y;lL%=PHX5^M>23J<3` zs9Dt_d1);kp3g+r_7a3>W?|2*57;PQftrmKP%tV$K~yQehvi|{>pHj;y?|YK73|(u zA@gAcdUsa9b7vVw+C7HvmTX*EH#WUkOOGx_=uyBkJzCuQ&&W1#I%rJ4Q;g^oe|B!O zJ_N-~1FxQkrtk3ZW{Xi^L!Dy(82e(nk1;WcrblAFpa*4ub|5(_mKOHqcnBqS(2#`Ca3QM=!$(W zmdX8s`G&73O#F&rQGB*Lpc!73eK>SYg1#t9QRK!!WEwq$l3z$rS=L7^T2_l4kGE69 zH33cb5zvZk0f}=SgX(xgvR-RQO$Q8#?J=ZlGYn~Xhk)kWDUjZ2VYJ*dNAb`goQe&^ z99_buMgT=9Ww6@H|5DMkH{x8vZ zyZ~Re#iCe08ncqBAp0O0(qF={u2@*2KxKye_cQAKimGZ?XQ7%{p(X0HE*+GqVFd*;m``SncAoA zT-v6vc|tvF{~ZL2J2zonXM^X5j=`(oC`NAObCk5v5Hj*hpOQKRM&EB@$s#TKFh-Ly zmSy2tZVf!9x8bz(2ee!KF(0PT}=aG%kjuqH*oO8H_SEB2~d)&>d#X_l8 zj1l~RY4Cg8>aBz2oeGqdi2*ZJ-XnkM}C~k_3y6X)tyEpeZ-jj z(~RiiRzniIvj>a2jzUL%5vot^O7D7FuK0D&+w{S4<%&)Q$xE5bPCa=ssP1&dC&VsCU3{+P!iGVd4UPJTd1pFCx7@8n-R zr#RarANvfS!_&|cQ|{$r;i7K52+@a$!vv~L7Ur1+?{PzEHLbmrhu&$=aein81~$aQ zRV58VVY!&GCJfu9qWM15V5FXUgU+OpRMWK>!O{b$g=^ATgp9%U#gf%Kf!wA~f`d5LvAhA=?eYG$dJ^+B_u4QC*V$ES4apg(CEQ@<3X#UxWfC zNRi}nX_|dqnD$@oz+YQha4F_JV)RfS%oN zK*J^h$&-Kzb_yuyf`D{w1f&+qx1jO`^!SZ{4mAj9T%~|SV+G{t$8*4%1f(+cDjjN) zg>OtH6KUcZ0@i-mHS!^}H69_-#T}~-r(lOzG%ke&elRRvJ7MLqXnefz2%FTykknlb!MH5E9PEu569?mZ_-TxJn1sU$9d40-$`Y1dA8v;6ha;1{EE`$qLR4tI0vKO*K+CS)gUd z8))2X$0JQ?W2+^}p+9Hq-+gWBfBk=LfA2r<{`3BSy#`)=P*A9u z_?l^MbYfe=3fRKGCo%cuqOAL?1^267XZcBUm{;8)HcgAzuehhoKtu}F?RMg2Ay<*|v&4}x*U`@>v;GW6zYF}qVDY28~z5K|2 z8~8AMk%4LBcsy*^fbE=Ycuu_q;mtSU+>%surRer5#eC^9+#B#7t=nqh=URg#_gY*pYQ&-B z&p7JbfY*X%&O2zqj(4>f;{6Vb8(-jQ%yZo1e%EJB)$m$fhIt+3aJ>E)=~e~MxKNDG z=`V0)QVH4uilG!=0f%MJaAsE_5)u-zET9HQGj(bFFg-HguSaW~{{0$u;#nhdEj6M6 zdPY1`EFMMNms+2&5qDPDre)uhOP|rZF}=$@CQac=P5Sx#PwZ;YS@`TOWuFc!;G5rV zj9JBVKA%ZbXX$oYRey@c4Qj!44RN~GG?JS2eQ{jX3$sr-%*vAquy8@q8S@h5gB4WLK!yU@(_?X3X< zk`WTnA~69?kQ30_`2rfhooiUGWq+6o=<+QA)!*eBmTT8PZUXA`641OF0o58BQlI>I zn)c2SM-#i)7Y!HaPjbQuPe(+3^1+)Cx1ibPfYqOaF!9WNgpIrnAKmlNm@AFlNvgP9 zKOB12+u*Uq0s+(A;k>dP$H$w{w$;`?=3buXd<&L8gg>QSgc!&Aq}Z04St6rlLGd6fh#`m3d5hRb?9A} z43R!&tc9bCI#_m)0s6upK;2>) z4Kt5MRl-Z0XbFW$sTo}wZ%!?qmb5{(U%&pp-pl%bzka>eUjzU1YJfa8vt#xv*<`g3 z%ygOvn;O49MfjQ|+wf!w|6aD@h{J2y`1~Vj#^>eO^gTyd_vw7*utp0nzRzZ*ehF+; zX*lyK84jOHcecOjP-^>!Ft$IYgB^{Tj;}LX3Q+!1?UTsLY&+6=8!>t$h*iALOtp(4tSrwYa}C z9(uFBVt5Ykb+%vd`dbN}7ANB9vJ!~bRN`PzA!Hv{;c#;;=0ALmQ+A&bKcXJNHMLkJ z`T`$YngQ#282#OZ`>WsM`t?RM=zT)z`bJFn@CNHKSt8%Y$WpRGNV!9aM9Bxl;~3K7(Lo~>ff(n_w)+r-97<5_^n5w z5$8xrbQvUu%wvJ|xvX7ftYXoTD#dA5``O5L@3hLEn6#q1&zQ9EjI@KZR-qu~I=sb~ z;`Rh*_V`Ev_S{)c2VPVmMXU~1Qr}TrGK$8x^Gv591ITSr9E>)_W0p!h3)?8hq`I9E z?eYsj%3-K7u0Z#yEZF1~qcPMPKdT<1sW=9A8tP&CA`fd?S5ns02gvZxf%?HakUf4M zdka*d*XNJTt`@9geJiUGk;iDC)j0jjm^N$L(2Z&fTKvq6sshdE&j54!>}pQ&UglKl zW%hqH`}TL!BbO>YIu@-@o)-+r>8yZC6gv_1{X0hOtA(z`XZV$T!+7-%=y=tNWcNQf zF!2XonY1G6a0?=~eZe4JH$9o%+#lVEhNI>9akLqR<(!|o^BLAn{ewd3KUg607S~VK z;nv(H4CsB0M>b8!Egel>i3VhlVnFeE2DJW#0S#?8pmS2(OE8=N9GeBSN^!&YmhRx-ESuI1F|N1)qUf9CQ4*Q@fHWUx$SVOGf9^B5}#AG3VY;=vn z@CUv~dZWSp<4vr+Him5*y9Yo2=B(B19n|~Ph}yjjNq#iv1-~+(Ifu>Y<4tpNH0I|j zX-QGTEqQLP1r6^pqs~|pI?VmK(bXeqN>%||;y)i_u1COI$PTK#PWW`d4Pwy`Am!o% zl@|{|S4Uye*jqR~=oY?>Fy(B$5C~iz;o2NO4Bz$`iRNM0U{sEVty}4&E@umjsm0m` zVLI)9l5CQ6XicvcSu5+)o+WA|tLuOq4elXuQ=wl2FVPb51l(Zy_&Xp8n&gFxvOKTg z(h)5AG8~pemom)(N>CjwjD)Lsc$dSy15*c)*)wyx_`s4{bgZeVy*&S0C_Vs5e^M4|Sqi;PJxgTL}2KnsbW)Zxoea|}V2V?DVwZ z9hcU@OKa{i@VU)KJR63~=bp36E0;rCe-Zrczq01-_6WH&27y24!o}naPJUa8K)A7= zsZ-(iWi-TIYtsHXTD0>_3HPL%&UW{PaWR*zQX=tZ}7>W z0hU*4(5>Ex^`h^Q>+%U(8XM8Qv<)-1*Fr9`7it%N@tn?&cqH3|nR-o_cdZ!}H(DXl z^By|SYB10G4NC7pga%BP3M`l4q_B9TOq~P(CG9-`X83{LZ>20kp zO8bS!7gdn0U4G|t7x;K|&9RDUc0`vQuP<(rJ^=xA&c zNrI@56LeI(5q#1Gq8mJcxhi;6F_#sWI-}4a8{c&{Bk#8v-fEiBh2s`f*kD2SW#(je z+Wh}Yv;JqFUwc0TYWQV9Teh|1kKhet8b4t`-+Kr?3XztyFpZKHCFazM5$^Tq$>U6^ zD=jD+@EKKpKk)eIE5rneQexz53^Di(U$buP5D}yNKfTa+*@KgERk$qk0bgFWV~AW6 zW?V9$c2xtC);6F}GXq-eX+SlR1~m1F0Ud2IppuaSTCz?+Bh&??eU;#@Pp#no=GhBK(+RNUKAQ z`0uPk1q*a3Qg$C=dh*~D@&JlaN9g1MG4kR&XQ3^|7_1$P^AGe<=rNf&+S_2wkp&o# zdX#N<;rp5y3GnM~#qaG_G`G;2?s{D(+qnMBg8%Gu(EsoKTBpAT`fK37YYjA30@Kwt zV4R*WyC^-K^`=R&%<0Er_kWbB23Ndsx7p z;rMOh&R&FmW)F(Ra6fPnS|7~8pOXaT?8SWM(#N(R*~uOVzhqk3)(BHQ0LSkUY_?`7 zyIwYdtr_-}m2H>C^y?3p`Jw#?&X|PB+U4w^*_W5m+CtK^s%l zDP~SG4CW=GePc6zEd7o%^WWoK;2Ri9zQii2cMyI20wWBn5Wsb7{m*JB*VW_cjknMX ztjFWb29$qog6@=7nEw)?^IyCE|2(QI5kmCQwGG44zwzDY@3^<@CzLo(bjGDRTpd;m z?ddi6|JZx)ps3b+0!qKE+#h@gT2L?tVN z1c?HQAOZ#?i;_|Jp7Y(>r{21^?megOJ?~q4?=yc;Gt2-rvsOQ>o__k*y-)TfM!(8| zJnuE@_j!hi!&A`r>pfWHW?|z^bG8R)`F@FEh$F! zC@oocAA?HN6L%O^CP+2kP59~4$t~D;FX8gL_Jqi{r@5^iH@FFo!)bVk0*(2&5i>L6 z;dzG5K?R<`xThZI9#e>+M(Hrx7=^pn9>8Ty99}NW#OiS+kV|26aa)FvflNH~AMe24 zK0yeLKaGRdtSfaL+ly{+#^qIy(44&#C-&%~>-}$9rC)YNza-`Z!CqRQYNH^G~qwx*mjS%rR?WZsKw$ZYJ*F#;YJl|NA%#3nG|hl z?!oZ3CLA953tii5p>nJh_gPMsSJ!t0iq+y>STUxK{E6Hjjac=YX|NWRP|N8=?DY2- zAMpzdY{f{yqc>HmSkpOGYkDx%nl5tItl!I;wj8&ngwxhElxeft4c4@9k`1joYD1|H zZ77&&=@N@=>6_4&PK4W1d#o)*X4=x%M-!+m;SBW8dSHx^D{d@)2BXQ#aLP3p{DN~R zYHs6pELFvFQ!RS1kxzRL2`HzCM~}sMBxB%6-kc*TvHLlXc{KJcpFJiZNmU^QL<%WO z$%#ByIMFn7C-QplMC*#2X&%p&mif3*KdX-jF0zCC^J{2Z>Ia$4Yz-zQKxN`!oV@;! zJ3jUqbY_O&&=A%`+s*QVo7iWT@IdzY;}!-Fx`wa=_hJ7-i&UM0aQ5R(v?TmQd|o(K z##{zpL!V*?SyD=yH68tBOb!)i5Vq$E21T5QT{#c0rw&Hv_$!#$$U175-{a0jTWVD|%x!+t>O zQ4?02tVZp1NlLjRMro4b)OAmu_=~%6LHQRfEW~M!O*h2yyYYL<5ARxATLZq+emX-^URz+?YAJ=5)0a;`RC!W zF)SzH(mpHtxy71>1lv&QK|5Nq)q#>u*Rss9ZCuEcqxI<+;VUX?7NU_nTw6>?Ks~F~GRiFhm4C!{oJ3aZC`6=!|qo2A@Tc z#!E~~bjJejG(Hv*QbIED^Qb3!4GTd7-xoVAFX8@44~(#1j>O58+!k?l?yH0s_AID_ zobDHxMK&N)o=>Z0@F_=|tDkSogGma_Z>YYY<1gyBmQWY=9l)pQ+< zn6n1~v+T&DnMZ0b`1C+iKy4;WPi2|Aab`S9H|EioC>}Lw@o8rrpAG~GNN=lsee5OnSw=(acrYehx&TFkTevpu5ti~pumN5;S#$y)y>8?3S+8)Pfp?EmT z4yIvdP$gcjD?~=yJKT-?f^+&s@ISyh-6P(j*0l*PWlb!<^9$NpH`CgLPHcZGL-JeN zz*T;S$sK8m+#pG9C+Cvymie?-R)WGFc46U1S^Dy(3!IA>IZSHAh&**V?!k22iJ!4& zV+GFD=0ZM7p03%|v3%P^++O(@^A?t|t^+e_U1(0D#4M;L#)3{v{PS?wf5hsSG+Qb= zVoxKP9@mn|qp(sw&2ZkK9UeU+aqPO8+MyknIm6|jwbOd-hojwk@b){R4z4)7&Fv&d^FPHOyS(L9}UsB;2En!7krYDo_z~t{u$VR z(+h@|_u`G`5tI&efnUZj94!^c+^@;p^XNTTFqVh!hp!?-auO|{&ZBb=c=W86N4KJR z{}kQzACJjD-Vc_wCYgSIn3z=vw{vYc8QqP^*}dqrZa1!#_M*C&UNkCLnhIG4?sda% zJp3(AcFt^{`x^URU4{fc%-?BLg00V5utBi^Pp-6K{>U1bthS;+SJp-BXGLi@tSI&o z>myFKqPHKd$f!5-7c91>rA&_vXP$yf%oE#LZ$sT)w$#eFsBEDfU0!2PLR)*fyVjoe z?qR*gSy!?7WdItV-$3*(drbIr9^0e0VReKCz7~w6_04wV;>M#-NBJcGicdHBe43`t zr(InRZBeJff?BPaoZXP5|@FG=x zAJS;|qD!TY^vZi8vgfnD;4vvIugVwsH%}tr6x)v&>Wel7f1HmG!NpAGlU|UFO15{Q zF)j=)2Hpq~^M|9#ZA>4Kixm$ZKdM*fgX zSTNNeyFP!Fvk>Ncd)AmU}t+vspCWM^Y-{FS+RhI6$egGVCHdln8Jd&LFSJm9{1{N@fE@a3NBZN`zzRIYuKEHw4La^tR~ zYd_hjgfZIgT!q?7sCsVUjNUxwF1Pl<(evG0_md6|tKM)P%d)taLOb*g(1r8SJ~-^N z2sE)-yF2Aag7|C=@LFWaQqhRCKe61(|V^)1So=X-($LBNl z4lYIO$0`J{{Lc`xdPM59Vy&MTxk>h-e#0BkMNv5LOK` zqnsKu%6w~1KW+D8mZ zxrn<0bg7<(lUf$S)s5LPUx&=*)%ez62d9;1S=QKT9N*-LDN7z>klGVCvy6SM-yxX4 zY#&+*{1LlD2T7`Dp?cd7Q(v7&#p^w|)qe<p=3k4zxPKp2pw5gn4(|5ug@`#d|Ixj^#lpKDdN&?<-*6&z9t@?a5PxNAYbuQr^e> z0>*smznM?N*79k;A)iLx<5OjS0ok*8xD&I4~o<2FIQ6Ubfc00 z585N`MFFS0sN-NuBXCkW~1iHQSGBlzY+q#Gx~ zS1tk_K>yC$;<59t zA66Qi$DW#84Eb&a-CjQMsEWYrCo6E+A^?TyDV$@=Im{8{VwKcgbiA{trjG)0Q*<9hrY$r%ZZ;@Pgt$S&;y%9&HHbOpU zAtOB!CqLhV%Wx~Q`C>)}4d!I=(1Nz;T2fTxpPR@28?IH99Oxp;A#Iv#L8m+HDEC_d z_o^*7;o$WOuHW&A&{$Q;$vlzK_LKJILZ2-L^C>DC-^CUl(OK=ON%|5uwatDNgeX!+_G31T4<0TT)xV{F7oMOZ}1ow;NQezL2 zV}^i~zwqhP$p2inz(0FECU`m0_WgFWQrLxl_rJrlPLg7n-*r<$2ks zJxyXXn{~jxTp~#(FQv#VSc2?%Vzeal2W}lI#*A6j=pO$I$CQ7dUV>?`y{t%I-irMC zThXh*RwO>kie%LO{}lM80QZ&&uo(|+2z|)OqwGZ-{eu!AU>t7 z;!|J7UHdunDVpi82fO*Sm}Qd1lnUs@5h3+qKG@DoC%O^nOjpmjkavVDdDXkogP9)W zH^!5+CwkI{6Yg}@!Cy3t8_~J16xB)(@%rE*bV|G9^g~x1+vA1b6_4N@6^ESY zBt%Sz!}w(1YJ`$VUOhnnDjc1EVp1Bd@e_KvmL2wt$?n!I{!=c`hPYC zMSow!J46@|VL*g|{~QKhVmnkt;MiHe*4-0cHrI2Gk3 zoW$G{+`I`2i9S`8+P5Poajn^I-1nl}+^0Ns&LjUIr*b}&s~#bb=^rDxttXl}{UMIr zSUC+m?|#DVe%Z#YT_c8(F8bVvMtLmq8G>NN>zw|XXPm;T{&+dx5q%#7!F$;?6trhT zx?&X$EzjYylt;s5UI_R~`zg_PKNX8jL}ijKR+xRn)o;J(Y?{`ooVA8TaHL~9zCYDIIt*-(tZ1Tr6|nUH(#M*PLY zClkEJ2@|X@pW*zjOG3)(AeMghLhV!wtV#2Na{ej=kF&+%zGqNt$+FSh!qLlSbD@J=cZf7Ky)8fL-`DlVAv$VMNI`ip(serU6In#Hh0Uo*g&-c6j@m~L< zTl%r^jmEy&C8zDjyY1hCF8D7dDPpK>C+}hDZA-28dxXUwSmLv zkZ(4=DrvJUDhZmt)|NUh+tG@#4wMk&NLtMQ>hg_8tLO6R+zCF*9^jMLS3ZT$W4QxN zgLPLD(uIpcvYF>ZPph5iO}I0)`MJ&>PEt6?lj5EgL3mdsBn@8S?Rh_vX>KG zeCP$K7v31wW5{Ow?qK8tHw?RY4L5aI?iTMRlGX=8)#D)+F1Uf@;SumH4ae^dPw{=( zEnK~R7MGEXvxgr+L-iIO_xphPyht<+z0JI>Nf?DnM6%AVLhn%|bwB{mTt4Wz2}0c+ z@lCJ`o<<4KFEXVKGkBExRKQ-Nh`;_vm=-<%pSu={j+5v(i7@cj!@x#OeX={NM^UL9 znHevlX=a}B9c`uD1_PG&=<+)DVYM`OT=fBGaCZ>P>=}?S?ANTsbK)Q4ryqN%-RAV1 z8#&+-clFvOZv2Zd?(M5!?w;Wx?oF&acSF32oBZ=J_b4Kl%Zm)>CYz;js}&MB?_a^( z$Enm+;23lza~KaRx2+xT9c1VM%uA}TN81pgA}Ez!iqecnSSuI(o293|`< z*}z@Xv<5Gw9$R}F5jVFJ21)hM*zg@1V-hjio#i9N2t^I9N9?&8eD>(H7Rl@FWk7sulR!laFt;p;+4Ffq4ILByX{xv{DQDs%J^>;w-6K#p*Ao z4Q=RfAU%VB<2uu6=YZ#2T}%gOde$6DCkJDSrw$hW9E+oIbD*;A8rEAj;^p#5Xly?Q zPYEX^zPgU;Ha5G{dIlb9M{(Ry;YB&ZiZ1Q9ru|E7sP2p{g$wOTW+>BL$MR{^0OkQ8N0OS|jEZrF zJojFYy2ypNw`3ISB(tIS3U=f;-=6BM9q8l(M^Zn?qvLOQl*YWUMrM2(7sDq*83AqF zC7{)b0?KDTf^?QgFk-nA&1-O?sGH7YV&X#b>s%>-@m0+Q?lgR`2Z?8Tkcyrs+oSNL zwN9S&lFdi1YK(&MsB~x*S|nJ82@qkVC-a%8R4;p`4L*2v|<%4hH{DO1n zd-4RbWY;4&M1@vtwxtF$2kN!`&-1xQblv;wUH3%iOmxmf82Ec&z#?WZU6ANR=bqWL z>9rP>r;Z_$)vppBoIHc+_4{zARU)qPAjc)|4o+CODlg&4LhtzPza-I-?8}ubUaS3D z+<`k67tTFaHs(fb9>;Z@zsPmv7HSW1*vh&4Oh-tSJj<&RhjnEsxBlAzbRtOcJANm9~GS*jr=3YHv0I?G2<$=wh8L-ef4YDha@0r^ktl_3&TC5@svT9bp4(s?d@kp(+vK49QKbj z9Vx-1g^M?nU!#6pNXbyhr{^bZc>0=ac{u=2O9bGL3qf|NE3_wXWjzz`x#kN>c(Ex0 z8oz<>K2pyq7CB3A`d8q`YhO}ePZ*iJ_MuH9*i_x))9;EiL zF503Nlz;n#l=XGc_xOMZPs?zWb=!J=vm~{HmZZMalC;KK(iurh>QiGunza_RZ?q+; zvi=46IabtA!SwJe)^zU?>o~}&>IWQLnIeyEC*rcVlUwIZCpu zNs4(7;;U^*zrv2}-rG}0xdY8+JiMA8*Y-e!o%Y5wqZo9>JcQ}uU|5Ae#)MOWNLrBvKj}L- z*f$f+PlDmq6O6I_C8&4`>+N#z#Ih-8uwjiU>xhj-?nnWYMytcN{3I6prlU+hAG+<9 zlzYyB`v2gQ??I9N`u~D)(eM5}uHT~bC_0b--7#>)U^8vkolhYrSZ~s-1+;G1Ldp~J zxgTTQm5%pG)Ng;B z&__iIlTS5rK96g-q_je=;D!u*E4;X2MN_cW(16=uWXRbE55ODe&)mi2=UhwhEaZL` za;9_EvKe(#Jg*-H<6-yEZ>tV=e_cWc7{89WLp1c#dC*UmDY<7FJf|N+-l04k5dQ#K zwKPmQnTz=bnMm_1z$TRpybmbCtgLSs=~jVI{TkT5>xSg0Zsh8@%+!dNS}3%-glLu9ED%dUik^t0q-!t=PfG23K1lq z2MhZ$NIgkIPV#HaQ@)D>gRa7C!D0I3XGsI4tmqNruNz~m$hY~g%VQ17ZRtkkcCx)0 z%e6}F!n4_GsMkBpy|H@1@n;FRhbm9GXt!f%*gPKcU$!BcWpR~GUyZZ@gSosZ5n5Xw ze2D*8P{X-D+C>XOZE4nF9?2Q;$lQ@f;~1a%v#&d?HGJx*YRBLUH8^~*8H&vR+Nm#1 z`@V|NxsQ?*dO?x`*ykU=aZ+RwCQXV`l9Xl94gXo6U~JruJUasg6AL=Jk?Hq#7Bpg@B^8%5{4h_!L6*C9;Dj}`=i5;BCLZZ= zLehI6q_i!33bM;Wi1%=G|4hNHA}i`Du%#h}On;TPrx7pg>43n2%Gl?HTS`2NVIBmI zWy5k)Snrl2pYn3~6g*x)D;)*Y?}LDhmk4RYVOX_r##*$YV%k-bc13%TvgR0DszRlnm*@5N9)*J@6@prys$i zd&{xn$5AXj-o`ad59W#=-$6!g1H@YR)WC8P%9#Et?Ihx_fA;kwdVL~pCBlFR1OEyP zEZnF}+d?(y(DHdCvvVG4znMq7b}gWhtx^QHG2Hv1N(m1i&c*h^tJ*!g#S%lWPe@2K zDCg{zE_27`R&t78vlBczE4h&xec_m705M+={50K*iT!l2M2jUsw)cWweHm9e&xecE zP(;7}Pq;=Yf3AE$68ErSC{nFgBI}t3PC$Wse%}oV^4~b?gF7g;V;3E8Q=n<~OHs7q zBHDXJVFSxguVo!sQ9F}h^Xe5!+#}IDI0!bwpRmrT6qG#4M*EFoD6B4q+kqmCIx>)k zCbq-C_7~O#OHso*Ng5RV1A6DA$T&L)`ZA3$(v+qXuLh8b`fxftMTzVUhtR?aQuH=| zDBVhwpty^b*p^uV-JNw9k?{e$PQ1n-%41pX#h6%}i)rVR5FO%yFAgE-n#T5o_gazR zYb$acWlhgFSpVs{+JA(x!P?f8Iog!A_A@1Zc`dgr`Vgo3R0;xhGcGD8fa_L!6mMjz zkIMQ*i2oYR4dA3Z|%awU&c=kRH>3(L}a%crH21$0p$pw1EjL0d>&H-)sB&2&{dJJIUj zPLyuvOxC}hX@a8*9qnY^*!`~5c-xgG2f9+PCKu8e>P%1A-?6*$9XhLZux-9Qa+cgi zGXD&Y2x1{~Di22b@n~V42Fi9<5R(`MYG8f>mZx<^`U!e3iGb^pAXIh-;YL9M0w27` zLWAREzULk$b(>?oohnbZs_OI9jNu4RkeDOkC zInbU{VB13_-mBz*b-0wL>E==~Nu`{cs2oOM$@eu|REsfdkv0L{yHu`}C( z`bApN7qX^9m#j%Ljr9uT{`GlmEz^}luUQe#(VD&##c(r*lxi#IK8znu8@by47AQa4 z#W`jxKypR{x5fQCr;rqgX-kfh%jr`T+hxu^7qHwY1G~Q*|42_4;#tH)oNrcEj?bW+cSwrzDG?IA8?XW&fF=Q@#NwSX?i3P@t;4Xnz&gy#zaG5LlEZd`T8 zB~@SS*x?La*XJ0zJCS9RRAIs97|5PUMOxrBEDE{^t@Er;?EYmOdHEOt-glw0-47SW z9z|v7G>jSB%3VHDpdFZ3f(hJY`uLhpGg*GEtBf-}I^_D7!;t7&`rqeTDmvGqb1lNa zza9gDD*GwEbOR~%xr7THnzYAoKHbusO}f`3aZyQ|gkG1p57JvP5vmxWs*9hhFV;hcQu;lk`I zT;JL*?aC1z+yTX0&ehkCOZhkvbsuH$Qeh(*&DlsFu5M!8=^NqD%x9d?AER&HM(;Jz zQ2ursgNDRGm46FKE>E#9@iCrrS1`%{F^qy9<5h4nCeKWUlSV#vk12&m)^|i#{X*%Y z!7MMRH=P)r3$1Q(s>5|0Exrz!qm9_f_{KMzel%eIcsejio=PfSV+QM5%FwRIfDk1j z^%|_c(vAsbV`za(8F+@pIP3WqeBET6GR(lF=0yBBQiNq*CD_DfZ1n6^Y4B4kvSr*g zeu@np++jnT*W1wf-Zp=WYp>!S8@hkOiUQPAxzwy6?n>V=2$K)T&Pj8yaQ6ai$v?xb zl=DVdUla0rY(n!|PSM^c=Cs7>uj#3CafC zTaE9d+3!0vpmlO9zF3M;b*c=x&y}GGjp7vLCrR=nr0CkwO4i5Qj8V6Kvo0zL+Pxqf zChiZ%rncp1B<13w35w$g)HLHd@CMVJ>^kWH;-;C<k5p^%iAC)QcsiFR#gU9%xhw5G<1)Kr}*Z<#ZttaYY$ zYRA0);6w=3$BvuGv`^gt)j$MYj$2B;Oz66;kZtxHC#D*tPczP-n zviGl{tmZL-^3t(#Of+g(K33~?cPL!6LdM(>3@ST|Q4>8Ou0&8D`2wdFcq1_O8YWJg zLX&Ly)Ry5yd&FI-ZjSrkVhxF|asT>joamT~j=2Z}e_srE8g8OzpY^FBbtR>Ze}_TC zXVZa56D(67Pjes6q<*{wG$GnNA$`Ljj9Ie?X%Tnuwmg?ped*8b4Y0!QMmvs9|KJin z>tb$_G3q-#x#l&)aBlWCZkCBWVn52^OxhR}3REz3OfL+4U&D=)9Kq4=*W8)I94GZ+ z9j!gSf$rVeKzo;H(7bn}ac{8(o{qSV^`CCw&7%v%lqN=9G3P&BkfBm8Fs zR)jx;hsAx=?utg{Y_^YCkOXn<6v#w0!Tx0v{JrGpVetUUFRsC}QMITF7o+_%zF^6S zyJ#+ML3m3qDqf~UgNLe+{}oxeCdg9uxK>zZG(q!AHw0eT^F~AJJz(A;RkNp>Fd6scwgH@K6HWN7>M?Y#UORWnD`@Y-okO4F$5< zo4?CCO1sB+Y1(f%4NcKD-0ub7Wl}UcxddJs3rTys83o)tNi_Tvl_i?e%s1wL+4mj1 z(i{1g&LPJ3CHx)k!sY%A98)TSLYNc<>}tj6PhSz`Bu$;un9j<)H%8kfN#VT&8J(42 zd+=hk{X{RCwo{hI#Y@r6=rpuk|9~->Wr)*lz^lX>ENCx5N8iu5mD7ytERXo{BQY9t z_&4lzrAd`9PHRtnhxObKINni=zRTW1V*E{f@OS|JB00LPBcy5VY))$^pXQ(AQNS7= z<nlB<&@n z16e|PDC%R zdEuwqMYJ8c1OIGe*aobG&LSVg9Jq+u+c_{cdx22dr}!G^jgS68C@a5$0Y>|vy=X2L zCwk$j2Zt?3Q+=|Zae-{kc z-Ca&WZ+4LeqaC*g4Iqa^S$gl>0_SyO=z6Crh37A%$JKHPhlk$f_MUUWUKf_#TBMJP zgYw+Y5(n*-!?$BZ)F_<4sDV7)Y1nbqH~#Pp6KHq3V{YkQ3=GwQrRQ3_wBLdkmFw_E zt1pyIrlV`!3!Iy`mh67((WTj8NX<}$j_Ly3nebC9bM+m#zUN@UvV$!5=3q)o8op`2 zfWrHy7`);Te`Y20=13cb5WH4j4!yp7o`@&Ofl{su&%LFGGK?YB=6+ zN2tzkBwqTAHwtBVB2k6Cn_fU%H3dZxsrXr5jMUX{u`DzTX~*Jl>v%klIr+ihWhlZf z7*W+5Tk6TSB@KC7TJzPKdT0GL^~nF-TG%kboDL5#C&zK-B+xXcxiieE+VFhNj$JvNLG%0&P7qk?y)rq!*KC(mI`|81+CO z*;@OdW4Q{ta|JLeSc>Si!@;$TkL&GL%iTHUgJ78q_(uj}zhfwO^-f599WvsBm(Ayn zeZPm1J5;gQbRufXdbq^?tEtF(4H@*TpI9_99YgQdaNMlVfLOzGh{-;}_O*Ag{m51PoE?tlP4}^9l?zT4N8|Lcc+8!dfj!N+ zaA^Dt`SNr?#Hb9AH=?|ygvsg}i zZ7Z@)i&L{i3u-hf(Pyv{r5vh6eS9%e_!X$JD~H~m*C>CNgz)JvkUKjA2S&YwQ$#wZ zmLw#J?7I{m1th-oqn0=Zilci--xpQMq39#V#6W!|SofVI@XBX43R?U>hXYiIZ@eH2Gvok^bd!glUyxn&NvLdtC>= zV_mp)xf7AS3gC9L3U*#yh*9cb9vX2P&?!cjj`l!#MK@XtTG7|73X@vDpy*~EMrPa5 z*uFeEa-K)c>}&T49&K91qgD+b@#e8PE_OeZJ+|aJ>o+Lj(N`5dy<#~6V_3hz(rBLR8c6i~!F0kz2rDQJ$6ob-is-&{ynnLqZZkB~BjLZbabQW-C#$|M1Onl7N3 z$M_V-JPQ3kIMA(RJMzABl-g$vrvY3Z-rszTYsZDa#|Su-AHakB%h=xTfv9y(kWk{` zx#~RJyK2iamV4pF$N}-uZ2l|A#veW&(`dK#VTxh%X>J?&B*8M*92H&u{WHWL=RtHU zx@Lm z+U@xC))3Zr$7B4yBbdHi59fZYzysBl+zt&L?vcf2q!y?naby%X?_n712N$B(B3aUA z^Vr;s7}yK8qljs_1$8UwX8KyX;iyNso?8>oj0@Iwoo^1`$%Ul-UKmX-a@$_H7)#@C0`nqtT}@3Mt(WvGZsY>d)N9oNJM=XPE)x z-3u_btr81WnU4C9&DN;>gy&Bsdi%B!QzmsHhRsy(obm~ESDK;3W^FM`SsC zfmTf!G$!{UH9slJLOay%e8r$XpYg-}9oF@Hgz3|_Pz=aJ{-zXMEl2_XWH#g^Qc*N3 z8j8nW;EaU_ZtnBI4zYu<%72WK=rt61#g^{nSkYRZ1!bnPeRw4c`ZdUcY{dRvT=sv) z*5Bp((68T+UGxhQl!9g2o3~GQ0`Q5x_#p-yyw;-p`ro-zr{%PGsBc@ zH{Mu_QI5?Iv>)rh((kX)IJ_E@T-u?1v>Jv=Z&9dSf{SaLux{~N^y9kl^B3z)Fko|F z>m_JLog~@y|BlS7`)I?wbX3-S!iI25irsHT;dQq3dZq()FLET;NJnxhcck@VJUTpt zN5AItXqW-Zg=L+z${%?&c^sdn8}Vt*eLl@?;*&GWn$3rHSh)*fZuVCctK<(jn^yP&CP14?j z{6R0!%ODNXUVfyG10oFkvoUb+_ICR6a61jKo%(ch=7%6*!CmmXZXwb0KBQT<&+iRBh>cs1ciPXm?xlICe!nWwNj4PSvjXAQb{D2c zuVY8wvoNc^kKl$-81IS3HKu{iF~~-XcNrd5wP5*TDUxlTL;=;RwDZFks2eHLC%nUs zn=MGV_!X{;TkyD!c@<4sv08dK-HKGB18H)!oOR7kJtRvJWuI8@Wj|W}?K505iZMTi z?R4&~fK7BF}=}uyQ?zQfy69zrI=g552fynr946YX= z{*NwvD`k4Cy)>1icS3$i5o(t=;UM!}PZ9h^&*x4ITv&_hf<_!u_zeA7rP%$s5*YSFzeIUB|(!id&P=A zzhb?#?Kb3HYe!9^9cXER1AWkRBn2-=Dq$G~lScBWocRi}19-Hkf=Aa`Hf)bMpH?OC z$wEv(d$k2*eu`zpUKNmBGVAR6D4@m70#XuZ`lqyzV#S2CqDeq^SZ=|z+X7NG5YTBk z0ktw8?5;W4*Apb(zlWOOV8l$d#s2dIqvEy5Iy4>Oa#s-* zoCg=fX72V9MJVugLtV=W>z13+rcpfF`i^zy{>jg~==J@%*QMzEh|Z4)1OL4-@GCh0 z2lts_Uf>EUcF?0QlQvNP9eqk0wt*xRx6w$`on(AuA?fJcjskp4sD*$3cm-BpzC4`lrW1CY)A+- zarV6Qq&wiJ+(yc#P*j!O!Y@G-cHBuoutGMR4t>RmX<1lwVL0_YHHhlvJF!ewkpflv zla20W=pAWKrqW!?XO7Lvm|XK1959VJgMCMlEK zj}Q3J@D|PMO0euj4xHBKK-MZBGYpgPGCv=ETwg%PI0N~Y^H3xeiSr+maCg-+{HjXE z%%DW@ZEnKs)-5c|j6k&l%iRjIq1|s!kv9JnY0a=^y`nXuaD{gm0@s&fO{mf2+n<<)4sz+zo}pU+^NZ z1r}U6j^~%7eDX&Oy;cXOuOBd&?Fm$8h|##$^_VuT16A?j)N$oE^de){%C&JCd;5k;IuVcI_D+ zX@BO?f%$w|>&7RgLO!_;6;SO)0U0_8Xm^-^`lhhHfVWJGEf>(hN&$732q-;UKzdKv zV;7ib_6Xy+vzTx8E1w<<_|)=?N0Q)C)FB5d*kMaqXRXLNHjR5b;4F4W_JzwQ8C)!0 zfN6*3Al}*p$8O0XGU6)MDF&h6ZPvy2Lx9gqhtT*z0ujbV++A1nf9}uue@=8>MCawN zgaOCk12m=h01XJzr9%%o@wxpvMkF7=9mgifMjMhE4w32OJv95|X7aAtN_`Hmq~udy z5H~#tyX7n)BgVP}EZ?ALQX6KU7)S3n&7oh>8Wa$#MaR@YvzWbb#a*IIX-P`HniF4h z|01_OQ4SC4&SJqnU!=*NKxgO~)Kp!^RF*@aJ1Z2s)i1-F&3Py-3r0juk@k-hhq375 zC4@+aV&jk)JlYon8`UMEXe+5`%(_?2bg(KMFMAIS+gfB@%V!<78Ms@KhbMzGkereVOVbqA8TJfa^=}Zi`zco6 ziiPj(C&+0?Lh#DxSh*?{JAEG@#wrC%hCPPknRv|fx(xENp|{EcTEcRK#(3LP#CLld z+uwnF_S;eTAX_ruWKFs*7NTqZzv!A@x#=#pJ&>SRMcx1IiTz_eyF9MN>?ze~murEI zhZuD@cAy{A@yq}2_C0zp1XFTKYcl`LEn zFTe#eF&ffPkD21#;B3Um>zgD=dF-Qm%xhbjC`}iS4yBn!IXE*Y6pNayXfvC|Qncq$ zgQO#sPIsWlE~ef0a-fIIQ($T0K=V@^sCu>|&5v`W7c*F{mIv!Xs9|$mE7_b{5TBm4 z@@XK`V7FK@4K|2*VUq;3AfIvCcLLg3B%r!X0gZ|i(BKdOWw|qM%k-&^P6#W`9R1nl*O?+HHfJ^=Cs}B!!c?sV!Ln0 z_qH33nx`A#>Z?j(E2hwjZvxioAez_u15=_~5nm8tK!gDi2LA6cux*VN8P3%r#mSmf zA2Xlsxp2&9w}oaNu%I$FpA$cLJ&hfxjnpw$QFVC^eO|GXqARx1eDQTub!{uHy|9J& zhc-}aI_SwwO_q~2pGHlaLvvI$sekpX#LvU`CQPaE#X`0h9Nklhc#i^jhZaNA>os(yWFU5R95lD4q54}sww_Lc+KnW<=${Ph!wE1M z8IS2>a?ouZhe$VC1c#?tj6wb+A%|ss`YihAFC5PQMWbI)`5(U@--h{UY*Ta5@xB$QgFF5g9{V); zC+a+!P;F9<_Y+(2oPBny4{60m)+a09{ta@SZ!xX02s?jD($mR>2%MM(xoz)o^maDp zFDOGuQW?gnv|+{KZdhFDhUdf{grqe?++-|?4c|_~yd+3zvN$z8cM;GN? z2s+Nx(<7i*T|O0!V_sKrM~c^XpedsqXxIz~s$o1f?4tv1uyG_MrrCD8@aRq}k47Eh z(~%73BbdN?xlRg5?XG|d^8|G4EAzv$T!PLoOnWU9P;&yyIS3X|hLeEe_Y26A@z)na z1k}^avb$I>*Ul6^ElcIoSeDOqQ$axTtSdpl@~^%qmSc3m7M#_Xh^a<=?Sd(HwWVf` zPS^*{gvrr1xYfEBIS~^`FwctO8E-D!!MYRjM4s3GYTSzc-v9kIP;~4>$4-QSzb*zU zRn(}o0d#4S78zO2BjqbI=(ep6sYvM2X0_GyW99+cA8SncFQ(J+<3nkwd|#Sy*9HEp zN9(GQ2_+jF(w(_mscgn-a$c-UyQJr%N>e#u>;8!e#s_9-XnLtx9kT(qaPyWkatu@w zlT)|iKw=pJwq@g8^&_0;Cor!0489v4p(ir|XU|2#U~@VeA1G1cjGwq-JcLZPe}wyu z2G}w0!`bR@*e3l0%@f2ZY>yau`1WAVS23D)SB?gLQl^atLuk#3DooF>#%8L;h+}N_ zOXC-Ywe+L7?3omzRspSRU(hG)9iD6}!hs2;=#^58w}Wz#GU+WeN9IB@HU}r)6yV8( z6zH%yoRmzd0%J?fn87k#T6Ao{WgtYy^sBKy^?OM$UbNo$P&t+s4D+zXm)n!?A9z{BnyZrD(0NCD54^@Zcs4i*PIozsHmXiB7-PVl7K`JC8-Dsk^}_F zIp++5Ajt&Ew`b<-x#sk_y8CqZboacc>jxL1N~>z`_3XW#d#`(~^tiEfznbNS9n_(@ zdb{ZMqN}tqb1C_})?@uO7pdUdZ93F@n-kt z6d^r`sP*~K_*n(2FM;A5a|oD?A+0zr6(n-$*<(XGp>IGkLI&i)XFvgq4XF4b%bQg) zBvF=k@W_hgb1`q&9ruh#X~>8~FEU*~lrcH<8k4WI32mQZLZ8Q&P|a_~N0}zJl|5$T zV9YXbjY$s1G=7{hz5T-YYoQU{VBA%hX%UW(VfhG5BWoOOLXCcA#Ajtm{4IePwQwx7 zx2!^;&{%9siQ!yrS&g)O2^egiLub5|NHLj9A9fp)w5A!gU$Eri^FQfKfwvC)+t&f! z*zv}Whk-u_26kBPB)18S!|vQf$Fj5l*BvBxWfK)SZl(TGbA3 zB>YvCKHNM+qTXl7F7q1c%bg_2u<_*TRuMt3 zn+&l%zzpS5`gqh}fb4b0Vf5nxigsDz>532+E7Rg?xPxdfcb$b(|-dkAlc$GCtvJm~Yp zFU9xFGd~`QZ)1@a9}K%C0pQyZ1hWZAup4s&U6ywYC?TV9aijb_$wZ( zBGCfAx<2M3+>X6ldXP824h3qZaBj}W<(gtN469&u+Dgc{H)4x$3pSZFK=Z)>l7(Bb zfceO-cMzq|bHz!=ScDel$a=891P2qEDP%?oC1&)F|1F$OyJCs>SXkNbLqW|_N|jkf&o>^W zMy6|sh%%zY$vo`{Be1Ai_IIAy3&;ON7&Ht7J_Z@f;_wuyF^fnuwa zs7jtlW4j7{N!UPlW3P~%=W2?55RRkV^E51ZH~mUGOgA`_=(t)%yx!I$im`$B6?96> zINK{HBS>WhE^hh*gY&tFUu+LSdq;d4W{Q}!JFuIqk7PG4eiS@~mbW8hy!AJLBY~8nmQ6fp$|Uc29c(u1N&yKc}K< zbrR;?$$_^^145fbsEscPZUPOMK1GBwX8pjq#(o%d_QEHu3p)3^Fh;!}foFeW=W{-q z?DYVY;tc;~AK)BU1(8)Y&{BxP+waZr4E=@B&S4ZJ+=a_6pV4{eGcqhYVQgLngZN5# zHWXoMPch4g&x4h88MqR8IGSC7BKa&Vv;PSFWx1>eJsq02aB!wGwtLi|wOh(O>aciQ`T9!>9xO7VSuXRD}}8Ih_(3@FT1S zr&#@Vb6+u%Gy1X6_bdFXKePLtcE}3+#C%0T8a-T`j1P&^Rc$ev=2i&6CyK5AEv!fX|OYF%*}_Ajbf=0_@Kmv!Uo)G+wyIm0D+Bwc!BKqdnQG&;k8 zl5*IWogw8YaA{u{mo9ELqDM>%@Ya>pUzeKDGB*<{FEpW{S`%vjXhI^+CdAJ;t%|q_ zEoA5Xq1wjuS&r3XS(d@r1jb+QGf#svM)Z3l^Oaq1M2q$t(LG-y@>^j{PT!b*mSueT zH|(ILueQWxG2M3MQv*82de@=L<)>0!f-IdYT}i*LFQ+*dSCWbDYI-HNnKlfbpwx*hm*~(&dOqPg z$&U~sv6;P`uEo{Nb4ohl>XH4N!(m4h`Cd73!X-jER=#sELv9-$yphLfVRab3(#Cdq zV;q{Ki`nmW@xsIz)6ZE#YK|A`Zg`a5LsLj?_mX?N|tEetBT`_daN<_CsJ~HyS_i(S&EhR64U3 zMlCrI@M^{Gpij8Tv;;p+H)H#?W(fLrLGtGhRL2R?3FQRr8|ezUm-pc#*$3OqAS8TC zf_va695}{DgSlf#z*~scZxy5z?+$cFb)i=N6ZQ=Ij4G98c>Jov1dmdTZz_dWKpA4Q zGvRiq1lJ34am=a=yTnT{J3JFf-FY~#RgULcnMe)I#Muwgh+*FstpA9j{v6zKDa4$H zQcQmz1EH<)*sT$QGZS+0SUm+7ijv@!Q^sB|4L4FU&?;AfFICxiNvyw(=@nKjNWoP9 z97v?!!oUmx8n?rm46AIZak>qii@Q(Av?4ucbJCIF)x`d}Ypuyvmt?b+(DbQ|5R@r{ z^WsvtWHh5hqyZ65<$uLvo1V1erDzlD_p67g%opefH^JGo2~qkj@M~^^%r zV@zY6HGpp)+HlQ8jJACqOEJn)^uj@yCY_u>o?i1QyOZ^YUHA==>ynhYkB;6n@kiw-# zmThov5%VBm`T>5Hx7EJRlrG#crC+y9DO|~vW_Fp-5nIMX=bKO=^C;kF`CY>&F}|B` zL~HGg$b63xWyly&Q7y}?4dGI(0hdg7b7^Q9m&7)5DTHYRP$WQ7M^6C9uK!Q2Ix*Im z$60xto##2g!vGHhJPiD&V4%I{IGy>ro%|l`qZfHKcvv%!lK0N1o0;=TY2q^SGg?62 zsi&bSa)}PVSV)VUchml2Q{26Hj;_p_l3@INbKLvPV2;7{)12!TWgMZR1)O#3X2Cn< z7;>kazzBUc6gFJNfW0pEn{i>zHAU7W1FS#fg7sYXb<`6#mC(s~KlwJ#ddg0CRE;4L<)L?C3n8&)hx#jf;N{5Ts5jWJK~!XN^Q%!BB_rT0)Z zm7oWU7LfF2NqTp66cx3Npmn<$7k=7=3;tCwTU>#s1r_+cvIVaddQr26kE~C1BBQ4U zgVx`WZ_@*7Rpx&*tqE!6{cvfTNT;{p40c;0&)T%3uyi}TUQG`DM$Kj2Y7 zCQ5b|8ZfWE34vXu5Qxiwnr<}|Ln{HFztqRJSLQ#q-1{JZBQ= zDo&=}q$QMNAVj;E-|VFsf^@8_A3N-_k^7!Yb9$E2?jxdfu*nmuDK^;T8;SYLo?(q} z0UC~$;TO{uOm$2}+S_P&_U)%s*7v3LkW2nsjOfrNV^WnjA-?^l)cxC(G8N5O7M~gE zWt&pjK2!3@GND;2CNv?{m_8garn3XA2K(HIavA?MXZ-a`Hkb0aTuNEMr5H^^vXwO; zOLaYJ*rP+)e7ZEt=``o!oujmf@!o$tmb~A2wHY1;co^VefQNzqNDQ3v+(ffyt5U7d zHrl)3Fpb#p4(c1`(JtqCw7Y*6C125l_p-CJwtf=*JSs?nBV|Y{_cZBV8bOO+ayXAx zEmwTT4dT496vEBf1st(wk(>mfU`|M=1|Dv|ioNY7*zc}`QZ*AqKXHKJRX4oc>kgCM zP6+Jw0nR@MA2%2RzCpO)^$uxEV{qOz0W~udkeM3;_eW8v84N??lUF!*zW@<`yvCdb z(U|P@9%a|rdHwBZYzqp+4S`q)je85#5)nGB$~1{D$CA*f<=9-Gf|XYdk-8ugWs12F zv(08X_c>58sD#7X7M#A*h2#-m@OFPUW(ohm_isO#S6DyZNPWi~yFrZC>4e9IJg92c zp+bBb{XRI8Iwtf%rKBAVM)erz8b_JRZD`VNh2KCEzPVK5hhYs?k1U1u<7WIwuEr0y zO01DD#Ec(hn9MCj57QFNkt#%dU@p=h7Q*3Z8Z4R4;B!VMI=+{nX%9P>UYUX!XEIQ2 z^$}Xd2@pJ&h9r{;Si}_}U9AZ_q+5};vXb$o8kngUU|n@C%AaMR`9>I;^ed6%WQ{#y zN|3*LR#7S4h#vSc4}0c8+siVMCZ`+HZwEt4UTsK?%#-P}ssZgz)#q`L|Np+ZneoU$ zzXlx3E5i|{g*|Fehl`PUNL^J7?TLTMVgJXq858^&M_XDTcCj7`r<$>;iDkR(Y(m1a zb{x|A!n~B3*K4ad85)fwjd!Ezpv^ccv>8Lu0u$*={AjZKJdvz4S+K0xMCQecQ6>~JU`lyRzq)0LIgM&FBe9F@=Xa(QEo@2;4w{fN^VPCr zUIZHpj3`Urh;FYiqLYnWdhEcZ<7>IJ>y;r*O<oo8G=J5a?26!0YVc@SZu(3>mn4J`9k5!^5C1uL?JWGx5?&IqASd?!+ zM}C3(>DsXrs1-)yd*1^561R#|@_d8N^y4(}Q!swg+|2b}zw+XqTlsRjCQCzj+5&93 zmB7iG)5N(NcNg1OE)U-#OGJ1&U|}lj>9V#(MwmUc);&bd%m5thdxB}Jy;zo}FQziR zK;9(g^}4bc_r2y($*o8nJoOsSG$L?^)nnTqN5SoP04(f1ur4ter%RusBrE|-ZvQjhq3qZ*!f9!XPhjVx>UY?jk(n`Ou@X2H<6HGzo)(?=8PsEtFiO?|1M_XqV8WLL| z&U_1QIP@WM_D|SY58{>YFZ4SMqYZJwd75QNoj>nUK`qlSmx7`BKTg(!0e}$IBdlHn$#MqLNTWf+f?fyXHtVu z%T|0auY>=!YIMKr_$y68k^LtaFRR4f;qT#}(u>u(tvH&*a^O5`ab(hO9JyBq@gjb@ zICUJIcshbqUo-u{&C&GPTZG0kJ?yxFRdl=WERB62N^OZ>vDl>-CG5Uvv}gkw)yk1B z<%Y>GkCKq@7ua=wgtluS;=J53W%Db@M}*+C+ur8${@HK(-K=9I!`PTk|o$aRS+#q2Yo>PN;TAkKQbm=A3BHY3_1YDAW? z?4IX5m&!(R$=u$M%4QhS4Lbv}FV&~@q55R6$E738*C4Bm$6tAS%U|y;yfNX82@eB2 z4E#r9pkGFgvZeP>2o4Z{rN^c*eW7@M&Ssx7(*}j&Y`>wqscie z1m70C#**N8@H@Q5@#C?GycB@pXP+RvB^0L)#=~qw9DYi^K-;2FjFXPX%U$URtPjQf zmM&b?{ER32E3w)%89nBCSiLn8S&rdYp`C%Ih%%%MZ$?Ud7o3y7Vfv>56tldfudly? zUvoG)Z~2WUt6t#s>OxE^WxSG|BMaXt!}2`|@G`4JrM&>{>|-3E;yWr=v?8La5i934 zV%Fno4Bn~4_g}f#q{RAyDn8(pR|&kwuxx~170^GCi4@^N2p`LZqHGD27iXdOQ4v

qICx6hGms{m+O=I zJ$+idTA!L57{BG}k=t}V>U^vF-=53oqSr7fU-?5{;0aa@X@yoISt_EK* zQ)>{C{Ph^j>4axyFKjh_;N_38R2?Bg70u!_YiJ5peppIfr&K6hSBzZshLg7>(;>(X zqphl`IAC0buCxSvlr^Ng;g{&nvrqV`9e`~+nf7|cM=bC90JE}4)b0_cUsCA^v+jp( zR0r0LHz0@bJ}3$Z&{0zza@k-`b}klFa>as<7?_j%ZZpbXYD)VTvOd85#$@t_d2liQ zS}n;uU|X2hHHb^!w{U4btKIL5G^G2Jx#Z4#XA9ZmrllW=|&Cph2{XTkRqoIW`>&fs1v zj)#0-Oz^%1oE_tzAau?d+FkHXky~XEr@I`SnKg-=g|*{wxp5nI&szw zC#TV}&X;%*_ZkP)!{K}`9OH}ppmHn#UT1=^v++6BdwRli+#5J9j>M*s(KvB#6y0;k zL7YY=KD>B}BaO)z=MsjQr!!Eq{uT_3{BZPU8jPeWurZ(wS~Y#RW-)~B2SRj6G#%So z-a)Qjk^~pTfm6ay+jU=Kpe`FRDfy6HScJv1n~-ryjGUe}qWWe9c9(vJ_`^<&m21Ot zz9yIo4q#7R9lAF)U{h2n=9d&<5mh5>Y&m3)m!U?o2 zdZePFPsu;^$Uj1lwyWt;o{%2-1nSbb-MaKvkjG{JmbIz0HWBi_{F!bf1K;H9p;*v? zt9u90+BOL7+r#MCh<3c-uff!;e&9YI<;f0U-i_IG$!!E(T{44`bC!{Ou_)yn7ot|n z@0g~}`UzPr|IX4@$k%qDTA>~(Ml5fOWh-1*tdAelBT&~^gXLPXWd39eISGG4;EtDQ zTVIF;JF4-bCl7^ZuT#v`Ryb@Gqa%D1Novzn`f34MR>RIEqRnZysu^AFWm;I4(WO;s zLp1B%hZlt%9c9 za$ImehGFprn67poHw!H>$T@+!-w&`o-3iWPT`))99clx17;Ya3LG z=`F;)qR=c7ixKr1IKS2hJ!?Yo#N!F{wy+*9wWp|ViN=|^jL(kn!AQMF`1s{5PJPP7 zIl)F0udIieU=PIQzr#6|c^@?vKxmscCd_un`x&ec%qbh&_SR#~yB@6Q`UUyOUwH3g zfjLEd^l+mYzC8GirZ=zfc-J==w3k9NE(a&SWir14=8YxBbc)Y~Xz{K(w0ex7O+Sj! zR5pP9Wxug`nHXscbz`n;6$)#sv5Jb2UCX#=VIixNW}@dy5lnR(A!bny4^BC*YS-cb z``hR0T7(D`VW(OV3a(V5Ij<1*o2zjqumH15vQatIiK&jq@S%zL$11XeTyzlXMH=1vvf!{T<7nSvm|tkrqw$n zNm69^zx(q=Ke2>>Q7JCklw$|GA1sg+BDuyNIL2~mqnKu;S*QZ<0y^Q?`U&NwU(ox0 z7+vNF)1%Ibv|ywdSv(ab2Xj%P05h~+>nMYC}d7}&$xy-l1Qjm^ZI722TYV>-~80wapNe+9blX!#_ z^+|B)&P8*o%rPY;<`cV*Wp4dmU_=@kT#_Hdr8uU4HD+9PGpo0nOybggQ$u>Si|MB? z8_~sgCbauCkH7wR*c*7Ck;j2}7~o;x|8)$^y*ibX6=BP9+joearEh>_qr!SEt7%Bw zy8&aq??dc`i@0#n0ABhBFv{8-2OiFk`=zZx=f}h<-b#&9;2ho(yTSVe=SW>Ir#A5i z=LTm5xWkvCqoyxq%6Nc9{9c$4 z$wj`t4Q{$W2LGfSl*Ke7|He;r%@v@vN3Wo2fiZ?j?ZC6*&&*rvB?b;h;agJ~G>?2n z{`et;!6+F#{W%#VO+r^Hw$w-<>2n?Mi>MsDU6>icMH?SOaa=O!ADPKRKs&`9|o0vLcfEL z7Fvv=OEV>@p?W;MjFYApNrL46Y#9Ai?8j=|a(sB5g`%0dboZ?@zNmYn+3pSQybDHr zc@FG+(%~nRgY8RP5ha$4P^G7+Hxr;}mmqkj4`FU7%XIzYCr<0IysxlHbZUP+DyB@K zGwYAj1^@5ZSZqS+_l!wnuMs_0Vt%rv1{B?)PjM{otAlA_`>Tw|#m$h8F&;ZzT8sHA z7?UK+y#0TDP2;^k-oDGj01pE^4E*=Nz|NA@NN!U_h3Zzw>F>d-J= ziE%x5Fjnz_){ki^1L<_Wut z@a4xw+;-d#e`zU%nlD6^sx1m`JVc0}ITl$wgy19>2o3ka5q)>$Rk*;w!x5gX-tZO- zfRf1*oOKMq+jq}lKP3z!e>pOp%6(+r&OE`rjXd?Y{3!``As)J*P$7^|l`$^F8W zsZwNxU%0tE8cwgC;Zk!N)=kWY-NhU{zViuJHg&-lh9$#w5FT{&Y{EBuz$;P zx;Ap{7+6rFp>&iqZQFsic!Zi-#VtQMsG%u}}UWGN=e^kGk5 zHKvIUKvcU5bu8P-2enB0QH>+UwQ$&3kMq9W`1Sh}R!wV!gmxDO`s*-Prjg~-m%wRf zIg)$Y@HnL&)*Gr2z;w5XsTt@#oQ8#G^VsWFVtH;lrW`83wt)nw{dxsWfmGaTXPysw zEFWxICPH^7!NY;^pk=)%PG@!FRNvSyRzEmrf<|HJ$*wr{kW}1J*P+y3+N8NqhwdEK zA?N!#RFwSp!DEv(CQ)Rp1kINm`7iRaC3YOzWKx78+fR5P(hSvkov^&w^%opgK1z~C z4TV7R=m#8NdBffNDlxr)pWF%rXjc|LeOV<;)7Q7d)};!*>fdlPT$D~}ijn*wY5Klm z1fA4nULRYBlQPTR*fjGK7QAhNTx=!;c5bAW_AnH&Y>?cx8cb`CgNsZ82Cf$3t7bC} z>E$3o)*F0Q8!+D|7=>$XVS_(V79Wd|?dxfZ^CWttDNWn~KTQ72d=_d$5GEZ8m+hN~ zm0&hr-L?Ti0C_C?-2 z^X8d{fjhOb;67x{ED?O%7G8z-@MW$elv!_=%qUl^J?x4YHD|mZ?Tp{fJ}~cp3=K&q zsFpdxU%(6dGCW|$G7k_KY&PZ7M^eP!;kryNM>GM-)3ZD z|L->VSo*?&Wi45$u+THcFAoZ^da7mtikh2ncybj&;>uxGSdH&rSgmbLEyVUWBI0ff z?v&=?^IOJ!AC{xHo_Q6p-kvoNI-xG-2LESC(2HT-24RJ`ivp}j%Y@|QKwMKwg8|bN zS8?6ov7`Vt>@4{(^N;qiec%J7WOA0vY;;TJKV6ZBFpPLvzSF`6w#_ZDl@{gc|X(p8&cinK{>>Ytm( z-nq>s1+5V*(_{3%$Y1|qE$bO)7H3#j25XVe7;~Wu;mUPbd8X|zcJN-K$?ie!GS98}A<$%gs#6$3*xOO`)>oKzdI^zL@o>5? z#Yc_u4G4PCjE|2~U@4|ab(9I?X-_dh#|`C;33xr(4P)#&v0+jj94>_5@rro3I^Tr$ z3V!6piP&m{tdm8M!D8j>f^l=a}Uk35~4BFt=GmMiTmz z_fCgSpSeqk?b9gXd?MD@RA7^566SK44p+{Uj8$1(m)FC^>*3;IfQJDd26!0we*^;t zb?0%M?I>C*&G|037kn*Eu5Q+zH)4$Jvj>9QW#9@=9E5Ok4x{yLb-Vg3M%ArZ5HABK@+@f zvw&XeJ*?rgVi{C+EK|W5U$5I?_G&vA%ep~B$qS>bJTYU9E$l2FV_%pPvP~W#TF@PV ztk%@i_89B@pW$-mGXyL8A|TKe9Wx%|^0OMaR)wHt^hd1ntU<@Gmw0$%8x%ees)n{e zcvKLCt`y;zK`UJ1I$%Eg3nr-i#DVv1P>L8uw{13{>U;sD>^|b9z8`j(#$ce}6Dq8K zqS8s6tUu1AoRBpnHzpNZlMHchU=!xP4B@=esZiX^U&lGMPYOzlm!Zcr9x2IEq~6zw zb9Y(aS5qBaylSywa|2dY)__J=V2>K}FJQS(^-o*jsZj#k*lJ`Ss>G_iKAc+ptR5fANVsd(xwQ7-Z^N|F909&UmCwV2X(@E zc<-N#b6?oco-sK6l-29fKESB!H6~t4gv6yBR2KMQ?Sy<7v23t`fRC85J_038amYPY zgZ{2^2vwxQCA1dXyWKg`9&=H0HJ$V3%?l_nesj(HE)~_^C4*>fdRC@GY6E}Hp072h zSeBIs-#^L8EL=tD^fnPX_J_bcTrp37)&y^qplN6d+^LR`BRmWW@(3mFcO9Libs#4={Fw;B~U zJ&$V>)r=dS?ZWAun#%d6AI>?s>kCJ1&qBnE5=Ow8wdgv%0*+@VqHFvjoY=Vy@gC-o z7;A_Avo25-cf?l*H|$&O2x}iFRBm)dzl1w3+;IVSg);`{x!~#)ceuH@Vr1Jx*cSWZ zP(cVT4n!mNQ!q3mqF^;#m`08yRrv7b4j-4o-^+QkDM> z2~*h1 z0PEj6F_??M)LOin`56<9>oGaq3kTHw(dmB=`-221{Cfj>KUBf^V-}_kcCuXF8XQ=k zj+pGPpxyasZ74*QSQuia=OXcE6_YS4yyQWF10& zv_Y25{raDcxLjI*oV|}Z&BsDH6U11)8q0HY_P;}SW$)7Bz1n22sY90Ty5yGp=kk|Q7J6B1Z& z-T(R6|M)r7p%4aT-FOh%fw{JWIDH@sK}&1#MU+^f9X=-N= zAm#1=!q*OBKyC=h?|(u!p#$T0w&0?x4G!(T4Swcv_4}kfX5^Y;)eS3jr0j!XMmbh1 zg`;_9GFmKSVQEo-V>%&NpymRZm-cAw{{w0X+p%_y4Tg!G#kgS(Fbh5n|9dQ_**+I% zc78!!lO3{t8{&vl1{4bBllKDV6->-?jp+-Hy)gQppSw(e$6x>P9P@tX@d6$Oco^Ve z;J+RN!4-z!#+u`#v;z)rw!{7Kdx$n;d{)E?-cu}4ci#rF;`%5Za|`wRX2Yu|iW9ur zmt)+lK@hxuZyD%OuWA`Flobc=JE>zDu zhVxlZF|*7aD-&PhPN5r`iz4B&#tqNsdt>*|BP_FaK#sL5JQJ*-pTM-PZ4Y1^;)%P< zeSubAsGRf10=W!mIKF^y>|55FpN`+m%T@d(%W}<5MdS8b?AZSl_q9@Cl`c%X(x*X1 zF$BVc%!Bn#8@7(^#}AqBm}@OV=hQhABs-3d2j0T?v9npPP6OnXp5t)y2{<1L#76s( zBx_oZ8OxHf{}9W8J=B1AW3zEBF$&k-wL|z;JI6b{8ty(*=)1Hj-jB$FjK&O#PwBy~ z$CGK1*A#NR!$-#lB+>*bdfvZd;F->xIZ4(S(lP zW+?2fLhV5T>Rczna$y^>dfN;dCB}MwuGivHL^HJJ6hl&nkNU+2AUi4#iyO;OG%W+8 znLcyYsvL}M%!S0Yblks@4;|YUXoaQ1drlbyhLu6JupaHUNif#TMMh#SBzud|+mMT; z3rEryi(Y&$*Mr%&SZuB4!!T7Pn7xUFzOWm{70-$vA#;=yGIJH3e1C^*n(mVH2py7= z*QJ}O%#UlY{$KFCKijpfYav1TTrsMM7*1OjiIJC?1bJQKr)+*cI(jAXuXt*5a|d2T zHDGQ{3Tjof|Kjn`Oy*Jip$~O#jqvMf#hWqAqhJfWKN#MLoy>FVy<7(lkNt}2++JKt z>%&l0H@bCuAvm)YTNu}^i2sDE4||X=T!HDU?%{CpEBMc4I-A{Av|aH7jL$sA{_~zV zaKRDIBi=$rKNZtA+y}QJ5wYn{FxEr?soP)Uqn$ULM_$LFi4Sor=PK$dRp9mL4n~i2 zz%ua+AFWWG>;&!b2e_hWj-d>5MCuvCFO=0CZy&_Z?Tyx}@UZo9TiNqK}|9-XAriJaNRq55auTuw=j+zaEAn zW6~RNoFXC5_^Zf-SVXCPL}uD+%-AMIBUoRIdVDCVe?P_{3WCa*udo~a38gIon5SZo zX97Z0qQ*xj28WT!np%`SpF~j{BLBWt&VeL9lq*aJztVZMCF|hWf!jE@u@motzrwFU zjCwRuv38>X^)^l;n_U>V+(zZvlgOU=-CHY-Ckrnrx?Pip16Svfiq%4jIV1zNr>7m`*ZXbqMAg3$aa~c{uq?(Va(y$cbQ{P0p22 zyDdUj!wWIyU_T_2N-?HRnohFw>%d2I$hAe7uJ33@=bTzp*W{p3Aq6VM$uQ4rfYyRZ zw0meOl}s8%kCdITbe}W&lBU5sd>E!1M4@4h6AJ61p^)L*y&+WVPr9hi(ALvrq z7JV9GIbVwAe?A^Na??oKafkK(g)&bHYa!a|E=plC;&drjgt9b;;3seJPjd6)W;yuP znvFbVtH0o|S(Cjv9CrVe&$P!J5~Y!+Wl3~N8E544G>l^B1mmXdpb+J0G)(?1M#nTE zXwz4CpKZh3^mI&g(1)1SM7#>Jz#plzDcB(kqi1kY{lNF##zbopnNp3s7lF8V#S)eh z_ShP1ha{IzD3N6PZ`C~9@^b+(y@OJz8R9+f!>q#%Ni%L@+;Lrq%+f^aBpsCaI%8d^ zE^4m0!zYaO6?!b7YvBe|`<+Yk(vAPg&-Yvd3A9Ntu|g8*SYj8 zCu5W-)(YEm5K_dMCzi(9;V}#{b>BFBE7zbbVli}n&p_WELg_Y5ESY`)eTNUCfYp># z=iNt3sVl~7yW;m1XV%l@fV^2ASkvSInE_kuf98aU;oeyI+z&=#E-+c@gPV2FV0G^W zy!FE{m1#LO%irL0dpX23!ZG)H0_Nm1ZR^A*xOvVGR~NZsPM|N80aW7attZM;IF388jvDHv#o=fjXR6}~(6jEKAgTp!E)aq4(iAFWh zdXkSdlL~MztR2m)-Wzr$54v|cvAUn1KK7Jh6IhOd@*sBkRl#<93#^#Wmqus}oEuwl z@o_fh3pe4%p~ZBjNse~J%9Gd`c@inFL~7Y5T$oaWWrl5-KC%F-GFDP-({i$TEk_;8 zN|7$`2<`T}5&C5ptZ&Ri_U=;%SeA+BfsUBITMf!p*EyqxiPNneIut9SM}OGrldgw8 zO$gDam}Gr=T&+*1fBxU$vjdyB{~?@8@y8shpErV*ZxJIq-_aB{PLP5dB*=EvaC(;} zNT-K>Lg%&t?VfR$9&J1R7aa9px~8s2E+qw*a)cWn$K4B?!2fhEl=-DGH}4Fti(bP{ z+41zo_c+Pho}-kJ+v&YZIFiQSL`Ke7YEYU@YbYEu6}QvK$P%=byoT%E>e$_X*wY~? zWxTj&M`wOj;fRGfCP?jrNc%(Ru8ly?omSins)b671-6K3W3lgclvLPZNct;IkBWq+ zn=1}R+dyvnKFqrL1RL~Qka4X7U&Ch--%edxz3o3{od2b<;yupWqj(tLVStAL9tQrc z7Y|NAqsud)7^GlB8(y zhZ!9HL*PshaOIR_D|2KXyyu)B`GvDoO$z%YhBz5p_;C2eI2`yPhf3oq@C{YQ=il3K zMDPY4r*FrmMUI&8!V1$QoRBcr4Hwky@za25USsVLd%zB*cJ^@av_tX1`*_uU4>3By z@ch8~idy{f^TaDCzsZ8G5bLRb7>x9|C?pSij8Vg0{(EJm3V2(V=+o zI2YTFwPJNpCtRA`v69_xeNsgp>M$i|QH30RdNOb3O8=w!DL<$nH&gU>6W zJWh;JBGhmt9UD2-SSpl&yKd67d{i2!w;Vm}jGxQ>1k-nQP&%8B^q3Ny ztN03$W6~t(xsLe8SHOEg8N`?;?8Sp+7@r|V!}fm0Z@C5pu>N)X52bKsd0cDFnJ(f{ z77oi-L-k1u1pOpv>iArY%gDpB)>On6=E3|z5x9G*U~W;232N2I_3XuhI6KI`WO=9A zZ4edz0w=RIjy z3cQ7A-Vr+#SKCSD~r+tzJbbPS^$tnNSHOzkwuR`Owl)i*ZDI2(Cd6-M*F0#BR&Hp3c62yZeH5mt`eIZ+Uy|mnk)UNme8iWYfw?9I)TFrw70a0h zd1d&&ipT!L=SxuM(uxo+S^wmc%0VNV)MZ51wiuIi$pVs{l88PrH|%ZSgp_Hy@aU@t zC&LkrWA>2h>x-m*L7XfOPNm*&JD| z&rx(Y8(HU+VQ3r#;TAjO%{75{SsPC7ZG&W(A8yZmg9|xr7}ge#6S8G^>Y_sdtMzE! zdqa};3e(^>Z3GeN+53t^f&Be{+6^2Xn^fnlOHo#o@kq$9eTb9HXv@ zV%#T5(6B6y`Q$ZF?w-#G$*ye@>v zj&eL+@CM!0&#>=uAS#0*Fn-q?3>`~{|EJFo?hL}Oc~KA={Sx!UBk;PQ0GAy^>Ffp@ zG_#CcGi5tWpD#@ZUyLTbkGt@4@FAu|CPH}8Tlluhkg{YrTK5;CFZn4B{tU-z?`9g|&N;?zdR)2u1>_-R+4Wn`)b8O}Rh_yXM7;NuCHD5U#(1S%b(Kw!61~1Qc9DiSd znRknEVox!C2C-}{j|@y*Sb#+eop>->ma^Pe(|kW^8e1VoH>KxO#@qR%cC!XHKjva> zKdUVVltS|N68b2!kUk!tOxsk1$&mR$TvC4z6td~cugavx86r;19i@h2Fa8^G~F#-l8Imv+h*BVgNegm3t+JIJF{o8nK zV51@36yj364D-{Mj| z^f?zZaQzrgE|rOQzpy#}-?QEg>Y35q7v|I~ZAnvtt!V3HBRZ?zh146lc-q>G^A&e6 zQPY85Es>{l*5!y_axLyz@jaUQf{P!rYatuyjPTW(_Hyk@%ofAtP~vJ&Up2TT4$u4^oFXA2QI&MhrQ(k zDBNJ$-TVHyIWhq8Nnr@O{*L(sg~I5;8>n>ik^c2;1TSw#$Hj829Lq;e9s|q+;Rk3i z4?ZH{SgIC|=$vTG9vg=mr?+re7>y3^G_2VE4jV15dDB^^bJS3M|Cxlq9T3 ze1+>$?##F9Db8(+#WVR7*hjxYx?K|r)I9M0r~oOgjA8FJAHGrS?0$3`sHq*BRhV~| z{WnCb4Wq1(a#$W0qGusFXpTxp>fu_{zv8ER8bt`&RtXDE9m=?!aIQX#yq9~iLBbl| z!_DBXbrBEi!ZB+?F!Qr5hk&sFsXY{+tLN%4@Szs_G^$Xo#QN8%5AGI2`1P#>TUoA| zd1)=?#SKF2lL#41l%gR0d_0>sndW4$3}0&-bOeSX{jCp_UZ!Kx;&^Cv)PVn95tf&G z;B&`)=)7@(m|7P^gFKNXa11S94bY@x3eLT0&~o3&G2Ac2@-D_>N`?_9q+kbHUuR%{ zi!)xN+{WoXQR+KsK$or=P>Q|*mEZg4IqVJxLmHmLa!mhFr{aQ2ysvr&5#`lb*fSrZ zIs2)Z@z(=pT;kYq$?g%W$NK;Kd93?JF4ZqQOL?VI)HG3?_Na-`i^U^oL9qzE^AROE z&UbV?HK5YlZ!rJzJI)(JBaUl$4rj?;38>n5;O$vU98;c#61OYZGEr>(Bqu`zY!1OI zo1=L0*$Az9;%HV~1clYBAbh!u!*P8O>%A;l;cs0(&-hsVZ~cTqiaEuPv?Rf9oB#c{ zB<9zay)y@^h6iH%1vApI@sE2FcO`zS*ok=6^gcu+yvOJVmAEodnC2L_;w1CTI`u~u zerMKmofqEo{{Hqq-kkF0l!t*oHwI2wdt*q?2ac~6S{qbI?^z^~|K!03T_eF$*Cu|bka75M@+YWeQx``W7#yMltkqb;nutsrWs5FVL z6~&5I{7}8r!O;z<)TuFi9 z=`8F_Pe zI>qu-KmLS%U?-K!9dtippg4)7lT9(gq>kg&>wXG0@QG~OV8kr)l! z@&dZQ??C1KLl~6z;wbYp+~wCG;$#)F%gW)RHjlPj$xy#9;`Er26!rQwgL-60(qrv; zm@5*%=HSQDsPO5u@wzZwnmdE;^XZ4>1!u@hWTL?{0>*a9_w8y4Hv=ZOjQb|y$+gL(GzSR{xa(B=<^fLP_r}+i}r}&_6BW8MYF8oj{UH4ISsAyI+ApD9sS7o>wysF zEnxh0Un-lM&;GCR*e=$qn($~U9U(cE4s#Z#0kRU*`-=z-J<0q8MWg9Tub)uJv!bG# zePPv{gIHxz{4O4G9VGj~5cfLRoS#b`~jJQcW_qTqi?@qxd0nvWc^`J0_V7 zkz1yz5UL9zR+V9-DSaA(&l8B$MIvvLAx^(4Aph0t=HkVf(BeIZ*!y;p?10roko3vU}=VSn{=)SS5ilf*}e*(ypu9x$WJu2|7$vDc~OQ$cs^ zfAw4lj{nzQ0|n<#aQ*}s_}9fi@v$Iu`6QvHCDa>SyZxQ0Zg@&k@5#Z@eiqEkXCP&^ z4$SQokZW@onbvB!p|cV%T_w@7Uji2{AI3M0&ESuY!|c9D+`8)qzI*_jr-njGjLoT} zFfVJRJA`lgVz(~KiGAmZQwrgDHvT%+I!7aYLNXr4#3JQY8WO+u!acSXfe$(mzC)6J zdpw*j7adI{5=YW>k^4B;nubO7S;#w|i(PFzjH)ZfiEnvul1swjrfP&ejfO1a#GjnA zkh?h-Ve2bV`>7lg6jHD*w+^Zs_)zL8#_*&V^t?!b?D7&crlep|Kr5D}+{Nb1&j^}0 zfX~bOkS`-lH*^f6H+$ZpYU(iB`}YGHZdJngVi6WSYC>4`Gd4peMtKRZQ5O6Vo#ZLx zm%hZZykR)%tAy$wS$GoSgSHV|L|z#SbsHVn-+e;*zg0lI>pnh?=ttZ34~PqCf#Q(| zcr&aG(~CMWzpn$wr#IliPCneDYhbav44JOCaK5t+pCYGGlWXcU_m?s~H#CFpUZ+M& zhAbs^zi{0+HZ$p&k^vtN5V?~ z54p5v26p?NB&Gp*Btk?611CR__g(!wxs1`Y|Ev{NVfrGkjK7X%{Pjz|4SibtpXag5sSW)-RhFu38b>RaNYiZ!6R7o7NgA?x6x9tK zLv=3y!BM^yT{vzR<>~}s-Tp<`nI}QUZdbtQlcM}PBBA7viV&y&jWfw?6Cvso3d#8+ zejL>WZ6tq05-P%&zqnf#>gGzNW*-*fUg;dNK4v)f&D@Uab{(W=&4I(n-H3kKLcS(} zU)5sAVhoZn5IY67ZC%7i!U#GyJuq^!@jvz8h8mV*bV?M|C*{JO>FC8}GE}1-^vlGb zK=LsH8-F{wi3z{&m+b!MPKh zI{^j+7~ph;!|ZP?WS$2j@KZGOOCu3^CxYplaoBgjA5To9(QrK)c8ZahoaliS`u6A> zZGerNCF#<&yT~U41-e}5RBg%zMzvLk(uj-wvT>L{S<`~op8*K zh=xwW4MefL_Av*%VE8Bo%D!Rn*d7dNu>wpS*AJuM5%e*eD<57YNpEwFU97zYV_OWq2SnXT4c-mJ{J$dab*c)E|$T^=`)rZ zRiXJoF7`S09}|%6jp`pu-M7^6{fV~sMRg_Os_^|`y+&g zKEO?rD*R9^z;7j%hjpO==R@Prx4r;p|90TC?{C;|8cUxkN>g{C1}IjJqc@CR;DrAa zDt>7eb>3bF<(bm7_oFYgPg&!lSs@HgFNB)pa!e^RB#rw1Wcr5$H23}{*J~b=xqsWq zv`=fu%L%dw8hMY1?lC2y7FKkpw-sH)_Tr05tmuy>E4sYLiWa=GqO+!1)2>OXxPN;% z-y-WFNn9w;>6#}+5>`q>B3T0BbF8s8^*q9b{jl+=8y+54!us#gFp}E=TEx1na@lMY zWXyRlvmE_UNh8LZ{m@6mJN{=ejzM#QfpJB3Kkg_ZQ*so&wSzzLH~e zc^ta>m+`{~EBF@OV^O+N72dU9NdKg*{O`j0yz71Pd|mNqA{A3bzAn8+q@~wm$+Dfu zdK}J~JYxc%_MPJweIEtymv@PcV+RR;I}bn4Ccr)<87e)E|CH0>X*26KIEKJT52Uy` zuwFb5Y+(Wem*T<4RA=dPnj4d57u>1dg34%31um%V)Ai#hC0|E^Et71S> zKML0uMBFsUPr~_{JU@*dlCZMN#PiEEf~A@`=Gta0V_8xLBiwV{Jmk% z$np(l_}u%vbh%w5)0vWVRx~apQ~8~wb7MP^6wVIQ-LJZLvGhwQ)hneD&pgCd| z@(agcugDmjd`{uF=b>j- zIp!xbeerQR%p}tB+AIcDhtiOFEDr;odHC`t1N#Saap-LlyjDa*{B8#N@^cVqkPdnG z0>sOYq?_#vV0X|D2U9|@q9qG=>k1L9nhw9EVpOXl5#(VlvcD8Tb#f&}I@G~vT_e2b zH(2yI<_ z9HoWu_+AX+pO3HNCG7PTpgtrEM@QD+p1UxvBd>GaV~DSFR-BpuaR zj*&}?vEaxnTs(9XgJ-$W*^*48j+GOVunTw9jC)dX3qR)Klw+NC6UepY2@Y)0u20XV4y4`9F4URcwgm@ z{hwnX+#3y(ZQ(dSIu^lmSwGe+wx9nq7GusTXDv*EK-iMr?Fbmw*Eo8{zJy8#wg;6R+q(ifs#2(VZ-)ar4jnG11$qjI0`an%r z(Cf)_>4qzd>HU2*keYG@7CEjcQ4N4?dmYXj`@?pvFM=QW;prtGC{7K4=S6>Lrg)%! zW;7n1-^>;zMgz9q#U|Md8RQ zjFr!UPG(;v1fPruMz=twCtI2_!M=PQ|OK^T)1)_EoV`moY z+lnfIHIIjZ&{Ed-l#A6@OAz&<9VKGsvIu*tN4b0s!t^0DH0 z2<$)mptEl))^uB8PL>$HSIA+L!6KHUp9s?#-^i4+ldv!~h_uJXl8e$De&r*N5;sl? zp1!$6$CO*qnH^Si!kZ=JY>RT4VZ#k_OyMr)h3*ic?`+A>@B<`qu!EC-U@E!{{^*=i z_r{Jzbyz(~luoyhp`%#`g!msBs{d7<7HBEa10z(a^8-RJu31RKs?4Y_(_yPCY^YYX z4VAC4p*z?uncY9fxNT>_Kj*T!MmDr!M>|w@*iha?E>(Fkl9oM{qRm@nsp1G}>a&$M3DPajl+U-3fD1bl3bT#j_kOt}c)JNKv+M-{V1NTtk1$!N;#DI8qRcX}`iTGd~<$W7Zd75P)&-0}z*Efoqq~z=`QSqk6BxKynkd_^g0w ztPbT1XOXOP?IgH3hKTrs99PaJkB$0BQA`Vtmg~?pCc-4WR}2f%hvT_}C@NbtX|KB$ zZ~xFVd>HS9vtP%M729XgcO}9|{@{xup%|=D4nxf}Pq@!;$F4tq;H{6q2lYtY2=qnH zcprQ^5sDGoA-L)g0JVWQ$Qd)v-5HC0b}4XM=7u9n3UPpCaP7bAkKe+15F1E>?wCk; zsieZ^ZXP(MC9tp0N7KY~bmr#a@WFKa*-(PTNtxI*r5v}M`6x+wgv&}l@JdUOX1=XQ zT5bX&3sQ06OdN!s7qUI@bc|$NQKg-AFEnIfMQ{c}=N4eOaW0Y<^AUC;3)!qo%xix+ zOq2_8@Kza)b>2d7coS6DjiXcIWax08GB`1h=mCxt)h~8H>#7#=rqB>#Pe$RIOeI3j zT*AI<7tr}|7j}DOp?yX*O#jrv(V!lB_ROzvz5oL~d9ck(#qhToNZMV9h5yLY-IRl4 zOgp~NQG~{UG*oXZ#D_n{c*{-2+^eNnHc*6FZZC2DcL|JCD$%*f1FIsc@n+e0YAxM? z$|zIJ@Y;uA3Wp%ga!7UK8=%6x&f7-=qhDx3FMl08S~S=^U?V9$D~k+ieSTx#0)Cyf zL`nOlOE~h#icT#U2b=6je%*v|e2jm0Jya2koG%P*cmTM`MB8qco^ zDxJsq+Mk!nK4!b!?YUt5?khz=p&NI7q21a1INjve1YP+u24ZWTv%UmbINW3V)8+5Uc;j-Sp8N(Hag={SNrvQDOHixZ z(VRuemvBim2q)yVF*aVC=1Y&F@IIIxXPhj)7Q=mN!7FAN^0j;{mv4a1t7d3?dWZ`f+aPi94>FybuwbB?b?_FW z#W@cN?lDOGnFh;>OlYo1#gF?1$n*?C<@Q`G-oZnTP$`T$dGMZ)h8K4#5L3W|OiUKm zU8{qkaV3m)rK7O06k_pJ=-k}|7pHP8(9LF=X*+yWlyNav4|1#IX-|6)lv`C{X>tN8 zJF}p9#uxm@t!VksiI0=2v3*Jjw#-bz*6}59YRp8na0YUhrlH_m9@EleQ0!d@yVFT1 z74AU5$~2sun}Z*Ag(ynT!j^^{@K)rYV@w(bS$}V!cs|T~S|PNz4+fr6bawqP8vDo# zd9!cAtI`@urcT(|?S@|caA+%g;son7dw6a#e%D_@xU498!X>fitTg|`+=oQ-`U3dZ zS<$ckR#aNLhxgSaj3|c$@f@sTNXRoWEcbXqJYK#gZMsvjIe3ut260iAI+w1Su1;l` z&f46vke)lFN^P>sav6W!!tUQmwxLJEZRk}m8#>&c^$T3Eq4baqZBJc9Ux|rQz2(o5kur?B-kL$r z%Ra;UC!=UY=_gpR?upRgQFM&)a5@;o@@*sIkRK$9qj zUxR;DDVtnN+zqAQNhJK467D}ZPi*<|Bu?)vQDgZ7OO~3ExjIJ>=VpMtnTz;ZH9F{B zt__pMujFmfeNs^xPP+f@#gt2@_>YX@&_8D*M`ztnzQ;fx@v>K9dB)2~n_>(p(M}-V z{U!e% z1k2ZAJ_6%PKTMdCh^e0=@HaIUX_I0w(b*rz5~J|Z?=qsaJh9jD3zEmt`CB|dS!4xF^&BS5lN*v!(0G;+) zsF&uTwmKI@EvdL1kcJ~W3g9BnN256(CR^+9Td@%*#1yCc<#A2_m}&V8Zvs<-2d-=vIc$F+4n*Z;hufw&Jp*jQmdEn_ zW!|DX=`otL?_%L2#@TmBQ%`$I%HJ}Y?Y~RX8Q*`voaImP?|E^mzRkky5J!mq2#217 zHfn`Zh*THrE!(w;TpB$ZyzjDjK9Oa{-CqjVfw$zsiuLI5Gz5v9$k}~kH)ctUgx$F3 zWcU;_@?K|L=F?e-rI$VcfMJ_J8&Jntwk+w=J`wmOZxg(Ki8q6|4>a`L#jt-U;420R{vZ`0tK^ zrpw{j^voACFNYv>b2tLN2jfsf2sqP|U@07mFB1}3M{5jn#lkTA(O_&snK?qyeT_s)CbQvH&2WR8Yzry*vJFCcHD0{F!pp?qx%Q>cWThur#OnEsAs z_rDE6W`Qqm@A83uZvgsO<^iuY0QzIx(Q(xWLHsM^X!UrSp=^xz`_4f9ryIJLxnt1W z10RaLk!2i&`hY+jSm2Fs=HWF zxf#o|;M>Z_$!BfoYiNSrxBJ+#q#c3t^{LuZF75omr4{4#X`hllHPzCm%hu`BF=qO7 z+mm9L_~u~2_C(mpC&0}k0p^2o(7%w5cTD#c3r~i|qa0k`ACHe;ym2x<4f~REQDK`0 z`L2AFnG|D(TsjU)<>3Z9risme*&fY=G4t?Jl{!qhQVER}^)NapL{BKT;)0DP*0(j_ z5Bs^BUKdo9ej`5kE&_V)piQI@qCyX$ySoZP8){)#T!EZ}RaoU$hbte-QM8ti)o-$K zt0EO|M^!^9;TEJ++VDQR0MqZ6;(<8(W0da?>F zSsu73J%=tbR;AnkE&8zoRPxVCdhr#P7D*b=@WM4z_}5zcOMM*`8eC1^Dd^G!9}OyE zQjcQe z*D>wZPt}I5pnuSEc_NMM9Y-w;$5PD+oFeN5}uRe1%uGE{6Kt;%^`;dbI39;0;wezk$HGN>seDraZVYB=R2QN`h6vF z=IxxTu@<~<_m1*T1b!tR315hxP&N5Bvy8~^bR;82S@J{nIFqUFZ%CQXX5{rsK`7$| z`E&3Fe}?-uEc>$y-5R54!VTO1D~J7G*Bg;-4ph6u>EHeM|8<<;t6(Su}s>y5{Dk!XBinye_xkA3?4BKBN! zK&RPFjQDW@fj9TT@!@eKm>mPD`%OM?*cTs;tOo{5dm{Lq*ff(+KVa7eTS=G<_&nAT(7jtD$ClYlo8K`?g?!QIc%(EH51 zy;X_$-N?s+>J%vasKi*mJGgJOghpC$=@oY_Eso^U);um1ZRXOoy<9rE zeY)hFK8;{p^VY;Hgv`jnhwll{V|wfoj}#bd7vbKG49sC(g`K}rAU!)2Q=(F_qCO4z zp?uiY7UQQ$In!-(aQaypc8SDe%ddQVw#$Z4Lm}(rRjH~fm?IGT!bU-er7!P*bg=aU@h!^niqOKK3SJpsWt_}5rbubBN zLW64~O1Br`s81H&8Zng3Jf9%tXhap)EmrtMcPsPMcs=+Fw|`@L30Q}7y`R2_+(3p&Wmd51}_{B_R# znl?*o>)xdvPJW8U4nK>3~oZnkASvy?;CwUu}Z$XBB8J@+Bu0v=WQ2!(i6C zf*d2S8E>s*`hh5B`JuL>n24O+sl(dlV;*y zHxI+iN*<&mmuzRgD zv|R15k;^(pm)Iivt0T_vU12%shZhc4;Mm}VZSh{X>9-z=gVwm`WsgJY9tbfHV%hs4 z2woM1EkXgEa$PegB7S`n=|0VIvPAu7$@#-g!pzIkk$yh>JG>cZ^0hDYD67rhT5|x zI1MX?++rU7_!po^`xa#H-ol;YYBXEd;q#~pDC$<>#myR2^j2bVd^zNKr3hB8L$v|Z zY&p!Au;>=}t9bay$-&ayT`*!At!M86Jh?AJ!?IM7;;Es&*G}>()yXCggM3vMP4c-=N`{I1?`PW<3{j^C(RaB8>)*~NC~^wK3g z-hDjj;Wkv&@+5t`@+Uejiqg<+)-21*ik>=5akWnY)mO_%#gH1F&kTb5mt`>f@dV-C zTD0}45gp^HMxTVtp=noiczYxrh^>SsmVJCl&g{$~^UB4smZy(fU-#f+!(DRZunXtt zFhWKY_mB^femtcY>-f#35kzOAINs=9=9exvBp<_85p78oC`=YXxAQc-?01Bzx+J}# zZcVM2ru?7%8y6fWSRVu!5MV%n0Raa7Ct_g1P!^VMk4E661X#Wf#xYTUjGb8Y#jpgMr#C|+KVqNYrs&_8|w@0utMAxCcPe5o|B4@OA%<3O27c)#-35G7%uOP zX@5Pj$FrCC4Qu73Z%QaFe?5iXlf8(lNA3u)bVbK8S0v9&K~1m|vPQFhTv=~uo=(Gj z^;Ddgn~E%!xh1lf&C&DSaL~;Ux6jAIBsUo+)~2FiHXjrFSyw@~9zFL~kKP%SAanu#8LF_jzl#HA~&MH*toQYJSuZuukWAy3j*0uDQogq#6 zypEpRy_SyeT}uajH_(vaEp+{tJ@ny6BU(5yg)GlVgz6}kY1QS9p&2t^d`|&uCY~hQ z*4USdDNlw?ohni<3`gW*knd}_ zohz-W#)EA%-su1)h_#S}cxf!EU5bS(vFd&+HXYcF6K)CE9jr^AN*GY0 zaT0p#WN=Y;FBvVNjH;z8Fup(){!=!=u5b$GL@&k_^Q|0TyI68Q&V{rM#G0* z0t^T+Ai%(X6a$~`grlJ`08^O1^we&DoF3<(GEp16*j$(o{4`^6&@T*CsDKTsmHXOM5i9)Orh-`kQj;cRMb1 z3*pkbY%U$w#HD+lajC&r9%9ay!azM2bIotVF;bsSids!Khu1@M4IlicDF`i&fcfPp zv{WZT<5VJOW*dy>j>z`l~3%f1kfb~-A%X0a@WB#6cAMCIHlR0)aFsW%^BS7HL@wc4Y1 z-%bqY?1S0V_heAPlwQm;qw5xSvK--gWp4($dBTc+IDdX9U~s<_Uae!^+3#xjblwji zMzwJEoHN&1zAcZeVV|Ei$x_PgSxpu8tf99@8q!qTb+n_wfC|^Iql!1T(X4_E^lyp= z?TXHV+XWG-=oXFlyji%D{vGG{8lpjTG}fMSg6(1v&X@(4Ny3-MM92;&^Sc(L@?&YKHOs?}U^t@yX!th!rc7G9<+Mnl9nAABgRwV*|98t>?np5K9Mh96EUOgGpP!X!<5b{makh* z{-(}FwflTLcIqG}S16-T<7(;Uy%qe%8Oo(~(y3&w#uaD`YVv(QJ|ZH?toLI{8}W7- zfhTg3Fl(F1Iw7u6!wL)fMNy!^{ztECg2xNiLIDN@7!Y9Ke?A75$;9J*StK4wJK^~^ z=2;yI!?o<|2tVb9PDc;q&GClW*%0W8`=KZAI)(>1@MbI{T+-0^-*w8 z^oC8hD=sG|BgH)yeW?-XNOxv4>LHlf<_PoS2{=~c%ebgFE*%fT^I|tdv<2ghR}h|! z^o6~r2kV-$$EYe>DDQW~8#OlP^Y#@aUp*jd$FIV9l07WfIHS4kCWL>uVE%?1IFS{M zVK;9gc9S>unlgW^d;om-EHmJHI1EaI5YB#Y`5GTK|DOWk_E2=yFy1Jhh>iCPk!Pnz zE35UWbdMg@{GdlqjO5ZYv$?cMmrJ{ixip^n3U=P$()4gH{lk2+=W4l>uvuaNu?>N>AkA`0P^5 zncIzS%~qTYWc&Ei=~z{mh7U)xaeM{q+PcrWa7}VB^}z7a`_#4$i*Lz=bPJ(=Dk$_k()u-Byg$8=1HsQ;Ddf)tGgr z3S~EMLD8`WRVK+eyz?G>jY}}~Od48qQ!y;H6g@LTS+AH6zRie+|HBHH`14@c9E9PO z{+PD^D1t1!Ny!w}VYb=};)^$vEBlv%yU7`JwG(Ibw8Q+y2Rq1g??6sO*%|u%xi7!+ zXEfiX;u}Azvz&KMWEw_p(?HWbQ_>kb4eknIB7mYK`hqkPafkI=NyVW3Ko-Qd zXwj>m3B|7UbTo|U)aXrgfBa&a)3%q!RD{6v)NbC2c}FmM*)+~4?i?(U7N=*w_Cx%+ zBX+!rMp8s5b_eb!VILP_?t6bil&9nGdU;shQHF!zb|SMZlE^*rA(63{iRybr-t7Jg zp7z)R68}gD)A?`t-``$>&16TMv~Gl2#8uiIWl0;%ENPaaCC$8NK^HVy&`aeObaasg zeNkXRAIvI8P@V<#{9#V(wp_rJn<7Y*n@)6_e6YWECoW6;B9k{eg4^!E-@2@ge?Zon zXe^ZF+|$^slieW0pUwIb3cH8M4sCJhzI;al#h#Pf8zrFf{w8d)SU&A^mS<}x@WBe! zqW}48k>DH)&anUk0u1~|F>vs;52X8V;zex;X88I*uF8+hi3xydfgetHN8|J)e;g`z zz)Lk(9AFt%C1?ClVdH|oMjlwbDFn`S!8jejdSTg2*74X#1infId6$3#7ZWfnG6i*t z!FaJS6D}Glm{Agpg+oqI{&gJ_j(Oo^o;S|92H?>_S8$GbBDK{Yho=QVRoW1yNz19n zSbLtW)kgeWXOG8RNBoR(L)5#Q;2{JT_Il#*tsvNL4o1f}f4Cos#$F%x{8k3Rd1WMO z*}T}~XOYNIi$S18G>oH?P|xxUe$UUujgjr(ZPTOOfqFErR*(8J9^3Yr-Irp%0u?S5 zG2l}5eO#J$flHNan76={OJ^`m_TD_UUth>Pv<~_-f22O0H(8$wRdeZ}Of}XemEmtf zI?NBoK-MP_9|q#lH7_2r>hY+g8F+Xg1J_MT;5gWc@dK?$5iiHfi3ylGE(Laq@u2tl zsIkn%ymvX!=*@+OVl0xMvo0;aY`mXdh?7oKJqI0*tsqrN4`hmxK0$dF@Nhq%}SIlONC-n z6Z$+#F#owPMi|5*{=*prYwW|j;zj5U_JSkd8=PPhluJdkY5qtUX{sYD;Tl>+?UC7Q ziI2g`uw0zWPwUMfkqtqlQ|}C|IykB9d~_4%prZt`-rOgRiud^D?>mXNjtZU|j)d*m zrI>hTDw(&_g?~fzJwJQ(Jib)aX*5Kc6Z7PUFy$|0y#>4IsuOXjQ)uDIFZUxCn|Bbg z9}76`S;eJKYg|d(ohBmPxC2X$XG0|O6AH`cU`$~m!ZuDu_}IhPxn?HDnJ*&Yldh1H zsmWwZVg_lbn9X`$9mp})=R~)B3-(^jao(ykPwkU_gKY0S5lx!hpz9FF1@3XE{nfc$Djl%tjxi zzxIXS34cs+41x5AKve(nM%@H2xTbrd$;}^MK6)Xn#|Dejy%Bma2{rk#=!l5HG}B~k z9+Ld{GQ zdensR*l$ntsOMijIzf(02bOSY8`ER844Ef(2bY>1V*J%Yo*t1&#OZ!E&ov_#A6<)( zuU3Mgm+6?#c;RvbmchzTgStly&i7~GQ&b!*&&1&J`vj=IiHCv;8Hr(%{z9@g&5hjmdnq;1Mj zDq0Vn>@jqiT0LA&v6(EtO02a{MvY<-IQGS;<`%jwm}e)3B>JN9Ox`5K;g~}Nc`=A(^G8mSU3wGvVEWupa5r)oyhyR1N(E0 zQ8g(A$8t`R@urHfHMPf|MJqAU^8`<4_rbFK`BTw($Q&KFPt(%f3&^Gl4f48QjmYVU zW4)s^V)6?}xkUu8_C^}X?X4%aSApC;uH<{TI#If^pZ93J6?tDIN&B8iQ?qh)s`Kg= za;|^lJUo6GVM$J8jLE6D5)%YzCdPSMko_FYL^|AcuA#?VQBJ zNhD~QHSejdE4k~dOcp%&OxEoYr~5Wo(wFlssjavrwSQ?rAHB7p>C9g+|Ca^5Eo4b6 zMp@DiGM4oGEK9mq7xYf13tlP4Vg8^aK7__W%l|qYljAv4_U|N%6laq|ua*)MOC!#$ zlxF_U=k@%%uT037*K;tgRRtaIWpP19kGgkW7tC<6&IZAHBzO-57!Y7UfB^vp{uu@w zx_mLjw9>buT`>O7O*jVn!~bbG%tS*G%Vvu9t&PAbt2i{?i$L<)FqEdVjQl)*j6dj) zkaBP_!7R=krkeTK-;syypIGnaj7U@yrlHn4LaE6O zHL_L^pXi4;o->w9I^mP{DYgfG7%$D@@Nw^MXiXYTer1ja=fer4f7_35uN-kh-UEl9 z+{6hJFUXDZ!1u+hhxWWTXjY^tIp#rPR~`)ZHQ;yh5W?P*Sz~jbQ|Y{u zpWASaY})R`|9jy#ksK1HhgnW+-LwVt`0wp_ont`?HpyYv1Ov>he8C@icmrQ$LNtHP zq6xr4KeFD3|c2dZ*&T=TKty`~dk~R>XhT6ryum*#>)NUZ7E%Ea{x( zjGs=nq;5YgXaVD_6B%bcC~ZkwUpp-6 zyYH6NO3sQ}wP?@-vK71uvlYm6=~p~uzBcBWI}!8H>19P9^GZiQ`%W5{%z?RQEgAjY zp3dE9FW|5O4lCgB0t^T+Ai#hC1OEmFR>nFbe`^rd9SFi3jw{Q5Duwc#FuZvbi(2OA z{5HZJquz&LPiq+NeGY>7kP9ZRkHpcpVK^g_3SF%rG)!W>S%aleolu6W7P)w7kOP;e ziRe9*0t>4gENl&e(mBR$J?&srbpt<_S)lil57wWy$CCQJ5cfHOvG3$rU)VA_)+`Sr zefRJ{r%Ydy#~jo6k}5+AF2iMSlJtkVNzaDzaId3>r*)MCkl@;_F-jBEXb+=WU(%= z!7m{QV?JNa>_~VW%EYICWZ3RYVLUM(Gp+J4esdA-H0B^rM4uLU@nJcl7ROl@Y%|*n z=Wb3%z=mv)$7L8$NJrI%1T@B`LNq52Y727kVnaSG7ZpKU?G_H$Hlo;2fz}AU!>O$m z=wVp`r*39oU|kGmw4`9VRTkoyCqXVP9j0=rNa96cjad>*euiSt7=I*8^u&@o{6=N{C5!;3zHZ(^;}c4?~CT zc$1bJ;^#0StUalM)632Ju5BRc3B zVNcrjMru22h4SyqIh2mLvzrt)p5q(pDv{UQ2Kf6|rk5VLw263C&ZX_<>eSx61aV)a94~& za;y!%O}h^+>XtM|)shM?vZReOEop|BCEY4%NjoN4(nIWfEB0^ou%v2?<1RXCNj0r4 z>Bm4zdM@9Rc6YIUhhbJ!cfJ*E+-^l*+FDV)G%LFK(K5QNzJ@sE`tiHo<`kYF+xgCm z3;1JeTsZvi9i%3_h{QMVpg)#6P>nbT0f+rJu3P`?Gr8dB0=-6n0RaXC82En&14gVz zRCcN#(zrn&bNsPNCX;299%1=cuILMNhu&%CC%teJPk;Gi_6|=xHSou|^=T*^n}}$Z zCFQ_l{avIKG#34oxxZu8V2cW9+F|r z9n&QbhvO^riyo4zh1+pW8t`xx#l(NiczI#%+Dxo%%!G(>8dTB?pun;L=J@C0>0k~@ zl}pgx#CYc`FKFc+!WQ2kNVkNcPBjWg*<71~N*vx9Gq1w0Jm?h0K$vx$X%8jixK;_? zzpX=9R6Q#HKla`;sL8197RG`F1r)IhiVa0nM8yKx>!K_6-Wy_X2zHXtr8jAU(xmq$ zo!miDih>2j-W3&l$L_c1`*~*0oHOq`=g<4($DWX2B(T@qdu3%^Yw_%ZfbuHrcPv9y zdXe$V22#(C(SI*W^HmofT@9GX!VpkAO%N9UE} z!gLk-Dy>3|JQoMP$H7t>i!E+Rn7kni$Ms9_{Xhy-R8B$dE1wM-5(dAe$M9sQFTTHM zMo~i;wmjX5yi6O+H{FCY!QS|8p2lwW{my#tIEuMVW0=YTZ}z8o8SC=6+NAh>5Szr@ zF!C}m_kFR6;}kU^`0Wj>b*o|p5k5T2G=)V!8O0{{JiyMl%wh)`G-XTe_fj{j<8avB z%1*r*hkuX5h4IUBg~Im`?d&{E9?ELNjZP57|Fc@gCw+7Q$mY5cQx` zghq4S^-+_AvbgR_!=1*I$k#?R8M{pNh-Bjj>5)gnKEQvF-R8p2_8fp02?d@|JhhripRq z)o}zTW}!dt7>j+*GrI0YBBU-4mybtbzFPvKl1|~iQW_$EXT#%iDh9VDp!4TUs3j+& zcT^f)o#EXAI}7l4=TGcPvY@q9+%Nko4~?;9_&2cxN|C(V;W+mVWL98zOd-^4bg7T! zR8phMSZaC{0~`EN^eh?GN;$Yuoq?SvQqWeFj>B{FFx0sSM{ZSM=bRkef6jTR!xj8E zV@dXM&Xo%-$y}=pTmO~7=(d2^v}$xIs>Wac+bF+%9zFaogKfKjKGqE|5IunQ{Y>Pj zSHrI31=R37*FSD|AzFSFWh*bEZgeUpwI-qC*b>;5WusCn4vtPuICHHG1}^b9?-h#+ z7f;~u_Auyr`=Q$)FI+6QhI>RiWF88^l(#u}JUkj$o`Ke$3>i63n15hTjH{c@e7^2u z^V4ft$m8R(RG(aSOLHDedgm!r$OPtg!BuD~-GF9CQ$$=D1FH_(P*K+zE%&|(TCF|g z_M7)o!VPL&@)Z(b~d(wB}5_P{6x+1IFpe(l+ZcTcaM(U8BcluedE6ur-BA3df?8 z-dJ=UXAR#^Ell@OU-YfhLE7rE7!;t1mujP+nKy&~jXpE^$6xDjz3ovUG*Z;5R z$kgTkSj#PS`QpzJILG|}Yq_?X$~mmbXbBDBob?pvv9q~nz?O4bEB?5>xrB_DNGNK% zgnD^!&p?8N;?7EF#|sG^R+mz}iIl$VmQrbwl-}Kt(yVsQ6lCa3BlbJfi}pN+_EZVF zn;d2HJ}0xoH_U}o9cwD*TJ}SG^&yZwZ-saIQChrE(GjcAQT}su6vbXE_F91f1qS}B z81VTM4_(fKo*&QT+4?+N;7cgJ>Yl_@Q4%tj@b1}iA9y{9=b7}WxW(tRvL+?q$fZIM z?<-uo5G`$rS8S zO~A4N37G1UgkIaCA?kDrof1k>GNS^ozME6$R}<;)^5KNz7F5-ejm(jSm^4y`Po{D_ zS(A*eUn(%N$(VMg4X3(3**Kn(hM#R-m@zp4Hh)fmIcDOqR|b@C#N*`NV$7Xeh=JcK zFnn@3f(k0plxaz`*IQESGD~V%U`ZZxE$QB-N(BBZMSBtN=1L8KiCrW2tXj}lJ3X>A zZp5&E|Im1#9-9m5@SSHnWSR+RR637+2QC46a@3S?%@&0y9uSG*0NxR?p%!~RRx5=1N0CgbVmv$)B%+~0#!*~)e$Le}GF zY)59E5T)7?KHDas|LgI%=5_;jHr>GRpBe0tZyz-0ZpZ%m2^ckJJnUc1M3wOa_Q%5x zt=dP-eFIifYA==2>QX5!cq^qMEoX{e=uG;- z&UE~`Gu>V8LdyHc(eV25Y@xOeWOR}pG#SClKEG#wt5319<9R0S0xwFM?yb;a{}1oI z|Et$K#q$(rr2+#A3@9-0KL-PurO60-lmwL$H)wZSh9k4MpVB!QH}95URa}47z|rO9x*&S=_qcRJKKW15cN%r8bSTwGwuiSKGI2&zmgpQrh zu~o*MFy!Sb$jt)qBP#&~t>Z9hnKwj-H$dxB7CefM!))Is1n*-AWl`9*u>!sA5|KF1 z3AdEp5#R1OGB?Izo%TuOO^Sqe`xulCPQ~cCQJ9+%kLK@r*wT;*y>=Nm#dYSA_T|`T zcLw{Po6*!4=WwUPIq06?8UFclto_`RWchqn$oUdB<()@gV^>`1&1cV6dt&y!RD|-3 z*V!Kukn=PFDZ@@+T{HJx2qo~pn+uJVUf9~r&8H*EIDcEe7 z4V&&KQFx>hpPb8a=eHcsbc&HXIG6i;i*V@CN#yJKAv@3?+ir*A&8I{d-?`2XRdY{; zK16n-lwfy74R79fz^JyE9Xw-(FTsV_&_%U!+5Ah)x6g2<^sRuIv>LL{iEg3?hhy2S zK@*srX?xjm?gg3odKq4Rd&B1aE*FY4k2BYvUbsJ}2f{xvynMS8K4JD``EM?k^fX2P z14q!(MTgwFoQG4ZDY~>9j>G<)(Xanm(bn--1ySl-W;dQ|%KaU1xT+87TN)stMF>L|EDXGh0y~COrNgE?d*^MYu9Iv(l$^IhD-io&ig)u@d(J zOy$`F-0M12UqZw98qB=|DU&3m&Gpxpi#ccACZR2E5_%oW`D~Sh#9V(xPwp8omD06? zQc5b4QsFl#_2>Pt7Q3A(koSKze|M&}`Yv?I)`iZMPNVee?!vpC?m}a7JNEGKBPM#h z3LUa)*@SlcNq?P!zbej`|2gN2VlNeYslb2&1OG2E@HIUSGqN%!#F-?pCN9>x3>@QJohTr z?YaSr`Azt}z6B40nqZTYiERT?P*dxH@*-cn>>7(FFHgd%_5dt(EHJCHKAAq^*_~x> zY*c^-yZWL(#{RWLW4m!kur08DI-76_>Nkq9X`l=fc{Xdz)N-g~p2j5W z)A)6@7*{fKVXT*n=80+8_AV8XUo#QMb!|V36v*vzFzaR=+9p_14$n(!`e8u}A6QUE zjRkcsw4jOHzhG-ninE+2UwUmpgL+z$AuOr?eoH#iW=R2+=de>-K)F^C4v#qwldVCp zcpn4%$Giv3_cY2(GZFimXQ;;KK<#)f=XG^hvfwll4Ns!ok&}2C6T21pGCsP!)s9*+{)5gr^p8#sS;*}UZ_0RZYk1tKNm&b-9r&w zcJiDlRd)DVZ_HDwVvmO@(c!0KNo$KaEwkGUTkG-IeY6}+13J@bV>PmUq(QDd`j9_U zr;ppq;aK<*Gp3hfdi`;XHh9W@tjrO_HmAnv_MJVEgQbl8Oz_ z&EnkElIyQNJYV1l=c_-)N@zG=s(hZSC%>P?vtj3Oo||pU=edq>pKJuzZ29b#|6M-2 z)k#XiBq`n5CZ(EWDS5w?Qk0%EX*oDkcfpy=I=WDsp$k>-bfLry7g{^M8fShr$i}zN z6m`ARTzS$YuX2Oy2X-mk2K9^FsdHz7tTgqmij#xY?BQ$CM1_+b$Y zvWuW@m5nqfIn>L`@!lZ^qJkQH?c0~4G_s(PAxFE3Jj>PZEM{9bBe_=-w$CiXhl&zN z59J{-yAbV`rD1Pl9-exYAaHCsbc*>*oKFgFY|KROqr8{38_yaO^Ssu>HK-Y6Nn_hA z$my~LiPA0Ty_W^G?XV!~rbC`qrEohU!=_*h(k`)5S*pZ48JnQ!HmVBsBEhSJK_SQ8t^jQ4zDrH>cj;`%{Y89EJf#|ATJ<9qC$_9VQD z8ij|GuZm`ADH|1=z>k@g3%Rmg48qm^lLedPBXc;H zl#C!jZ5XBHK7i`tESP14LNCY@S`8tn|6R;`#44Fvm{w)-q7&@QsoprhAc`GG{li`^ zYh&C07~#=Q1_$q5+#^hgyE`7=?oNk^zX^&qj)nJfRhT*k3GV{d3l}xjWdlk!3Uf*) z;~3|x54p#+KVKa=U+utos{vo9c^0ez*I)zrV=$7?DDEK`yG%l+yZJnqw}cGSB(&?I zguK5<=ikhrQD7ZU5B8gvg+eEuNx z#zXw^zlG_QwJ4p(XQ-a;MeF0U2u=TqLsSpLh2>bjfcLtt&cs;dH28T%Vfqj52T(hS z+SEv>(0Y_Sn?P$K0@(b~x_G>HI*hi=g#F^>aIqeTVCOaX!E@@r9Zp5R9?l3~wGIwt zYcQizByK$_#7gdm-Kv*>$;HQUeybFRkDtKg{jqpvk_-(Y2A#CCVe1~xJqMZibfp;f zVW;uZt_tfO3i#Jj%C*W$l=sQUd2a#BOGiXq^8T zWBkvfZcYJ|!{gz=v#hi_%F$y$1~d~=(S1w&|L;F-F6a4HvAOuLHw&@-$`Lb4h6Zah z%2c(aS$8eyb+QE=aIm0*mKMYYThNSW*^n(sMOjx1x)Z@?${gMyMN5^Y2NWZ&M;X+V zGmv~F6#c!AWBd1TY&ji{D=Ja&4$ea1vjn*HNkr$FIXLyc48Lb(qk}o`KloXM1n+#* z?@Pk|vstL>8;#Tq-uLk00$M+e##o(|$n3YCxem=>%^uO1`m7In+*`_Lp7yYV`?6WZ z`iYo5t{<8{zF>=H__4{i=CIL?i`c3ycPpFg=3|h12tK*IV-cJFvZ-A=i>%dpie|2? zms#7dqdzHjBtE7>?Ly6j)AqY6AKyJ7^xvK)6l}jOOg1PN-f1XN(WwrkqC1dIeAXdr z*AbK$K86MyF{IgJjA;ABQPiQrkNNMNfB>6xk!oqC(3pCQ`9~JZsKNrP_xi9Kr*l~2 zxiuzw!yYgz0|Ttl9gm;A36*`e!ff*-97@o^-m^M1fZa)B3+b`_ab`v4vWsIQm z0nT&XW=QDb z8b0rJP(n#zJRi11LNWIxv{Qxq2lx!v2S+KD6-bGFmQr71XL9j#rX5e5Y4cDQy0*@R zmLb5tU3ze4JbI-hi0ttRp_w)7w^3l zXVCwgGf1(QioH}|K!Jh(DhAH2Nynloyf3OE4S)MR#Proi(RErbww+Eu2%meZZ^%GI zKqi>>C1f_{VD^){820cy_O7{!@O6LD=iXzaZM%orUo!F2xdW*?cA)T9C3@TI8U)X3 zELKiH&xS~Rc0UPwt_4n>%e%npqal9miTw6@nBH$Pjo)#P`B*<@)%E49Zk;>Z)vAKq z3wL6y$972V%y8((J}mpR1TD9hA$)ZL;szyDNj-hF>DRpdbN`*sA>8BaLJ!4A4CRAft&KX3FErXdwJqov; zhR0Sd+R!$NG~!z^a_%EI^nQl%*J}|dDaNHcjfn4BhX-MtGm3IhHm(SdxHsWjhYT>| zG&J$7h8qV@uXX~#pI2d|nN4p9q%bzr@k+1REB_GkEA-{KOhJ2&NZ6S8{ z8e#c{*TTCF;qpQE*5gq3p_JD&o|dK?Qf0R(bgLCqGjJYBt{70$`wVPu)?}KQeV~3} zrKtUw0Fht?#22VbAv2FdXQQfgx*2LW zPQez{19)JdgK2(Uu>yTr#FgnRb%vKP=R+~`;hnLmysKbIX9=zEBB6+G+&|D=LVBuP zW9=y+EuH~8eyD^>IFF6w99GKx23@$1V5XGMcg65rt+Nucd&6hH266t%GqfxMrQ~@@ zN_oAUDZ$p6Q07dL-CXFgg$s4{aiKxYF7&ad0gYerT{N)0f#7N2D(jn|BLDolmteF( zg5(|RG3fV7s?zqQ_74>t_P=^9Q#?;`4k|F9z<>e+|5+GV(C#$q5;8G)OcUpF;V^QJ zM+cK6L@hss->ZZ8Y*zweqDnBfUm5n>+`^S#*D<{MG(IS0;I6n3)$Z--=EqaD6pUx3;1Q;_~=2WE`P!UVPhiO08KmGcRx z?cRa#Q+sfPdv@y&9K)0W(Fox>NtSSw8u0(dpM9TF<`X7jLHBHHKt||T9 zW=aVI8j$?^muwR@ZMJY5Cod@KG@VW*sREh^(6lL8uJ;eG|u&T4uQLhB^ec2P{eWzQu$|2 z&AH|j+qoVU89A7&Wlj&w66vaO z*iyvv!LFY|+U+!)Imk1+=AA{qD}@-Kl7?N=1JT_y2nqaezpBI=9-PN69JvB7wG&zQ zciOOhH4>)D|JcoaFW9n>=j@wSH}tjgX6YBY;N7v4Y;1K4%QbXl`URue;*-OfgUk|s zDSkq%)-2I-`!HGUax45>?onZGlPZi}b&VZ-wp3ms?yPtF7nW)Ch|)c`w7vi3*^e?-#*FdGX3Lt<6Hj1SK{&s0&uR8X&HBFdNyf8?2TpZG{V?ht??><&16a3uGUGN^VcE|9?Apz6*^7}!@cE&bUVReN zLEaZTlJi*&ep~)SOjW#xt5}I=Y4IK|r`{5394?{h+)FTNmV{dEBs9@oLVigSs^&g| z*f#EkMvK&DZx&eLNtu;w9-DP}B3}1#p^2Uf{;D{C{>#eOUHTY&)u2L3x3*!oVu zx{@T6{gH7GWC6C`%tXZGR5X}!59X69Ew#Oev|m8BJJXMwiwY z(0)-F#+hE_U8@B+VJM*Jp9}?b1`kdbq5MS|Gz$x`=3*kEKNaKrhYN7$I%}ARCGGFe zIc&BCxf@x~^=fm{U29I#9cAcOZAMGKR^U1RoWJB{1w$F{j`I17kNJ|l{dJh}oGO=m>1*qDD;9p!gmJH26(!nO| z@NmZ+`{i)op1^MDH?vh?H<@q3D7LVvJGR7JXJ2(E;OEHK%x2&nwtK`&*1CTHEW58| z=Jr?F=A7v)x#AB~nbVEuT4l4Sp@-%3^+YqNR#p=rI$0raIu7;b^EvPlHR(;5yP`$Npge!Lm&ooYs-4a{ib?J5lKT#jM93t{P+Ld1!S;kP3l`=V+vWWEdzJjbBQ zN(TQTo|QGplD1@6kcOrOU3E1l6(w^z8e~R&4ooGxhsC&~!?O~4oW#eLVkD_$K)ZJg z(&|Go*dY=ng@M@P>w}Hj$KVjj`*b^{z@#-DFFNNT*qW0Yxq7m>hHynDLK$zT#YaKli=Q=6aLVBCQ2X*Miz0mKhwN#!U8uQVNKme%KJGR3I~^;6YiSi3p-ksnL(=|+`Fx& zpF_J~@T>lE>8?3~m#eFAV!(0XR^L9NmR$qbkU$xeY?X_on|8{N{a7Kl8B!#3D$fwM zJv%S+pL1J?y4IJ{r-1fi-RojH!Pl-EVyeF*ri#a6`oy_x1lMI#J8(|{*J3a8oLCzR z?vvfXJ+p2S>Y65@OV_v;wxg6%xEFTIA>M0HCZ(W`&h%l4Gj%F-CIfXBQvW#%1sPx2 z**I-Be0K&;wBIlMsM`X)^*(~m++tylnTH_FJu8|qp_X}%UxvyzJ~VrTpTY~P@WLu) zkrfzFU_gNZ1qS{vF<_Bd2A6;{xNzn)REqO(Iwu!PnhS9{F9*#!Ss4AH1QCBLaen4` zSe&ay_2t)CG4D2VlyedCpaAiMPh;>&IR?I|g0^Q4{@hij(e*8em;QlEP9Zv0HbJX4 z7fyWk>O-e=OxTfvO%GG>JJcS-#lHCCXp22uHygOk6RCGR@pR=E#3ud`4r%m7*4Y8@ zN!*2)$77MaVLB`te=_~4ad zH@JApl%}+rQiZY^o&9b~ZP!g{_-#}AIKzx4Cz{c)AB|Yh?kviBm*e>Y-VPAB#rs;3S$iw0SYt_*T!;Ph!JJ-AF{jOuX0(Fy;-2Z1IQoqDHa*YAn;wZc`XCAW zl7sPeQyh->OTZ520E{w>hT14T6UX~SG^ZumVp@ZWiXyK z9ApQYG%)RxI)ds~L;mIwJAeC>=v81syQh^KxT0xW!#~p7g-Dasyb~ z#^qEf%f}zrN%AvSDn-*rTMLWQ`^l#XXNA)rlG(};mqgRl+b4Ghh35^p)BnTDifQ8qPS=k&!MmH2D?V zo_$Lg;&WC=%lR(4csq(Mf0HJ>+b|INBaLx;@lmwC>31%T8rO?Nt)q_D;tWAs4N@*Px#@&y14i;;vsgUKGj@ zGOG;kYtAET{0mg-HzEGiBh2AG(!9}^@#;V&9EZu#X5WE!mA!&X$|v|uQKIsL0vu<` zprS9s?1%Z-z3T+JRwUr!{xD>Ep2S_2hOu1|cn4}4X6c3F+x#F5<1x{%emDw>RL> zD{IP*vLr;SO5A;a&#jK0&2zc*>MLgd$`nETE zn@N$*e6hL70XmvNI3eGIhoe_xN|FOcz6!(WNEd`zM8K$j7n;Mp13zvBVY4(CHz!75 zv7J9QL=;1Lwh~MW=Hhp*FSfN!!knJ(S-Gt)H0{+O*vv+!z#y!BUya$-tC79e0s&oMT}cRZg1doLU8X(2>y`zOS!d>1YsED~Pp zucEo$U)j%OPoc~^kj-?p5WX*+FWXeRTxb)FWa{6JvQ25;EI)FdiOo4%_A#=C)xcJ! zt;V_B?{s)52eIT!j!gT09u{qyBK-JN0=s}p+~Bizqsx`#zh!;pOXl|#9<7NKh4+bP z;WcA0=xP9yniyl^!F~a4*3)7aILo zm1cLi!kkT0F)Zc{^A+7^flePx?nEAAx!u08rS9jE@Npf|-nVBbj~1{*xi4MyQgGP+ z&b3VOT*Xe+3Jm;bVc^o#EX>bI#DsSquuDvb>%d}I7?k5}u?#1FS776h8oYjf z4(3zk$Zr#HL(J#*BU@3R$~&vXRY-0-gS#uPV1#1^Zul3#Vre@Xd-Wc=bozu1-&(Nh zde*EwW7i584)?{e zF4Jki`WfU~YE6kPR`l_yB~3inhFvb-abc7i-S;*n+Zdt;0jD_kKMIWq2ONDIir9lL zU{_pGqPY=!R2E~d=^~tWa>0pZo8f*_0^NUJs2>#yzum`>np}ilmdB9LDGW{Bd3Tp6 z9#wCTp(-gA!4JmcWBn4WZ`Hupq+Uqq|B0;~HWWWMFU6rz1o4qr)cD6EMLiro{Jlf- zsvY>TSQA^yeBrpgiQUYrWbJ$1OJNF8glDuV!$p?g%)pjgne>D3S6v7^&R(4%2Px#aAuOPeZ zFI3NR6t-5~VE5#+vEN$-X?HT2dRGt3J#m#8Pp(Gns4)1HsK`r)cNaS2jZC*|Ul!?j zoQ+m9MEmJ#uyrzo){k*8`sIN8J0{?R*D4J45XyHS4s}NTehaFGwJe7g4xZ^wC5=I7|b0m z3>c8a^kVn2K{Gv=gMJ0G>eya3%YO+Q>lZ9I47I`!y#Q3bWJud}P1Nkbd2)h+!z#|7 z|E%*zvEPdQR$xGZf&UH$vKC~Z>2WUHI%Z&b|7z^f%faxbYFw+W!~~HHpNq@U&8QA_ z*_HUc@GN%Zzrw%0O5`8bjN{vQZ@~5|IJ1rC|4%7LCGTfF)G-F<5L85Ig&Oj3jr%^4%X_;#vv9g94);<+(0NJ*4hva`EX~A_C+TQC5`()ca+D|QP-v}Q%WWh9%>wk;xZ zc_yNc6S${f3nL>Lqm-ebT~46+)!bL`4P?vpSe1T6#!5t|Z-DMbfnF~F4NwIQe9mZ! zI!LpDbJ{tkgns5Uw}S=k(>14_++%R%F{6xBM(ssrWFBfo2P$TgHEgK;BO5xi(ht`k zxnbDcnWPplgGvIe$zZ+}C491=SSNG3)y<4`W5BV>%(SFGe-2TuEbu(WqSd|4mp4+>sc`c^gTZ7Pn zYavu#VToxyF=a&=+oW@W4R~M3W~faOo@kSN!YnBsnf5_lVLMzXIwKgieFfO)4{YpF3CGE$4ogO%6v=IYa*23?}ZA5*yf>oRbb}gI^vwvfmW!Jt) zDjOxt|MXWDlrCZm+<&nVGcEANM@%YyVtN$F{R07Fa^bggj&WaXl$e$$aeo2VW{+~O zK^@m)jd*^+AT`cexfXk9nS`2nHbF<854-IZ@9Y{b<=F#Ln!;zg9F&|%iFX^Ex#~=L z19m~);w3vIT?OSQLBh2guB_jS6)dr3iR^-=Dogm|%;w&jz*HOmvHns1SS(2^KRv>c z)@La=?0@H4rg*O6EL31XfdK^u{rxT(G!!e= z@>wOjO}N}xfu!mx%<6dxdjnJO<4^&@#+Tq(PAYc&jzP+S<9J^ihnD6jIDQL;OwAjH zI#WqwWDjN;lFCkb48;D`)yzOy4_}NrAhmrbtT;9jp3jyb#OMk8OrKeYIiu0|AqyU^ z#$?rBL__b3=#D<4^o5KzSTV8-VbrlJ$bBPdRRPFIWelA*i9*I_71|_#7Q2If>4Umf zF{+x)=xd9JZd?_SN<5=c9rRv&5X1`kL|%E+SX{dR90vl8x;_ zo5$_I(3n8z{PBTteHeE3*^d?N0x+$>6J5S}qhz!L<|=#ONw^pKOT%#g`%%0-6Nu;Y9 z=X8Ya7>CR^i&0xO4=*RZW=CBHq0huoQ1{!%Djuz2J6V#fp&%5!cE4s5Od4dp)lG$t z)4YWO3LBV88MFh&Pq*zt3WZS|uWj zyzQb1jRSbpg- zamzsOu4kaVu^g$a7Ir?>T=&e!;8{G=|Im57(5*$0&PDVxHG}k81Vn|GaizQp*D~ce zwJ9G*1_YT|M1 z+meQKk2H+=>IofdSEPDQqw`TCFf#K4%d_Z#Pra_Q(C*r})K|`wb|}HnXDGbfhvE?D z&6D%qu+rF1ta+^}roB9YDZY#xUyr5k^CfVdv>!tpeW5ydJ$^plj81QMVCHHuypvq8 zaNa@KwjRdFvM9{=2l0ARI(40UX!$(Y!Y~m%yKX}F=a`Vb%!GV+Hdk)B6-7w&snfTU zu>Bl_r^XlH&$Z8cy-#7HGzL|z4X_lAqWF(9=vqogI{YLUX$}YRFLDG;3!O<>>DIK% zhkFjDnN#q0qDOk5_rn>rHj9WS(V|CA2((Q1!M5BBEq{G^C$0}xYI|bLuk8pL?~0ux z!|+}s6tgyk@%I#oIFSQ;J?#;-x_=y^ym;yRS_pKB!1g0pP2;B#lAKX7J`{A|0i@^)q| z!ix>jA|0~;nUQNN3(N5o%~dL7Ycy13cc%OiMf1+ug}Ze{;rWXYx5%AUIv&U5@&vSX ze8KGfM+))t_aLJFl@J!aQRwWUDb#2UV(V-Vv&mNiOcJJjGHKXV#kz)hFy>~;%DP!V z+;uT_o}7t}x<|0u`xv@<*RqCtyz)1?yU1;=Hb(RbXAfK=Dy_N=#M8$c@pXj2_FoT^ zIqhC6?_tenxh%x=WTlvvZWPlq&S|rEiz(BIdtiOVboZo~e7R5ddxMx9UUOdo*JAte ztXL=Bb?}t?2~N~XD5oRunYEJA=0HBv^;k;ECeGw&zlMhUB;rSOA?w!Zf@oSFH@5g= zBNJ4kSaM@LGYw2<+D}yQ`K$rUeYcI(NMkW??jUSQ*iXYl6*}zydVNydSDaZ23@9+5 zz<>e+|2qsw>q=qCvta*hsD(#aH5Tl@2FK(w_*XRIO7crgtLjB9N4iqMlRmU?kOm!c zP^A~oQZcRW7n(b@@|>;bu+_SRBb>YK7JAV2e?K4%`iz=84X`T6z&zU`y!=~=8Oq7n zNojcDn1xLjvvJck1=eT6@NaM&GAlx{Pb(5(F8!(f(th+keOvCYQ~c^^lz{ zdBv`HPsH;1SJ>CiKUn)&y%G0$3hB=_rWd`qCpNc;?F{LR3;WFIj+HNZzH>uc+$u!N z4?<1f9o=8sr*g}9`wYD8ZT&Gh{K8a(UdtvfGhrkZHqEA>_Os}3+6?m7v?3KVbDFV>XqzS@tDzz~Y9=D9A`y)oegyBYM&sfN zFNB1+Vsu&{-lhlQ&Qo7p&T+x&)d&y=4!to4t@upB1o{ zoe{41?_#apCs&02Y7mS+EfUguj1*>G+a}W;+<{%_e}Wn5ZxO6@ZnHjpj|xLDjg?OL zEj;SmPgMH$o^0$+EqPs^&hpK*zt}CmzH-e8j;Ol>O`BZJy=`WciH5+ z4Q%y_yCU89r`S@%7tG^{6FTkQjPM)W!~5$kI(i;LYo#GpY8Yd2S2uQJr!8}FZHG&v zW0-nspv*DEh=~Up3R_o972M8FK({gJ=rC^wZ5$z{_Y-*jfQ^{e&gIzz%fzH^C#HS- z#Ps&4nC5XF>ryPHWS+le`dv)Fcn_^H?>m@vg!>3`B$Uqm1j^&2^kX0Q!`4da?_g)r zewn~Jo&3n$+SRb|ULV*z>uOQ$^*O9&j6WN2t(Q=;=mQI5r`fOf`RtX4n^4Pp#%2s# zgs2-c$Yzg%!~XBCQ;NqGXP5#53JfSPpuoWYih-57Whi}m6+LI2N88bIOiL2*#PkA| zF1v&|z76swoS2HHxI~1kO@+gq6Hs09 zi@93g!fK!4v`(Uq?TzhF_f-eibv&3_VLxaE9b+cCi_yAK1FA2k(mh>&T)#Sl1{Bn> zsTF{#)i3tyuPJ@*V8 zX!JRW)jM4gIn@guivuuHYd@?e97B@bUJNhr$E-c^Sbt21GWthBX+OVzW-FSB`rUmOx*i>Y^_WX$*XGf|UGu44Wgh*^<~;W1OzL&ViaNxY6CX39(k>#3 zUv5Huwf*5BIe^r^E|}lxIJEa1!|G#BSoAaif1SP2dN~l{S-yx?O-E2fG#2qWxV3TF za1!r;$r*cmeBp_KrP&y*84LGz@tE*y2Ys+VXu7&0b@LbVom^XzJpD zd=Ui(FT}j)v0Qt1z<^7(kZDz+y`~>FxjbV@qF3zSr`JsONCQ5<5=A4l=EIl&j#Ia7 z69SA4<(7k<3E`1Sf?IX9EGcm%T|M4SSa>B?c-FI8kXZzi|&M8RSI*XxtwzT(VMU_gNZ1qKut_}^h5c(@#nniu&w zUVzzs&!7agz=3QSdfq~=S$m#Cr9r3OyhGKP+i=fpz^$%+$O=luXvanjj<}D;c~3C@ zO${=V`TSR2BTnpV;5q!&xb2^h0XYR&Hm3;ssrlG6st^{|#V`!woMA;V68z6%edklC zvPr;#UMVRy$A-7ltcWU7_u?9(}WxBFe!H4yucx@oyWd z&v-*)izCjQ^~2VYLGb+GiOfmP2s?iivp>6|p(-4Sd9L_8$N`Soe!%o-Oj$L6HXThy zTH^`axg7?t3t5=?E(Y^B_f)qH$N$IPn?}_b|L^`v(L|ahDMKgwt8nn%s^s9EzoXxe)>C?b@SIh83x2@x{<@2BT`e*bmOgL597bM^zvs?}iMuJyU! z`?|09_0riDgY{SFtnb(vR1E7=LRv;t_*NMzd`%82#xmjlGa1Tymm$_2goEq@C?5zw z)$B0Ho1|h}#T7`(M_^Y?629H>!w;2699SKUWo8kmt3Y`nk-9q&wdQs6|&8d>#N2s9@XK4NDAaYsq7#%!`)wwDVmOl>u z)Jt#lkPMN zhF#NDR>~|Djl*e+$;{yO)QSsYtc5R)*#U78?8#A2ws3hZORD&XMuGMQ=HNGRa`fh7 z5;1K_WY+RD)w$=8jIrm8#px+z;Jv0sc+)UT!E2)F;;)~q0$V2Y(*}xM%F!lT@*afY zz$BLEc%WjaOR58}lF}JZiRJyvU_`72JJ1d((ST~$LTG0Ppu$@LH`mjQg)O&8kn}X8 zhb;t|pAQ(XFU63ot#t3&kwl18a8pwrpRhsj0EDJGar{dXGBj#%p-TlZ&!eC}m58-} zFH(UEJgA`M9+bjH4{Dg6WzDQSDA!9Klyj;FRmr4%+E*Ubc3w|PW}PS1O*0SlQt0m3 zC!SRBE@LWV|39exl|k6kE^>X(X`Cta(HL%zCvnLO(JA$r=omMV;n&WD$|B^aV>78P zK0-!rbK|#AKWW{N&e$}fgM^?By%bu72JWK@8x)Qv>uL0OekILLjRXWoD;qe#Z@Qzu7WWd`vfU- zk5tUpal>}?SafqGgWL$m?2S3leRCB%d7@EMl8(xPWDNew#-Vk?C`$B&b%PHc?2AFY zWju!SgOI6Ojh3c(^z5SdvLOpP{+KSJc~#o6D7T`0>YK?}p5~9x zswljhM`ti3qo7TD*4z?9_#hU8P>E=Ko|A~J+D4SK=>f#OSOG49VzBx;U=S;dvKVg| z*{=a>i6LC+Yw~`*G)6KAW#OKU=FiJ8$a+g+_RWUtL_c9}Q9$wXT4MX;8JU`_BgQ+^ zk#T7b42~$XOzYpW%-yqCT(8|&CV#&()25D4fv-B5L0rCUL%+|=jfV=@HYYq-qKB0j zw|nI<|0A^_}yn)eg(3Kk^#XhuvzFXmv;}JJ?tpml zAF}MlOu}6`#PX?FNFbrk8cOkHy*3C&!|7SnsxOHe$&%YibFl@sTk2uIwI2q{c_H6s zhb!M!p`>Smn6DMW>O>~-n){vnI_g1%2zyZ1m(iUClm``UMsvF^cu>#j&H~+f59%$= z^wOkvyp)tZss0n5)a^GZ2v+Y${H9p+(S2s&O>IOvbv@dSZG*m>G^zr3VdttsBFKG@ zbd)|ME>e>C>6c078iz7Q7rZ6!pGsg%?h5uh8j+O+p>(G*$BX^XGm7&u=f1_!07nBH z4RAE@Uuodn4sA#s+lYnQf`|+u82d5@!y*HaOkRht!xRoG(7gdt1~AzC5ra#gVYM(D zS(|GiZCrydCbei=c^yIXZqYrQozS%$#uQgC?AxA0{ro*tdR5{%*APsMYO(NdKX!gU zikmO z@_{F0RATW&-4}{~g5Y`Hf!>$$K*p=Hu$vhOe){=+|9xj{s1ln{jS7eww=JcDwR%aL1(LDwBD%RNRWkP33kHBM49*M*U8)erZ zMw$-~)Ha|X>m16XGx1X*4H>d|IMwi(sBbyNO5x3C>3&*^FT0LWU7b%@qooB5ZWA-s zczh`P@If248a2q;y``9$mOaW;fA2%0BBhy0yLAa~S{s?Y|0>aV=}q=Gye4B(-elRY zbaKdenxQyN&#~Wa$R?%Tg!@7y*>Pu(=-dnIGm2|oG#>qiBMPX%CMhmhO@KU#ldrUIr8$( zqEtN!8z+|2Sr7wA)h&nQVKF=y7le;q4CC~dML4G5LvkX*iTQFm6MU$PB$J(3x`PYc z%xSboOd~}um(e6h=dV?yS;qxJp!xD9j85KVHkK(uqO^?JnwUA_D4VM$Hciu24KZSdG{^X^QEoC9XnPLB{ zbBgmh&i#v{0geVZ8sKQ)KQ)jX;tbaDB5abl4R!t?Y}>8}_jY}dv)2$JCr-?)zj4KGpg_9)K>Q4gGN3+AQNSQg?M(q1ZR>$ zV8xS$M;@`w2MiWd(LRKdYu!K%uTrBXbGK2yAFQC-yOgO$lQuGci6<5bUqt>kV@$jy z^qgvgr=q9muG0u?EwMwMt|NB2c%tmP8&u6huv5hsL96`0NAm;nHo8Ey`YbB1AH`cF zL36JI+8>$XpZOUi`I{p8iYpXctTEnl9v9!lV9b0a_2)q_mh^{XP5_;sjS9!J$w0h6 zHiK%q8;vQPwGB&>=_DvY~G@5*1&Bcwv)mUw$##hEG6DItiFC5#5s&ucY=hsk6!x^>@7Lx$WZ1QbYAmNgAgkiM{ z1YGB%uImpGE%b)pRe8EQcQ#53e8Hf(v{KzONUr?`)*5<-j5GMq1T=ntvm6=N74XeSMa+=<#B7viMqPofe>i8=Rg z*1R)AM6X^`L#HQz`jf)R6a42H#rc?X-{NS1qXCWvI2!n`H1IoT7&i8+(39nalODYrmcn;t)#uhHIJ~a^BInv>cmvvb$VB80J7Fh zocY*;-MgPc^FlRVsLJE!zj1P7q6OrUH$tA?$H+4-N`CkqPDk@nhifFMy)FE7=fNbR zm5Lx~TL|BA7KBR*5kDgun&Xj3{&x~4pH9Gd?{@54ZU;M+P?kuS8D`9M1Xtk^R9Z5i z+GmT5)jCM`HG+}wDSY~R9BVD@;WXb8k|I7hxzq`&#;5VI_BfV>oW&pRFeCsbhvbLS(CW@DWX z4M(F!5@vV$qps8g5B0KBk1?rjIL>B`2}#EZyU}F$fV#h6w!Qh*J>6f&|T z&DCqj$j9HrX74?6->L+sSPEq0<)8Re`)0 zn;u9}3sl4D{6Q@zJutYs)p8zzG(5QL;?F9=j7V!`ZVxcpp~5XUpP zcJ>UC%RTVB*dLl1C(#-k0J(#-m+E^MT`x^AyUP(P7leR!!UH>L2Emq3u6XEXkK4!3 zAw1O|dQ%p-vGWol9|fb}vKM-m#)12W4J_6N;cL|~WcQ!Og6B#2@y`T|$YAW3@y4-D zewZ=f0Y2{el)%!fDAA9g`LL-dvJQc6gc043;1AD#(a3$33|_4iyt)~Q_zXX!_y*#M zbtH6EQ!sbP9~+bt;ju0ZKkj-$H9Q_3D*>yzZk9ZM?o+yxDpDnS-sn;wr9s#eqr4lc))xj zeT?-?RGD1=_kpNAXe8csrkML$0Kbg3f@Lm=>j$|p=C6nkAyO#d`buUG>tRv&74p^B zfINFY2kR}g$=MG|P<--@M2|Ou%y@(q1_E@BV;f=eeI^BN!sL}gJMq!xV^x3LMC#3& zp>?4P?yIMuIASNn+*&j`sP zDa7oc81@B-lG&DzNV?<$;`A*UtD+<@vg16C%4I?=D1^f};4luh|K~Z)`IvL>=4gPU z0geX#dkx4jI$&nqh10OYoDyB^rhqS8FEGY)5iP#jNZ&k$-Gw%|HynYgGD#GqCqP%@ z30SxL@Ji_geCa(Sf$yc@UwaFQcW$CThwe9+Qvx@)GOW2>fm_BmaIArc>PekRC4Zkq zaj$p*)lj-GYV;NIhlX+I)-9Bo4x*;578&kLY&uYc6;EPdC>V|C85iL)9Sd&jc#O0~ zfKSW>ydEuB+~|OF2_bkmHvx`se4+YnKa_S`!Sec9L}k%kr+2)Nb0reTrGqg3I)qZIpl}T(IBWB`{3t^V7LT_fsdYjC04Y;#i|Bk za$RU5mH5P<*%J@S;rY7}iYwR%T;Y#BgGW)eN0ge;c!+A{rM+hMPIUO&VkO-rTTprq zd;Ru+>oEiM-qL9CUyIx0()jiAGf~oiO6JkKa0uN5$FdL$_v7VM%cGc3R|ZoA*LmdaCd$*rLV`f zT`!;<-wQ!@Eu%)8?#Jq|z^9$jkZ%$~%RVL=uYbh{18-Qim7=9DlN9~*Bb%xo6OpU0 znLczsgw2W$To>V{Ztth4`Qn%G)j|yX(}!W?vJ5*euSUuI6<8)^j?9+BDClTKD9zqo zsJIzVs(mo~y%vm2&9N(D2L@)Wg^6@M>1f>p&%4W!qQHx(t&=pKp-h%Bnb?M?X@U7iV@fLNS* z5QTZ|mvF7|GIrBh-TJ~5+}XJqc{8<8plb}`e-@07$8qALGmgGGkL}fG@K4Mdsy%jC zC3FtA=AVUZtr?21xnXL#3v%NfarkZkdN#O0zvDa-*ZAS6svnNm2jfg;H2qB24vqqPhZ8ij3jvSCZoXE6?dsX?2OOAxr>)^ik_z}5-wwhgFiA~)9)M}C4m}@fWg;N zFnC*OURMpI__Ogcq#m=h+1S;ekG`Q;tUZ*8#ewsv#3gCyT@VJ*^#RnL4n1o8^j;k6 zkH&e+gRru3LGy$sTtxB^+I9?iXO_e2uMmb`?Sgpr44j$G4~1zicukCuN*}t3mIFpa~@g}h3C(4+N zml`;o(L@pv zb~G>S;(WO3^Wh-RZ6coj1M_&x*x5IgkC(1y~PV) z&G&-5{p*2_f_OxI^2Ua7a}X>b^WaL1Sg62yKn%~l>WG!q3g~n!!K9NE zy7(91@vC)^X;H(D!5w&g=m@sV7RKA>=BTgeBxbh_(M#t@d?pRyn7j))@k?-PXb-rp zG|{qj0TxJHz%o1fdyRI%X2D4ukJd%0%^I+Ou!#Ge8KhUa0Z$ifz}%)$a?4qc7@nb@ zP23LVc(EKWmgB{8G{DgSM*|!U{0}s+>3jkb7k|R>tu?TezJ`l|*+_lEMs3tv1au2g z;@7#bV2tj>dL4~8{Xp0}NFvXAui?U{8|YELfg^W%(C*O%MX8^t(G#RBx8K7#_A9)1 zU}HeG6RIi|=sli~w&NABG|GiuX*uQ(Rl>5X9b6^V@Sf9!SB-5jGp|Qfbu~;}bC4#J zgJ)ey*xhs$QR6lU-Km9EJsE1f?s>4hj^Y=002+>-!kFH1{5k3ceIWx>-#P`2eIB@x z7J(2t7uqK6f{;W%?C?H?*HbQtI1!CxI`8}VQv@`>2E%Yx5LVGyN$FZQtVR-o$3n19 zI2I+MV$?UCVl>ypL&Gf*Z|OZQpXx|d&-V;uvhIy=n%;)3-x z3n4stbH_>&L+%-ZpaVfedi=O zrCCLS*KLFU^D5HdSw>1Hg>l3KySh|S({gyb-4?zF7h_@HcQWYzi?Q&Y3NCz(W%5my zvQ{PvLZf6q_4a2FXNLVBoLd|(;=lDGIM;)7JvbWRXyE@v4K&Uzfos-3dUxv)zSMQ# zR2mZ!bJ+NO;|`9y)uFW$dEx&-Y(+1O%~flTd4Y*}~~cTTo4OosHZtuX?juiPP%Y z=V1^Xih?d{B&^b-pZP|>TAuDkXcwbql}l5GTMF=GoQKl59)N*mA5eOo-lbX;0D0ah z@b&v(=C;c)w+I7c$_E!TTk!i^B(~CQ0`HsA(DlDSXJmshMt2w7Fb_wn`7LZ7@j@iRtoqh9*niA zOJM9>MmEoRNQ8?s$alfFB=$uP`C|5g{I)qx==~$ceW9o1Thc;&JenmCp#|)@I*q7G-HQK4&HAZ)UFuPG{arf5ULlzDr^!W5}uF zU&#AZA7a;GOKi)plhaFDNZqw$bl<)VO_?n4c!lG0QY{HjtA)^)ZzN%~irDkjqffMo zW&uZGm1_vR-q*l9cmTUYdvQNX3e`myu)WfWy}H>NnP&PpH!w)-eZsI_lu7&hD`6Xw zfl387Be9y!Pe^XWuYzS%+D8GZXI26<*6Cr7p#e7JZJ|AP9#pS80gWbZED%|Nq35PB zl2WJN->4uY<~Rz?WbieR4=cXPLwc4fb~=udLnjIz>mncASkY@49%Rt|FF|M6p z;L)KVy2D}C#MGC>_qBY>#gVHl{b zhhMh>?BCoYrwv5O^XYtIU!)DL?Q76H`x^8Q2Xbau&J4@(UpN}zXn>;ujt2e*8d$Y- z71g9So9b&ChM>TGNF1(5E1kVezCVbmdE+SDU4+9L4%pINh`gnr(Q>32xY|Q^-*>{M z=MDrU9z*F;J5mz6Q0Lzdb?0mJy`6qOy6_f`y4K_Fxf=Yn7{N$2lkQn6#cD=5UWk?9 zxl%diMHQivm)?KxDMhwn6Be|U;LFn_9HCiYg!ck;JK|vD?vAmEr^H!U4eZxPF;sL4 zahuN}c1$0IiFSyyw1!b}K1}VosH>CW)Sm_OsI}rzklG%Ep1~lb6lTKTFb*yeMwG{y zENBlFAVNlh+MFMV6JoSKEA4~ec$$NtoJpYDC9yl>AG4Pb5AI z;TrA5O3pCGf$C>uS(_A0PSLsBnb*nG!X8|C$U?Mw1kM(eL4HXOcD#y&@S|N|FW!oc z#^c1bFOj@hS%%|nYw(9=XWf!7MMBME{QNsfc3E4KS1px@*nR~C>#7-!=Vs%_+#igZ ztmWhdcMZtG^SIy0k1y}`;oRi`h_ne({H5!t_VN?($>pI0RAx~jnV!&F*Fk0-+5)w$ z@kD=@8zOd|M9{S}=;z*uq;)j!;5!5VT=<}KXafrWeI`OjXQ9b-KjQw$BJAHPT->=I zVh;R}S6YGnL0fQ2*$jF=r%6($38Z7gG0Vjgi+-QQ7TFc(u9e2NxjYc|R7Ks=^*DD$ z0Y%?O$lC7Jkf8f{*9lm`K5`RQThsom%pwdgdduXim!o$l7o#sliyFw~%(4G3dJ3G^ z%<{wtJtJi)|Z7rc4;QLJ$X77;bHAJqxbyh>!alwr~JJOqRkz`uaX&t%P3NL}(|NkzpJr@*^91is+TZ+k3bzu|F==-OzC{UWruWE7Y|}8` zxDaLh@zD14L*l;+c+ZZ&(nVo-^pEbw+TjjyxhQ-m7x7re7yIP%@%d{cVzw3GRzwjd zW?#j=`V^4Ep%|*mg{@cu4D?l~-)m1&Mya5zqV=f>hhail?MA>JE-Lnp9zK;ErI}s^ z7}`>S=YKcj-7Rr&_wwSNoh*a~XCeMO5GE#u=37sQY~D5!aXf_Bs8Ed8qUz+@yZMm* zyAM-`=7DvBNkZpolkFkS)NxTKs(8j}YQUeDI8NLoCHpnm{vG?+xAxCt|Fz>L7IV}| za$7u+SUO7P+4hrb)J4XHy+!0+zZP_SHeiEvEm?5gmnhmUhpnR^)}E-w!HQ0Fhn3*7 z;{*Jpb12PoKf(Xu57I2Q1P8tElNHA#AT>dtZ`6yS%QGqK)MPa4n4*%-oUor)B1uLW zK4&c;Fa3smo?l6<#RUl8(|qFhi^Aq$BbaWNg=F+dbrYH;RbXJS8c$1y$?BTVWXFmF z7*>$NhwpZXp?z&Fe*)X?b>QCY3c(NiAuu%uAEPQ!%GieBBX(Fcy&L;&%)sZQhwUT_ z54kNtmTg7@zX{fS_Qv3jT%7hY#BFDDj94EgJk_U(t9KEsZj=*cJsG489mAPnFMNp! zpm?VPIDYK^;5|6!tpA@s>p9nobFDZU;Ar6gHVv#ZnnU>}aZ{p8-k@(uBSgv)adtuv zN3)u-Y~nPSaTe%KDTUdyr-=5rkB|NLG5V(&?q9m#>GuKpLlv;feSlX>@1gK2y;Fa) z3Kq|Du&=odcUCsh{ZrQv_oEK~+{&RIP>q|r??NM_0&ZK&;kYdo(OOq%f3*Z1t}SpM zEr#Be0DS4tfr;c@@UMP~^&-1rovx1=&)jj;!G_*7I)i(3w!zUf2(rE&5IGoyE~(4t z4=TdxFUgomX9e1WuV9u+4zB;BGX>{DkhSA14is*q#6<@oFBFFOycFa-PDFr17^D;f zaI8BT8Tb9+CAxv`WAMh+Y+J~h?nOP#GGLu`LBJ9QUdo<;w08=Q>(WeGo?wg~j)MF4 z0F=|Sru{EZ*hEI)P*XU~GYf@qp#+t*Ck-hbVepcR#=njf#QpR|gjxXpo}-^PFQ@mH zLVfX7I028U%kdS<+X4u2D{GtfVFrlb&+Q)HN^b{ zYuiOArB{b2N&4s9S)d5VB0G#%Zh$nMWj$ZF9n%UtSf4!)iD$nM$K?x=D)@$2+LsZV zUwrWUnn(V{d?I&dhBCyXddRK*L{?wnYHUhLC6E5m->=GtsJ~|@!2uam9n2yxgkQ4^ z&lzHd$6MChyYw7xdWEH*VZ-odZz7`~L@@N43z2_#k!;vZOq-Qql`$8=-~N)lKR=Uq zWRmRnYbMnzW&^K((EtC*I94b^9nQRg-4p$|ZZd&6a({8QZ7w?Q)7&hnD-e48hZx=t z!+fe3D-Yg>h0HC?`&0*M`8edz9l%>ntuY}lj~0b8=C^;VNRZWI@~Jw7@GYqzCNBi2 zw+jPMxKt06QyvaozXXkbBRsmW6UhQEi0h`iBrj3|Pt`QgE4U96?-#>uT?}T2`9kdA zG1%TxM?>>8`824G8)wY$a7h(LFFEU>q!sfOOu-nl~QkNgVRiiItlJ;khuDk}jv0C)L)~CC;HsZ%e zZ6ti%gOfrA8lBOn@rXNwHLx$8I6HkLCr@mk>@xkSR$0y*`+wV+%XvMVIfA1Bjs`dy z_+O&|_F_It`xh_elQE51RTJQ{-i*&TXupx3x58bVVRc;*eINF~D3pbNYwn=8egp@! zZXx39b;Jwa!o=h->W{s^pWtd-n!`gW+$@9Zr%JTZds{`OWq3yWmXF)2AiuL53WwcP5n%nIlM_u?GnHRZwedJK$a z#o@i-Gvw1<0a{beIGF7K+}uE=ScieBm4+3&$DsYu7XptiVkNZ$d4lxL*kK<`+%UlW zAL=M?vOsTE7~O9bjXPO%_ta5etYn7bQAZ-)Ja>ma{X0sx)4bV#m*J6CjfdU^@M}zg z|B-meamVA~oK&bR4aPjzQ%LrRf_ZZ+tm`gf$9q4>Ey$<&VR>-7b{o}CIw6x84zH?W zu+Pn<*f+8e{gGyMrBh1bH3m{#G1!eL#M z@be-;Y6ApJ=0T+XE!kZtfF|7{vZSw*j0n6ZKbH7tJTlHFv+suz^)GuFg*R02D&`97 z_qsunG#o_yjZ-x|ysfGA?d{AXLFuetMLewdT@P6kgWM1sI82sUzGGFm5^{_oisXE8 z9C}zn8sDixW5pPG;Ia{;tB1${(MHC6akAe_1}tYG=xC;6g6WIjIl0)UUxTlAyK!O1 zee9PQf>rDv%;9?jt<1;R!OxF}IW|y9T!50%bVvp^BS?(ShlU1#dP(zoHTS{$gg8{( z5{T12A%y*|CH6ztiLO*Od0tOvSUSt`-8~onya%Zfz9y7g#?bzz9=3h~3VW2$Y%K!G zhb<(3?>I^Ru?^qOnv=5D#mH@yMYmKKv|q2KdBGP@7Ose&19wU8J87iE>f+z54bVwa zf_UsQ^ah*aIT1y}6*E-mEyFoFkNntKAJ+x>(Pz38N!~WNFiRQMa@WWkMIC&x3!uH?yeo>uWH5oQqnrfe9S}O(+dq zAnYr4*fDtze@}HIdRrfq=)7x8=nb^oxrK_gKTuFLhQ<@E7{8T*tbw=mEYptn_vxLS z&Q@#;Z-&pJ3c8=F1ttsbLTP;oHXbg-&!a-r=6gAa%jv|0vz0h)lYu)Q~fO3Teans+Sj z@At=-?f#gPb_SXKXK9{R4mSHlplEIYs+rMX*?c)vIgQ!a(b+?kEUZ~j=#cLpOg3%2RPNvN3z z;bwUv&3H}4tX;+Mep3Z+I?H>F-GU<3pNJBr_wOaHV2b>qdr04*`nwWr6{3(^nAQQy1ddxwj3ft44|QllgF}cuMT%1dwY(A><&J8Ks~Q&x-DkW{GC-uvZEMu|_xk zV=6}_Ge;kC5$msJUTSW_UBtH1tPH~jD7Shc{^$^S=d=h4Z_g6l*M7MA z?it!QcO%QY35WKZ!XZ)%4(eiXOWH-gt!0tN^@|{Ann_Z#I>^qRD==wlfJ}x47DSmM zSp5UymN(;oWC$Kf(OKkgJ21Fv6?CQK@i<)=jsCNdxojb3o!7+t&uegOhA*x?lti4_ zMTiTn13!zx!AzRF?B;{3G>`eb(?9Y$$`c|@+c5Zo3lDy7K|9ToO|^)F>#A6IKT^V5 z4-tf4)ko%PdHA22gX;1{km_^4yqRpGpBZ1p zY<)gT(TRz7ym<(Tj>EBiDQIZO!oN^kY(D>sJbq;X$y!5vGt|Z013NJ5=m}g~a~LmN zk0Nm8QShP&E2w|RTd=eJKAI2QfP--{wl8sj>Skk# zl!sEfCdt$t$7JfJ=PatDvl0gcsxarf6!lZ90{V6uNnK%V{?hTk=CMg zYaFSa{T~<(i^GU#(ps{;(1(5CSQ~>!ZXKFgKO%Je}Exb$$z}A*m<$qkJE?Piy0S?ryM( z4Pja7f<;-SFiwz$)5^;@Eg^)tE^T;hdmZbtn0QQgQutKX!CthF^k}~z?mJ%*N5gcI z_DYJ(rswod3uU-&2!sMp9X!)*;79xPZJ|Aozj_cKe=AUO(le+^$6bhV3cxQ>Q^3d? zD;6yRc4J_h{nr#)?}OkUHVeM5)G)m51WN8-L`5%! z@itQwhX_DTHV7;CDBw~`K1x5OB4R2Pzru6LUFS4nt6h(Q$8vZ)&jGt*H{i>gzvO`Q zWxR1*f;Kx#xYxMgaUh)^8Q+O8lK`kv=TSV@6*E(U;MTVhr&e4-*Et{jZIr$5_ z-_E%|ax}ov07nBH4gBxYfQGCh6?||7Rgt@ zs5Rh*QZw|uYcb(ogUaa!gq~r-FtrVxw|FV_5FzT#<^))+NX2{I6l|dRpE+%oP?*EO z#AgdEU2+POOAi7c_3?DZImoTHL}*0>nwRA5JD-m6NAWbrz!}^}1E_u0nN*BG0wpRLLS3q$`(L{okb2|!WQ2+MAG|TJDQx)+!lhctXSN034qXKC}yUHV3^*!FXwdu zJ3xYZ?i-Jty)hWt<%P!aP;79g_qlqm;!Xt+G# z%2w!Xl*jZw1C;4LAR|LRh@DIiK~*<-H!(`iJorUc?ie9=M;DWyZmZC%%RtOwO=NF* zL`;t@C07+jh*y_Cv95Qd7S7rRv*aWVyDf#xwaW-`mHEq(6Dng_TZAx|76vmkx=s-; zTQL&c<3$S1SK`IbMGy)ZB;jKHkSnCKws)QJT!%n$PX@EZkDm&6OGYDRQ2y+3#(c+U z44>;lby^%mwkM#eHWpiJm9Vm|gh+_5fTC9kWW;MAldO*7Q@-#z*^STKuMiXzft;Hg z@l@Xj5|7RzqGBclrau!$=4bqT{14u%>+zA!aDN;2Mp)@BuwD*;Nwszzy|1Nq4+7=4v1?X092qnl^jAA>{JM*MI$uzGt_`#A zw4u7W644@Es9|SAB(wzy^Lt=v#)RmGeDF8c!0-YavMZaAvWaFHtS^S4GYgjP?Fi~A zhC@Of3dB=s7JVAJMg_o^asXNSM#$;jhY_(;c=SXEiZ^Z1@O~fquI$E?^(BY~`@xOw zR65=q3BhAY=upkTGMPe5)b`+fQaRpk%|IDLlCm1lh1Awm=ots0<4hRx2Ggh#vuG+< z(Uv;TcZQnU7ee(s528-1MNxC^MNy(%e$?9xKkV%5#q&=oNK&R};-e8*`6(Ku=6-Ni ziO1~5bC|!>8|9giFvlef>`e#vWH8pv`hY!R(b%HpidefKY>mu?OQauq51vPk&p9|0 z#^5^5zdc>(h5N&P5PO;cozXaK{Zj~^B_dSd?Qv`vya9#Zw~)&&!k^M~++J6P!1<9l za!(PSLQ$k-o-!KNUnTut{L#vF0IJ5@(Q2{=b?H*5^pb`emjDi=%tYbv2At58fWhSv z@*>loEUnmv$zLA@c3kdFVeoOM8a*9An~OYZhH4{^Y3jO`<8}!e*+jfT!Y0|Ieb{3gW;B|n7k2)dUFGO zL#^1Ls#h#&oPZ$~red^NBNJOTEz3tBxZLXYg&EDWsKG!T!c7 z9Gb0#DxD=L+wDts2Y3QD($HR#itD`TSn)alQ?@4XT#^Ih@;q$PEk^Dz-Oh3T5L)v$ zV3zzL%=@_!6DOD9z0DmWpeqV}fo*ix0o@Hz&_@FLXJg*c-57Na#NV5nU|Hsb?zRQ6 zIkXbK^p2y4pfXoH?$81}X|G3P})j?Njx zr?JOa@$LbXe%wI2eHT{H^C;f;;Yu45@;Rp1w&?-JJcltR)r}QRT|m?|L=Luqe5=IO zglY`m%tu_cH*CIC(A=UbG_Nkh7K>(#%`1WS$u!8;lz=y~0Q2ojAvCrD;>QouJK6y_ z9j}AjB1^oSc>yke{809M8zjsQK}RhRJ;&&0t@VMBIq!>#zC;XX#9~Ud86Sehsm||W zl$2!-l9*ZeUMfc!I2XWsBo~$auJ}H183z~XQ<|PORM-nUsw(X~Wj@!B;=UL{b^nf_ ztZL(_C6x|T&Z=xYs*i)}k36*Jk7Ld5NT>%!;GJI}zR}$UxxOc{Ilvuzws>Omk8r&4 z2*t~k0(=mkOC6sIflpsFX6oi+c+v>FPW!{`eG;;4^6+u>Rrm#%fuDT>_rV6DMVnat$J zX4L~on*Wx#(j8gL3&sgMf1Lb_6u^<~S>*9IZggC4AzVvBNby=WP1rX7F**N1 z0}Ps3Raqbfm8}bqA+-t;G@Hy*!W8Yve%Na3jgH?NpkbwfKlc>iY2}IkkG;44$|`)f zy-Af2MG*rF3j+f%Fu3QXSYTm+fr%gpD5ZjkbT>#h(%l`>p@^U&3N{M1m|(u^9pn57 z`|PpLcR#=D^B`+F?rUB5ob$77N(Z`3bP!bS07a1^)cW_qP^%Vu(&FH`st79eLR2rm zn7+BEvbPF75YxSdE0f(&>RJV>pQ7~A!yIYv8nNh^6^0crAUA0~oIVucNOA?5Gj1Wi zq7AR5YH;rTRoqhX#OHmom>!!0wS#GBdF_d&r4uPOX*v8JXkqLU2PBAbIXWe2a%zx) z&M`x#d~^BIW&+(?amUObJA>b`W<@znNHs1)ZfG$TYa2|cN~5S?}dCtl}s`JD_r-Jgl6hkSvuFzi?G!_nPWpcK6tkzG1S zGj&3eq!R8c??kuZ9wbXU!s6zB_}n>+#%j*5xXcQz9Xp|Y=sc#RI3wb)58j*#fy%8Y z>=loIN1zAB*+rwyp#_O73$GuBaopEz<_aouNb>!O2j>qwpQAk+mixqJ`crh;wdws6r#z;$utGU2n zt}mVjm?2wvHpwJ9aa{sFh@Tvbv7SEovey~f$Aa)}C;)c5{NSGEgc7ev)Ox02VYUzW zC(NOy*SAoAJRX(@;<@k3!@X6pSVf6=zr7A8W@TgI)Xg;i=6J}7A3^zcejE)=X9d!H zNd3+EH)TX{A#yyHCZ)17{Ik$rAq=-K3$g#)TXyVO9&>!w$_kImL$;uW$zJJK$qW!j z`;V>c@2D1>jyXya=8_!ic8baxyVY>Yo6Dw`&Z$0_R9RWjTFQ>>OJzH@@IzR47A|vH zr8Juj@H==22hSnH=*?0k5(Z@oDQ)JS(`sk{_+W_NfZ^ z!1aKwQfh#ie=2quZN}i$FsRJ;LbZMh1bkF6(A|eBnF_4>5P-+J(~-D-2!bD;;V8#y z5ap}KiifEX89sw*nOGP0u#a^5U;dx_uXBY46;%R`V0iFhU8u&jN z_+2!WzFicdn=k)z9>q4OU%rin)}2_&F%M46cmea24z#U&fT@8E$PRD9k->D#E~&*8 zy-bKqu1C0V1*+w`Fz?hYobGDEIh`u(*j~={NL@$O?IM`gS7KPY7EW9~eQ0|HD({xV zcXB0WFYiS1;~eCiA4Mgy`FM4Q>jS+MhE^FTytK)}#-3@2+NFxgaTl?ymAj8u(#6c6 zi@3AR8P{|@&@(!a%aqw6KJpMEqby;5%ngeL{jfAL#jN+|@u86O7c>UJk-I3grqO~z(!*P4$)$kFMgjjO`3phD%s4(W(MXL&%~v{4tDk2 z8#b^@1cj|lY;1f9D_3o*_*Xv)&z@MYdYLs934M#0@%ApZQ2hb>s(zY&aNbwvjjG|;y9Kh0naEgyo#HL&qlMc-Rm$M6BY1KR0Wq` z*rQ{P7UT{e#->P1?4JLGEy(+d(&M63`%VX=JL}mA1t~0+2}hpGP28R}r84c9K9Z-G zKvuq;%j4Cs65FNN_)dg%NI2qCbuD^}V(`t%4UtXP@$F$Zyo^hr_$dITL-j~|FdE_? z|FGCI>8$wj8n$kE2u?_<jAVpa}OTae9mG0$*P@UcZgS zfxZroKP!o!Q*WX=w-)|SCsS`+Hnwq{#UobhA+mfd8RRddnw^~()Nn%K15L>5jzs;A zhs@g25{nfQq2$qxy#-v?0q3`t={=9;5ql7=DTl>A9Oo@r4zbhLay?s0a5NQ$$*7%} zcE=6^Q?&5AOaqz89FM{|1thl=y$@MT^6O8;-D=2D~18*nGJI8qE7*7K{4e&JZzgh#Tno`uTSdiG_ ze>hmmc?EXf#Kld`C@)AyrOq9WvD$$Zk@Z;Mc>{Wnb7A0IiKQFrA^fKq%hW0$?N*Fq zy44unQiqu9w~;%(6c?rMVY2KkT;5!Wf>UKMYA(f$_)6Sw%ZIyHF;?Yg;je2Z21n;3 zYrG)2@5)17Rt7G7<}&ty?r0JkX2SX&_&stxawIpxz4bE6ZCw$iVTuDY^x?Eh2Tu=~ z;l>zejQe7N`ax58DtX}kcL(U|`r=ShJgPMl@b~l}qI;F-+qTa*krjbY$-(%s)*USY zK@_<#hCYADB;|%2620$2|F(LN-nfem z1#nsQ{q+3dNP52J9t(-*gRW>l+b1#?{)_Ih$n?G#TZ7Gz!6Gcap18y5{MW&fPa@|)V>FZWJEZTGT;H+$QJ3)#H_*AD6!NcH@Nr88UUOWy&cSSs$;-WS`4^)3>{vP~C_#%GpW|M2 z6Gm?R0+ffK#=I48{r2Fq`9%5^H;Lv{+TqUrY}8lTAn>gf6zcT=Dd2wKdMr+!N;i!a zP;rZ&Xyq;p*EmD>0jJkYRiwC0KuW+^Op51NW!*ctF0)g37damx-oKdsED?;E7RSN` zIKEu7J!IlIc89SOdMhuWvga&aISNwm&ugH5&yyx_PQv>(HCs19980l)%Vq#;X@iSdCOV2T5j7zaI(Y?{@UIqOx5^QFP>8G^h?3@?+eloH zgvWpU@qJSmzAf;=k#TQWOuz^Xs~m)hv>iswI)>%Sm!KA=i$5Iavn9qIDs9f#|HTOs zw<59J&;?e5yo(fqazrY(SJzX&|KMoZYKG^Ur6gPH9pxYuIzfO8#Y*{o`yoiEx zbsm<)CFAQ3DH5uPg2J10$Z(v8S*lSOsUCw*D>Jz+)Ohq3gd@c&9NHmVhF|J4KI?_! za)c8ue7VB;CG0V{@g*kbjYZbla29MRg8i*!Y_`&K)?508CC{6NuhpVZJt>BYr61Ve z-=A6Q_vKX!ds5i8^&>HAz9tiXXHJKYMyiNdJy$tA!bydzqeb+DdL|Mki0MavvwrJ& z2;0!g8USyv8hUNB!7?t`7UruCVM?wpd(_3&PLXhS@n@T(WJi+OL{cuX=-i3U0p>-r0 zh1%ID__P+uK@sqzOV}eEj^qv2I5)x@0&2F@;!$G$-pqJ9EB+AvthI4P1VPT>fY>YVlY|(+(3NeITjYZybJ`~)yWq;E7v9IzIGuN`h z{Y~q6b1ZL;<;}4?4e&I;)4=~)4V<4gk)EyS!pqPajNr0e&V!{e)oQ>CvnB}C-N%VL z{1lm9i|--zpmQzgkEutAQ7x9s6yV3ITC9|70RQzynDVz{^q=SW-Tn-}wmrb3vK!bC zR*MOHyYbwn1%G4H(HotLX&e*QdRZ9`pDx0I1sq#7=^3PMW?=F33}}qj+JT! zy+}J;9HoIS^?eZW^hNep7aY$rfPKJ8WSy{s!Bb;wpLrf<^3Nl~&HmqGP z#M;flsGRMGZ^m^{D^A3Y%nTebh(n$BOFVCMM}f?1)X68&(r4y$*(QT>Epq7Tl0s4t z_ohEjvblLalTN%!rqX4JR2r5|1%KkG;Z+>UX6NAjhj=9INx@w%gSBi~Ft!}A#;OGoq{I)&fz9q`B=#J};Pv z53IN@x6k4nTla+r!hX!7y3l3xV*5orNv%S&au9SM3Q=Q_7bNmZks@;r4>y`1{D1?( z7kfkQyCb}JdqP0l0_HEY;rk>8196cs?CHWStwUI}Kmb!KTbOFmdKey<%`x4Uz`<6K zq-y43_sz$wWTXS;#9u{YN+wK3ZsFeRP9wj33x@O8vYTbb_$$VF%R4RBed9MlQ2IFD z9Lqbu{@0#g|2OwLywB$C4|y8+pRa-apC(g*kp#WtGAe3Xg_!-Y21@HV9>KnB^t|kZ z)q4S2W-(7L=0n=@L}f20=Do)5nCX9AJ&V@v2AiA)NKA>YSkTl(SC)$TW>)_ z?>>Z2wj*X?J&wlLU|L==oPXru)tN%{wZDYf{u`M1_&H`LT!Znla`a!yfcrl`ObKws zU+jn2aW3;NVF-&I`|zv(C^r1z&i(^t7-e<@!X|#)-wnd# z@UPn!;iJO1yiORzZ-(G$VHD~zxfvxQ1@2~($km=>yGo5D4=;cE^3|6lUZ&CyrvwU5 z*$0j2TnfIHO~-_jX!nj7di*4orp`^GC-Xh&ZBHx(hn3>+$wCPIw8p>a0qAr0|8<`e z@QCvVtYq03UgL*KZjSR@V1dQEEwIDDAE%B+LB+)nDvsXBSRIb1NR-c^p2gUxSmOH{!)Spr4cj^Fbf%#E>Ql4A>?y8(Vp3$9-nv17e5|Xk@EAUow>$sjTeeBZ!@F%ODx%)bjE6xYo5CPrUPpW#T|b3C|l35(PDsn}Et>SuSO*|!EZXNBp7&}`y+{S1dM&7f0J z$=Go&5YxHdS=HVLcs+a*Z9B%(fif{#$oUvnALY7o&F;Z1e-0iQZ-mWMJGjmerK(IX zXzad>;8|gi=--9QzWs3ir$n3A8k3TW32t!n`^&A*aE?u;t)>e_5!vnu*SwJu6N5R zhU~QC$y`2)EIT4d$uomq{mP`z!hv*qN+``pjwId3SFyV^pN!L^=vcZV?Td1!faq)( zJkp>Pw-U@aABES8xjByGWi1;_#LM%M__`?>DPp0ps&I$8um|#{T}6&yChm8{V(?)E zHl=T;l&43jK65Xn_S?X<=P-F*egtps_h0QlkM@`P!T4+%)>09i7Z*VEu^(1t>>*7q zt7NBYkNFkS5L~(j=c=SJ>RJK&k@A%7Nfw6D{pq-Iq=c<;lVUqoL@+I(a3*y;oE`Ou zWcCW(Y|d#l%*(Kbh?+u$O}Tc}mLq3q=^IgONm8p4oN}(pPi;Kp?LV;C+HcHYO((m< zu?1fC+F{G}O;~O0jxusvu8;!}@db?ikfx7`OD&GQ&-auFk51mmDc0aj=ZVdr(u z=gDz|JEw)i*^gtPz3D|^|0tTibpyh0-^2CmtI+vjBKXRxvEAPT-@K~vl-uq1&fbW+ z+fOh{|1EsCtK;9)pIDgEgr!d&Kz_mvWNB7oq*EL2M08-vuWU%4F6EeK?zlC7I;A@~ z;lR`>c$97liCG@_ESHW+&2h*n5G1dRzsTk80=~AtL(A{6G|>JFkG6=DmHjZgaoGkw zE3V-0#oKVvRV0^)(EXZ@l0vqK#d$~Qrc-xdphHbF~m9^H!B zL|yZJ@zGilc{k2s!W@vO1EYt(GvNK$8^LukoY!P0iEQ4FH6^h)>(AXE*!n}RGZ&3`wVY}{q&VFt%hD0al3?Rs#KvBmgKM`WjjB2V2P^6WIU z!frDoMSZq%OEBAS!w1X5ny}z2gL2hz${%**?PYm;S>9fjrvaV@cpCU$p#h20r|~{H z2`4X9;hcX39HbLa^I1M{e+?%A=;JK zjPo3iV9^RMScuiZcfS`BEKWmVH!_a+9(Yr8TQK=GCDQft zVPvK4L$+Fe^l7y#y^txxKjRz7Pe{T7)i88x2jW_oJ63-Sfv`ma1bc(gu{9E@94Cw| zaL0<|RCsay17F`=LknyvX74kYaQQIrv3J1#w-7;Y*~n9kQ6gMdHpBlh z$9@y_f$p?MysWy7ckfc6HFXpkY?H9*Z6tP!twvapB+k#9hgB=yAx+R3aWX0xy=x4e z`Tc>}nIFQ|d#ABu(;C!;UV)zd8Wfj_)78F@u-ny1pkJ$Sq(6eY63 z2(jm^i~i$wgq9VxFdcg zxS_Bw0^(dZMeRg)VCs12?zxOnb&3eLZh~yEKCI`?$J$Tfm_98L_DP-`Mw#me{*nTR zl`C;KD-z8{oJb(L&G$DX?hRmPc>N8^8*r-y5T;Ck3>J+!4?01aFu+3beEsl zF3m@4Y(;5S>0MkGYKOUPE1tj1!JeFaJm7NZ(~6?e`alVPoFr+VH8;z?%tNKYlq&6m zBJA%iH`b^<9;x(^_0^7{x5c(Jb%R^%!CCBBFf|RL~UzZHsFOiR%KgFi|ljnvwvaZaf z>7KQes&7x@3NvZezV6otftv3P6~j6vf9 zsFy^+Ze0xYO0MCwggbsU`JyjYiAujUz#zt-t}Jk;_dQOu!EZiEehR^>Z(&d}^>d~#`CQlA)Ne7>&}y%NDv1Q+4oAxU)hcC&?Qr|^`^8y&VOVXalB ztlrU*=I$_K)<3J+{zGF`^yH3U?(tPn-^GX5Od7`Z=}ggS4|`xWll^PxX5SPPk-q9J zJ7CQ~F{d!@tSbT=L$QhDS0sdtB;CvsG$d?+s#h|S79GIMb@$P9<|GtH+`#kFVk~=+ zh?}1)A%0ebzRxYgE%nEo|0Efj0nw2DY5)gQM|{|yfUkRQqEz)7$Y&MWtaR|(LX^f! z??L@FZ`3r^;*(wy40`6$@aO5k_l+hwDdfXWx7h3!Zb`2#dLF)HM%$_xC~7&V7h5i^hia3RoNOh{@x<&=VDm z+*fv}9Pq&Se=ZR0sR4hW2=&O$rb*M*(C>bAI-qe4l^W?dG)JBAF$Ja4NfsN`AF)U%HzItKv+;r$I z@__P7e@qt*LR7T{(tetve#tf1?2klc#1!1+_pNe$a+56zjbOJ2%PTUw<(OJI$CsPF ziY5iS@#a|G9Lt+yc^cqpfTw}~cnx&TkfbH%Rj}u!^?vLG;{3}tln7x-D_ot z(76YNiB0gD(+Iw&lUZDaF2+2Pz`n(&QCvL%Sq(zCwz{1?tDZ>Hk9ERvE+2L5dw|88 zI#E;Eg>cgsxV*I;TrYR zGg~BV5mgENNZ49!%ntmRh*v`s5$4p%_zo^Y@C0>^iQvd&ydJTs7V)fCuAG@FhrldD znZo1N(H67mG^wE+en$JaIdTf@!tX-zwHN9Ob+Fg$AbYt*7K_#_NA$mOWLCbJ)P(iO zqw*>hwK>o~*L)h9RzX|l+F|dLa#A>wMq|>#$!mr;wbj^@$puG@9(>Goz6R01Gg+uG zN`$gj8aBpeAYxh&yvIi&_-QV}Zl^+SY%IQ4C1a%Bd>ZXC1UJqHuyu?-9qw?ag!_(k zcjF2=QSlrh&r^_f%^&gQ@et?uvua-H&@9?YpU$chH6&x)&?NGEewGGWrc#RPJ&wCO ziue^SA+^^CuVs$IN5c|J=IEgzW;_mEsAMMwT-lSKrRFK8#qFOS3K`i;y(zK?y1Jxg=*jY!|>In(^Go$(2cg{#d|rk4JcnYep1MRy^j z>)&AsvxnJ>=mGY9hcX;hR^sSl4IEpTfPJQ?P~qZ?)0$hk`+pCNE^C51ckkW)*9tlt zLlN}1hf#$D4K{T{usHzNN*QbdW3l{jE7Uvk@cU^AgkBcl+pj9*#JMqvujgPjy9dv_ zUm)Gv9^*%d(7AL61i0SBFPS*Vd~HHTXgA)*3Q2Bz7$ z;#BlSbUksv_v;26m(Cvig68mS^2V-k&gYy{#x|JuLwbc6JrGz*o*lMeE7~Fd_63}Z zjv#W*P4-1g4$tRX<7kK$Y!mJ9qRIynO5XThcc1)uWCo(oDR%wSm0Fe%cIZ-x*>W`l6U~UV?T$%)t2qOW1q-gU`bQIKJK;4WBMzQ5fN&h#i*b|HAw` zI;3kTLnmwHk*~9gmdL78(V!_MD5OC{IGJ{t<enY1^p z)^j8A8IO_d7)G-+LMeN;8x@)7;qs?QD6|x!_+>c4ayg&v>R4DMO(VJ8+4%Uz0~6l| zz%642)u^tcsN?`L9OFtuIo9;P#E#w_PDX5ABrJ6DQP-4>Ehb)YRN9OE-}h0z-){QY z%TIc)`c!$$oSgZm(vqGOWOK99Q!bBx==Ei^30h#L=tWrCUVyKpGJJ-Yp!M!ZEFW9T zDsKE?2fvA8=FN9(g`NUd9qD8BABUJn)edeyc@z`cl31ai^L?@u9Za*IG=Xx9-zlFw;sU#$K4J&(npk-Hxfx{tKC$JI=TYWH+e;RG(lcV$Z zqaf(N3qMRYA@9soNJr#CODYO6Kb~NyE`m*UyA6}1>&QG=i$#@v7=NH01+jA|{*EL` z3KYRXv=nDH&P3Iod$7w7;#dM5aOT(^8k0YA`N9!YWyIz1I31Puh9HFNh>Z!0MD@=S z1ndvN!ayNf+;^13azbF5;)UClHfY=}4Ra?03|INXyl^fOGVGDgu`u|gJ#gIW3o75e zf!RAL3a?&A`?YkT95bH8Yp)_oO&Mng_Ct4#Deey5f?T#Q*K5J;j@up4IETvwehpad;TcPxoRZY5nu>Fp_e_fJGOg zbw*Q4xfGT4*zPhRCm>dSZg}vw#YguO)JIK~` zyk`&AceB6x>1^puVQ4A}qOXO!BW~vIe3M0SQIZdGpAKR1U0KL}Itam?{wSY56&ecu z2y(K=IS)mw+gGP@DB?2B?uC)^<^VGHizZZOP~ry%D)tPa_lH8M-_f5eCs#nYGz3Ra^r1pH71dly6ZOV!ql^QNG%)!T^+zA2{P08cKtr4K=Lci|g+Po6(8Bo+dssHi zCVj=_SU0#Cer7vhd`bg*>trz6aylGeE8u|iT;%b^vrGG=(bOBw=4WqX=}R`@4aQ)a zrx{}GzcATT+O&YbhK-4N&f4uhv47{&*+zp@7QOotd*$oL{3lhg$Y%~rHv2uhV=2#0 zBnn_(+9y_M_lA8A;K#90K{N**;_m5>;?aR~aJ!cTL%vIpY|@0{s-u`SIFe><%m@FG z`)F^yk0eKDJZNZu(sEI1bgc)UMlPII9z|T|_)G-zf_gZl3;sUr_I1ZD-4#@26f|%`RSiilGX(q2B-nj(! zE91>&B;Sf6?WayOe`wKW7H8qFA?Sb+Z1{4{S(7c$+Z6W?@iT;cP> zr)XD*30%c>UpKtFbP}m$26&w0gUuT~@GM9NxfYvfYd$Dmhi0 z5(~Fnz@I+`Xh}E6mF&8JfC(3ONK2mT6~yw`Ih6% z+&Y{S$cKnfBjkcZaV{|bX!g4pwwz|drgj|UCt6lc zoY(um>Rp%jIlR3IPXjy+@HD{F!2dK2tld10YC3+xROK`Je1>6oUxWsF zX4BmfVzl00gdCrYr9IaYK;M2cwqgz#*Lfv=cMJ^VyV-paHCz#0#LPySvIh^xphWQn zJMXj-QqP9j>Rl_4&|k*FC8yxm*glnUX3JPl;zO0M-QH}twTM-<JXszK>*FR64*$k*!Fn5hYvMQA|lJjjl~5h3C=q+AfHCv%=`X*+lZ)7DneCXiDB7!vB`R#kU<1EgYkEoe%bP&c{J36I5DmMCxb>tevzDcV5oM z`87A$#hVY<1&I;Z`;iZtYlZP(Rv$|{whu9KQy|(V3U|HtY{!Y8Dh(@7QKfb@V^;r| zV6WwyCO7&liQ_jhi< zzBRKjF<~<<1qtD~+y9?E+Kr5*U)VEsNl3lB%i0?A@wBKN!527Bz^h1>c&P#hzkSE~ z#r|-(;tP?BF*x^o6rFNTKzHQ@c$j#?IwuS5bMM0VqX%YiEZk6wN9^~Pa4dZ01GDFe z_$+A0F?n5~zta*M)T&VXMh=Bv7NLB_N4)IeyfE5)^x@_Q3_Whcz~Ui98!|HNtiiQB zN%9CS!PmqWu#8TE)W~IYz4sS-SC1p((O;l4r5c~gqantz<<`E@fO8nP19i5;hwhD7 zsu2jAvSpZjQ3%#M4^hAICi=KD8oh>1FjW=j{MeTvz%BI|_}CHj~)(G^owBJijv77D+) zp4lCq(C2#EE~|ROQDz;iJ}-o5-WOIobb?j2sd8GF4&_zTtF{Mh$3wjZw4&69B+mHp zW?9}Y=0AED^FQre<^4RoS&yfI{~is@3>Ko|bHDKS;1F751gQS~M6!GG0WKOsl)>e& z+BC$e&TuSE>Xg96No$!xsvvY{>#_kmVJN56vMbv>@lG^~?YY^&oY$1FRBKiCgkz?P zBzmFHI~ni)w!moU2{Y>pVU{&HY^>T0q^+3DS{99=#E%&)e0Z4aFb!o-t^hk!SE@+F zO+e4?4Xn#{1sjOVV2-YWNWcDz{nDL|zSraMx!Q&8_Gx0{jD%2cCx#t{3sLngoIUW~ ziThcTV3au>B3zg4iwqTUuA}svGk&TZCFw)IG5&NEG)rAcDB7M53tq<=2WxVZiKSU5{OKcizk7JP3$1N- zpeivtn&EMYIyI(H^3YrwtEqv7w?gUHohXvM5=BAZ23kr@AmMY&ULGjA7*g81i}4b=pAzzqgz#BVzM6T$0TvUX(FntL=gA-3)>hd4&%Wd z7GO}#+AaB^)1k?pkJZE;b2V6wYp-u1YH+fWN^L%hi6=ugZcA>1#Dqk(I2*GGsR zab3Lajbdbzk`Bw_SR~!!JgSjXY5Ig3xDOa&-k~(euRDY+C0hu_4P#Jx7moZP`f&dM zeO#_hH_Mc%-8~J8TGF&-qZIueHI)v`lc8>ryZBpO$+0oq(Y7@KeD5XECt8I3Bl*a% z7Npjb_mDm00QW~TFopBI_;T+g{n3e>mp2anL&t&ZXJPx>2NiYJP}lLttIQx&cPry* z^)#%`o}se4U7x?q$Sl%4Vn`3zz z;Aw!Tf&VBCR2On{SN1Omt@(%XV@8tj@u%>2_yDsrpYTWEBZT|}Xn(30-C7|@qRqnW zyz3xqI;V>7_w(5+hqaj1mdh$epJ#2~6IE{dbG=StGtew^1d|>=gfo}#x_@kt9T=K` zGp702Dl-!NHLdKnlOyzdPO{eq*=+2j2v(=^oGsd9!NS^f+4%)a5&7MS$=v5h#OX^F zXHSH(Qx{*c-MRCz^He#@P#R|4qZf1YZZTU|ycW72#nC+|fK@qf*^{HY;5~xjQ(->- znkz!{wjdd%b8N7|Yk0b}pVhmKr(Pi?s(f6B>V%m{Db&Mmi%`{6O^^0r@?@OT0qtRsjlTpCVow!hGh?by0jQHG- z(|7KnLsg!O?_;M=8+*wA^%J93kaj()}dm#*W$@?tg z>vXhb@2%Re?o&stZy6m~kYOy)#M0 zgV&Kz=6Dn%MZ;81-{3lPOP$~ihD1TGN5JJOMp*=Ltl4)^e6bi#&(|R|rwK#T)1mO* z5+#?_;8~x>eNP_O0o#BJPkut{v<41m@55>BgRm2N4Hu8k*!?mSojohz@n;pRCu>5x zL6jU{6yx!^4178F6Ph(#z3@d1xNP)?+p#+^IoyszpS59|%>4`lCm?Qq4cSi!NAz}K z>tT091@>cekrQGbdmw3MKU~g@Afb2OFxnl5QL;hMR0zNm2Sb!uY0;1J{S;LC7VZ1K z;dXCg$Y{FDRoqJ6MJGz!P^91wU`4@DXdC^#j8Rc2c;>rOiCHq@XlHyh0- z&fti^G3W<)!|ba&j(iA4cZ3Ia4cKC2YaBE}{1Gg_AIYydhV7(7P`zP}N%MlRDARb}z7GJI(Cr5h%^IhMB@`S00{@P5y{-!o4G zJPrJJXdqp32#E{%D0RCCZ4D8p#~(gm&Q<~XdHf^dhWpT|^AS?}1jy$+_vdClU`a!* zh^y8`PIMF#*y_(r`sU*I?MKY#f)vE3O~ux3QKXoH&61l9Q;T-?E~}62=Q@L4?CWBa z&SWrsO}DB~a+_GS<5OmBF^}c+%j4xhD;qj9A2DqwnWNlYHr{m%WVx=-gtpn0Avau9 zLP}q;hI!AJztIRtj~WNp#Z~Nj6vuJ>$%i3VRU}&N#i>393AafoZW=;$Z#rZ*8zUpF z4{BnIDPTaBs<>{hkmJWepO#aK;2UfYe9P?xjp0`sNNes#(=DBNiYmWGX<12h&ZmNg z-b7Hy(j02tokKp_UN~HkLQ^MZ)4|v2RQ@H2%h;!o(%O8o5BH*h6@g@(>_zhydC|Xi zKZd9`9^zD`>lNx@p2l8jowLTtIkl}Z3CL6qemf~=jm*g2Mwo1Qf!?s zrELtRi>qSjjYkSOt&Suy={!=pkxw478KmfzL?#R4$veb@G(NAuoz2G}rS}<$W=U9A z9E>H4eetz91Y67Xpg9$}@kBflCQd@M$N8*B;B4i(*#Y9gd$h&WX-5DF0k2`}sR`wi! zfpD;6BqZ$DL4JE0OBIV`uNR6#X}bk}IWFYwVtG55|EL|zf5#cg`wreL#?!$6Tn(fP z3?ZD`;TcFwA;Hy$nf|${6xJwC+7f&;FZ4TpzZg$y&9f+SSf1pYDpVW-_h7R=*VDS( zm8Dg@V0Av>*f@R`_AhzOnwP#%sox|7rOmzUY5aT)_e2shsQxpq!uE6TCYmmEJ3O)zL&^=-d*6#FSyWRFN zl^O-Kr7O_q5wofJjRYDrJ6V>wBZ9MjF`+N^;7go`G4Uag$UD)yqrK*rhatOD3~0rqsaXn$C%B{B5(fyianT0MLSbT zPBD_^X#~^c+o@DrpF~STqUq>}MEW+Wn2fi5LRDQN-SP>crd{5&B*l{!>4cNR%0gO` z?nJRt!BiLSN1dfwpu=v6t~J8!O*Yh?d5)TLP3W%*a4YH>JsJw5`N{rtC?${#w4zD# zPB!V-9H&XQQmMcqoh)ioXp49P^#?~#I-e!ge>;r7b9dmWj|v)9boWP2lwPcv0B9%dEYJY*7E;j@4UZyj{o;x znj#e?Au7_MqzLtTTz5rAl4PZ!fugLERHVK4-b+)ZC?n}rGD1d1S=kwdWRvxM{sEsK zzUO?-`JVUtd-}mSMB}`km-Dz@*W-S_U4ghbXaJ2x;Rybbg^vpkW8YGaLA<2|K9;Aj z=a~g86avu~SczzErsBJL1Rlr{O#ftI&%7{f+^2vYA4Z{S`CKeCl*2&nL-sXy0}D3~ zn0M=NIooTRfr*h^AMcQl8}e~O8W_^RkOqb{@c)4ZUN04*DQq}daec5dw3Ke2nnHH3 z#*mDd1ciPZPWz_Rve?b%_`Fq7Y(s@8+T4E_ZR&O7edF(E_YaT5TnFyXpYfol)5J3C z7vs0ZbC%>%&BQWCpm9MU3=J3H>O)&p*!D2_1v79d?>E;CB&m)F`oZ&5s~mpbS+mUa0zT9hRRmvG&I*TJ8g!=v%sqK>T|=8ju^B?wK^Yi9Rl zntSbanrpTzvXZl3nb@D7d~=t`=G2B&h#b_yyfL8&Kc|gDq1SjZ+-ovolpA{+0Nj^Y zg$n20aF{Mc^;dSGTV^?qy?o2{kwsz}W@C4yBa$UI;8XQ>B5n$3Kf8?8}4ZW_L6@FGqW|B325dV&~rj5D;C87~U30PYlL3fh4Hqm?G|R zIP&5mG5k&%R_(}xdeIm(?ukcE#sMh5S%k*IC}?xtVf#ddkYuKZ9~U-4ZI20KBi8e) z5yyM6bbt+c*#F#2Vd&WmJ)0p73~69U1ON9L@QIY7i}%LTDMtx1Fi@vo)~e)HJ(1>j zNYR!CE2J%c#ta5OvAN|MC`e3VUTSBVQ1W#)KcJjtw|1~e#=|kLW(xieoM*)+-B`h> zWss=+z&aF8F`nBQCj3nb9y)U9Td4sDT|KVzJ@U*<&6)UGG7pwlRWME06a~+nutwoE zD*hfp(bR+3R4Rnk(gi3lxCm84DREOm(DQSJsQE%j#zG{ z1@BG)tSOj^X^o=TASZ^xO{REvS`-%U3*l%J2rml_yiCl7`^N@IOcY>~^<{8VF@St4 z66se+2<`2NBEObus##Y;lkJbuncpR3_mSgi-N>P?hQqXg>()vN$R_jJOv+oDK!aXk zbU}>ES;u8l%$z_HSQ0~3dwglx@Lfdysr(pFwPO+1=S-S--ZA6-W#TPw(1zlc8a^XQI4K3#fq z6H;+GlqR^1bfnF(kK5|fU1mce(k^r%W*GTy9Zg&B3eufI4KfWbLhXf<7~aLbC*kKo zLP>{gQr6+-k@1My7K28iu`tP>0~71t%%yZGCT*DuIqzTWItgM9*Mk;S_LJ%QsiFUb z4Zml)QS*XN;?4c<7Bs)k%I9x{##bEt zz+dd1&llpl6h2ue@#imC$Lj2(m>BORQ_K{BjJg=!JX*jOe@Wn-dD_O>)unOQZ7Jje zQXv&sjkzVQ*r^nR!lS#umh8gmlUfk_GYkjgjIr&L7w&7y!uQ~6j?>F=|F@*#fz~68 zzR`#+r94q!&)D2i2Ux;TP1L1seDj5`< zz|`2+=sBAV^V@~^@^2K~-Ej!d19w2h&JO!V3sd0sz0jMPh>zDFBQ`4!JI0?vfx{6@ zyI_Ttlc&M&h!B}tm*VEkQrtPeA3vUiKxVEYZCN{xbV{`;xK4*A2CI-(sw#=PXTtsJ zMXcre-R54sggpXt@ZHZ6Z|8G7vKKaRE8Pv>8!7OTalw}r8CZ336P9~aV(gYfnC$C= zfnUCOw<;Mk2M^-XwY`{SC5s;2Lmtxp2Gn_FN z<2AHz=Jk}Dvu~YpMlkp8I2 zl<%oVV|LA?SvMrUD)Nw3z#500yOu6P7KwD@E5h-qkS8(?!JCu05y zIUKGVi^HpuS$~}(G`^{zV((eDe4iXl=L%v=r4l_15~7)z{cPs85g1(fnXNStCLfnQ z5Z@BY?gi;!Le>PtOxTI3R;`FHnL#amTcEzDhE~Z{(5a9Dx{#1g3m?W(T4fmNOiQBV z`^EH8E{pz+3ZtdoOX#L%F!IEm$m9DYGPxCpEj2mRy&;KAEQ;xJLn*mVDWnzJNn{ur zM0+>Kll;sK(kLvXG^6|W+n?rgoY)Y${$V98%u}M3wJP*=+f zZiLv)(2|{ zHka)e9ENI>F_^q&6s{k#g6Xp@c*5eD|LZbreJzOtvT4ltax~_Bxywc(2g3aIC|F#G z_{YI8dwLBOhq$}^clV$n{0DcWE3nn_By4*e;W_phejC)o=k{g%-1Ho&)^aqitPL4c zcOua?1H!kS;(+;KG&{cH_6VC0$aNWr-a88Ij57F`S0kuB8*;h<2%a2+mZBE8>%KN}LL@yvz?Hun__7me`s6948Xw$gs$OrmbB=ykm8UE43x# zenB#tQi_WHXq#_5mo z82!r>d1lFQowp04HAArRMgs0~T#6D-ztnIL&L&xqQrd}ebqUxjxe1xW6S-~#16;^! zWauqqE=rf1#&<2}%}zaxig)Kxp7R+NCNV>E1^*x1rTr(KD?>liklz{7z>o(1Uuaw_dT%UoPlrD`L(W z>4tkXdfAmxk*s{`B*@f^$CBA&Fi3MS@MHy6yj_Hm!=j*Q_>K*GHXWPaw6G3qeFUxN z?t_1*Li3U&_!TFSK5hyost=>6@et9{Qt zWLB|_*^*F6`oRqUi4gB`D)woqL9Kg`E83LCdyZS{XmF9GPaa@q1M^^>tA>3q^ssk! z5=8gx!b_hwy#6&wIGEmoBfX{+vq1_m>0Eb!{zfvCF~JsvX{by|qiGzYwe}gug?*Gl zi}mA3-QgQsl2Sq$dWWd3K9%%m1(UJsdU{*x!?F9VFw=WE&20&S)$=X1Pd}OZdedo) zXC7_2m_<#^akTom35}SXj?E6?bd8&PZT*=~V)-@X#O;K6)Q_RL4!Ly4GKzYwL+QS7 z5qTG6QdLS8jb4*O=bJLgHZ_Kp|7t|+##(xLAdenjO`%g92dlj`hFe%|#~XfV+vtJ%%p;iWZx7LTHk7xZ11*E%RD0AHm#5^y&MyEzUB0kJz3nL19ShlU zGr0N6-)!R?p7~@MtFyHhGtY-cWw)IK?-gqaV;`wSLW4qb>#}7v|tsicHBYA>N zEnlPAqZzZ=y@h{d;4AHcsd=2nlj)V_XovCj$>hh7fKdQr}ZW+keL_?qlJ5MFG~pxEwdnRcmUcK zqq(oIOwvoNsXBfbg^n!7n&W(YI9d*USuv{C@WM&?9Bd5x0uuX+w-z#FC!|6mc9SV| zt0w6@o(1bKx$pIk;zUXg0v{(KPC6NnZo%pH1J=mfpyVMkO-eh;iIGJwv1MG(DOQb`c8<=xmm)}|D~`yuA}kUuYl!`vIBNahSerxG>s=j*1f{U zf;Of%{4<-oWg^@WV=oc$E*WeFvj5pOn7XDf(%uTQq`%Ya(r-2;(RJEn_v@G<#8jGtE zZgikOkP^c*iCSeImttiXwlXX!`vk0%HrUx!w5&DAjYm zF@8T>dtxZYJ)EMNa!6e#iS|22(&*(G#HvL|Ww94sT^&xRC*=_T$zhVXU5l8IBgFeq zL;4 z@?)^_wLO`^o$B6yft%V^`qHqL6rXb}(I;}`5FkLeMm0jvs{a;Ii|&pHNqQ z2@h^R#=f!Fz;Z4kEFl!5N1T9hRS_N(f)zNpj`r|&Xxu|gc3fm#Ib`q}d?PJ!<#PIHq1}SQ5&?=Exq@vB} z-^0ZecEyUOIj*6}PiIr457*D3c@h3IYvJvdfh{IJ_(UlNB(9Q17vF9Ir?}0XMu6DBeGTQ8O8u#0* z|3?oycBVLPyg7!f?pz$#Y)AZz)ik-h_J91h|1aKW4}FiJJZDG)LmC*;z>o(1Ck>pj zA4{_hWogD~0;c}N%XV2BtDnzC4{-fPW#(9Kxe(_XD%elQ zlPo1q04J}?!o%i0o0n~Z{KaEoXi^Tvk*3@nLMX;d3?Rbv0|Y7$U|fV6%BK0_?=549 z+KoW=n`ta1l|$Y$ZX>~RBbjA?;?0PEffvVR>H3-&woYsgBu14(*CQGu$~J~T9+(3vL=p#Ly~Fn%SZSl<%!}&T(7J9csh7+F%335krvO7@(=q{ zdPo|&V#45kX&LRFd63=;1(A8n0s1WvMllz2XzaIKlFh21DW586`H5mmTKX1`c0NJm zpBOrt6oG3`^GJ8|QHpwXgfuLR>1*OKGL$YS;pQCju1g`|N9pwOv^Q;C>PYWLucMG0 z2T~g2Os_8w!r)aYZUtV2gR>4Dn6;4h*{jmpiX^<9$o0HtucP3$Lb&bJ!u{>O_^~7z zp}jV^wO<7SYk;VA!r1cTD--!50pXBMOy-CXY-4BO*%lu5_owlk3%Tst{0V#3bCP+h zzUM9eEQH=8T|6}vS)>RA@Uk{oGp*-y@l1FNOvFc#gSKR|#OFs3gEd{* zcD*&sVAK;{9I3+j?S!Tr*LCb)StU>N?k1+tlEHRt+=#dzf7#D@F&IBkh9f3>`7-~m zvuQGAO_LY;z~|gWJW4u`qfYsd9NPkqZ{7IQCx=hoZ?Ung4`J_`@#yP*0<~c zpUK7f;>*}7dK{%#IA`cX4`AR)9*t~@F zZmy+MpDn0YCKC%>wD2ZpA*3w>IKMp?dPe$~ATj}7gMV1?ACRgYm!G@tre)Utr1f_< z9lv}HaVjl1^B@m#XH$?R6@#7M({WNY3ws^*W6!8y#014cXK@hnTtl#7btXirLU8wA z5fr!hKx<_PF1T#RRc#9-FImMttK~8Ayk1_MdIj&?`c(KhYLfb7BTD~v3D$425d!X> zVp$dD1}Wg^iz=ke9D$zX`ItN{2dy4oSjMyYq~l#Z-q1=Q8B`dK6hc(BRmcb!_a6rQF_#7)d=HL0?uxGtFVDU~4Y1svX<$ecU(*s^&5Y zodg!8{*T=|-Nb7A7<=iS$D)pPu&~XC*q3cz*rRQghzicY=-#uClvje*<7K$|Xav63 zB{I3z`Iz-Y9-|g5#r;}&yzx}TvIkSqw8{XT99UMoYdUnFakGY+DoFm+$FA-%!CwbG zOsF>$6;O921~#2#JdrP~`|dKBm~_M5_#TVNKft=1 zC*YmuIrg=k{c6c)z+g@Cm+^x^(+ff^anq88rMInjJtWj1od6G z@<$G@_N3A8vHA2aF`K*N=e*<8NZPeGfKucl5iY2Tcuh?bzO{i$Zn{&6{cf_(*iRom zO`@)ax!C*9lj?6I(&VpU+#xCMz=cy=*_|nBpNrK zj`X>Zq6nkIQb!9u&Ep<& z-L(f4cphqDOtq+w=l3dL2--t zU)5XKTO~i%{B$I{lDn0apU~&+dM3f@$Ijz>r5ZIESd_C~$vl>3D$XYEQN{ew4Om># zf(JKdV#<PxxR!!v?t8$9i z-2EI!H@Crff)Gs-7ont{CM?W+j#It5)HUuD5=t7-aN!Z`l{R8@-)YpTUPRLUxwO)( z8)v_Kh2ZQqD7`rg7xNNaoxTSW_O{$US_ST<1i{`d4C8!Snfbs5yj&ndFQezsMSoMW zUhhf9IRVr*UK6k`fX7;EsQ(H_PWp5-xLd(}o*LH9T8D>SLJ&Lhf!T5I7nZNpqOf~j`vlZ=Z;ImceNngl=OotOG3)b z0u)B%q0r77B$$iGG6q<5&mI>n)ZujC3OhLPm@SkV!P{r$3})TL^Un2!gF^u9+e4sV z6pzb){BYo(7usq)u;i*c+U$d8|x&hIf?*U=*wJ(<9i)pRgVZv=DP-p6`Z#IptqRhIDfCld4Cu!g`^ zme6yJ*)AaDoiAa3``@#os%j)|BCHcU%$`=9#iu#WFxQdcx={78d6^V?RCc20(s7J9 z(!>^pXTf%hIGUn(h>F)lsd6U%x&&jznghsc4}$8T68c^kK!9U|hUEy6a)lVWmdPQK zyM@+x?tr>CpVg~~nOd*dhY*m#lgo&e%Hi@uX(WBqC3FSDA^S5kaoU7OZ&gsddL}*j zCQrlD265Fkk*+OFrL0dO^!1SkPK8~?IZJN{mOVqI`AWKRaT9sFxYL}X-4wUViB=gY zkmW8fYP=LoH9Zkz#*d{V>G9;}5KApwcG@rDOyM436yKOY?tZCcWR_1Ydex+4*ozK{ z<7A_Mj7}7;qw}i|6K~o{x^ww3NonVksA)DgYgdn2nLf)*?NkpFsJ;+ zrR172fO5V)qMSvrd-?(h8)-m7_%G9XEx~3lW$fp_Xx>7pb4(*uygAd*p1lm4$c|dt zG;cp&#J_p;K~vbzS8STXsV3h)`ptqzt!c%KLO$O+s3|kk2qQB-vBX+=-i}o3CZ|uj z?CYP)?1SoPjI^p|l{dgr)Ne4y-<@o-^G)XI(#q;q%tLml4*XNoaVGf|RvFe|*5d*E z6}W@SXO+;7OojN$RFwN=!BhPNl&o{Hd+#!Q|NaBI;}a3Is}~nfY=W27TNW*K2PvaI zWAW_^7#a1Hn*o+1ck0Eo!}&-~Uk8OBr{Sqsg85fEVc3<7fBVkic6bTeR~*BLd6Bp{ z>Jh5_Mk0bJjZi=Cprn40d0obmBE80Lb3efc(OBFE)Gsl|p0&;p$@Yb7^l}`3sfG}56D+V@4K^zSKf9B# zqTB~&8~fOm7&q7)iok2BVsvB|;oF@W2&R|g;fEqLj!uDJcrnUWmE-Em2tl72%P1%iL2r>}|ecsQJ>M#)c&8)t!!4KJoRFK047#~A!_nPm{y zRVpn(KX_Zw=rA^VIK{xnzErrG$&m?<(BnfHOQ}ecR zx;B-Yz3o3hwF5PDfMam2co|D|`5Dw3Q9wSMO3C&@F}dC6SX_OHaLQB|O*MK~|b_(MTcCl48!RhE-20fBwlcyo-SmjdJRbS(NEAw%*u@C8Wl% zxCaTWY)LWek6+9#*?wZqAKiExf_CF>up!^{lMu3e>mmFy9IjPd4yc}rvl*Qzm|uh4 zv#N1)YABiu)}l!81ACDd!3^3*(liAf>UqA45qw(uBY}D@_v;u8`ZqgpL1`;2zS(dr*NvzVUW-4Tub7CnHdKyo!1d*3@KRfaL!bR{NYezCzhm*k zC>IUeHzIO=GN#-N!>6CF&{m2;#QdXp!TsI1bD22(t_>2ePhy$LPVDtdhoIS3%#Ct~ zlXL<${q(`6PIJ^O_rQB=S?CE%!{CP?yDT7uFt2?OkDQNzhY5yZ-*02Vj&yJhZfH5n z<=r3Suz5{A@|~XHEB_K|nzTrp!wzX+NCQI}_>a=Sh!h7X-Cu=w z-}T9F!Eyxp45#q4KWLxzhjq0H5$~EKs-q?8KvywJujgQem^dj(sv~X0GnVj*$7;tY zBL8Ir>N_XE_iG3EcTA8wZV}ow)?oRA*@&)~hbgbj(W$x#bx}WPk{Rdw>j+W9WP%kKZeFpkk_l<=dyjXv-yb zLb!{yetyN4Op%43@f38J$)a!iFO2B0Le=l3aGdjndC!!^%(XL7Ev5yV3{iCJjlzPQ zo#=mcn|EjUbZq$XkKLABKyP-1v61Wb$xv1vBbxL{Ha7>y-tghKb1Paj8nEWl9&Uf! z7#F6_r@cQN>Gji%6nx%^(gHS6>vl&?zKOBuW{o%EK8QoW3PrqcMkT*Dw z{uo7YY=I&wFs>zy{o(lcCyNX(MUane7$s-KQENj6d2Y?7KIvq-QJ+h#uXD&oFOPaP z%gD{(I6aIEp);~Ml$BgS3XQ2$`8buV4wsP2%yc@Fl}LMcCXhgEDou`AL=KW%4qUg1 z_LV7-+AB+v*s_IOw#tzA!x+3jDMHrS!DK6SkWxnNq~eTibjjC?4hr~@>+k?twa|_3 z&$pwjtml|5f?$vo_ld zXP#)YVbuw~f1o>m-ZE=izb%XJ78DJ&%|+~KUKBIYpTI`?Y-Xyfm7SonFw*a zdfe~2g*jfAxLNEcIKQhCdTO;WoqQeb!4Kitb`KW{>u@6aH0)bWz`*z$&bD2{Xt6j1 z_nknneKcC|JsF(i(_u3qj$96_|TY47qKl2;MXme@jB)GdmdJH{(!f>y1vU z7%X|Mi>_&_vDWN29>_N1_0mFI5{Sf#cOlS7DS*p`bo8uwibEZlkQ{j!(F-c^WJ4`f z12dtp$Qymj)LBfAiqow8{G+%7KE=4xqY(JcOaKk1OLV-ObyG&^4Et^e7zNk z@gc}u9Zwa5=`_PJZ^*+Aon8M?XV?EWzZv@cp$u?H1ONRR=#aS!&4a?!aZ;3$(hlId z_Xjw3_Tt3UkyNf<&Zdd@pzD1Ki}2Hceh+uvUmT9g8zxuN#(*bHJ_9Mc~yqV?vt^#`#~v1fMF*2w|AGYbn00%g7`mhY=9Y#^bA$~Fw5 z(5_NiY+g$$+<}Od3ysHB-v4l z)c{8RUPlvDrqEmWZ2YudK@}n4RH?gzN_TrvYQ=pncTC63<8t&z%9cD&iqn}-#aNP6 z1$)(LbbR=2W>NT;^)8l#l6^OOqR_<_EgZw={Yzx?xS7mDHDe)Q@{MKnHuI|$wOK~r zT1u^KgX|X@802IkctbvWzQTmfU#iSXhxaq{R30v`eZb0|yq-E94fn_A5nU6Ty|`cts|v;tG6ncxohKI!2~cf4C`fwDt}P!vCbZ9R8zcTy*m zOE_j&>}{0KyNHp-tys`q2W|lnrH$NdFvl#&+1Q8=*|u0Wu?8knA7T66n;0;SN9e6? z@K(p*?ah7IYrB;bYAGZ2?#~MC?2v~Y@~}f17}CIy2L7WoP}%+&wz|I|FuE6$8db2bvfGR-QEGbiQyB^jJ_&@Ytet%tWXzj5B>w|b0|O?#}8W97=oPz z3b=E2CU$1+hTks%au?l-jsDM(^JpeUmU>}Mf*lUsvBOg>YgFh=f?t&uUdC!+OQ9;KkDC`I@u*z{*JF+%sQV`TjMib+3S}raWg})| zD)_RQ?31VnZajL#+?r((a_%>qxLYdYUa^Ff9?)j7O zZLWKDnl(w)U&rNB0dTZSz=(B;ke#rKzWH0DRM>=!pKnIf83P)f;7FlQc97QGY#L^m zLWWYiiSNIFe(1)~de@y)cdU$jW|WgbUjgaHr;~PP3Ylk=(c|jf;0>=J&7URIv2YLB z_ZHE?hc)!Yq>=(-BdFz38V&RvqGKEfD(uQ7tY6v2y*{Ee$+;X&A?hUBeFZ|}-obQY z6yA|Ywd`;0dB zWIkmVrHA2>=vcVSe$_NGr-&VCEMXBV!gxL#GqA{LHeZPCLS45N9n&N_7547T@7Q{# z)IWip7OrIf3R;=?(dp0_wglrn=VC8qu&X14P#ICf98^7ctDXrqH}qMsnAKs}^nMqv zo_dFM$>;E7cN%*d&WGUkm9Q*)0$F))HhoeNZ~Bx^Lhm>)JUmHFIJ6ONaJ4D`26h5&9kc@%6I? z{8l(aEXWeOW(C4eEefuhA~11Yi6+S+OqQQX!ghxsIVl!NtKG2g#0j_$tHOh{&2W+Q z1-~o;Z!eg_?891gCx!v$6^JQ3i-hepaM7>8H}hOP(9TDISso&!GhuLZ9VQ(0!wD%H z^jXWmEXft0nLJsEUxL=Suh0m;i_(YL5a>FDZ~M6aPZKZVVpJ1K2EypZi8v}fls4pH zht975sIzM*L;LT~(1xDj&@=qsYQRrUlp3PM>CZz^`Xb7hH>+pYwE1{GHj&NN5r_Vo zr|c2QuwVfTIGDTR&wv0tOQ)lEelZRnKh2Ikf5Hae$Y4^G0t_;KvOnimBVS+A?8i?K-+}?A$Ew+D}1;OjJa9t{fb4#VsV5tc2eSXk(@j~BQa}?Z| zhdxg)@RdbqK-eESryQ}_bu~sGkj9b>8Q8{i{a)CEgRRk+eUgWl#YS*Fx*n2++?}fH z8&;q42g^QRVBK##*nSHE?D8H7J;fi)E#Von*#Cyjo14HE#U8@Cx)eB%4aMQj!?Dm< z0;g1LQ8a837UZ{LnZ_)5yJ`(a?T1{=Po;mwl`IHKH&BYkP4_9%<^<1%PMV=@VN zrqYduY^r~lO=tUS=-tm!QdG&Mf18rXZCWgO?{uK{`WouITtVseg=E9BY0CUOdN{v= zvP4tiy0L<+dkScZdM4Gl*U&%53KEklfp|a&ISxkCgw+dZh0iZs_-09Eo!pG*`vauY zl7ekZZRqHZcyfKYoHp79(&^GYbTQV3+MHD>*f|E%BR3*Ub!y2w&R% zve~J^D6-683Q^yghUh2utUm8uqKF~)m5jBCxY?3)$NO*w`=UT<*X zODG1onP}lWJ`93#@gZw8ucp|Ih57_B?MsoYmF?kaZxe=nkr~FgE8*X}xrkBUgkc^v zI9N3sVP91dAoBs)Pvz+S%Bzr`bQzKr<(M0$jx{kGpsSOB_4Q78awHC0-Cy9D^;Jx@ ze}MXcJeal|K~Am&&2#vUbe}JXEf_{Vzr|?ZreVaJa00v3A3*TnPV@zw#`D^{(5mu* z|M-2Fr{;%u-iLD|D?k7l;j?>u~f_KCb->B9}GML;iKhzYh7=Aq@;^U`PZ1 zaT?GrkfFa{WNG{nSsHjCOmi%rGcGG-d)NQM+R8s{Oa2nXZxBI@z;pyxCLrloB@Wk) zLvghwx^@{t>Te$lxaWrc9k*cxDqCP+Yi3PAxJC`Ad8fLnDbDY4*nLV$jc=l*Ogc^ zY!2L3+h|<35r%XVkJagpq|BRd*g3BMcD9Ky z$`r=qL`Dl6j8H(n+ZebEjK?qeNpLta0gWH!(X&bkpO$+u_;oM4&a0qwwrFkd-}>%-C@qbvvf zODc!9UMdVS!*IgU39&i3P&?vAE%Jv*sJMWlCuftK!A{CZDy0+BMRaIQ9^IXuN&fO2 zU+Y{Hjj{=(--hKRq*g}P-{ez8at5vIPA0Q;z7!CWNfTyek#|)*1>5>j_LW*neNaT5 zk}~wEA)h8IrqPp#-IQ9ppT0+jP@=IHrTN&CZD1hX@rj`Um#YvI4W+V{C~9ws;5x&C zP|D3Mx4#I+2OSge=F3B&caUjE%ELm$03R&8S%;$`JNjFS@0lxx3GJK~4018HHks?^ zz07J10-M%)ucZs?b=jMKIo_A*bNswqQM5I5vv%EX#!tM-zNBnp4>GmT5UGuc?Sjw> ze#c7oZ^qb5+E`g>ir&wwz&I|&D~E$fFm%Bj#da7rd zP#ESnq+^xzX)bR*hJkCxQLeTJuEn>Z?fM4ZSGhj3g#y%jSc)cmG^7VJxm)vzod&Z*L zxB?%wvf=q`0+QxxF>f^|DEiDrap4#&yzPO%F}k?u6#y?AZzL?TMRI30(m2n)^V9`6 zgcl)Q&x_kz%*O9+LvKv*KWjR`om(R2kvtnydkl9 z7~Gx)k$b^VaaxRfFF&)lm&@4qJ?oGx9)WPK)5AnJ9&CDon8NNXV?EWzZv@cp$u?H1ONRR7~3(1_SBB27lMj3 zX_Pc6rypRR+boTy3cg_$pX|6j7=66oyc`KalVHzvJI&d?3-8v9g~v@(gonJtx!QLa zv9}uS<^~8m#^sLt)?gc#L*+}3fLGy66vp~OuWd6Rr(m^4K4=MVw~kZEakGi zkE?7DG3+R|_7*WFF&ozdRWVRLAI+Df5kD>n9=_8Mu;Un8+ph;h=`)37+G_H0Bf` zURj6KQ|-8&83)pnx1{zHhp}dF9Mp`s9rq<+7$5KpDmt@p#AP{-)hxlRJ)wwsRStJA z50n|N;(VJ4UYj=HT5%yAZV4gDF?samV*+{TCep~kRQjcmL&HqUsrGa>UMN;jQDPaH zYn70)S^){{%^^*dOe(ZnM{bQdq}Y)}BNW4FVMrErHB``d@f>;(SxCk&is_m_9$9oM z)6DfzRIGe}rXAZ#uf{kL|JhD@JwJdJ?A=Z(mjY>WRUq|v2h;NG04VqHA>#QHZt_bJ zJxUj1yHi-%&y@)2Ph)oAA*b7emo!tJH@tm3>^0&cR&9nh&F@WCHDb-~#=H2#zO3e- zd1OOUwa55+p9T136)9{+{3TYPAO(v^A!IKU$Hk@%c(6Q?eSRZ|ORLu)`r>+YzVwBa zZz3c${-G?i6)C;-*r3;dV@}05@a+!Dk}@$xq=WagTx>CAV$yVD^t;k%}ucUijeB0Y!M7Ee3o29Gfo7QHhKZX7}F0o*Bomb!80x znq9zKD-SpeoP>M*0W@f*q2li|m`d~^d`uPAggk=fmn7`d^+Da*PPosn#)-WZc-Zp= z<>NX~UH=m2&JL$7b{)8#mxe5zd>D=Y2gh6`l3AUK_&oxY_WcRe@1Mt@K_{k6S&KVQ zjG-Yk3l6tK@FH|Fmd9^FwPOa(P0YsO(=G^HP=wL@sxh-84>xN{(C2dut3H(D-?@C) z?>vI7OY5=zjXM-2Gx6+H6zoHSvC*#xy2DPRsvsKMRv*MTD|sxL7>N>}LI_p5Vp;hb zIF=efrE>->+yUpKWe^I;fXVe6IDhs%eiT1|blhD8f4_<`Mf=fYmyVySpW(^QCX7@M zARFr;4?A?${r8`BL(g#N84hXS|33{}ZIq&~`{YS>`(&D=JCCkU{m3r`k9rb3uYG@bVji0*P@Jq)Mdxtf#C!Y_ZX-qDT?9ITL+36@d`UBrW zkH9}D8O@$u*d22pQHCL~ULJ@=J5OWd(Ud$Qq7AMWz@w>ofD%(#*D> zWpD}`1E=9rP#&?Ht$%sRC?{bgthDFR=-ooJ!>k`#OSycmbqmcaZvnrYo0CvBp%0CD z7`GrEE1W{mQ4IH={l&Yn1=xj+m^3>Z4Tow`)#wKA;!YTtMWBBF5=toWAhmP8 zq>~y9rkFsU>0ZPR29cw0BF%9rBPHQt;xEmlru=GJx#BRl^HoAoQ;O*M%VN5CM3A2B zI7ut!me8n@bh1=PqL|q^q>x=jnDH56l4aB`SV$#-6REoK2@Yl33(Uzjtq@ z>cH)Eb?_ji_J`4(alTZavzfY|ET`{*5;XlmJN$Q#pvC89(NiFZfGuM%_vj4P$^Xo% zf?U{_5jt3z{DRHh?2kkKzWl&D?)>Xjn$24>G@6x0UT>=1tV&i+cC<3)3$ICSJnNMK zr1k*{w+m0BE%s3;evywUdmKr{(~(LY9qH$6u6s<( zkz8*$(2?!0(cV>x8;grri1IGja9rY)<3|mhjjj2MziTjQeM_Xd?nLdzAp9s_iR@}4 zR6X4a{3yVbh~__Xtv}4r%w&_jOF|k_*?VV` zN}`gCO35mfh88WAG>~X$X=&W&`!9SSkI&=rx$oN#emvgq_c_-&uj^c|>v>%dFn#`b z(#uUj>mN4+%yr=OSWP-&n}s>PDJXeXgh0_KG^QRxZ%HU}R)oQh+xu5~x`I1jSvVMX z0s=xOP-T^giGTLsyHXy$Oi#qL_uhE3A^}FcoAA9d9M`YyfEIU;EQq$lw8bg#x)XuZ z>ekq`PYsE6Jh2Qyh)dIA=BeZjxaeYiHQ9~r-%VAiLT z*r}M0;b05=d$J7Ovu=T}Hk^|EMmX%q+V}t7+Bb4dN3Q7z2LA8IfG@{cboK5*^y+FB z=VpSr$|)@Mb0;(PQG(p3Z|v8Fd#sXV(B--e@rTwTtZoT1POXKOnghPvP{#W&`k2?P zh+|d37@HCewX>VSCnOKO1#{stMiW=dHbGTH8*_N^V5BvkoYH~r)unjkZGd^) zeA#6yS(p^_k{#*8u6-Uh&6B1LRI=a|~*7VLnvl!v0$x_bCsDtQd8YH~J zlI{fAQQ2e*8n6{3ljE-9r0TrqkEv^CUA@i7wYy(vMqJB!B2Q z$rlyV_O+!nXL=r8h|VSzZpO>;KoNy)&Y{Ml3~DbwK%NFJ#HU|EQ@7=i=GiQ2A3Q-b z>yFWGr94{q%Y(Md1=FCOKi$vTO8Y&cD11R2*8e1ma^|Cj8%9yqN>$jJ+M>f=6=)(Rhd&4fjH@!i0UEej9_-;6lc_q~HzFMh{P8cb?BBf1`X z?N>N2^*EA$>P$O-1>vP!8S_7yj7=q3kDvk4h8vsS$s2`bPnK-(Q(Y3d>E4!=i=`D z9CU0riq)p~k-RAl<~7NvD|15jyFCc)^TICLf|uPJaJDrODti0i9I_wUhayltco>_G z9Yo~LKz!9r$C`q0XlpLP-GhRdc;W*b&JLkU?geh_z6YzKQmov31jl3Rkv&}#MNOqJ zupLE$L*Zn6bA-c=tabnQuXQ8WaO4_}VBr5f3|x@sW#@0pvdt6MF@K-YoTu(FE66$k zF~d2iw6ce({RehbQv$DL=HqUZ3zS~TK{rGn$sJZ$!yk>CWs@*5%@E5H)}u~T9eGC6 zkn>yy(iL&&Xq%28IbP(LxZ`=$TFgK8hfV$Hh2$Iy?1_DViZT4;IsYUS&jAE&w?gRiSo|(rjZMHeWwHuNI*4*6Flj zeLPaQ+^Th7Jm_Ot5Ph$)p_Vspn3nGem#n39f5ss=KAQ@So{Q|v3kCSh`^{XkhM0_y zD5Qimk@U-h>tr&8O-M1zfH-v&rIEnR>)4=wfS#mRQRuEpa!f0s?~@MFZNo}xmLA5n zgXxt1jPn~z&!z=wX(Vl&NM`yebXCro7SCHpYcB?q1s8C!LxiOu(z8YZ=dsi7pBm;HD>l8Krq(!moL1wUL<71OU_x!_4;pWdo7&VMGq-8Q{_4gBlSJ@! zOca}UfCnFaW;S%*Xl07ELf||5hN)N8vbZ5zX3<~WxS_`n->wp_o$qBIo*hBzPvGIE z5H>YN142a`=v}-Mxt2Lm`Q;82%`3qX`FAXU&yDk-NUuF|~ z+$M~izRTRqVj}`Xl5s+hpAz!l;b`;{++KDYs&cMe*W7K$Z8^$ixL!kDb}MqHwqx{g zGd7N{!DLHSTzYy3UdPU0;)Z%?9>{{~iifZZcncv3DY9%h1cyoX5OW@b#EE&xf18P^ z70z&|2n9de2g6BD5Mz$mlI4s?-#20G#x#WGm1Dn7E@tYNK;V8Jo(^;UTUPmKJRXLd z-0?=Ei?H!`0n`p3#1&l&9Qv7n@P~f*wI~UND#f@wFA7qKhD=fdZVS1?EW#8Te+_Z1 zIUF1BMq*C44pBDOD{In*PX8__+2z9E!Ab1<9)qk)gIGM2!Ob!5CXH#4^tvm4#1A{- zhaK_5j$mK}10xvtufu@XxI65J&si2{8_pVQUqJ5B1NQaN6exZ>h{>@6;LS>6aXd1} znmZR(pG_d0JQj}|)}o)+1y5I~BQg2~(p9!%;>Q?n9$XnQUSmO4@g+d}>pHCDIfS*JlCbsEYuHYI0S&JosBe3ZGcn1im6=LQmRBQiQw*pl5dy-h zs9tsjJ}cVM=PW?2%@G(Ev>A6!ABKXs4E){wG3Lx#-2CT&lC;;DV`+wPdj;&6^#*rz z)X_I#1$IA|N8oV_oWHAwuT`qB&scy(u@a~p`VA9z&Oag1hh<|ca7FHN&iyW%@8XRf4+(pF^jb2Y8Y4WUi?v#5Mi zES6}EBI`d-(5f)N9wrNL+_w>CXWpV?wO{HPm~b>r!}L=m;!IzesyWz@H!nEq5|lV_U;tv(-0YB8zgo0Ueqd|PPS!(>v7 zOQ2ezy_A@~lwR;U(H%`MlJs$;oKMlz`Zbk)1(cE@=R-KMA%( zKY`T#>QVH;j>h>51RC#Jmo{9kj9}rb&S{COjc>THH=yCjrCaQP{y8SNUWCh})qqXD z1(Zso>OX$o-=Oehh-DWEH7zpFV>@#s8z0;DG>$rG+Bo)OI=i3wUF)R!c363IF_UGX zEKtvh6n>__wf`=DOa5X-8huQ{Z54CeIvYQ&+?X=wEzpW@K+}zSkQ;c@HftN)!2>%fY6D~tHM}IVJ6~q zkbMyXfe)dumw%1>{0H#Qw*}2N-eUfr_lSP`2IbQlz>1Dx`^z%YYni?kf|j3*`{?XA|;O4G#<#LlR^sM=Qci!cH0Iwguw(f-UBQlIvfYQY(xPc*m^RtIsl|~ETGXAh zjs&tAIG)0FoW4_|-4|R5kKVA4&y$&}1`mvyjZqw|fL?78SaW&)E?VMr{Cy+D-|5iJ zOik3DE}$0zM@V7ZF;X8sLHQGpQ}V$yk}XXo`PMkP=hc80i4(9nJCF>_Ea-D;G;KUO zitJBV(!Y6b)LUjvo_~DFTBQaJAG66TGLuFb#Z$ESR@xU}NSk=LO#ZX_lo9d(4R1HV z^|S$$hgC3*n{E61(;jo>f!f~^NIBfjMpwzAy0!=blAVoVzpNWYWn&r}KCYynzw}9f z%NAqXOEe0888jqaQR4Ec3Rs7oDcg7ER73S52S{x>rFAauJ^SFd8bbA|@akBEw?3*k z))tBkv1%5eornQ{JC?lJgxNX^X-aizu{oAg;3(s&HE~W7x@7&Z|6&KrA9AGU#X;yF zcM+R=f3XU?GUjroQSAEi|BPf*@vL1$m`q*`~7h^w0j+PJ80r})^)rH z5+RTAi@B^SH*B&Ugj2u}y171$qqC0U!CD;}gdNhqE5K@n6Eq#8uwI+%9ouu0iDuUz zq`ea+L!n#`!UA&Y`iB74&%KNNgJqN!O{_YD`hjUw@oWsG$(6uD^%&x}+(G<@35m`P9`&*~L#l(o~q;o`cEH{rf zl!G0vRTw{h9vPQ+$osJ0MRR# z<8@a8lk-VKyHc%IsRu7qLq}1O++Vy>5vD#qSA<86!o@4I(IE4VO?a(?idDJbZ!$y= zmnZ*d?*V+}l|_3kALcy$%rxpUz&BA99xtOX>!&)4oUmDFnia_f)-4Ig-;wC z$dy32%Um?g9D~Z2%TPAW7JFavBWhzWi+XMeL9RP>>oG|j>VL(o=60|chs{{BBbH3o zCsWMhc=}iqO7_M6ly)Y7qC}eO65PwK!E8SxkAEt3`Oj!z zMIR*1OzCOOd#x$lXX>YLd9txTn5*zY>hxD-w`}LYdGZ;o+ggkd#yPYvC5PsQ9;Qg4 zQ}n7i25EC5Xvw!U(*6}sa-z<(-|Q?5gRE%4cN68 zJeXL@2b%|fm|0x{+p$|2I#te?F?oGsl(u$5<-Ewo(D-4^l|7=UkXlc%{F7*Vm10v& zY$(%Nx&oKY%Ap##s4+~qqVciKPgWC^0kJ0oa0+oIwH?kh(aV|QlT4wNd=c&0cbNG? z>BinsgkxhvnWPk#{X5i*(%5;_u*``>W^!JFPDd&^REnv;kD*P$L(9b{nPptK&Cd6K zWVe;7nXB<=l-FO>YLEzIn+FS-$E~es5}S#tTl;V$HUn`v$v8LWA>!Y^M5xeoY>kP> zuJGq5+*N~v3ZaNKT@8shu4tU>h8dDukv^7>v^h`q9`{gKp9}}ni~=8B$F8sjlxCem z_LCcU_Pz-J4lg1tCt->UdJG4iVPwuwrRyR=_#;=3a;rFOU!Dnb*EBqs?u%D%!Vq#m z17{yv!oFfTEJxeGWr7z(cIsf;sw(!WP#Q50=R&!4754g+L#})s@iseAg|-IWI$Dg4 z>klAmO)^w3T629~N3iL5HJ)zYjcpG?v9-4dLf^NdB{>rbD|SMnp%kMP3!qo94{P=zA3-fvO(I`h(()jBjwIs+$V?_sUNA$<6J5cflB5S^clXB{=LqIO7*@ux+e zadh^3;)o7AqQj2pup<~4!N3Rx{wpysiGMT+$#MOYGD~o#b|JR4)F#Rm9MZ#vn{yB< z9DvkiubFv?2*&f9K=#2l{F%BK!e&yqsuGU+yW3+{?gVG{SM-|J5=e!g| zwq+tSr9NDGJi`uQ*on}J_?I%u@crav!}$n#z-MZSoj`42TvA zr_#w~NiL1*6s0fy1{BC6Pg(`ebih!WG&WskzduUDuucTg!xhX(xDe3-?JTfjEJ~&q zvNbwB#YH%Gnl5hTC^g zlCle#wY~vwk{4|q??nYuTxoi`C5>mUboq)qMcLYNJ_#4PVc|~=5;3&mR|GvY44|!H zy->WSPD78pVE51%J}-^1+$$KjU&P^FM-Z0WSit!)#X;fUnN7SD7EF^v#E&r;Z9R%b zSw}(5`v?pb9U!zss);?|Z`_@w)gbL)Loes`vto-4jgsqCSd7{kG_-_5HSRtZZK#Bg zjx%-JI@3#cXIkg!Ou??s6lU#A$Mu|P+G1y-FLS9f;s;ji$0Mo8i6(A$B69;L+CI&R zW`1;}#um;SVN{7tSu0rlX8|;1d}3>}Zm}$>*{IL-WE#pPY>(h2tvO<0%x~p=CLtBX zbaW=8`tmHuYw42J^hU@wZ^7{`yV3mo6vS0tV)D95)IQn(+V2OEw`XChmX04L+n{(Z z2w%i!P=8Yho()Z+u8v|X*>)KM-9-@fJc9GjZgO1s8LSs}z;aFv#GQCZabqT$W~`t- zr5UsWSuh_Ipvlt%&4bkM?n2S)ud>oI0tGBQs}U z{J>I3jJm~azAwc0VPk|B#X^Ut2kr)GDCaN6ZJ#nMIGKToakc2a6_4E4vG{r?9d|Ef zBK`!|Np{r>LW>PxCwLUSdCB;=uM!>0)1eu&9my`n5Q{a$XTAM6H|;XMhcrTCM?54- zAK=iLV>ol*6zXJCa8Dry7W!dWCwB%rKE%?Px&+c!NEzXl>`Zt34D$s8gCro~_1F?ot5IkmsNa=X|k$;OH zT*szIG}nz_a2OA+hGL`dPLN|5hFVWSE8`j>t~#N9tqMNJ-a&U>Dzcp#ujSpC$U;HZ4y!Aa z5SjLg?Jbr>oc#*?>z|1{O9?DDUI=}=4z`QUfzQ`V%+lN&=W`5@^0NXtJ=0KjPYteY z9GI-UYJZY#1fip(EcP$So25GdzEyEAoZ z6n_n*Ze78l6cL2*=CZ^~_gT>04P+yuN6!^+Bdy7jMR0q&*g6XLk_at2zu5fOV(2`o z20iuh82g>$hO6yKxMB<~o4ggj&3c1b>2XSFRZ5< z>Hefp6N1%tu5`~Vl5A7L$>d}NIj-7E(L-BtA^I5R=}sc+`9{bVJ%LKyBosyZ;0)gf zWNk4=+e{72R8fVG>RUE@yEd10*nXFMx;mRVEg@1>c1x!R#>~nwI6@PfHVm^j1;Uzf5d76^lb2UU1L7 z22&hB%V$2anS{Wcd6DL#fwrq`o!a6gyJ z6@{rM)9}Uj1nf-&Ni#MF3aWqL|NE|mbW{nK zClH90)0|OkWPxpmIlp5FHUVW7r%d|jUevrXCP)l0yAv(0#u;)~!>Ik4bz!;}vk z!PS6r2#DmuuT>P1Ta|INjmR)p0V^CgBK^f_cwETA(8C7Q9tp=_K`DAiw<7X$HJp!( zcnJR6pWP$hZ-ifrU|<9T|G#4(@8|@YeC-Dt>)Ob&UAM4~3sHDw+*fX)azD9zcJM5jywhL!Q&b zmfrHkK%q7)PKwedcYoYG+lj=(P1sZ4=hU9Z1c*6N2oD%0z>S!5c-ZsR; zVR4jA7si#{&zZDV9W(37MfQ1FEU21^QEPlDaM2zzIvPP+&P35Ag=l)(8BJS4jq?XBCQiV|bUAFl91(@9Tq1HHUvisG}X1rZY zZWkuv+N>ew&uQP+#tV|UNiv3nGgyW3AMAPdmop<_W47x+-`P#3yPyhuAc2)lDKVRq1s+|r!rg!LA9><+`R zQ7eF9d|w4890ciUGq>dxLs2+s|2kxO=<0urKIO^79Co{IFNjW z^%inEY@RdiPIjh&U}w_jG}$JO-(KQ4thj(Pr9X9|mI^1b33H-xW=qMfQ54PsI zBb__sNK;muP=-S*+g+rHZW$-GY(j$8R7quID^En#cFyan$MNfYf7aSMs}2~M$RKT<^WdxW(Z`JA6@&gXGc~TA$ahfY@n68kU+! ztB-16uD2#hM%~5hh4JX0b`WAsWv~_@yi2#m+4D)@5vW7IOAZWt9MNl-iFVypaI8*6 z$*6sh;5r(j6%&!b&2-%oszS;60#xzd!2Rt-xFFz#&eJzp?T|YPMJ=&!Pa~d9OTZa! zK5ZIz?@DV2BHu3-0Rur0{2za8kLrm2I-~F9(mAGPM1)vG_(TKFKSity2*-zqlOHfO||3?r@S@hewAGu|A1p zQnHPs$tqFwa+V+EuAfYAcy^H0l~+(25c`u#_Jga$*RvQNt{4$5e z^>lc5Zbj9yopA43jPmGg6u5AJlR z4<>md)+htN{rPcHbsQ~A(8TvsoaeQBJr>jmb9=Z8kTKH{4T;w1->%4YR!t(+0Wn;$ zw1xaT4OEtjlkstF*eGct@uxqVv*9ZnkU7j&&yRx9>}`nDP{8x%Mflt6LvC%`DcYUu zj&F~mzx~lP>U|V7&5fX2N|7WPnM|QQNo1OyK++o=Dbaa0X1on#M*NFuReT(K=UC6$ z_oc$=;t#H7~QUe!ay0UarechvNzb{B!>BS?CGT{*TKbkU|TiqsVrh06)x1FRTFno z(yz&6)5y&iE$M;SnM6dF>BA>-JPB@Bps$u!L0y}%T(1}!yA){M?#prv@r-8+j>$EQZ!)9>nlj+&%VGklJK3T1aj-C% z+EjN|6yGoN;P~f-;Mw(w<))9;i0O}nsecC4>YS_k_39BHuDkxJ7XshByE`?BZodA1KOj-71Hicn^J#EKnk zInp5g%ZyEW^O(K<)zol2SQkUD_z`BTfxopguw85uBK5+d&s&Pa7e*TNd}af*=e48zNhta& z3lO%d0QH9#gRedt=LI&yrDQYsf3L=}&ATxiY5|AR1Z+)Mfw{MBvG4h6+$`t%Xb)*UwFi&$*FdG*6{$v zXT(SF|GUO9^7}`0z7Y(JVBo(Q0~YG{kh^>uotyLoEA)ENJU9cF(ta}WKdzWPTn62n zAy^nC3DfmzIRAbg42L>eh}FAbqmy!_2G6m8Zo73q4eN5 zE^?hjX^whW#ixqo_Y86gv5=uSuBmMK7uskR4v**k0M?xQxy1k zLUfG^7LJ{aqD(G7zs?LzLi{w@l;P352W+(2B>bEvNIWmfnE?+sCswcwv7tUlZfRqx zAq?eOLu^jXXXbjBj|Oh`v!#u5F`+YzUN4QLg5ntZDIZ6+Ph#oVP!tu5?xdyW3u&}< z2FZFSQBB8Q$~_gy@>@?bwH43V{E|`lwQvk>U$18t`wCf8a2~s*zla6*-eU$eqwxEg z4#m75h4J^j(9-V3e&p~&cC|Fu`6PwZUo)U18w3|Q4d~pf#H~+j$tjzkrbY9^wr>}! zep`Y0dwA)|0Xxdxx`1}JJCpJEFtQBUN?kr$w4n0i4p@c3i6I}nT>?tSIk4`qCj^2IW%nRu{d3?jx9X)cIOM1xON zgY~>7CS&Q!K77=r{f>uO+;Xk@XU(zoWq$UEmwLeL8AEVPEL*80ft#YT5H!(Zq7G|u z^13%hbNla}V>ctjf%Cs!RW8cy^>*onq> zIFi#zN4g&6NHM?dY4*2!%qt`r3Xjwq<%ORhtL6nNrkP`n?=h4Nc0g@b1zV%8z{FL~ zv3#j2c&G`YA)o77b&0^78*9*fdO7tiQ6~2xGfY2~f|f(aQ5IB<^mPU>TK@{$3SJNlEz}`q zW{7Rk%b{+jj_O_~9Iq*YUc)?WUPd^lW{rTchZ%+))FD}5>qN8|p zmh1ZJ;eLO93A1iIT>!B(c5|~)De~}}$K_@2nE48B6Wq>rvr32N%lBP&08mPCCWnT}wQStdekiz6Tn{bNxpZ5qR|28YRoNL03kK z=5d(`sb}JlT&se_(^e3@;)dQg4!AXJhpW31vDU*4bDs~fXHm+iR~`fRNmDVy`WLj1 z|K)mUuR+XH5?ZB77;4w20VPS6x>g#KPR@Zv<5Wawtbwq=D`weO&QhN)roxNsX#G_y zn*Dk;PB|gQODDZYaFFK?hT*O)#rd#an8 z0`+euWbi18Cf^XF`&|(jUaSXA-W9ZcWeEDL(jj?$2#%4)Bw}eqhk6WY%76hqYzRZ~ zk$j9_Wd`>oLqtB*M8kR=@Rg0hLdE&mD=v?!$`-9R5*`{qgSI#HZ?$SPsotrj&h@rU z657RfP5;QAZ{7r#4g>ZvnP01U)^pZ&BdH<##R2y2WHNBZuF*r)gH4akX8J+B%(z7i z@-53S=SUL*qnv4*u`?x4ai;n%Cz@5t`Diyg(f;L5w4RT9_i1a#M+nxXg&RC-M<=`Zw2OHJWU`g`;t&0)EvEq0-M88htxazRerr)klyV z6pCl2nYgUV>6e`aIJ>@?>x$ct#veN&a(pHJ`6oi>qBB0r%i~DwSH{1=6Fi2iI38+% zZj*XxKb+0ffSA(H<9uI~9dc@8J3r z1SQaBn8oG7B_h9QF`Bl>!=tQ*4PS|7ueIW|47yxV9WxA(*}pMfc`TLhQNk(dGDt`j z;>^Ds#Gg#XtQi>)l;&mw3y&hJA`m;PmV)n1Jjy*IpcpBJ)vc@Op~N!!*Vcp7ui<#E zv>Dr){88|x6fM5N(4JllDS@;R4m-kOM>y;V21YP2f`R{945Zu5px3TPV6pfjM2gZ7 z8PkM|2g*?L^%Op5%z$2nF0PEWN6A(V?7ra&^&K&|W-*b5E``Cse;=1WI*N3!1wg&s z8(u&DVz}6Z$~Qm41P@zUS!hkhg%(DoGzmqgQLw zXm><1m$e#CpG)`Bn_c=8_wE(zy|`b7UT*53L1hO6Ry^Ti?uVJwJSg+w*iTjO-Y~~6FmOHbC`Ck3X4Bcik z$ADVav2c*d^BrU1i2-b{)*g23DIZEZN3(vTPByx2fazA2<4RX_V^)zfnRD}AN93Kk zelsVU#&yev_;EVyQYX^?>qtj#Ia1s~M-mEhq`gLtBo$oMa3Cgw{SZ%UEV&f{gF82I zo!bWwuFcmP-(kdjTa(bl&kN;vQ*1vU2bD%WZz~T^6Mf9<>$`F^7PP4_;!ALPtV#M_=KVY-*+(ZMC;}&4w?3e7v zes?a9g25sa#Ngrny^!6^WfWiWgSOEgZ0>vqi{D~s+}?&M zS|c2GL`V70>nJ1Vc;p<9U|<9T|62@1%H_g;HRt{FJ%G7`!o=fx5pl;Zp<4I?93MSG zN9#=-`XGoJ=?BbgwJIE?^g!No>1%faj&SqSYl}j${FD+6J~pGxf%cSZd>yKryh$v= zhMKmRk(Zq*scqr<;w9B-%|CaV_9=kIm93zOJx_7qaTKnO*T;pBCHN2$hs!^g&;~Al ztHnQn{&E>hVwciTIXw(VzWTr=G!WJ`Q=#+46n4JK7_aM$fhjLgl4TCX{az@`WC-&x z$K+c|5PGhGps2&xc@%WK^%FW}^{A+58RTNqF?{bZJGWhfhTpzt$y|?D)8kvX{%1Lj z?Vf})*LmPLD2dAABuE)K&`kdogt9QaD9Wc~vs|thH;2p;v#7N-oo06@lY`x23~Y#J zNl){c*u+QdRHOpjmh@{~^vq>1v$wLu2RF15?@3^{bTrF!iDISSOW6Apr`bl6eXQk9 z729Pw22|RqHRs4R_InE-q<*|dmd`k*`cSgLA$^!ta(m*E4^~pgw)0v>3s|NfVdq(q?Y% zK0D|ThFYf3y(=qd`a?7NZDB!o8)Bfb+y(KwRj_XrVZlddoK;(ljOT07yjuuLnqmkX z#}AGqG9fp|28-k~NOUzti+3h!tU;c<9q{bX3L27t=vxm_xE@NwjGfn-<&2m+9J!71gU=^p| ze;Ib9wrh^``J)4!ZPuih(}Tc&?ik|E=Og6jLlldC#v=2Z*th)#?pf@|O#c>aJhL26 zErwZ3k1CG3C&1-p0v=^AA@_y)IK}GW{GbGa*E3M5&_%T4Yl*f)7q1U|6XWp~jx6)53^da2v9r&GS$T72W6gSA z^4lnfzST*v&N+l|g$VpctxJ(m6NSACL-71gBzBhnhG@Zh8f&aiMxI4T zx_KLuCticf%*SZIQIEGD>S6so4s&Yu;NxF0xXy}3cGg^s*B;@p|J$Z;cU@(2b- zFff9F|2zirqmSZbWhNri3sKZwhG%;xkm%hL*w%0qV%g=$`do#+yhbd@8AnFFV?jRu znB^>Aq}pwQ{3j#4Td@%QVa~LX%Rnl7zn&_47m>;<2g>9#qlNF*Qm)q;`tEB&Z;Hl{ zZFeN)x&@Qvsd@Bq&_U-*YbToF4+^E%u0Ek}{z9Ql8UE)aU8>V6J0%`mhJqqA@Mmuct z@jYcZJ$Q1JNw)1LEstE9J3Eg~N#{`umlYeDkxmE7ljy*(3EMxeM=R3(EfY!(W5r|7 zvMu+M*ny^GmiOD6ZCSDo>+WsjdKI3q#~q@08a2euTis#Pbk{-oUNb~`GvSdv4wCOA zadX{l?5-?jTeGxL@k9{zosU>>qCSn9vYu_R&P4G}Ioy?e%7Wi0!o7Do{_RnOu*n)2 zjXA?6C6%)e^FuLYegVD-u6Q7+&2>`vA@8g%6-VxZWne4Le7KAt4__oU;ThSXq8*TBp*9Oyrl@a8%5S9kPaKE95K?xTYFR0i!?zb?7bgN@- z!#1sl&Au!|cZj`_&11j4HQ0p}ee7#uIZJVviNvH~_M=e>AtH&)KCPe0H`KEQOBUhr zS01R)4Ja+YgvXv!U=?1^!n%aW`5&jjo^zr%{!TP?E0?V$x(#b(_h5{sCfJgG@D0a< zov($)L@rCpoy$^-Z`Cq8@e~zP+c0^|XV`!H#M}=l!)#CsJkcSDGYSLGfxVdU#)kanT&vx^$7m66J}$*;WSVPxmhW2zLO38>{v8N z_~3J9BF-%gMbPSCIP&_VP1O&7Q}*GOVIp?CO2(r_##qD6Lg@wY(z->TV0>5sM+CtF zMOI;h-e$bF&2Lm(#77#=p15G*iFr<3oSLZ@CcUvn>@lhH2XXA% zGiCwo*804MK!@Dtc5S*fcG5?k$%E1Zu)UUwh zt~5#Rj)tSaPj)r33fpEh;Z2y=r8uXuEgGSEr$T=Rtzz7EZw-|V@G={dTm7>lm8zpJA zocHc8T;-~9x9t$z{+vXpOEZLpyWz0$6a+TaK_J}^=6(54IU0)mlNV5`Z~(pgTVVXf zg%){Rp($0Da+Vv>E8Vqpj$fCY+*VV0um*L%GNKFT;z>~;iXNQgv`(%Qv}9WGJ z!v|*%T>a;V3oq2kVGS>I3nVF4;}h=eih)7fSIF z7FBEH(v`Ag`u%wir8>ef`*D++-4AZ`rWaOE&T83#K%suOY`* z7UOOwvzBjL8NbDKb|K;v`%yFjf32jL&;BmP^5&!cxiD_oCt+R0I9xseoWHdVZ`v5` zyt){xcZy=?o&`Ahh|`Pz{$MM!q%iB1AdE*{V}YNi!KGgxqb$eMUfJ0wc5$GOzy9Hj zRWPdVPN$*tF#L`kgr~haIq^=XXzv@?JXMZ9&6^5(rw9^QiO_}(_$V+Nz11H^+PDUay8mr!?6;4TsCdD`46YcpV{6 zWxSi<>llPG(-?@j25>zD@wjXhk2QShNNi7p-04t^IpKq&R}3LFZxwKXQ?9Hn595?(vRTxytp;x5%yGbJ+k^6 zF*qv?e~TU?CEW&}JKnS3(+XK4+kww#W8mmNz&cBFQF@chhV_nvvRf9y50zkd0{;Yw`#NMldjff&V-PK6dA$Bs3mR|6S&~nvUS?+Y6|nVocXQiNx!zFdTIh*X5hh zt9cQ;^;c2db`d9Bn((*P6aGePWnxegAy*!NG8Y<(~>0NmKARKopH_*H9OGx3b0wrkkQ_HmV-sNJ=8O!-wbZlAg$Bo((Dseq6tP|lmt1DU zbQvF&yPSpOuo0Y}u18Y9DJHKz4)&wfaC6KJj9zL^rIq>AymBwy&2S?TG9`QQ-|U57 zIXnLMH@osmoy}i-ob`AYvEM~?EGBm|OX`tC;s8H;HCYf3>VC3Bqt`Ivk6~Q_eBgDA z*V^+oi+$|)$ExpcN9tQMqzMTl-hL5&tmY#}kE574YY~#|iy*Y(rRs}yDz4uf7Z0@fB`wr zKZ9S>%y9g}T=;~`qGj?toDo=xoMsh7TKr;T#*M{9qxdK@Oox8dpoO;$y9eRbCWGF&zy->7lrZ6HItdSNy1A!9bRgRn7&^e zN~62kiohi1HeH*$?w%|tGz!;R;uJ^gXx+eV=uiyqW^Ck_|C?z!YD82E$F_ zFjPD2(Iapf>Zc>&s62zJ^TyMRiwTgGOGja^6dmV&ONP@?Y`owH)xjM6Y)XceS|;oe ziGkrm;5R*hjvz}=zYp4u#$ffrK-@mY>8I^h_^?eCCKngO)NL2nV;qUX-QnnOQH7t$ zvj4;0d%trT|8L__NeIc_dnZ&vxz0zFSyrfwC=wBAC{244QQ0G-MTN3TvN8%Snlx#r zp}oG>{rwX@_x(AJ_vgO-T(8%`b)AmK`FuRjfuUS>Z{4VfpQ=uXGV{mF!F0IJBgBN; zVy{>qzUj9?ZjK6Fd?ZT6S7pgXRhlF?<>|l=HFA(qq?`|`wA@>r^dHF(cTqFsc~9da zUo(y!EeErq4}7BMkehS>+JRX}xRHUj+yHdGU_115LNWJrEdKq-$M5zy47u;bf?sKf zQaJ*8T87f+$B_6i6`Z#caqx5igg&3awI9()56yu7yX9z+Y{nEtwhOQEEV5UnP?y#O zhn<)~|NS#);u%jo;|UB*VBo)sfoL`xy?aeQyuTht&WcNzJah_T7Dd?eB@3oAYM~c( z61cmbh;~hTT2;52qOPtaSt)nojB}&8 zK8~bfZA$(Xhbd#9Bsn?8VX4(B*u77{%GMZ&$4;TMl1>yhoP~yIvUGMiA2k?Hr;#j8 z5>6AK#2L0!5s(1h2Q#Q_S~TiJhM0u3Nz}mMj`4MiA-IZlXF>4|?i71lmxP{K(THjm zy3ZNmtZM=+f2TpBF$%-_SrCs7fz7v2++H~ke0=gqRk+Jk;3#8Q?~ZAkR#IevE?vJ- zzDPkUjd9a#XBKh|Fwbnu7>W2w#^HDevja-7<9NfE7;L=c*C&h3X<}G7SsY1kS^t+u zJmWt2l<7Dt0OWfzV%Fao(VA~e{iYkto1?njoC6Aeu@Y~FzWgi!+v1fuCzf7U8_?JodTL+!;M0kDIC36c~I-Eb5n8XBd zj+#?Qa~w+ZY>@fN4IE2!keWOf{aI{}M1~peWJfU?3$#!d-p=^RA7>04cVSXZ>!rM# z1&rA2Xk4}YX0q-?-=*w}FBl!GMVNiyIulc4#;k~yz)@8>ROu>1RzwDGkH{mTtOgo_ z##lCNh{O2IcIGZ%ChT7d6i8tb!iL%=R|?04;kfL9L; z*xmoshdU9VSHeiWF~^L#`RILg9lO6vVvx;{;O+;L&F&vp=CWE@U3D03UW%wLSNy!@ zhcS)a`0P;vq;Qg3wHkfOse|%~yRgXBqM}$fqwRDDOxT>&dzMbv)v*`qWqG*%;Q)M` zLl8fm?M>dCjI-n6D2z)(@svF{Z?Oq;w#Q*kawxov_2H_%1n(ZR&2^@05!CC2_tUJA zxokSL(ifsb<`5Pw;z!>n7hLBtK-q%z=ytZnBY77*E9gb)A~}kN0tt^O(LD_%IxZ(m ztqa775tXLF1@dHcybHtWij>rP3rj@m!PRyOt21ulPHi^+&bx%Rj(Qk~q+@VR4W?AG zd9ig-=*dmP6LxpZ>l})!Z_Yz9Gz=;aYr(fH35|^zXzye7t`SGU-F6xqkHjK^?XBhG zKLNe1^+<}U!uRLP5LFTdN86*&Qrn5DQ^^yV1QTB5|5z{be|6qXd~Sj(O<>^vE)10H ztH$SLN1^iNB<>|&fz7LPSp4lYilZ8#)ZK!x8RaPb(2SF#r|`bF7qumIaOmp5hc{Pn zNU{ayoqcfK9!iXR08NH0{Yp3u$0>nisbfi&_ZbS3H6cNx7*amEfkx|FfA4;V&ubkT{NsQ?NllzfQXw6iX>_CR0Or0-!};A)X<5-eXv8JLnDwss zJSf4Zra}}os!`vp1@zi+2Q6j$nd*f(S?Zi$T18n;}fxjD-|NASdZDqT$t4a zVyaOl%(D|PeX|DL^A!V`dP4g4WH`j+F!~n%n8x4J!I?D7q(tX42MwPwu9j@4)gmR_ zpRS0Z4=s%OM-I&Qt;T4b0J3*W;n=r*%oCaE%&CWbxYA<;w?(peJz4 zjWEXsHCP60hP?gDAoNNN`WI)i-kxX7^KT2_q4|^9Wc!3UuPln=$Lg7oRnl}=%n3tl zblJSqe@y>PC6un(h}ceZy7%f3z#&ZrE^F|tFcR;kv$?arx-d^Q!XW>A>?A$hP2xg< z+iYaq(Lhm^7QUNUA~EnQbKQiC$*MngahlT~U$4Ji^Cq@oZBdj1C{iu&pgP>JoAJogsU-zaBRf2vGP zlx9ky%=Z!V&0;Hbv*sW^<{Hj>yWx1{YUZ^4S>~5zI-Ydd;^?aP*nf&WOX=LhHVb83 zOT5j9Tzac0LQ&op6foj6Tl)<(XUwAVCYBqXFGW|{|KfSk zxU1WOjoV*i^z{~;ua3a_m+R2Hk@Z!r4neL;A_TVWL0(ZNT92}w8kVs*zG5dv>yz+g z=63wH3P7zR%UjO|vd=*mzmD6%=;}5k)fJ-2lbf1kOrbLxf^!$bp#E_>&Ud-vXqGkJ zjJaT4NH!MQ97VT{A_-iPqKG6lk~yJ4UEWHxcUYX1H(thfGdY^^Mwt}P$x-%nC8}3a zqq%q0Dd@W@RhTQ$H{LPCg)~FT{|+Q<&OpKbBJxiZAYwJBVTPNb^It5LYDIx8$&a^pBa)$D^BQhKxNOl3z^UQ$U$~%PB0=ka7zX z$yd~o#M>89QaK0_hG>i4gHi8=*tt6l8P}rFv^Wrdj^2RLtYDOS86xMi3|ap$CwR}M zZ41Te_t$rLc(eqMEMgHR{Exwm7@Uk3Mu&kI1#vE=ZR-|M&G0fh>Ec9H&sUP>KRYHY z=Yh#3V>X{Qa38khTTn&yV(R_}iYSw#=FnxhJ@}egq?^FZ2%L;nUUJ~d`|P9fZ*rMnFU5j`Pjq!Yi7G^edgiVtt}8V)n;?;TbYn$@-TXs&uCa( zV&3FFXZrt$!81)1Dwakl-aNo;-Sd(0RFuF8#aB$d=^o-#1YR$kUO&v|4y!kt`84P9&lplku!|eS1~o^<4jh?A!c58l8K?O6xK2? zFqRv~Y(E*tq{|0lj0|uxSOE`Cieb=L5Op)A;|j~~qC*$p#^x2+l5P%dLr-iyXbmC% z2sp1eg3VjwaYosS^;8*SB*Y9@YY%O8OGMFB1V1TY8bsQe9ZMCk_xS?mtkv3Cf?KneV}*tj+WIG9=8!WSWPLEM>4Hyb$H2?#Mz1tD zlkf}+3S_kl=i9ibqx2h=4(^3~%_n#ZtCNjXJ{EP4!)Rj?x^AzBq03I(HHv|0ZX%vO zjX(}(6FxV@V|acY9$qPc()ez~h-bpDVIS-iLZBYb_Sa2Xk9R_@aQzpBSFgj7zE>7S z-Wgz6ZM48oO$c6IjD4J5xWM*bEq}HiHBmt1s0Pw{l}LSyEFBnCrt7EF>7WJMA*cKl z;#&j3|5BPR{ZJu6E;U-Cph|9kRB2PT3SH%trk4*iXIU7sUdLwDNY5x_z zvfnYkrXExFq$AyV5B8i&#f!C3Ff_3;(boM&;JSrBulDM zR(uJZ9w+cAumvh(m%&?i4NnYPp?1$-@p5<(Lki z_zmP=wvm{A57K$>K$@b?w9U|+Y%M2KV8wR&6zfQmSC-H_cAvIe(gs@B7h>fb*5}i< z7UT0~vKqi_{Jf)sig$YO@2X**K9``fPkX`Rp+SGD)Tu^-&Hp-n0*C6n;K5}N=e?pN zTgORvI~P)1qcv$)dbjy;%ZGSvvl|%voLd**~oTmq2wQP$kGRE z-G-1N%3%6ZAxL;Q!m(*O9_@L;oH3Nfo_|)T*#3ZtKK+_$h!w!CqFFe;M*s`9%)#hA z4HPe7vt(DYI@>pyjO+T<$dDHYkB=_4$gagL3tRnC2q8M{8jsysk(lq~2}iciY*La9?AScv&jJGI zldwgUo;Z$0^U%w^CD*|+WJP>qFn{tRkf?uAPaZAhFa6dz96 z!zf}6T+YX0eMLO1B`q=K+&Ucm8;gy-v1pyX0~M=`a4T~q64DmK{lf+rcexdu0{{^6zS(ddD_$>PZoX} z<%4oE=H|ttUO67Y-sy<5%tTH7Q6#^LM^<VvoY{03j)q1XpcIM)SybpjFh1CNfucOOnokFJ=%sYg}p1-Bl#! z=SnYhLaF=u2|UkAB(tFaQf?)B6emHNULF+Fw~glVdXSjB7tI_FA$zX#_qp2ifAZB537Ul>)RDa2vt#oq0z;Ht@8*m!D@(|WeY^&8tGzc7P&_k9LdvA(VA zY&Sv9_wT6PDMga$CFn>G#8bALv(j-Nep3TXV+Cl{kPfx(v7wQ(%c${yJ!SnhqWjL$ z*nG0cBwX|)=9z{uo(J`C#H0no=WVG=(~_O*yRr1+9p>Ih4ig*Jx+pX%hLL)IiFv>2 z8FOH>EyFp(AA@GXprW}@F=BPI!rDk(Si#(mQv*|1z|6N;f>r6#IBYI~5ngsr8EB4m z%bzpzK73;ixXQxRtCf-HH-~rKba1PhW5pdi)IC(i`*u+*+_M71`{tpus+{2*RzPH@ z7~(!gBQvZLzw|8e&1pU^b)@2z{B9(en_&7mz{Onyb5eI<+k7KPcJ9OIh$Ad^ufwpf z7utMGpx4jpB{-CkY(9(iA9-LepD|`V>SPZ1G%>FiDBSXG znzhFvzUVs)#Bw3mQjP5)S@`K(hKBad@H&)+PDN+fH(0{^S2*;N0%2RLgK73k5Vy9) zweA#%HmXAJR+dSQvlX(R%0WGC0eso6uh%VeQC(+^d$;@%WO)A5Q9rb|6(8?xpCGPOXZv|gmWb{dbl&hb&eZ}$hlH`s0-z|ZlNrcd`C;_quoLOoFjTcem)Z-|$yjh9`C6#q<>W*>ZVrOY zmv=ZOx`D(_f5!QmlSu5FPD{?*hJm*g7R$>K@2CRxNvRM=x(1cLI)gJ0qOqnj2Z6Vu zkQH?Z`-OHRUjvBXHl?60D|%PCf`lI}B8yEN5H{;!-tk2;>;4F#scU^x)B5X>EK9kB zsz4_7_3EalUnHqM{2|r^auC1r2*j>bF=j{9n4Gj;#@sWFd92EXfmT&q*APS0Ut>Hx zqK-qXM!;K84cQ99i1^`(TvaoCOkUUOJ1R>mJ6Ipq31W#$xYLY~D-Cd*0)d*pba z{cjoGrf4JQlsZhiwb0rxkKd}Z@T*`QlvHXkwssyJ435GlQy<9MFGi63cCe)hkTsnT zSG`?u6)}N@^-`p+T8s8{misq^vs^HNeU2M(B9hS8zYuP}HQ3HnMV$RU#^`=gK;vgV z{EM|`T$AhZohOMRZ$ve%)aAmaH_tBV_A6pge>F4|)}Xjij;ZKO!bdjK>QA{F^J|4H z{y5n{NYf2!_SV?@b2i$t*}e?kMC>u(pw-rLL|11JN5O4qh>cyYizNZhd@hg(d|CYjBNP9gzuF`K+_tOB?&^W(;B^X0r)U^ z1HSPtgm!HT=6u?T52NQ1V)GrZHMr?RLn0jJm*Bzs0vu1u#Hp1BaC=oZ1bu$P^=L2B z3=$!^D-@k|3Y1fyjv1~Y5Fgov7ur71=Szb_*dmgDJcZn2O-cIIUff}GVApB8VeL0x z$R8YmIQRgQQaW_rno18_lV*Y}@j7VI`Ctut z8>K=s6GrfoPmux=WayNUIw|GLk#?UFJ$@ud5t*{|Rx$_G^D@w9RDsPwS-Abo7hURB zxbtf(S`>XTDL4xrtXEB#FBTbAJ`g^31RDDzA-ysUoAYwfVP1mZ1Zxz(D?~2ihZ7!g zbc5}q`>)*ZOnheIUT^{f6BwAlzyt>VyD?yySFp%_z`uydH7BxnxqZM90U4gPsJ1|ej5Sc5tP~-|p){|wx^c(0x2KShT z^v#etScOS!CYH)1GibI&VZZttMo4Zsf|VSxO)CHcZfkL7hYPIry)b#_T0ArAgjxJ- zls$J~4-G>Yov|Gc^<&WUSQQ7tl<}tY5$uEy9E4 zJK$or3ISo$@zL1>8Eb8^gTok$`<>u&QXRi5#cAEXt=Pp|g8(%#a`&D?yFBHHLr{{I z_+>)mKrKviQxLH9J)Ck+V7A!}+*{xPiM#sv@}UOz>Te?XUIIRLyWbQ%0CRW(&^MR{OYFy?#~vt3@`9j6D3;pA;u7yN zEZF)O{XX2-yqb@^*44u?R=ny_qAo`TIV2p} z_jhShr$INA?5lCE@Stz%P^{F!X=SrXuPh+UoBp09h*j)>u%$p z=w(*lIDq^w!eswhlzdo0 z(3?+D6w#zhWurc{XR#RhmlKUi_|mVP{^Tn>fS3I(2uN_G@0CUr+2Kgx>nhQfBS0(m zNYd;e1q#mBp@(1jnSxqHYVek)J?9Q%>U;e3o`& z!<{GiKIA|*)V_mn^GB!&JcfF=EeQxplg*YB*z?L6YKqze-JX1rm0^f=wXTsl_ts(qc($@)So~}rx!M^QILCUgsBH~aq^}P zoKCNY++{~>nQ969Mg}L|`LWrw+c9=F6M8Fr;Jc;}M+M@s_E9RzvsOZ@F$sBI*5I7% zfm?|Y^kmHhkDZt?|9dlL;`vQHzX=RXVBo(C1G4*0K;mo*MkXD_`1Ce>bvO#!kp@^4 z4`SiddKAqpLH6{i9~=hC5FX+~su(u`^cENDRH z2RtX0;1=8IRV`sm8}8;nY{gQ#bSwrRnGlT37Nep(Zs6HBCN#nwd)=CtX2c`72kr^5QV5Y}(#Vt!0*W^B1`F;b5^k@@yD-e19(DeK`4 zzb!LN@yx=5jZDLaG{)%N6ezB}&HM}yhtt3u+*6-{w1IKvc#k3~J2zqBVI#bEJBWj| zb_kpnh59HLELyP_-qR_c@3;a^IAirZhj1A4PsY4rDo~sbr9fnyoYcOhKjdL6A@#BvL z>_*Mdu&am3Z?i>8{{jeHFovNzt3f!r6FNSMI1%-LF_Tlkk1=QJ{2+?#10R`_hh_jF z+z1`niywMRAe|J4T*+h{`h6Hu_K7$WQiVkvrBKnh09U_iEDk#brKmXYmY3jYg%AlE z^U~X=v1nwoy_zJB!G|QMi1pEv);)X`S&nBns*%k<2)##f*dO;0I}D#flI@0F`nnYP zQ|}_hRi9Se+YP?_0))Rki_J}T)Tep}?&J5EEgGem)@FJTTlBu&~jO^s4MYSJqqMOyP)i+tO(Nw$D}eoL%qeDiFo{$@+6 z)ehwN$(jC@h?0ZhWU7AMj~Q{v(7(A6+Y6QOrl^vBIooZ-_GlVQSKy!JZrGh)K`->`FmOYI7_Ph6 z`Am)!O%`F}dkfg+CczF%+Dl#nx=FB1r`$6mt=zP5?`3`KXr`Bd45=E&t)~F zwM@J-duMI%n;ERT#LOD*U?k3MWNLXcm^G}w{RNLIRu=X$BD>Os_noo5i+0Wm(4{r}5c zV87ZL8(%v^W1kuJUs1=FG!ytfSbzsnp5V@qf;2A&%)9wvwZR4nIerL!BZG<}O&qzb z%e>j54Fhch>?pblE|;%N)i|3$d&C;jd{L0PorocJ@0j9v8Z8#N5Y0OP{)RdzeksHT zkxVTA)PTTit*|)MjDK7CNo$25o!vgf-kqyaj`9?G|7aR*d^CsB3TIMo%OKn$bZOt= zDyX>kKv7$a^fnVdn*^feO$BVuU&d{bDI|QN1yA$NmoXu)_ed($7e(X^4Wb<-a z9%@_0`UazrU3maz{SC-8Jb)i-BCs#24>v}LB&LjFlFxB$zuk>cR+qwr$6=;#6*AT!m- zKwY*3g$gQCaMh7~L5i;OL0i)+v%6?Mv@Cd4@1zyr2DK{_K4QXi&b z!*VNx#z;WYQVvNFf}wLPaAFC5CT8Q6mNzQ)=HhrSo0TgRg~@j#pg+45zUrB9o+*ox z(|Op?JB7UWg->wUiP`lZIlKP5_Bs>aJFzpIz`*|;3`kt)MeyH7Y_RM@xOF$wt7{Q` z@Cv%;_Mpb{0RpBE;P$NRIK!AgaApwUVz+Qvm!12eH{rJHHXJ5hgUNG2 znkV`ICB02hEv>9tX9NeUS&w=I5EIJxU0^?}j&mvWQdPiPe)0 zQ2ccnoxB`+%;pp}`0ONQzf8HPs^N#i6woMV7CCeaOo{EPj zQh-_u93C&g&Le>kzn=-WrzwcL9Ek{tTg=9u7^pun#JiD=xN~P6mLHsn!IY)ov0(c} zT`UmvdOfOU$wDzJ96ryTAjRg6UHRjQ=oNF&ZfJ-h#Z4$mzvB=mL*}k&=zb~NI*$pDil^8f_82Oc$zEWRCWa%8dca;Je^do|AmC{O-#xAi^;2Q zqx6n2^|UL~tw1q)kk3aE4|!<+9~HW?@)^{q3eyAqAi>*(7Y*^ST-1!=4{vds^9lM{ z9Q9n)pzyc2)Z@+aZWvk^8e7ohS@nZDX2;#!eEq}`4p zu(*v3eDYcvfc@|9%nco--%rH6y$x6 z#Q~j76f_uv?d_Z}xA2D_oB439Bo?=X`62cy1&ZNG8H*8Xi=o* zY(=_K&<0*3WzyKJMwux}#IsGFg6cG=*G7%Z^h8Mby$byh(x>_=39{pIC09K=TFi3T z6D+q?Td6@yYvpL|jJJ3ppMaw$6EP^qV*R`v#@KwXcV;Fi+`ydT>~12oldakU7|fb?hFiN#P-6hZ>PycOEB#2eD0X6cT6Z5I*k$9CXg3 z?5_w}in3W+Zd*yEdmGKZw})Ef<={28m8K^yqs!b2$?fZPEI;5#Nx?3(s`wfNcGciG zpA-3sno?M@A${qbLyuL|=wPM_Y3~xEU98R^Z{#e5n#b^*{oH)x85G{N23AfZ%z#w~ zV|>$(3`6Be{H+#6x~b7By+Rb+`-NZjoZxU?iZiPO@uq?kw{lvU`>Us7{GALOo~S_5 zVlg^zy=V4Iv@+?7W@7pCDTr5@jF&GzGmaQ!;@JLJSM6ua2&0F2vvj~C+RGGaU1J`# z?_*jFm5|bGi@i!GaJDEAg7<%7^Wnw#x>*}1|2U#poXslR6bYxt83<5vgU~i_8v3^vm-idlSx21HAWP9yJELEj&~(bqZ}QzJq5&{AA7QMFjrLpr4;7lhR{u;*Xak z552pHa^@g|<-hUK?GX}=_TziSR2nGlfd1pD^k(iu$T@P*?BE=b@gb}?>O#Vr6X5z$ z!gi%S#ug1eYAaYsk_TR*z348g*{-a^sdsSos0Jxnx?v!~6UQQh;nJIpRbSJPV$4I& zj&)<`%n_VD*vfX!rn6rDMI^a85mQR9VUFxf8ehdvT(44*pBjx7#leV6qyP~;o7->_+6qw5BKSj)REcbC#_DFxzaRhGLO8ayAZ?C zhr9BB5P3k1=FU^3fp{r;Hs7A!%Ggm*q62L@??m&r+LKR@D#bhALHgWA_=qGUgL5UT zqvnC&rWcIUBXv0DTB3CFUTmA2jU!d6czZAtOMhG9lvF%6M{dJY&nPI|h{9>Rc=S9= z#)CD>aqV{#oH^z**bqgRuE$Pr*@+qUA34J&c4q%`c4iarYT{k}pT@xRcbBoHv>7i; zYSA>>#A-(yG3I{}g|#_2o_h=Y{#-O?QX|@b_u#BoE3WZBM}KTLqSg<==HxJ5&2M7! z@~@(D>NS*_w&11MO&Bc`CBKqMB!9CBiMcm$UB4M*-i(lwz1SgHfiPKhI^P~lN1Auj z2a^c;8a;>gtHhA^_b~dq!;Msb+f&O-XSyiRi?u2jan`X3hY!n>bJk+gay6l_GY0hH zi#COxQ=nso>ZD^NPP$3Qz^89anrzO}izXjb-ZY`1`-JXdCx~lY$JxzN`1i>aqfh2g zP3ky?EhC_LM}=~)&7pu(JV=V>g^KQJriAAh6Y%O8lg{~(5q__Z8B^y$_hLTm&A8c_ zuZ7P2f0*I@-Aoz(HD+FhGMfiwj-Mw3@V9>+uHWB@2&8` z652PcWwTHVp&a1@fwNL%bDi~tw}e4$l?4J+iXs1E4V0EdL89InVJ^-vXxReQ6=vw+ z4MnO`GgN}MP#1fLe^)&oz9+p9$Qy(Eex9&=mk$QNVDr1ACXv;_ z_b4qYhS3d81isRQgbp8K>^1S{#6CDLi(>QCe!}81VTM&A(x0Z|jl>3u-cyP3k|`Md z#&R%sBXH&HL$3Db6zcCYw&%49hL}IA>r;_2o&}~&hr_{_HvU< zkviE=6Q%qQ!ZdJi9$CrXM9kg)2)(3exBcV(CH z>?zBOSv|CFBqv1-Ct=(>41Q->y~M*OX@a^6lY$+>3$>$x@PGgl{UU&lf@&>tBd3D~Qjid_$r@e(dLn9X+Q-i^X+mA&xXycyO5 zUML(_qpfrD(S2hO-`Y!XxV#irw_@S+$ON64A@Jud1fP}%GPkGUnnpR;tu6ZHSRdAg z0BG>Zvi`K=XgOF8W6jz0o^vkQwa=&RH`sGpsUhuqD?npk+MwrHjs>nNv|Ce#Y)`RW z%x@*hpwpRps$9sV&5PkWB;dGu!q+OSsNl0lsRnFK%yh&a(%)N>d zci9jMhVcHt0(u#A4WW(qQPXKns$wR@H+=z-!ffIZkfW+Yax`>p5;cBF#FsTI==uAv z5a^tb*uNYUK3kZcm;OSTusPWoETe+36R4chhjrBn$W0Zcg5{Rj?p(r@C{>`1)q{TC zwiKt#_rrfv2<&FG;1`?8I_H!Qiun9-ljcH=?Py)PSQX<%lMwfsy)S0{PICt2P+vH} zl;^Q|Sb+*O@*@eGw8QbaP6P#SmP0hk1jeCr;VUTt5&k8xj!J>L^EwQz*@>_{ub?9u z4ZU6Ys5|2h@tyG)l=g&Ci7m3S=VNTUAC$T3@w++>&)A&Xp(O_)C=!H476XirUKma& zci_8uCk!kfB74y!YLlu&rneI9_X{Ca?^^8dXvJFhCOl5op&>(m-1)Z(I_cr4EO>}^ zr5b1-y9}p#K{`~GLjxl<6ohrC^Hso#gw2qh?*$Xnt=K7_j$2c9!Rc~7xK9;e#-lVy zBv+$mv;iB@1aCG!Yo{X1Wz+lMJI+H5eRFALhXx&Fds4NzmFZNPFe!Y{CEo9?IA+`d zjd511vThvVoT4PTUV?a^HK5IS9&HGgrk_f)=*wBwuNEs$F1}hc5;cn`OPdaE?ZTDk zop|==ER6Ze(GydQl&M;@?JEy$uUG)S<_l2O9D?J!KlmVj0XHun#fU^PW@!iG$^65} z;8+K~n|q;KSBCGkk~H>wE7}*u!7YQ2wtQ*9nW0md+FOkS?~G`7I+20Xeq=c&qi5G1 zIQ)o0cz6I**RMf+04- zOmljr@g9YB^*Gjj53P0gpkP{!=CV1oGh`OIB&tzpAqVx1YtfB1b8_5gPm^uz>5{Y# zH5|T!#fR>J|NbWE2|Hs-r7eoLr$hdCG~(Ga(b`lK2z}j;RttNaKkkTWnuoErob5g1 z&B5OjVHnTYiC?*8h*63G7wa?RPOHFezK99_Ix)BYqvqEC>0Qpm_f6~vCou3o69chY z51<<+ND;4vX;E4`=vFIIlrF$F;tTvQ3DJ$EZLl!D26amfdLW}rH#?Wm{Ltle&gn6h zcybZffE8sFET&uUmyrG=P5O}_ME-T`o~en8dZLeGisThADXsW*t_w#FOeL>Tw(r&0 zllUJ75&yLiw!>gLB_{;Y^Z_68FZQBj8+V$Lw~C(p)uq7M@^m?E39WqKNZvsf^zxM* zjkYePw3>xf<*85Wt(0lEvOL8tnL{0B%jwh4Wpv4GHI?jerecRJR8pr)Uv8_@WDzf# z@x__Uj!Y)|ZZ5j(Bu1W#^Rbb)7@n!x5D*uGYSCiY6?P|sLI?Tf=e?=S*n2$HQ@sM4-19yK;W%ZCg2<=lt>J=X> zTjq|GuQrJKxExa!EyC7lD{Q`{jVq5taob56Vv1Ink}?TRvRhHDxd8|H-ZD`E%aD-2 z9@jn7A;tEz9`Q5B@z-8BW^)kpjCRo4-T-RiiGu&GeN<*O4EvToguHx&y^pV8*P9jy z^4`E;^g*1rynynkcJQ7!hh2KT2zXP3JWF?a_mF*8rfvA<{0dq^H{m4NjHt~`cv>-= z#OR=z36rjjatZ zh~}Udd_3fB_yhJQc}TlZmuml5k#vR8YCBW4w=9O=@= z3pNL0`j!K5eiDPCE%7+0t%D0ZE2(FlG{%Iy$)4i|rf!YFOo>pKT-bq&FICA|UYd;0 zm*P$JG#)2zVQ>yzN<)1fYd8<0`^fuRyZvY7N4u4282W4q@h zwyF@%x9KEmp-PiNzC+>*KWU2mM6UKXoO^T=ce=D_lAsysKylWV^H`p z1q!hYxKB9Z`n40_5hVP*zX7f;hR~m^gyz&hoVmLleGgnQ_SPG7=EQ(UcOSZ*q@cBa zE!+FHAGXIDpsZgEMa~GaYKxxWvJ+f(g3C@|U;+aZ82FFDz?nZ)nC8&}otASrqh5`l zQ{SNEObvdoY(;kSIUHoO;jby5!5^t}IL&4#oy)36`1^V|W}n8i%wZ&J)WfgyA_D$8 zlBzO8PhSht-?BFRlfDd*`}G)%sl!RxUN}_V0M}R@F7L=?J>=n}Ivh!_y)5Wp-hMKw zSVw0a{3{mMM--tB-Lj&9_;J_*P6Y{cog ziV)`J#~S=%WV}33C+f)lY+RVXQX9#C=d!-F6ei10AMNXvaKmLe-fLPxSltgj+vL!z zX9$Z_Cp^Dph#k`2SoIMdh{T%h;Z(()s4$MNjV4Hsj^WaMc);XPPl-40jNc0AF1 ziPsM%(VTU^5wWBnBAYs~>{K;W(_7Hy*^4#j8?d@Hh$7UK@tl)EsG1)*IYUv>0-5zN34Q6a_r_h@E4$ zm?Gwn)IE#PQdtCDMNaY&?uXJ>K^kLoG%o2}f=Fr&hS$xah);LHRUM4!MxI#UcOBBN z3ZWTw1;a+^ki2Mzq+@=_+7*cg{y50TxI#K&3hnvk3{flAzprXW+Y%d4ztaU^Fj&@m{PS*Fp4O@dg8n(ZcKH8v+iL@vuu6UHv`yy7??$@(O63I!PQAO~vH& zat5gm7hg2y(EL;^g%!VP8KErlQWmb&gGh8CgN|l+=0$BE>~)B@-DcUQVKP` z=Xq8xyE}Jgux0UW(wC`=Blh>0aNri_&$kxe=BKcCYce5g@6hMwZJKX5$pfEc@_(G6 ze%CYX@i7!j&h!#nE8N7;mu4bH=CCHbnkzJP=Ln^{+Tul?KP`7(;&p>&qE(|z*?qY{ zELVQS=;7l;lFKyV^jz+-A20C7u%$TOxv@B2m?*RCC$TuxR{ZTbORP^CEn;7trIlYE zJBn0Az3_hG&=VV4J8MzD-Bz@ZbW*gx-;Y_P=H01OL{<03 z=s_ng9A89Ox+-(q1z|F;g*Z4hg%4LBDUKCw5_ZFf2pf+>6i~w51#2;#-J9q%Ezs`I z`b$f2?QBOcUnktW9nooBAN_gz`Pev$*>fCaPp{NhFWT{Gn>O2?Eo5s=e}1o+&Ce#@ zOg`(tAEh9wQpeI|&{*6n;uSr|I5MxOf^})Hn07Uha??y)H>Tjetbk2%@o2QlKhFn6pD?-y2cVUEj8+p`iK=;( z>>W~Hm_!utF zu5#x{C~7xD>1w=%^$sT)mm>G}MsDn!P+#~q?<%h6on}~N2vOBd#0DCRjKjb1_1#BU zi@j*w3t`le!F)G5PC>OS+V~S9eI6J1rew#>J!zD84W#p13-abI<#fq6oZlVcUl(7@ zyj-}r<*;PH`Oss>93s!FiyiG9nIE!_s#_M6H=n`C(7uF^)#OUwsr+g&iDcWZ=#~s+ zOi4FPOlP1-?!hWkU*<^8?w;>Pys=m>5|8iX&EZ+thdR(!WdlXBgI4v99og-iXs}R& zi#bQwGHE8qEw0lcDvY=#VRUPJi-u`oe3czq1J+j2=X3$vmu9p4Ry-LiZ!_InTST6d zea|YA0nzs=ORjYmDoM&BGbEP$4Nmykyx?zq5NQb+oF4AL+J$+Ps-M@F}`1~6ElkYOi z@g$@D9^&%(IvHL96tw_@ir$B*%Uu z!DfbHRyRG-KUGDXj)MTd*C%irD3hN7|!Wu^DzAPOR-I}JJ)AVe2(0hPNPJyP;SK}*WrAAQla>$AEz*XX+(tDa{BEbM*CTZ6{qB` zIMeYLZ7!Gc)jnJLit}jN`6(^3^3n3hhpGqU#}?w;_a$Y6b7)gPlYcyjg{wJDAbET{#o$j^jB;QY|GLU&#rRpT2y1)Klbt{D`%4F&Wh8a@#nk;-c=>%J+pLw?=n^A$($1o1TR&!=T8Xl* zA$J5IA1W?Ijki@(g(<%jrl>URjsboR5O z>M(X&$1S-!nU?w%Q@uF4Ot{9B zZJ|`IdCtp`mpFFxG=9I#IoqR#84LW;UAvE#=GL-vVlzsGV|f-a9wl{w(hn`vb`9t0 zj74O388+38|T8OqgptXj`RG<$ZI2t!kop> z*t$Ko?%esWojY~UukQKP%|P7@{CCViOqVh)j(bDGd$FX?Lyi{q-@RXzsaVw7nj+J9r15OzjO6L7YK7JI3`Oz~Ri^Zqh+WPite-pZ_^ma~u6$KH{BITXH7GDO{(eA%5zD@O4<&6p#yH%V{#YKF;7)la>l*gLOg@8Y@Wblt$2 z=DleC;HlzQkznxlCkpXOead?EV#N$^eZt?3V`KJRg~7wVqWF3-{azOGpkE29DW%wV zc)_)dH+1Rw6zk5pR5UDP#>%@~`BcQX19xb$C!0nlX;{p9z`AX3c=tPpT?R?`C*I}c zlq@daO`wPNbsS`-YJBu zbR5!&Oo}ITz1*q&HN;sR74cW^I2t7*=w~k3Uz(nz<#;eYd?)z{4){hi7P`|%ittUF zNZM<~$0mMsh>c*oWV3djV};g(dg8KC0_!6^8FaC$82Hkf(^HJu;dhL&<3CVt@R(N9 z4-+_bGYkHnz{{kM_?hBGp@pUNz&c~p>>%&_wooE}?ZHz++W7}l_S2q9Wp_?4vtUZB z9TszTqGGv#vW6>U&sA5djmEHg(GrwKcO>;gciz|jx(Q-{^ai#q~gxMLc-uL9^uI=2PWrNkeaKvg~ zLL+lnHzkFw&Zp5z_h@gnl0kFalmAqkSj5HNHC)7x#}*;jk^bzVRVFMUpE^`wPW5RW$Q zY~oqwuh$hHeI4uk1a*FbIzK_( z4Ajj)-3Uir+zUMhD{LlEo79Sa!dZ9ZZMgITUvTg|(6h zs29VEkaXJJlKbNM>ojn`ONQGyu4w$lVfKAi3|A5P1UcPvTO<4OY*;&51R)rPi5E#j6ZDPtGUd(>-RXJm$jkbmEI2 zveNz`Nwc!iv-`)C$Nj{;+*7>pjb-+;6C}$sdg%RD;-9bVKb^K0g{iSnJ#8$$9GELc zyt{!?^-N)TGk}oScj-Ly7IQ|dPLd~=-w>GMBbw4tz-<^Rk8Z+vVI#+IeQA9T!gZEJrd^IPt)o}o$9>j4( zX+6DXdC+&kI%=b!pWQyjD*MQOSHZUY%?$lI8moT}oZ7mGFNr!hH)~5x+a4TrP-5}! zkqYT!*c&p-KvbMQ_2u;U(qP$8_R;;(WoSk;Q`Nawy5Or z?tCoOQ~2DkjMIA_&^7)M1Lx$?dZPM=EjN>vajh1hLH>CA@?aKCl}@&4P|O?Cz+RbW=_j6R>rxa z?bS+XIt>>2WkMVsdX2wrKVdNFFP$uZV%@fh7}Khu_}sdh?D?hS>>b8PeRo_+y@?zm zb!Dw^qGKE|?B&Z~O$S%=qk`02>?b(@%>V}^5(KkD|Ia0@!f zi=NBbzuKRZyVtV)PBfZ+wrngl#_FOcE_U+XyiGVw4>;jFx3TcYlUgNbB3F4xPfJ@y z_=Pax>;{=<^rU}R$xoGCRg(hr$=hJS-)IHbn+;;snojhPdTr}}O|VUzO?AKmGD??Y z@@oLQjnoWXik!D<`oIJ;9n&;bKe%F$A%+hpu(ME$ z#%2~M=MEyJ(gNS1IxM?6gMy77e6Mm~;<3}Xy7*CXegT(4y~!PzNUP+=v+IBT?E3G}aOyszP7AD?f&c6oh+7dy@31>$kI%wA zARU$7=Q;B_nv6zQrT;ORQ=KkRzefTFI;p(WOXcl^I8JZ5z`>uV_?;O`k0A-%*?JyN zk9gU6bdT#v*Li8LBpyA8r$f(nV%dkA9PNCIHg|6`_ev7WwK7@1@&dlZ_a`Fa!PaI-pD|V_|%jO(=Dl9m&M3JcQmq$ zIVX9Y57cI`6~XyyEnEpy6LUxxc{tT&Yc93=l|xPT@tAalKG@oPYhjD z%Fhk|(CA%3P2_u8fBcTk*|*&J@Pae>Z`qStDRXi!NFMfx%FrBETjlXLw36((xwy0_ zL8(O{e`4eC{wlR>mnYb@$ir~*eR`=RvUY6@{RXcf+;kWPP1}oN7|B7R#; z<;pJyTxYCf>pdgXWyivEsl~+w_)>0@$k^%-_Bu&_0SZeY}A z*>e_d$dWDAjC!+z>F%y<<5 z12`e|ac)Z9)Kg!EPhKIr9i~zmc3Z*B>5SQ{jp_$2!b49p@m&zQRkdht$Rm4(hS=Ss ztvGc%1`o#t#5U02@#Q6`+gk9juOq=-969%WA!iG(@O$)G$-dgpe!U%B-Fco~yIrxn zwu_ADUKECSF?MSffq&|WET=t8i)tfAPm1N$`n$|tdLO?-uB_0CV|v3hruFq9b#^@w zW|t##S`O6LI6=H=5B4?oWNNtscV_uAe{TrwFNQE?*cPttS;cGbWhDIANY_!$_p@!zaL$^^F6w#R z1vi}P_Sm{Twr-EDn}NC+sGEWR)fouCoy4r|=lNH2g(XHRV$Q*<_#8=MP}2)c-W1Me zr_a1kzJuP*JM{9n#ar2nTC1Ibdi6!xrru)W+5(aj8hU-ZL*kZb&q<_3mJ6o4o#P3 zQ6PK2dX6lTcgGcyn`$GbwVEW_29FZUBG-v7*Efs#tIb7*az~+Ll}ttlH=KVu2yeZG z;`u`jp|-Vyh*x=u?YHT|_M;jV%j=88^+So8)J~sok;(wMx|9R46HgbyWLQhxpv{g(jFK~Z8cx= zw7wr1i^5_y7d2)urMWRD$~0+GeF%@g5ln2Q&z?JD82xVzje443zJ4a-J5Ay0z)cK2 zIS9)QM-=KObQ!4DUTAdhDqaQNAn0Cw(N$GNRJ2tVdwPE3;q~uKuqe^5M0$i(s34hBbFVDGK{OdqRH z^ruki*Nmpg*dv%vreds*-@z={4z z-n1UE3NzmzJU)eyQ}K*vp2zrMx0cmX8$RkWjmk}?xX;=_%tk*--^%V-$><$fF`tVn zyV>`yGhdV#Ujy;pkmkL)PDg%)ReLzU(yUxxtNFZ5s$%0~@Br zYct37kK&~4he$~mlpZl)$@-q0o>a`T6cZL-aHB|N4XP2V_&LLaYJ)%yNEXIU166WD zHgPrEjH_R^V?1^Z9nFfdmHy^_0f9V;zDGraATFJXKv{kt9mtx&!S2hMH^7_o_u_e7 zSWk>OI8tQX^h9{ceY*EC5{`P~HYkbwHYq4-Z}8^n34V9lPsetfdAx8LZH}+zU-#o2 zN(!ZC`vv4KcEmHyk9+TAfAqqgY}0b)t#4oc_$(##g|1`{J21M76V6R$(qn-KF`v%h zluE9Rd=cyHo{wqG=(BX`rg(M&x0Jw!E7=DariB5QpeYpYJf`OnsH z>fT@7`>UIQ|LhrJCVo;8O#xr7-TU>e(;r!LnN>2LK| za&bCJQ?`?+;zwxZUS6G&9>*Pv(AzeKG}UQzJvN<4XLU4PI?7Jk*_6y2$N7w*geAk7G}qwTq{Sk!i9-DC(onoux1W{e4LPejOswgc zOuR}J!+pO=HfbIa)8BGzP(JO{?z88?8yZflpux+xD7S1Vp6e-z1=YW?Y5oD*0cDJM z`xhUzB9^?UlF$7qyUWX1H1Q?11<$zf{S{Wvo=`8VfYH4QxI6M0T8A`x6(`VK&aBoxT(>#3p<}z1CELfyis~w4_;{<*c1~RUh%m5aQ zMtM#F4@_M#`#1sh3ks@S=JIpzEauIeO-of@u5S)v`O^X98V68SyMuMzQy4h8wRm-I z6Pe9p+1#PE@VzolL?@*1Q}ZB&S^>C9oivUdHrc5PugSB7(t{{E{Rks538XaA zmmTGr*q>g{pS4$LGQ^$sy}YnkzvEM%Gy5Eu8ire5g*mgpYSN=f;jAHntDr8x)}XB8c5- z-NZ}H3+xg`OYUiRo}_;PpIAsPgw@NQUrF;ID^P;NEN+#v#s< z&v1#Px#whGtv}zQBe-+i0L`!fRt>Xbs??O9tLoz1XC|I)Kvq_g+gu9MFEiz%dpm2vlV4c2xt_q^pe&HLP-VaE&1e0-0%j^|jp_ASj8 zCsW!XmCuovsFK=gluIl|R_|G~Tt&otmC|D2ecDe?V%gnX^7Sq|ju5Sr){1qi8>o0YQuMJME!1DAh!=e%J9flT9Hkd@ z4r$&w?31{mjDdw`pVkorA+ih#!rM*mkUf ztzW(}aQbIvbbOCzp!7`s9w3H}D8{XU%qR`|zLv~CRPj7rgr~N1HDZi(xGLy8= z+1PmO6Jr&p6>nyM>FARzzO;|S5k43k)>Z6#c~Vi(I%u-@(RvizIKh^IN9i@-8q?f1 zqcd+eW@frfjv6gJ7-KQr;l#>|t56O&ATwr*(0J%b(A4FOJ-C9LNe>wHTk>OVW{JsN z;_*&7gxB_Po|hkCV%A4|x?X2Zz-<(IXn5vF}(qfx5w{?>9tU;m(Y*$(%_ur!aLj+be8YYcz~aq4u;hPzj z{;c=dOh=y_^%7>Hi)k#1v zDVelcH#pNHgJF_~G{$3$SZOyxB%K{2o;-NP(H}Bv5__M!TCXVW+EaMkEG9)M72S=0 zaP9q*4ZCAWZ}pz9fAd+|A&my%v9yWEA#-~c(|(*_l<{KWWjRyS3z#ZQFU}NO?RCYj zjfUd!DP!SjV%SJ|>|3pOA3a(2T^+Sn{+l(!}id=K(yNhtQ&eW`dehp)YDSvF=U zo4!gOl$zw})?1JBk|PYVIKqG+aCy>Lte5&~`d_KDN>9b(wI$58`ApuVJf;nS|ZAo#kg6@;+gFy8ZY=FJ+%)>OwOS9 z{@3{5FUDtufk@G2!ee_&{QIeLu+L@+0z+u&>Cc4B z9n_X?!Zgu=G~E!^TyjOr$QBoqt2EhXMV!_NF2>)(Prr@WGJCej`V)ywL>$?{wOo;` z+rrKJQSmb1XPFP#jZBCvT8-L2OTw4w((bS+ZYef|Sgs&y>{d?IGi9)3w7MEkAnQ?g z0u8{q{&LFa8sWOblT4}kTeq?1aY7(}&An-CzJcv_#$0@DOvD9!90yoXJYgMO2Xx}~ zhRNtWGgO?k=ql`vdkA&4Lu73TMW>51`%lL3_EI$C@BEeB6Gv!}zny!N*0IQNGXv|X z({j`@D%))4@XoyyU%5!sd>5)ij-cGdTQa?zu`peSQAZPMs={T?@D&Xr%*CZuZmhhS z#rJ3*F3or5;&C6eY8_;!mJM+~-Pt)^aujw-R&Lb}s=aSfk#P-sI&-FB5K|T(Bd1Y1 z3$5ylHe>Fx&hjy~w=;=V+9P=n%ZWIb1=r+0o#Q~QUcU>>A?zgHqWwfhKi>=dQ>$KRq z8K|3qx*7N%pMlcXuX*(24l$2%xv7*!_{^uYU)@X;PVX$1FHL81?=<|43c0MEjzyt| zjJrJGL3hd2-}RV{lE3+3WFt{f{D^lS2a01+*BDY#K=6w@R4J$6UGt4`Wtj|b`jFrc ziSq8XnFuT`<@}OGqMiLV(QT%&@Ne^*J{ieui_Vgq%2uM*ZJG$YI74V$))tM*bi|C= zON8E)>jMyQt?i#y6jVr0QeQI=sKl%p1lv8p=aW{Ivy&|5ER2WZi# z#{$~So<*F;4C+UpV4aGdXpyQb^q+JVy2G`_-VbKNH?ONO_cavvYvze~Z5>f;)mMZ` z?tYuIBbfDQEBZ0;=y4>SF39`h@iw?#G{UouBhJf|St|KUr?R)u=chN%HFppfW5e~z zyJ$C-{H8?~LPcw=SeejVD3=_=)N4CF=VixjKV_l(@Eba=&&c}p1c$$691Q%-Sc})Z zANK{)O9;PROjO1z@=_;?lc~z$?1CTM_|!~%byE?+!@qFU{udi#YssoABko}lQOOnD zx$%!pTAx_fUr8+M(m+HFY$gU?{mq6~^+aIQ53)Ws5$_z8#b_gCQ7Jvjhqfz;3%@_` zKIsiwZm(!Jvw{sXYDwwviHQlv#P@rnMPKxr_PBPoo4}?6@W6WC5%wnE<-t@B^kl{=vBHsl9gG=Zzn)+5?i`ogf+cs|Xqvo% zsq5Ep_~k0*WV90FHhYQ8h@+S{f0_>tVP5G}ESk9U@r$}-&EBB zw(k7;A3wk9^sE1K{i^QS)jhlaKg@vN!z3E#9bm8SBepDh#G&LD#Am-IAX!zUcT*OF zZe*f7H;KOS_t`c?@*%^HV%7Z#YU%e0ZeN0R&xf2ke}{&(Y3P_u5Um!giz%;?=unZ* z+Zzw5SXatck4%!U7jZ7*F5L!x=V=ogF{;fDp}TI4_%d>$FqQYlkKU?^mb<5mJSE9} zy{RSA^5zK5DGSBVU_G&E;&P!DZYWmVS}j(j8ws(?NCY2QB@P^1CH^IC6zgpbh1GOJ z(dO1yx;EG*k~`ROeBd4wl9lyOTS33uE5!B6wIXft5^?6>6ybPepqRFIsF<#^Sj>29 zK+)fajA|K&w(Rvh)ZLwkLQDFTRw*vZY_|8Tom?q%+t_4gN|qi+3E`(Tt0W7F-!BguahJFu|H%t#7BneJVH=I?^hkfDA#g2&A6!ea?g*r z8-Yxe9^vD~Eydl8LdDE$V~E@uN`0R$I9@xUIF&V?HXSCiW^He-u8C6w9si~H6!=JC zdZ`_UUUns^a3@NSCeyriEbA5o5Ij8s`)${xW*fzogYI;+Oh@rg`cpDWSTo`ng_*|) zlF!5Q)G?-ZPN&V)hzC`9M`rh@ipGYjo*&!JnX`Nv94H69Y>q{8+r0$7l$V=CNe*q zmIiz1S$+nWHw}eJryP2pGNX6LK7z9z;#16i&RW_L_;MLN>Nzp)NhHl{Pf&F37)yrU zl{|#QoRj&h_v*fQS6RfC;yol?{+$H;EWy)>moSjzK5}94n*7B;^LTC z`t6Np)kqbwB&eCF^_1Pvy(5YEB6)AaZZLh3F&4wWGRh^5c(*GIi*q7%r6Uf#9J%7} z&T0*3RMqVWsC36(?#w%TuchV9?M#&Zh;r3Ko=P} zRD_x=5ILz!#fv%3L`iZNv3t#ZF3J6PYH~7K<=I3(xx}Fd)*{2rN@R{S75*wZ!uZf2 zq4Q>va2Y*Q5`g-7^=9K{xe9*0SZ|Z#P5Hzt?KfN#981{ah_H4jT%) zBqI@jVyl>PeTmRlnJp?`jpI@84YchTg658`ENWrOruF^A`NHO6*wZDV;ew80Uz5e6 z_sRo2+?~W_OLOtau(LQ2G=dPH11##agL$J?^814`MXy)L{vVKD=yczVpgqA%z4McghAl+s#_uegQ-jsKTGlH4R&^fuzI4Uva+ZMs^mba zitxRpBxW|O#9Hpg|7I5vcsiHrdQZ@K{g8dq)0pxni{>c>EVj!h`Q0xDj>)2D?R`pD zm7(e18*RluW|kLF&;1;_Qwv!g-#{3xEh1%OLouUqTQcAH5dKn0G5n8{BKvqFR?NGm z_}WT~_M-gh#{BLe8~cQ)F07h9-_)<9~neG-`5)P*I>{BUU(hPhV=Q)<;^Hc878g)9J^!0yM8|@x%`c)rXKS9>@1z!qNrWoNemqjhNtaX-pKCb zHox~{DDMrLM7UFN} zmCX}w)pNv#*d^k}+%Q7*rwZY{T=*Z@$>Kd)c>dWz(E>Auy>P^(u!Y#a(GAn)hnV_V zk3H4aO#1AI_BBKFWzUgbj6V+YzW7%6$zs04Kaw}UA#?Cg)axk;qciWZI{A_32i_7e z@iWESN|=%Tmm`^Ey!*9oMIp zK2OW2zq^pyuwuf#rIKF#huQ1$*k+uG)}wc*JpIRx(1v2_xvpXsx?)sDG_K?GNJ(uW zf>Mewim;Z9HcJYc&*g396fQbxGFbnCB7b{VNUKA!nrY)I3^xJEJtgkZ&*7 zvov@E8}sI&+vgyYg3fX7`3lskU$V!dp@>@8U5ry5CX(Av5lv#3kFvrhkgppY8Iy01bN?X5YnJT1*>+^#XEo*JHk+u$CJ4t1viEC2P?t|9)@L{}DAqBJj$6h1=sxXn4FQc2yYb zb|fGgM$_iqAvTQl$M*R=_8ike|Cs~%IrF||4JX;b(`J$XCXykhKP7v2Z=IjufADAbe~M00_wTIJ z^y+4yZU+8u&A{Zoh1`%`Sh3GullAf)mqT;->s3klu-~NG*Asmod}q?hN*dljfVoIV zd&vvTm0$5@@dXad$zp-YZFU+C7iw11#K`uVVnTXnv2eq5;d6hM*s@VYq)$x7DNWw7 zj?YEw;9UX^reKtj#%cZ0;>$N3p{hAcv>Z2G%6Fn9S zy8wN$&&WWOsjLu>bqs~gH6!t~&{(YV(HCBtb2;B^Dxa2&VH?JGu1D7WYZ!%yMfgs=HVS+fB}*bGw}w&Riv0Hr|bnp#dGn1`yQgAd#{^b!6p! zoLV?DCd`ej)f;&AU=Ed+BwOEVF`LG&BJXf0)#v^AA$OKm@qI*Cw?-l>;vZ3sOX%Gy zgE3QI(C6I;^30XQ;QVaH6_zpZay~VBm3&wuy}+gAX#D(zU1b#;<9-r1?lZg2DvMy9 z8Z0%d*lYWpm%AE>#})6$yIFzOMNQEt@*D4@FQMk`TLO>g(8cB@m&cY9cCU;xTi+7) zR{njP-jUO@6n(ijU+h+j&gLqtlu9wV`H^vbp3Cf38Nu_5xt3dvn)H_L*<8qP-{}=m55_mcG>We`#1#%$W_pi8|U?RPSpo&K>D2 z0&aE{+C7woK~04sbH1iz@H^7s`e3wP59P43wq%h_!Dhi28Z4YBeE`GR)wCDE#R2T; zIcpqnXs&$FC;kgaac(+_-6`C#=_$@pRH{ay|ygeyLh~hlOL< z#hjK=Gl*sf(|p!)&0-2Aqc^i>g*#J9Q^=}LXR&z&Ro;?Wrru0A5A7}tN{5I`ib-O( z?lf^+GHg#q%%lEnONu?Lm^5r6#e=reqhuXTWv|)^9d}ZfhI4CyF&X*?nJB%g(+BLQ zpi+7vmK;TOVg#M;#?YkQIo7^DPJZSguD*$2@G>{zhB-;^$4+!p_Y>YWl!y~D6O zCRV|ug_trwe=!%eR&uyZ-idS=PjjOI%ztY{fdw4=b&T0=`x)yt8~>C5G_7L@czm20 z(r;jLX+KR&&hfZGQ(Ru(CU}Yt2~V!dj)X&4lvog%V8h{gL3Ez6m59`3#K^u{m-lX@ zE!{|hp+1{a4svRmBdb(hnOEP9-)f$`RyvQl*;y1VLvU{Az}oQ*8NI(BC90>;tV*X} zQ-``ewr-ED)1m5Spl$~0X5fEh2Cg*9B%om?;achVNIkDZd=oLlv|cwrynJsX4BnfGb1~D!$Yu+~ z^}cz;Ue99V9_hJFOU5QgX2g=SWhd1$S_Cx_#*Ze8c4w!G%*?5xiH@eI=Qv$_yE#)F z>oZ4q#LN@5XBUh7FsZ+;HxkvKR*I%NE5tfIBeBqEy@>d0E}m4)WyLK^Y*(9-d;KIM zR@!3K%#vS8D@bdy2&wIH=ARM0QWD8IWGs}79EG7-B>gm3;I5>GQi=y@F}^%};>n?C zL$2KoC2ZVr27FyBwZgU38|%o`!KNHDvSUZl0p7O`p`*7a2QRE*Q;)4U7g>`qb+C9o zx}n&5<_niv6{GK6!flr_Og9$uC@h!C5ii(QBX`m7Zy2my#oxGpv~O9BMr94V8~)|O zpSLV|QZBVnCE=9*mGl55G3nJuPTW+8ntrupTKr+k*B=yK`+=u=CApE$WtQj}X*=HH zbf}8wL&`a|{1tu)A4vUINK`kJsTm$_8lZF<_{3+ZVkkuD+5LG zkWUQgdX0$D$>`mS#b3{t%&8%~@%3Sm^BP8a7~(u=7R$qRIBPBa0B@EvQg1Tb0)6Qc zaF|}#mWu=BLG1IJOP}H0>C{F+jc~Vy~ z+Gdd08#h{1FPtpY`(2{rhFJ{%wUP_*k{MvwkA)5kX@A`iKR+vqFG+1va%Q7skM7W@ zFb4Vu@So~oJp=!=o{(+#oG^oDv|W6UTdDUs zeBlg95hV_ZwR340 zYnzK1WjWxQ$L4L>WPHzO=fpUAJw3~#(0jPrKIGlk-!2k$PTw# zEV(AT-k+=>+Ch3VB@f1l7$L&WfX;8xM zVP0gM+($=E2by$Q!G={nY}S=IrJP_|?69YAtp$yyJ5t%h66;5{bbsPRe47*8e&t8r zvoLn7c4tk78y{7gil%$Y@k*%0R_P~I*3VhxT+Kq6*^1izkR`*a*|qco%VstfJHNdl zzJD20SN`Ib&3pRHdBc96j~EC2;(GTo(l^%^+Z!s2t8Z$!e6XH~-TQ+Hw!cWvc|~+^ zE(=~36L>a!0*{DSG zI+ZCoK$Ygi%8__N1O$_mu|s(&OsA-$<&`+RIagr*qD`PB1}M$5hS=NPaF2h8$$Vn8 zd8#*(PG{lD<~W?{j)Kjm9-J}Kq11arR#%2&g3c|dt}?^@C4hMyL4HX*F#@CZTNxOC2^Qw84eSty{HhngX>k^cz%aWIKJ$OxXU0E|@y}y?2F7RLzcB-6c?)p1c9MT~w04!*4c{E88fsZ4i^7tnmgVi+tfhR(eoXh^6* zyG0??S?{R#@LT9S{*Jy%#>TXK4Q|#$>**K|x3Z(;=)ayC=B*_cE5@wKAX?tPfvU>1 zX^x2w*-06YD(lh8Uv`3$=1rv)Ylcy#U5S&5x)j>4OUGAO(23l0S-p2I2VBeg_c`7E-(b2YF5%!&iPUT)gIm!}+l|9C{YMBIlqncnecQS(e** zBmF(zjjaBEh!vko9#$MQw7(UW!mWr?Y=h{xpOF9A!m?w{2;16)?eB)LQ>+anqqn@nq2?yFvm;wH7j+h+vE*E`@L&6u!hgP0x8MZYw=FqL(2S$dV?j6wsx zeyYc_s}(3e)qp1ZDirtD;CoFaMxS+}<9s`8?=_+^rv*!r2QWSIFAfJ(LT^d~X6~wH zEURzO5vfJs?MAeHs)U2^cMQlkVcP-5{5m5{af=1X^nn1a_UEUsixy)xSG~rqMAsJ| zY;qyXGVf0}O{b%*havIMTKZ+Zo@Q;*q~pmOaB{OH9P;cif08w%LiRvt(ke_UjnWwG ztYiOF4Lc-%$0vIm@vHzUNd46>a~cql%E z$QXXQWGPAVS~F;4nIgGlDO0uTDvBFkMYj`GDdg%cxcv-+e8+zD-noVRN$z;aShx#T z-bImu7p#un2iKPf>`qU@n#&>BSek~_CQsqnT!8(-@tDtc+;^eg$Zw2;qV*`6SdZA< zRq<$D%9y`PgOF(Q9^Jh+@H9CTa!)R>yxegZMTQ{WB>)+Esc2$sy!nO>DDr)RKTP+X zB615Cn>-MoABOf9ZaC9720Q;`R4~7Gx6WZ0)!j$T#yq&&I^g%0!!R68gE7xbZ26Xm zHRpriRvv-o00+iZn~waC$+%Wz0O{g25a8L1E20PSsOu>7eV4(`A^@}6Qt`smAAGj4 zsN=hh$BO4sa3dO3ZJQxe#DTDfFQKy_3E^+Ajr$44&k_HxoFo1>?up~CIlgO+&%poA z4D>j(!S2OBoNvv*Xjd^3>{*}D#NP<(tV8w9UociJLZQw_*bmph@In@Tj=je-v-hZK zNk&@UcYILI!6<(z+!<^3UwA3&vganJb9pHB%Rt}txpe;FXLvtl865sE$ba$zGgs#! z0a_$~ifC4@I(?7;joe;O8wa)MPrnZ7$LUe}ECZ5TI)U2qThS{whXQ&_VG&b_Tk$nm zC#g#>FBy@D>1s;1+6fh=eT^9iKuz%?-ntz?*+Ww}d^E#NBQHD`)}WK(H(5q)4=vX{ zh|3(u@vq@NrfXe7YgiT>SU>%_jv%PN^nq|q4^nq}A#l@5+MmM1bmbxVF%N6a#vv$~ z>Cr+rwm%$>#|#cr#NKtrrc;4_U0(`#jU@-~Pc>q6mVb{%6z@NT#l*R_XX zRn(4zt`YPcZbR9%X2_*ix^oN$Ei zJt@4)OVn6xL_Qv-h12SJ$0%?m#zE zJcX%y`V4BZm!ma$3iKsNfnK>O5a&Au${(6THxJICUnVM~n#mZeyFTKw(-Z99@g7t9 zQsCx%AB)4>FxGVzW(n?4JY1@A@4f}=AJBmQ1{>y`T@5vs>(d)FrvjF_H&KknWjiPK zo)1CE?wy8sP%ZeZ$H2FRpW@z#k%`I_D$YHz@)CQiBjI;0^cM2audI7k!q3gcnAPS5X6dn@AX}^dz6tUyZ<&dd)w5xI*#Q#_ z593i=HnN%@;7CI(gk|Fpto8)Y<&5x~aUp)lZD34;ZVg@!KO{31zzG2hR_mH^x5q!=$c=qQzWYP-pDC-^mSr+2z@GE3n zvGe*LY>%9n2fmA0h&C;NmvScDyE7pDeIuQ}{S)EK%OIzohMCHFIKi0(-P`h%(((<@ zW%FU2TL>q?cX)Cv4{wvwf#)BgIbktXhp(m!6-33~G-<7c4n<{dr&R(*)G=m2*+)2u zOS1yO&w8Lx^ak^kl<1WV%iud6qi3pWG$nC5ef=njiO-F&Y0C<5#%#qy6CLc+wL^l+ zIc(BhOzJub$bWwm30f|&YO{m+qF`_(-(#9(1m2|`fP?)_JbIr9>2o14_1sQN0!%Q> z`boWS4xmb(lQgGslg}wJ@{np|df8&?-xh?9r$MMJHpZP?H*mjkz*K<&tgGn82IGG? zZP9|GDU1jDjh{^RwW0AsH>54PU@P2&^x4%cE7yTLyaNdSBtV7x{=itCgA#_?Az)IE z%Aeg>+Si0d9RDEIT#t3@81v~W2NhJ0BGG>sJ&CPodddD?u?1CPEx5xvb^Y?&aqd_< zJnq#oPH!6&IG7)RY3GwLhREV}I4RXaob9eH3z}i3T91e?!x+5z16x$MXf*gYqT<@% zpE8CXBj(>#=c3z;ZISk{4d2}Ru;_dx_Cy`Tu>KtA7$iWnHXezZ53t)%4gNn|P`JPj zX=y8ochhX@f2BgT+17;{yWz5zvDC}tEoece-~Vj z@4>trZ`j6%K|;C%ZMmz-$6zYS^30{p$+OAp%Un8oRgp|%=ab!^d2~oYj-EV|rQQ#0 zHlr1&+x;^-+}O|Dk_E}DB{(p82VJ*S24=3|D~J2&8?8-_&ZbJ#X`3^LVI zaO1>563z<2rz`5HDb4Q zk~+0=t*5z%HvAiHGUtThN@x`eES?sUO#H==cQ;$9TZt zF7q^m-oWfG4_r^R$B98ZK*|ahe&2B6lM8ICC*a|~`!FxL0sGLKSRcC;JR7yp-hUHI z$5^*))Ec}ox{41QjbVLbFJfk&KxK;;)-g7&PJ}gLcDTXCFN}3oMBzt|8=`i)BFoPL zToU_{Tk#0#u9Ilz@VFK`uI2piXgTB8YW!M_&%poY3_L6Siq~_C@#%0XM#a9O@$+wp zEc%Fx8n4l+UW^R|Uy=Lb6SmIz4mJN`TpO#yX16?aE0(}Fb`y>8tfBh7Rrr3k5-;w& z!^ZDSyL~TDvN3s(xh_o)rmE9Dw|7WB*$ji>Y^->wKvGQ8^8CJ%JoG^d8#Sqnwoul0 zJ=!z2n}*a($j5d&&F?m(^S3<`YhP-b%rk7CPkywx7Rr)`3^!+nT848)U~ zi|Epef=VpgpAYq6mKX=6C2~;WqhSc|>A{t~JfzVxjGPbwI<3e@^QiIIgmH=TD8rFD&?=$Fw2n!hmgw;Gz+1L$2lj27uploasL_fz7;aaNF&Z~Vlcv>~ip<%6P)da(Ss z8>4fS5zew|p34)EdgeA{oV~H2OXS7k#jo+C&>n8WqZ&`m=aMn&=>N?6ns#eNBPZ1p z$5TVGhxaUMlZQ0oTG}*fb6BS9*d`1eU~DedzrU)pfN_U4X~ogU2yIwMU-G9?!}&S% z?ClcLdZ|LAWvp}fvLY3xOOdD-H<>(ErpgH)q0q90-2b+tsig>SpJX6|GY3uC%V#Gkr!s$vy2&5MCT%~NQGM=&2mAYM5I z;tTWUYEKA2?eb?3>x#!2*7Mq|nu_@sGH^>g5d(a$a4$6t+cs>Vn~5u^^4K=|7+H%_ zJC*}1Ql_DGO0;f43X)H?Vak5bShY|866){&HBm9&X zYMX;l#`s#N2JCU{)D`$wtbw89ZJ5d=VQb@a@SCi}C2z)LV9#h(`|QypY61?{O*=!L z^&h-Rg7_6LaQ?mx^=c#hd*aBhsXK&S9C2u!9TrY>hsVw^uaeoy@0yeE!dxAE&X zJ_G+dGw}2FM>GaEVe`&%1pH>4dcFpf`($I{*h}OyJvP=c7gb96z{w0~^?tzAkTRt1 zD1k!le0uQRi1J=ak!q_9d74X+SZy94%Q#(ZukkVZf*!4>2yHIG=P!L&bEOFRC)dzF zsM1TNb!7Zt16iEbCiSm6lwhSt7q1ym*81IaMo5NiQzgmr3#6lp zQNJh$DN2rHt7t{snrisF<^;Nf-SN2L3|_3SH#GwC7Yf9|-8efB${?Bb1#SFYH{ z;f6<@k5E206ueL-A8qD~OkYXLM%_4PI*is(E;3xoL3O=<@j+?;j`qC><>#Y;%3-9G zFxG>;AnmW@Ad3w=wDFB3sr>0hag!EZyfuSh$VY?A+u$W$4n3xWrrhM9x5b07sq4jy ztbP=83?X+5W5cR&Q%O`ms+V%ojpBZENpsVFvwsk?Eyw*AKaiqVhqYycNL$r`_*7nU z;~WF$#!VEVCP=)jQ#M!V55}Gi!6vL1vzVr8GHnDale?h>4%(u`vRi_kFv{x0{^UQn z+x-{Z0i)2i?ZzSRR+ihT#_q56a8PZ8DREJ54HrEf8bh|$2(}ss(YsC&+N9NuSAyIW z$~d;&d${OE&M2mDV7mAOJk^(?r~EmdpAW^l#R1Tnr3>BRC$K+$5B}RY zX%7FeMs0tU#`AZ|Gk_j=vrmx0%)l;xpo`=DKt4QiP27}kfC`^&{ zP8k`ZYPA%ujx1*k*k%o9n*rRJD@7)Lb7)9%5v6TcrRA^GX=cs_I&)QXH=8J8Ejp!MKw$PPZh_1-`v45ff)Uoyl>e6cB=acvXg;i_^6 z3t6Y!60=DpcTj<4#`I{0vo(deE0GuVAyUZ&`k}sP`V|4r%^^?{eTUB3k72bo8aIVr zU`=&4Is(G5`EWPBsaZh#FgKmu69QZLE=<&MM1idfHhlNT+w~Ec@a{e)pSys$0&9`x z84qi>1m+od2Cox`G5k9b#k?u_9{w7)-bZ6>rxU`b`$Jjf3GPg{LA}aeY!&f<`rC7u z>b4e#F73r4#;A)O+yRaTFYLK>8)1q!+4EH}q}X0PFvSH$W0vT0cED+|P>k4kBD6z+ z2E4|-1mpL?|DF5b__Z3pR^v19zc~Ye8!KTPTZ*s*4%(nrg-0*nVa~NOD8BmzTdn8d z-JgZCtMlGURJ`fW~_C ziNmS@yZ?q^>x&FrN_`5$*$vRk*h0&H>QMdctu$?u9=)yIL7wV6>51VkTH#ENIPv{dBp!7=cPZFp}{ai3dxteTFUBO6ilJ$xRrycWHDSR7dQj_1Kc;%4<34#Vt-sV*9J`3<1iz%1@FVd?f3$hXOr>XinQ7^a=Lk;DrKQ zviXiPJ%gBN)(1PSW}NEdBKedqs2O)al=*B0LpbQMGbhb3@t3)G;t<~1JAX1nRP)hPJqg_*$yIP}&U zBiG%bZu$hvZ#KesMmMhA_CPo5r|OUWhzFk>!0|2sJPJjaR5yusH9v*!KQ~zN8{+vK z3FJ0x!huQ!%ytL1uJEh}ck&y~}7( z5P~yy@q_69z>)(S^mtCvi>@cdt%4EaQ{^=-1y${zqxmeU$^n=_Me)8 z;|qQwMg2DpvAxdp3d{JMm7|P5bEus610Yv|UrJ#>AVE;T&WAjIybdD{#qrP_dwE!j<)+taZmyb!Cbi&1?v4H~ZOJa+F{ zavLzER*fC>HFyUztfaCaFA?{lww~{7Pd|>CY7}xv43qYJ~8iu|K&DJ^)CdTy#c*ZqM0cYH0&rr zUW#2<8Q+BK77egzsm2z5#wN?)r-^x7)HuHn4a%Y<$ovE={DyGBtsBc7xT!i!l(;tY zQ|Bc$6;=ODoiop_oeMp9Jwj!0Mk#I z2jYIhZ}>2-Z64!ld0y*;UfwYL&A91-=r95pv%*_`1kbWWDE#O|id!a1Wjq43@G&2) zGZUt0FFrD>>4P}eJ@6~tfYssa*svoRGMpC7M`?h)6#>|=_A3_H2-2(q0m!GELlyru z%-Cp;`~h!pn*6{CO%*a&6OD!!>9B?)F3yrfyZs6*Z(0D?i~~4ObQEtUvJR@L0yH(Q z56ynE)a}Yk?+=O6l4rv7cro+XeyD(ilqk73OH-B-KMe>>qOARk2$@8sRa>aHeGDsh zjlj|MF=p83WB6nOez`{A>9%LcTW|$po9-a0pj_w8jaf=&~x(` za$Y;*i>N1*cJD=wK`;dW+(zcBJ4}Pkjx!|t zmH9OGcfj9AmKJsh(fZ>>=wDrowv$hgvoo4`3ZkH`6oZ2nBIHu#g-qE(%>Nk;@v0zb z$NYer^ALI-7h}Y{1hzf(sA7Eszlxmk=ln<5RcElgr7zyE7Q(WFc2H3WMEYK3l<(M& zm1CZe<9Uz2o$NY?l|b`pDF&7MAt~_yGgQyxy&Llsc-%o9usjFmhp zXkr|PiJ8U-&fbd6`AUd!--_l*PVm_pfu+gU;MvHyb)l!R{rC;+A25P@TNWx^@1wDv zgAT598Q)>Yci8bAc6hVLW6SJqZAWq;5)|S4- z^a-W-J^vk+uuQ$`3NUfwYbd>lsGFCKE9{};a##vp%n2nX&D zK$L@*1Q|oDJ5GpF0_IWyO{8Dfrchdm2nBd>lj8+(ImnHy^H@Mt)v$V8@dp`?o9Pw)g08KkCOh5BmKoR|zk`;tGN3X!M?-sh|1mmj+V{q|X zA#{x?zRuW);F3_hb99Gv0@L1X_j6@&?T#2!EFU0s!(H5t zRm3Be0|>9&g6-l)s9)@iiAmnjot49MaggJ7mJ55lh)(zjlKh^fv|!Cb_BOWDX(a=) zI`9v^&!y>Jp9am|W<+amtfT7&3rN^ajJ`C+!v918CQoDhHzjs%kQatvlV|v}A)av# z0^l+4JZ5^Ig_?mm=Jy@J9v%axWy+&wrXyUA?7~N07p&WO84=f_;UoD4{<20WGuj80 zxJS6x<*JcmbqVL(((p3Q6puAlV((ESi2Y-n+oev}lVOL)yADCt*BrsE9(dQzeAhXT zaJRw_>k9tC{ksCC32Y}V&x<6x@*Exg9E<7Kov?o54oHY3;(1sCc(=3u0LACHGCvE) zH)LVK>%tKp7?SDf*tBN&0F_G2@LKb}wKAn9yp`mo-0e2*Q!fBo0)U;imBXZ&@>b;0o& z_}`p?pshUQ8{LD`_ZdG{sTZ+{JY;{bie*1I$S30m`q$JT?$~?$5PpmJiaE3=M2%bh!DEf^l_X{vHz5ulc1W4FPfYi9t;F?*0 z!=*oPa@tP1p1Pl8s}m70nun9;f1-frE4~^3M5ksQET7e3(xR_;)m{WStpaT5`iA19 z_c*1*vgp$eQ~ZzZ6m9+*9-mLr>c7^sqJ1IxeQv1L zijpB3r&h_6F8v#ky2$7P8m)G>F_jK6+@&M~3WN zzbm%~M^71SRq9UAVa^giA*tTlPPq$3$df(4oH-nU?A?XnV4NtwiDGnKmWOipene^W zOL$1mr-MFO_{~*@cVV?y`~Uh|G`?c@HI}LR!@9(ZlhCl|CK}CMajfwaVxOMGzIjWr z*mDV%-XQpS97OT!aD>Wuq3@?JTz@&X?7y4S{ zO2QMEw}m4Y5=R>sZ5)W9b*WznQ3<8b>VVckss{T<7$+uB>ccc*03|+7> zB^-4R){?!NB%Kx9P0nNTB=BMeWvr>dMvD>%^QE$0+!zRp{ldIQZy}r$i(~gPv8?|T z`i@P9=H$z$5c5Vi^UD6%5(D?dNcMclIuBH%aUrP=&rFYkuQ>*ZK^HN&QXh`ICXm1Q z2yW^scsOtg$wAv7`DQNomnERbV+Dqnn&SR1C)7-_#GK;?VdY_gm77-M+^KDNb;BL6 z_S@n0@fZwF-%nLFE_5>F=J*~vzQ>O5vEwr^J_F-3@E@N6pF1<@!lz*vzZk*#KO!`G zfS+!DoJ<|s@}#$un`X8NP|f-V+?V?aJwq|dWByRpGdy(9P@d?-Te$b>BQ~@d=a7iLtO`CU(JxX|PX@4l(XQ4eB)ea4Vx7CnGrMBJ-1~ zFBKu4N8B`;CqPF+S;p!VFO605(C1xDFLfTlZV!H1$2tcZ7BLTLeIr7$xM_s#mf9hl zEE~^HNhf&7TAJyt%Q=XDCO569jH&wkLND@YDY5Y}Y=(P4_LhXro~tUTXD2HE0k{uX#w?oP(MKceFTVczQTW}i8g>U*ZENU~SbDtxT zA#8!aI?`D8K$r1TEzx{?4V*+*p*U9;5oSAK9_Nlh?o4DvZ6U+TLM(iFaSG8q0Z%eRc~dP2&R|d}#!yUpC&(oKAl4rcr+TQqtgFMM`^?(L?#yFxM-FRb=qou@ATXl43wrOJ88JUWiQUs$hN;we0txt*Qmd%WtxDNbJSzOoB8E=E}S-5r~)9T^i=7bB8aaOR#Z>O!pXIc6``N-V-IeO>VF zaL0AV$B4Wek9IM4%*aW@W2HpQ-Tn*b!*8j`L= z;dOs(w{pUbbPoD==_|62iPHCy--zUo!gc9K$dSs!8cTm<3MtbB=C=uHHKOFM*`%wc zLhalGxIbKr%;TSM&c6)Yuf!$)fhan zPQaHae_X$j3KNYRxMm)LoA(p&mb}Zu4a|49(t% zOdD@#+-J`*1!i!6?2EXSp5UH*3w(p_aGiJ=b_e(1*?uAHa1CKO(F#1D=1dRn-x%Lv z$M0SL@q5>}ZuY;an~h($@$2@VoPqYm?RXv31EF0k(_UVM%L()8Wn2@IR|$~u_dG~* z{f70CUx;EHBj3*z;41XQ%ETPp=yO5H-(dVT=cdYzHZ(_k#$D?Y=m}S1%F_z$bNr2E z4_g@H>peKmF^<=*Y^ckA!*Y*TXx;J^N{XLg@-PR1`HcwF&xhcfLLB8T#zC(Nq%17M zp#OKQ?5}~?z6zL&jv#hjJuc1r2L1>mlApx*QqO*1seA`En|Glq%#pOlHj`mS3-YIP zvA$YfD!$E0imzA?Ku;5n6!l>8^JcgQ4j|TZ7#%5-$s_MCmYVZWY8F4enlZx8;n_Jl z_d5EX$ww+e9JFFrKejZBkX@VzSv?y>#qqxoGvgx{6Ls1lE^9vWfvHr`>rnzbQHy--EOOXEP2~rT#cTG!J2Y|Q`85iihw0m;Hxo z=0p9H#YgM4IS934bWdB7CRRz&6**zDaS&kM3_%i==A=bzN8Vw?MKR?9bUvJuKAH;A zmskPPix4FKse-ip$ry~@^3bPC+*DLFgxA&_# z7GDOx(-yF-G=Ta;<|Bw?oZnvoSjd=Ge|<&ix11bZpOJ$ntt^Z7f;~$x@5QVHVqR+{ z3cC6M!*g}%>vl!bUMNdl=3k%|-p>3ETx8wDPooyX^iN|7*{VoWHq*eX3xA{ZP!I;2 zBSG_Ha7c^o+(y>$mOKWjyOt1Ku8;GZ9PlLK0SrdM;dj>$b?QM#o)C%t3pX*e^a|{^ z+(GpM5A?}ig7Q}f1k80osOeekT6hUX_Z)CXbthiFOvT{wFx*MH0G>C2F!gW&hgK$L zpN_(e##{*9eh=f)LTtD5ghFIET$VpTx}^XeWSlk`owf9Oo*eDIIEeK=e{ponC-}(o zP~{|9`Vs4gmm_cCC6J4LTlRbvqeSNvr%>jH-4r<_M$WyA2`sRXjPF}Q?J%2>3Eyy6 zmY*JSicr4+~c{k+Ui=lKNa z=@))l|3-jh%S0*ost~>3!%5ujJmh|85YI1gk?VYJ()5#{xEbQq$1++{59U%t4=;&7 zVqe4juSOU7srJeQ(zqu`IWYost(21vM*qQn9TC#z6(e5_X^LcC1H11$^k~UsdcrzX z&C_`);V&oEyyhgU8c9lP5+^=KA(H;aG}%HP(yg38iMvHebR{>vyU226Mf_Cxs|ic? zwBoY|7YQhG(Dvk&cpaI9t1Qd)Gvg@cmAfHflyOZZ{gJaE8GVNBSofq3PM!|nlxann z$bBSk{tVs}RaE+a)dTVo2;EH!M3u-Or4hR) zzD0=00?NBRoti(XlY8At3ca<3mhygt&7&-E-b}%z2c9U;^nu6xQ}ApG!Tt>a5S$#2 z{ZhW@)c3-NF*{hO+{UjicldwtM0n|0$VQvMf3Fr0{xrYia1z=|}+e0vDpFU1fq_<#+?>6rhTbsIl> zjO3}?h_6MBmN>7Z2wFq0QWVMa^J-f8ts17K=~%7AMOD=tG}YlYbgDOy!ti2Rmo|lF zbW2ir$x2ch)2Bf5$uwc=GTLajobDAbq?(#lBomx~J*(cqgLTabA_w}P*mHq!IvkyT zWATJ9uz8w`SG6xtSmA*w4{2?Y81kZPjfe@^PV=r#QsCgEH^EZcuNjAeNOfvr8TRc=Ic zvBEHfuHwRoM-+4 z|C8(t)wUjMC)ESILzr~C2HL0FAT{z68&=n1$?#7sXWapV`s~j?8t}rV5ib~5YE*X+ z?n<0A>3J>w9BsvoKV$IDX~OQlQB0Be2knG*sBdq=!75(*q9#m|tar-s<0$fUhwzl? zq?3}kNi>Fw%=Yup`kxZ?p>+m{^Kg=DlqAI(vmVxAUfObP0FAb@=+7Y$k_qCV@_=rf z;uoX3h%xl`O4DR}Zo10!F|im)`Z8Ud0{jH1@gN5of8-?dNPc?i#!u4GtS?KDmqsf2 zC@Pd`X4^*bw_k`v?}<}m%n+KQ^ayPCwA?U(W{$ExsUX(z%6hycFLF@jB|%!aS(uhs ziO|HU&1hyhuUDDU#AiB%w6Dyeur=^9Ed zT|>RzD=a8UhiKa%B2INdL)!(eC8c<~vjxYzlVQR5PI~LJp%UqgWAhA1X~Yhh%zJQP z!U0&Gu)+Y#vNxr=@JviCx8#1ek#Y~SN~iK7N7aPI$$H(O`YA~r{-^95+@ zoJln1J%{Srl<3UQ<+ODA8rr4=lE1o)?$+<1Z9CS}u+Tfqy#5_CQ$N8wpbqPGe?W36 z%Q>y8KxtMshVmXDmlzwhGY(UvJ&|_L9**e_m=_R_${267K6QZm%=_Rw^9+eUow2Tq zd3rM(@%)e{oVi_bWyA;Jw{BsoS|Bu)gK^8{F7g#mV41r&_V0ZR>oZBnPq+uO*87NN z{jJ9WpJGNvGP<{A<6wUl-rJ{FZVG(LwZ@)> z2VrJp%Qy^YF;mnXHYFF49C8HW#%B?H$r$^@79#E06}Vaz!pq5ie1{#scm2ojUE?~` zxE47+1LHH`(lmkv-~S>=Z3IUTRU(w566xlDAgx;kyO=uA!Aiun3?qK#VJhEwhIKpH zQ=zsljdYo;vcmkA|M~~HeK+(Ta8sAEC=?z8cy%O;$%Z5-1>fFvQ#$;cXXig z>K~*YZDu|_PP)|7fux8UEL7m7Tjw}vOk@~8nD%&xb)eqe_Yddpj)Cu^2ubh_V$)+m z`dG(74f%YuN{^d<3KU|(TLJ249?}qYULVGKr8EVFDN~1=W|%#!OiIhMV55W#{@|1gVYjzvP+(iPKq#v`WS3&lE!{zbZ!a z-2`bf>up{7oQHNX4SB0A4;3}=(VE?YWURw<+)2W;b7d3C^d?YEtOO16F@6=}f<;W9 zN(W9%r!~FI)38IB{H4UmphS!&Gk(FNd7^Zf<;HHE=Ans)cqqM|mzK}tA_bv~WjJx?jFjkGE zV&mx|WQEgK+ z#F3y%)4LW^QiVKSS2v)$(^k_GT|x3+HV9eq$&~C{fzdN;7q@+iV{`7}uADC%?uNoN z^cgbVq_S$)C;EZIqbXLnPS?qlvds;}(pU z_dFr-%@5ls7*C=Dk+ItcyOKU5NFWX6;gPuWF%UKV58-er3MHnQI62)110RCXe$)p? z#$s7VZwl)(euEv8*)y5n6ZovogSA>1rj`yP+$#^f{=8%nsZI?rpfm|(x_*8w9sXMm zt7{$TZd^eg!mG(ZT!n(Ji_isS_W8I@rM)Hmv?D-;b~&q3l)X9?6#rpN=EbxzScf`x zuBXhvN^D?fEIxmy(w+1Y2(WVk{fC*D*_#b3nJj$&8i)azew?`(i}T{u*rfU%yxO@a z$a#&L_mL=zc7f%2AJ&Ph#k}Qeh*sEzm*w8Leti)R@4Ns_Ge=mqT}9EaQ&_IJ4X5=l zVP32W0!p+QC;2wk4z55K$2-)9#UahWaeR**-($!3*zp+{pMmii_>a!Ow4A@#$FlRY zE-^lo#b0PIWLoI{K7{9WB75mqgv5Ix=&}v{Q$9}XGtFt)Ed{DGE5?pJ4fr*42iXW5 zqw9+|QBD>QZ8_G1%r0q~ug6anC*R^lWF5wa(%_L)3z=mmI0p?(ZV}*wzZCNBww`Fp7^#|8Ufc`A6M)pv*goF^)J% z$+HK21;dbx`U@$Q71UcepL+L565sm2s9hvNsi{2V-Ooweg*oWC@er073zMg>1g$;G zLscD&eZ~9(3M`}lNb}b_~Z-5t{s7n6Byx(8CnQF*A~+ znmIy@{UA!#O#)OVG=bi0^U*V9F$$l^@^dm~l$kPz%o>F07wfB?IV4Js#S`e}cL6eG zd-cdW33_r@h^8Hrr0dR7qWJh`8mznMRP`_n9$VJ&;r5jhthy*srXL)QN5w;5vcw z{EO&#JdYIZXTao2Jk;b8A)F)!Zt15;|7wF;sm+K!<_0|@8+@Mb0{iRs=uq{9)6GE4 z-&=-bY^Lr?$WboysXRVDjgB|T(wzHp#LKc>yA77mkJZcQ+G-V==eLw~HLRx`IbEt> zxPtbT{l+7oukdhq3mcu^a46-W$Ek1NJiP$_^xok3ibvRfI1G=Ty@tB8AM_(X!or4e zQa@aQv`ifK9|=UOYan={UGXeC6r%^Dp#Sa>W^A~Rv}ixXgu7yc_CrW{Kfvl&p-?T4 zM#c8~Q0?-B4A%|Z(|5-iSs$#n^nu0o=UB%W1r0&*2z-)``-~q}`y&M@&UwiC@e$qz zyi|575|S(5V(W@*d}lt2g>uhP8nBSGT;+&nZlUY@2JvXmcUbu`KZvmaP4fN@+e>wj zdE5>%Wqlh9I&e<121%J85V=5tmf0#%&Q}j@B)2a?Uvi$w4s(3~QMMa~5;Xm~%uiBhsw`VgMBkh=2-+BvC|E z6f=qnsDPpfDk_KsnSIauVQSu*s;Rm6%&nPw_&})$-LQLi|DRrat>5}sHUT~Ntj5*I zP{=Rzz`Kq6koA5r9J;N;=6hSQF=q!Z8m4Zx=?qUAm3~c!^lMSoUQ=5-ir8k#$(%+=Bzt=CJbJ8vYpEhnri2de>_)>V72>CVoMHLkX5U z>+*p|5r#}s-KpS)?pjuWz+yS4#Zavu=jD$6g@u8h9WlhclX z^JUc7PFa=iedTH1L6()?Vs70ec$IPLEG?Ad>tMmrf1}EZ=T^)TT2}hHM&uq>qWyw=+wf?^lSq)J==60!$g6ZA>{kU3PJ>qIIa~ zpfwPBq?I0Xq(!e|$ak2A9PQxh2OCC4bHE^?(!7Dm_^>!4r0R5x808jLjF8 zV21qy^xP4IS5b#><*4W=m~j(hU8Mi;P|JO|fzx@hNK`fB!5wD28DPPYIog)o!&l$Sc=>7%zU<4# zGN%GunDrWi!hXX&Gz3Or*HGHyEDGdfQ1J5*4&|>!Mw}GyKJ3Afvwlz(j3|ZkC!wu( z4(i+du=3Oa{E~}=p}`5X*9eAfQzDXv?8dCXK*W3qh5w>!*b#ae{St3sX+R`?@)*XB zIEexGk7Gxh8z>u{h(+yg;^9x>jjg(mQTxv0+ni{)MLxrN|72Xty^O)nAK|4j8Qn*p z=VCq!#;kbGZ2gN*dd*mNe?>8x9Cmn~OCWi(wV=6UvT$9IVwc$F^K^|Fy5VEsuZ8 z-P(?1FJBqx)xbq4uxxQfa*7<6r6+Mo%LAr zs{jWd72{ocHEP9Kuf?1%$Q~&&V?92?x`RAF9sPx?!wS&Pp$47)R$xX$BkZbb(XPKN zo43_K_K=uG2RbvNNREx`SP*Ql|d$bFYptMkQc13nhrUW!s{P7|}IY^6H=s*PFsQHLLn8B=SY zI-l3-^3-Tm8to9?f_feP8mhhQ%+b>2)eVC-811`AHs z={t@zsy3lTxX5y)Xwgjcj8)Ts8&+vDuuPj1)b(h**PK5tX;LP_h=FUYm^8?Y5vJyR z)K-t(7nt*9v`rw7J9&Fa0M%dS2l*b%|OG7yRe2c&WpFsS` z6m#BzC@|$N(o`~FcOwr!Lwa&Hd3>SREv~Z{txiIv5(wr_o06VxMVT!H(!tICVS}`@D~%EcX~5 zoQucPwo$kk8UeXQ$I(_{AEJd1!K&9~m^cSwi&;Fr*2f`9EgSOsH}HJ+WrVehMpZ^C z=7(mXb3`_NWMrdWNo1>PE@RL>!O>lxiYZFbNbFUG1-S+2HmwrV?JJ;Ca0_*VzvAnX z&*&k|Ma1WLNTxl+F^yczNV|iIkl#4a?J3SlzF>+%KE^+)MXGl(23T9s#qu@UUVIAe z><%pl@-!9M8vdpp9c zTcg5n4mQ>~A@GqqX7>-kz^MBOJ-?lC^IJFtE!VJr-ZiXcEnC*IWe@!8?t!|~-|?-m z8S8rehTdIeUMo?f@7iXpRj9+&Qa$Fz{KXF?Stfgm9#*w-^z^BPmfvE|)}P4cBW^sc zC3MO+uFP98nwI_A5so^vG5CsW24(QR*of?-jVRF*JqnwJFV;knx5Jy!Rd@uBjgg`I zfO<@AXhOxYpHM8R#NpanD0tPvphS)bURNST?KkAE*JJ!*dA`y5Ef}HSkvr5wbb#t` z$EA-jQ&3?4U2-h`TaU8IsvI39&RKmFIdhOK$8MElXtEM#MJsYoFD)*R(PW261)iIt z$5|2sHmp|Swx=ds_|l#yMb0VfgbE!C)wxZ0JIgaPS@Tnk)4GVW`1Sg{Om)_bHsq5K zUBPNqW7&K){`I$@MQc57)-&dbj+T@=YQTUm7Ll7ewb46fi_M0s&Ykx0c%I;a^G}I9-4au z%4JjVtlKe!MV^4{jlrm%y92tp<1tw)0BOm=FcJCpA%`PT>$(o{UF-38|7FY@9*-&E zI(%UM4Gm|y@%Q=zaKDm_9(f7yd^#G2!}lOz#sOSWh(VG#ukSke6rLqyfV%fkzcd`p zBIoqy=v`>ev}RGQA%C4S;=5#1E?2SQvJ`t(#R*{YOz6H1gg@O~!jFC9eP zvjaF79ERXF+ps(MJjOR1!;ilgFl(ZCV>I(P9(wJ=)KTZ~pdlJF%=7W}*lGAT1!Kkc z12FAy8nd3A5=^Z~4E~Xf{NQA`uZ|J3V+hha9Y;~(Ni5tdn5?tTqxJlw*lZSq&!v~~ zXJ!hzj7vv~;TH4@yNvbe7oc_JG9>eYusinwuC@OI`?t3sjZc94p9Gxs3BX|Y^H^k- zhw_vh+?}0)sS%HG@>?=W?-_7@hbP#1Ts+qrsxkROJJyyIpt}2c#L2{ zs}ImR*$D5BM-cK*_>2Yr+55#K7$0oF#lNqS_2e9SROMjzf-XEb><2=fc0e`c7?gY> zacE>TBDEI5W$!$sHwB_GeGsNv0p{+*F-ZS7_TL+e(8AqlG+hL}i=}TduqRy4T&7$G+vUZ`lL?oIS8>?k`kIW%zPi z9VG8HSRlCiv--)iyQelwk7;q*RSiaG>#(ukZzK$R33^o_zOMq?RR2Y6e;JW!H)YSL z4Q%){gH!bGqtM)ki5>32%G87VS{tzU09)Slw_^LH%?O=g#2bRgIwJNJx`mfu?R>$~ zH~5RhjgL?ddBK%xhE`W4mW!|H)?5c^P(9ZA%2Oe`9*s3W@vXPW*$?+%Ulkjg9;y{6 z1T}7zDl$W`SX0G$`}$Bt&RM5O*&I{$IvAk95#3nJE~|3ucrn9fd-9`v4=!3|Le;r?d?Io*Nkfdd zNSyV~n`6Z8r*+wVmLZGv}OH+UzaX+d@H`#lBj6B%?>C&F0*vW5{`}te85+i3bN5 z^5RK-ZtyeUU*W5@?P<+2>hawlXD+bOW@G1{m~%+ncUu!$|1_q1nh^_U>WSV1EiS(- zc(Z;QlwYpPmAABceuWlYuj{e;uRYgWnb9atiFtGM7~Cva07)WCwnLL=rk_Xu?rAVA zN`Mqe&9FvUtz9|@;?1;6s+wi0!1eZINVacITeA#>* z0bQ11#zN80#z55Ei$K4lJK=A|vpZ2McLYP1#bRCQQ3RZi zg;8uM<_`*m)r?DM=X()G9qwadw?vd|h!A|SXlU;`jm_&0V}A60?3{cY$}$lsw!esr z{;}A9N#wn*Uxca9ZM_U0LO-Ss?H4O>%-wJ(J$i=sBb{*Wu;|7+mW<=tg=k2LLg#7c zgrDa+oG0Ib{D%AR);8t7^h!L+eSzG8id1|183#3v;kaP7jd^$<<*Pd=oP?kMv{=6%TZeFdYtf@9H9hd+zM zq1NUIW}EK9$n%3?E?BVZZT8`W=2B?I_JdydOq53rM*6Jb*febxHp_R#xWJjXbiod- z)~jOpq<+ZXbOAdxjv}hNKfirw@fEaO$No9jv6gjgS;v+=@UOWC>I65c?1KW^*O;-D zU_)A*xzR& zoiBgHPKoHW5*+?hordx0=f^nsO^&8w{_3h~&KIrZx$dYlOB#$RomP*J8NU#+xLB|U zz9Xytt6=*)M4HGj?V2hyp^r_tCit(;mxU(m+=x3ljW`-6!=73qr{nt*?-QDl+D(pa zWtI3Ow;LsMRd{%+Cg;Yha?lP-`itDQ%v^PDuaV)dWvU!^S+J|J|6;B<@3&cJ%>DCp znb3n|O;_gCo6^19kdhjAmi6t*lWmN7?W7a0?$Tk!Ni#nF-itRzc3^AK1AA9lmvhe; zbJA}^Rtdc`ptIl(oYUvj+h#OLwr1NZBi3}&;d-eFH%90a9}Ic)kv2US=u_{a9vA12 zr{hISzLwQyepeG-_BZFf1WRh@>C&W^Aw9R4aj?)!|IX28RGAT#?DXh8PKE^otvDso zkTtC=x#F!Qhr28C&~50TzMCW&ZmxISw%V^bjVwaQxPt66_2dXVC}P;@L3&=p_8aTYu=$%wj!5^6h1*rk<(+f5|=p(f#DRSEmFHsR+P=P~)qD!6RR zL)D%*NR=;Q>#9rmd+8O1-qqqD-CTH~04gGTXE*;bHgwFzHM>I0kXPbxGjralAJ5vV zu{@|elm(%l{QSED``X>XwAUVVADM~3@A^F8Y0C?K9eC%Q=%iCBgO714hU)sT^izBK z{5*_rtNrlHXCa;n4#60Y!ze8A#++W>$oseed+oX+aO+~M-tC7iaz4;L&=nnWhT+lr z*?2sE8fqs0=~baH9Cez%ujegoVHLDocmFl7yDg7<%j4d%2mU#G;QInKY6$IZ%>a=L z5{&fv&{?Ig!bef}c3RUJ-_l4D|p98VXy@J@v)yXq_R zWw8cdCWxOmQ=Qj4=~8cpU}sgzu}EK?G1uieQ*;G{M7E=yp9Ov5dT{d@3#M){XLN{Q zW_epOTI8?lX9*7HZ#~Y{Fy?Jj6KcLUX1smaI%;`zi8^SIoW{MzZr8$ zXA6$CFl2<1DeDKwGJj16&T_Ei#tT-QwZol>?`=8M*OpF|=F|)nIkNuZ`==Oi-!y%O z2yOWCAQRS<8?o;uBTf>!?A-n4TzgS4V(*zUu!kwfc&gF2x*1%+uI_teoLOu2p zE-pBRpJfRmzY~rS+rv1Nd=Z|rFT#224fGrxftuf8h#Mn3&Jh_XJs5}BM$r#-=stAc zrC`(H7)Tc!LG$V3Xf-PWJ#7PV?AJkb>2M7LOK)Ln{yi*AI**2|beMJgfECB{AanN* z>UZQ~?0q}>?G_qwo)xujTXDr?3ueSQv%Y8?PwyQ__kCX=LT9+@sKQN&?yURx6#I_H zVA0KFNXI^b`L!rqyKx3ptHZEk*6bV~`ZYfG5l7{m>4g7`>h57((2!u6NW zk-0b#w?fjf(U4wuR*g#O7u?ZhU2}!Z{<&`E;#14NcWKuR(`eyOo$7r z_5*tFtI^ND6xBIzQPk}@evEEF_S&D=xu-S1weCp;7gcuqt0MfZLTihaXMV_cWC-n5 z;l>|mO_b;A(}GP}C)lmC<+sjuwLuPw<9!e2RsB=nm`=QFOKa^>IT!S79Yki! z%bZH;<~;mCpSKI$*rUE9WwZ?0v;_1WX3q4fLTCM8ORrug)L3fHHF|d3(`3!s(-zE4 zHK0j=Ja3IL;i55SobyGW!~6|tx7Uo0m#w+}of&Nf(|&T_VSLiME9=a3*!;$fW1br` zsosM7C8|8tXw4-GmOQRxP04BtHVk#+Syx-O@ie5xUg4XFGNRKi18Ph)W9wZOT-(o# z30=*J5f*$cba6Jg@@l99S5!H%M)b~Jo1x6f=S+BLg=PgVCPHIJHx-P!q1={gpgC_DRO6d z<|M`r$-#$fX^03 z7Rp1<;F4i3nv9-+;pvDQmVm9X_c2Dy&2et&(1^c?lP3O1l0JmRn>HMCV+=3pcctx_ zHe7S%Cq@Z>@t#E^=wvsZQQe18=kr6+oovq4dq`JrUD}>#!tl*EF=%Zyl6D@!rB|mh zGHU}IFMFUNega19l?W~O07kqI#;1WN(0}@Itd$8v`#F2jUSU6a>-ghW>0TV3v<97; z?qE@!;ITj>yk3Fl%GXW}WjxuD2St9Gd$b=z_J96e^!Ir9(<%MKrHeRWMhyEY@{i@G* zTPhIfT7Vu7I=nGoa8{Elv9-4*3)|P?{H;3l7TxtlL+TNd>&+zD?(}c~AGPkw*)v4n z)oU}x-jv~$xs@p2tH4j~e&f*odcm5n$FgBcTv#s8tJfM)sII`ihXix=lM;JW%kh}t zPUVQ+SWm&AJ!{m65Ib3V&eNvp0Byc#E6a#jeI_1J;Vp5lI(th;b}Z4SRiy?;dTMc? z$Sf)B(B|yf<~$+J{}oQ#vdhW#+)*KV40ec&)OkbRDA%X|D>D{sG~|gVpYigxrr*G$&%PJkhv-5yef3pwkujOtKOc4ZS~o;VkCo)>(epDfd<~K z*tN!kZ>6T3pJ2{kN39s>V#z-W#+;C1%sXQ4d?b9HdtckJSEL;k)r5X3n4S(j^r)__ z$FXAe?6lpC)7n{5Dmtu|TbuAfiC`MMcVg#k6WUEMXUSJa!>y3nzx++W=}b`MoQqmr~op-9<)r(g5K!u9CT?0_xC=D%0ti4 zUHGe;I$c1)mSkLXI)(tzd79>R5n66SvlQ7dPrK7NvM&`!!aw5Gv5#ne+J=@-3(?sA zBT5T}?l*lfcUq{hOox>7Y{0&8N_1IMiv;n0scpb8PMbGJcw0VTTAw=n5ICrYqH2s9 zUXHB4nfNSNu$yWQpod`?JeEGk`|I)8EgK7!IakoMj`bnDl%sqn@n8P3B=Ls%Tc;80~uq5KOpHEhOYPx z-;1RPnmUFX#X5h{9nU{G?K%3%K>BPQ%U^ZFxp?qkD$f3k^MVyTRXhiexW(d=$dt8S zdkwc{RYP8|6E+RDXYW0sm~>?>0(S*s^@6D=TD%kH{STowU^hCy3`O+%F!X5LhAk;u zVVx_*TD3vge77qsS7*S!tv1}&gkqXk8a$ru#D&F{J(pCpXtDn{Uwd1AwwBqjWe@!O z_P{Q0qkqg-JM}F|k)eKaQIUPenXr$@*K`i-&LxG@TISjR;5^%C`3XWf<=gd3GxZae zWNJ3av3aNxUkEPKno{v+TX{lgU$S;)9QH<>Yu_-Sp5V#K6v?wlaPyn)$Z<+LSt3-9 z{eNq6uVAfu_mt(Lz+cEnt$| Q%lK;TiA1RRhQzpZ=`t--(mV$ME-3ZC+Vjj-s1# z)Uj9KA_W=V6@2#dzvSt7ycAQ7w5WPsF#Da9IP!?#_qzzqO>|E+i?i@ULxjI}fbbNQ zYw}^14!7@B5v+e@!A(`?Ys-!_T-27C+hby=C=J0r9=*(2 zuIZNt9m7TjoJ#f4q%xp%uMmwFh|y1Et1&v>(Ae+OD8nX%gqQ;xW7LS3P; z9$VzdFW+0Sa;y=jOmg6?JGOM`W5q|77MyY2nwKvaaEOt$5_P6*=CP+SBbBec7JpC)uz`=;oW|7&H5UIZukNiP7(@*vH760VAB~ zyIPxR7i{S-7^_PMSo4^v6*tT^Wcf5pes6EU*KvmYA?`Qzp%G0ggszyKiJGi5+&*7| z?elNpZP7Crd{U;HHBKO_+4ChmdoZfF5^;a%ro2Qjf z`YuP`a3#wBsf6dpPuO%}IITaryENp!jZ$9Q@YD_g6_uWU3X$o$(zlR~BvvzHV z1oRnr30Y$!kTUKZx~&OEVVt$IO#d!EZ6Yp3Za|kNjOnX z%C?=PtXm@Gv`bPdR!Z6Rhm?OFNvRzzWplA3LyQFr;OR+>=$ML#&`a2!Sc75m+qiO# zgtv!EXy7j4iMA42b(C;GC-J%V5?*tYu&0=9+tdazBu~t+p+Vd?CW!059N@AQ2RMC| z4A1(=u%mJuKBez~uS9qZbU(u2@OS*tyMa-miAX32f&Q~f^zB^;*=5i0DWEkcd}zn4 zBb~(axeX6b5&QOOC&n6$qv?#X92Jxc=VjlpAk>-Xqt&?j`E`_ZkAsEmCrm#%j27;|n)`Q}l`Njizng5ViL-Tx1p_&Tvo5Yx#fhwY+7{`1j2jE$h~@ZvQ9tz;hKN z+P-t)h(&>%@L8D;b{O%*MPt5tq0j4%`s`n<$)R!+uL*Q@do|FMqq2I=v#rr;x4S@F+M4Z7%x9KL}DmkSPR!Cy;`X|&+eeKM@R@60+c z!Kc(y7CzDaI2AWli`q(1`crO_?F) zWy4|<>K}1r?0hG>p0Z=6u@mQo+4E(IE-zSGv2mpnwcZKMcc<`Vd@-lWdqdW1wi4{H zM+lghfp7h9z*qPQ)SS~0d#eC1US|r{*%ySYehy9fVstA_0?cm1VQ4;fO@0K&!b}Xm z@Bmwnq(CM!9zSP1fW1dDysR$4BmX2yKd0ioT^bgtJU;4#5-O zO9*j}!BU+#$VDB-x~A($h`WNH+wP+ILLOoY$}#t0Bm&9`G2vSPjrxnc)fNe#UKUxa zR}va2NIA2;lqcs(>3>4Zt$9-3sF2dLOv;#BQVxiair%!}_^C4+`!%yrEVBF8>~5i7 ziiEqR67E_gVJj~QKZ@J^Fi666;_rP2NEjnD+9Fp84~tBfm+%rSiVWh$u|Zt;<^XGX zfVRJ%@?(XGUdH%~EX*M02O zX~$^cO&QX;6(#Fi)BTe%|HO{vUHi$*xnac+g96M_iGs4R&6XLhWe@zv_CVOm zkpJx&^PYBJO0$GN@P``BSL##!ysgMQ+c7WFo!!eVxyeYJcMEUdJSR~@c-fd%vTQiAO79)c>edtGre&r)zZ7NvQnRZYY%30ZU6s0R_yMO=xoODB+=a@v10hu_EZeF=Dt>PjInj0Z<;YJgOpg@MvV_wmq2-D6CQv54t)m| zCReLa%T$RuHx(#5WE9mJh1Mz+y{8AY*r7y&b({2fy-s)pdj7?3F~_cRHzfs2=|{N& z&mMGO^FVXnTA{>0yEXa9q!u3ss_^aQj+E6^<))(we6zuTTM9JkY-PZArVh*$-K!b_ zs@yKui}~U#+G4mdkDN24i^xi;=l0`$7c)-yqr(YbNa=azG z#R$fgo*T^`II>}o1A8X6;#%?d3{Q9V_HyEnbFDZc%#qM`XVClQyfL+&e zIEoJ9y6`Hjd{cx)uYX}!-x6$&dV~?F`ur#|hVvHaP*dNVs=J49wzV={`aMNjhxhPl z{T5yh4*hHc;;}N=Ebi8&>MO{=J-rY~YXra;W zO}>Yr&8Kic`4GId5@2)fJl+ZRYlW6LXI~YGIcJj5aPc%+)#sqP>t%ee%fySLIY=1v z5)-|(SRu>}*5XWGYAs>+aS~?kkZ?+@gs)zT{FSVf8(pPL^bxb_9x2r>N|`HW*HurX z9F!^Ly+|oL?iO=xfH?C%6OR10d$GRuFvi$O`7};Kw*wN&`U>ys6bbcaN?1Efe271v zi+^tx8m+3(XE!KI=qt3?2b+UfE)zt#VFwsA!<(0!qOsWGCSp}?W9p$iIJ+dmq*#sv zn>+DOs0^QsuEv7;L};(PflaF(35=gGfPR}_ zVVGd5WeN>Xg0kZMGI&oMt>dry66IH{z^)GwK!0 z*(uD1gF6l2Iz21S6xoD-#_#f9@itEW9?p9W?Rf5jJKOg$VdKts7#MlzAM15>vFvr} zGktz@5!rvic2ZhoN7L_?Jfr5xP zGzG&-cmUeDw&r|!a#X{2e6-T1zL<@-rKt=5o#6F5DR6CfUGDm&Og(Q^R=T(|s=f^i z@AaYHT2+<{UA3%Am+_*5V5W>N2c>DVVSyo4duY>{T5OxG%X>G~dDupuW44MuS3_+s z`fSYpq7&;wu_}%2%~@k?LX|dVT-#aXvHCjlLzOA_O!VY;Z7aUb*Am<&F^k^Q<>uX{ z%wFlu(`Q<9cOcD5^n)Ew!x*`2a}ZXBxM!QbL{3%>78g^IR}+S8rmo^@tvnj710 z>rCg)PCRMn%-OEaTzAHfzjm|}nYH%(l-`*>hV9rZp*4NAorP!Dl_ry1s9*2I1q1EK zE{>vy!h-Fti)`8nGpcDA(@f;sG^>S{oZFgm7G_-5!-j_Y)w$)F1{-oMI8gYUy#=pe zZcovxFjMq&Z8PEcF**zp{a)R|^aVS?jYWA$cp|#DK99SKfV^A;BN zsK0oHP5H$zJ$@4*PEYVQ@-?D&7Nh$;55Btd96wh!;bL(Hsyn1Z|7-@*vvP3%_#O1> zcoVhDlTf!R38D8+Vo9GXh<8Xq;LI32?Vg35Pg9Y;B@O+5U&g*6nYbNv0lqT1IIAJW zV*6w8NLaBA2~P?=chy0my{;2ltk8Emi23;V zE(urcl+a(?Pyaa*b`!en2Eo~~dKJX(OM=+{$pJQc?&IIV*(i~D0)PDi+-?4Z=J_RX z>3AI)x;3b?HKpN*bUeF}fcZDSb7w2g*iwa}5KqqCb{%@R%JFOTXkKm@ zPPcEvnccA+uMLlc{=`Nk1Vv!eLwOEf7=_mv?{UmpaCZaDcw%uV{$xbr(XcTXyHbMM ztt&C}!U}w}KMB+2dvGmn1CCx8jvHxP;9BI5dEJB2Tl0YU+2*3#!`Hp`zgU6v02^F5 zH5(}}-NbzigX-g6s4!23{M{Ch*nh=qP0R1pGE@G)wg-}YN3f5h@aAo4O{<+lMq|ML$acpg_s{6TJ!1*M;;!TjMRi${J*w-{~15;$|#SH_LI3cLOGd z)Z=idHV>CQDI}M2EDx0xazwmtv6WFG+Uc%GX;}g z&W>Ux^^)hfPijnjq07*1THM!H==4E4eDc$Xp$^tOw9AnGD%M=< zV9Q>j|DY{@0=1#y1g%d-uk#KZPced@;ot@fwFiF#y zONBN(A;66)Q`&Osbq{uF=f>vQ_B<17%l#KR^J%RuUrx5>4|xOXJ~ZK#wmM=KG3IkE zW1c^y#rO7#%$L{X_()?Kj?tr3a2gb@>axddS9)NMqidhr;XpNL^UZXrrP96zO35mtW{26qKZ z%OnX)?_}UezZC4bup6sJ8gjYYJJc)_d8*7H)|UoxggDc`Ej+3Vgf@C$nV4aNC3H@c zu>P&kN)@FX;Vk?FUSduab8PiCDLaQsx#XOb78j)aD3$W+8Yx{TOL^?-RA#=&fywG< z-25To>lYGwrwZLQLPCW|2@hQmeAr7O*OegQ%PSK0J}V)_eT@_It)|dtPq!270>Rp{ z(0_|zW1r&qh&y<&APc)!eZ`$Vxwvw*6lOyVxM`d_@5!{|t;YLEIgpLFub<=g(w=O} z?n}AQo>UuY!EfW*vuD60E?7B^*9K1G{^qWH?d8hj>yD$)GzqCDZ*cfbAAYFys0ejs4*ckQq4&l{ORL`KlF8@0o}agC1y;J*n5xkBz;CH;=%VPL?gN)h#;gznio3 zpK;x6xsQLHc|7Hfg6J3;%ToipveAAo2Ru{y#~j;A^dkPx_Cc2$q=WDR9vf-Qo|kmE zYMl*_39nzo4IK^~>cT@ayRiM19xR>Ho-;D~v0mGiYXq-8e3vW3s#^;VyfM2SF=o4M z4ot3bV3z1WGFvOdvh8+kIB@!ZIYa-?ey0D*pW7;{L(5m%)Hq_x{PXTiQZ?X}b8>vW zN{1ym53ippv;4=J&ENYQ3%eJ<@?jDleau2+Z7!@M>R{XVCVr*q^HSV%l=(hDecERX zUls_1*VoY@<1CiH3xLD2P&|IR4GnGwpgA=Z?ea>n_+}Wk3@$-sQYH$llX0{@85U-t z7!fuTJ9Y{V=iLVgp7aEx4&Oq$=!$ClT5vC)-Nn=%87Rq0K>ueM$jiPAFOP>9yCw{_ zC(c64=N!(M#GoMe6XsN=qw;wY9!oN?qyHl`jqb}AKi=WPtPAKoHWl9b8Ti>*uuPpq zZ++njeD%qN?yeN%kN*ozw|t!Yos8+T`!lHaBd+OZ;zZzZIz+w3io$Yu8k#Ynv=FNb z-@r4c6y+7A7`Lqg+IA%fe)0|1UX)|x8Cm8;y~i1icNn4BfQ^Tn@u00Px78{$=e{h* ztyiVZN+W7@ti|uEDr~dOkgJ5Yyv?i$Z4S%uwK#&GEgY>t{NAX)13{1)0HiJ%YOrm>7T8`^A(C*sBh1OqPr^srd(I6NvkGP zYHJ&F(I1g76JFR*55YpvapY$i3nt8WV5@GnR9Cg*j_qB!@pBP2MQU)a;UoArIB{gv zPFjDM&9qQ;YU<`-wQ-%$DJxML`xu%o#rTo)8mZG>p?G^4#<%@|pflg`yX_aeTvCoC z#n1Sd`57z6d_|GkC#Y}zgA;E=H}JhG+!T!67pHWDm-jQQCe`8Z@_J00^$hNbru38= zQm<_-Jf|3Q&I?8QoqdPhnN^UFeuGv+A0YDYeVjRV2U@wg@YxxU*?o@U(});YXiH!= zH5QpmGN9y~j*UgvQTg}|^uNT2-q?d!(L=DZ9^Js}dHZor%zR7iv+&&bHe8mLK=HyM zbTZYU!LMc%tqGzeN^q=h1kq8iiF4ZlZ3Y4g>OMCAh7KL6{pb7{gW8V{yPtbRRbbk!J(M z=N2KeMi)~*u10L;?_S4_tKwn3DNfb4fm8D?C?6Vvl!$%sQc~mO6Wd!}w_9e~mYKF? z5B#U^f%~r~u(Vi#n*=w0Y`-v0US!1C?UeYwuM2C%dFIL6mh`EgMPrM0ytB}RXWajdOFxw!9Yp|DFeKznd`2O`Xy+!t+=B z4t}vFg2O8OnxaGYVyP;%9i`XpoC5x_ZYm+FeD&xKl;1YPev}1uEDYFVvpUBNaO3d5 zqEAYkC7U*9VsHLCSbOisQmg0Co}G*$xjgLomIKp)!Pwm`8p{iVk^VjhW6W*8;8obVB2k9x9AdMF0J$wO4{1YG!$0BeUAIGp4`wF8M5 zcRL%ll|mn^h!+`nRR)fHj)!4_gFE04H1Y-0Y0hJuzw!cWpMJ!$w{k4rQ-zS7zwlt2 zEL#sNL)!NrINkFnl-K>n{NE~+ivEbO4*H@OLWLie2oCI!x3F691zS%1K|ysr-Y@-v zx6$vgBH#n2Y**%^hwreo%MV-gpe9OYUH_+I6USzeM`4~7_t{k`M~50lywy8!O!q|CVEQk-=SH%3?E)r;d1xiFq!cg zIZB17toVj++Vbq1@)3K2exWK_nbLND5U^F16+d3XugfRwPs_oIp;Z{I@(eX{3JkrW z%OYD%zO>uG;s|vbHGM?*97QUY{lX5%+c+ebinDSRaPsyMhjlH)F z%W7Y{zUgj|?(P;vg)!{z?!wMxcVOp57}&aOmo5{#yRbpTq(zXH67W6uzQ63_ecmt6 za~$t|?EBe%QWP(*YtG4>G%yf$E#MJnkgsem{tcz;lRyl#b}G_c0{#5?=XS zfkVPYTx@?8-P`TM2(!c3c=jQ7Y<>W{5hO87%tC`GTgJapUODq?Qj=i}s zmSbfGn;@Rp+3~TQCiB@7Q)5}*<1~Jm7*W$zl|#K^dB!@H4fJ9;RlK#PCb66#8ugcW zYzH=y*I+Dni7tLDGhEf_@;c&6s1ZMRNYjg$G4~1LGG3vl$}2dUUxA{q7ClT_@rL-I zKlKS?$m$5bb`9klt!A8~+nf)2h4E0=2nM_#!lhnAB>UHkUSs<)py_B%ke)SH=~kO{ zs5KV_B_i?6TVbN*VMp^0iFFWA5A+l0uBYW^bn3Qfr@~ytuGrbdXV@9Ah zA_|kw4ace3V=>@yGd$bf3pV{H#jHBSp329^U{%EYeIiNA4U#pORWe~`iYk>d%hJTKI*Y@x^R%n)o3IA_3A^+SyV1w zy=KdJ{hL2$zqaBhD_2g|^`lKMKU&W8V?>4v8~S)N{IUmk3G4G#Z4lG12JzG*M;>hW4h-n@zm{nY;F8s?1wYeZzC7>(WZAJOCGLOA=iG#k574M z{91bHlaIq>;x3%6uf@ffB$VpBmu??pz7+m^;q5$lOK<101+VaF(+hMRkPXd{OR(7d z1pQ17LND_bu1~*)*f$^0eyt;4M7H7M+k^RRg9r7}USiOx=h&Q=hZ^e!lE{9G*11pc zx6^Z|6x=~_=N)J<=r1(9pNNJkSJ7j_5&RJL=DcMxKb4NrJP+v{t^W-3@N*bBPd@MU zGe|1F1-%8IFzWOhRBiX*@?>qk3`<9G7k_FTPC<3ebNngaQ=OFxedohyD_u;2Fe>4+q{Os5? zDi2MjmSX9^Z_w9IL8RteXx3(8RP7g3JS{`7_)?tS@fab^o?vvdEabO)fQZHq5u$$< zdjqujwQG{}e%?Y-bT*>WE`ai zLzN>jd~!dA$1-C$%gJC>)<$1?n_un#I@xvE}8 z@{(^5yZjy^1`6}Q_XU2wD1kwB02i+d;_;OMEL_x@L(h>-F9kEyt1<5cwdIcdejI5w zfYtklP{cU@luoWwg9G_%O$DCbPsgAhE4i~(8t&byfLHgwar&4hH~h%QT)$hg->*mK zo836`WM9tQ?#@|`t9eel6JOX1$KtFy+w@ru>&qQ5{J|9XJ?R6*Z3k@Ix(eMRTVbc~ zP&oPY#2zUwDpoc<&nDUHXAr#sQDrSN9Urr~^mKg{DIF=elhtTU1$ z8{OB&Z1G$7?!1&;OjrKCfB(z<``_{T|NA}t)}Q~=uYqTg){LHJ%*!W@IHJy;wx^u9 z%P)#q($%CN9mv5xwhY~G$^j#4u{EFtHw?3)TcQ=0Yq>CZi4mP%bYza(T;=&X zj2l))SK(thXNbDyz}#NGd|Ko`Qi@I1r}62^VzPw`Dal zmss%d`>&GqzKZXs?xIOd88(D{#@1H1p)v3SEEndXZS^O(?R*2*PE~kt=^+O0O2(Fg z%TUru#mCwcD4AS}xyE@29#jhdwuxBy;yX6EwdK>Sn`k@XEGB5?LE~f{`UIRt$&5gr zb=ZUEGYinJ)f;S_REcxLv+>=(24-g3e0H%p{q>##P4D95l{4^-EyUW^!c4kj%TFa^!uD zLPQ;|!s#QKa8u96t)MdexGI{ohucdS1$dGC@Jg9_e_q>^s{uhe;-r;&bRel|=#od?h zVR*M^=weoYRh1!3tk7WN$%D8m)14Om=JCtK8u+0e0gl>KNh-pmrWcUC_dA9y%0ZHu z3ST|fqR$jvu5IxPf0Y&EWyc!W6z8Jhb7l7Yrpw#?blJtP1ZrtIJQk_T#2ae7bwGs+ zCaKffNskt4+H9~;i8rN}t!$w=N&4d2w200nffH#Qu9q z?0G2}H;t1~vg85U&o9T%_%m2~I1T1eAF-(P36}IvMf}2S+!XD4r~NJX-pt0hCT}qN zs_X;YevKEho*4V+GTM%QfaeJN{4I-NO1F53tR+5IzZS z&?H)iE7TgY=4Bwut~B9;?hWZ1(40x{z#%<@IOy*|G;BG94W^Btn@k0qR*KMILNsOx?hJ=rVd;^UOM5trCT{Cg6-A&(0s55pj(K>RsO4a#$TQN&Hi+qIb4D^~oz zfB(z<`+vGt`2GHW>)n5+Yv4y&cjoF?G2yZ{6{Ga1J41Nz*M%preh60_)Zm3}F6_L@ zl@EjiAJfd8)yu~);^HR^-D6G9z4p{y<|5skZmb<`%w<1Zx%@^$I*oJWikM((pY!6h zoi6-v(w*N!eA#}4D}Col#=zf=YNd7zGV=weh0V~v*xnfD4R7RGG(RG!Hmi5Twg z!}xADkUqhP=Or_ACGG^8TyDpR7Oh#-^(A)KCd0ww5gIkQgcehhF}=Stvqv4n$@L%L zxk~u^Yf8|1XeLG&e1ye?6s%EP!JVRa==bv-%KJTnS#CZypZbbpQAC)!RUrvPWX7Q(}Rq0f0g`e)8zWxNLqhN!W`QH5Uzn{nrs0)#CK z;nCb?%#qxi&bv}X94#| zR-1bJjYOaRz|8h)jJ@^^jm2kR^g}$Gg~E~8Dt`ISx(s!g&GbqQu3udMr#|(_TUdZG z>M3Y-`W=FAT!6W(g-p%f;Y`F!40KI_&j;zKHP1kj(j&YM|A^q0&(Y+{7i|5WhglC_ zz_9&yeAxIJdM#fdtLJlJ4M?Uc`W0Htd58c-OE zO=hX$12{BLX0o$l`DT4A%|*u!l#G|VXxW2%M)sdXozZnf{q@!yn*gv8G9^>Al?rjbp9g5&- z11E0syoG0M%#X!7Z2ETywaX=kaIO!xlnr5XKL;*Y>A<^vtvTz`EGma?!TeKG=r}^M zvpc^aZ}vp^XM18zbpTGE9*-HZbK#S2kDM_racZ~?h6dI}_PM8z@am+<2M0rOro9Q0 z#wa1fHwdpTtH8y#wP@nuaC#Pvh0VudTi?P+ldE1>{P0ft=f7z+eBxBY)mfg`-zJgKJ?ma@(iDOEm+Q&(*jmJ{`&f>yU4)&daRCnk%1B zk$VeS;zgYk@D_)Z)6p>TF>d=kL&I|=Fb$La%XmA!t2>A0f3AT?+7_>L~QV4 z*^X2UFRw&&ne<4N*wB=znBxBe-4`@q+_3uy{3Yys@uz5qisI}@G@}&@`pO;~B#Cz-%Pxegt^8rOAh@EM~)*VdQX<`*dj#Z;uxF%nnE5)kg zA28^w60d~hApC0~{+v^VQNE@45_ zIX99mTvgcMo)zD=?7@nSwUZpkIb+!RVytCv_e_?X<@@2$~&*+q= z%%OW!c=wz1sZRb0+i*4Z*r~=o2C94+ti=Y!n)DuAgs`eC$>J5l)lQej#fEejPwY4S z8myNdwT$nEtevF6jvGYF?lEG;Lv0o-lk7h+dYHb#p#dW~}>BG;s1@qqVu zrI~{~?G$v``3dv$^AT=TfX(9Jh|ozwcHT=I7Y~8`;dl7y{257|bMamGJ!byM#-oZa z=qkMcd3)Ys_N+{dFTI8CORpmH<#Y5NUXG%+3JxEqVB47r_E@7}o81b2KPOy*#|rk& zP%xuf!Ima5jPZ_PSS#@l$Sii>OyOP$<8_R93a;FV;ek&vJY5yT@5ZrQE1uS}HnFrD z70a#S3m7V1)_&qC_>w5UUWujJEzzm>rRVF3@V8Q>AE6+YMZZMbn#Xaj%v^(7$1!<$ z95tikSd}(|^G#IQZ~jh<$6gdQi9ueoPq^w_gK>#3VO)6!qb`PU%{A~@=m_qUtm`YI zHcX7~$~7B?^3EdY%$D?F^-uC%hG4t;pVJ4;m`RoflN^UiY9-i<7P+{nyzh% zHTOEB^_q#;Imrt*fi*71cR|lzQ=pE@$fkFF@%(--$wh9#ySZ8z(%loDubN}J zQ8zT7-vcA>4aJk=QRseb5)$uBhVQqT_{--9s_TDi*#87g@%uCW*3SQ3*T8zcnVc}r ziKpBRsHbeh9&ZilwOu;3k}TNpgbRbRtl05wbGA;=q5VNS4wVkgCjCu&rDLzZY!j(udIynTKH$rB>FR8zOO4$xG4DktibvQm#n_2<@-Y08d=oQ=UxvnD z$>GeojE_P!{;E1}dc9lg$e#3*62J{Av3^pQu1+an!W4Qy#M(Sao|L?7-qN~nx0gDI5hFFx6BNA;)_rNLMgLw?BmDxLIMxVf(gS6>Lb zU_vE~f>rtHQYoVP)u2hicU+S>s-5Jks)y?FsewM%wX4C(UYcAx&xnJ>V=y{#8F@*A z-^`RbEOI29i#F{BS>)ApWzj-lsyj5k(0_h~nY;DB(>Ce!%;xh&v{egSsKQY7G zjC;Q*vvZGPl*XEIN4O1j!W(e1hc@jtYxC*}RVGc<5x%b-)nXj@=&mj;+Xirvuqlp2 z7;(7tR(xvhz^&y5G<_`n7JW_FOw);#9d&qLGMl#^>k3=enwdu(xU=X7^uH8fWLhO= z$$F#tIbAM1U4he0OgQYcGClKkY3o!7qlkBCQ&9+;f#tAWn1NkiKVjl{$-}KJh4H~0 z3`@_!ftwlVbL%6%e=0>c@ou#Lk_L~+EVPY&hO9TaxapPwyNFL{U{L^rW9n>BR))mM zPqF7ox_Fq6%g{SpQ7_8l*rQ3C@f*VgO81_)X@(&80DpByARt$SO z#Bf_!44-w8Y}Y8^6D)|~k4-UrDV+r;AI0!}mV7PV*pK3kwUk`enVzu>nHbAnD`I(6 zX0bQU3s>M#EDL1b>i0309y#)LZLDwt;y7Kj>#MeLR2dV;D=Xvp`A8gFwQb0#A7vQq z9S4umS$Na-F?Rg527`NKV*1xoyk1oZ!*MS$)IOXY77pdpV?!8`CUe(L!|2juFv}ke zV{xYl=G2Arb{V*5ys_-9IP+XdBk8Oi&gIe_vaFSK9$s!jgR|k>v?Y+Oqe}5+niq8+ zM6l=g0BR=;=g-%n>>Dfo{a7w>qct34M>R-t3?dpuv8hlr&sF->g^W+|LV zIwPN2aIl9Bccr^9EjfV6JA-*N!jXT(OXjMtr+5_uIJCx%HZewgU+PP%h+qZ}bm7Z~ zGS`a|zko1(O6NH6o^+_6JmJk(Uwk>_fIUx~_Tu_JuB=V>;@XOMmj2O@=9i~XEx8H5 zboJ(EI~UIJ@u1tN0NSl^;yZU=x~&f4mhE;Nu4+$}9_};?73OA@wPePWxXP&=W(y97vVP1~g(_? z|5b>sCLiH&p%QZ^{Y29p>97s{j8$f8JaZ-)N#`nX_w;wf7#Q$oCtVJbIgx+2G89eF z=gFZBI4bQ29&L~rS;||Ox2?x6cV)Ie{uNzAt6^Ynz@OLMxcrSCtMi4ETW!io>ts*j zT`f-S(&R+#3@o_x6;H0HvTsHx8}?G;;Wl!dyndk|zW`sd4LIP1I$doHSvX0LjgJ?j z;aSNq&C=wO1>$`$F2}QR#vDIMiA7^A`F2}-x(p9wvUD|!ZfU?N&Bgb8D-o~H$P9i= zHQwGbr44g%KSh`AWIdxbRgL$q*)YUO`kl2*_)+pake<9#{nfeaiMj6nKOh=Q{ z4;av@1Y5;}(M|s|+@o_)kd}?EU-NL}^;gU*Ex~Qc8)kIA1h?DixH=;Thc{;9SXl{% z6%@i{kTUCEOHY_pF@n}^!LuWYNEVL&NAVDx5~f!DGzG2ZD>!nKf(a)S)V#0Y>UT1a zEl}{5QVbO`i*@#tOjo4z6Z90$);M8fEtSr$ZNiK_8^ep@jXhEzT2@=wu%6;8XeZgM zk-{TbESh#_EEime<))-qe$5cZK$-Yn#WS$fA&$43#xcELocN^TcxrbXZ#{@(M136B z9WKYp?uqDrJ^@`zcOcGh4`RO@$KtG8n6u_P-af0wHS1ki@+_Dymk(jL`y)8 z51{|W-fWpZo$I=`;MB@0sJF1?{PLC@f7yd_1s!+fV&Psea%D4S z$3}9FV?S<+?@Rt@$;PfD7-wq4G;^87k1d7Tbzf@be8I*+p6sCS&9N!_vExxZs#9Z- zGJtsC+6HIWEQ8wf>2SXh1Uxdt!&j{_)}|{=NqO*K6S2IbZhb zV#QHLk^$1QBy1Zn^@Kj>X@fI`oqpnCC=dDym%Y@A`}G4j>xmb4o)4g6XAs}d45ZIw zD~`;!r`a}ZsxEfo^j#jpDDdZB!keF^;>|CTvE7~F#Q`b4+-vX1Rj1_ZZ+5il*@gyF zJ^1l*E9P8xrsjAzK57@tR$U!gOX;8Q;m0q7oOx}%FSAcd57A3o-nwDV6$Brp;SgwxpHjOL z*$3ZZ%;qJ~H8SD2*(w}%y%IO#46a{to&L{tL8B4?<;}g@ z>rrvw8P?mTqW_yuIDb`o+nuwawkTDy{m-E^=qm~{(oiRit`d7)+8AAjqv2!pyi^H; zv%*_VtbmcW^w{Qphf3o*=)GHp^+}#w^2C`3+o&>TcNIR0FElz^ynCs^RO;eG!(umH z8?VQe`+wm~v6lEto%!>n7B9{Dh1+I1xavN8a8jXU!BK?C7-3!u%fvd#n!gRR1x(F-Jlwigv9d59Yp0GE%{M=uk@k!>Q zeYF^~LWkSCren{id>pIRX8W~DOpegti1y`}Iogn&ww9rxu?A01D@XMx8=`X{TSU)d zc&Sjp6JZSjhy**ixsDhw4wX;KUlWN ziD`Dy57ym_{X(2MS$yfyI~{0~BJ0L+W*nVk#A!LER35L%1F5=PVQx(2k!lsed^-36C^)LM?oRL1r*iI1AGIl^auoPs%DBe;^+Y>)+vV zd?os7q+!llW$uuks;k$NQMI!aXI_f8U~eX_N2TM+gNInw<}37jq$79lCmfgAx#K)# zzUcZ5tG|`Obw&|ll`0V~Y_wgQZo=fYbRxU04%<|+ zS_5KvYo0I&wo5)sH0-CBv22RGrwKNULp_fdW*1w&^@-^GRw?3z28F{8%u z!obmNIk+pEHEd3=7G6B_cO{1Pufq4c!uD{qrjhq`>{)2TUyGXXW=wx>^z`7|W1j49 zYQgjopHaT;6WWED@l;iBR!l(2$ia&P<6M}s%ZL5WHD*|5IJb_mqsfv6RP<>=tv|dt zJk^id(sAUjVoHrU7F7GYJ2R^q@z}NyuDW1H`wS;?jPSH9{Ft=Fo^|V`lj)@JWy7u6 zTNs{clA~!kwFXIpOn%Q|Wlu_{l?s>dHfN6leXdU^g>ySi9uBC2itNb`3^byOvIZ;G zXmi|WRc_u=0s9GGWq#Tfaf{0l_3bQLuGV1Di9GZ;dMmQ5YW+WtY16GAk@43jto(Ep z7xz}9uBHfCD=oQYLmG^wYiWU39V~@0`nW|6d@mWZ#j+Iib}mOnW)YdF;9c@42dQHS{=dp$45g7vV*< zJ^Ok^FhAIsn_ku7y6pF7<(6a7VO?tNwGy41i%A`YYxP$d5-MkN>J2CE-lfDDqf{6t zuU{)2Z2h|%@XR!Q4ha|K-Tnd#zcMY8<6z#`dQS zY1-D5SIwjgT6EIZ=el$YD1gOyW!~7U#_0*_+}-adcBj`O!MX_TY<^+s<}xgJSB}R) zY8)zShvy^H(b_l_?Sz*%Lp&S>MJjar;~Op>6R*LYYK+@igVUMHe7dFv1rGV}Kll+f zMn%xu^;xoM$=Dv0f|~cqXy;glTA@z%0<~Q1wV_Qpv@8m(>5#E z>$rkXgs&CxS|R%i(%V(4V7km=M;XQNwqp#}2E@>$g?L~^$3B=G!}8TJJbW;QruSkP zmmNb*nZ-8ommb<~vCN$=o`Nm0>>^&+nQ5`SRu#+9mT?>%9!FjA8|aAd)&6Ll>@&qN zSoG`m@OVzOz5}nr_fc=QNqT2Dv70ao3ma{wp7j}Qy8H%q4a#t>eF~2M{S+PAL{QtQ z2|vCMX4-cr4$tVoWUH2Z9vVvbvCY{f>OIy-hOh06d~8oK=Q&qHwmguFK=Eevztn=m zzXoyh3|Af#hQ{nu3%GS;3S8sNnQ^>7OY%lCYhx%4!@KgWt`%pr>BKs<2#ok>WSx;>@(czwd)`ADnf`gcGhfa;kJS^{@E`hcqQ_ z+3mmt+Ox*MoX1)lvun6M+s)VHgZ-uW&{3N%)5S+Q&Kff({tcy}S{QLcexG~^>ry1Q zRIq`m&%R&R=#+7N=NZZB^ipR(gI_QV{fs`fGB0zkfW@Q|+=(y4P08Xcx6!1jj|zXz zD}!1~(Npolw767*{TG_i=0*h$tgOeLmf9?F*XQJ!mvLiSEqqtxVUtrG%*G1`DMFp5 zTWjE1mjcx{{dhW07(zD#x!{K%r$(e>?XF+2cv6Ew*%n+n#e?UYDA9C}F>S;{s1vQk z_#u^WdT7I&0ijF~Z|o7b!DHxKn8I2HkthyjATN zKL1$;b?H*ARI9;Ovmz8<_=WLf^;k4Qhwnxx^T;LXlp3Z)|3PMK5cmyuA8AtMbr>_7 z|6_k&n6JH5SvggS%7-+#A*lib)r+w(C=;3%nfQBNx#VKhX!5{S_T^1kQ(J|{M!LKh zs?I--sPfn($@c3+PoR~0dG!}qNCYQ>9!Eg!WvnFwNhjKdS&hpQfAYjJj}66 zN4Ts%{(P2;mRoW#r*|6G?JmbYw@0wuTY(wt^YKSiDzt>l`yuWSESEn=p7IA_jlDo4 z-B-9ZTESHD69lhRFepL6c+s#$Hx)E`rQpL)qGP`)XkR5WS@jr}h^L^7cw_DTCEF#w zf+F!1EEXMWw?Xvl$r#~c35QE&vCcNqIon(quVckmAY85Imt*OhCHyUoI1cfNW6xo6 z+&Ux`I3T`(XOido701w!cut!f&yZ7LTxq?D2WD;JkjA;#-fA;FqL*|2hWl`GD#E_r z)u<50-D>gs4wH3#%%q0YJ=c&kADi%cw=nLq3*utKAaxU-M^TnuJgPw|>a$8mV!EzA_o_Zx2uUX(TPk*UjZxAC9&QIUkGV`iAP@Kof- zF#(vrF9I3)v!NNSfnr%Z?9h9Gw9!Twb0iRl4~@iWjnPoEUWu0D*5ljghH(8l3F&KM zaa`l~9QL<1`uEmGzt7MAjPo-)DvUYW4pd*{#;Zm?{CHmSsj5NDRtD!+HlkOGAC(Hm zb40(Uv>oirh9iRLmei0div8&q-H0a!hEwfDIFB}INagf4oL|?73oZw-Fgk=292;?3 zh7XU{He;L1-aKB~gh~kG*$>{la>kb{dNpMGhM}xXv0?XN-8f-<1Fki*qsu#CZY6hO z-$pLntLDn4-MsnmmGlIyHRRl(-t3V618a=5*lzh7I4r)313h*B<8^G$C1vnFsl_oD ztl8JjggY<(Ku^iM_dY7woXgUEP-Vu@2_{_iS+e$ScVT_qfSZO$9=uGlSnlz7{V@eM zm+ZmTh|dT!SPxeJ!ZGt;x{mn+|M*$HbYF*CWiQ=P`oKKfsj$5~JF)%~TK=6UK1Ut4 zomPy%#b`7#h({Nzuw+Lq z4j;4Nq<+dgKf{V;%EAa6a2I{dYv4Rmi>eJOpiuvXHP-L2zq2w2y{m$rq7d%$)R}p& z4kh`ruWyitechDlu&o%2&TG(esTwtB3ip5TFF5_BN6uBIP9GnxylKxtw+*@fwD_^d z>oOrulfN$3q2m~J7F4M6{8nKdq)F$O1a0!B)#2cs3N+BvV$?ECP9LDe7W;m}$v}xs zrIXct&o4CY62?*1#$00u1@w0a?Hk#8;_*lRh9ZT>#;q~g!!(vv^uB7 z=5qXth1uN3#)7TWg1P#Q8gavx%3o9&9_2>w#WKI{;=-_*@>*dgR4<8ShwtIMbJU*C zZ#XjfLn~HJ=q8mJs8sO-S=AtCIg>&Xo*8^~JJhQW0P z9NkI0xz74r)6S9;YfLzI&T1x_sxrEVAs6x_%qkr@^qKe)9mjbx3y7W!$|2o82c3?l~rXwM>q|B_0Vcif*vi)vEX(M&UaDf_)%u`?yN;KU&);b zGq-L`1x%af;l1!6misAjcOPLE?0gHG$k&+k>Ls3xe~!r~_ao@h61eU-j_sQt;+}MT z>3sYGGwV2}gUgABRu!XRd)Gr|k%1H-{!n z6g|6iuP>+0G^M*wD>j)EN%tD@Vr|f%lJ*S@_@F{mn)5=_5FT^)XfIkB;Gb92UvpsNlP5@5zAA{rf`XF`O1ei}YkWSoa^wXMvUA;nJXc-B^ zQ^!#rKb>E0{?@U-b<+O~o%H)W{d=CL@)4eNZWqANG1lB_=fs3(K73Hpn%`$faBK@7 z`dc?*k7W({<4z;0+Zl4gO*gtphV}fOMzkz#%ou|pZr5o@rA^Y^Im}n~Tb+4G&7FNm zG-dEB&~kQDZcqwl>>3xA#QAdk#2^lT?Z=UU4zv(IK~y_Gu1OHh`;}Z!VaMg6;wu>B zM6JbZdAy16l;%2d&v9oaggG*=+=;a}9eJcuy2CHoazf`kIK17D&4F3SQ5!=OXSM%m z9lNKACO@tc&H7P`JEz)mS_c!(T3(MujWsxKj2Uyzm~)i51wVHZ#<{W`cT6inWw>O> zhrYv>O)D_Wak_L(u0p)bLrcofVSlkHFDwhBOV+i>&IUvNd2GkewW5EO5qL(W2sW43RvGFMl&h-&q!>sT4KERw7uhgivT9;}y#$4rDi$7(pWZBPI zJOJ7}^G#-xH#9iDjT?hsYcNpQS(}_RsMSn~cDB_p4yi$AKsr<=*C0n`-OIKKZ(xyp z#>@KD990aX_1e@-Gok0Im#7<{%x+31G?Vqk1yx6ms#?N5?J8hrR0-o7)kqZYK-N4} z`fYXP0`Y(tN7(Vfc~e#lQ(=&@BMrU@tE00e?HkFt*d#t)g)uE97a1?QBetP24c7Ey zmzNtDuzerj|J+XZbAgQMwVaD{M^R~ISB}WEjciLI;+xpTgBTwJy0)uV3g*u<7y?c#YBhSXYZ#*sU!u`8+um;5pi^i+@5^WAu2 zq3Gjl#ynWB&JPilI3&5Q`-!UmJl5@d{lcfug-GdIkD8ClyuC?-9+C-D^i~tLz7qY+ zRrt9>g)p^>P*_!htDP$GcKR12ba;r5h2>aMSAvq9JZP#u!|1`EFsAJ>=nPGP_3Zmd zX}1Td+QJ1sU4_A$b-2kn2b0A|&|Wm`gXIc77C-FaBcffeDkOiZps)A|rV5|nN0!WD zzbn|JT*2cN3QqW`V3g?DKN<*QOS}c`JIC9#PIUH7`7~zxvWzxU3)_gj4Qd4b`{pAg;QBV4~&FmHYsb@zpG=WOA{p7Cdw zpTW|D7|dm!;=Ow8$nXh~yga-S2hR@T!N<*6bHs_qwv?dRrf`-Sea2?#k=`|=6elN7 zV#M`f9P2Qg2Rn}Dh$>SyU=$P1_hn?~5lm|`mAQ9%uw$|<&nQ{2(@tCN3~#}09zncT z=gNESjQM_x7W*j)i&^ha9Lntuhr^M$p;R5Ya@?LswH?lIo1}udx4m#vZ9XnG-h$}T zD73!62zTdfgsVymj2O@i-pZ!1E;xeXh~FCaw>J9s)JDJ0%fI(|shH7P=9@zpmK4pz zsP06r_@-ugardY&URfdi180I+*f)}Ww+cIZU?*<&Gh>S!N9I2dAx^ZRvSk|%vS})8 zqCl=P^5v#60o;`q%9L@ToSyH(L%Y41IKD3nF9y-s#F-bAeQ9rN!)5V}`T3zM$DeRy zPQ44a<+fyse*pim4WnbVKR2ui;EtspTvpYORcUbY+Ip-FQI;&W7BjDz@m-oG zqv}j}sHp{S{B6ZwqG9*!*C%d$M%0jJuy(JD+;da`0eZsf)1SCL(4Hmr=4=@tvo%{o zJ}~oQpKoQ?4#^(uKaTHQn>(m_ufj2xs&W262^=+k!aqin31f=T=SVST|IlM>R~<&D zX)to8I{nqkF>SRY_sKqVfvz?qEKK=8c?h?wWg$d-t+zibF=UDX9q#`^fG~*9s}|!z ztTuOQhz}vwh8<;{bzm@W~W}wOEm7O_5 zmv+ep#zGIt#~Er5nz7F^ZOnB~#BTyxBj6>lt<D?ad+>mM%(q0gR_>5(;_AM%07DjJAF1jUypgqof#2ahbf02qVwaYm=oHMvp=`y z@~tKu8drjd{Wfgrqs3h5Re1Ea4%*Uv(D17cUjCch2SWe0a1juc<}l9N9WJ+=lvPLx4wXfZTD=3{IdC0Un!#^j3y zI2LmTJ?G@0dGU1=4?hc!b1%`_=Oa|A@1U~jLa2GmYtB*Qs-a7Tm#~EIzba_DPeB|| z@X$sDr~IklpJ$}s;Jkw2qGczDH+Jd+1y?>*FhDeIe2RkE?-exsA}m?)N&H!_;5=K= zudQR)O4zY)kH*knX0gpB+jV(}FbQ_V^3M;#f&B*q)>+uPlH*%9Egz|R_wabq8&p3L z24KVw96J30bERiF+x`Vo%~D|7=QIqBx3I2kD@VOe;EkbM7!&ap1K*y<$o7ZPergJC zZGDD>n2T`EzJQjU3vn^Qj&JS0;6s%!XKDD56@k=j63WwZpX>!6N+ATZWoFQ9baS3+ z;K0JX0M=EyF+bFw34!V?yLkxrdJbjd&rWn(FoxIW596*~eQ8n9pXz@EFnZDuUTxQn zYqYy_`#fmmCZsLYN7e&M9)=G5l)DBu7f}lCQ8!}>Ap!oerrVae9 zWB-$%Tfaa1zqeNWcRWAsl7_RwQr7VMJ=jk;0byQlOlum>_F6+YG^YvOhJD1Dlvy1(>nBfeu3}bzlP^Jy{WRHke96TX{2kjeC<1b(ON%m^L zu(CdE@nwSO+R8*9Hm-AGM|TfyZQx4hv%<4{(oZ^Tdo%r-A8kjuaa}79TAcD{VmjGm zx?~bWyB2P0M9&%vet#k}g=pz{Z`zVuyu7*ED40VtTv;7t#igqrqs^}v4DwFIz~xtw zyz}Hg_r3oekNf}M?>q zo$8G^sf!j*q-Vn}L9$8~+8jH_h{nQ>4M@=D3dx1+xS-G7+8X>YTGkC4thi)DF%Rq~#TtG&O0PX7S%sXblv7HN`eoL1h=G9~L zsS4D8GU0;Z+APvh;*%On_KmDXWjABC6NZ%DKH(LJX8q%Z4yz=mg>i<|Tk#90*BG#V z#xD#WtV*|~+UzQGVa<(ZG`-|VV|zdDoTH5ur z!z;Bo&exD97in{wyry%lAs4l=X4F?xo>}3*lT($cJl%nNud1>n--(tBtyp{5m|hz8 zOdV-NXMHcGWptBV*L=?UwTf;VH?UATsG7xYr}f3{)QGmBTC5#gDS~+Tu`3V$>Bc>A zZagfUfo{12xGun*zJ*PgrLf}J&dxLoaNxjXLsp&(ArGZPYl(0L7Fe@nlM!F`QDgeO zQY1GMU8`*Q&;ID0dD?uw*p-z7e!#}40<8{e@$3J?-h2P`{P*ww?Y;Njd+#OP4y%+c zAuB68Bb#g?Ns)|fvI&(HWhK(0q7+hzQW`3iitp__zkkE|zI@Kt=?53DpPsKgo{t`n z<9@px$MvvQgY7a=xIYu)nV}@~I|Q*SR~EyW1Mw(E8Ea*_Y3^FqX@RZuNJ z$N5El15dTo)SLP(u=0&6wQ3G`3;4XR+~rDc;;_CpqP4m|l5A_l*jumi+|X zTkMeRY>j(2tubJyEy^$RK5Ul@0)>eCzHOPCHy2pE07ol~Ahe>KgjU#N!7AoOL@q_p z+F595osCVoGf@&f7o(4bpw&?hUk_U0Pl-P=pRhmdhA!Gg*c-l(Ss@3D>AW<5mz$+= zUoMXxhyJFo>Zv4h^$BhAIz!f9kI)IZt+b~`mrPB==(zPSX7_o^~u2rN$ zhjDZv;RN-6Y3ZYpp-GDOBmbvo5C7@+!r#yTs}cVx_rQw&wz$oCtNs&KVXn3%#w|6* z>HuT7Z&$5;%2($mPMV5jo`NgXTByIt8p1@sM-!9i6CNY!#a z96i(^AddCZ6(BZU4MnVl+C+7r8l(v!aYY!4iE_TAhpe{pzOu>|-lyNvwO~nTG2b9* zs6NcjtMgn@2hW%|`psSmei?Q!dAXZ=kM{ig8edq={)BjW{E}e4QMd>)a@d2KRzcb9 zX|>Q3#{9NU8oR2V3f}*qypk4b*e8qQ0xDRiWrFXE6)?z94yTQ|3xR#AfqFf(kTXzv zmdqW#TTIhzt+2W4D}|ihfgQrG(34hS{h)@8%f_O>gL~wn-7z|7F6OQMM(y@8c*p$J zpWQCdmmZ00{Ii(X|0LJ3tlzE0v2HN$sRd=At5Qgxe{;WEttR#zlf#g4%+{Ba!3!5j zoG+Gv%xg8&v9`LiMix_<7eGUeu2k=i>^oDmm= zt&liQ*vdnDy(|)#vH4>+&t{i6Qfc+FG4Mt+g55ozDo`A&zB|A=8!|l1ut=Kq&_*MidZ>r7aVG59)r75;GRg>bHh7`yE*{SByI{mI>p2f-(+k$Kd$4^{5To#@)sBlz1tLhPgkW;2A5(^!im= zEq$9-$!5|bA6L9$ed@>B^&;!p>#S#0;$rc6KX)PUpPezRb+_@nc2z87mc$|}EEdDr zhah$-79#br5bVePSZ2l=v6rCQpFOY__QA<>C$6@n)4=%Wpf}j)5g~iFX?pbe_|_(o8bT?xeOawKRHf8ZG%*O6J)XI5Nx*dp}#? zyO<*kJ~^Vg-VRfYoshr46)OsRNM-K=d>So^>;YBO5-NrU-pv@gPDjJ``RExo4+*oT zpl0S&%n}KKp_?1~D1tDSpRYO_dT6(t4&Jp2V)`FtBwjBibq^IN1iz#E(`4|H``nI& zi(}^cRQmIIC#62vLU)bLX_&Dg-5cORjjtzDYTrhROy=n*)F>E0T~!w! zb!G9+-Ud(P9k`dt2;)O6VH0MH!}$*QVCe{*9B%|K9f=*xYE^XQ+(@1Y{9YJi+Ez=v zIBgH%Y!jYQ*kZ>ITl62Khb?*1P`zt`p_g^xGsFr<@}2N2(HgxKS{S&>jC+UN@I2WR z&EmF5|LlNyhXZ zGk^Yw45C*lVIrwx{1Pp6_0xgmd~L)vs6y$0Bw~Easc^3qM8-R#^@R5xU?KDSYd7m-)7{JDrKN`}22Ru*xc=YQ`0ErcJZ9fw>Rw?C&=ZCDDrYpA z$YaSu)-40Y&=jWvm6dH|!yOCzHjRgOS`nT2T}mV5-ccgwtt>*M(7ap%8%|1M=yGFd z+VT54b2oyyFZQ{&HkOtuv(B=GDfheoU{8y*h#@=SsqH|%y?U=isuIA*y|*Nv+3-? zFk#KextGQcZ3uDq+>lgRxR&(C6+;C)j8MXTO<~COS7gtNIu`Id;mUzdX-*wY5>;uYup~8d!T&0Xjmj>HIAv6tm}e z5uX7@=&4|bj5^OFvhZ(S7a(8}7TAGS2VB=FgHaYnH=c=R1VM6(r2PSBhn6bXuvHhKLKGOEsS! zE!i@JL`$=Y?sW%J^O#Xo?(@Va zsV5;bd-HZQ2XFnKduIQq-t~V!_pgrpr`-eJkNUu3p)M9(6@|)OV?>^HhlKDv1Sjhw zalp9l{NH)-%-^g51UB5XRkK zM=h}Kh#5|wbH~d7Ka5-Fi1cuMB=54qqEsuK)^)*#ot{|1K805zp$Pt=gPRBKd0%OU z!ZkLWX~?FDn{H8X{6=cLah44H4wL@zaB>^=issZy!*A!D|EXu9aH=Nkm#D!ySsACf ze=>#lzc=gT@!OVppjq5!=Bo)K5AKNIex}_eMlg=j$At+huvV7Gz#L8d^l-t~VeU}W z(#8@sXGEOop$WZ$$Yw97T`temd2T*CRu|oStavu*h0A$|Xkl{vzpwH97Vb>-l0;XW zBwm$CqPmGYC@iFSH!FvliIU9Rlt6@Q1C8XF=#r{V67$QY`q7qn;?Y6Px?&h~MhWjT zE9sn&G>+IWfb2kNl$mH_2WOs+Je5aag)-WYh~UF;8$7Gj#b{=os&q=>xLP*_4q6DG zYHidr7uV*wF$B%5k>$bXt68F0DyqhrdS$#;6oHII2fev#2%8HQh@Y>6U;R}uDo7S~ zHQMO9>xsB50i@OIpz@<08srpEc2xr*!`Uahf^*qbs@OIn5HDZOM!{}=mp3qbXpjnU zvWHs7NW%FwXT2sc*LArH7F`lWnVubb{In37BM0ZP`j~b?1hp&W&~GGXq^`2p_}zP& zZvURv%gA90cPtOJP(uv=EY0uud+DzMIa1_)18eXRjk~TEV~)B4v~qe$HB1>}uV~^D zvuoR@YGJ`WQ!E%Ik4-%Lje6*f)zV|&b0i3d?ks}3{|4-^io});yWtqL7jI6+LF_Ki z4}a`~1Mk4!3hhUd-9g;!cNAOPZDBml8LAH)p(U#ae>XkkeKdqgm?@49^+fV`?rFWI zi*O+$RIvVx+^vibGaU?>Wq~t2YMcQw!3!}{+|-vtY5g+f+){u-g(Pa2m%Fl;cQw;h zp=t4fCUK6fp{|dn4Ohbu_D2iai$Gmn0{2fy;P&!9N>6*syX6jY%oarBW(7nuOZMAV zS=?NygDq9B3A=95g?f1$f0$2NM_-Y8sW)*3k(%{AkTsWmyyN{aeR4F~c?LU+eFc+w2K(EN zXRx35qP1u*Fn=2opAEpmX+|i499AX1Caua`5;uNIr-q*+fjgH;dd4XlqJD}ZtK+HR z`+e$vGn=$$zoWb3*~eQ~K%K`k=*Qr9Pd9h0TL>aRc0|6nl$=7wf{N zMF59BwUU4N85($^kfsZnp>c#P#)$o(rXM#*AoeUJ9cQ+Fo(kGS%y49cE!;j^!^Xe_ z3-b)|)=~+2!RB~1-58E#)>yI8jJq4X5%b0ayNhhFjr|HM*P7t)Av<_jj7QX}Avpii z0SE6nAg)2MAU_lV|N(NyUWig+`SUUY7v(?9Y_yWlhZ zr>^P$i=SI4rG;7L>S%RUgKm=w_D@qmI)4v+lhu%ZM+272v@t|lALHLy;|R~U>!&zk z%R4pL70O|vl^L$>Gsmr&wsQ2we~TS<_^?fDhRx;h>&^aI45a{ZR7GNVq`1bV6N+w0owR! zn?eECgyHqDk;aDqq^Hb`)fW@TzyjVK^DedDeLO%u&= zWv?0M#4M2@W`GQFaTKjwh`CcG@RDazlllxW_FgZoPYZxrlob3uWN>dAvj;4>e@fg2 zj#JGsPh}z&`wl}R_tu87mcO=X0wg`fkQ+T8BM-TwccvWH$El%-XT3B}0MhIUjk#%v zGp_|O)yojZm12>6=^(A zZ4uVNN58djDig-49mbecCI$D;rpQWBMSUP^h;5qqUT*^PQZ3|P^TcT-T{K6AK`40z zw0k$=W!HAxmDr64&%H=owGX|W@rdIrk?4@a2n;<6W5?5&6?heIXBy*isXmq&*r8yY z2@DQspyQJk(i*HF!&ML0b@3`%9X*|@_~XF5-6y)ZJl7U$^$p=r#=UyO^CLQxbmnPH5yrBxXv9v}K-JRa*pPpp^jh}e#QL|i z=H@LjiMd86XFs81$8u@X$>;Pt`XiY_ z^X@;U2!VX6S+(fFD-DtSPWaqM zqaw0M{8bl)F%RzSMG+{DW?t69-xS}*Jc!s&bU8v9*{fVJwAv1qsZLl>XN#^oHh8?( z7$uW!@mSs#8-96X<;NMAzmfA{fs#0sHVGe3exkD%*&96|pYD8oOLv`;>8EcgZS=iD zcMNLyZ$1YO(}C^s(a=352zLPkO#7gO0M6j;^V2|eks`z#q@XZB3L`JhBe6H^e-&Fw zlY4j3SN-ke^EjM&y)JaiZWie+nn)i!r_rcsF7&i#4_Wvepp7o)=!@$e+H>>>jlci@ z?{@xQe7^qunf_|DzxTlZ-97Nq%?kbJTcbcD9P-@(xO>kC504sQj-D!N?d9Qaf?Tk8cGVcu5G>nt;Z5%*{A`0RnMFh>O5@WytVf!MfX5{ws{L74Yp zk{;X#Zl;3O;Q~mHeCku!dX#n_y+Pl7?a6dH=kJ5RP^gz8_lkd@fPpV5HgNj?%-MdM zi6$a9ahIs92J~6WUjC(ysCW%@UC_j7eQiAWu7m7fdN5yai0+$z$m_i{pFfOYZJ-Lh z^jvadujN-U!QqFRuYOROW507Q)b7# z2HMcEam52|e!nxfK>0I-8{MInWwY9fe>W^T33GO^9osY6l7;PW09N|0!*i3({2&wg32Rnu`MEosX!o13&WS#!q8q50)~pH ze5it}(cM(`ff;XanEAC#1x@dbVSmLRD)ss(WxiBPs2on^gSU6tV9Lj@w&LKriQ+Gni&344?A_# zA$`acL-y#vNYosiqm&V|VH1|z;a$c6dkF3~#=<~j$g!88GEEInQn+`C?|UOY^O@fj zKI2U(v#? zm9*2DyMZ&gi*|kii41>Fcl*gBErX-;bT#253%rLwh%UqXDKVw7Tj& zX>j&Xpt*uphd!omz7JyJ1n@TR9R;m@LV@GUXRrhAjGk>>r| zls4!d`OJPmQtRH)rN%cjXJgc4xq@&}5P)cPHQBuXMM0>e>6Ja?UX({)m>)aG z`7@o3C?@ygC$QwFK2kQmr!U+SeJHb!RJm_hJE5D>2mK^jv6m!YP)J+PSJ0qA<#g_5 zBe^jrdDHP`S{~d;BO_|5FX{$8?Q=z9g9FxwxWV(AJ=(+^psnJ78|&<#Tjzow>>t-> zPr}d{%~bbY5TEnD(^d74l=-lV;w{U_#vW+@Q!7}Hl(K(tTGMA8KL@Y(W zRA5fS7<#zLjigG4&`Q5(8a8z+P3>ny)=t`-$D7SPU*~DFbJ+jP^ZKtI`oGgdf3Nj_ z*R}ra6@tw#CGdvd(`y&-Z0!T!&peg=np#-NI>DRs{PQaGAen29BdUh@HDn316#MZz z+8oE{ZbbZaCs^+@h2joDq(3ploJq29TP=^I{;J5jAiW-+|ovy!US<)h$K$!BQz#y;^jP3tk|xD zoHx81<{8-iM;1_twZI}~XuaO)3_V9TSaHtQX{0s|cbeg5m=a!((Z!vyPwDzRQIrN1 zP$g$xx0+p}is8%2Hf;kXYgJLz#T=?kD<#wN_xnltA&$Gw2{Z`rQ3X_=y7B2(sNx*PSeG@d_KFV=)qRq4B=bYJ1b#|G~Nvsc3-9- zEAB_QXN*D!rXN=xL;>pQ$917R=Z){3QL6h^Jf?EXI;=o{RC%JPZ|Qpczu+4 z$y0vAwtrt|sdeMxvC<;_!TA@h)JMBjC-v{%NLCP+Midd?sU5RN3L+E(?r` zF~H(+LKyP7o$4~Wxc9Y>*0~8|OCx(3K4?LR^Vmn{SU`ev_xV4~(7w|K(vBXmSsjLp z(}%$Shd9=JmS)}*&k#Rwr#RM#yimp^=4KRsQHJ9v?um0UfMt{hrjOCb z4t)s>+%*6S$7Qkijw+u1>)HoNV%`)GA8Ylo#>@A{pUUNxNMyHm-`hB3w%Ioujg-8Vy& zvt2`1E8*q`O|+a<<(@nPh}Ifnm7EDOE*fL{CS43r5o5m)cdcz?4Lp-`Z0p!>94ZT^ zU=74CUk@q8*Cfjx-q+4+;8rStk>k|xHdY-4>%{O#R0_kMh@tzVIGUy~n;}yhq9-g7 zbcJ>85N1Yj4(->|k5rM`PFa=r$YpX4t-RDlixchfmNn)C?i(Hwdz+Gf6_F!%+WvTx zMOQ9zF3?68AK%o_5n=8^^C+NluL|<{QbuFLiYZ6<6MYz+N!`+UwBI9{c0RmKTWj-a z+p*geDD;rJUfw1zy(_eZ?vdA>ozx(hLQV}CG&tx29pCYi)@aDjbiS`#URDQ~*TkaK4X&x!GQy^Z=sGUImh zGrIdF0wbQDL~g(|6ul{>NekL3EmjPY)uON&^P5UpgR8vGqleQ3p>(T>9u9Ty69)WpMcHHzT>avLg4>Qfi*>`ztNjojT1A^peQ^J< z1nw4=Qj%u_oejKCPuah_^vY3+UUP(&nTJtk_zSw=vz69gcth8dkJ7WVx5=mQCZR+F ziVHPRuB(B@Y09t{Qba;5pAp;m-QcJQoe5XT_hmb2Dx^`T?*%$#e3Tv=FQWxb2Praf zH^nCGqRL&vD86J836~9|L&+0qT0#WHPMJc{(Pfn3E(#aN<^T9+^{~_5mJ`I>3VC$gP(#k?M*5NFh!3U)xD%y^y@^72=qQFQ zz7j}XR8HYmMHI<=M%P94^fa%OMqiUf{cr#8N6uzABg~A7U6!mk4$|+~; zQEz~4F#X|-Rad9Nn7e`GGVPetxfXL>O(88c9r9JoB|Xv)SDvcD ztlJCY#@IpTjU5aOWso}HH?4Bi#UAM-!8I=bk!W9SW~4Fk_k) z*6aW4XVO96K4Wx6GneDzLTIz6wwGs2uUVVBPEfx97J`j;rhi2>ff!A!Wy+TiTPIV74a?BkU8?q9uqc3Pml#{ z*`x67k0zw{v0uEz4kt83v4}ei3RpK5G3$Q}&wAZObRn&whO2Ark*se3A8jS{SJcNn z{vPayZNR8}c}!wI^Q#DJTsF0Xw=>U&bB97?St1gv7eYjJIZ|${#Cg#O+#j(Og#|nC z*)Cde8$&KwmjR+wdNf+3q+Q83&JQ~5fD zMFgO_QV)9N8d#$wj|3TAbn(Cc#6cr$80dtOpIVr~zvm76m9bq#9$Ssr%Nk;j;k}9& z$yqToJNEnL%HxJJ_u%HrpirrYz4T4wuh~ip?lKU4tjc+!N)mH0Lc*s3@H@U4=f|yt zm7_iHj4Ys?F#&n|vna&-8yyy7Z*@v3tr0&!dYa03S9Fc^`M=ML-J-fNPbp->Gin`K zNghhyXvxkWbeem;0>%k~#`C#oXa{X+&7laTIx-&mjXrPwN+s8u$i=^b41Z*?uQi(t zX51ymsvERt>}Be*-A8#}v*`EID>U!rJ(AYuer5Ydlp;|_=lttwWW#%U-B?P#>+)!% zK?ON7i%n#95&g;fK)wfMP<~Dnv$T7tqUsw79&Vy+KEsbn7R2xl0qph@#rLs&bmh7-`WPC&ds9_8KdBKHfG)HPiY9o+@AHK>E^*i%t&%Adtr zf7N>xOues-)BhGHOV^T~0MRhER_*#8?{_)Hqt=$}V;M`u&YL);bWlt_2Ow%lyl)_`xHIjK6b7 z=a^c$9e$8@@bmWd)WalxIhBU*>89D${5%iuB8_3?H1EMrD!Nri6*olS63|9(u5gZ4 z5-^$IhN&a((F}ttG}`$vC2j2>zpg?WGuZ&wdB5r_>IUD@3dm5=#wI^$=xE%cr$N#5 z!et!|jyX+lo?M`B1x(WO!*&q&fk)*2(^{$S>9lX6-mbULnc@*YJzFwj1gdGguP+hamE_0jlGlS zpK0Q$j3JbbztUswjneIB01JE8f3GK!(;#c)9GAiMRVFCa(!nKWO9ZhFm1CaN9R==$0OO275wfhc&KxaNfVx42QUr%A47x0^G0aSY?8gbzjKgt0BT`lyPl>DsKMb z&INB742ZQtqq7Q%ua2kt^`RL&2400W7|iqKK+I#-6X(0K%n`(0Q%hVdaC3_u zVntNZ`WZ0z$@AX;XDEl;LXv+Ul((B=${APeR#k!NFe}JkX`myQm0=~S4v!)HGp$xe z^lUw-y)eUzW*v<0XNV|4OFX}-gMKPnIK^GBADCZP_0|s!n{^OZs)m)-E^r@fiKl%o z_<6?xlVwa{!8?&iLo3+n7~yhu0)n_3x~!iP#$C0<(qm3oF69oH#D#2K-VW&-Ymwoz z4#hjx!qg)IueWZ2=e|g+OO3*TdohqZwhwKy6Oe6i1kTrv;h648obNt?Ai1NE@Jd3b zq&?7Tfz-iPIQ!lP*6dMV#WVTg;nHv)qk|@A4esBwLWY1I#%#BNcas~k^UbmJ7SDw} z2@$M+4`di}e=X~or;50~nb~I7EwFxv3B>jF@V&W)v`6W(7H%c_#2GgqOPuFi-W0h2 zRL09-pwU;V^Ju3?=Iu6gIH83*4wN1LkWpj}35-{On@=nG1&LwqkJDsqse(q`YT8zw zPT?wV==-TOs+}Q#aH^uFk=>MI#~mD;jg$8NMHUi5kX05#l7b+%zm~zQk0O{Wz+RHh zMmnC@MB|4&r_Cp_nJZ9DzN~?(Hl0(+*u zr=OOUboH_XXNPdn8au!RW=amTR+(l3z z*h0VG2;k^OzF!lW=WNkV4~MkVYnO6rHhMy3f;r?HzLv(WK7-c!Boh5xLgCDRyZ)k+ zyD@kN^*f6ab-z<+d@~L2)IeQmJJocFAa$V-_TOrzobW&7aJ`FS_De(YsWb*Q%c8Qj zgTmC^F;`L#6Ybdt^h*qNfj6l=;tlCc+7Byce)ro@M8_p3(V9(C)HLHIEitiS4zDj2 zY>vk09im9sA49W;Kc~GT^ij>dAfZdupv27St$x~YvC+pt_HcWfC}Z|PX7HV1CJHm5 zb1mxWxN|!5*0$0UL3uR1P{6mkH)Q82iK_<_XhqR}dKi0%rZujmy~UAKsToXmd>-+b zv-ltRjQ*>s{<}2Q-|y@H=KD$=qk+s+Ydqqd#rp7e+V!KE4DEWTc=UJj>v&I98)Wh6 zUvr4%H^}yR47uNYO}l4bp}vw+bX6sn4y#JTY06i6bx{m++N){HZW)Z>S=A(-1HG_x zfYMYkz_5huncHpmu$D$<{Gqu0CFC+w1qW5kQR*B+ZZq$Y=+kQn^xi0l! z;9&UIDPaVAI#+TgOAP90JEDcI>Px(SMl2bEj9njxGCaBh#|fw zsiHsg-gMM;vFA|;5}z95_BQ6@HjKczckT#2F%`on+F(txJI%e&g7m zafy2)PFUl$uMxJTX~E`?4Z!{m!#C{Js8qwL@A?RzuZa6u`nWt%1%@B&(DZFHf|)g2 zA#V)IGlaG$_YA0LVAG;i7&2@VR1!9!t$Qcxg*IdKhV^)vuo4=$c2~|yNl=?a#+$Rw^R`v*#(}Tle=3wP? zQyX)5mtQqO?iwvDWCpOrc0EkWa)eZj8ETnlkQ3{Ir`%I;HOLWqC7iwdX#&SMW|^d! z!*;zY9?xo}KaaQzIa~(C8Df~N^Msa6jKaR|i8!yzOg3hY>>uAwI$qTz$hrOKtLnJe z$GWmb7U8nb=&H~=nw{{AR1bfpP~OwaGAm*1-qZBs(m4v6&N@@5m$uhdP{;7k^ocnT zZ%@`zfxu^)VI&KYalJI{yd1W$hvDnaPvj)sO;z7T5z-`#I&DGB(XSzCu?iY&-9q^{ z>q+bSBPzB0O3wsyDQe{l`sn_X%4>g6T)7}D&oq!@MJvtHYNepnRn#EVMiY-U(qOqR z`mO()ey>u&y-aZ!*-Ic&M*+Q@`?C#hp|{*QJ3YIS1m~8}FbUqd&v{3i?+IebeQ9VF zi(p233!U2gn{x7A(u|@r2-J~5c2?c&e|N1VAE%T(1 zWUS3|e`OS%_(5j;@4GR)f>sntVb>r5>~a$3JfjFQ2a6%Gww1EKzNMa7g76Q0M3zd+ zaohF)ey@y2Smb_06;H#nm;~~i_n0&j5^3##Eb2}Oqvbq-R%}#+R#n{kL2KYa4ap&YN2~AcPKu% zh#6xgq_=Db-Fx?(CJ(ww6Ag#aTuEyh7|`PLcGy}foOYOo4zT*iJ){3>qW>FB^!Gad z_gv=&i>Ww2LmI!WKU3sU8Tgj)?n<_e1YM8O@(_8=O55vg34!eVQA)JA@yIYO0W@?99uzi6>n zQ3w`$gfXqInb|y|@Gt15yX$JG`gj552C1R`Q$5|ibc<%)o=ZbQ^GU5+47U%+;gw4% z4PC*XKk6IB8K+b9>aX<8IFpvkh{BDty~~Gh#>1Z{DB02HAMvc5ZT^*8XXKBoLMLfi{k>>96yU~z3U)|ujR zwFQ2KnLyzY_ZZ=eAC#JW-ir!Eb@j<{_Ck!tPg}_)FY%rOP009de z7&j98tfu0Q%~q^dor6k^xlnOi4QI}T4dR{i&#U%u+n|B&N7lGor;q+OY*3dY1<5ly zm@-2h)6GR-QKil^URfNG)xj6=zB6Mc-j7@b+i+EcrW?WKx;vJCQo{AwHt1!(-1>GM zG(;*wZ~`+1-YFwKg1J@)b)lu83jZ!M3=VgM#d!9)>>Q0rGxZVAo`T^Ujqx!@9rI>s zU>EZo-nX)+oAZqWN2ubsgCVX~Y9r>14c_p*Jan55-ilgdtA+!TW?J*ik~^{5H8DZb z8q3*7YTajv)!7E{bK#CH<~HbDlE;{*&X^lvfJsgIczsD7ceLCge$NoPoGr7`RzUSE zQ|3Gez?S=IEv{=LOHdPL^>b1FY8MnIn`4UJXpC-Mi5G)uzgtsSbqYGC%fMHrm55gMoUk#_3U<{YjZ!M(vvAwjDcLq`)JE+m9hJI%$!HIvC!OX>2n5>TA z%g!j!w!(GhqL!!#VNjJkoF=u>Dm`%=;QQ2dW*Lo^%Awb>&gAPGNxv(eP@e&NqN_iW z#)IFqz~dLsF?(q2T?zQ#{7qB72qIxmC3URf9GL1)I-DYb501^$|5Ghldw-^w${Lz@ zqm&Mxs;Aqp8!1@yJ!Q0gC7HdIq_Tp0+4R0qgH;aQx>C<9+9rBGfxCpS^-|Gl0UTiM zyWv+SDQsm{#xN;d=3b4GBb>!sCykDeUujm11dblK`$MPKS?H= zCy>bmFS6#}?|AO9C^{66rBnCgSIZc>eD@lq_rF2Gfp!$FzXPJmMhLz-^QE%s zRb3Aa%$9<@m_BxEKBxQKnfPV*1NxO(dy&!w53{^EO(01i!+bt{oXs&r!WeGUv2zHJfHvS zs{bBc_4m8_&wf|O*E^zZ#3_6w^c*-Ok}uaL#FZO^He zJ*%m9HMI1LHg;Lcqx$6udgt?s){2W^j}UjsFRi7B*^lU?uq?Ek<*;_W2!=iGqh<9{ zSjzKF!KLzOy!3;Dwd}BD;BJ~_5K7wOvE+EWhg4lSYr)KdRa1V`Cf6VI-M@)$juuAo zA92_vYh&yg8TQJG^B&t13r}!IZK5Rx)tW+vnU+>>^$>OKE9JZ_BsVXf;W2A7KHC_h zrNq&?UK~48Ea8={1(`|rDRG`Ydv)9C-YR)$43|f0q&5yoe4%&J-zffFK1H=R(c#-4 z=-S6_`V=dKzNvSq<}I^A=ZfI@K?~^dPHpKWN%V#(at^nK7Mj+RO&HH}5V z6suzaXLBMBn*h^fajL6``tw|N-h4C660+p?{R=t~#j|%cH_W?YjqsP282DWpxktU> z>EeRA@2bduVvK7###l7R0edZ7v2dIpW*OGfu!rq5I@lG*Lz&~XVmoy`JC1<35A-4B zBegd7$F;#RDB!$&$Z21AR*E8eojA1i$Yb^s?s2uzgnWeq{A<>tPLF*E)~2ivIg>US zc+CCA7Yk(2?q-hAY7eY`=L4aVfjDr(90klc$Qr5%(+5iU5fy^foN<@im`%k!3fNbs ziK~+O=*p0X$|Xa{=INo*N*nu$Jr@JGLynoFg=d`bRcpaAS{K_Nc_Jv#3ln`k zvF+p(B*d6P=Qz*4;*Ib=%nX+@74g#15XH;@$&B&BJIyJKi?zVVC~MU1XFraHDa_ex z-1yQC16p_<8E=miVZV6`Cs@ksR#}wZ$F~V1H{_I{SAPns7%FvyZDCP;04) z;=^_*=3Tycg)wKf9I#o*3_{FF8d_w5Io9hScf|p{^Bu78W*|0XctA*BpF068A!alk zKew#FyCEBJD1Ixt&O~Cs++8^CAC0ZdLTk7b2cM_}T>p>=y{!i@c}N584e`Oj8MY|% zHpUTVzh0PT5ACHYC}7XWj0j`Q^3}(Jc5^(q4-B>PMA}ppW1>=!j#%x~OIz)1q7QQ2!u-MLPB<$d-fPBTGcr zh@onXJ)--&V!o<95_{N>%s%5$Bb*?vG8pdyHP9O`j?5GzMDg=P;!p=wAL8z-*KL&l zP!6AGZ^6+iPk9cTNtFTuXyN;*pMgBoT7Ht;hYz$Ru$|~+FBy1s(v>@H)D)RUpSpQY zSt5^F`CYW4hqYcb&$lNEK#8+<0f*bjSVRokZK6=s{zgML_EMU_Pr7lYmcA_cNy@{1 zlU-m98C`0mb(!C&cy<%zPw6Dx317&W`-=u=v@S;uzhtpqCMsXqS;|}1%9fElBi`iP% zDu|dOiNJ;?`k+}#HG}q$@`(c4P+3Y%HEE=9;Wyn>i$y?T9NzDfgh06@@|YL0ebF@v z{5+jAynAqQeGX0Z8b&K8zowf!bNv_^O$Y3v=#`itW$k}INfjAgZX(&2VYFS?ngr$2>3N6R8=Q_qosXXUk`rkXl50d;ZYgW+`~aSzzG`&ad1x!vixX z_;T(>XRR)Ne$hnb2@{O<|4DndKV3LEC}K9+sEx%ffLLj};D{*Ve{1mIfMP2bq# z88%xCXR3RcHz*D3kZO8Y-bKMH)uH}L8daRH?+Dd^nicOmxg)7=I%jfQx$9sfvowqJ z(8BxBxMjKI(pyPSz1t|KB8B?*Wzc;8i!`*bk3u!L>y!81|E+&6Hs;c;8}I0Pp#&!F zmc_R*E|AkC97*>^z&5n6aBFu zek$Di7QvabM*gnO7#rk;fjWaQk^Qp$IY%`7n-GQDi_&!4ahR+!6T35~;br7voD3KO zzfcPV7!HD_w+RO3dn57tb~qMqL2a5g#9x~thkccerS^DSEdqN7FBshNhQ5*~)QugG z?x>H)%-K3|SsRNv3$Go-8T+{d;K=ja;!G7J^6c(Wt1&{jTkaAw86tGp6U_I69p@KU z>^8)a+Xe{c+3M^#bwobtrRLqnXnv}V39H!`dfN(tiFTM1v>Zhn-S8zx6$k6Ru%SU0 zjSGAbeAX8e%(b8$#eUsX1E}!)>_NF6f_y#T+v1HS0frEWbHJJYKKP?-jNCqbX6L)Y zD^VYY$|`7{Y77U?(Fta|Lw2h(uCdmhHG{9+CTEo2VLr3IG5SwZLs+skEY7H5=X)oJ z{<48P`r&jYaAN9ASoTEX5%WK*l5Ftlh9+*tj0SyQimfXnxDSE5WfQi;{oxL5%H55G ztQeGyiH3mVKAdkjgbZQQsoFB@%*%zTw4j4Gc1xkuhc*{JBQ^Wc}pEc~{ zH#ShW7yx!GqsEKp{bAg}#~$ZTuU#N^!3m|Nj`+6P2WmqtF=dB0{ydPuo?Lf4({)5` zkO!WeGr%KzXS~13-pxQgNLO+8aDXiId4C}Kg?HU=EOGmz5#&1Eaqg!p>tIi;?s9{5 zk~8$Jjqr0mp-p!<7V<2-VxuiS+E!Ebo{w}h=Qb%sj7NAe!S47;`pg!hB@{oRmnIenVAEv*9DXZ;|Bt=5jLLHD*8b`4?(Xh}dC*{>A}T0i2X=xa;|IePshd*-cSwXyZ7f0Y*1%xKcp`W(`HgGR?td20RX`(3X|BLLS#qcf84d31jq5{(y zlCR##Rvg1DetXfWAv-6>0qzsv?k0k5VNE7c!;S;knB)ESa<|GdhK9|N$mBcyO zT1qJIrrK$}^e|rv#m1cD%$kMo?|DY&S4y|HUZ4a;S@eA@rWHxsQC}L5)XGeHnJJ5F zyq;VNyHDM_zEO!u8cjCH#FII>v|BNdJ{DZ|+rHouW&GSqeXU1GFVhU-OH%P=Q7U%K zS&#Eo>h!WwoJMo**siS2bn?(XDtoe@?g?(CtB(t5;gMt-Z+nqOZreo8MG2(2W)+Q> zNGGYmne;Ouo_^;YqAt-|KcDzyTB5!Tp^sOg^!@68`98zH>fZ8?zHcSlPD;KefG&Rt zTpY+*-~Yn#&+5~yO0++K%kG)LA}Iqp}S@T{UW!zxL$ z{WGatd_hx(ex}wN_0(OrpMIC8k+8TDew5}@QS@VSyMC5Zk368NO)tn^+iv;So; zXC#%Jb%3v+A9j1WKxRGjGOg^;k!gfW0#C__d6&Cxbd!5^IlVF$M6pN-jeByQe#W*_ zXHz4&`1g=wo)%14OPj1|h2nk+sB`i{Nv?-O0&gP;Pt+dMphrA5o^lm*YZL-Cf-i2F@FE>_w{$(tjEEBUE{Ov{Sa3=5#hUa z@#)+u7#%jp^7Wn&x?_RuJ8dE08U?-AJ{a*x2Ni~D(BkvWERjJ_OEE!fxH2*?j6~3k zsd$-hfT``uINNE6yECP**wPjSyQQ(SmOXx(zsZabqw z#sSv?O`*YFD1$On3~BN}=@}FF+xntoC9})?b&*tLk2fKPaNp+!sR9cKS6gFSu^DoY zm|=R75Ax@+4#CF{=NE=^Z+09m=2&4CYb@R?8=_)!7;YXn!jN-8sCyraQtu>a>`z7k zd*zZZW}$9;4z!m}K*fp_JQvGFje$2l^LOM?<%evy>9~D+1ST7~VG(N{W@worDu(;g zoPVOhIn}?|``6RmA6N1?BRbR$SN1qz={0NgUu})np)TkQaEI?MAD(~PpmdWHrn~Z) zr`#Rd$6XL`+8zDwD`C$(U-%4gfJ2uZ#(rSUD)XpwB>LlJfE_gXEb)mMY}RqiGqEv; zQ-Ui_v^(O&1W!D?AIe%IJ1qFY-oWGld@Rxed3)eR^dH*9?Ei!O-ki_0Q~h%h{CxX> z=KFWiVr5}eR!L)~Vh060=^~77r-Lv1XzvecM7MR*xTJP!v1z1IV-eV`6GGp_dV0D_ z09*b0D3mp_38liwpCOGBfi613Ji#1mF&r%ZL?N(Q(Y-H`MqN5rX zEo9%}78Q7M7S`}DW>5{1!h{5240qzmo5T48G!b7l(TpxU;uF-c%VC+VcI?_Uu zxR<@xmwmnYJFw+g0UhP}TyE(jGBkQiB8%S9t4*J2uNVLBd*&3*UQNBNSqSjWKw(BE zv_mo>G>&u3FcFidJtIN4mvm-e3t^o)#3a&CvM!rKi`G%wftOS%wVO)sZ6FW-6iSmC zOX~&uQ-k<%TKF-U0BYb=YP zc5N*FBZ)F*H+{Hagr-bIc*qIBXgv41*ykb5o}#Y~7Kr|3g@}8cG23HZ2WWa_}D#y1=|y62pM;wN&!^4c$4Yg}AMnz!@d< zux>GqnNbykI_VnM0#k=6KPd8&6ehncr<#!0)L!4Dv;)YCl*g4a1G5m@7}pGyl52E9Dns-XmrM3ELpE zHW@ZjwrFQRlwqnl*4KMMu*C}JKFHz)Yh!l3P({o+Q=Dy)!56szOga??-w8pOqV9ps z(;d(=z!=)^cn)vN8M~|xEM^w$>o7$Guh4~9jtxY-{n1v<^MgNL80i;`WBFE44YP-7 zgcjaR9f&b9TpKReLCSJN4D-`MY*;wVhY!U9=7%kBu!F@GUwpU}4Esy`@8!0LVTM+1 zgAbN`^*}-25Hv2-z>*O`u-j#dH+-K5N_iuRwW8&oJRjF{L1L33?hoglcbYX?ik#s* zmNTCBd0>IP4FtE?BlV~Q?)+g^#1(T~$tBo7@q+L&XGrJTprBU+#?NhWWriI>%{=kG z%?kzTe63RZ!ytGq=Z)FHYo{K@{bt`>7H5YHHpE;$7y2^WUW>IPt1RMi(R?-5Y}t($ zTlsn&aKPkeGZFG`D`%VS!K=|htgmpv7Nuxx6^@1Hv}KrErvv#}Ch(hRf*q&T@X^2w zOKq(2^{oLKV(qcg*$$Hge6cK;5ESf;BTEeN<*6}Fn%Kf+ge!6edSTToSF|>{;)a_G zqWOH3qZNTo>V6pBZiVR4vdkss^MZ{D_wTvRec^(W_sr0&=7RIOK^S(+0bM%Ih+7Q| z4)=%VLO-w_5dqWnaeI+34t@`YZ-pnsM)#2}^9Q`!d5&}FBh^aqnJVx;g=Do-p?EKC z*ersNCxkKlrx+Yhw^6>R5Q3gdW2r|id3K2*>NaP@83^NDMhAVLDU3Pqgz&0a2o96v z@RsXQgPB4&=)^tSv8=y3@{=|8>>GP1iPZLL+NSrGn%FC5?cYq!H9a)OpR>HLex*A0 zqG@JnqHDeqYQmL}Vy^?wA-rbJm&ff?MWm4^j)oiJe6a#P@OwEKD2qFs?=h9{^_3&6 zQ5PtImBYBuaY&lTVM~S@Uihfs^rSVoyf7Q$?Bn{VB#m7@5>TEX z1S84!)XU77x%TIm+~+zERBRz@({}3_0{!zaC)=^W-o7{z3GZLp1%`6FHAvs zVK;eo{-#+OCn@qA*SQn!l5WX)T3sc0Lp>Qk7B>GThjV$$>f0~S&Hj?1i6O?}O zG6|kKOin+t$-MqF-Cl5tVrvf4i%IF&IP4UKKDXWB{o=4$|^MyFq}mr#)y%3Y7pft_~0kMU4<^qTtt~q=HXlKs(-mP`R}eF z|E||BU-gc$ml9$M+sOXVbVRT&aqek;zD~;W%&ClmH-^%ggtheJ;u`AAYoXy+ zxEA;)tmpnGy{ECPqZ4fQK(coo%?s?JL4M}2QZvAvhsqGX%k!I(PFi$s0B!qyh2DJ2 zq_shpXk4y1CJ&!W*^?Gi!t`x4?)Ymec+1%-rZ>ntOaa>$ah~=S8GL?pkoHWkN1!j*L-)s(`V6ZXBXXgES zBQ2=0URGfv&m%VpARtm0HU}hdoBmMT#YXD*Er*kh&*{hx*61si(ez`SCz#MpPfTyq zB{9x+-z$OjtXuq)@PyP4i{P1}5=_6T^I9*@c|+oe{-Xf1iawea_nJ2BKToH9s;PA+ zX9!i9Z^CH{z@N&K;zU{I@^h5Sct0+QY zxjxE-wc*XW*pZ`caq)yQhFgB8$594IWVTavVhxSqoEgan4@ucV7}XzsQ^-u7ad>vo z-61WM9kmqU2}%D_&s2$vIA1>n+@EutZn6Gz``iFrAO4o!#Wj<%=sWszLIazod*H!- zc?>nZPhV=EP)fcmt~=;q*)vrrEnx=eOgqRm+u*E&C)Qtc!TK+btfL-`Yi7ZC9!F>m zc0$bsS1dm4kGM&%C@YFHfxUxRvpNl#<~|r1WCQOJrr0cAPD-lIC{qf@IAhjFesx4? z{uCNpl|5+Jx5tN1)LA1Xjk}E@@w;PyU zV*z=S5r|*Pbzfot)VfU}J1!7gTr3e&YJ!Vz5^w74-e5;u7~+cZ zXk%FIu|Y*YN2s~zB2d~85lZ&hp=k!CWMdre48(wwT<`h!L*n?Ym|C(E&4q^0xNC>H zB|bQ>XMrNO^|+AETH-wZ&K7YEIoutl&Q6eTQN{NBiRi*8OuUo@bNxM7{M7}1OUJ;q z+?StEf9UB>LAty>>7>_)u+zlk8R7@FE0PQf#nP z%LSkA*r4w?*WJ<<=$ajj3~%7~Sz`npAm;p!0Js3G_Hw>klsmxIt=g!xVy$t8u9=}f)-aV(i*$?Ubd{t)Ry`o$0 zugI>jn9Qv|(!q@qco#mGeHWMM0qZFuw{s?5JNq)l8J{KjJIm-mMFH6+KB0lz-_piGq2w?&fmUS8(1c-r^ypH) z-*YDszjN*V%Cbis@+*tZr9bTLic3uVms*qmC)Gdy@mco^eJ9-vLEJJB#99f~qqj;x zehM=yl3gL}YXnI*?vI&EqmEgI$^tF)XvR5GzZ*|(2^!SDaUG4zJVGCpBmVsz|2Nk1 z@8|iWp=uucTA{Gs(1s>xmK1MTiSML7mJG|S>5ZDS^u z!h{;~KKGvPmRzCg)qP~OtA_T9-6lg3=1koZ!Hd@wWa6AjGNNbbvW5=!SA3%A5t^8z zD1-RJ>NsRBi0^HjxA}@00Gg5*zTp>@)!wHfZ3&#^e$!BAOZ;AWmL6rQ!R~-0Yup}? zO}PYgnH_X+9{a~5jSziA2R18ZG4?6@z`w~s|2cDLi$&18u7#?FWuVj1LGKSS$0|<* zrKf&VOF|oEbt|Df-2y^t8hD@4NNIW^n0HPUPdR&b<|h?|_A27KYA02mFhJD^)-Uqx z_FkwmrhL0Zl0nv-6~x>pYwiOnab{?)0@O{UAx7NGdaVg>-ZP)f_e0QHW)vNhf<{9d zMP_oXlCF-NG9%pFDvcaVHS}Amk8)*c%;op|oqLRSJ3Gj2f*fKq|IpN@b#yAQo8+b# zVj^c|X6K0gOFc`9;sKm-;Ey>+%gMn(0Mjz0Vg84`LaON$m{U!~Pq$KGdOF?upn>fo zv#I~%S7c!Qji$D+=Pue55uf`*c&#S}RS&>Mjeb~{W`UloA}ERHjP<86c&cIsGfQ7+ zZs>;?yC^*Fbc5-u(fAb+jd5!uA=We*YsO55#Lfv=(J6#!$Ca?9zcb9=Y`a|YTnm%! zN~mYlAZ%9&K$b?*U)Q$jS`036PjAoJ4H(4t=%%4FaCK5LcCT@UaHK1KZx2FooCB7e z@PnMtMtobr*>c?b_4sWK<%d!DmJtDo624Df55k$fuH1uKhxAL4INoRg<9FQWn>h?+ zs-cj}h{pUqvoQJ2WPG|60g=WCjBioF>X~kMkZuU@eA_w69$HsSV8MK{iXwCL`)t8; z3VnEY#5&^;S9mXX#LTC*u$1z_7GwU| z5B6FucYuV_Ky0$|z%}r>>~k1?+SnjA$Q~*RVW7+ANMiA2!`nkBBAn_!%e zEsU$o(b(mV6iepgdh5b{j1kZF?VuEA3tM9=t`|9@YMVFW7kDCy^$8*T?0!3L3uz%6 z+$pfY^2??;%B)t41v;$xbwq*mQYa6UL=Ed6=6d_!K;CkQ++gNbrxPY91;Knq43-)O zU}P9U@1-9uZ&-q=9y9zXH{dK$7kqFwLV%wGilzOrnKiBV=Qwj8)B`^vTyV*m-^*V1 zpD8l;SHuQQ`^+Ha%Gce`29Gb;Bk)@w!taJ)rZe#UhZ95^T#(FE(n%%87{zB4fnaa! zn(d8QN8R8!D-?Uq5i_U)ps4N&kMTZmyzYo8g7#2c1w7d9j9u%TV7ZX_B5%3xE2zkI zpApUna0c6%={UDT8W&9s5Mrl|KLgzHro;-bwUu#tg8}3oOJK^-lHe9H1rYw(87 z9Lqy`0q0AE%izU0UYoCrV{^fKI+^>C#00)l^)M?OW^dd3Jk}G`-J~z6h4hm)Qn_F$ zJ&-J-hPY$2g!?7^%!P5Jyq?Tw%3!9c7^b#WlN|SohYprR$MUVzPx&zAn;xed1(|3* zB7$3eA1EoNk&=IZAl;^Glzmx;#ZI12IyU{_1OPnd&zv zUz+xw#^p~thWYK9d4%pTyW(QM6)=$gcR%)@u{QRrW&Yk)vCrNhT4jR8hu}CR zynaiw)*q(~&hfsGCxqy_HX1*yfX1ADKzC9)>1>T8%3n%Cn6>-`2ShQVuz|)T3c!Et z9a?&HF9n8(;YFwbDhzZXRj7x-?^U5#X@&E>`WVW6mHpd(kOI%Urq5HyZVPRA@}9l2 zMg}6%KdH)A2Ih-puv_a1Rk6Q2bQ-UVb9k?`FvUCbpX8Uqd=}G6(jUWll3%{i_`ENq z8Fin&4f#$F+g_2+%3sW1Va`jKD8}|k;`irP>WkFCI~_%Q_iCV1#_~AiC=T;L&b*n= z9tZvRl$raCrd^W3ANC+j>JvdrHFJj)tzmsk81;p=7`BaR+yeUO?3Tj{uCXeQnYc048`gL?s(W3iI4{aA@wzewUwSI zju;CA9oDw)9F4Wl2V+i31XSnqe;0(HYw17?QuRh==Syl0orcM$ha=@yJo?T=V_Ksh zS`!}A(I^M18xYS~SQ2pTjDS+*U_9785^w%kAU!Yduj{&zee6>eY@u7ho-pPl-7{h@ zleP=g-OVt-e<60gUX1oH%n^8Eg^9CNpg$rL;%N@JzSavjtpkyxo{mOAZ)kHJlA6tI z(SuTWxgifAB<&wBJOHA4JDZ}d%e$JRW4AA`bCq-lhwR!;aqgaNEc z7(Fo*%k2HpdL;x=J~sI2WP@eHe3A6W6PM<=pzxV3Cg+-?_A~qPJ~9)x*a?eSJ8*f* z9ITs?gVjHbVEW7gKFSXGF>459Mfr>unTESH#@PGToNEmQ^e^XrrqDVhm09CjSpuZ; zHXwTA1`K|iiKQcgA+MH;y^~Dw*~k{+w_NeO-3H&D#-rckJrLQv8(*dNBm7nj{IUvB zVUv&1RryF%*bI$55g3sh4tHgHm~S*i+iOEC`t63Jta&b;;{|hb51elff{APp7MMF@ zOokt#Sx2oZ7J_@)Ua%kJh(gVGge{C@3% z^y%JM#(i+_J%ptFxUyalo6I?zVu>as_cqb1rZG^hwM0m!KNfX`p>2>o zhELK#o0<;3vFA^3KW8Aj_RwGr1I#I5ed<-N!zL+U*;#2kkC(^jaCx|hvc_S)FnWD? zjnb3D!~R|5rmu=0;!^0aGe_WMO&rpZ$EnK-(3v2HK~vcy*(Jxha^jGkD+)p8`Fb($ zSfyAO<23c5^j-~dn>Da{i3#Liavt0SCEWO}h3F+J7$_izzA}BNI5I<}jn9%gI*4je z#DhVm5Z}d&wJ3F@7wY0O=QB@Sq=RwM8fcG|MXteHy1TLf_gALk9qYj5PbFsXZ_I z-iyWF2tZ%4jzSC;{O_OrBcI{_h2M3a$?VBm7Z`*n!k2kbv$%(GNX;MjGnmVruY`jM zZ>WZIq}E!KPOJ4)F~ER5FkxpX zQKNwh+PJ^^^%2ePU(9ow7P_9)RCiyXX0HO$xKK!i<9E=QStn?i z-Yfcf_!ku~lg77;O_Xw~gj%=N)7dGiIC4n~fy3MAr+PhQjgUa>1rexT-Arw%(hwID z#X9i<3ZJO~Dg7R*^Hf9QIe8pA%=NEN4K?){;F!1}maUP7l(ZJgA_Q=GfB|C93&J(B ziay7%_up5FnT!ue#;Stua$ON+E(VRoPMFtE7f(NkV{}^=wc0dMI`@sATL{8^#3fp3 zUrUiQn(1m&8|6&b#@xOZ%J}w!YPtSQj26RX$2!`-pq<)2YU2D#8K{oobvN=S1w3x1 zedmNR--R_|tAsE{#`EwToiyaYXz(flu@{s zdoa8yijPr7)K^sm{MN;SkD?fLPY3;rMKRp{840ibNpFraC;xgMt!8fHEwj_qVO z^0_HosLwqv&It9i!Cb8lT9T&%<&c9Ulj4J8@yE#att*~5eW1LFJ$&A9gVnmHbhGR} z?ft5N`4S$mbR3Md687CVgmRvl6@<6OK={aD+ZV2z(Af|FY64)l+nYWb=IA{-Yh^yYc^HR7zX#+c|g-bbXYEC9qd#j+zN-R#4Mzo z+xyow)F0%EBHJ0rQL)9*7*D*4Rz`-q6{e0i!>ymTSj_d@y&@B+Xr@A8{8-%G6NGc~ zr$RbtCdB3>;Vait(aBF_n9U{T6f2(;K2%JV$1h zmEDAJw7HGKrR-#c4GYHyldbTM*~0pSSp4=0#MJ_0OuuK0ThkXIM8EM4Lpy( zzW`lh(qJkbg3l^Wh>EbsWI-PY{qTb;Gko{FH32QNg5E$)1RQh3uo>(JtFeUsu~j(! zD*_2cZZK}v!CPCdR}Zt+LB<+WUs*v%$OB_JPb=En6xvp{7}{fj_YWNq6Jd+k40*g* zW{qx4g8Lg++`8_KQ})bEdufU%Uu|*rg$@eEoS@(yh~1O7L3)-U6cy~?yTTVKQ_Qej z&J1a%+^}xHH(cM?qlTNPafe*+cw#VWPUPd2v@1&QEyX+L4frWffeh=09cKlh@;Bl9 zY7bnr=N{y4La0Un*L&8?Z1RS2qdn^VeDPER2xlIe{X%sb6 zIQ_v0#mwJ-H&O@lzx9WbvMZvD*yDLtg3sobFf_NuzGgG@C92|B0kh6HLnBK{gLTqE zNb6JP`;@b%ZcF14>z?kOP{5`_C6sxv4q&Geh6hWqMq3Sv1)AtHWNm(cI(~mL!pvx4 z4A{f0VpA>TFhf>^`?-cWa>y9LIl&sr*s_rI0TYa&^T!w(k^H<}(1xU^0Su({FwctX z?L;|fOBkTGS`RNy>f(2?A(r3K2YPhSDzA&{?(8*qr;5NjbyTxvVvXn@nj55w_&+n@ zG(8P3t=q`_-hK!Q?W0HO7b(v683{?>pouAsA*XZI?0!H?p2ayklML^S3l$Q6-6fe@#QgpHbV6M-(sGMj>vs zq>%B7UY~nR0(;)j&on6vTEMvz(n{E1S4vjv>*-niA$st1A9br`();+u^mu(1u3pMS z%fmx-L+CM07Mnxok`l@m}_9gYR zdCRQ9YO=iDL`MbH*mLoY#_4Kep!_fTWhaioDLr(rt%zhMUgms5b!_teLW-UZeCE}{ ztzmt1Fp~AL?1>sX{v+8*T%*%txu#rU4X@BTipjV~;oPH4d?d`Q?LJbedqt@um`n6U z5FMwwNqK}IejoToUQ2J0(OYRKA7~)yMkIAWo@))_N*p=eu57+}=x_vCSly+sQeSlE?}cWKXvQpX-Go`Lv#< z$BJSTGddFz{!oLVI5wQDA~~+fnzL%@`9(eU*=pdskrZ@y7^1vX2lAM+o0!1@TJj9o48mCCyWRC?Q!9OR7IoeC!V@)Tz)@IKJ_mdah{6qGmACt)K$E4{m2CohBh?x9~jN4_ZYLr~04UNb$rb zsvD_svv zQp)u3Sl|T3-^r#M%OjC_R~rkJhC|C@Bz(tCMMM2C2$hdO#+8wnRTYDyzavp6F%WP4 z_x-gdO%ifIsEjiv#M{E;^jhQ#x?m^gKAk*fhdH_~sL*#s#bCgz$Q{p_v2g#YDf7M3 zU}ZE2jh!A4d@&4{#JsUMa249KEKnGxj$f>oJg|EW{w$b?+OzAh&(aGM&79G&pAg^5 znpC?%I5j?!eP31>xjO};My$k#4=(6=Y=PXg`MAcl+ZkDJxIg#6?QZTRcH5(W^dJ;z zIY7GG6>-H5Fv$*t#LxARy&jKet!D6@r;mf&Tey;Mk7e<07`B=HF$GmN=U8|?#{910I9FV@!vL9*2YA13)>V5J*+Ia4HyYqiask*2Ud z5#9Q>h8*ZHC6_>;fRbq-a8s$&3pE}H2}A-d2{dC z4O66}aryab)TJ@+c9SP(wMD?%*BRe8I$_+yA!rKOfhT-kf7N3Og@xAGs~&;p=Bp5{ z5r)l!^x+w6g}GbJvCxlucjY9TDYt+aN#%oh01T&*L$5{qjx>a$)NfRE6)iA+T z0|U(EF?Ogj=JJ|Z-faw#W-Yuvq5?;0T{Pa%giweqgjj=e%3K4#SjRAuv*1?0Rf7FU zT@1b=jXrI0sFx`stA@2K&RV!RO%K=Z>tbc2E<_BO1#(>zE3Rvy{+TJ%n=GJw*#Z?= z?wlKJh_lDE(4X_m?2S2lBuEqDC7L*}nYF$bZBdz^1vj3*uDZo_w}Lia4(X+OgRhi6 zw2i!mZAM^V0ivWQAw^4(8oq2NsiLi9)tW~#3C}6&bpee}*^6rLy?9h9hboy*JOFq` z=JC(z`nQi1_4WtlroN*G`Ylw{PXa^Pubcav*Y?0~R4}ocCiZc?n%qp@+#547Xrf0` zKa)n>J^FL7f&7lQa*h|*{yV!UE#eEk68}io9e>f=^eZ$r{xD^P@1>jTZczM&yVSos zlcJYqVM}iuJ}=56jiya>73*m1?%`B*w}dic?on~vLBI7U2GA4Bd-U$6KU(@9rbnWO z{j8)z{DwvL_ytX@@{7E?6!hZXHSB-32mDw5%;3X$G8=J|W{E1GWVR?)4r(X$bM-V_ zQ54SXtMO#r`HBghWb5^XG8_aEC*_JO!#c=6MjV!_MIo6YjD}sD)BI5aU7q65ZK$X5 zbB(aPfO(oL^s%GV5;oRu5HZ!mhARr_H&P$Fb8=wVBaa8))gi%W2=BM4GnbHno(LQs0m?+Vk`%t-ZB_ zY&a+Sq46SeoqvLyPamX-8t3T!pDGghyo2P5?{hsM56_*vmew@WLy3!25ORUU@`}mg z^iSIN>m7wUvRA=D8XJ24ko8#+EFXBEeB_Gx*?&pvKU|=9*ElET?NM6741vGP)GbZF$lhshL1=M%^fd`50g9SBj?gTJ*I+=vntG_5ri1;L8F=9QE6m` zI?lRZd5igs4cuGdz2L$&0gPb}Tku8!96l_BWbUKyx~vST9rBRpIY;_EUFa|;?9pL0 zTu{-(y2w|gXw^j1551p~ zfn$`?PZWVw?SM)tL#8WXds26Rgso55|a?=8P+bpos-xVSAb$O2bnW~soe`{{M z-}%qu5E-qG`+k$)S~wa4USrT4Hxl_1xd$6$iuuomBgA72w0vWstv3qeu8qd%WfM_a zvG1>I*58}6VY@8xO;HuW11!+a{nrV3X0T5*MI-x*&fGLcW${3KUSJC4X2NbEW3)7A z!cQm=zrXVwY2+sE2|8d=YXFSTMlvtV3q>>Rabw0nkhwpO_6|gAH8TwS9P!@Q9reDB zP!b)8^7BK{S7Hru&dE$0Y>$X2u61;0pfb_{N7TI#o@tHcTOBd>dN6dh+GE_!Xk0h2 z#w-D@37HSK$J!a?r#1dOJa=>KHmr4i$b9(;ts{Nti7>y#~uaN ze|}CvA#+Y^hFKynz#l?c1QGMKQ0@X2aBbDZ`iO;#9Z?cs4c!aAXpId(>g`R~c*hq_ zZg$MmvcaKa{?NE+4(aGz6rBr$7Bd_aO#*OB#|9gJIiX3(fHeiqFzSnffA>}-Et`X~ z10Lwz5{8Ml12NN=^$0TcRLJ_>w+jO?$ZZm=YMc<$H56_9druD;x+ zLYU`O9F7eCZCGBV$+K@;bTAJ=&C4BQoI?=a7=pnY2f}hn39N?%!fA^RmhWL*GSB{v z$p*Vzm?_pg1ct292-9%IgC8D<_3sa>WP5xc9gCc`z|c`#i-rJVH9;8Z5(dAfP>fj| zjOnFbc)BAL2jblEqd5cv`TCsS>d&4n57;jXfvJo+ir)t#l6&Ec-2Jd(u_XHSs9+4| zrUh_~oydLnW^vZjtu(@IXKB7aBvF5qv(}FJus&G>o4q;5?YchV?Tv7q^`?@Ys#wT* zC+^YOkR?5gsW605j6P1S(}$(E8Tvoe$6RJ6pS~xJtXDpe|6z^j^@eB()rE#BpKInw zVDVzk*!E#A>nnYH&12@c<=X}`CHdW(DMxy4{N5(A79CTT^)_m{6eOqzEi_3?xT$P zMD7y>aOKP&8uqx27AE#kLaY$>9qpxFO8Tc*bN`MS=D+JTPsDn|Vdh2Z*6E-Oq5mFvq-YBvYpDeEJG<$6 zEbC>@F*n|#g;HaG(u4CqNG4nYxjLHM$4`LEy%A7r)yC==_RZ95LH#(hIf_+T*CdB- zO*K4mQ2y(?pVDlEQxe*!G*@OuQ#WnikVbFrPN!VcrBuD{CTXVDk!c6}bZqhe#J#fo zeGF{l$8M=)K+rH zQi0%UQJCL0fO!G;gnWO|ebZ<3t%dndiElYW_7fFLN#Tf75BU{nA?U^_I<`t4ws*yl zarF*!wXRTB1v9;)tB5AwqGf|jP}*XRY}T{Jo9bY^aw&zmaL>744_(g^M&F!f8W}GF z+v@K$gLA)zDAbel^;){`&_lN#wA1WetUYD+Re;h%zCZhDQxvmUS#vA2>N8D?5y5i- zVHjBUQIn=T(${p;@;ic13TvR7ja&zMe5A;I4b+#x{p1kVDu~HoPRuVtstWYZwUWh7 z&ZqIJp)0q=VCY{->CW%y0I#tr^j=RGm8<*iZFZAN;kM3p1Q4;R^;{28`Dk-<Iv=PS~n!Jlg2jcU`A36iPS4$ z$s+Evv%ekNUA6DzMcX z+c;lh?)G0~Dc4AL;}tQzp^MJ3pZia)HC`=$P8ym57@Fh(xTvW5u#K-)S61?WGBJwog$iAhI8+02-=>;Atx*bX9`AP^aM+cJ`xT)yI4%V zKNMR`M#E2YG#)G;gA=N8nBzJIwj=icb-m0NSs?XfEH>IW;r$mg6yE1PE%);FW*XyW zpAANSv&1#YemIqBfOcb3WE-2I=ZZKsaow0UW*VZ3hhkgPaD1;$#>g8oJbPAy&Ou)+ zQ11uBsL`nMPsSM4C2%?$frC8*u`(+hPsHMJY1L5t95n#1I)JIt!D!et9Y<#Hyt>mF zz1;tcXyaT|UIU~S0J}2mu{zcs_Qyl8XJ|0*zrMIV-5tWccG%204RJD4aqVglL@gKM z`z~*Mz2kx_R$O;&2|&cMAP9FaLA=rD+aeXa&Mji5mOpkEJ44~!O5B<-ABD?@ zz=2s}s&4~P#5@EOQ)bV`ac#-@S2GOlVeIV!r%_w5cK#qVO?QRAB0*Bw7iG))VO4%O z2JY2_gSH{sXL}&$gBPZ~2uJEdJB%1P2fyN0z<;7I6oS1F)Xkg&w@^$s2}07=!PwWf z5SLoKk()NMb!hx*3uTL*ZTN1c!OM zaX-}w>s*K6X7EldelP*jyIgRVb1?KPJs~sP4~uqqAW+y7=Omr+k$--h?Q`iDqfnIS z4`Ewd?3nC^gOY>sa+D7a@3q2+xxN_n%LnndT(H;;1}yWzoMFM(;Szz( z4FhrW08r%+22ZYQTc^t7{v*~P%n?UXwqrKVycK zjU*mzH$YOXDtyjpVfIOF-2Te<+8>j@dKqgnlpsHjnFvu!QDo-EIT&V$%+kk1W9IS3 zF>m^%5&Ev0Kr=fCs-GvInfYwzN;s>H_mbhebZ{w25nZF%pDN>s?}^O9-f4`kENdh? zbFN*EHIQ$Ncylu(R9NAMu`Q-8Gr;058TLsUp(4zPdBSoC{$>oHahwm%Ov3NawDC^Q z8k^VaLX>#K3Hxc3YI^CEU^`_#>Ll;eLijMej_xn(qt@R7 zIN|n@)(`niiifX|lgt;|Jg1(<={1m7)^(CE`a(*jm2|YAnR0rBF+@q6NTMqB23hP9!AeJMSSB%>+}aQirPQJK!W^n^ID4L%&DBq(;I&Q`0|PYh zGuaSQLztD3vIGbHf790YoRL(^YgI`fY3pC6LYuL)YVkqp(Aq{C!;-18K9{~PPNN%s z?PUF|k&KwllY8<1&sZoJCx*7qoL_&6`6I6SaGcWhPpL_GG%y9G$6cAfZ-WL4&cX?2 z?z));oV@g)bWfZ8vZ{De_mc_^3gG5OW7H+8qqt%;^cNeT|5pBg8$Qze%_(HI;SG)1 zokQp9gs~&3oPxGJqMMh`(vj37^hcwc&Moeshf34v(cE(K^(`UVewzfYmE>&`g6K5wVg!rZ&G91d#aTDPB)|!;ZrVz5uE#a+^3Oh z-W;IW(pB`D{Za|+MP1AFXZ-ok^ybES5|3!2dLK2EbB=s;wADrM_@Cd1p6 zG}oz$G#A_?hdBr7T|h56ntvlD^FO4V)l4emzR%+90V2x%6gQ+V_qI zO%;cOU@h4(FJ)|FCtWg?#Vd~%a#|*i1!A?dWwIEC8D68zy&?#15W!OgRs6ao0im_b zH=HbtSZg8tVWz=TKC7DzkjJ;ledM3RYqi2pD*q}1osIm@Rf;$?xtsDPJf>C=o)ZXh ze>7JZs=bn^JJU;I4)RF-D23AUTDla#*$m8G$ZC_u^p~8c9;AzAhiHFkA?F;qO?4{e~owQ-OAbRT?>7osvQEuL+eyV+}-C`YDoh1HLNMqXTF8X9rMX#pK zqisV4@Z_ToBrcz!PenL-7D-GuCr17d^f9>hCx|ZIE2BT>MX9w~3x1zj*6xe5elCNdeNX~`o7A?`p znt&r=oPXgPfgwkuvHQ)i|Btz|jLNd_wmse5UDDkRYtjwU9g?DAD|RP}-Cfw-1$HMY zC>AOTq6i8Sg6LWM-D8ijKb*bCKK1VN;TbY~5V&vd`?}VDt~q}bwXf5dp%RJ0;lPKv zS$N=^!unY}E>&j2-YXqfG~?hkI1?jAr{iZ%8fJ`2N4io5yx;%p47(#G755w_pm5z& z8hYCT7iu|kG~EYU72fDxZ_o3wK1}WuV$!i})HKepDISu?_8uvdLYDP zEqZgyF|O8$y_l{z&P=K1riD;m>yFWXe34Kb2!Zbb7$~QYq2=+2;W=5TBNUGfLNWVu zBD^kp;)TFMOi@{ct9-U!wvKg72OFHob%L^lFS1xOozA^kqSI`kWgCpiE`zXs?rfa7 zmB<|fj>t&$!)qfq1TzaO%9}9#l?&`RpRcL!3Y{TN+;GIXoAhtHWV*#|x5s zJTT>k2f~^j@Rlv$6V|%nX|NfLg;^IZ34`Z~cwC%O3`^eKJsMPwCD(n? z`ON`U+V1!rSA-eQR>G}p1svj|kh-P-Dbp9CICB>!&fJ5;r-CrsF$k%n09Ts;B;Nua zPhpK%%>#8aT`=+$|I9fdsNU$pJcCSxF;C;*PxcT<_#mSz0H;{Dmhz6kfB^O$7y2=0 zfxl;6AoecyK<7*cd|oyXO*10lyxa*nr_6aT;EqLWO?h8G00!&>_B~{dLG5~|mSio~ zm^sqoT9D@1((1k*{@l=m_X*BVO;E)5^?Dc}ZwZ$+)>==hqqc?_d}(GlRj7gL27{BaZ2!mc&|l$=0m`O$5@C;zRl3;xN*{~alXYPp z^TcwzpflD9`}kZLbj%h4r!BB;F?*hGx?mM+)Y4LT`ZxjMx04uaMgWULPSU9PC+LD+IjtTv zgH~?dLFM-gD5K4eD$Q?F)Z`ab*);~v&(r0bh>wwwmX?e?+HvG-C<%dC9f zI*25^=l{1}YyV%*mH&*dzg+bZ<;C2i*@iR7=<5P9_MSs`4A#^5kxMAHZ4q6tFQcmd zofJ^El#aw~pex_E(%0H+Lj@bNrros#4y~Wl58h@rHB>HG`09Q8CmyJPtOa=Fa1UVlMQjfO9B-yB{6oO zGIUo;Vf|_eba}MXVZAS;HN1~jiK?UIs}Xm;Fk30~8S>_-;Dz1*_JMJ3wL%G#E(@R` z?JRwr_LO=vFOyzj0~G{Rb4OhhWyi5LY#@#+1s~{GrwmM%7GlotkMy2HynaiVUE0(_ zZ|mRC(9PB4k@t!D`5$TBgI^Tmb@jh>rfrn*!sQc&$gv!N^6@4ZHHpuP+y}X8yfUPl z&G7aF=QZke@TW}+NrzgfWUwCUUz#Go*?_eyNBsW48eEMWq_Q_+D z@z>OSx|5C_xJUzYKG53yw{+lnE9oa4qC>5(Y4GBD8Y$35qU9&aF`|Mh!Z(q8<~^!x zzC|k+U7)Aamr#z^SDJbEF4<;2qvc1KZ?lf&hv` zKhYV_mlWqG1e06|NY}N~pb!PjI`@-m7u}(Id(<$s=nBof$@15NBpw~+mJtgqvHg_d*SMI!NGMIRkwbTt#I2S33Ewg3OXU+^daS_&B zMNyWojK}w6u)&z~7e6F0-&PWuoKJK4%Peo6Yu`I-qR2-F)w6VP*T5L>|K;AcQyonk z#W0=w6m-iKm^c21Q2B?h?+}Ji^dCByEC$~sJ#718f@7O|=yr+-N{YA975@g(`YMKn zW7wa3u$Kbt#W3Z;f1j^l>YoR+Y8dxbKD2^#wj^Ha8el`c3N}yI!EAdotVvx)6IOjE zx5h)XHCYj1>}T?u@sq~wP$djh%2gC7Zj7{*)%^5)&>b!w=)}mm*pbUIU9k~Q!w#;Hgq)y zq48xVnjd9C*)j(|hV1&sJt*U@I+Di(VD%vnT%I0^!cgAPhKxjBi6th!vBtWW>F9eK zkBkXJ(SLdtmZr|fy5Jxz861ts(ee0ntPuO2Z$jkn(b(P0{j1XlqH*33?ulA}Z#S19 zG-EJCo{YuF?D4RgpM`;`!y%>X2@%I( zsN>9Woc}aiPgr3Qj;#(;krEw=QHOyyS?)06EZg-obDRpChTM5GpgYkHMXWP^jI@9m za|p8D>Y?d_H9oWqfLJ3l{S||-U_%BJy1j6ceZ4)*TKHKy1I||NnAKN=W6Xm1_zD>C zhIu28BJpu@H0}m?;`^0xXi`{$BTH9d`wJg549~>QuEA(tF&pnw79t{lHvD`2@hU$I z>J)&h;t5!jI}?TTa(OQE!1};g?mrlXHJ8`p&C6h@mgVAH%Q8qi$?Zs zJopv@h1W}9YP%ng7sg?)rzbOIy;0}l3!5{65F6%$+iJ}GN)E@v)KKX7gd@|y8M%|~ z5IbuaDuhDuY+x8p?Dxgl>}ZgzH#%>6W4x9-p7e#lcfKn&GBd+BI0{ucuDJRq4Bg{Q zG3bCFo@6*dOUf6H{JhGKv4HAxb1bcPMUR#q4$rhe*BWLUIy0-|q9G!8>Eh)iz7Mj; zwV$=a<{}$B4rXucA9J{g>m!oSFhffnv3G|)k`GwmQm8%NR@q>0kOjtBxMD_?B_0|& z;Wp3ZYsL)1S>Hey9=F1{)9f!{@2gpbHd>uD@Wh_`lI!fyc-{uT*4g5TjxCBMjWP4M z36jR!qb1cEHNRX@VaI2%iLB+0bI16T`eT zn^I=5Pb!G@)#g8R%J45a+JB@8hCivy`~$7H*F&ubn#g~^J4(a{3N?R6Qj_~=s^zJehy5B^mvbtlK`I$ayXFeECOG^{Jp&Lub%bq37i7{)v8G-$DJQqiCa70Hq49 z@_kvq7H3i?Qf81e$?b@!-1lsX*P(YuDg~!!RkoDQ_D%kLja2+*{(m#aP7BTd$Il{o zPyzmPc9V|RKA(Ta9QwceJxVSvCxaO~C`WA(&AmIDc3fCO*msHg1g_DzS?8#dd2FY? z?531mt)wM=gSMUiPVbeUQp}e&8fg8Ha=8o7-}ed?E&oGb=JwL0E2_v2;a+m?&=eu;zxsm$TNM%7u7YL{S;!T2k&Q3+dgk=d)}!y4Q^4;}W|B|vm&W7BW;%NP zCzW5WB@_J*H22OcdgWO~KSV#%g$Qws(6fMwk^=_ueO|iaDf7%#QOYyhTxm^c>{3UZ zyg0V~(Rn&{$L?u5`qa{MMj2MsFe(2I+-aHjS@^|fZ^WrldP(N8`Tbh9>Te@PPx z0}Zhx)EpC?Z6GFS1bN<}es1P|NL7854CTBh>wqeOdZ;?A0xNB8_=y{$i8bo8+zWVq z$Qv5Fv5^ia=g`+j?@1(E9Lw?rai7@^&u8DE#ovYS=Eo13V*P=hX;jmtnyXZ-b(qfK zA-%}nL+WZLDQNX}O4@RT7WUpH|5`Z|ooc0i(MGy=_$NKy+(tPbU&*@qGg-FYB-7)c z$l`J@J&$-uJ2o?$>gNZlPVA;W_pc;+Q$~i3| zycGXIqMY|l`YDMK8oy{pPYpfq5W?FpYH)q6gzB?0Nc$^{+jg>$O;tj&mxb6V|7Ws&tq z7bS1os8?GW1$t7bb`wT^8SfCfl@M4hfl!|1mq`hsWDM)A-`ICBQUmL6h+(UwEDqYp zAx~WuPsOBA;VO=ZT49uDXks;cZIs3;pm8AQCrVVIlg*jQ2b_m^%o#NaRh(gt*ETgJ z=!xjz%pg51yJU$AyZL@7&2#-76?}N6j?`BQSiVvPp%*#pB>0|!_-qr#-sq`&_;){c z3$5($BhPOw5!K0<&-?E&OM|e7HOPr}dIB=7N-=S12{Q+lAZ#f2Z;jA{gn$>G4D;sqeH3=i zU~O|vDh|9h!i`~iNEyhU&R0%&I@<;#TYXU9ZHF16%qZRE&t8&g_-;_Z9cZDLvoL@e zrJh(aHVwV~&Nx_Xh0p7QprpXvt*`?v^+dO_H#9X|abu4ivf0aX@3|WUdSmhVdI-iG zi9^;QcUaw1gG;L_GJ`l53RKb!ihQKiyxPw z#A`OLHI(66=@x9PiNpHnO{n`@hV&Qnq4ClmR+_mmo|1$g*~1WWD<7X@7IPQG8Y~Sd z!`aj|_+Yvo^)wcuBI^*({NR~$(hwfL6g5vaVqtF}l&|{3`{^L0&UZlFZF`*Joq&|M z3(D76pxxIMlT^5q@DBS29GJbE8I1GxF-X}Rj-!P>xOOcLrRvF8!9LjUa|3arHwvRz zM_zp`1dr!?qJ_0&72hBj8T%&Ke>6kufT7xrH}=Za7D_IOa>hVt2tSa-?;b5uR?P}dHby3Afyu!fzm1**JFv8%@f z12&qXaGVK#xSOKqyCH0DGavPuB2r`ZA+(4&VzF|FD}GN(XDqNQ${0eXdJx?;00Wj8 zp)NrRk@v*WF+u@L>?9FvAO_{>viNMk+{E|2G{Zm&XQbF87u!d6)gtho(n90U_0q8$ z%zoj#L95mmdNx)H;`_eS_p7qlTGB@~x4KDIp@DuKcuSSR(ug?NM7}Y-bma}t#ZKG@ zc)yc2Tl22cj5QPg(=@Z~GA;IMrJk?`GCJ8v?(e=*)H-JT&aubk&!_3}*9SE9BGHc~ zK|FkLhUPH=w(a>}--D;7&;{95I3Q3#KF3zjVFgKY_%qMv;w*ux(?9ini;QC`AEbp- z-?`F%>Rj<}*V+H<&vVTF+QojWlbw(0QHnlY=N^g}*K<^){+X)1?$New7f7l?;J@|f z9{KDBjbCw#rq?VZ!-QkB_T70Jnfa79-@8GvpFdKV>Kn31zeP#h$JzAv0Ig-OfPSL{ zE~nSi)a%t0=+a2X9zCMMe%_DHQAOu!J^a#_#~!|azxn-x+HN$^X5Q;w+rXZbIz@y> zBm#SG(+Tl98m3f3Zu?ljD-*!T$gyasXeNP-=XCS@2U_>7lOATCquiEuD*Y;o)J4B( zgxV#N*ZD+Yjm>;dQ$_nJ_6y!-Z#MJi6%{rkNm(9lf|ii&(n0M`;OBcR#B9S9vikeGOFiUHpgYA##(akf|w;gX0sG+B#x?d~AuPXd_Fzc;WIs*efA_|zn;t$8!tkSw zRI&6nZTkI~v!%aiZpa@>P8Y%%_L>GK3P5SJ0X!rXFwaXEg2!LbarR`%`pCkzR~DaE z%3z3v5>Bk+-w|`sjregYJW@k~uoRpX<*{(L4GMH!@N14Xwk2AjbC?vi#jBtlda(a) z38lGO*eYm>Hr}&;;9mNW*S08J)J;viudCv`;*{04kccto-UlnrTPwjeSPG+FX`^P3 zAO`WzR+Y*O@r%0f=e_QIhlaLIab9{5AcUURN1?g!Zp z(#3B*51f905=o*D$= z-$(R4KXj?{dsD;%(R?10w%ALnpM0Y#3(j1#cVFj@JXE6QQ_zOV@OiS8+)Pst?GuL+ z7o#!3Op^04e9pNRiwcuiT(pQl+W~J_FdMasvr*;T7eI$IVQ?%1o0Kx~=4KXbEOIex z2>;z`{#c)RoqtjwADf0tn%NNNjC#KYAx22z{CmP!A2?13 zMypEbKlZj(0fV7EXEuHYOhbV~4(em9;9?n#+P7(F^P7&;on83V3j8#$qp0DS)<*U0;fjq!W!ra_3NeB=d}_?PkTUmw;ABz zhMUY7TkgT#uk-wn{W=&UTmxZRIs_AA=Rhm59NCErP!kl7;_#WQG4n3=?P6%(UC7$q z3T)f71a^7L5Gk`B5e4q>+L?yjLxmVOH3DCq(vaDmi+TI=P)=j8Wz<5fe7X|jN|#{E z{6(0eyby2yE`mhmHWWNQg32Qi5ZmGhS!QkBV~xe7%@bqViV(Xc4i<~txj!NRhe~76 z6B~_}YmzZ`Yc#4KMqo`*Dl-HEAh$aL!K2e49ukCiy0J*x7lp7YKkRppLdep1Sl;En z&aPPrG=|*fO!8%6=&ayrTxo3zz9~&%o<9z8^7sNhtz`SNh zyh(D0(;9o!3^&FVC0{Ij=Y`-sPI&x;yCU)(QQ_x->4*8gv|0mo%Ek!gb9KsO8^je2 zfOQ7nyYA`XzPmR1>oib&o;xh|i9p~(Ach3XL-w;KYF6lB+C>5U0`qp7g`uObf>E>N z@X>{PO0EcD*EM;JSj}A><#HHWEr@U2!KnO69@ZZ^=&h9)&h2Zb^v!%dRc|KMb=+Hf zN(2^5#c(uM1YQ9hl=Vjj21j!Al-|Mj+8vtAQ5YM!RJ z#h)oJ<1Xdoiei;wEqU=Ca(nf28pB*WLpx8rEWb^%=dY9P@7*+X!F*btFNV~&&*{MK zLp1kH8VL?)r2UHJIIQ;F_tdEM6YvT8glL|r5vv3U2_v1u;NSr_j6QrD!}+4GcJo>(w=}C zTESja36VzfsnmjJjWldhZE-P276Ky;xKEM0-1gK^-QOU5_PI*aT~CuI^^kpr4CLkg zxC3-7>c%H==Bos=dRj>Tb`$qvJ|pR<7o_ENnbv7_&}B&@SoHrOQDzR|oS=7&s_g})0knGXtLWw$Bv`TG9%uN3>-WN}gD4Mh|R;$m4V$&0h! zwNVDcMw%elSrOMZGb{SFA#9IG;>TBXo}>+xY;{B#m|=Ig6u*zSb75%= z4OyN*v1wLxUEPlc3a=)2gEQ1vqfKM3gi#DPlj6(iJ*={}nA=ai8|xWNyT~7j(B@2~izSX%J_$PC^iU2iQM-{xRKs^qAzn{w2*F zJv8fkC!MQj%~67LbV41ZvGpy54i<#926xq8k;9Y&>_hH-OjeV=&;rdnM6NIB&yX)9 zcC&%bo$sLfgLPzk=o_7#)E3V@U5GyJ3E=T^_Q0P3E?bzsSi5J!TpvD#(OK{JLmdcoRpx- zdv)0j%E(O8LFfnOC=S<#P`)~B`Uc>qE9Yp3n!~n69mikkqSQ$h4|#TM2~o$GHOjDi z0+`CkU|fM1ekFtLN|4h=Y`8{<#A1xD2~cidkU7dLC;82g^BnYZ<%gLixHMX>*v zJBG{2pzHc~n)!`&(kxNf9O0hY)?ef|o>>bQ)iGkAED~n_BJsbhzdPz-=u0=wnA@On zml0;0D8O%~4c0Kn$5%uaBCG=+?*2>jgWJeOmVxblzv#r_9_kzZjSh2`?WeaKe9l?@ z)2~mmuaD9fwNtc2@Gb@N3>DtR-2p>v;X6|WLw~E`kM5C)H8NG42&wtcWZR zk*YM-%NDe9zk8`3GCWeT=Y2F@E2puaI0_%m$HK=t7TL$0p*PDJB42Xh6~l9!TmYIK zEU|ufDvU=LLs=mYeXWCV1^KYvosahKMaUbJg=K{qu%DiW9LhjQavH4M`Qz<_u-J9? zKb{}$>!DC=^M^r$6&75uMFO86hWB~ne6Th8R`5RG78o-)3!^8xB1tw1583Z}&dCB< zFS!$7az4EBCv(Rw&*xfkxH3E*lX;xmbW#s8-8LxB;hqNZnOOd5I8+uU!QUzt1CzrL zcGCkAUlXC+>4|$4p+M^#?!isQgt5%N-KB;z+vZ{7iWpR!a>o!k4_s(>#SqTd^RfXG zbL^mb*98)JPRJhRhubywxFtCkvN86^vtmxvFLN|3HbPBP5T2c5jhJWsoDyezjB|#J zT^e-VxPSJM3vyZawsvB!fqfF}@=XxbrHF&Q8t8Yj!-eNYP&ucM8>i#Y>k^20JPY|9 zFTu0`S3K+SM$!8~#P_a3!&qkJVFM9~(y$Nu*5{Epo z9IVrvhSqVZ*mr6X^u@0_*NJK zo`hqH-2p7!%$dBkfsk#8z}8xR{~9p&D=->nr+slHVj#4aMq<^_2z0%Rz~I&oFFuGN1#?E0v7CN@KKC{s7W}K zQ_QjQi~$NhnV^&Xq{H^uV_dl-ymvXGv&Ru%crFw>WQkQrbm05m2_ix4MOg2O+zM;V zj5S8XBV}e>nxU=M8wnFFki6C!qRG1O2=?I}g$ruum_Sb43dh}nKO(URmoLJOs$hgz zG4m|ahBJ{mm>%ha#%uP-7WcuqbGCSU!5Z6&Off>-1I6>)ak-ImdCmMeiwUu;$C`B6 z;jy+G9#3M=$_@waZneM^-Uk+Mal{-4_G0^c!sxp(R%W{3b*mvhKQ}{9JrJ#7$!8B+ ztl!IC1j7MvtTVvzZ+x%WV~%=eey`%ao%JmdOf6914iOa$+9HF6+;5m#t_Y=RoU`S< z*X);F^yIP_4y_W#%c;C~yR3-EC5m{?8dr-L&$9eAHu?+VYW;5te#pJ{pQSQl5K;+!HHFanc_0{vphryF01I_!?QbIg`b6qGr`>EH+#MHN{f8s`J6u!{D;7 zed%If$Ij)xTkQAJ(ZQ_Q^i2GxUuXZTGwi>7o@~WsG82AAJGo@~|M}yXe2IP1{p)G?q&w6!XBowZ-KLA<>go9Cw#wa}Yj2w!YTXD|_x5s~@i|(4Yh5Le_?L8KA@_Wq7r>+=tu(m4llR-wXzr9|p2}a+k(9@f z%aZV2%lt+$GmLN2LGPvk=#{=li5I@o69}R0ivs7pWFTfP4AXQaIOJGDXtq8yn6=_( zB!Q}}idZts0mHv!VMK)j{tUK9Ja_LYutz=9RD~zlZ?tdJWD>pKNSO;7C|6(+otwCZ z23Z+VhQVH6uc-^kfABQ2QeH&8i)v}-#WL!hR6ymww{v&u4KhB>dat4w*1k}|#3~Co zXzAcOpDTaynNXDdj)Pdcu4d0e5BnJ9B?U3qjB|3_p)&ce3T#cegQ-g#O0`MY#@CRo z(8n@s_Li-5g@7OLc+NTF5NoeZ!7_N=rH9p){CuC4dCUQOeg08V2cZW|sMWu>h za{eni$7iTQgDy&9uD<}Y79=I)@Q6M6*}tW+KE9JK3y8tknl%Mmb>6E=VY#0oJVz;E zz&$<-FO%ixSOL=dlGtsb2w59ZSbSE(Ail>QG4a5CzIP9vr;4Qs`kdJ^!9{m{yzk`9 z?nqOd5{`yIqzf)|aAu<~i1)ZDn55&4eyb=1DTd<9mSD`^ zu*-~}n<(_$v&7+ie;kD=CW(7t&=Ldq&Eb1Syd2E+SbrTS4tWm=wB*X6>9IDx-I2j( zGZCB$Q9-1)C<<@>q=$olkf(|$mix2Dpdr%&l2?497Cs|3J%90^?iT)6u7&@V&s|})k{ULY zleNQ6l8dmw(Wk0-rNJ4XYXhlh+CGxD*TIiL;)tp;#7V}Aw^z)>p7amCMVDe>>=}=; zXYm-gAO-WB2BP4^APhX21j&znm~0r0^&&jmu8BrNFZ=ZQtnvLpDEn+vP??#C^dEVU z-Bkdghgq=umIia>K~Rm&#<4Rwm^m^T{hu@O)-D5EG`Pcyd8RQ18QA^$UuW0}Zmy86 z3kQ>WFmYBMwmgo2z`!6>w>aT*gAM9h3y|!>X9s7_bH_NMz}y1)eh!#+*&Z*Xh9jwN zCDKO?gz&gw_{6#9v*d|_cpID%=04K9CKx*{48vXgQEF_73CziVJ52*_LBa64Vu}}w zSW_1C!Ke)jP?=PKrEdY8s!dPB>!GB4>n$ z*<(?V7PMZQqUb^(f>R^$c8Vp`_&J|xIFGx0gK%8f92xI;_8G*xV6S{U96bSt20Fms z!x~S@!_djv-?U`*7i1@)tTF*oJ9$0{X#Y6^Ikq#Qs9K8V z)e-OtnvCGXp*CQCLka#5XC`xC{vjTqvkk#j&et3QyQ*TC1BFIBuspli1?y# zL=R$Zf#>{*LQyEZ8i#}Cskr+l5M?9$F*iOGCNaU7^3V@FdSig)K+MQu&hA};<1gH5z?C+ur`T(;kvfai?c%R6I19Z89|yg+1$$p=<5EyF(;afg9s^ZI?bkWdQ6NvM7q99+Ei|JE`@Lnhw@3f5(JHs1o zi@Y%YoimajIzn}{7o##>lm$YwcIa}IM=B=>REGNaR%xmwIJULC7~ZyBPvvq~Ee_lux; znx3D8HcB zGCk~#Wp@4Cmvq(r4w(llVBAq9>@9svpXE8ztJ+3ypLWpVB@N`%cY`W*Z%~BTRqC4c ziL`Yd(VdkW$Xss%U4JaXzKjOn)S)KSkQz;*`6bjL9YkgJi}3yYLQJ1hO`~>Z@%`7D z<~Bc|%dvTMp=2^HXifcpKL7n!uD}1$=R~#Y;+Cf>o)?S4?>RqL{k!SK@RhXb-3;>j zVo&uKeW=aKXf*eZ6urzI~w((=i7scPpj_O;g2 zwbyO5{!|YQJKaoM%3jdu$@eJq^c^~o&H5kdU_wL#1^!@f!CplKUp9o`%a3$xt0?a4 z%HVce6J6iNtjx(xRMYc_R&2da=dF9FTS^v^&5CHc`-yh$3&k7D5d3_?ylDF`bm1Q7 zN&22pP~uw}yi*z7FUI4#&ly@1ewuv560k*v_sofHR9@Rgj?a53i~miP!do(xtfl3L zgdkg>h@(r*aURO}z&y-NCgKRXp~5+EHPn$jF07Y9tEwb(vHQqfN({MyidY`S3@@WL zx_bUMeaTV6@-Omelheb;5;3%Dm}2l$O#~ceFYhvCoFP?yY<_5paYEa4zUQozhIYCl zp3w!Gwx^sN?oOugMRw%=&5YJd?Wf@SWNN?dKnrItC4GM0%tzW%309Dmq6z(;{FwZ` zg)ohI3jRk_AyC8n;kn9~^GX%h*4e|=PYuC6+=abZ6)PH4v60`8OGJ29)6m6+@v_(z z#=Vnkq_7?S2+dQ%zAQcNFR+F&7F}ITr=rXM(0KV+P?Md}Pnu(BYF%X*>x7c5H+DxNVSM zunV^iRv_ng1(xS5#k!|6@POx>hueA9sEEQcEen*ra>LsX8hGAr0=wW0>}@~%kN0wJ z*K~aR;e+D8UXb}9gK|3u&Y353=4>Dqj!lN*bu&Et#LS`qAAFn1=MpRK4eroF_FmR7 zR!C!UHhU~aiE?+OFf`=VU@N2y<;%>6)!=z=kTBfWO5*1sWhBMup;%oFg?s-{@rEAS zeTer9{SsKV;58BN1eI4?;f`H67HbCJkv#6v9R6+9XGxH zuUv!vqwC|p|NHO1FH-#Zla!%?20@L+!l^_tyJh7w?+kf zRh^G`Axm%o`wj~5OdT%P z=0fdxHa5@N^N;66-q!;!1B@}3XE2kGF1S|? z92MgLL=9uM2s31>bnT%%bu*^&p7&LP6)J2aaJ7}aG3N>Tl3^(RR)kUA29PmIKx9b} z${)MnY)%1U=KEn8&!vf*9he2>hDm9&FzJ93bQFwH@Wu!`_Oc&f6!YlJ3UTq97s|rz zuy_sYpTm5SYU2(67p6E}7=VOd#?ZUu3R6B8`)!{H#hiI4J;~R_h6R|Oz&*5gBJgBo zB$OUlLbpx_Vf=GEI_rZ?SEHHX8i&f@Q07jV@%2*=R>QbgRxuFt(h@svJHx2e5B=I9 zXj;p;sO6FPaFW@dPlK_xfHg$tAuM3=cQ%qERTk#!I}{q6DVS{QatOMu(#9Jpss z!?uR`Fgjrkp~ekJuN#4l<7eZ73cr66!%=f-C97K+PvB9J#t zHPQBHSQUu%F$>Usa37iyccNwSeoQJJhyXq#7<>uD(pk)|PY=V<^mJ6krz1W&0K|-l z3lkGD=U_4}s0U%PCePrKxmaqSh|KtbP~MV`9py1N^f?*V@7tr`X9(VzL@>96GjgX{ z^YsYCC&LUJ*fR#du7~2mNPieU@Zzhz6?132xYxxR%f=D3hdV-M9@lHRGXr?6Eru|M zz^=d+&g^RrW*=%;wKwi<=hqYW)cLrWV9IYh7_sKryEq!}WrLWBX@pOr!|>y49

zVr?WB>CVjh4RAw5gf9%r+@ZRid$(fvHTu*WAw2Uoe+j^w8-6%Y>yOO={&+IL7I)hn zKw-rDgjkeJVI8j816TI~sn^0`ahNcfMc!{|mfU$v7*l7DyN}G#$~!C3)7^F7~fgsPmabo7^|6>l^R$^`77ma<>LmSs=LDX0m z=FOZR-=U073+5SZ(ZIE12E5M@LWc$S?y?TM^OQWo27I91Hs)hWio*zI{ajv)_ZpsO%q9KA?NiNxv+M^y*&WzFYi45qyQz@N% zb;LLA`6`mAGRIZ>IZ$bviEqh2Nk#rW?GBuRMOXj-o?-v(8a-34k7iEVM!~Fi%U{_~ zf$m4h{PB94?UhUAS0_;E{Q$ZwJDjeWaHrysBc$`>JIS|kK7Xy_|Mop3((ngO+y9J& zAKhi&$9)<%_$&=!AMz#UWVy4Svoo@TuI-S7>ltmhq;kfp>p7WzIZq3lRWK*NhA#2` zSj0dKUMe*djh)op`i54<%t5r_A-a70Bn_6CK=atQdS}rU<}4|}YqtnaPwylXRX^N% z5ehH)fw*&-Gnsy`Xh_%>TGgqAo3a;a-QeRiGvOQwpFTy$Ze61qEjt9sOJm-NZsvTw zqdeuCr1j?yEhrU5=%rT_oX2@`(nI7#U0CO{=J>%LJ@=)s^h6K6`Du!~ehT=yN(Dc) zl(5$11J&0vH_k^AWnBU=c%_UJp|U7{DS$#JHB9epq=fBa5X)(&O}7;gct#ze-R$QY zDTT8oIw%{=o#yiu5Yy60?!nB<8F-%7{C(i-Z?%bZPsY-wFXJg^b^#@JKcGhAQKWj| z0F9M9K(1{UeLuGDq(Lfos7~)1WpI{#TbwG^XWHPb8S}e2-)bLifws}M*vJ~*1*IS? zWleZZq%%C&N3T{U!`?~e3Cxwp-O+N;5|KpPC}k{}$Xw|k))>9g9JdcEV|57kSF1=u zY-|-tWUHaA+6tF<2tjwRDSjXJhkTnlcP4hxef9#l6?RgTe+O+GQAbaBKDo!eC-<%% zB7u8n3HujQa_b$Eetv=^mFr3S>S1!_ZoHmT+v$X17meU7@x$~#RNwWBl4=al+bW4U zlA<`W?jnUqYeQi~2W=M+#>6}^_^=P}OPMqt>|$+O_bDw(`%dvK>@hLmj;sg0^n$&+ zZ#io!{zV%h2YN~E=O>a{{+&j?|42f=xL5dzG9)gEVL&PGX>xTil_X%WQxZc4iXvB} zourtlqg4KprkaT2^%CxE3hAM5JDK^aEQ6MICDu6{P{_NhcxgRI@xAlKQdL+tDk8{E z7ccls9;@$yCdnwA9TJ1NoF&#T^u;}MJDPAJP=QC86OAG@L5$A%u z*f^{aQve;(fsmFKj7Hkvx|9yuIK#aAjt?$(tHArXGJ7{<*;l5HNp)IynkR(FP-%E9 z(LwV>&IT*|;yztjOnl5N9WCwx+iQ)1YW@(b48|o>z7M~&$EW$G*qNz-zaq?c_T_Bx zCT9Iga|SIZi#?Wx|I^3u?;rR7$;a01x2VGDCq;U9F>7Z#?^7JGbBs9xa!y|oT09e* zvIfw{*l65*Zijfg1lUxwH)sa)@%LxoH1BU0+onR+Jssh?$q;6rsNFm-HEyB$k#momO!Yb>%|9CEDVXJ5zX${BoTl_L2Z0$4Zu=ILSkz;&dRc@FR{!=#U_~?}5Cqxq;BU5{jL;Jt3&-g!RqrJ8pBr+{>|;YV8JFxeV-I%Q?W`IXK2$ z1|hRjkRca~S7(|3_9uWlXA=;z$Q!YS;gEV31jkp*g!`F*;vwPi+!%{6{RAxd6pjgX ztjoHZBU0P{AA5GmJF!^IyL%h<8MIy}D6R=XE${kk{Q}XX?u0PzjgYZ(!3i;6wAx!^ z^&&SmG}u6Yx+@A@OtD{`P2=nTAcThn1$Uc#he0N0I`{JjcFY+v1F>r$q*2bITah?%! z`8BrJ+7NqFfy`cht@wFkRfj!dx#MHoAQv2*!~F|CoUzcx8Q(SoKBqJ>k-NA*e;)uz zcg_K1OCc~umV423@H1Q$F=sVl%>S>0v#qm@4fuVghN9(yIKzH}r$s98iW5iYJU;&h zh@y3=3M6Vj(f09eW2GeUzkTKj2-@Gy1CXoU(pZ(bR-a z(tK0PbI)~394dqOxSwQN%{`PJ7idN96nKc`ln*;PLsV87Y{vKqXEWUQE7RuunVzJCaA z;e2Rl6@|QbO~c+EqAPumXv^!DRJOjGPJ9wU)S)h#q}xOd`fq4QtPV4)ZqwQ(F$`Vy zfL624DfjXm)ecp});rwSQKo>o{F=E@x(J_laZlawtF*zC3pFMSVc4G!BqsQqGJC($ zml`pYh^ryi?+NXH`IgLuZ_v5=#J04D#L`nj%Exn1JdtaxeL#|QUtV$|*aDtMr zETenNmXXDsyCmEy02%S)WPkk^?Yhs*(e?Lf|I=z}vtssVwa%9mLG-bkym?>nnEOrd_e-Jm1as(qE1|=MnMhgOZI{qU z!DqfuQIG&CONBul-6S0#fSdtBe9h=1moLn8}re?P2N=WxjMvzYXtsj8OPH z5P^FQ;M#11ZMNQU_{5#xi;eMax-%N@IwQ8l9XsSikiAj}u?w%!2_>HETDkARm-~CW z|InG?W{~H7j@B<`qJGuDiLY+x_cFv+_H4Sp7e#=&6w0L9>6ZQ-%52?8*Pgc1-{T+2 z-en10FPlX+lV?%l(R1Xh-b^RA-lHET$4PqRLAv?wH>r0&rKMXw5IEy4v-LBrD!WG} z@=df^xPfzCTDUsJ2)>+2N_xV%qcN>C+O36Lb`HRt&zDJGg}tvGs_;-#!0%>h7_)C6 z%32+h*Y{9^f+ALC55QOZUnKHO1~H+nRAl~@e99$}Yi5j-k3=EM9VkC3~LCpKkbv7Hv;BcBUmH=aT7RCvqK$eyA{zPp@!f6;t)P4$l3K~Di|XI z(*hyv{Va(Ey#h#o+e4ZmQYc=ogH@)#$=OI5Ta7efnq`eIZRRi!3&!cqmYfX)7UgT; zvW^Dq=1Jmip)KaV(!ygKEhOf$_k_Jt|F{2}C;XlEzUFgHE1yNSY5TrXQN#!_)|rob z!$dkBPc~=ctWpYO2gM=(c@kQ#rXW;283%U6V#iwc00bps{;7EQ=p~_KQ7RI((oi!f z2S-?|(^(#k11CH&zgrwFYVHu{tXB!^S-$<@I8vC0OGf$sgT1$m>UwY2eE}&EL`g{r zLAtx{ivO>}GXo0q($T&u3DqO~pe7%Tdx^2EPf17GvrN`YrsL~x zp6L!B4WHZp_T4$0nTd0p4fg3`GL9B9v#NO%)YRPYX7>d4$qz^0-i7$Y^>On=FRVFb zh5I6e@e8yOHPse-lhP4TZ3CZkS$Hx(j5$YB@#%Lq98RRdZ=56KLp|Yhz#8UR7I6LR zgP8NONa`;^ukIuq=B(HJ!^~)1g!U{*2@wuSR4O7NM;`9kCY?2PduG%2Xt0i<<1hFQI zy=NL0h%Iu)%|WB^K*tUGQw$*b#|YDyWgsxi4xfsx5!2#=5A_DPtm_KLTqk&5v_wVK zIv9KVp_v&8F>hjFd>{-x<08;l8i#rjZ%p}`h-D9=@Sfl6n>$A$@Rciezh^(4P&ht3 zD1p-DW!U;-1;&1@LHE(+*ttIx(u+z^+_si;Vz=?mia(FeO!TapkFJ^pDB!(|)Zhvj zUET*`7Vf);KCH6)-=!NdT%{zQSE&3*a;BSWM11r z&N(ZLL07Xo)CRKt_p3J^c8`QWR}vxxTwv8;jMdl8v7UK4B5Uk1%9Q^e)(93c#j929 z2OG+{btQ(Fa8Vo6ck19s&`7kd;~C~3Er_^`0F@i##z#v`>9U44`{*uCwnl5Q0TTam z9`Y`IDDeL~hjmhv;)FuxN3gG;J@N&eL z6xP5V(8uUmT3GXrxwm|s_x%`-bDBE1Fvkx$`|Xj<{rBBC6KS5q$(!v5Qpwx2^=`C2$k2}BoOkGF7ZA6 zGVkWrN(mz7+Y7qGTG_8JztXChdt@GbmVEzokznB)db;TYr4$Om<|^mN&^5A7y-Xrr z$7!_5Zj$(Oo(fV=(ubmB6gcZR33(l)*Xs|_=I}C#kX=qc)XFKrJe9WB#8Ym}CKs)R zXUIk8m5X}*Ul)l3B{WHL0gbhu{r}1t`p-U-|NGxJsbL7z+*|3>$RFhFbDVYzTunhW zRaEr+27PL3qvvNX(U)=iXs$^ERsG#h8U`mQV`VK>=rq$u&PVFm{DB-655cb@p?~-F zr$z~5>8KxcGvW{hzuZAf^H0*GrMKu`vR@bFf2U%bKXiKSV7v{xNEy$Skk1UNJw@*+ zT=_fa0zW0G>~FO2$aivMO|##385pkbBy}Yf_Mo4m?rG0Sq(KNG^*2erS^#VEf77nI z_q0%543bWRFlXywI#l*+|yr7z|g(zE>jf z-Y^0a_Os`R=d1=N*(bWply!odxWrtAdwYFhVEL7f3yR{;LqRO_9|RLGapX^CeXi+o zT6p0gUGAx)aL!oEs^ZT`x3^!D~`y3^W4sdI57lhgnVW=GVO5W_RUp`b8 zmD_p#nW2riAKG}hMGr%}?D2S#5o>xapl8RNinxIYSs;p*3ISXjG7u3a(#Q%>L1Pj# zrY_5%LV5sZeHexZ-_{^n{ zaXp!}q)j|0s<21o6gw2GVlPQaD70FFaF?}m4oz8bsrj!{v;OyI$AA0p+MN?PlV>z6 z{roYzFCR^;L0oUgOebBwP8*$ZiM<;aYS;suqlZmP*%Q<(3a6RY@SbV{%UdJiXu*D* zfrdE59`*J(JD8Cs?oSg&XO9dbvNSQ}r!+dg86bSM4oR1E}!?ZO>uA-l?fd) zN63B%gU94hR16Nq_jpg-Hi*OAG2Te2=ee%0C1-`i;!8^=#!QI7^6V@mzD-BzrgSu( zPQyIuv4}sIfiDX)(0+0Zwls{!j|KlWx8Hlw1v_V$V(b`y)Rw0pk9Xu7lw2_6rz>3N zo1<>bc)SXpfNb6o7u<@2^awYU>H6T#Of&43(8siHXVml>B5cVhoSW#1GxH-6aG(gn z-bT1N$AxoeBT(~_>r7SVG>n@8>8H!^aZ@~URyrU?UK0*yOrcS!h6BNgC~UESZSXYw z;eN)r(G>5h?9p+MGiI&0t`eFF1;K1gmW#nP{X!&n0|gdiQ7vhRZC>UW+vdnT1Ut{q#1Y{Z;Q2AfoM5qhC)AY)cXaZ?7AnE zH#2Xb82EjeYxqIFIAJ^rNlVRd43GkBe|G-4AgIk;qPs!#$oYmwg)rTZuqe^^U^V z7YoqyECmtCu~?VyfvHcOu;Qc-bR$arlRh;*wQH<2Qv6$Mj6+X+?p=?h(bf3AQuhk?LH_{KY zp1Iu`*-5;|a0_R>fj<`Z`hiq~FkUPUS1iNvTYD_FosGiRE53NPA_(7-J#hA{D~j~| zFl%K1GgpI=a-4IBS(DwQ8G`X69g$QS1jk{a7(Ub)e`6g``yHibB8YYHfy^4%Y!215e__rJ$B_qI zS8g$5FW*Rfxz5?MrM5WO#th(>e#~HX#5vX-%r&$`&RAwu{I!53_jrn*EHFx-80Vgp zw6AoB*c?~1HJd|ilr`M)Mxf_~F6*z^AIO^joJMOb&U3`hRL*GoV-80p)|zAj zecTVI$*}iqp&dr6vWAy+4?0fl6J)K){3rwHOw@xf_cmFzBe6x?0z3BVW3#9!EzsOXtvmGQHId@4R9b#| zGi}y>Ns}r&X_hJ*NqEjr8m0D~d{b zNZ+oBp=eegS^v0BPLGaI%iBxzO8*;8n|hP9dDiy!p%m+UcsI)0>qqmFG5lySW=0#K zl6%AApMx=UrxHef7>Ykas!04a5DlKfI2NFe^${BQD$O3K2h4MC6+`3(X3)Nuf>P8u zQW2Cup9u413kIY7IrCJv{-S~)dF=ksNOHz5q%^gO_DL3zRCOM0&y=OXIc+rL>Icfb za+M0ST*!9sA(Ht~L-jld4v6lcza!XB-y?*NZ}cEIm^B3(WU;hS5&0ep__09-dKZVm zMtLCCe)>YCmZBJHB?+^V&s4RCyGj)PG+eutB1^YYrS^UrKa2ap zd-utOKaXdDVyJX!BdM?o$~J#a>z~SSb1i`8gunFeH8Z*1$zam6Ph`9HIUSoM1()DK z(Bbde*OS9=>5v>~1ZVsfXkzLPW^XOxn#M;Ix4VX-Zm|-M8Y*F}gc9sEq!4?XXR1;j z5R!I8+iy{P{J=Sm%{sWMrhq@chhp*uWguT4t@BjzowJFjl}h5;88tMw41@GqW(TCH z;`tOcOm^b@+=Ih0l(|#U=^EJ0ObI(BZCo5^j5V+PAipsfu8R^lw~%#+^9ZV&ILC2G zHZu`Z|I3~g|1;+flqO*7082E;+H;kp`>bw+gkkORXlCk!!iDE`59|}r8=Qo#M^j+Z7K1l$$H04g zEc)h!LieQ$M%|0Uv-osezZ}n;4JTYWHUZasV_;M<4jX01L)X}OYPsZA3yJe;n!kQd|m5@>0><6y2uSzmbt>`5Z8EJGm(4I z8LxI|LUNruX7enqGKyeh=LWSE?kHnT>r1(j@Uzgu(+p;_w&&q{_grW%S;{PmWeC2X zhiw%VFyOrVuIsERKRE(PN7&O>H4-<=@*v-&jj4KOsJxlOIRcC)V9l=!CgI{le`H?L z#v=a}nhKAW@Bu8%@`krRGexnK+T zRtHPQL0e6gHLD>w^}`Db*;m*4TOWOHwrKEhXa15MqFkNfHr@tjrJcc|aC{4k!kn?p z&Z=ApuevSp5G%p-cWdy=u@(Z8x5LzIHogXNp6q@%lo!mxvyCOZbD4{RDf#d*YJj71 zJraB3QQ7Z}gXIO7?N^Ft^C~zGU=7+b)?(_9DtsKg0pD1^Gry;ab7Jx^gZ;eO>~UP0 zT+Od*8Ek?|5VL(DHh0ZOI4!}#knITbI|7qSKzDB-Uhi_j9_BGrZU{i;FD+cYYmQms zfy}v%!o%WFs3!(tT&yqdeviPU*kHVGh{jshyuQ)ld3r+-q$l}dRcs)H)Wcx5!Wg4Z zN8;5XCoDG~iI9WwkaJDO`P;V8x$cUQJaawc&GXG2;gD2x#RWswdMuAb{BalD)eV4X zlri#HllqgnSA~16A@P&7(M~pK|7Zq#MI}6EU)KgpJq+AqjAx04=oZ$38RywnYntN_ z>sDs+wU#R7jX2KuD0^axBVx9=bJH3cTg@^1Fwi`m=gg;E@w93Ultr0+tmcV~)vg%B zdS;2BXk=tEgJG=+%3f&T1Md`feDQ+mUUNh*H%IC$CuTL9;3R9U50}^=`?42yus&ne zQ!n;A8gY+c2*u&dI+U)cGI#!(Q_L_=>l3ww$O9bLPvoH${-Ex6{?stM+OZJtRbux zfz74AB+a_k{*Mv}WZ&=06B5v1hEP-8ARNBHIVo=jFx%lNEj->s_n0r4Q2dC7eY;It zCLN*1MK`EYbw7pQ*g=bmTWMv;RnoIMM}O;%QPuAjdUW7QFhPQnYRt$IDF+^(i6 zqiX4od=-f|&ZYa+$~0WOmEtaJbdhRZKn2r=Vr#ZZdU zYO0UhNWmWtP@ic78P_hOzbU6lyrGrq*4`k!gWu^Di{TsZb&#@t6WJOaAYa416Q27@f2Rd&4-%O1^y0f5%KviqvX>?XEExdT)pZaWqz3=T;@BZRA3LTC zLHNE1RJZM;l%PAbK3M=Cgzr#?^F5+@TG+W$4m+E_QOYb~4Ay>5QFbp$Ed4aiad||$ z19%2|cr&SJWK*-#8d4d$i=-Tnlbr7ZvSVGRt;~D&@tq|rhto7%tA(9@CyEK$CZ=d(EFvyowdJiQS_}iNkc~CF{J?<*~nA7%5KX z(9lpoWq}~VmKV|`xgzrFxlBh)WNEvK1kDIuLuX4q(DYu;Y+`ShmCres$Ft=~aPm${ zH@U}t?jtl`;~Wi}*-Y-gM6t@}C&}1y4(UZ@1iG^)T2cXZOZq8}`-9S6&SRP_i+hsY zl*XL0_p~ooA1bXz)?0dXP^Zou^3Q>kblLI1Cv#Hd4$i_U+sm!t<)V zBwZS)H6TQI*~8*IqCtq zOPIlbuoOfBnbm43j?N1mWa#{z*4s%T{<#X0hYUeZu_`LBDr2noAZ%eq?CcTR=C%8u{dYBbhhU== z;pWO51T0?$d(AS0_a4HrHQtyO^@8F@WH4v01#N{*ch7H#Z75`r^>v z76o;|Q0!KA#p0)_yfYk+rOND?=Q?$}ei90l(qQ9|gkMia<7i+qPQPVuIBO$MeUHOr z$qXE9&wxAYqPsSx!7n8X61%cczJ4rJ+p_SpehfUcxz=?^#>RJ<%;w2}xMDhFR7b;L z_rKM!qs8r!D?9{yYC>^#V;~Hd>Oy0xA@`}Wcf|;A4lNxmXY{-AeSH4 z5PD}dahQGO?mUC7Td9w_c_kQ=;e(@_MxxIqmwn&NToPIY_0Q~QwynVYAUjlg{GiSI z`1RKgM*VlO+*ca1I0cH=JaQ!!X zgQNm5c{lULI!zH(n}oW(7MR^0h`D_x(76|d1)TZ2^W|d9pSK3rwI`u|-~wE}vW`<$ z_Tot~^SkzDB5!>l5(_eMS*!++mT$rR)>T;hz59D7Gu>z?Ta_dL$TxDtS2{SgqD8V-YmAas`bV%a3% zBJT{Eb2umWMl4QEj>0mYZ{}L$3yS-2$X-c!AUU- ztSe`I%HS!`)G>x0Gg}Vsw1E!Sg1*(Rs26rdz)c&3|209$KpV`sXpU~~#{|n=(dEUN zZFj7Y`6LVx&HVk_%wL=DKKvL!bQ$XwDqTB> z9Sy1`Tym;$X%?J#;6xl#+5P}=T}C{b5D?1^=gtZ-bNe8 zSJ3>Ub>t$xipEFop>^!HiQdfqxTmbgj2HkDxvk{Vag2WS%%PN_BVE=>RMH=@7RsKu zi=6M@qr|lx^y^9`xjtM=@0&{gbtZe_bvB)%I_me9XSPfSx!hEO`b7zhU=Md$6X(6z z2}88K_eE);vOm&kE>HUmcxjeM7N16*TVeb~-P1o5Yu>LAo^t zpVQb6JVg+LFIghcOA%ki`)HQ@G154EkWP1VUe?*)^v8z37gCiZpKL%)vua4@+!yk_ z^PFb5U8FAs-PG_%3C3r4({iyJ6jjnhH;b!jwb@h}^`@0F1}~ww^TeKTw^Q_VXwhH z_OP?QZ_Ma{SeepK-Is>rerX$d@qT5d4(~9`oyezfORL zx=f*_bR!xrn@Lwg5An+AEoTv2A=_7(F8im-(9`6P^i793we6yO7JjDLDk8YwbA~h* zOW^21aa_JQ5E2_CQCg*fzM0*0CHo}_*FUC%Blb~T%2QH2agg-Q-jZi@H*Js^fLzuG zO#gd{mYu#sUh5TcKy)~kYT9A(pzoC3H4r`5gxIGpjv3w;DXrlYHQP+0!lBjFHf0rE zzfwbcvP+4{I>?<{#rb*fY21oI*d!yvzE@F%vi~h_=rG9C$>VIfJ!FsRp-*WT^0GwH ztH~Y?4`uewc2QvaFX~Bcr+`Pl={f5*o;!XfC(is{S^k!050yc#vjH~NYQTFW>qs7P z{qOpfu5>9NRD<(iIa8o|8Ta(&rnoX)3u239a6pE+u6%Cw|K{^dPz{w&P0{;615^L7 z=c-W?db|(9;fxdKEb?4p%60=RW^Zh4QxLqeoSD0x14FGs zd~a9*mCAGfWzU2EU1!n9-hC)^KJ!0(pXOv$!0D|CdOQrV*ewo=dV6W+GdqOW+95Pg z3ouj=#%_p2 zYyAj(yUAKZ5l<8yNC4VWFw-y$GF-D7@SZb^`2ywdnB5x5H3VyFUT`hYJ~|lE&!RAp z=UG8>;?O-s3*YXiL4fO}-2$<&6y~4j8g@Zi8gyx%7i zDfn%+0N$2S_|CqasKdN_Kj)9DRx@yhqH#II5ucbTyXvzp5(fq2(Jlj|-(ek189~wC z5N3JyBP;H}taaX<4-; zb}{?+$`vmd38|sxxH*ik8KUaa6wH)O!rRF{5I8pj-P>kj{{kE2+=<2Oz;TFInSueM zCZhTDGG^7S!IiAla6DOsNn1A}``sqwUf762of?eqt-m3Z60x>sBm^(q|)aMkWrOiGlfR?tL=Ye|yvo z&7vW=ChLW;Q5Lw?WP|k3QBaTcz(<2f`2JvB$S^0|I1-9Ap3HvWy)Jr};Ci~@1M7PuSwsAIj2UNmjKT%(U-FrIaLYFg zfhlQ7Vg0qWj~{mHhha~IAv5;_P}a+w{U+w9+yOctIG}kTXO%UwKmQ~9%-UH)#H@k9 z>yDUu+=4l&J~(6H0<9D`O!FB9JJvwdjCIBzW>wU_3Pn?w4HC8k9fD36am5Z2+YC^a z;EkS7cIaR(*6G`XjdyI(cn$1BjD+~%nK*TG1I}xg!cQjw-(Fh5^_V_19$4VW94!b- zYGckg8+>vBdPj|b-7~I3w-R#PbWvR4guNvWSZ2)o0TCnkej%Qt6JD3_e0Z)E3g%m5 z!3<~g-(rqg17Ckv8BAfngnYOdYy@u5J;gtC zzND8)SoF>=~Zg zP9MK_Q25Gv=DilsjYkb+-m{qcBI@XNLpd!u>PGuNh0=Ln5t1@EPxG%>Qo8$is@4t@EqN^j$5ro~fltYd28z;1~2- zs8AXsJlt@xo*C>3v%}z5V>2<~n?#xtm|pr7@gU-?fOc zSf9CR@gYibe*CX>?CZj2t`(c8*rc8Go{M3j0cQeazNJ+?PbhM}0B6Supt55KW;cnV z`;h{=lSbmX&_2?OxKH1&w$QmVXDD9vIJG`wCdJG)T6g345Ux@~qSPPNVvd(3A$@}Rde{3hE${(hxI_`&}nrTExBbB^6 zNfLuzk>1>&wDZ7L`n382%_u9S)%vgLW&9J8ox$_Uj$vrJG8~g%3E_LIJhaC>pi<_L zu63J)tQIE>xtt1B_EeT{;cUGW&QHJjox)pRkoSv`NO`1=_HojvR58Ox&ms6OX^&(L zTU6|1j^Qc`__Lm-UQQA11KMaZiC|`78HFaMk$USUGB|$2#mql~HdULD^x_g)JYfxq zx$mT~CFjZSz#MwOsG`+11=Qkko??byrIa0n|v3ya1NV7n0fOC6p63hDt|<(zl{ivMgCZwh7%tC6Xu+ z?WgPgtb@8P$$3ER`5$A0u%n!le%cFyJyvLE9sKKLGbrt|NA)_wE(a|%>S$r1t1xD; zt|WGnG}_vP(PzQ$d2}zmI>_3LeAc;}exr{ayz9BDi0B*vxHb!5VZ0N<>UjpS&G9Ybuyfs=(P{ zN_ccj8*3+;;M+r07_iQDOk)^|qj?Tf5dek4G)Ro%d(rU!zi$0!pIL>z0}{wSYx`EDem1>#i3nhIP94U z)47>YV-4Vc^f@-xnxj3#39YQr&nTQnS9KjwDy#>;#<7@K9u4)r7*zcZ#ka@daK4a; zs5uEJ>Iz5hLcnip6dV*I5IrmgxoPpRRfxxfB7)bhSbX0Qh9l!5uyau&XGN|0*R6c)UQ&8M=aMgSP(RprPZik84Ydh59fMb42Z!0Ems&XH5iW z*rdB)euoXBuMC6Sep~Fipb5uE=GY}Y3#;DpcY>c+(9cj5<+(xjrX>Voyl^p(Q1{6U zTLwi!f#0(YMRu5RCKkKw9guD8iBrcX!0%!NoP0yD_NYAu^hIFk*CQu*G+y-X)N8s@HGAtav5&oi+@a9e;zQ2ow#H<8dW$kNeTqX*OQt|3<2K?X0Au}!z z%K8qd$(xD4Zx%B+(!v%47$c9JY zmuLipc-K~Rn)d}mqw%iG6|)Y-AzD2Ord?6k{nr6bG67i6`5phlHSi3NgdS^As*XBh zii$mdUmRen~JNjSQB0biT#mNNim!X&z?23;!0^vTz9Zx>_Lo7KAizhf>R-`+2 zM@@lPt0OGUt|i^<7QwNmD86jTnsmSVULZrTBA zKXHln*1w>*0ql)DW`nFI3A_~(!KC~P23#YQ?`ow*d$*Fu!%bv$cor?w&Z5iZ zT6CjIk9K_vqRtRyYWHG%r<@rbtvgC7T_^vwM*EMRlmD51?$KFsRKKmKX*PT4R_`K8 z9lM-LS}Z7gX*o5hU7(pmnNbkgMGKNDXiFHgr^c`bgLmcHdFM!H;z&wX9Zi2mx0Cw0 zQhLd!5wDHW?I-gPm>mTe+Ib!Eipe5FarN2z~x53Rr1L1$MoBeY!- zUeVHM<=-i9G5~d_-cv>WRr)e?c2HY3Nq^Y<`nYe}7GF19p&Xz;jA@znGLg zcGK2~R!T4C%mm+~w8-WhnJe_t)5&7olQ+`qfcdn*={_YgpXu5f&bh64N%L*kzauD* z2eHh`h!%q-?<;~2$RLb8SO)XmaQS)+^0)KuQP3WLw~9b~#%J0!Qy88ltcjR>mo>TX z$hCyEEqyY`yvLq-Q5|fV;EbcLmTX$=w+%tq$%50}Y(OYRO>tAlIxJCnS^pRCb53O`O zO^Q{*IBY14wZ4DoqQhU3U2uUq1+UPT?3)xmM-aE#>M8eFGyM=@&8^=H%HDR2>XP=* zn}dZERk?=3Zk(ZyS2oZXtsV4i!EH))yiM2T*Hcbk3o~5XDRm<2ZaPL&&-AslX-W#k z9;qNHz4LTpE7FA!3u+7s9IfrdglBbI$DV&p8$LHn_AfnzGs+V-2bzK^Y zS{ld!&qK#ZqCeLMk5+|1Mr#!EJ0)RphkKHjtbc6yO;-Hb58EQe=c5F!OAWw5b2$th zZiS_%hvO{s2l}55g1qoh#3v1bXzCzngs5Qfdr4$mkw8+Y9NNzcW3)MIUAyJckf($3 zz9V4%j`e;w4B0oVg=Zs1p#Lk+UM z+Ex4h@!r?WS_OBtQ0#FqMQ24QF1&EZ_g|bvSz!jbqq1m=WZhs7=iT!B&|?g9CN0#_ z^-L2A1By{y^*`1d$lcY&?AKOQA z@Ae*WM%q;?-f!@0mkVUSX*|e7A3rXu!1Bs8EEp$`^?3%!$#B7G5ukj9FXwW{z+EpG zzryUesAR7GKvisgWr^BqBit#~#lS08NM*0A>0k}6&(%;kDGCyeA(+uKopVv$Ahpj0 za~-^pOPs}Za2#xwt;WEtwFrCWigyE|U}576r|B{H9u~#)w1Se z12)guh}wHx)AsH}+=;RH{v#95wF!I7b1`UK0z&=k5O8uL&xW^fhEEo5oXBV0*H|nF z9FOrEs`1NVAtsuaqh@L*W|-{7&uMG%r=$RWoHgH_vv%6Y#=`=Zm`TxY3b~P3PJF z7vY1a(Gff&jluQl{xDPxhgn$$c0P^53T6;^Nd@849d9gYNCBO8$0QwQAv817ctse> zS$`U{E(?;&SzG05jJJx;5Vv;2Y!w%bT@!$pEzwAP;fFglnGluW>^995Ja6V;D|;Ot+{&xqxWUq>fQ?)1d@waamKOEC=WJQ=3ujo7jPBn{6+#g#(r z(OZSo4$c@`52Pw{UZIKuJo)=7!#lN;-9|WY*$m;+Es^?z>*D~fh1)m5L`Dl?Zycc? zHwCkcC&0$i7_IrXI9zDMj4t-iJ>=}%O~8)893&p&erWFk$Y^^bsmmF<2CP5X&U%C6 zrZ{Zo$^N)8_;gnh+Sv?uV1Afu#x&Sp^5Oh~037M#^GMGb)Mkoh4wGTYn)2(c5v<{? z-r~hWaB+YSR)>F~0|nwZ^jQdz^oOQw`bKlkNaHE@mK7g_aqq!1YB=$dqVwOAqQd~} zT=|)NRXRv$tsts7%lYyuY0SE$0JC%2c>H-knWj}x<&|>sH+5_gqp~E{$HofLwI^>}d^X9`G3UoF{}t~M#cO`hakF#OuW*&VZ{AMY z*LG0n{s=lRQA;jSOGqoTfM%bpA%VB+=-sk4p%%~#kEn{Uhhdx-P@^i z_iIXvJ3*T}meSW#yU2m{vYpSaljVwwWM*1Irw-JTeDGMBJ6nQ%lv6Nh>Owlkb#2%9 zJ{rusxUE|h@mqQsLfcnT+d1aWgpR~M<`EPgKE|22&!{!OgQlImN$OgkNZ(Zshj=D0 zRi^^4Vre`t(m?af;dr6w4k05IypUra9kZ@F)Gv^V$}5tl7Zjm(jWQOlBoaD6Z71?6 zE$b|8=9y$+>{$v4E2WuPe<*3zd+IFhBhQa-$bHmN(mJ}I&boi5Z!3AWH&7inT0YQ4 zn~4~_M;srw4nXxBISBR2!T#nz)`^)T>VgBp`5JPHQ|DcYJkrNHa{3 z6z(jbHLIj)?d)K>bMP8X5gmZ>`JHrjdI)KiPo>~%&I^)(&Kyid9b2JkFJ0kf8AV9VWMSbkdyr=JXi?@BSO=b36>zc{uz z31fYt5KMvv;H$`tg`Gnn^ivSlee$R!&ZUszekM*FJ_BT-{YwGi50$Z?W>p^eNB#6)@ml{s@i}{}dW3KN zb^rRg%yxCh4&IN>tn@*Jt`0Vv+vC&#nf$e^ zF#Qzq{X*j(pY1KkBZam6)oX9jo|L<^;vTcle|cfOHD|`M2YbA67+jZdt{&I0_s=G? z2A_R1k7F=fF9!R9V)08P0nu)e2&;+17l{NM{GALrl?aUa#Qt+;GVQe*js1d2=(Ze< zE7PLU@X`x|Cq!a^ZX%|)q@s6XDmIH}B1bY6{XBn_WcJc;*BJOUjK!*`EPRqn=gh7w z97PgL`gUTh%Pz=fC!tCq5%NMakgLpjwl_S{#Jnu?-{vrv@`Cy#3rugYz}(LhvG6Eo z^u2Z9Jw^<6wwfYdL<`qh-#2YZ4#eg2F|^2fCUp#yAVp2Hg}{N3n@8OCbx zeryKOE!G%1fOQxmX_z=J2`lQx{_9+K)*PPCbr5H9MWEbXpZ8G)u)7|QqFe)b|J29g z!;YAxZj8FKHrW5f4Cjw<-t{J4LVxM{+t6vN>-UYFUhhWKT#fnkcOQ0Pv_ z^z0ef?Z>PLuSr;(vl5if% zODHPZW20>d#M#3qFQ1ADx599La1^e-NrvrQU)1g#htc(p$mjh+_nz^X!t>b75@t-i z@rB8h3|#4EpV{_w^tgoM;2`*@g2RkfiH^X{??3EI$(W z)%Y6Gj=-@5*0tPqN3@Wx0TQD`gK#5&e-@K9rZ1M`zl4a&lf zIf?MM4Tfb+FnsHxu;@q_R32w>Mlow%?|CEjvnK|qI%BwjFBJZT_u&+eig`JlfxQ?` zyQ<-HjJ;m!c1RN#&CCfeJXvpu!Ta@4)v1at^Nq36&Icar)DipK6Y|mSc(KkK*|Mya z+3kuAZgyC{z!`>L`L%7df!T3e=s#lK&a|-*>nMO}>3CR=uZPl-0MvM!V2-gKZhbaI znx7)n+KgbFV}U7&!;pAe8%GOlFk;&X40~pQfW5}><2^`GmOZXst;7R&p1qpN!M15A zvvnk}MoSBq^wrr1D2Tg*MX}dg7e5swaqzu31~!Y~tC0e>F;D%#p$}y4_>q=Ne4(KU zGPpDR8wIKhU~|6&_S{!RlB@vESYD@vv2V%O@i1N7y@bS=i8@376utATqs?k_sLgvW z4OtdWk+YM?e}*D?rt8ymi4K?hW-DFPb*H+Nw5@ir%g%C9vFdd>c3X;)9}Ycv{Xr-U zjf($qF8*h}f9!P|04(XH{W;rdeorAykgBImVv9M$bUEqo;5x4M9GwZj&P=L4Dm%cu zT)Ca}ZR>Q}dS9EQRcBJq+ZAM#wS`J&?4}cQJ88!()?pa&EcbE~#WY@^vwD0_$m1N> zyrVQX`4H_2C?MmhV`<&O2Q=EUo!0lrb7tNiD&Ct%QdCdMliyR#I?foKwwrdWolJ2J zhe&sh2=?+`{*FA)YP-a6Z$0PB=Gw3qS0DX5hhgz*_6lWML1qPK5;b;G=I|?|DR_cX zVs}z&&=JcSn!Ru?P1@%%0n9J zaE7KGctZU#hw0S5A<*P`ouBf1^0iuyVKNq2u;vwY8;RisYcJ;?mc^!Vo_K6vj(vyJ z5M`kOmp80&S@@pDYe_-u`Vjp18v?Pr{dDczE&39(lcvn@!t6=kNbHw9bei>XEaMJ+ zPkc@Oacz|PS^*PBarWuT%XIHl4|QGVOu33RH0@9~GaTBa+|Q8uv$>?& zeSq?2oFgy#!5JSv$>I1w&Z2%w8<2?kr`Xo_Zgjq@9wl$c{A`6B09M+uJwP6!nHe znbUm0vV!`O3Q1F}jH16(QxJb|Dx-$rjM@v@$sWlD`RjE2lqJty&WS+7#X z(P3x{VKEbkFxR2qP7R^`(%7e{2HVu3Xq(nc&OAd?8moW}q3l8CS;D?QLvcA%l^H#1 zFgJ8W-UIeIYe~X(hYT9`4?N;onMi_U~$!(NVJDj$X5JwA}P$wIKw zuKyC(@qgws=6~07`)OMFfBURLzvZK2c`WAKU5LV~M#w(PInPJr+2h9^XfaC*M*(=d()v^hZjM9>zT_M0-Fy-tG=V<+gBm z{fx$>lSx>s5{N4HopiM&;igMGXWPY~c2XpYk0(IUDgpNEW0_l$gz@|1@G6>_v4};X zY#e53yP+~95x+u4_A$=F@s&}E(D-^-3m)v-J7VnoG5Xkq@>OH!c#vGwRH%H*ZiDcXw>Vl_>yZSDzrB*)qE zCXjO?RBy6EVOlimL+2w=oAaQ?5G+qP!?h0BV`htI$2qTTiyfSqiJI>1i>a!tHRgQg z-}fvLsbz^RcFby86a;O~v->=iy|e{7X!u}*kl=DWlB>Y&wn}tHMPntao{n+N_Bu=* zWWf0~SQ#|@2JMK5v7>hQG*r3suAV2p7X2fFzM$uSY_^jtM_)axNgPX&keXa=@1TG zScB$AocYCdU2EC`h(=ap@YofYa#!-0{U!_w^rpF;L|O`OabzoYS5 z!x?%xqu}P2h6Svf=(!t&BG(|;#WEZBgDpk|xL`nP3Y-dDP|co%=@l+`V3L5z*$!A# z-~l~N_G1dZ8eH2H{hUz2`p5N;q%EDA;poPDSB9IkPIj0 zG!$p%{$K2!WmMK{)aL09DHQ}1Q9wXIl#YGTA&qn>64D?Fb|4{PQYs39U`r@=cXy*= zqoUX#HnYz=Yt85RFz?Kn^}Zj^S{wx*p67qxdtcY@hx)J9=o{$>NiAELs5|_}ea<2$ z1&=n&L*$E6h~DEn%C}uukn0SoY-_w^rr!;H6C5+r!8Gm!myR$+M$A|!Fqg>K*b+s{ z&2fK?89%4Sz)Xd+==~$$&G)=%+xgtvFNvQ&gzW^RE8{2KRr)pD7%0g9f-}(qonD_O(wJ z({7KIWWRSkd44!dH^-c&K;OG`r=f_1wIG#yl_b*a$n(RgRIhY^ zE~q@G#bQV3e9JwW`I<8Uy6Q-ZyiSE0b4cRAPP%wc7(c=-=(dh4wXL5=1G$&i=+jJt z^d#xrPJI&JRzlgoSJ3G@_vldYE2`?~p|07Nsd&K~+I-^;^;fjh-CI(aGV2eWF*Shb z2PNdm@1-SenwT|pFk~7`P@}h(-oL3N@~EKlEqPS8_Yx_|pQi0b&nUZqyZAhJw6{^h zdwz~pN2fTNMYTOnfA2;?g%qBQI;C7cdN+uI44_97Ht zM3Z4TTmjmF4{7GbcQiKsJpGY=OCnRBQV{d7hFm#EChyAWtVb4As;{LhBV5QVU=bZP zeM<{x-J|8qMo&F`jr^|dpj+GSQlfP)RUKeX>iBlLas4BG7m-CZ@AvBBgwVV1GhJ1F zPmV25nVI~Y-X(O>(}90z4|Bxqmh_TR0lUlxUZ?mdVT31qr8k@h`C)#FJQfYZ=}Euo zbNDNo-G7!w9v6Z8O!lgEe5BSdyxUkS1Bt2cXp`M-nwQi-pC7Ix@4hcoW;+1g&qP4H z&-?xU4>?CLZ<5cfT}ub!g{2@ig#03}VN%erkVNG??j#6_LR5|7tc&=k-dO> zuDp8<;Aih5XFm*d^J8~VH8Lmu&(8OM#{2ER|IGjMZi4^af79vj=Kim9?xuPh_PVR% z;ae+=+-88bF`5u|T7(4$ZD7E=)e3L+tFJdf-D)Ff4f4e#p7mx9;4`aL5+au+Vo&`P z%$~)5fjLpI(DuW*>r;?-GKzPq39z<`hVjif6bVm))Q~7F&KQSM?tsaav4^&K62_^= zLusfZT$Xv^BA;n<#8WY)Jsp#;#bHf;Dr&jkrQ9A1+l*AGKTk)wS1RK6Wnk;B6s+t@ z!fovYn4WCn?sgM)-Asp0R3uV9Wg??I1BPS{DalY=TH=aFqs$PjphAz%4Fp_%(5H10 zP<^M5JYO43J2(iYpT?j^#RD(g?GbdExdr^WW*_1LFXrnjz7K|pp%p@Z&O}pj8s^T< zL|(%P%J7j>p1)}>AEchZ3B?&GzFuc zt72!j5%RW=!+M?pr|E#ZL#Ei@G6FW7Ge{mZ78CEvb7sg0@~1dM`$iW-qs?$m-VJfg z-->3BX!{^tRE7^@9^VR-8-jh)dT8Qv{@JNM__D1MEr)!u*f{}8-p)vhUxgEPg?Q%9 zc~z%e1Xo8w_=OHS$qt#^;n%$qg1w31aCKdbq3>2e)Mx5Qc4W~8Qklef1YCLXRi5FF& zuuu2k&oVvCFS0`YIAe_O_d-s(3v_EtaC%b=255$ZR41Zsk}Vu=+2PogKxEZ9pes2P z(|CWNf7J^l#o14O{f{bJ;-jiBM$8_E!wZ?u=FC1_ITK9YX^)%6p%`K|9wiOaP{C*X z;XKoHaPfoopb#8*=*C=<(abtz2SI@WetT!bTYD{n{!B%CVjwE}*I{;Y4kY(Fq3p+W z%!u|wn-#NkwPqtn!w-AAc|MwCkEc!!IHFvG_wC#pT;hffH47*kv-3_g9={%BK+R$W zX3lBE&o9&P^s61*^E@%fb{3Ql*u%7saCd72a*{ld`pgo&G14o80FzQLDtq!0>?4X4 z?V&rig7~|)iwgJup$L8sC$YEt%PXFXjXg$k%vG9W@PJz5nD6xXDtTyBQ?64ZB}|w} z3)XbnN6vAfMTg~SosS9)ZH%VZwbG<0piSc~^eFqz2)eu9n5E*{+SRj@eCJ%F zGuKy9Z4zzyQ&0YpMI^GVi2}mb)8mK7$Xeq8O|yPOj~qF} z;r@-J8x4qzD@l5A1<4)QPbOMfw1z)ZH;=8QnR}8c_Wn#VaB-r|D=n#ENESIXuqd_;|mUN(2va zX0n4)g?3Wpwf(e7wVjU6xlSqTHqwXj%w&t>vzy&`-Z7fcWNR{23Ag`Ddmm3K`0M%P(Z5 z%l)9Qfq42i6#mD}@x0TTd!0e({~ixZ?IZ-<$;NE!>6k8Qhlq`Lsr_XgtyvvOHnEL# zJSv|I^3SlF{R(}WeTx+L6_D`A3R>2Dh!Q_r5Q?5rladtt$`!EER~bzTXUX`q1lIRI zp{s(D*f5eE=z`LC$h`j6d=H$S4rZ;mVq$O)(Y78c4<3qR%l^{e+h^#~c~v;^oc4yn zAk;jN#ID2A%te1k=l<5wuAv{81NMy0zxzVUCwu6A`x}zIxts2(vFnU^64R!hqbK_^%06RQb6$9gp%lJVsi3b# z7HQ{Xu+?_}qM4<(_sRzfY5Ps%mBkUJD}n2$Bp_6;%hGD3XhZ>eqBA1*hYeVg_d?QxJ4A z11pV^5iooTmTE;JcW5&zf|{{dDgdVUCSa0(B$Bsq{&gvzx8D)GZ1NDVZVt7Zrzy-O z9PJ&M(77Oh?~bAPHOm64(wJ#^!3YA(33cG^lgI-@ENrsFqYmbWMHfMt8BOE21!122 z6dZWT`G(a?Fy=8~$0r}?iO$7-nd#VaVh$e8VD?AyVw8DBLvi4AY=}?8)xCN6y0sJs zM|#5SGqd4~xo^)i@Qzy+n14M6V$VIW!D}Ik^HOnhrZmKRO!25y9a?E4U{Obixa$Gm zK=zO3kHpiMQII##M#6Xptk`dj;Sag1Gavy8HTf{`DurHZB|<{ouv*(0kL7tMESU+z zQ6A_M3c-i9C7jiAhgpj^tVG;U%JV{zXEWfwFBsXe?4C#}W_NrR%H1k(Evp=R1lB-1 zARk(5S3yLL?>lGN_mt{}%v(t~-Y^HJ!l&bY;Rbf3ZNo0{Jvg3r9OH8@BT4QAg7g+3 zT`C=6Bhq0yG6PAg?XZnsPxD8m&<@%T%{!~0)36LxYvY-ZTZqST3$SM)dongP7LT8ubQiyzZ! z5dLv3Dz0om5Et>^@z3clY=!sSx4OI95x$4~@#5K9q%Ez+JA=u1^}-((^L=5zdK~9$ zeGtbi>){^)Q2Kj3p7;zwxLPQBE4RbU2$UBBs8^8L)%K8A9whp{t7TJG9JhC zqmZ7M0qNc@xFLlX$@cg8nupm z%=s9JFFyIm)vv?-JCP_j=z#VqB`7MYL$pf(BJM9mAoJ-rPaln^&jZmV?23$SHprOF z_t7FJn6^40x5*1VwSM?{bUc2$rr_=OxsZ!*MctJZ2)pTxeZ5{>N2|oq0o)H8=8jRV ze3sv6i#O{XVRk414~^{bQkY#LK2GT4?0J=_I=uOu`g?&5PE95Z&eTPK&lptRG(xMM z874N{B4JMq`pY6Q=6VDkFB*XZL)o#BE)Tz4E%djuOXBcwEc_{r*`F?we)tDcZRjlFxQ_KY+>@yzb| zdjXtyCJ4LqE%fyAV_M@_Ln9k2X_3xe_I)anibX8l644@>v(Y|WOqJZ{Euferd)iV{ zPm{~`l59mQC8unlW1nwPw`vnDuzp1KGbJ%Fq?3lRKdY#|m%RcU9PF3EqAbok zTW=%P%=aYbyqc=VeI@CxW0YaJj|9KB(yX{va=P%Gwkw~d6|M3JxYj{yPraffDb8YY z=3AOOu-01XI6guIySC}z@7Qs;pv$b+@x#%{UaySbU36ygB3w6Kj(4Zn%jL&BJJ%tQ zc_)IaZo?26CxOW>3OKl51V^ic5i?I6?+UW;bWSS9o=wCTm?3-MV5}=UO)3KQbhT$a z?dsk^jeAd!&XQ|1-}yXc_iQ9%uMB$Tl1}F*=F-{omuY~kC?cKwpx|PNsYc8&$b3X$ z6WM3ARUQ{_|C66EMqbAdoZlmb9ZGW8RwM`cVXDwuC=HM5U-YtaAY$*HB)fB$sC4LO zQe=0^zU3Qfyip$+jJ`qJ2KP`sXM^p^1(7pa1P@dC$@K70WWTsTYwJXClKsGYszyTH z;xk3%Nx^1)KV2yNOlH$WV0rNlo!=q_<4*!GUMz-|X70Szn_$xgSEOE+#HgW~=p6Z- z64;M@x$xz@8A+MKo4)>51pA&XpWXIXPzcj4j z3r%~f2+7-;_!jerW{D0!(d{oJQXq;?BgN5oR2iqY$)jD2XR(}>Es&DJx*ak&?IDjk zpTQ`8C=OjKWejIeM3t)~6zn~qJ=zM?>59I}Xy`rI_OE?E{=Yuo{a5?@4@CwcayIV= z`u+G$TZVvU-d&$#cK$9a$j$Y|@MH3*WberDfG+BA;9am(GNR5+zyXCh=+sHWkteZm z_`w_kp0y5ipNyk}CgH-S$q3G#j7ZMU9_9Ym19#30%!@*ZLOcpD$3ej&7M?+qVRkwh zM+DL!={y;~euu(THW1yKiKvXpgyuCLl#a~C&widqK23pj6o2ixWQ?S6sLyMLaa%JG znGOFqf}w*u>UQ!oHZBC&DB7+r@@NZr8Y2b;ymTXTol(k zW231aESS;y-bNjQnga->PW}7dV8q*{QFo&mQ@3y`}m8fW(xv#TKm({6FsUeycQ$!_@B5Ray}ePl-pOVj9AKrXcY7T=+I-z-%gEX*F|CO-*r`8Qj~x*+Yrv2X7lg z@m8%IZ#bi@rQ(gWT1N!l}FArRV~H4xpi z8kJVdI15?`;aRiLa%vg0IOid7h*_`stD#<1i7c%dNPCrwGXut=e`7E%YH}{*Ci5xY zCtykaPDHHPj!6d&z^3LT?kjLF=;Acw44R9*U#BBtWg=4CCgF+tEF^r*#6;~3bbp_K zx`wG(btVEQ*Z9MFM+uHzszAjYc6&LMV6}266ei}Ncx?y*>QbP#c_YM&R$xoUDpa_v zL+$qUI48RS`Y8>VwZ8%5{TmSQaRcT)+rXal4OnU30EL?kFxc6EsyplPD9;)vuRFmi z&4OKvPS|vPDGaVOA>_dk4^YWfin!Iq?$_o;5u5e38!ob>MWDF{0_nbGH zzD~qsnGCdOPC|v}VnlPURA$6V{8cH%@m-6dOl925%7w>~WNbwaj)X9`t~?w|cLd;B z^#VRaN8#m$KnySRgWnHp=)LtrU4REN#|I(3D-h4q0&sk4EV35n;WXa~=2rSaaat_q zEh&ZZjg@%)iZdH}*%)K(h1zDG!K*p5*TV(7#(E)Jzy$h1zHm030-?j+7=Awlezzte zX3Gq`<$tH7#s!e|WG34%AB6ea;oD*13;{YvPOAP)#6{b%eQ8If3 z#_~qH479$jrY8=r3hZ0R=~w+ zoQM6|PUQZX;#b|LVaK{jM@tBuV_uT;%eRy|^e~0(-$j1Yt0+J)pQtH?%8oHZs;}0* zB-fC0k)SEo1thZEnG7sP(w#|FbadfadSz=&5ha22#6yoBZ>kyr0&s0w6O7hrxi!QINXwwj9K$m-_V5LI z>LHA~Yx=3s{wX>6AETF2dnmN0mM+aKp>-R!(Xx^@(wwbAT1qRaDf0-Oj%%T=Q@1JS z?L~UA?Gqgy{)D=dZc)b7Zqk3>NtyoUuya*G|MoYuU?zL5POxW6^f3+lC4!bk_vohW zI}*Qro^~r#(Z2hi$#COkDy#0MP>;Lh;wgj`Dtul$-$k>z7qs<@H{a`WvEP_8b2pXo z`5#_?i8N+)sKNXw=UyW_>BdJnlx-=*-n;^YVgxkU(UsF-iZ#7Sd_PRW`@VSOv?)Q$ z;VnB6M3}|M?BND2bUu1Yjj}Zq!Oq=|6MrZy@Hd@!ewQAO-$G$0Yv{zut<;OHl$)@d zsv~5mV|f%^94$i*#Z`3QP=LGn0{AlQ9d*Takc^ZV!d9!`M+|qihJB%k2o<>P8-S?> zf>0wzoSZ8I;W}oCSSmxnL>y8{!WcU55BZ+AL(V=qcuU=;wWjN7SjkW7^n6T54n3rG z&dhmmzeafjf6}t*PgFd@5Yt`_!Cs*obVB|Wscm^efgO_gS!sYL;$t9n@F&^MSH$31 zzvxrG9B#5-M5)RYilID@{w4$2XhS$(=I^gx3x~gHqv`x>vRlzbM-C5$!{m#Uk}v|* z{Iw&CKhS(hHT3xZrnGxK^sGl1Q-=sZbrCb4OW%>*rJvj{WasE{aV-2L4wLWdc+A=9 zxAmgvJS&QkgC%i&y%bE=%VEt8VYqIW!kg^hROc;?{BN?DUN`_|VJi4AKn0s`YCyTp z36`S#`SY~_&k}e1>)wC=)y|Cn#-G>juLGvd(Shn_Q$)@6gRHeP*0B5P%mjagoJmE? zrBQT$1+#XTJr$gv4$UCmjf$n9eE2+U+`<{vv78^69*-k_F{s=-1?|PmLeh?dyZ1y4 zT*c?pEeUwqH3?ZiCu0D6xgP#X1no{j_tzw>;12%Hvy)Mpl8nI2@hHo8#fvykh#q%9 zgEKoo1>-UFnK{JGnNeDjiAQTDKdAe5&P|&B*23#3D-4j-giDVf0voLnQjv)9 zw}PPdkEddI2(Gw9p^VSdk87OZR>NoI>2}%b2-732qwsNUAJAluIrOEJ85B zq7Y$M=b}=g7&ZaSwY9UrgSoS@fpd+W0+ulP>H( z^>Q%e+(H<7CPMxWaP9m!7)sgVYm5L=Ij>f5BMm`KDM*W|gjTO37I<01QpgmMI=-md z6^B*hsxf+cHHK(-Lw!OGy9+iT_R&U+m060h2iD7zC4g1~I3t zaE|X(a%-INL^~3#3wL8oTML9%az56^4pBByxOKn>`ZEaY&UtVriZEbaFuu{iI=uL2jZMXgpxKBoOJX-}A{=Iy`Zg?W3#|w80+;LJV2%{8$ z-$#9ruIYzcsUff%J0FJ^SK)MNH^TD=W zH@qJc3MCnL4CU8OM#vV5(ssBp#Szv{@u>X5uHL=cSa;kS9}Sqzb;}qzGWz(eI08=- zMt=#U*3$Ud zCxV6QG6) zAMa7ex}Bq&<@=~ZV<}yeawPfO0;+XiK<0)sDEO~A{aS89OZ|f=+Hw?~yQ)JfH(hAw zh7`Kv8AaLi!%1hh2OZ%VY}h?78ZvPLom;0wWpWSfyPfszFXrgb$;EU2b7e)@y|i^pANel*NaGbgQk=iCEpFPs^^+{$KY3(GL60%BW>&LbIZuN#Gs5U>8i0KYqp`_X6(SBon5Za< z=jEc9SM`fl50Qn!F?$p_8{^C}31}S9fULeE9&!&!we}drDBh*}E*B}59mrDkyn~#^ zzK58(q`u+=rQKvcRl{v+*?y6_QVvnjt4z98HJB_awvxN88-*Cuk&!V@G40t{Z!)5Al)7y3`^B0RZ4)?@!r$n73lCoKdS-bHwe3*u^`IKJMJLzS^O0=eI15vB`0 zx3{EuO$x^rD?zMF4muNza6j7um#(PueOLvm&dTt}VwMBGQctB4{w7GFsN^I0wf&{H z!DAt1XaRdS=HZrV;tcb=_S^MRpT$Vnit^5+KpS$0WN8GAeCPfl`DC6(HPpteu`mPI3Z+#tt!q))bxa2LIn15 z&*q(S4AKpJF~^=+U>ir`YIP`@Z!E->;F;*in}q=GahV@B#pxJxh~zqL-+W^)F? zdkXZA7~t)nay;oOhiuGbjOsVXdl7$l3*MuZcI9XoRfjz9JlJu@^q5-%vim~daNG-% zrn@5Y6MK&R0zllin%#kTNeh5RyKtG-xCgA%=?gBOWa4#wu64Sh3yxkZhgd$M4CUO9!}+1>;gscpjk=$#n!As8KRLXn;{3mYR=L*FG3{(H@^$;O&F=bUrk z*DsZ`qsFNTkgf)dofcxRf;&Y2fbVC^aHh=$+RPWwEu4Tm!Ewx*;VfNSD8z1spzD%9 zrXGle_=f}(X--7V&p7-&I|cW17bD|rIm*~cu(h`cmyS%t`hycNtCzhIb_F=LaVm4W zCn9Z0IIh<_!0&h%F7cdKdaDl(H&yYy!y7$3d;csOg_V`yp8JKr z!f>=K7ul=Qu{tRVYqMrxdCClEYRtx&jg=VJJP$8pmtx1yXrApC;hI+nY(yqu;+k4G z^cP~}>Og`Izz8Bjk@WkGv4-?FTlFVgqxv1Sd^L^TP~G z;@=M`ZSI189t!y%qp&=L=QwK#S(lUWqd5|hoPlt-Z;GF4ArM+>3SDLyl)Q+;yG>*9 zm^nqe{^(%sppx*md64xYrRVIY%kK3K{si}@k1ne@C7|Me3*{4@-zR*9aavs7|1&;3^LZu`k)`$I#P(&g$_$~@mp3Wn_@+IWd~ z@Smu+NErb?+v()Zt(4z-it5gmQbFVj3YOeR{rtHo!+FhpvEQirdm&Xw@eX++F*NDwY1yxJM(Ar~A*HK?-|R{!&%_M_Lo~lm_uV* zWdipoBfOWke^JG>-MYx#e4os8g)!<=JK2VDhs)szX^xP>?+uUWsG~X#@R=}|yID4? z&r<9&3CJ#&#v$Q;(%scZKkL~?)hY;+w(FF8ubwt#2*KJ;2+!m=WAj4+dF~dtIl&vp zZm3~x4EF{uXyc8E0&G_6;o`Ou2y@rnH~I&Cne&bA*UCYGJ4CI2d~mc^9D`&{;2b=H zT`00RcdUa{$Wr0;_iP+z8iZ`mdYQ|+e>t3}bstd4+rgK(BPs#fTxnEnUco%%%; zmanLsy;oyff6+BFMRcx_M&5nqW=d&cN|`Kv%(KE2J8j&994^Z0;pf$1sBw@+=QRn4 zz3C;5;rwS84Q5uk4N7FyFxa?*hRpm-&bzxPa92MKH`Ye#QC-}7cAdTtk%nIVFdUq& zi_lfN(DD(+gKSxNOc;bK^Tn|0tqjU8vg`M+0PZTPVAqjhXl@z~y$XE{k5GcZLvCXISah9UKQ%+-8kI+nug z0%uhdr?7`L9m7sCGlUz@fcXA^3O^!uvbpi?tJaALp9|x~Y;EX~L=5&W4Z+Z&%wkP4S zHlK-&CgT3MINV#-f{a5gNb8)1E!VWr9A?ihPTteV=plbv0^V_Ecdin1GhZ6PLtP&c z5?;*o@j%2eLtOK;g2Hy@C$TFmM8O{YlD4?6B8e1c!4DVA!qi`L5%XylDo+F><)s5N zHYY$r-xe3NvJCXEon&w!@iUU=Xf0FfQW5G}D}Hpxhs*65;RA3Mo1ztE;>0myi52E!@- zh)|sXX;TMyY+`P$$!grZTn)bo<54w}JrLi=<3vIzb91Ahy?rj$**2i3cmr-#6?2zw z0}^fq;Pk9|xKDC};Z8psoITPA^WJrJYktQ z57VVA5ysDw_qz$s7GvNknFsMr6|gnff!%F0kTp0L&G(w|AT<=yR`W4v<2;Pd&cn4O z#b|A=!js5UDCR^XT6_%-kE=!Om3j=l-iTRaHuD^P3ljae;duOZ{{7p5-kc^3T-1zF zea&b(umiT~Yw_v5BL-BtA}_%Xods5Sm}CR{urY918IALiE3wyqJiN&gI+7DmRIvy{ zW;9@^vL^};|WqzXru{J zkEu3wAC*bOP$_e_V)m}1*KIS%HY$epg-oDz>^jgnBuF!c&7=o4efER&RVZ@dVp_M{ zot_mW&|-6SQkHb4i(ekuS7>G1FSYlexkKftJTQvF>q`Dr&(xlc`P7!;M#8f^sMNEB zDr4Dc(5FbzR^qsHU_DKA+e_x0x0rRUnX*Opkm`|UY7MEOg6FrtNom|bd>bTy1KbziwOkWn@!#ng zvsslEf1^vx!cs}&o%O_Lq%-0bQSVnu{v*q~mOIR>{Xjd9%OWd49KvHb<2?2wwcS*~ zxbG`TU+OO@xOdT(w%OFy!`z7mb`vOFrDG9N`1Do~$3K2#x2^;;la5klp$K~P1u<}x zE1vV5^SYZcsf9^zc;8@TwQFG8 zOk?g;YC(3I8U$zb)2C7ADR4XY;p0WI@A)!nY`jLA%e(1d_(OV@u#E zI+<9k=H6f#MUGxclkcq~shwW5sk4MSg?5uOb<=1uK^(9@PnUg~NO$^P^4@)unkt3x z#`PD;4EsQ(z0#;$Dvb8_Uu3BEn_iW5Q-Zi5k~p_&9Q%u^4}PU$X3za3p3BB`(Y?=t z=m_edkSFg+=a&%14UxjB?eFQN@af}WCSkx_^0`=Pj! zuZNNx1*}QYK%1s5-tsPgr>HU_3ps_@ zC)9Dg&j`1_jDye90k{z<3u%i%*ugB%x|stoLB$%!5|}yoVI&q*D`T=Tdtoc&aB!^% zzRAgB+*^31YK$70&6NFm9r|<{bT_|L$x3+s}{xhVO6TJtyo)w85@^7la!4qhl3!@~=7K@8<2a z{;?r4xohrmJsC=QBT>(8psPmHaN(Z)Z z$Y~`Z=0Gy$SY$vylIN|i85q1d3u&rTG38Shgmcm{TGtuf^6X>cT+oM{c+5$SLbyKf zd{>2_@!e!h)k#6__U!-2iuRq0!-Hone4T4W>#TVY*lCEWW1P9W9f%t;N2oz102QA- zQ2aL;Gn{8)ZgB?BaNW_khmc^zUA0rXSe85-FD-)L;bDg%vdnN*_GMq!bY!O$;DyUv zcrPx%y|jt2jr78dr`&LxQoJ{aAa~I6-&QKb72hxV~%-(grL-_SH@J{;~+8UsqtTc@uK-+pwo< zJ6`aazL32bP3x9osB184_s_?E!Rfr8u7SkX8Vpd~fR0TY@hpD}24CHVXD4=WcDI?C z_^mK}vy+**yCD6w6*;ZjAYN7vwFlh!+F^&`bzXSGtgEmbS2TzEq4~8hbSe^%F=;Fk zy)4mu(Hz_DmLfJW8wUnVz?0QcxMRRR!b#OUD=5b29~;r*v;j4(!B~;+kF!F2$2#T$ zwOlvkOZY=R2!FV|)2`7)l;6-O3qCb~m z_opS$+p-ju8&)8A?-DF8ErsOj<)|L%ijd?b2>iMdi?b>*Xcza+mhv5D)I+t%ABVfwVUvFXBzDF^Fli$0%t*kfhd!u_4nU36T(qY|;E<^& z-Wbk@POJy^Zt#NsacBHZ_kq2dKT3LC;itmxg)j%qisc!W8~YjtT0ri_7!2HKguR?S zSQTc$tY%yIo-<*Nha>tqN1^XG1Kvf8F|4!z0m^w8GkOk!n8$H)aXK(;F06Q-y+vmn z20!DDq<}a6Xz}m#M}m@`H7+-B_O3x2W*-Nm?2|6)ClAKZc1@f#mc+thTiiHmj`ki6 zOnWdI>-m{JkMBf<$vQYNYZ#_oP=)&`3D_@Dz=sDP=!wodYIJ^2Q`BD4xT4ck9{!dN zzdc8Nrl+WN)e~|Wv5!u0JmxX|>2 zOGq`%o0e>!MN#EOBx#vWkEYp?o3B82-*Uu>_?UhO9|RBbu!+Wm{19t&e;Xg3{`ctw{b)zIoEMr&csL?pSRvOsliUV01_#_^Pi$Mx7diI-gwZ}rgR1se^ zN5C;l8E5N;!)Amu7L-Wft=0(W2kW3#x}G$4$g)FL8LBeMT7Ji$!XE7)vl@0I?-GQrhb$g+y`sfuB%pbU zyIC@#_&j?wTA0(n=V%}8;4V{DoF;D6NTO(f4T9Lw{5PzVJZ3X*;EOa?ac0)&{YQ!( zWrUW`!!dpFTk=>w5Jf}8aIjkj{C(t((-#;%7sLhR7eLiQgC?A|dD zIj&M@v=BzRI|Dnjr19>%G=%5!*Nz;DyR3DI>=%9QGUWMeF+! z`1Qpe>AT0_ZGbtBDcHf^*#?SRH=s-Uzw-nChV$Y758p!|dGN=MV z2gp9Pgx3r=P_{YNt&N7#8p39aba(~XtZ_@ib9 zU{`M{_kW7;`S3UlG10=B<^U)bxudYw619o!k*W4#zLGPxeDmRdYio!H>fz1OF(4uC ze(_o4vbQ^a8;r-WH_q_(S_hBp90;leVfzqc$R}FjJkP=OHtA#bx^Nr~DuZHpC`R`2 z46TX#ZQo+iW|@z`+8KyBx(JKMH{$iKD%k&aMgL-Fq@?Cxne+e*FV;e>H!!x@5n?A| z5%SgxY5co!?2-@0MK8f@vANj7XSjfe%#SErh;gMe@u?yo=PS#RWx#pciM6=0Wjo?` zoq~x#9?HvSK=Mi{&aPd7ML!ooTYN5_P#PSLYK`9$f*@$Ty_a|Yb?Rc1bv)hY&ad)>325xgh>QFEEy>Z2QX%}2{ z9E&O=TXgxFV@0YNHmFp?yDbWpH)1i-CmQiQKlc77V_}d72frLV;avCiuk6&*2WP`M zYp8C5!@OJY-R6#i*T9tE+U2eV=CMA2QF9d-1KUwA^GVeV?35A2=I&uV67<4N9PeV~y!ivLiLPsFRta z0adP@PvQG=sp5_foqaDug3rRqvB{Zsx5?8u>md~K<*EJLtF88#@jhgGY6wXy9-{N7 z7yYZwvBvFNDcCHY?mjP~__2%0uuK3&H9INva0a8kD`)6J{teEDutxU-Us?O#*Hhwmgm))p>LRmx-a1|KH5&J{quOB(qKjAWDUK#)0PnCp46+4YWbRqs-6Uh$^ zQGZkhlI*++TO!Hxe<6^r0d-4ikI~u;7;!1di)KJxLZ0=l)RrhST&~SO~IZ zI+%58C=6tDvF4y2v<*g~gtP1qHH4YHG5}$Gr*v2SMH`Y7(6K`p15Ya8QnUmNI14c1 z$`Ghoexy;c0?3;x!P$FR2y1ZFAg$2hlaV{?f*P4Iq%M&W+-Oq88V#{^ln?hz**APoiEZ~Qa5pb7!KaIz|WX? ztX8N*p;IC4m~5~x%LCu@O>y7O8>!WP;M!-4pVE;~iV8wUgg3mFlP9^f6lXVQBi+sl zYqtbL`DF=|+zY9HjM%Ra%8)BvkFBaJ;T6~iE$;oO9@{&X*No~=fP)Oz@=>BGbLEfAkepK$}b(5teSJf;T_(R3IF+QZ0e8N%)SG7Jwj z!>Vcx9?T~8zmhAY(mK$-Fajq#`r-G~6<~S(QaEYWBIHROTwCf8JyC;mM@j!3sls3K1FsvX zz-NwXTsv3+JD&=~9WIBT0(C@Ps({|A1~k=qU=npL|0uOWSwaYs|Jq|$P!Qt#lVMnx zfC0)(7Js7mc69_UvskXu_zPq@O(b@Z^*=q@+=s~E=2tLBpfD) zrE#o3j*c%xr&<vXyMLc`6fp@5>IYw`Eal3fYfEDdaU!VB(gg?Cu3mwz*4&RoZHubS`Nx}B-|Pey7P5?4zBXZ|%3N%s%^mz7%l=EuvInErvw8deVdfKU zOndwY6S;Pi<*)k0l%9%1KY9n-=XHp2`rKr-JNL7f;#=7=`zF@Xy^a}(u4ny2YnbBG zolIo&0apCwEIUwnlI^|5hlXAb@M%qgkEs}%BSo<*ga@kk|FGxbq+#+;!c2WWENbP1 z)%9t(wURo6E9ax>rxpsH%z@8xC(;0Qutn_>i&T8e`uEJlRt?HSEk435N~>7;g{#cY zn-}VK2ifEs;#f}p?|c(m)GtuQ{g~^_Q27;8F5yPt*-6MeG{G$N9x<7bY4qMVMN$48 zCaz6E2IWu0RkK3wusu2zrs1k7b&YPAg~7YTUG<-YGuy?fM~e3D-4pEm!O3Wf=YuIz z#O+biKV_tV8HQMNSq`EP_p$AVW6I;mQZ){=b?f0`L4?Y~#=7&(rH?}bDC)*r&g_%uEf;0?^J~*pjSX>Q@Yt&Ge zD1{bT3Gf=v!jfPa%%c0yg$!Zb>zfR##+h*Tmq3!`PZn@X0Y8t*(|>E@UAQ#$5$NFa zX&Ho_n}f*>hRAwHyaaz<)F)COR-P8*JA`rTs~~k3O5<(RRIDnV3ciihPf{%aqj5es zkoO@LE8#3l}%3qvj#-HrEUHmbf6T!WT#SvLO<033Xzoy0y}bC1{3yaY59VzEN{bU!j5_b7!b@x?re~_@_nr z$mA(P(WX`$neL9Wyo-_BX^5@+JyEev0nViRNzbytAx&f4ST6~Yxl18isE1Uc3i!^= zz>Mch@Q%1lhe_0&uvACKkS%nk#p0<)8jh&C;K^!Nye~IFW6A=Yr~S>_!uc4@i9yI8 z>h|7sRKneWh3$c~D zC#p=S3pk?~-PQGw>RN?O+S{?#JQK(L3m_O&g>ab${1Bw>sr98e;#Yzl{_Ik(J-+Gk7o{|`}1LFstmzv_yn$>B38qSg%BxO4ZniDkhR)`3)`x2 zOS%wYahvhf-~gf;jv-zs3D&o4$lGZJ{V@~7jTU2laTR8$5fk**o@XEark~e2>y|gC_P#a zLD4$AT-FMW7MfSpn_&2;5!)gg;r+V`J5JPKpIaRiqHAzxeI;7zs<6AM662y(xRPCt z5YZZRKt58P_hi||A@F?C4D>8GSXvYvt z47x38`q-UA`(xE&%xg^shd?0s=p1?9C>_o@E_hyH4TJ4Q;OaNWuy7eng@_*#M(3=r zVfeO{^ptm+P@imob6JLP)iuGCNBT&)Og``tUHtQC9wZ+xfRcnM3>s&H6-ppSdJZL} zL~!n~8vd~sg*ulwwy%)DmX{JZw^tfMO;eHjbQ0Di^W(%aVmtXyhLjK&+V*{5Esx%@ zf>3U_r3hf8{uO&8*A^l6>V*{JuRF~6r-ncx?mwR$>#zNrscv_|tmn$quO|Tx(ok>r z&4Zg34~~A|hRLO$Z2hnmrYxn*Oxs=7Mf@pirR~fjXggc*wUfC{JHs-ron%MDd)Y4a z0cQPk5&NXJnH|6Sos9+kWllS&pYRDU1fI`;yFD-3Y9zsRg%4A_xslE$*mOA_ES@~U zgt#uVK4Q&^?$2UM()Zc$yUXm$TSa_I7sG8%MfmkyW!oiNn0wMD#-gU9UzhSmF_d9n z_=WxB-ph>d+-11Jg+U7&)K>^YKbH&My|TEs_Zj0Gn@3%6a`<(}4JQ5~$m#mUa{G(m z@VNxBxu03b$r(5#^N!tK%a546F(#qMkD`KCjH8`{7|++3$xAs5?a?Jp?E)N$(#7kC zvIz7WW&IAfSVP`fHpk!?vy7k)u0==LokN}MwtpfE{+z+i9sbJZ^$fFM2L-k|wU$|l zPOxWx$s1ul4et)l$K9l|Qv4&B{$XryDcWwC(arh6LqPa+r`d4^y z*G?Wcq*Tyi!Hvjnd1Q@>A%f2e0#Q2PPcy>oRs&d*4`|C(V%Vw3gP&M*nnwE25|+p4 zHED#L)1tF1Cz2McLPt1d8sg(KMXVm?#yvOEw3ZVm zz?u&py5iI`CIZc0)WthX41OG9FwhXe7W%z^yhpuVbNRsgY8oWNd7+yji1)We(7QyI zc$qekK50pwp+wx1*#7Ui_209q)qm6+tPsnH9Zv84Br}X1^2E>-R}@=P$EDjsDElwK z86L{MjCkOWQX?$*5^&)y@sqZ>VE^I-NG5qBLfa4DCdZ&SXd&KAgn{{`Kxy6*1a>4q zTRst49I05*MqJXm7(6pfL@Z^pN1d0W{MJ%zkVwIk6)TX_kw|;)6uc&%;_=R9P&G)w zh2yCRy}AqwDpJA!B^ftFW3gy+7xvxlfJ?fcF-y|!JR!J zkV}cc8c9d=essnO@)TChb;iRvh0v0Sf#Cr4Y88ZF?TuVmZ_a=a%?J)33`uXa#xGq> zxD;q$mOAC+gRIc;+!2clgOSHa`_#+Ha3Wvt`;t63=T@TiW+g5}o5SG>^%ku$L1dRY zw)tB?iO(M<8!XVP9gg))8u(6mnfHTX7(3#F`0wfX^fVtYCb{D|%|qMC7qsWAB{XDd zcYVVZZLQ=P@UTExi4XD|lZjQ}g38(;lu<{LsI4)A>fK4dHiAxuF|MB=eNK?e1Xc(R+60?MCQlkyk>+8G+Y4 zapztWa$hz=HoY4c(T%%wuE;vI28vZJ$S7~dL>jSQv!Zb@YZFQ@Y(e|}Zrr@zME8$o zxDB-;QKKFH)R}y_d^2t+*C9c+1&fVZ5tz}A-%ndG=GBOoT20_xQj3v*R>WsEgP-PG zLF-x^okPsn;(A=PtihjibqETlzGJf*9NkB=tw<#vOsawXLQ-a&D&D+7X(AI!2{Nk8Mv%dh?fWAFz28fP7=#wG4Zzk zG4z3+p)V31Gn^sD99QxZ>67TBT8s0YTGB+_XcsC*C0QHJ{Rh@6E9#XHx#S?FwI%LENu8abG(0yJsa9feQwv; z?-m0Vmb{tmn16uH_};@B-VLze*X``wy!TA^(l^%2O?;{pQJia)MDX&d$lA$;Gs!Pl z(-96hKAnwdO;Plb2d_U@8TTY7;{~T0bYITEB7yT&oqa z!c!M*%5rGDO`gGSOKjgc6>Tdd5kEc+v*_zNv*b{uHU~APGI-WP{@P>Q5PKwn+?D)r z(B;8w4qh1gO~EudI)^yTK-2&?BtHnkus{IXfhzcZ(j8IN|Mmp@N6l^j{=RwteI`y> zWr&+5)J;Wf)k}KBMH;h!b-EM$Lv8U|-Vt{{YoNs49{dW`7?n%Im5mATZOezlXd&J> zr$Oas7Je^Sig?=pyT)W9SSlM?zF8=~Q3&nxxfs}$i*xhxAyS@!o%8dc@09~(nJkPC zW)m|j3p=@saP3tIs-6{sbHfVi2Q7!LSRtB|sIQY|yVeaESYMln19wy46WoJ!bv-cN z=79LEK{)l6Sf-03U^^)ayh=-e3qHsmqRxSey7i5mQZI)G?e6` zaYeqAy08*4Y*vY{l8f<7$b{H>IylQCgU94)61pA=+n?cxccGs8LGl-_F@Qmj55Cqr z;wbf*#xtYz>d}49xULJbA5@5TV_*^_mFePm(ZO{m_raL08A_!9Pp0GA|!onbT zgm8pY4k!SJElklnM1INV#PeTeiPy%CP?}_c6V$Dy?&|=nKvRhGyTCru3KRN{IBsD? zb0u-1&XBkAY!t%RghOjR^{wScfXT+->fA`&$j-!>pae{*jlv`HU3hGb#1zWdA8N3~ z&d_*l5OTpk7wq9qyrt2@w6i8A{~AS0w0C;J^{o~59rMOI0Xh>9kE~(b0}Aeb_($zK z8`Am4CbxNFs)iquO7b!9&`M|>8zffC9>h50qt31mZQ85gZL|Y^3)^wFvKsG1N2vPV)=(= zntK}%ajp@Wy3NRSXoQaICU{TYj8UsTB(13fzik~f+^f;4Oud)+by!+li|Xe!IDNks zZy(j7r>F+~dDTd$tb}@eIf_r$qB*b%ogo#FtMx}~pBav~YNO_x1GuQ4E^|^C!YQ*B z{oD^5dHkWM^k?&6=$bg8gYyYtU=Mx>gP&P%uJu~VCQ3G%OJWM@rgWef3xKpE#xdU@y%CCecd{VIF zP{+)zr0FE9VCyykaLpElbe=e|+ElQ1r7GNC3(&PAj+(!Gr1L66;1}&Fv-HrIFN2>+ zvmvNSELkmn+}yy4UwbFx_^yX6SM4`-)?Z~KOU|+TmB-lqxb;lW<~SRXuVC4)#+a+p zN)}!o!QL**VqGdlOn>?~yDW_1kT+JsnK@?0Pn6+sCFR4=^WU;+INnWIn-TO#kXEOkVhkt!tIX z)C<(77fC#t$&RS;)In`54|TLXVk6`OaI(;)JfRS>s7tc_DRoeNEJgmON{CahM}gjK zv}~-y$%+!(UCWJcderB1`7^tHi32g*w99_*o$>lVWHy~wSRm!_ugh>kb2T@t^X{@| z-e=jVg}v-W`YRT{x0$t0zs_b%tY>5Yl(3=;ym*~PEU9Cij9*@XSyRt~!Tt+uW58o} zr{@o|8#crkpEx$8eq%*8zt|V?DcI!ulYN=TP5y2foDAfk9xyJPvzvhxsl+*5@{2jL zDX9A}9lNAup#FrIR)0umY0;;1whk`8Q6arz9u{4b$2Rzou}?+kXR;ggCH-|u{|_(y_fQZXECl0%lPH0D()<3N-?wva!hLsbp+Pjs=k zSp~Lj+L&}l77+vLn4c$w&UG{Kc!GFXJbXADIt?Xs{f5NMgp2w#T#k^yyDS^TaRa|E z_`@|L_doSq_n&z^{`+VDzq94P>b1~S(S!Gw1&Fy3jaAz7(P(OcG0J7gS!d&ynS73N zEFtYI8x>w9$fKQd#ln2t-kXV((gNIVEX9G!BFrsF!Gg#fyfIC~P1Q>5P%WSy^(=H* zWMDsM1qSPrG5D1}w;pA}tGE|y_Vwc4!9tu+r2Vf(G^8y^bEMs>^n8Hn7UPS25#H_( z#2#x0VlmIbK4Vw-ek(-Em?46im< z?ItgbyXoRLonKq5b-=A}jlH=hSiq-?tSRZx`J4mUuZajH{qxYTVk~&qfIx#r4Bf3o zrdtC}eDFb1r6YI_nGgW?uHe5bE}D&d8Lqt=K#YKt}Uepq`kmv;>NDn z8jDx+d{7w^1~>l@TqR#@YEUj#$mHVv%rwMIi-5CG4#b2Cu$!B5@0a|MO`hr4gk?x* ziNQ3Xc#KXaPi3nWV^{5A%3}vf83}Ay;0J5RK++TG3E6}nV*_|KF^EU5Ll}!XMV+x{@!IDs9=$jM ze$oVa9wkCGC<&jx6SLx5KgNV&ASAUIJINPq?3;^W<02S+NXLz_c5w8zlV08hgK6v0 zV7Lud+YZBO*G_#mPJ*`E9Kk2db_ip>@z!6#pS+^>@JyZpKxoR|vSHtyN4JM{ELeruOakHw) zi|vZA(fM$mOuv7bCFs^%3gvsAa8>Zb$9a@z6C(ZH(vfxykw}eR2;1jNpdnAW%G_pR zMI+z4>O23c|B{vl7{8E!-|Zdk_7L0<6;xHf%f8T&u8*D91_nR${OyGh;j z;m4RT`C!xgcQdEKeira>E)a9}5p#BY$VSG-*!|OkY`4d5wyO6n zd#d$}?dZDA)UT{(7teJvy&od@`IZ;OTBIpH_kz$q2Lv7@hN4O+9;-Uy&zxB>tx5H zlo1$0oUnU$n8;W)vs7qihO<923&St$TOS`h`;<_BhXea5PpDqV2k*Ffsb}JhDYmZQz^kd0eGXQ@*=jY6 zcnFgRNfusGx=62}?3v$8+^LiUH#c2x?#kE|rGPC(WL2INPYQ}T0siOqV8u4`QE5Qzl za)?T0;cj6L^fR)-my?8)za`i>o&Zi`^0OuuVM%Q^^^0U-NTHY*qs!5JwUBxfGQjh? z2%BT`v1(5~ravq}|H9>%Q(J+Bi;KWT=?|<{97NYm6EqI$3;Kr;99PRSPQSxOz_4Ytd&jJXW7$JMu z0mo-o!PFuje>`%KbE*{vW}Ucnc@_S?pswoU@z{K~2KmHda4e_%JdYVls;!V9=}#H{ zG;zWBSLX2uL@Gt`_d2-Rd%O5TqL$EV)1*Uxt$0uS6t1}1GeywG$Z}zgTw#g_E zRf8jG$Zx&lv1VH-V#xD#;#&#k2XDZuu`Q6(+yPUoL5w9H!8HA0V)YKgt7I`8?GiEJ zyAr+f`*FMfFr1w7X_Qj&eb{9mvm*eEeP*_Tnmi%%D1dX<0BCj8^=l4*;|adT_h70exnT2(4(vae+2OZ(Ifa z^cK7ksV471Egr9~fa%>vjK!_Q?5|z;cB&Hn?>fL6k_@fW3y{gDg?|nhVcCWdSiAaQ zQTbzn}?D)g;u!iHaj^m_z;inU1 zg@Td0-W%B=9w=Moj04>^(Az_d*jWzbQ3=5L4~;hbjoQFgL6ogR@Wi(zEv-P!! z#Q|KurwDdV5drsAp%+O!O7+=r zQFg1WlRf!BGv~(b?AnDb?5RmH^Il-WQZ}t79u={;y6f1K!7esMBZVb!S2Nx66ju3k z5&O#?vgi}>Z1(yvCfHxaR{NB)BLZ%0U~@WKyg#3Pw%fuaO7oealo5N_CBp7YTd{+C zjF`-h)$D)vbNGMjaT>4L$(#F_Y_mR_l`RJ4Ug~`5qJ4;eD9Uu)ATLO}r+xJMyyyYZ zBJ%CTlfNiA5Q#k@Frhr@d&<`u*t>uyjXIf+cw=QIG4|i<;aJWhOdFEJ)NDE{aDQQK zJEzKq(lKJIN=NHxq9!N}_77G#1X6z%SL=IOs7KuEhd~o*|8Z zufzctc*M91gkfjJFfy$Hx4a6FTA2;a30u5es)3Il($G{Z;tg+)Gn`{1rozCDx z

2nSiub`{wZ)2;lR=KLFSzFoLy}uO_l!tlZ&LglE%0_c$l5{S5wep!|;9q+z^|BLNx*WJx#j^W$L#Ipx)aphA>XmfQk}vzR1rPxN0^u z#HK@dxgK;#kY60O58KSaQy$`=la* zxTr57lNi7JI#8ZI9qPT>SjuUJyK)P#+)N6wyLF&s^_OKR$zuGp0=&LUBkHv@oauW% z&z=X1Y6VDIQ_k$=Omu`QVos46&b0|+dYAyL{bxXZw+P0sh$D7L1_nQs;9#Ky& zOTF=mID>1C9Qya{`ftzcf8X!_Z+)KqFTRfQu@=zo(ZbdHCgiEJ!MvU3n6;61!SW^$ zXja48zC@JI55b&!%DALvOmZNeh?fLWa@teAYcs!RwdqFn7kXLetRTj84vT;l+A65%; zQSVxa`*m43aWWg`9feT3kOID_NGRsjAZ>RI-rP#S&U3`fa$k;_>(USsn1l7NvT#i^ z8+pV7$m-Vx&xt4;q)c|@`XJ;e1mi-3G1l$0!ghUI@HZC1?VBO2RgI7v>;=gO1{l^e z#E}!Fa3)<&do%HF+ls-~5IP*?Ut>w!w_`I8QtJS)7IoDD?_%DKFw425YC zMwf+Sp9)>u3ns%RoaTJK5==EuM!Y|8bfD+|&t(FiJNhV{Ws7|(Ks ztfw1BZ;~fz?J~sX5GVDV7bfY{;P-8srCS{#zS#q(oPFRa77m>_KX^Vhhf=o@1hmQX z@ZB56s#fs&MtWJ9ALdnrqC(IU?ps43CTa)q^S*eO5{$xRZ(ND6!&%2X95Rl_+F$wb zJ`w}dpYeDxPHYFhFx*JyPc5^1PxPr!c4QU%PW&RO2Q7?MAMut`@?wEZ%q zOHbk9y^F{!7{)pIT{s{+2pOKUSW$QqSB^G8ASe+ZNY{Lr8H0b`B;uqP?cF~OB5cM! zEWbE_Q>S-B@W3FBtvP~{kF{`H*9zTPjno&=0Ncf+mlics4^;ali&7zGjfvpu_~es-Y-|7>~b?y6>0vx*NFSK*5j!< z@n);nBG-8}W;|=hnbIDt{JIL$vsdDq!%FCD^&mU72O+;YA-%H(ZM{_plW9V0Y8OVY zRuH$n19zua<415a=I-$Z&f8;MatL-*) zEY>N8qtD43i?l<~Lu?EO!vH)~wn680PaFt!$7jm`n5%eTvxOZ#UZ5_GV0Y~4w1luO zF_kyEf^X>o+^Q_V6dgmD95Tl6=LHb+HA14XF}6CWV8%s#_{!PhqOvwT

rFj{!D2 z=-{=fId0|Y!MfJ~hSlaMcF}~7yfXRcsXOSmAy&+k$MyNd16nNx?#HTdERjOiJZUVN zOFP%^ya>#c#>emlunx3_|Clg*VyUOL+z};x@|gH3j6%|5=l9UPp8a8+#{`fg`jv%t ze`Iwb57_y{G3NC`0u4pbc)y1(E9f8=wv&2KJw^F8rqt~)q7{4wWSFoYE&F~`#nagkB@BJ`6@~aMhWmIrls5#EPj)FpvTv|aYntvA){7s^G!$Dogiw!WPRTJ+h z8&T>afUhD(=z7DA8>P}P%@?3f>gP<6<1y>SLsqo-3)>Zam94Sm$1CcJ=$045mRd9H zArET7Dh1@M)x<|1>V{}i#+(sFJn)!@qvEP))RV=+A1e6L7mH=TEOCMIUtg#rGknwu z4No<&<30~ERw|>VM+!S;&4%wf1AP6ejBU5&5zHlr=Vii}SuFvW4$|{`{Z#4t&a zz!PV4e2bJs|P#nuDq%cVQ+}F}mp>{|SPP69V^fL`u3Roh>zzs#jBw8zT z>fiJ0|Ki;BublDzZ~s||ZJL-}VGp+o8*J}10QTq;*IfcK>Jj+FDTg3sdA!-P9Qp!E zSWa0Nx3M_Pl!!-$=pv{UEg?4XLOd~8h}KI>5%xYAd#jS6vL*>(VkvMbNynf0>3E#G z9QD*iRZC2s%|@xX$xYp=jj705kpus&sW=#yjg?z7A$oH;HV@JaE0TfRQbnkBTmjkT z8922s4fW@ry_XMJCwI6^ z2}ev};tp%M;TJZLvA5{Vzt zQ4pa1Qtg#KkeeNiClfA+ai`2qr3GGbQXV{y?oGcaYu0Lx{d+9nS8s!#uCznGOB!v5 z8y83w^YzsuWfCmoOg<#;YCw>ct zL-@o(JUb8xVWUWxNJpYbFc!t#bk0tzgA-2`#(L7Qfx4thjuqjmb_v9$1;8h=9Gk}u zz)$}gM#sWX8d!s;J9khQ?tbVg9>t^==SkDegccvod`84K8yrCKs&o{R_jk%I`rY2D zg4XjiX!+Dqk4z>W-E7BE_x<>FcNfkq*p0^{>k%M%1YgolL!P4@#((m$@2nldzIwt$ z*aPF%`(RNugj+&Kpk&>G#G_sKw4?=+rR``FS%VJJ%A=n2qu|$0>}cMF`$0RQZgmI+ zf6q|IW&;f4+wd&A9yh+#L;hL=YF0PF?RFE=`Worh9UZn{(_-9hN}Z`VrDORxNNa9 z)B?B1O;9#(0d*}Yqi~59?2ajcN6ZH6lXYM_bpiAiY2x=6h8i_1)K{9~R**5?>?3~p z3M~kb&Qs(yA52Xb{u`9hJyRM^_h)0n1|?L9DPePkD2`@Jqh-k~Xek0hf5TDM-VBS1 zM);X&Y{b!QRF9kIAwqdg`8!XG8>q`<8CH6wwaX->}K4S4QzUB4HI2j&yN3i z$(C)p$ZlwFVp;C1SWiMe8xGscYQ@@_hEf^(d@+WZd$cmn%sTclua8;W+QP(EUu4IY zSF*-iYgn)*H!)Q-6V z;0u8lQBct{!qFLW2pgM?^gjx?$~Vr0HmJcn+NvhG;;Q zW}1zv`j}Zxb8Xjb$f(Vt{t5}aK0gU@HIuO*OPsDv(#*N2qsu!488kaxeK#G>Tpw9| z>nCw|CaHy=YrafU(C|>CfidXjyBra zf7gGx>?f>{b3n zX1?S%ThuHDm+u^i|M-pFy(vLm%5$LEsE8&9X=LWRqxhUCHvT02GF2Zc?_;}#(Fn;k)z)M|+5 z&Vb?y71+;_hD44O1VfGSQ)ng*uBNQj3t2=qihy^OGz2G060=(tJ4SS{AeD9-_vT^d z7g3aH&BZ^?l2D&b-iZM<=(*d0D_kEf8Xj2s&;^3M>NsVy0OAkyuxQuz5*=cNy_p5-_Hn4V|N@7;4W%dB<`%6Q@Z|E*;qs8PHywggV)Ez;l#1m*@#QjPXfK6{b1G)+puPg56zsVgLo-qfg1Cvn zzuXuSgYn2an}q`%1z7*M1bnoEJ+`+3L(@v}>HTt8?4lk9qX3M^M&SE+AULVZ!P3(J z;^gfcKjw_BTeb0IzbVqXoM0^Hjow>9*dG%Db~zs=M$6zyzCqc8PUsf)LgPJ0@+Z_H zbjSm-s^p!}bVuCPKwLS$7}m?P5!G0Vsbki-E3boplx*=Qv>5%H!lBZ$khHe~%=e)6 z@+}usAIw5>QY?Bz$}o3-89ILzK*}c-OV0!$wa*rEJf1N1BqpnoE8Nq>K#jf zyn#I=7WrewM-S{uaKtuU>b9S7z$=5@;p|61xosKeKw7~DKgTIJIc1Q~1rPgoW_604z@*bR^Vy%=^Ruc~zo#x=U3uy7SJ zVm9GS(+>Ct?}9JjpJlpZ zh&@hvY1c_?2~2~|yHw~{#Ng{&@)bu@zV2WFdOvT#rG7dK{PxAb_hJk@-i?@d2e84a z117p{*hIVemK&|$2yelihGv}j)QTalJxF}H9s4TV5h$OHj+kZ?p6Nz%e=|h$qV>Qf< z)nHm-IqE)EK&-0@r%KAn=UR@DClv@hQVvCq3M3Je%ZhaHJE%a%i%P8CPMycZxtb$W zjsrT?P+4Dt1S#UtZmmRqP8EV;tMH(y3WlF6!SkhpX7+I65_@Bq-s2v@!N>^=go#%) znta@GTh$GVZ~B4fo)@ef+#$J(dTAe1KXZ5?c-K@TY$`)UkPQq^QBTB}Ih=$|agW#- z_ktPb+ATm5K;9Q^cp1;fg(cJxNnY-Y>u9bSH^$NwBREi=t3lrcH^?{O!xUj2A%|JJ z^Oad^;{6_e9jqXO_U#ZTut-8ixhavX2BgKdDHFrBx5t=C6~n^@DeU>;isdHMZEWTZ zX|-_ZyM@F1u@@>mBcXN50zdZ0VWoc}f;EUYa>WZ=#}?r`o$KAwByn?{I=+yXmOoV- z@1H6o;hHQ4`2Jf*qX4GtP{hrr4C^MOutZZA_WrJrE2hu;ZEY{KU3sUSJODPnhh{lk6>d6cQ2#S^CF!?A7iMEON^Pd$H;% zizcS~;hrHlPbWRRmsf4)vLp9FEG$?x)hzA)sKBp|9Gh|;S(C{h2#Ok$_vP93rTBgUD^ z8cpgDpmWKg4@}OR13`LR)Gb54iF5Lh)U%@utO{g@NPE3Uv-9W-{8CoI%?x>@7894; zHwar-E~X5#C5{!kLvNENvGnx7C8mc5cQl~LX5;L71@QlrhePTdl*Mb~xrYfHNxN>O z$6Y(3f+tt$+z}*-=spKb`!I`i5LtB3u|}J)3M>vN00BBUMzd|@B1IhY*9AwU3+_-3 zG}>7WA@|fF-k}a1UQ6sAnu{M>RWYzw2?`Eka3|J-v!X7BNbgQbGC|LIQ#6qWh+8`v zx>g1BzH0s-z8C*Jr~SvwY5#s*|G!_?P%di}6i7i$&m5_m=2-oM3#Y$KCw`|C5-0ee zG0Kg3ce(MwRS=5vLb262oAxQmSoJvu%?(Mo*OiRdBdPS*M2Kf6;X+>$_Uuf>8=hoh zLB-?SCCWj)Nrhi*79RGcL->YEO(X)7QXz5=hrmgCV#I{Z^J;gX(; zR<}$9-bh8?&UCz|#|Wy0!frGfONhIrp%f3_7)ul$PRE<0E1>&=_TKyzka=H0Jk}D# zM3Haz|6%Vfqq^F|t!=v%MNyOx1VIUr6a-usNT?_%N_PvQNP`$)01_r8c6ax-ySuxw zd)xKi=e#kVbDr}) z;2X$Y4;L2tD2%iT{8vAPdVCD;d`!r>JA&0|@G?qfz)^*`)~(0K4dU-~9K%Bm7cOq} zq`8;$Cq8-P-HK>pAH|!$;xV`#EU%Ar zbcvT>_0c3Q&+NzTCjqR!7mRO;cm-}o@NASnmet~O930ESHG_o_;7oCI>6eu}nUQGX zlPlsV=p8`wN4^A<#;t7UFpQ6C6BwN2#g>~M3^blY z)A)Rvh~CbqGl^}vGtrn^LZk8H$Q(PC>Gj1MqF2eMO>Y}Z*uZ+7@wl{}Lzu>HLLK+l=)@_uPh2_ccGk_8>@wzTP`#5 zGEUYlXZ+SmzJ!(YyF)qJgJzOFdpavZrt$2fu(i@l(fl=)Wt*q)=Tj-&#+S-jrGVR6 zxp)YZW7v`cA|FkrEWQ+zZ^cxco<-hy;kd0W;Qj<*x}7hewJ>$(i*~=5Sjfl6#e6+k zgzt`0(oBj8?pDHZPx*Z7BCHBZXdGOGW!z+XC;Q5|(I1udL(ttl2(=y3q1 zu%(T!4en2Eu$v<@)1S8NY||CTZxgQ_h}d2jnH84$JYFL(Vo%~(k<7?AOE@5m^YQ5+x&LCP-#zLqL%cM84@6x)SIly7T4DU$;CDtGhFC@mA};&1avxgUL6*_Ha2 z60~@g68UI>(!%F2rQCa-;@@GPGIaJ*<(K0L<<8KhO50WklrN`ODQCS_D*cbHQ~H2-lovh6EBE)zQwkbxR|am}q&O6vQifh!rObU=ACG|# zl}Pi4%JDHxmH9W!QGM*fvenYBd(T09(R$d*E;vrVCEms+Sl{hRgD5o~tf@`q@+QnZ z(3Bp_)v2|(E3<7n;9p_I?Tgkjh_iHh@+72LM zuFOTj#dtje*F{uhK%hr~Y=VT6W zDw13yGln>uk-oK~?5DJ8DzBNvhDJnR(PaEMncD`xmvh8x#a*o-1{GTTyuVo)_V+=h za_?DX%AHe6%$ASJ_x*R3X=Y!QX}2#abMn?HACF*5lIl`h1t!XbXoXm_;bn^8l#s6kQR5!L`=ULeo#C4*+wjbRZbzxv^J(f!@&7_^0 zcuE>l)TEVkfXh5~t0{Lrh~{mp&Ytz%(F^H7kiHQ$IkM+)mX7OjO|d^-pJ2!CRBkdN zZjHj9L6*#}(c#Wsb2KGCyZ@RxlT#KjR&42#2iD{fnbMX|#{&}P<7^$wTYs|7gvr*=SdjpBq9!j%^nY^-*J?{}$$;BpPbHxX{ zFT-ekb{xGfdW()K=3agdW?x32{@IlqCj)sgz@5=n&OB+?mz;~y{FZreW$0ke$@$$l z!j+Cg;!uuw(OgY9uae;@yb+3~njaB4qH`zq!Z9I_&xeN4y5C?nPxFwD2|sdV=056W z3{NKc<5Vk(`M1QEalntRdwdx@VFqU+^4VA(L&bw4-VU0Ke!qNrwVuW2z-dG*Ph!-= zXg1X^q-NGI){J!JQ&%WU2ske&CY*&Ix$MzvaY1SJ)Cw5TFBePD+8H_lR&yE2_ z^q1?ueqEt-z~U?kqL&qO@HPCS9@P?J`HMAGc(iwKcAry9;|#SX{?AU#QkM)S1zJk@~rt96-_ zqQ~nv2edNdNU#WD>rh9=_UTS+2YFwWtV&?M3bUeHa=cv=>A9#w!|-=X`)@Cm{gL05 z_Gv$qi4C7B>g!%BO}773799GbTwE^u-8b76&7BLC{G>n1mq*8y>p{nqt$VjAd6)Mo zXnU3Ugj#LMrEDSwsezX_hXTA;Mi^@ zaO^t8ZSyJRwaO~Rvim6|X!1S9^z|*J)}p#>cK)MeO?<388gNGm3D~Es&FhD*!vO9* z7xr^^nWa^0^3%4q`0y=Ji!sN2cpG$=sA=J-a&;CsM> zhkb+5wT+|Vs4qwJlgYlF!iS~8$_wz}pj%?5F%lQ8A<|zZ%z`GZ=`H*8VJYo+ z@~5?Ae#LJ)u@mmEjJaAA&B)Xdbem~F_+s&&N#E2>wXW=FVT#WwU!onrrMV?5pLRuQ z*OCrZmUwt~XTC=lncZvgpr|8BeVUWosuLHk=wSF%omi(cY4KUHzJ5;e zdV5MK-0@DSd$}QNn!i$-A8N&%;f+}2-33!8RaUtfk$Jl<8Vj1TI$Su1Z54WZh48ec zbn#sDV#HBBPPS@}{}>JOT+|6!A>M7L*7Uv7R+u8qv31gBLgXJMO?2$TQgvMRHDK+V zhCHclO80>(oXC~0q1}X=O>~o=XN4yqYZ~Vdofzai}2Ghbahu|?d(mHH-6OY6JNT&HYYsl zv908(q9$jCR-+ABd|Mblfs z?b$53l`Tx4bcjmB-y?@^-f6_&&!p|rbiOZ1Vf_*ZOcon4w52h_P9|XDZAV$aARILU zSz?k%QtnWChss>leI(ufE@8&|N$lMzGv8jrnA#_Y1lf~bf9Fb<&EwgTmcaZEDNK;O z*q})9i52>@RdyylB~SKrO*)-Bj$m*P$sjay;aGJK{652!!bYti;#RwmbXolW zmN6Lk48U$~e_H7KvtXt_FEWIUWE#tD@u+U<7{b|c!OVCw03TtkxLO6#wbF&N#vXVr z>Br(-1O7E{o;*B)O!1}G7>NJ(>QGc0ujZqrydJ$ra9{dpFUj-2<0si?dnXX~E|$?V zWQH3U&w+EHJeyX;y6i+YMh)U{i7oZ(0ov|$nsG5~ecBd(%Ul(p~`z-dh8^ME# zzEz7VI0Vkz8q)$I+ilc(H61=X9!BKcYJ%5 zte}T!87t)DWpZCXep}7Wm$T80oyDX2TZIigpDhzB>6TSZk9pIC6FiI9N7bBFsU*{} z0{2g|*i%tOPP18qIBvoeYzD$p2EN&TEkw!N&zt;bvzbS|fDbtSdWSBg)%f`CQk zgdVTJDY}e(;%~L@JcEtmx1KP03P(Cj;i&BXYmF_Y>`4)cwI^dQet;#J!dMfnS?_lV zNnRzKe^bn!pvm0zmfnM#lV$ffnZDJ9JRUxoxRHgNyjwu0H114W%HsU zBBvEIOskYyWs&(e)=Gb@=K{%>_;6&d2RiHe@Lt~+Rq+RmEwp3u3l|Jcdhx@-o#7c?G`z2{ zdXY7HH9hF4XUf3Z-FUfDdN0GQS+})|yzUnC{H{aB3}bTZ7?beEOnNuk@Mm~?E+!i? z{Z2DhuIa#r#zsuqEF8If@#P1{QC{B)T@zRCzH7llwJxN5?2D7DD}U!nSD%ZebRK_I zR3_KqOpj(9_*sV&`=2ON6Km5<^{4Xo^%o_0M_tZ5_@FG$eWA=Rzo-~z+)&PZJ*7PD zbyoQlT#NS2{wODkr3XxAwpIs^D&@=eD_v_IDBaQyDP~`;C|)K9lubbwlw)c2X!G`% zQo3=c@_p1?<#ns^%7bIG6{hW0F8n^EG`{pyS>dV9`?x>KtEAsb!Od;T&t73{zB5T_ z+|3D{Go7fV^ya>bH6!}SUU+~3t+j;@D)X;$tuCVdTT$56fYpC@qJwmh9{X&=xNUYa zKeeJVVEKQiArkA}Q?7rA$NYOEtkiBOnJpeEH_HrpeZL-8{5!B%L!S*k_QF$k<#e|I zZhQ-%ZPifLN)C6NQ#^%-{H0esg0{w)MBADWv^juS(XTsq#nVZ}m#)o>dG6VYYhTQm z5-wQ@*)PA69rn-NrZoD|jV@0mo98Z`f|YhO70icKU%p89MIkxXrzJX<;?apq$(^IF-Uh_8F->VD#- zwq{|45xxyN;Qd=V4@RnTBD0Om1sd_{x+?X4YVlk9lQOJV6GkQetr$r*E9~QArH*NR z+6T4ck6V55YX4EDz5A}1ZMv%zT@5 z>XUNDOBk}_3@};ShMRG1n6t>3{7(i9GHb-OTFvO8?I1g@J}l7di_epW^wU#g+6n1- zFtBFKZ~58zVNTK$Rn7;r$Ir-$t5v{YM^(eD;kBJ8C_|FXRTf&riP%lDo)PD+yA?J?;maTKc}t!xlaEz*GZ!$jOMB% zxv(jO;KL*MT{D9AZ8~xARTFNgk;x$QOdM4+*gH6v)h=0_85@enLObz~!;JpDc_n90SNjAuyv=9- z2Ya+b0&qI$#q9oW*x2^w^yGfb>M(>JD+=f{Cr>)1#u46k6s`VB;kZ!(_48Ax<>txI z%^`dk;LFno)~qgeV3cH_)t{&FBs7(W1(NX>?$VigcBFrS!-0+jHkYpLZ6P>Zj751o zf-&Mpo!!BQVEI}pD`F^bIhvZI(L{N~G4ob3x5tO#7+1)<%v>JZPhdt^fOrWfL950>qp)x0q#m~-*xpG#>*^+`+avFQj4dc|MA^hAKMu|xjzHWg$ znIc|+AQvXxb|fJ}_Ed8MxnUwbUEM=j)FYXl+p~Bl?+4My_xdq}x;q2NT-To_Jp-82 zTlx|l2QXww5LpLE4lO{7EIPaWMym%KWi&2DR3W;^@r;oPxv);xQHyC!#Yr zi=_=jr&W)^spoiMxP;4F|5&2M`*EtpI@%YM(&BPF{Wm4iFFA^kZ_)=)HiJ_O3TSwz zk_kyk)OYvgNN4dUABy5=jpV%43S>8z%AdQU?JR^3keW+ZlLds?tiq~|Fs2Hsm@gjJ z-`~nB^``7c?lA6Jj3DU`Xu!ubxMLd^W z7c(a_tWN=@or|c|Kv)GE<$S3W;%!sFE5AY>d@GD!Nzi zYY{%P3K=4KyKzSH-(`;X>T4-uglT-?Q39vKVu;EKXZ&AsR!Wbhb7d&62IX&BFiy6mYm=FbORz8jcg+FCLqceGhP*^oLiXBs`r z8w2+M9ywZaEz+6w?k3zi7YuHZOib&~wdek1&e0S0L^IaRGpDq>Fn%6y1p4+v7Olx)l~Y-TJhT9zEb6MQfdG8gmU=tX{GkCONv|F+MEl%sGK{0O)K zN$t@Y>M7kRz3AlY&f$|a${Zg(x+k|`*bZ-=M>&Wu!D{fP!9z_| za()=_+OaiTyV1SwC(uDc7jJR~I zHlv38Q7#9!$7+ogt9ChX@qqM1zc;6Sjsf{TmYlq*D;chaSiiHxY(*2yjSX2+C_d*r zE8z+V*A-{x|FYuoOEn@|>2t1Bg?XLSX*I!stawA}CqlvW&RF={@p*xqA-@idosEVh3d3w0=bd_^Y5A>d!7tt&B@@T%sMq3M>3#u78%-OM0ch#&^J?f&!hMwegYf2 z91Kk-VbL^$>%ktR`#bT_z9*R$Ls;`<2=CN~qoyl41k+K{F%r&R=UkE`i#vUWaIz9Z znZ9j2!<&vG=C3@$Ka6Ju6M4UT68l36aM2yc_(^6AZ{kQu?ZF%ur{-i_n11q&vcjal z^gIkED?NtAIUyK|rZ*oW*{SkTm^u$6EYh7#n>{fXy%&3K5YF=JKNH8`qLxgx)?}2* zFbm#GO%-!p(qu|o)m&XYM;DDi{*uoizq_@Y?$W%i=Y1Ic}W8{MZ9o{;O>JEhA44V z-yO{%C7GoD!)eenUgmaD(iydY-Wh9n*l#5@u~UShAIS0i1g1WlK=(`Id0jG|G491o z)t|;LnME#iT*W-^WR@H#rp_qY@B2;>zuash2gWfzBbi^%#t_nXH0NGSob9~ zPGiwHDeT}7=@|PwiO&J!>A10yfb69*YhT69s_o=$5bo;!85CbB=jWkH*5y?Q_q~!f z#k1JDrwTR8Y8Et@E&a$9cv;NBsCovkB%`J3JR93_)f}uU=f*hUywzMUoAIy3m|YZ-M;i0+ONMuPZk=hvwcZfZGZpQh75 zcw04|!Xda)!jCQ`=y(>AT`>jE(J365Sc1)M@eO<|C007S>bEbY_UJ-FwM)5juZZLE za<&;$!kyOz#7o|5e@Y=66N>o$S0OG=@_Mc)#O9dHUM)&^WjmFY^YS^;N3^hUDTPS| zMC2D!eQpZM(_$V=2SU}KNa=i!r(;D32e(HPY@fo`W&uo&iR819i+Ct{({SG~`gkUD zp)!gH^JtnT4`YfvBTN!Y`LcPC^mX`gN6s`;jAH2S9>(PleHj1Ifu-thSVkFf@uMw; z(u)xG+ng;{UFg52C$&0R@ltXw$tsO_6Ds{9LBr_O!kCMX9N3)^%(({Q>8|H5EY2`A z#`rTScNh{uum-dUAN}obAwyAcZ zsBsIXf6>CI`xiy4q#@rr)ZyyB8l_K2JucQ#<@2LUO02LICjZq#xVR6MVaJ~-_o5#t z@xlsyQFcHnbl9hiy?;(wV0J_)+jvu{>3K&vle$k)DLSdtDtxTG)%&jeWp_Y1P_SL8 zjQ*^o*MBNZeN|$Qyiw{kP$#J7jB?;*tbCt~l$&)25hL^KYmpYbe{4hD)7B(6bmRVA zJ>j%k^QFrmOxHQHdy4FPKJ};5c|YcR24FSCoo}t2h>_jRzkhF=wa$#yS#^mz)sW>s zPAIDf)MH@_Rq<}L=lBsvu61-|k8mK&J_oT`JO#%Wx{#jiExj8tq*g@oW!Ok|tWW3n zyH4U+vBWCIn&a2{;q_cKC*cNnwnsWsYxi$q4K7*I(^WUtx}et|@!8deK=+AE!IQ*uYc#Smu;BG@{zHB|U|| z`bfMBI=6LrFM8JVr4HM?I!X?pIj3_Qv%*h zZq4t)n%`Q)h*6@R>=@FoOQ%492FHY(HM(AFN`-;EYi|dREYl%R=CoHuH|m}0$)o!^ zj2S0v$+St7AyZrt;cX_Cs@%3j@OSxhQ{c zQ(sM{Oc(#FsUf#&8_>9|csGo?N~gCaVSn`Kdr*49T%)*Q9e|E+7&}|Yj_BWcSN{3< ze_dPsbIty1uGy|xNmyP>W{$ydRyoA+wRZwbK_5xo5M@J`?Bc4B8~6)4np3;|sE=sYzw%s07GQ72cBt zzWW_|`7N-EAhKXXeR+R}uX7N~O#3G{TqXa&=xH zTjsfuecyu)!T$VOAHvtpA;dOzBCo*!d1kn?a;*H}^8H&rj=|yRFzO8QX0=@mFJ290 z%Z()Fe)D8Z>tJgC97N+qsnogT&71Q>7&|DGz3xLe(Qp`#J4#+o^r~ZNEL(*2I9oVO zA4-E*cww;g^7dnN#{@dBNRb}UV7~7g!GYlkywDtpU)oSE_8-Btslw6{UE248Fw9dSs>k{+xc5#K5uTz-1pu%=If8a`1p7(*e}O$>^y2Rq|@zqE^4Lmq?t~qPO^BY zCub2mG>d7o$Ftg1W=it@8$M+Wr4jM8Odd+z#iLnl7|Z>X3>H)u5!5}K-IGh{DH;Cd zn<{wWypUGnr@dvdkcG)J=&`$;{Na_eV#HJT9Y3r3@pTDZJk^jX?A1R6m-AyLecw*XC0* zWfV$Hk#Gk}sDEV&m3@o(y?qL+V@r6srj(-fMdHyd<#dZe^23YhxJP`)k3^H66%Bj5 zfRrBvWcw5m>t8^(1ku0px>**l;L6Hn#4Op(+n6aV3N0dQK?zM|FW~vBnCrWzGr(mi zM@PqSOMKV5!X;K)nMiV&cnE)m(b&wNSX<$|4rWHf9o=1 zmUMyaGosB5J;rtF!1$rYOmFYZsTHQ|FbLqu_F!giHRi`w3j$5t`0A@el9{nEa}(J4 zq<}c#pj57hqn>^7zT$$XmN9X|>S5HUA$@A=^6^(4Zp1bx&%Futj8$0GU+A`~IBX-JjVE*Q#N=U^WW!kl?%4+l7ihcGAWrg)GrF!K% zCC=-MVm|$e(&^q-W%CskDyF?qPDg)LlT4OpGw?;#7s&SBKnuByf zKyQ@+Oq}D5xpZ#5KRbxfqnrMXu9#ZX1H+0FO4y7RboeH7=OxFLwKonc^S?Y)+O2KJ zzG>ajoY{iw(dLYI?@F5ZV~3!!!jwQ>P3uAPqsDle2%D+OnmNZLXYi^A z)wP|mk~y+vNf+j%^}wM(`e2p`V|=5H@Bq3oFu)FvzNSPK4#)Vem)6$?Q-0in+8J%cU#?DQIM|PE@7ge`mL*HY`<*(#lBAE(EOSU9-eI_8Va<5|J&~u6J8{v@hFCdM z6d5#UoUrYV7;CY)wK`S#CIouBlK-*;lfAn#FV!8Nll_^P<%ib=b6zddVe26iVhREMCtn*Ntu@D)yQ}Z=OplM>_{vQ4@XL`|8 z3zV)@h3lI<*p?i?@d<&fzvqm1bu?pUOu*VHS6F?*UTQvx^oc=@VsUTfpd& z0^X$Mqar+p?wuXU87*^X2M?MFN64{IVXt^9-o}q)RTt^4dEvv|m=La)c~h^2Xvr~t zXbue%_$u6vuX z+b;pLq5z&X@}pHs3@u;za7iba$mBtkTf{KAvp>HlxHC4z2Y=~LefuDqR5k9xsE`aYhx@ZuC5E!~fwaxfr0B^Qj*akTs-Z9={Ku1gw3NO(s%WfC zrTktlk8&aiG$g)^T-Wdil*U40xh=iy=pUS z?ybO5IxUtj7Jb!e9%}>V^1Nm)6Ncq7S7!F-B%5TOEL~`;Dp0vDIi=G>ak@T?Zb!8;(n*uc%Bl5tY#H;e=Oxrla-vZTu0|&^D)ev$8O1Z z^_x_UwM!M%$fJieF%%@ZK!bs@b-xioEzLP7f+W zRbM&>GH23J{(qA;Gg#hu2JIt6J6cU8?Wb_CP6|`2a{=3(imB}`JAPplxZnc)(ajTUBByHeC^3xA-F_+(E^=J6z9$!;s)ue4(6ge>5qLm@X>PvnPp zDNCgj!6PPpwT4kkKkQw z1m(J+Bn}T^q<gls-em0z zVswrpH-){WOz(@{2nSrJ_Fzx08CAj}h@K>!&i$=~MP^FLn;x`j;LhXg)-a0Y z+VnQ!)8o$k9O2G#r%*P&bY}H_E$OuG!@4c)x#`rM{R@JbQn7|Poigx^api+(q`JAC z=@92mwCt7}S!fd;(;C}LnmAr-N4~ZiRcS406W4@pYW48TtV6&x@k7o3TRC~~u3}@< zino%z?yI~|&c1)87}$JOUe!9Kw7Bt735$BHG;DTP@r?eZXqBtdz5R7%*pj-!|N5xB z_4=fYuUC)FCtoUylJr=!y%~{xRT%O`p>A&jn)Pi#>hoQS*Rn8PM%qh%-2n8?1xOcF zAT1_@NT*sDD;rIx=Jf7=)eFI1k{O&diq5m*nXDGXJ5_(_XbPflW?w${=||~nH}u^n z{fF8@^;%ah?l-2h=0oLn#CN5vlc6xrekoH1>B;V_18Ixe^2u4AZ{i!j*C3Mxx}&*J zl7`B|IId-Sv3KSWnKJ|v(!!OI@-=^DCi6ZsPgsZ}IG>Qq`9l%(bur^{Z5J}ux=~Ww z5$`wV9JneT|JFwQJ}kW!M|IIX*^`~;UFAB9@3l)0p8e=SfvYV)!$ps24q}0+DH@G! zXwkSc)BbeE|F{ExhdVM=xK{5col$N(SvmTVs=U!%F~{R33V+O0v+gVy{d4A(kqgcobjiz5{SI5TvhevJp_c}b(X$bCESu8)ym)V|dP=sr3(p$b$UI$(XG^S^ zHo^w$I43r&bVKumbU63y%vpb379P<>UpzgNrkj#^x+`~#29Vdrht&J?$ymDcKfK5O z(O3Wb`s$x+_n&|5cKQaAvTG1-ClZLAoR03ZB&OuYaq)=cXw}kKcRHH(t&*59ME1yM zhU32~frnZds5MQYy-gaM!qZ6Ep1`vA;vKL`W$xo-KFA!jXxB&_w`F2tmdrglPujc| z&udB+x_?r*`!So+-PydFokgd1>D>E1ik4@xq_asn5USJp7M8_gn{4biMw5BdS32ke zId{yIXTLWoM}4;_?&G3ZDY@lpZzmeNxv|E`nR5x=*m(A5_j6~_eB$vM+*{^Sxs-?( zwVmvqUo9WclgRO`(~(Zj+I_b0v0(?B$*O$*`7Avn@fCO1Db4nSC*q-E2Z=IJTq0P>=HF zWSJlH#8()+wJ+2B{P0{BiP~guzW&`GlS&Wi-&Lr*J&0MVfh<$?lisdiHcpQ~%`=eA z^&MFk`45U52AY0Ddl*wDd(3b;OG!Yv--&_3ru2H>~Q=p zrZBB-0P1suv1?+FdT|JSbtDVbbUFnia#&_ImQ%tYy$~>t&Egd~Ja>$|K8ZZMT*#+( zh1^dR9qF=~F6XPLy>1nal%>?VwUPQe=WzIb8tLPs*t@%esGZeBb)7HXz)G@zjiG1g zT#~w$G5Vo+M9c%l8z!B)9fnIjIF-us0`Xl4U!rg}hbE38P54_%(<**wFQMYqQieBM z!m4`n`14>c{xJ(#pR^R0I#?&*_Nc^hcNv2W%h@8iuU_g^9GOzd z`SJ=TZ->mP@aD8GBC7;PU#J4Cz_H*aA}oOiqFtZFP8Eht3G-ibb2C3SN!VhOxqd@twBx5q57I2zEzV%c-^JW5lsUDt=vd*J z)fcbFh!$Zi7#BhGOyLMG4zwOF?a#6=(Z8U~l3=&2Jk@w+gF$Zx3$x zI`ewJ5n8!+BtG=RDaV;J%R-n?TR2*e#kXfDdUU3t%!I9R>SWLLaxM02>0<6_#-AX4 z$;bC#mvljoFq59!IO$WJX+*m0Ne=uPfT5fCX={rgcbOV|hyUVF%F1=$lm-v#QtJF(X|klLoWp8!ujaWD@!`92Zq+ZvZtinsPGlYC ze0r_y`guuNGPF5kts1c5f(G@kwIuwnx{O(UMp@|cT`{x`X6Ya;rr+#DgJl}rkU3xM z#&&F3xIt-o!bCa+hhRA)P_p+i*oa4cd3g?fZ1?{UwZi(>SzN52&WHffDqCDwdo_eF zFNOWLz4$-;eXag#Dvamm9BkN~_<8S@_J_4Z!|T$kgAt+Pwb0Bq5zkLw(nltdqnd?R zy3%5&9$3;M!@ZZlf$=QLub4P-N!G_=m8xX2|?|>Ty@n4muL~QJ=Mj4t%$8kX~pr>9sPUyi}ih=gm+G?6@SpgX#(5mvweS zx3@8QlX~G?DEjeXS5{)rg1PN*2<%DfPCZ_H*Oc?M0sEV2km{vFtDPEHC3hmD!~m^d zk{L_YA#p$t`P%gvH%lAWS89A}YsxP@;RvmTjeQM6=SUEpE z(kJ|V2i#}4P&BJ6(^YJ7(z506%4S%t)#S?)b9NV7Fu0R0qn8-6to}fnH87%1MQg%l zH>Syw=Co9ABRNl=XNK34?ulnA9I>+CWSSG_ezy@OjU8X4 zGji8FTNcK)#!T1;yLap3SEnQMBlTIhsw>C!^`uj5Fh^#(Gkg9-%Es*Z5AUsiG}wQ> z2K(n4|DRpslk>ybEQ~Avy^_Onk^a~oBWUnFp8d}gxZ5NU&n7WU`jRHIGU*w35JN4$ z(e!?pfz>eS*BX<>rvs^cG|eQ(Bb^B0xMtpr=jhu}=>3vzub0wsT9b;QZ#FNdYC=gMD(jd4D_!EynZG zE04gfdDPn?8LxzKEa*3hE7uC?ifL0s~O1Q05@t5N}gszDC2hu14o`&>cTx*bS!|Aa&GQ3vL{zw zx$)DR^=JRv;Y2JHUz_UyIxLLA`&tBv1@Syk3&VYi zC*Ph4$4eQBGA0^JOAmbd3B$`JmdP!|+vx6tRhNP6IU{@cx{>s5AIkN;70hZdlcfD= z7*r;UCa|LLvdp*Z$$7-Tm|TnLWGv6e`m69?y{4d2S;6w3d7K?Pnq_B)(Y#Iphi;Ff z{+6lO9-4@j@o26`&17ty3Ct;&FIlfWyw1$VSvoGGx6Y6bnz^jan1z`~1^r8<3+uTs zue_J>t6~XXtw-}tcG)9ak0(YePdK9aj1%v0WqCdl5e(*h!u-T zoxF%P7K>%awv++ED~O7lfl62z`*W(%o+vZh(-joW6_3Nqay|~Nl=*xW*`sH3wf9WQ zbe0p@YCUS{EAUlag5jX~_zz#eNB3n+yjM;+=f6rQnqSJXQDfO_ zGzHg(CEU6&l@&!(*)P3Z8$*O6pfZJH2TKTaC?V)eG26?FSU<7|)sK_$x<47$4#nKL zFJ9W-1?a37U6WcuzV2j3Iu@c?mCn|OGkG-aFdADH;ypT-pk771ah)!{_Q@pOo=jfh zXl~jB^FhvHwo_wp^a;baCX6n#0_f2-m?mxG@Ve*EbxX-VH&W=>*@ek%+-TTI*y$?+ zu)E~Ok|kc8vyhHj9T!aNI8kUIjJ&k1e4N*hFOPcB`inC=f_u|Svm4Xa_2%ynjx;=F zfsLj7JPop@V6;9h46SJ`UcB{^hdKSd8{;fAIpE!ns5&yMo2<>}nR*!XlFreUIy_7p zz~IIM+4;kc>~#+09yOz$WV%-gL%*_(KEsn8>H01ZmD@8|9j4FyNA($TwK7_SD_}|hsdeMf#VfL(h;)At##XR~5zsj^5 zwr?HS-mC|?NnQChPmg7W{W&Lo)$50Pu+GPso-&gjtEn(&cQ-sD%t&mj%drKzmtSvkE9LX^KZpZry4Z2!OU%+WK_P^1W zuhp5ZvJao=*oF)5^!Rd9N0=d+cs_9Bqnjayouxnhf*TzUsxzR2vD}lLi2mk9^$j=S zLx`WEn;R#t8PlVSHu=fs>^NPQw6%3eY~7S&J%!_1+mNB}+H*$BoHx;p*{NoVt-1>D zDh${?%>;QYaQ}l5UX6oMZ)1k}-Co#llRg18$Mi&!KA2cOL*a16gTp8Nep7D)LDV(IojtcQl4A5iNSqnCpnG^cj1@Egi zd<}@E$u&iIVwMCufm0g?rnXkaYH%HP#I;8)z6~SF^a%`?Ox=>sxQ-RQ{6Le@A#Dj5 zC2ZeD8r;w6D0{+g=ypq>aij(vrfm5S@2CIvKK$p`|7RNOpX>LZd;KcgX7YPM2I`xn zXR9!YfH}hIFBbo4`Usk21(PWm`L%yWaxO5DwEo#xj!eZ^@nKr4Os-@I_p^U8oi}8% zY-<)1XQs2jE>q^J*#yU?qdZEc@9cE^7G~hsT|5SF)3EB8MyF|+bgRr2E>H$h-*dRI zeH7z%W$~oLXr5ZjoFXubnF;A!ZInxL$vASpMbocs2x(ExiBf4nOi=-g-rGwDp)q$e z?WN<&pD6>q=&?73Pr1S@u<)nXJzt#6#Lj4MBaPbQ?8y$4 z&Q4G1{F>#@r+^;(d~C-2iQQ?wB8=rZeYi8mmc@mG2o4F6{;|H~t?NrgT`%!5N+-fP zOVW+J|1b95GOEixT-UX`MNm`_l#nh35#a)9P(&0Z6{G}31tq1sQz^TG}bZT`}t_}WlwwE&YNC!5ja`+(s=t& zUPlH{dT$7NDueL%bD>A^Nc#M6MgNBfC#HJw*(i|g2SFT|Jrc7EK^Qy`-jS|1P24B3 zFMk4mc!)pYm-rmR#WVPJD!V!aV;eAugs>-ccPZ#2y`0+@4Z1a1pj67$%TD=DR< zE}X|e@k@FSj3@S30K1HWxwET?L%*`QpPk2;j)h!Xl+AU`VrH4uvgE`9T5Mh;42nXg zy~w1C_$d$jr4xK0gEMF2Q4UPP`ce+BlWI_s`RVPx%TZ~&7JtW;96LP$|B2~JbqBy;V89YK*9xV)IcA6Kf$e^bMnoJ{U@NT+4k zDw0Z;VOX_<`e#ce+q0Y%V^>nIy@ufmTUqj@6z8}(C=IQns6~S?+v}Lxt(MY&8tlXC z8KyFqr!VV;dC)*r?gqkltVAhk88zpZqJLyAW;eRyGx zV#&OnD8=?dIfpxyaV(*njLb5c32$q7WeHn`l~V6f#CpkAxQf@etFQ%{IuvnnL?Nq% zB|EH%ba)9*x6ju?(Vs<3Z&t|S$b9s@3WXI>K<{w{O!i$yAoED@D5u8+VQuZMWL6Jh z{mRGODwCeL#w%DhGMq`_g=EUlY>-o&Fm0#Me(_kEdJJKwn>`Qj4de4s8-D7WQ|e=j zZ)h}=<;7M@cm9la=BV6%J?6V`?Pn1FK4a<3NaoDdXYM{{zDl2+!(|hU#V_EV zXM|CjAv14EcT;oW%|5jzQpZ%D*_P79)dMy04K|&n&$r0l!ra$nRO7B_XQ?yjs}g%g z_9HoS96QVh;q-PI&a+H-*inW1dVR5*;6i9CJIWjf@Ik3JGv%C}_SFivG;m3k5+4b?{10y z+>bVmMe}M&SLtbspEfP)m1ulc`lf0dap++;wodKL!&gIScU=X$vJRZM-xv*F;VW6I z(|CPL@k@(`{MaX(b;aJy(3~JlRZrob#7T$8fq%1RNV=0rleU5AOb9{EO_+d({1#O<$6tKO>?76p*25VkL2-aYg9X_(4vD5 z%N7h^OD8KzUfXb3%LsSb)f_HKq}`z;v|7^KeM8Ju?t^=2cjG?fa*``Bzg1@kCZ0K&5Rj;qB~Pp=#t!1gY>aR(xcTuc#V3z z9j42@^V(S5)uwf}E=w<}(68$-{#t6xpdBW34%Nh}!GN<7a!ngqv(Cqi#lj#PyxW)p zKSNHs`|zyTlChR1jF;K){_^f5U+=<}XbpN@5w_MT@t4cl>is@7dUY~nkcxEWN`|Y^ z#9kN__hI%+ZK_0Lk16vb<*TqAn=JS@-;4j~v43AZ_RsbGw_o2@;t%MxU>bdgPbHv5 z1XE3Ar~E>ASJS5xktSLqFP@D$iF|jCrum?0lw3>Z;OHdjOv<2beLTIEB=Gu63P)cE z_cJDu^{-{dD*UWB3W*pWjpf9=7}ACDIVw1TZU6?9-!jYCKyqEp|B>zbA)zsK^wFfJ+mAUb{h&Klc=;-UkM|ELb z$?P*cEtJGQz8HuncGwtuo@{Z)z(MxvR*7uzNW*1|uugl8nYmS-v--xIsFePM zZG(u?vSqn)7G>&|lF<%g&+jSJWeS^AG8nfLJh+nR#U$C^sE#p~o+UZ{b64|6#mJ6(3UkNZM~0#koZe+;{e3Ln{x|m$_l(pT!AN z9}IU1%eA!=<3c=f8tBBSNXb9EcI8SNdFELN%Rh0X%%u>YtO4HBgSfnKH0$MkG~`_j zmwrYvXss_sn?i{+6-_b3kJA%lskaN}pltx1_I0Ce*C4KMjOEdtD9mJb{B@Y{B;-AK z#fxwb7fqqr)@c~@$fB=R2_^f|80T3*>x+`r(s3d!-j5{7HeBsF1H&c7M81%|r>t~# zdc~3aWeLj1*5UhLE=PTm`PFp-o@H^&zb#&p>H>bnYs=Wa9phOu zDw-V8$mYcngy+XHb4nt4H(t2*KCIGua#$U z9rv|s==;5v$-~57dsTWEKFp#8vndtbYO$x17I{^~8O*{srkd+*sxcE!ft_`g^oGo0 z@v2J3*j6(myaIRM3U1b(p?b&STNqo#JGsD)aPbw~OhvAca+TC0BN~h>d=QtXZ2! zua6(MtksOXm-+}Y0WUh#gZL-q>rPWR-tZ~G%g#lybbr2)>zgEa(j&v5kwfMNt z<%1d}SPg)uFhp(#43H|>Q=oel?97*KUj zcFu?TQ}3qEjltTySlWxj?^;T4f)ZU8c4K*hGOoAUq2IR^a}t{KV%le$zazfbtZvnq zFS{BG@1iqZGP>e1ycw>C8gu#BFPmmgpKPM7gpE436Yffu1P#>0+Q%MO9m&Rci}reA zO!E2`OwTf7s8xHqj&CnrxvhAbn~dt?&M2FC@;q`dJ~J{{diLP|v1T~5H3$FZ0o*SS zqj6Vn!WaL~y^B|SO6P9B_pEz=mALesoO~+t!?_MLD0HH9lM@9K6}eH|jv=!5He9R2 z^vNdly9pOHCerzZ2Tc@|8TD*1zMe_K?;gj`WKe#U!Koe6J3Tam#CZd_*20e8JLL?~ zLwp6h&FRx7lgH6(Sed>G7X<@0i#N?Wr7ubC9VHiQN|fY{+O-)76OryRKezOX`KmzAk*2Abx_` zYBVnBMAc_&;l4Jd<;6DK=p*~_%L*v_3fn+mAK(2Zw30b)alruUo}1FnUcQES3GOSH zGhSwx`{FgQ3o;;L{u7&vIXy9Y*^@DUs3OZAavt}ld*&&dhtCHId#k_P$NH@P>_YLJ za9&AnMD@`OnSJ;X($AEgI|k69y&krryKfkEWmA7uTJ#ld|3r~~uX;$Qgeo!CEeYJC z%kziQ-{B?K11)^l3JX}~(Hc#Lu>9lzf<4_BaL|#+ICIR_nee1mn;XJe$T98Dv3G`; z`MTg_E;HeJIX9+@A7bo7n+YSdm|?3zvYg$nm#b5JRTcZ~T0D-|!v2*3UXi-Er1z(_ z^dzWG(&xD3`1+moA^2)4$KU_!bI?Ef>EEuO{<&uV`PaATN9mqbk7L@0M3&7+Wai9dj@qV>9xMKU2a^4I8_%iPNs=3nVZhH+oXt~6 z`kl;B$w9C0o6L3jJl(#eb1YCgxIU%e-FubI&ke1a=qR0j$+2`dDkL^tw9%bNQai_D zY#zwyH+Iq=I+WZ3FP45EO2(x?j&zFWM^Z3Gb79%}378*nA-%?y&2O9uO!MK$s}y>A zPoYu2QVNRm(d?efs<0x-VwCefHG$G{=@T8APwx@FBwYgMQ{y=tWP|U*seDo$&)bMF z_TLTXWDh6So4a%2_5?-_9Y=>L)&x7c@uzUIPW$?D;pQZ)#)b%MDU9b1IV7l$Bc#hv z!c&|udl^nQ`8TycYD*(w9z6(;<*Z`_X{+6dv=?^K^H4^&7%us$0H#@wN82HYzZ*;E zee4wK`-BpmKUsXC;W94>lfUbS=H?kJ6n{XN?PRL9OyJAk-l+TeQuuis;k8q7`zYS# zBa(+Vb7y)}@j4UW z4votVXp7dZSF5Kcx0Y8bwN#Ir&6eQVDEyMYFMV7ViL+_cz8=f$T7qK2irDg?n5g4L;y0Dfw95tJ!zp68YXN&Z6$)QoGG5vF%(<1%#3Rx(8G&mxAb zED@$hsr0lKGGa<~RHEH0ybPW8y8)$eS&7zt~3dJZwo z@@di{hoI}3sIAFhqemv??K3e+PGY2^3&!)D*>&5E$!opwxHpoA)lO`l8N$JQXO`-^ zvgfiB8&8@`ws9aQmsraA*aRa5JGO=m#_f-hEE{4i8ZjK_pYa6BqP5R^9TrXRi|S!D z`nfGRwLE71MBp=u>D$BavK!n^(`DG{q~s7Ys{hk9XO`b9B1h$ zn$)o!-Vc>Mo3L)`M@&6|n!Mi)nBVEaIfENxcL55%8tC3OBD?&@OhU95Q=j z9MX^XJB{%#)|1TFSobjg9V!cEpb~=7VT8&(-ailw?N9 zs3NAGv*F^yb`WCB)wAL$cnTXvMq$-aq@8XKA648L-NuI0fqF6*Frj%{OYv?ErJa%^ zjy_Yl5V(SOw>?<(Qy=ASDom2u^|V7a7)^#d#+Fzg7((@29Zn9^M&*PFaer#DaD^kE zrkSxW&6GfG1A>N%2K%UhR$V{#=;)&$UR9k|(z)ATg%0;LDby8@@%~=)iSNs;{%YtH z^{3iTf!9Bk*n3@x`>OqA9$-P_86#RB?kO`(U5>rCX6On}cB;wu^M@5xWtf$kl&JsR= zblhdk3*q8w;p@KB$K#zPjkjuwH%u~(-b1)AIj`Gto+`ej!PiR)3|_0w2Jt@3vex3A zl4KmO>th^gK*4n_MrLSHf6xvC)!{788%cT20Ad~(vrW;4vM%Omc)PJno+Hho2Vh|- z-r;`TSUS~$&0$dNt*oYEO-y6_^;9ZFlm4kG86wHw7}`h{;eCwc z(Wj$i6vGwy_^#P;+|imL{V6j!la`EidJ;F{k{F*n10~Ukjep4;_K@&E_a^gr(L}~} zPs4RjG8c+dn3tSM*zA5wK3_(D*Xhv8?Q0MN; z_odEESG49(C_K{gXL7U+>1%`?&~_BxJJ{1#NjO9f(`gev761N|Nf%~UO(T2h8wK4m^G4LRvvVm=*tb^X+`*W@MmHWUzd2ZprsEhWv1{VCXB51 zY3wVo=i6C%2ASn><7PC~v3Ue8j$-MFXp{!T3co3p4tuAw=Sl{v)6$84Tgfp6;r8FI zCfuT$JB@>gwJ#@TUWv>q8t5Y0?ZmDWCLEr|hi1|{rXttTbs4rDX0W$;6feAm2V9iQ zIE`5RuP@@(xcOLFWD(ZBir~A_8}UdO{x7m<`R7KedljQ8-T}kf3BrdQ!ElQt-bD)U z)j5>?hKV#*SWdCWPShf|5j%M`#k=bmR#{KpqZ)F?)}pz#fy@(&Ik0*GXV!0{PI11l z(;Fn0R7;fT+JNmfJnLP{ltuD!&1*UTwVpp0*Py#@A96J=c?eN)AZJ6yr_l5+IM6yq|i3?HX5hHNfj)1nGoPnU8zs7(0(C7j(@%;6Q{ zqZK~E=8i>F%r9ig!Cag@3+Y!;$b;*J?5-~2NmwECi}KlXu9%sZb0}*ho?GKW>5I-| zdX97<{JoU7?nN}@74y_)1J1X@xZbvuN8(F()hm~}=D8TQ5tj1CLK??svr;XOQy;QL zS7$JAP9_H?W$`UDi-RvSxToRDuh;gBl0MOvD_po?D|w%1Ud)mCeO-5F>D0BvG-0?f z{7v{6Y|O78gSaFa?3Dptj7W0hZks?Ft(w8H+C(xpIAPjtfOzb6XuMp5EBY4FyQVAM z?f=64ROdmj!3>x%K<+maUaM;1zt5ao+LkmVcVt{2@iR)#sm3BR9`v^4?}ZAKCJO`f zb|=R5l3vZ|?ksWrZlkzVdbX}9lJ`axv;JKOs8!-;`)=Z~RN!oQN6B1u=a`m~@B}q^ z|3Z_KW|}N8myG<9mb^3gZS!<&N8!?&a{W;|9&MAZ(OTKvG&Sb=7-5eIJNl=;bTz!5 zfa@hQ!n~f^ysejf>O}{x=$`(6MZf;bGp(I?p|Unbb81NtKW0rJ@}m2{`rI#P=rZP| zEgL6#VAw)I_9`8?Go(F6-QTmSy*9o@BPemRU{5n)1nlZ49t;g?9h}k9@y1(Q743dK zF|F>xncJcTI|~y*@_2JhLs=?6ySx=6Sm71H_DJc?9uq9WR`{;{rl9{okGOIZTIRbA9ETui~ctl&5c1rQJv<%nESHpdTYbB2f9oy z9>AECesrzSBSz7jDZ&oOwbG`$^#F2%v~g<_BwTTAE}u~5FE8=v?l+QoeFvHqYND@U zfaA+SJUT7jl{XqZYUn}LrnYFbduH>xxf*5PpzNJ4Zpx~dj~tG{?xv(qdSm1K^p}nP zo7*;>{_ey_nQ5$lBVDy!dy<~6$s=`D+RayD=Y&4Iag;u+T`D|C=taN8!7NL))yP)tSy`kbB4y~;j-VB=+^d3_%xUv zC-vFlAUeI&kvYfhng7B9>y;jo-8JFG0vE=#Zb@BHbKad4)`Vgk_OI0EcCXtuiVdBJ zIn$l)?-jU|u7s+QvoN^yF|i!Ly&D5KCVPqCUJ&J`MZg(3f63WEC2bfgW+Pa){Ga*j zKl<>0UmyN|;aWZPol4!Gu_W}0Wu4@+QcuRQQs$CRUc_N19=V+-r?O{6B7X?$b%$gM z#&%6&U#FRTo|{Ozc)kX$Pp3v^urVK#xjJ-)%*zsZvLcB!d*g|#O65d{R5XSs5)zQg zxU-44l%-L9K7lp&(^&sGiC=076bH@ZeXj%#t(N?eeEv_9B=fEyd*g#L%j=TDYWGxJ zMy$3;^3>qTV>#Q(*B)3o9Yxn5Mx2%ov4Ls4pA^l|`0<>NN+9rnu>1Fq=E}kd%!DsH z{F5U;b9`tl9pLYKg|hm*HG$&83-HR5>`Xa*Eu~v`z#L|YzUeY}0i(kfGI^sjox3=3 zYd!ei52dTjtA@z?OM<2w7uI@^-NBHsV}qDGeJoejj%D(r;d1tNKrz!zJY=#f{Vg3R z!j8!-nZcyl7JRn0qtgO+vdW}`Kv*`Pb0X-M8;+%P5&0=OaZp2cQ-LEW6V75`3m*a> zh2gh*oXw8~W7wDVFV8DC&ZzjXufiL%PGRicCXBAbk_+>k!LFO*rROw)8z((cNs8i+ zNn>g4G>xk%fuxR|g29VW);$+=rxsY+VK%gSTRw& zS1~wwr;r*Jz?+It_Eyi3&X%bhI-Db&02$O~WHO;mxp?BLWY$s3OZRy+f4&J*nGsI+ zokQws@uD_VaJtDFnpzaIzHK&d#$;kIv+X02b7~)#jkZlFM}E!V=JRQ|f0z3wEFJ5x zWa@pUk^C^3OTRO@{J4k|>kTxWorCKAYY3k2xB<~~iKv=`P5cI4?^wqN@x|ul%3OANjc|Nx zC7V5q64iRHjUIkNo<&NePK>if~eu z&VtMWPKsW&yjVz`X$X07xy04vqR^@U4gY-l`4uy`c`=LjXX4ePT&`Cg*Y_5(^+f<>&0xzQOVvqJDYn7+0vz%MYCI36ene3{UDvsY8k{1 z$>87-VL#6k7RC`_b$oQe>yA68D_KCia+h;AF0?CE-9Kw6e!Ej26SBniPmigMi6T)nIVobR1NDl6^;>YF@ zthF*_)}DTx{H)E_eX;|7B3bVPDr_{+px&T2YhU;0?elJQYt;kgT`~`Qpg{5Zjug)7 z&iqa4oLJJG&5ycK@LiEZiHiKX+mZSM9eFiX1JB*Pnc^i`pc*4m3e~V^A#>n(Rh&+a zV6V4sv}!gIKY5?{Ug$uLh9w=Z3!`sh z0plOV6Me7%l_MUg89A{2-~e8nFz1PfAuDA@>)~m};ZpIry3eF@-yzZsYa)y`ZRXl% zl5dqm6y53vJPm?C?NiYn0zemvV_SzJv5| z70$&&bwv)G)x*I`d?%yMR4pDwm{EAfT(T3!v`sV>Uxo^49s1*W zUXMk>+*Q*b!$tAY{yj5+1$O`BxBfj|lmC3q|6ENx`tvm6dQG8bUL3Rt8O#t8j_CZw>VmSO(xzliEd95>9abTgcp%i zX{Rw`WD4Kg$ZSRp3Gpgk@%~|rBkjexpTb~#vTo!h4^De*I0}`<+`ja5CMEBN@S5kRHZ* zH9w-JjU%JlmFL1q`8Cp$)e$Z<_LbbjqM>MY3qkRl2f0sVhV^+2CPrh?{38{E_2Jx| zHI0tfrg49YEB0%B*lU=>A>rr-i`F)c6TfWt5M~x;5%AY^Rxb`Cea<*Ou8X0+qc9;> zNw2JZ0J%HH(OKCR$A(ZQeUIc*dtnoLdXU+16#1|GXnTJmQL6%o+#AN?<8;y*(#Wz&BY#H-TNI?@XqwCrf95hxb0#x>g<#)k zim-GtIreoDVZDNA8dgA?O*K54DjKzsuwK8{($KArqgtED`8|)#W0puS#Cps}?4gtR zVOzhiXVi`cI<2o|T=!ajpPu#KxL8R~Yvc?j46cE-43!Rq0U0%DRm!aOcpbTyYM3>l z9;fN`_}bMm=Z^5IuGXObt%mjQ#e48h`nz;wmV2q1?H4NfnkhX8(<@o`x{UGSt(a_3 zf%(gFE(}Q*hO2lCPK*Axs-$qAun1Jj*)_Hlp9L~=%`U_6b}1*?m9gkiiR6$=(JPg% z1Ic?O76}t8M7*$9N*J44%r5H^K3WztzFnbso%5(|9>?0=MZ{k#VB!d28+aBoZHHvM zz7%tMYcUJe^Vsq^7q!!wYEa#DBTSebqXv4?LuxPD$eGXR!&vIh z%j-|kO}J&_81w@?)(_!cloPAkr7*Q{3^OboNq9O2wOmgO4q6hib|4;-seB+g72j$T zj%^VCYqazo?9=7iU1Kh_(IfP0Z$e~d*Em}G=6f5^T3M5$o;`84=}cBeH&!j_#okL@ ziS4e9Np4#foK&Eohp@Ef^di9Kn~nB^4%A%iO6xjB(N_wL=-C$g*~)w{R;I;<&Zr4X z)J}O2J}TObic_I$DNHNTWy&e(8+&eup0yuyMJK!NR%c<7Gk*!6AnLxE+IF@e{Ei8*h_lrWhUW(=Uolm+bj z{hW1|r3U(>AM>rkNOhS?<@PGt){bGrAjy7xRmXU-G9@;X#8=?X_73fNa7B8xY&{vc zLpmALa~Wk4$BiO;tcB@vQ~3X{)J(|f@Q?109$rH3WcT*TqZ#8k8I)J08{TcVn zS(pX`i57pa`aE?;##{4wl|C2qwK0sa#BZb-{w=h~J!Xi`q3@EO~dd@+i$*-mhD+O}wdz$JJ53 zBVK^F4k&#z=H@&rtjhYaqNVgFW=e-vy%)MCtSJ98hBaoACn$0!TEPYLGvc{uWsLWF zeZmwyNIB+2XwM$h4Rgl!b4NK7D^bv?H+~+Sc=Fbq72;*6{%uY_J7WUGJ8m(zJB_9p z@bauJ?{@f7@mx3}-G$Y7X8Zqeul#%8qyK#V|6E=7|EKG}>p~oJ`X>sbZ#s|0C*dQr z((uqkVs6KgEe0f(r2!SjY48dmNYalIeIdnU(9r z;~L|@)!cNNJWD6^VFn>RXJV?8PK$yhmIu$|fnz$kcW1I)I|H8$Gx2GhNt9&08ejM2 zKsV_cS~!u@lM>KZo5EuA4EBnzV5oEzG*jrpGbd%bT~KDPqnuk`siW@Dhb(7L)Eas7 zO?FlKbIe(!?S=NQkpxbh%)ueS3|^AP!lFDLFL&d%)fhg{8$)!ZCxv$YJTnhqhmW<4 z2}GaDp8e&~arB)PLeq~UI5BG&PQpJNye@!m^8z@vbvPf&>XX} z@}^(ALYv72W{i9y-R8coY;+4GeM=M<>_W&8PL}TPI6nRM!q#*c!xSRuaXX)!HPb1* z7RL9D{tRv{J_6CSAGiCkE-4SU>_pCej3QO$Rugr@i60ooklyKhYZ}bL^gzlsL=u%P z-sHs-Xnb{qbU_X!<&G0i#IMovp)2?L2GYrIIzG-p!upxPBel^4x`i^Ma}*(ro(w6 zv4q{7=c4qy7QgOw+zyzHtA_BkmemmyRSYJXv|dps9TfG1Jf1~q=UUd<*VEan0jC%B z;xVX|4mIhMeNaRClX^y9uc4o0q$b}L4nfjv`Ww$;b@?pG2Ujtoc{QC|S2NGPg01G| zJbYbB+4gc2{43FrzS>JoD#__niEfJcVfzZ}ev-^-OUo$STuyg~Dh@U;r`?8fZVV{L zT}M2$jZ69Xsg${y6?{5a$~$+N$+j-RYoE-js|uO?Dp&R*dA#|Rg__KJ%YPLK<4Alm z1w}lcS%lv2SS-ae@JE+Cx(>_2`&AbD>$6x|kb#?cHbVYR=k=Owo~CEBux&omKjrY` zKprPwWV5Yh4gvSGc;zi0w>*cf$$5+l%ICFQuk({-zP>z*XaAyg$GB7L53NLNd{7#} z9N{T@tn*~wijh3H<-s+1#{Vq0qg59d#vK{M$dfLT({g0ma6>L`F=X4(0o)4j&qL8M zaYu!Pymaj+3_X3W?>46UQSmx{?ZHH)ZrJ@+qQxgQI>qXs z@IX__S9F$6Gs$?(Y)QMWUD&n0FB5w9qGW~e zOw$yYcGwcV40Z0G8;EPJ6<3>eW~p~u9?$Q@iN#G&KVyS!=m@T5Z}=~z3G_b%bNa!Rp2I`$d=?mM6Z};4 zq3!^V1P;T+Xb6q(H3%nlHK{$8@ag^ph7EM4B-a&RU3r}fx2D4~Q*KOm=Y{wOB4dWi zeP>JVFD)ik+w<$0IrG+uw#s*7Pg^gZr3klTqBV-cV`R4_tQw=iyoq+jGNcd3UYfGe zO7ecKZ20kf00lc#Io-D}<2w#u?UaEicGt)Jk?7*zX8iR`I&246;P=piS;H+j-q?cI zE9@Ei$dUVw7W~?+%ZZJ>8R6TRxvuIotL((EzaohrJ(w$vZ8>W+n)rv3>x!CyS&i%x zPlxbT{P_nHJu%lDL3pYc?R?>uT|TNAJ@`w*4E^1rDZ8{|^IAh@t8^FkuOVZ!`_XiQ z6;CrIw>)i%oLeW8*JTC?R?-nG`KqFY{aD)Cjy#1?G^r4N&dH868gI_a6;6Ei8bF)G zA<~H}S>ncHQI;KlL%ifhJg4x&WCTk8Ty*apNC|~9ZM^5b4M^AQOpn6yGPxazw zOdovKD$qmI5|=S%!tOOB?^r*y420bw4BeKdChTt`Ka6Wx`8#ps!y#k$ufMBYX5se}~{BKfOmtFM|g` z+7p@GCWMDA#xwixk+h1aASZPMw|_d}KDrH!u6(fBJa)d#oIE`a#ThXDOA^DiUfO(; zF4x79U#RF6C>nJhBl}DxyoK*^YO;;>L?WT z6X=;5ht9D$;SEgT{DX-ck_^p@VG)#yH_=`%inROyPPR^`sd4~84Z~UZG?Po^GdS5h zjVnvD&>AlNVatOUwtcE}(~Mxl!9d#ej9~2d@yuB|f_`dFblwxqp6=3H@Fbrf;^CN3 z6;JNkG!zo2GT(X%zHwz7R?QNR=sZSWN#J|)e3mwy%_O}FEZ>gf=IwQy9JH9czjlhx z-~!KL14vel=c@T+1{a55DSqkmSJrc~-x8)y$mHGjbP^tpLq%nV^nZo1V&YUjEXl&? z&-F}KE@DFaSXw_=hpt{KFZWL1*7+!A9?lS7M*(Y2W(vC^oqUfNmMvUG*u#a=wX{sQ z78WvqIA++rZ*)?vWD0v(4E4DE_Y%iChYx!%3%v0yrP^;X)x7D?x+iEEh zwwA}iIxb~Z5hHmhrxj&PK331Z)eZcb*FfdrTE?EMXUUdYJWthg(V&)Ysts)KQNs+i zI$G|U&Am&)jJ2!caBL-6mX+cqsU+fi1;OH%S!7Vo_deyUds)eycH)`cUCDXz9Bh#5 zI% zdrFt>z*4+UN#;vDwbw6H^Uk4?`o9Y)l0P?WS|aSt5kx($=_An_N}-Vh!8GMm%R*=*>PM;nt|SezrX`AlYalMLn4BD{ktS@SWA zDMNGlAg|lGcf@zFDT6IHCXlLVkI^tUJ}qxWsl4mp`nW7 z4m}cM_2??>pidW737FrX-9CMIc2;rGg(FVoyPE4`-~gT1Jl5RO_yFsgkbnZ7B9{OA;NE=W&- zT}PUi4rI5NJ%2d42}j?AVmlX_W&6=7&ybM9f0<7T)3(N%FZahthnFkO`iXv$|8lPj zKfqD4Rf8ttF8n@?b7OhF*&G`W;ZK~><4Lk3#;TU2Y&Ky?^-!Fyn{sKj8^-Fx`0C-w z!e-JT_|X$Z9|z`ab|HGQ1F5A$S-IbeR+|S)@5vDU_+`NHD@iP<9?VX6YuYrm;LqQ2ucW>>>%$EbGxo$4+nL3P|V9cGdeK;iC+Ny6x zyuB=}g}>}sz0-+IO)u`Wmoxa4Fq&CsNoQIt7EiO$csB^GL}xB-@L;WGgzz&abH~q; zduh7#QXE9sK?@#sv!DKTwyN#D?i_2Ox3>8Xj?X;&2eLb>x$SYf83@q=2kDz+nm z9=3e$ro_Zg3Vi%&$@X=|4E!SZq?I|1QjOWCZ$Y4RC%0N^&W<8iI^_=HL?`K?X=_S9 zGaGIzYSQ9yBaW=L;md|m4E)0w_rP|v*X@DsAJXl$NMEucYOH*#BR?ncp$m)g;VbC} z2{xePU_*NE3FLOjP`X6@`*~Xa(P#fL`s|>-wiM z_Sa0BJx}NIpcFF2JE!#}lcJvK{Jx$}w=S8S+@8w9^Qk1p2zMYVlW(P|xb+oXE7|iD zPnidnNSAzn$w=SLr1ZFS!#>TTMXUnBdcud1JcW@~DCxCh$#PA?LNX{O`O=k@D&Eq= zam3zp<%wSk+bkpLH?)$UHzLI&DqYa0vMIUhipykk%Edc))q5PjFH3%?T{iJXsU(Xp zG2beKqe0HZs7e>BuaD$BeR>75 zxibEmH}SR;*|~ZGleBy=>K942e+1WhgmHgJBzd9Xy#MIInfYUQ)ijmSmebj98bshJ zcj*M4z`9<(n8@xwT|<1!J;veKJdKntQ_zhF;88Pwj_7%@sxF+3zoI#DbG&$m192S? z!mfLf^o|W=ettO)^Rw8tFOCx3WX}H%=e6vdZx&}VanVw&|4LzZyNy)!seyttwtbZT zQaM}bevPJ=^<)CS)iCq*F~;r6Wy{7~(SXwPV-rwDE}OXp$hp%mX-#-`?r`L!WJ za<_i`-WY{SuXw!Q&A|MpoGUV=Cu2!9&;O3)_n-|7db5sq{bRVhF&y_};z7Aq%o@pg zPgl#rsEUtgErwBN?|m`S+Aovr{rzKQ>iRbh3gi zK9v+{RkFBoIi;#q;?byLWkD5%TGfn_?_=(2GV%W_9ozlcw2*Vp{`bO9Hg|+_SLuYe<8YoU zmu#)bY%!2_p2IOUb7b-;S2i>Z!7|;R^U6}kJWYBI?&#pKMGJ%FqJ4^ucwVn3K57+A zcJw3Xupt`vHR#;02bumxG+t{(bzcp>7w8b6@+7xogmkZ35q`iCf6=p1M%MICv!d;H8(ue(%)`QHRuyDn z({2n)<-Pg4@Y(u@hvB@>k$cw%5EX67BsXW-C)g2?F^sn!E|g6g#i%}p!i{wxFiTie zKisIkqKAT&F})L98GG4*ZL*_(JV#4j_u>&zvEhTK4heY!sLvh9U&qa{J8X@E+faUJ zTJW@&HX-vzF{Y;_4+clz^I{Y+cL!2!pvk^nc9;ZMqwQ-?(ot1hdg^f_T9=mP7Py*D zB0gXe$KFmM#3dWM`?)kKNv7?1FY%m==IK*wqT-??138Mf`moK9+>NmpT4u~Q5} z>CZtF87Z?udge^KcB9EjMQj$eXHs7^8od^;^x1CctZmNL>K2SXqa(Y!J}BI^!%*_S zAKeFHD$j?c4eETaG+}gC$+&G4zQU?@yf`Gf|I`rNzS{A^Sce|bo%y{|2fdFSB#$=| z?PY^e{;ti)%j&o%4B$|THmY*A(>iC&LU&8)uo)uyyAL-uYtXh@6Nd&bl)sLZe&03! zWzJgv=&=8_4*TaC{hwbW7xAu^iLdha?iBhPrcv}dU3$M$I9Qf}!Qc!zcPI0zCPT9I z(tGtPjcb3Uvg>l1Xjhq^UP$MuW;&zYGUa1uVsST%J*`tPQ_SRn>@~|LrgLp}2KvES ztlyBq-;r6w9?xQgWN{woXR%9s1m`zqP$v7zGe0s|Cck$iFN@{FB{Om}7l-}n^wrB@ z^s^kIT))`VRt)4wPjl42M6qIlWbAiZvj5LWHr0hNuXQxaoxNE#EtTCBlh}JSk@3Fn zj9THrjQtV(Tq?XCCFw#KlE~>^l8x#Y%2{E{E~~W@-+dMf?oZ|X+bCvr4rSFZe-6BM zXLyu9v#lIB5;vArqP2syMzYjvB5MwZ68>FsUH2w4{(KGFCQM?eUw0ZL2iGxjJi4jU z&HYy(pM+o2Y4#{C^a@60bu1>5pE`XNQt z2#gKoUiu8ycbrT`RT{Hf&7ggF2zI{t+-dE@vTf;jt52c&Vg$FBjiG1TNa+Ze$N_KR zV)@Jzj!imu-Ug%mEQ9sQnXFtGz*Y4ynhL+OwOs(tRelt&3S!4DZ)R_sf@il-to|tG zPqi4beWK{An#+`rb1~UFi5lS&oc>Wn^JPW6yd8t?S()**p2D-)$=G=na8SRHy(ZCk z|DH_L*J&sh$CCS7n6in&@4Au3-J~3vyop4;f2qvwRub8;g-E}ns85{8uYuAhKU{hd zMor~iejHUMvLByXAv?lnbA&tT7li2Dn4DRz+_puWcJGmyHQ5UtqS(}S5Vuyf-%AJ zcPFQDXhJ!jd1c(SmQ3R1S%-4nLyU9`$cxt| zT(3WUk1L`kys1>#SGQ`TCOOBxHlicbP?G3lq@QokM<} zoGljb&e{>!t<7WVCO5h+^5)M@lZlZ1{m37KnY3~kO6OcTmoyv&*?EM1D8yLab6UyH z=lV}Sw&hB1MSBy{B)8PGW-#idx^nLfqGIwORyf%5I|C+UIZ&59l0N26Xjtg8VYexb zzDlR?M0-k|29o*RmhwV3MlQFeaWk3o<{M(^<<0feEMJ>p!CB0Ev_U%Y z=J7Qoo97AsY;Eq3${1VpRfbV7XX_c)1EfE|kk6g^(&ze3n{cOJHj9#7c=gbRHFFJF zw^o;*gS%l7`M1sO2yLvbk-D6WNKrNvze6!_oo9%GO3Klx6+gKxik zygkT(k+du1Su5+gfAgO6nte>f$F50nJ2S?=)ntwT9JaYkqu5`Qo8_};@cz!rKmWwA3roIFDyJl06{a4I_Mjw2 z1xUt5CrNfHqPaSzchU@(U1R?=nxiu~CVWt(3u&Zh%lGjW?e)hDjAPTeE_=##XVXZLEOgnj6!Lx3 z*`^-4!0hcNXTmcuf~bx4;RRi-xSXl=&F6<^5)Yf%L-% z=rePsKV?cGk_~r5Io+8~zCO%6I+u?5HdyouVWaSf+WqOol~z8a9|~o!!i`NWgIL(; zLA30H>V(7ku&W!bbmt1E#+7xkl4IK@k6oNWP48%oFG;8E^KMx%VLzrH3c{eqRvxh?H zL?~|;_)CA3FJ9tf%`aDD`NnkmiXUWkbtHdIT8w|HA0M|wqV=~2j}FDtMs#btLGxHC ztk14xLDIb%O#kUwjJlkK#@%G%gv(zyCXx2e{$zge#duCSni`?#j?ZVeeIQxOkk#&8w1eUnzZQ51T0YX%%%z`-#x@ z<@?w$IytOlu&_`sJTBu|E9o!o@5qgwfusqGs_vvMf8G{<-;s32?2V&cMUix6c{8Jx zzvvU0j28auxj$;TVlLfX!hrR!uVbP0QmnPs;_14F_TEeJINZeLV@ufW(#YlhjV#++ z&)ofuJigGt*Om2*y3mNR=&S;4yn5om`^JP_drPT4YZ$0@f>#=liLR+N?)A&Y` zU)1wK{+r+I8|bsG4mXclR`-&wgbCGbzg$U=$_i4-D%c%X!PakO6kIK5z4#2=MQ=?x zQObbc<+PnwA)aK>Z2d|(I;ITMQ)S#0KdqbO$jY9S(RNcgF&1SE*jCE)cI6zhDiwxs zDY3UoS<|PKro>WyK2d_v;8JXT%20h#MAiEezPu>q!Wjh@{VN%0lFPgJdM3?8V@m&VJvSlBw zpGD!DOj>WtrXe*4=eJpuPYT9zWfo>~B@Ro#c8G=OO_IT0Z_L@7v+0qk z!~QjbVan7bYR4Qt$ga5gj4+e6jR-EAP2qDLE^5mCIb|A#D^zfg9mAXR6Zr698tJQL zU;N{EPPd&+uQM`J_)X;Ahw)Sln@P7(qowCwJd|%n$~jeujl-2>S3D8bPO6-}p@!|? z(b(J{kKGt0rW=mt>aFqY5*;#yX?$DTi}g0cxD_n-|GUa8J2{oZE61VMON)6U{?@4+ zKLnM!woHv!K+#`^xjX5IoDGirKc8XyNH<&DmicUPkt|m6D2%=vF;ab|bU&M6)kdFw zg`@BrBW(XK;?HkqMSP?9+9kJM;i*rHDs%1@#?kRZB9p(yF;%qLWqQ-_iuT}(w*~2D zbEy&!*>#k;Y2(M6g&};~XpMc5Gb_R(2pr)fU3VIMy55f&vb*o#p~@R&Q&_GQx1^AeuXlW#liSp}w6hoo{N)^wPq5@4s|n>FADMz$C{wmJK(e zz3*(6zEvm4W){ou8VG060B`BA_+4uz2mjVV#mE*P?b&QSAw9NAM%cEV!vtT+dVMev zA9NIp)y!yc)kj%6!WOCN(Mw))SxYR1e-Xw*6L~NEmkxbvJ}$>(r*Eq%-PsOYu61DT zq6FNP6qMf1{Or25O-se{H^HIsXqzg z$!)c37HjWlvSqL#>v!7VyUr1(Tz$T(&5(`+P3An2&fXrvm>D2l4OO$qKO^~He|-kc zn~MEpRhm0#;qjXRp?l^reeyVTPW5K@$x+O>*NF+PBY0*$g{i`pd)6TPhhcr>eAWj| zo4#l~>w`fzJ^;Sk|6rpnE|(Qd40Xc$sBlDutJzgL zekPyxVnNRwoc#P*Y~sU-QITZ%1flLO%%;gMER67DyT2a^zb)p2oPkT{`k-v@%c0N! z#((wV+yx8Tn5PmETg6b5Qt7VFz;S}TbRL+a{YiS*aFh=j)DWE?YFQaBVTZKNRvpFPslc-MA4HkCm>>$QSbY zDB1SXFJS~JM>5G>xJq9g2y84wNoLIbyN^8#t_od=q z;7|T+f9bJwp;y^lB2E@ajy#i%+fxYpAQ`X&F}$dZ!hBH$`)*06!NEe5Hyx#8x0ReL zUC-KwyXbx32rIfZ@OEH529N4w#uRRWbrV+yHV~(%XTr}7_}^^8Fr{AR>l*sKk}leA z^$Z_XONn@Eov34-cdf96Yj_jUK#*e{v8U=dNCQ1)R1^|6B@<6YQ$=~a#lbJJTRwiDHis`wf2<@*5 zn&t1OTjY_tsfY^OBGUdSX1L71TXz-l`<6ngElW5jzqc8Y@udHjM@mICzuig2epe3p zh6-MGGUe2BGoD3R5_myR*dC^I5_am3sk$Vd&?jlTF>d;%(mQWV}C) zxdA>_N>uFC;86Hf&UeXVnK0_2@5fQtoWg!r*}XN%-Y3I_)g8Rp=$p#xy=6Szluh12 zFJZA7^HwrjFPxNc(@^1w$|~s*F=l#%6_Xx}VdEWP15BPk*VRHXB5 zxf-YaC1bbIl>KWb5ZhMXWAr1~psvrNL_^%ghoa=6!RU2P^jha2y#ot)+~1R-25F3( zCOV1STQoINP@Wrzjh=kZ>+Wcnr|?&M@rC%uQrqN7)jd5_2SyVSBmFB5rjjiS=0IaS zk!^D*$O@)jyao?U#H*b&jf&Az=(B4Y(W&~9y97tS-h2-0h|}~o_yqo~)312}hc6po z)ucmD$^YgbHer6DrylHA*@vrZdk-1NGgy{4sGB=YO7!ozZAc8ct*L-XW-M8o}@4KWmj~ zEgr9YZs_m-XNLV}hX0Q`!{ntW(=RcDd9G>1d`@EEnIwj_OJTJ5Sf`v59;EmH_9v#Z z^}KWq7^iT}IUUvSqSJOvW!8syj*XVY`NcFm%z~L2l|qH=XIi`!kLjZf20f8}r3o2~ zo1c!_lnmCM%ix*t?%zvRtKn`236gc*p_?VXv@E_EWV7Vg3~J|RiT^GOt@|1D2+3y7 zwhVrA&R{~Tdpa{tnJ`j3c89x#b8cQ7hu{0q@J9ZBXFqP<6Fn=xowFFZ+gH59ev-2dp>eMnU9Fr*?p?&a15H#f zZQ_yBGMR58@qX;bjO8VK>YIULuJ|UtiB1<1O@@^X=ZoU`Q#+G_P}#ZevBuRphkiBE z|0=$XPvT#D-XVl;<6Y1@dQ!HE*_JyxuZ;Pc90JQv3De0(TVTR3BGWhMJ#AB-Hsc@Q6jAtAIG5lG>= zSSGBDVsgg}_76#5ovQ5G9*Dmo>R(je-A0;?6@+f%n?0Rql7D;OZcc(%E2q8oK}?b?n;Tg2FuYG-|Wq% z5_*ZY>houza3xB(V_C>>hayfJ6r%E50lViH@_bo=oH+{QUY*CKvI1V)7BHr{fV9^| zj6Iz#tcF6CjLzd$T_I8W#d!J(pLUh>DlC?BM$aPI*_V*4TEyVQ5+3#`WNu2a^xWkT ze!q|f3uJy?lET9=L|-$|JB zPBOe!X^_ECw+A7 zl_3{!-pBT+*aeSBSz$%9EgEvkSk5&DG(2jk5&p9yURJL zT}BI^Fg6u=2>&CQ^L>QpU^bid5p!5FFNHsfGBK3=*UUw+^l6z&s$Z(iUeScwdGVKn zI%_t_`FTkgqfe!>KC*ziv-b3q-oSjNX5L>lnWVeetEK6Jl5m~M_UFwmMofIu5?hO@QbGOx5%vLb1RMBa=xFsJC;gyXHL%5 z=IkR?VZnw`)=|N)ixjv!NAhyMWW-E#c>ZQQ>*usZX`UW0D|JY?)Q^PF0UR6KjbU5+ z^W*suXrhjCu8R28Em?HLl%r+R{qfqE?e#{|?Y%`^DCVK`&sgwwUjh{@lKSXm(K zIBRw8MXGTyVybYq`myYBANF)mWzaQs-fY(+*vXoC))su3Ys^ner0-$h5MuQE^HoKi zz&qZ!Mo8~@{?7l=*Xw_Z=J(If`R}K1htw+Ax-E_A_fz=xI+krGQrR4misE1@rn#wf z68)`ca*A+2QmD2I=J@awCJCd{Eir}Ck5Qzrb0hRwD(gZN=+4iiTUXIe2Z%3VjO-gv zC~z*!WZ^)WUv0Cn_RYj!Gn0{;8LX5XNZ{-&b_HkR{634t!oRw3Fq_4ux%})Q9SJ2_ zXkX7}i_CQc($YwKEUcSGVW2Fu=3dVTwicz*aj^;49!Y16aD2jghj7F^hPLJYjA#=f zoP7tv$I71mq&-_I3)u9zkd}&g97crmWKpv8KqbhI*N1i|eHiuChj|ggDt+&bu4u`o z?ZYV0Ud-ohi&<;Eqa*;4ePz7i_As3H|IO!7$b?N(Z+cksuv{d{`6B%LR!Q}h`I=qjd=eAk~zD(nYuoVnn1u?2+ zFb}%;;q%)fR0nuq(<+pr0uSbCS(9TML4;p0Z|;Pm=HW(4kv~VPg3vtR&*j_6l8wrz zf3zDrMtDkIMwnRUu^0~!kJQI(+!tiv^&x~o#jcDv8^WXQUTkRL$DdYFXpHy6CTbz( zf27bQNi=AL2emquL*ftlSRBWaAM!9UD&(ep969ZzD2DE<;&U!PTuWs3?*Uj0lIuAw0+*K3qbB#2(V`1pOe`c{Rk-?+ZwpSU;qH)P z)~!pIGll}!oyq)Bk-)EO6X>S95Qn>Q{4TTBuOo8UD;{X~iy=gQ31>pvrHu8e;8;sx z_B+YUIIE6`U9|-Gh=sxn}Nftfz#0;N`U40mnd_k*><*Qmq1sE!>nv+9hgr_!t*qwsp3&lCQZ zc^&%MRrK_$r1EqbRiDbKPn3BzsggCC6|A@^{#fx3{Hi9q{+8vmOD&=G$udrCE2mF; z@yRw+a9MQQ<7wqg-dcgOJVtxTlZ6c_Cq1i-6^F_=D$LFcouo_mt@sc3lre8(8Nbgj zVPAo;0n|%*DB7*H%(Ek>6k#Rvv8K$aTl`yxiC7g4jKP}o*QY-%I9wCo~E>_v;M zDWGvgF3-dpTRJzFDM1QU?}VTnoyC_r>Z($i=3Cj;rT@aNzy;UWL+N=_S3b`G4v%0<(JGcZ+n4XXG(9>L)uQ?RTbgKD># zOmG+dPCSaotLLz`vjs0c1#;|S_J7T;p83*i-!z4F5vu(7qd8-j&SrjhEu1%KGVF;G z25}R)qbYmZu!+ogI+VG~gjK(2iga%d<;A!Wd^j|ShzI?7y4#Ld>PJ~>`#(Fs{_8$D z>zNK|;sNy^GMx@y9*lhBOkVdH;vF?)Q)@MTwGz#Aj|%N9#`5WQ6i=2e;?tSM+#FfJ z@Qva@|C)hyW)62_B1k`N#*EVgh`V4a8n-!rPAlN{6kArJMr^(@oVTP-d<40DBqx<^ z#SX1O9FX_E-*dGvtTy4M=!-)px#9OJ9P5Fhgh&UK?bb;&jaNhGn;UiER$PhD;hW6M zBi{-KV5=s+mnL$zXJ@{945ZLtJkE=ah)y)1!F>*~k7rT!)|%&%&kt0cKzGL(T#@H+ z(_t@0RfUrCgc*yvxuWp$rdjSkKB2%!%E}=+hhT7(Fgo=-^!-o|ehFRCO~YL+1PP4O8ehc&=PO zZQA?*m(nI<_o%0IOOK>dd^5wuL#8FV>(=z~be|`T+QgYSUlsoOD9P5{A45aDgq@0!8$URms1CLcFt4?i&jm8LA_{FKG!8QGl7&tgJ&HIb6* z+OayDesi*TELvWNgY)UR%KpE8SM80xSe)a}9g7gjQ)lzlY5{@%q15MuQg~W2WZ9zk zb&MiOSTh6PTM`kkz+hGpJ&a1|`!$X7d$M1{=@V@$Ij>HkWE_y$q9~Y4pXHh_3=n3laP%eX)Ya9Kz~O0ZlzmpA zsXq(0hVv-XfyWOb81OuSu`5G~E*4(wJX`5T@TI+U4t(4e%Z)`z%)A+n!akmWmN|sA zjHmUIV1AS5^x_3q3XBUV?NlUO*<3>9-0(8S2faKO0%ewUIOW5$2Z7R|9>VHP3Ct^$ z^T~%)QWT=6z7;>FT(ed!giEj@hh)hJuNoT7s#4M6WahDU&t~EDcxs*pNM}#J=oyJT z9Gk)>$(rSMjio?1kY7LfQWY3ZQ+t`SeS`_DS;gh%G!(~WCtY92u*bz*7+%S{0(t(% zWl1l&aPv2aXEs5ezgvma2@hfGwG2Mz<+4Mx#c!gm+ax3s zbThAI)cZPq7{3RVpO<4^-Hd7QN^<+J;nS}5)CKNk=)D#EmE3?{i$)3po5|_bEE%{a zRAU+lz16@G$#IPhYhcLA23l%1NKUDNKkiF+!X}wpWp-_mAv3FY9n}vTsoYS$CU8R$@2?fHNPd>J^7UwW-foSRj)ip@ zoc@$b-nvX450;(;@eK8zF1nZOU%K@Y&xwf{?ffm7wZR3Osn&%4?!uoRGQ~F-ChQ7x z_%?_1MV5Tk^ON6|7#gnx;XKNT^|e;g`))#vrX9l$S<-KWHa#XxBF1hSVL$0f*If`t z-Yr7sj4#7|HnVxvQtnBob*71ioOwplK2P`tnxmu_c?9pr z_d%ESveREUljApsu_sPC#2O_Zblj58!W}JIpvjdx3A`vv!ScaK^nbGCctj(|=i4$S zNwTNQ9Vr+7Rcj?rG$P!j+tiEgCJQkbr%UZnbJhw^;)VG5GjsJAAxOIV&jfJup+IyF0Wlo>Ag;mQpqB%yXJ(?MH^ZT6kcf;Wgd2OqD{X!6rWV4 z-C;|Pj-1LB?J*?o98R|+ZO&YtE!m^lJe@Kd*AzA6FZ5a6pZL-loOcT0Mu-Y?74|6E z&XcY%b?FtH$HjQbf)(hJambp8C_SFMmVSaiVsW!@;O&@ctbb#PV?FG0^Fm22j%}-w zMUzdTZmuP_&Ui@oiEw7Tg}dOF!1rb8^pt*)o5!W|?OYxzmI^*hNMS}-KlE#54z4!h zY8!vf?s6qJ*q&PHJT%>;f%g?<9*0dKT3Z+fcZ@hOSBa6W?NB=^nTZ27Y;WvE$)D{o zSTUJXx_y}StvyN^y@}MB&M!OXlXqk!<95%ai)6fxT-A~H4(S+sgy`f*@1hd-`%R;b zL@lT9oQcno2_%di#rHAFM6?pGNb+QyM5CR(QVHkQQ`kLBhYK&PackP}&+Pio?D`)& zyZ-n4W9Q$*n*dHgWD0EWp7>~TP{Jzm0yZk5Hh<)Y=4WZ-6*h5O4OTol>7jmX4t zaW0AC6Ik0Oi!gJ^IB(ApMpL$Ql;jYxH-~ZOYq%Pai}{ba6pYVh;7XZE#gEnVyan%L zQkfvE(A3&Q*4&I1rgaQ%Uz~Bcm_XK#-kgsM!|jH5f(x)WcSm|IFJSY`9HOp=@haAxumJHmz4NE4i}b60 z3lO$WG~1r|F+9)vocylFxh+p-Uuw8F-X~a-^7uxCO^C7*4 zHanN|%xDD*KZ*~*v6;P+-XRm7Z`4qCrjBFHb*R=iU}9NI!-ZOwb*N$0bkTb^)^hWp@CX#b(2}_@U{nQvtxn{x zQPQU?bLYzK<^0u3w9?%b94aqkzGSvW?U$c5q6+=(66P>6$#U`slrbx#l+QCtF?>`;eOvh+qS5BOE8($@blOIU z2RE^V9MNRoD;4rbTQ`iQn|9hs@vR;#;O7~I(gPs+e~TiPh?1P#UVFJ3JkHSaAVnF2eu#dV7!VWU4C`p?>0#!w~+klZ}V`N;ziLq zW2*Mp^4s)zB&De0wr)0t6A@pro^%u0^5xnD%p?oc%XR`MR!^ohTlo9eXE9>53X9h% zqq}e-QDX-%_}*YjC8`oe^Ft?PN^eXe zB6ASIF4B$Ls6tAD%;obJ(Z@oWZKdL|^3EY{ojMOYIj}+5nGW9`YGIj>luYA>HO^Fci+JZ5}ej1Kt(MVqEv?TPQ5huG$LQ!VG zl~JY)`a_w)Ns>{#Kb89I;uOpD_1xnwl!6V+AGiVs9V6=RGn|O{E3>WXvyDW}L2B>st zCgz(mnVOK!?uKm6nPfA!eL;gwN$i>Bjt0EnS(NbLd`|OWZrj z;C{>I@im#_`s9!#Df&l_t);c5!MXmEZ8 zZ@S7%BYs7X8PX?Pm`Y-PHdUj-X^srSXQ61S=7AX5MQ~d92tTB_VJYv&UkAy*b-8HH z!pQ2}I*7^A@vAdQm=1TM@m(BA+y0A~bvRVK%q3he45DO2GH-55e(re~7gdbelsF%q zBgT?x%VO-zP{Nn%b4v1UKH3i4mfXAFf^-ozY8XAMkZyGu1hz=W^-!_wk!8kTn85pJ z;lr91aO`=JFe6Ht*)0AFs{*FPNY>pY3#;WaZ{^palrG!Khz+PX|)uDld?(5L15MF?j%!e)|n5U((MO*a3jyZe@NTEea0^!oJ5wk6U%2Od^7K_(* zfOMd4PUBFOyw>D-c`&#V=LMCVj;~^oyX^D3HR0B;mQSCXIaRrYwINGb;j)Cg6GVUQ zEG&WA8V*%9vN5BPam9_an%sy6}!h)()v_B>xNW__pM4eMZz6$mHG0gN=^z3_KWbp zHpWyk$*Kyo9@T6rs}$x!CCcI{7`U>M#y1rd$!l`p#tLD2mGjZHf(y^fStNh3*z~9`U7&Fe~P%=%;1k z-`L*1fWWL$%)CoD)3%UhHbvBnH{euqF~2BP@Zog{`I6Ui7g5OiOChbIO4;>RzW%k4 z*S8A^*<8fTIr;dP=MwfHm*#r~ga_*~V4Mf$<_c0;6|lBK{4=$&oG_Y6f4fNRlT^66 zZ3yjcJjs*nc8hzn7$lkVc6a4GQs75ys6Ac1gv-|^o%yHT_*xLlViJjX;zGbR4SJTi z5$|U}vZpR4yR>jhi{O}WM64{-sk`IBj1B&rc`av62S?_#Gs9w)F~8Q!T=Z0jU+x-< zKT?gmgVg!3U4_GQrZa!78sBrJ23J($Sx^x1q!*5c6_KVCcy;-Df4H7yfix%lGolasI);O`HTp;~H#n(W%lUCc?8 z4Cf6`CuZ+)WAZcUvpDZ6Spz*D1)5X#(1I30ix_`P9hoMc7!o z#BX&~n~jgP;FbmZj24PlA)Fg`okgp6B;D4GtWyre39HZdLnMxwA@rD&g1VzGUslCZ z>Kx9ol0X_$WrsM)k(?*t($6igvBMsCya~Z)Vlqkf`82Lc;Y*-`k7ZeG&Gl!DxjUDq z81kd31M8(X(PM2YWuF$HRBuV_7(aGzOk%B095(OgGkb+C1E(yag_R1+=FI2hLGi#2 zHpkJ-jBuK_D|)9{GUIGd1|1*8s4i0&m8FbZ3ng}$ z>k+h0L-dk)Oln?$&EMW~O{7ch2Thzab!m6Z5c`h-bR26by%dgw|FHev>h<~GTG&5- z{`>hv|5Kh5gIyWatI96$MiwoEL(nrZgDDR)m}#J3+LTP9M7QhkErUnf6xi>`;QH1~ z+IPy}@sUj7(xfo*umZz((F~8zq)n?FX4YjADUap*TQ;dPvN*gpi}wq%xE3lLpPf0p z&dsBCPcC~}%AQ*@AGbaQ7_QCb%FqJ29|_-QklZ)T3MuQJPlje8cOMo~AbOC>pQ-fl zb!K;QIxpM$|JUzv(5^7iiClRttf*gx%bB`M1}<=+LL4AG065? z#F@KAOvufYUa%4(dSnyas9>pUFhSj7nbfF{)%#>lUJR$9G7P;1;cR;*d9~v*+lMZs z(AF2zQ8iqV{7%Lz;YW!cI@H~beXAOXR9#J%@DP6cSjxToI>Jhc z4P&^dyojGDCqg5i7FuIaq{eV?Q6^n&tLc|4{8G`X)ntaXf0xS6Ar4%f5YGD>VYHW7 z{QQw1$vA{iG|ZcpCp}SHzX-Rf!s!)e)xlbI$y>(?^IpE@l*@YUG!k}(3vV?5=O1E4 z>yw3J7Zn3fR4e@+?y|+ug&5cykSe`{cwK%L$tCR;=}EqN<%{sQ{UH;b~8`< zk;I4a)|Z88e)P+f-T&n@N{0mVUzym-|^@^I0jF`sSVuDnk|V+#wa63B!0rILdrB7g zQxu&PK_q!bGwUbmaI^{K-Q^U#Vq+Q9&rh;G8F>6%PRqZVxG1yd+u%A@30q5Bw}$GV zI=ud@AuOq$p&uK0@7F}vXU(D^HL>q%6YKq&nKF1OxtE&hW82K1na%Wl)<{Tb6ED-7 zNtz)a_RYegZDRV8CcbFN$M6RFde$?hbG`Tu>oBUU<<$KutjnuORw`qmb0x3mm-6~~ z74zE(m%z9TLnrBcxK_pfr&YXgslsYemGth`NTqExJ;XO)Kdp+V{i;|yrAo5cRs5J& zMf#a4!hWq}>BTA*npEO8xe~ull?*y2%r434IC@tyc76rV-&Qb0@?!cL<=m~Q;Pf9w zoJ+69b#yiJ6Qz@DV=2AMN@!tJjFwRu51tj#zBC`Zv&E!~$90VSThA+thxT+4M_r2e zV_gZ;JBs#82~k#MJUm&<-jY&U>?)*idjSj27LaUJ%=m{z(i<#(*mvRuX`jx@3tsHa zTg>Av{^;EeC2@uL;)mMt*O^on?ukJ2y*@XC;#uw~pU(^6f|IFuXq~W}Z-$4VGDR(f z4RTC{vfmRJ*&>+T`G)LXrpbsZNPISt9b-(Tw>Fg)F8UlC?9THa<^pCMa1>ADN9kpr zVae2;F3g;7CHlB79->7ajMd=XEK}}mccHk2IuWJ9k6$^Bqr0auuxLE9Um+T`n#^&+ zJ4l#_Vp=-gw;yA#<}v9h{P&t)A8cGeZum4TO~x?cxH75!Q^gOV!-%(z*bkb=oVfAy zu2{TdhM zeRpAQiFBphaYOgM1KQtwd7bEp<6Z;$4V%vRwhKA9e-`y`w8@z~ldQmLxDTJj)0yfd zjn!j-@T~417G2XroxdkKFynYA*UYSGn>3n|jeaaV=*!t$XMXi`;D~|n3S*s#T`YMp z5Ah}JvlX_SF1{yva&%_2}?vKbq@5n(P1JHE`xo96OD22@!69!#C;WDb8Z;p)Aqzaw(aY%iEAF9@t6t zL-e>ye`MpjPrA~jD=Ex8gXtecPo12>YvFVLUYSRmgW{dMkjsg^`Rsg@%bctnE+=K9 zBn+bNqTkHhDtk`x2##MSndTB<2lcOD`Tb(_it{nhv|5M6I z&0@yN4zz0aLE%)o(>W{$HM4Z4jE|!7Kop~+yy=rrNuaPa2PGz;JWk%HbffvHAc^tf zGtBf}Ec>Pu){ITV;&>8z>te9hi{R+1D8_CM=7*_1B#jSY%$Iah`-SnTM<_=cd`bQz zk#(VA41b%?%T!OA-0WD^B8J<;y=a>1MOzUt3Pj@?5-HtMlKJUm)0OX_2qCzFQ`SKRmfSbXpRRZ5HvA}pN{(q z6UPg`32t2d)rN2jchuyu2A;L%{21BUEfL+|QZ$3N#gN!ZyuC4{!llZl&_Vh`hh}i2 zQP}zWV)lpa6u+n4(bt}lAVuy4NABv{wa~8jykK@3VfkaF! zp}{UucInc&)+2$kfLMmd#<6un9xh&zxzLwRizC9s*b>L3LBggwQA11VEqL<18jIL! z!X+EG+OCey`|H>rT1859J&|1+@b#5!mRTbeyBc{?(7>UJCRS`*B3+wH30=H|9g~(Y zW7HBt#y9gwrx}Z%n)qRpu(sTq`E5!wKL<2XU@BUz_+r1rOAai*o^zVDXouH`23bS9 z7ByU-Q^Ur|rG(1$cHW*X8No^x94|xNtcr)GRV>>o`fze3oyXL$;!_pZyH{g0U1rS* z6_|amln$;6@)lPyJW@JxUst1TSb^8GN`ggOo_bbT1xqW~d%u#EFDtm+u9EE&E2T%H zf~cA03=?lc3-K;Y6i+K|<*dEdgq7?`oy9jZM5h#`fo1GnQOsBAX$a4(BJg1`E7lb7 zXJrw3%Eh>hDy2x~*d^i>d21_O3(aMCUnnC@w^({d3h8@Sy6cwYGkZuOp&#>Eno@w$ zrYua?=CI{;0-aNQiD)VQdFe!Ux*p7iV)6A1mrSU&ADx6FowYBX{%w+JSDeCb@j|!O z9nYLfPkL`OCSRjJPj(6$ziJVR)x!9=wHTMmPUsHu;<~*tvEwFTux=q69Gw^wAHi~^ zP+p#r{lwpP^t$BCw%5_r=r3f{3_}(vY{~vv*s~k;x&C$r0oIy)yyk~Vt7%-iF@vEU zhR~R+jbpSL^}EN*u4xQyw+QdE#F`QPPSDuv_`l_haMs?1m|v77KRSls0dm&PoWg;r z!-?w}iNzIrHcjY({)9eEKi!cT27~x9bT)$ntg!PHZm!iNLXFkwB#hpIG#gU#W?^+y zvit3V`RijcYx>%A>}V*}!{(w?WWc;u?kJ3;ckA73x-NBOuyQ2J9VIi@&zs--J2N4~ zhTRrc4E#w6>v~-@t93ZjX)Y!vhD>@hpRW3vAl?s;d2+sP4c*R}@GV|ECqG-WeWww+ zt{PM|$b8moHa45gsB96$>Q=cNKPCIKlr;Kwapmu8gBksc8K3JGF}CweI>ve6I?01u zL!4+mC5h>KTyQpW$6E4N+kTS1*ETBL_&JGf$!@}3_9gIvKh{U|@wZw?n~Pp(ewdHV z?|y6<@5B?~TetKVHo4?GD9yz7NIu$~{U#u4Czxi34>EhY2I;BP5JU0>~-*>Os z4wW-MMx(egm+|U=~z~q4+QLsQF6W+k5y_&( zeEgEfv$|rc&2n&=p2hCIC1j5*VbvJvx!hHX`OZQP1PaIJNj}$3lrpq7pRr?PhdQkq zkK!txv?$@8YBhr$s)$%4pOcT?hlIu1vj*dBh0>u@gr>}|=S9!j*-Lnt(xMUl7S$@haT$4Pm0T3!94F$+%oY za+GkTWLAtzx98gaSj<%vw72&mvcMCS;Bp>_U)b~OVtNe}F4T>Myl=>7>Z=Iix_j{V z3Gvx(@@Jo9!8S?`p>GSx4ZO)<#FwQgB`l}vuO-}967K$&gOWR7Bve@c#GJTFJ+HW!?qAicah#ZORJ zNPKxIW8W3?xv7-*SIU^=C0z-xWbS@fO0c_d4g8CkFI)qIUBWE*Ed92c!iwEmEL;dV zUmnb5TV*mo+9z{jzcWEa7U=!%#MOj26g3g(xXxqKqschtr4gi+NS5p{`dV4ajt34c zOJc&=M2sH@*I;72WZXh|VeHS#XKJ+B7f6M*2N_fKIOpGoA7W>5Rauv!shpJp+>__6}BB7jak%W zqJA4dyV5kyy7i>*!`Z?n6|a=(PqN23j??&m&lz^egkUu1n{spAV$@3PQESqWGf4u+ zewFLIHH>d_m6^;;v=0wtLzv{Jrr6N%PL;Mdw1_q|W`?aXKXlWl)o9rxRhUxHm`IC? z`K&OP9+SuV((5~w=c}csSk5Hx%40cxP=mNnTI~MIkrj(1KPnuOO9p{Fm?3O~52AaE z7xwCQ75Yt55;lw~J^xn4P`Fm(mchb) zvY^U-4huZRtEK9}&cJ!3#%J;ALy&X;`f*zk$-U+CDbI}}^kyQ9OPgDzc3hY)-H%5CcyrGP>y%K8Br|yT)OgN~^cK(99NZFY zG5frjf>zxwNB>$bxw79okm5lf?H}e2~;)$r+PCi}~U<0@zNVSN(W7LrMa3fU!V7jXHS zbWMt{AlIvykq=Y(K0cMlQIWK12%tQmfM+8-S*MmLJyHSq>`5Vfi?GJ5eRwF`u{Kvs zsjF}xAUT@I6a~|L<5&?=DnFO>*y>dh(8ot|5?R#sjUlabqWIX-$y^o2@h`EwoE}BX zT}do%Q_TFa!f#TKW1O&-g#T^R8-J!TkaVyf|@T~uD z=FE9<=DaxbyyK5JdeHiQ+PvE+M%)A4~HxnmdcMO|?wRYO?a z*Nd1)c`248b8bxyjycLN>>8Nia!B_Npx*HbYmFQ0X7Be|`N^uMYu+bu>~9y7AnSsJyM zkwG?TTp6lfugpy1OBi^A0i#0(LDJz@9W_hdZQz|UZWr?mw30rb)iaG!@?Y1GR(|?4 zoptTg_?nQ-<5xyJ#6j3%l1hWKsZ^4O;)XQr^Be<{52do8Pzp7VrP4e+nUp3v6I#ZL z4Uxfw@=5e;nZV^~Nm#8(lK)QHRdd`_oyP=dg{z75shEt%BF*(L$8qs>IE6aIacp=b zUu|?g4O8ds)Hu>_$KiVcZ$3z-6>nZp~ zdeSAJH)TeuL;8jvQ>;cXWn?f%D%POQ>N@21@WZ)=DWf-b;mK|Bs>X}6T6`#dtgN`! zqZd{-vU_HP-K>Z8+I#80qEPQDf#TX6|f3lp0%hxL>;T^@}!=aoy6QrEKBTsExQzT(KrheiD|LDs4B}0|f z9f{49;S89t0FUinbgUdpa`or2M3pNAk}pOTL;)(|YLqUwsjdr+U-LXu+Q* zQ;0e`jP4R(ym9EMp9JX)rin2mNreH<#SE-1S?vGzPmW1AfKG^qhExYj$bjq;B|SVtY2p;NrbBKKDuE@$W`V zi)8ZK{4}mEmA*~YOsY@;#ao3_{*9anct#Skv{%o8(dH80ey zI&Ab3B5uXe+CGc#{j$U#$YFZTe6lsWnKdGxu`m2MmzvAuR?IyY7J-Et*MU#;g!csPYUlv&D5rFGG4igb}T zqGOi&z;ZFsth>k7ObS}0(fwO4Ax(`0H*v;T#EmL?p4ENkOVKN?G|v*3>a`d;ZN!-G z63rD|=aMTkIFy@1l35l9Yi46A7G$~1WSY6#W3LW`ZZ)-wTjR)?fJEj`H>%4ji-o0< zNhqGdi_uAJwaMk;Yy(&FlGSY*Mws-Cjd=!n8CQlk zU3QT!4PtV&2xa5M5#Jm^aEo+tOhcKce%qL6bq|a26cYpOidiOmAVao z<#Wa=ieF!a#r7PAeZ-B^ZA;ovqrg<>?*N}?J)%m3@Kn)K^BfpayU|N z8KX_}@M)Bbeg9md@8nV1EKeP=d171UQMq#-FLl2RZ<$kzv&mCKh~PTqvYaVcETYnxs!pKcR#7&bUKIoC*%D6O z_Q9#gbP|t*v24j4w*NhVC#j+2ub9Tc0b|(nsXtYhkEixwSLy^wqYnQ`TGy{_Nc%O#ZA49Ls%25<`;q(5{nB7-Cv(5pYzCWQZ#R_=2+Hl&=mI^;+5qHLczvqNf zx@QRIH-~WSk^H{vtI@w^3k*)f)w{cs66=(^=pMu0E7Tb|YYgkX2GMx0Bj5E*m@O^d zfC)U(d||Hp1Xe`Z()G9{R~?!WUZ@4%Rt)A`&PZl7LHF?>+D7%pr(;J-m1#(q8I{Ff zuEgnbohWDCkg~;kQfj{`6Uz@}-s;}mG8sg2+#*UuoAbTghJW=v_*1w2J9XR7_vL@T zFALN~-|dRdxs^kid{eWp*a*&EjKIB01P97Su+&C9SMn}S+oKNkdEt1~i=y$3Afk!} zGD=LQg?%Df?-zkhKqP~9gtGNm6seD*F}WVai0)CGmezHPPvr9ac+$JYGPrykJHCl6 z%3C;%UY!>F=X1c(TRXP7P88auo$nTZ`u6mZ{`HgRFqg`jZ5`?uPbuY& z_S*S~Yrl}9R^r%ehq}~p0gJn3u;yJp2q%;#qPMVZ~uJCNFO(TnZZ}>sE?jnLBx+NYF>-L zu~P~Ux38qwyHx)66La&AB#Q4yr{afPX8e)MwRPFNv2o)jB_U7ChxsRZb`)j)Lq0raUxKwjhG!){*Quz6{d`(IkzJ zV5qX}qcTJ2@>;C4yJ5JL_9xgbjD4C*zBm;?nm7d;o@6pDKAc-)HnJ|sml2tfyfO(P zYEvK$=LO(BWG)7W*-TmHNPY$R-~LMCy!8Hu5*d8!CPwV!OnzyW#Rg*m?K`bv)un7+ zN&9{OwE%19m1Nyq#gbq1s9?E*7ex!$RC5_6+pM6XF?O#hH zURXxgb<4=!x`Om-%Sd^j$FaFt#1_rM`(QGs{>Y$4mwayY&cd!|KJE7A(M@L!=QDW> z_s(X?(j0ny%p$yh0s9LwiM*Lf`?gusubD^tt2y+zn@2{2Tx^OPDHWPVk+^hvb<1V< z0kOSG<+AT$J`ZZ>wKvf}E9YakCXe{e(zK)Vm|8rKGGp@ytd~uyxV6tK>Fb_1Fi_{d zK+S$zq^GjUGL8NbsYHKD;cLGFv8OVa@ji{jttniomd(&)amoHNvg>>nA2q{GbI)YQ z^Hg;zi05UONZ1T@+YXSAC_k3=!6{_xY~yVq_Se2-Ms`W(O+P=*=X=sR(G#j3rtF9b z^xW$}yEhr!ZLywzy2-CoIf9JKkpyi@;K;m1e0rk!+KJih?&T`3z$6Z?AI5-rQ@ZB0{l$ZKU_a>E!KnXV{eXB!9G^-i2SNGo%ki!a7m1d_!@lkJ7c^ z->qN&=NZ*&QwqiBi|;pZG65zYl(h@xRax;&7F%)PN>d!KHEsfap!)Q3Do&5fOf{&n7xt* zes3^Y-r{1PkH)`&_yy%-c&;qw1$CBmojjC;!gg$3F^;$9195BDfm)r0;n>BT=U-ZI z_EA?#*^Q>i@F1#8@*r}Z38p=|bLgpB05v0BzOobjQ%za+upi6+Xuz^%O?3aL7vO=q zjW6qb&PppL$Njyx-)2ZzwsJc`8dBrfF#aJb(hR`l3yy0V@< zYkaoiU+OIhksnO=eHzJAhkguk(R|Zk5j#5vugW4e1ZZ!bCF+jA~0Ci>9ctq(n&nv(Yp?tJP+ z^fQ?7ZU~J=4(9CC&#cz}&wF6Kt9(cO<%c~I&Xc{7oO}_*k8P3MT^`2gH=4_K zk_T4%@O%3siR&N9zCF<_EFZzLx*?1|6GDi3nYuKNrjPd54$3~SmX-}J9Lb^^(qMU! zw45HxF7;G)kBz0#^=PJRm!C5s7Q6g7?lz6W>$^ILKE-f!WFj@^B`BjEPm=bZv#!VU zS^1ra_sW4Ch@fG=gIwqs!{JM_2sMqN_1QcI+)d)DH0|Cq9;|CJAE&(e#O-urS=1tK z<@r(RT@d$g>z9)UQ(lL$B4n}rk)c%C6UxcW{v>S+qC@dmHm(Wd_o6|ZaZ=A{oyGWS zf4seR1c$VXuH~lPxxBZhooCa=;K*65@>`7b(5izV${FsCboa=B12)rzIE+QvxG#dPjks25;ngt|nPSMRxk zwY4K@Fjar=jx~vD`C|ayK2hJSiTpw?^!)>lt>!n<@!0?5wz$o-tuqPZZO} zaUl-!*E)X;Wk|LK?K5n-d(odgSN*u%(1|9a7vulfRr8VFjnl|5`hN?-c+3N@F!d3?Sjf{4V(j;c=gac| zEdL0g!&PO4Ml7f4RcYU$QS>SZst&a!y`(#N)=Sv;rvs%X`!QCG)0po@t{9B! zBF$u{IIlx4q%$KdnmaY$LR zeSamhM|0SyW18m{Nu_*qBZGH_lKp40x_aXNZK$?9M^AL8>DY3q>$#R4Aug zscWt75~{rNCODvzx?QbkW!ZwmJ?n9|Y6SIPFXY^U$$a^|mhL9%7hN<2N7IEmQ}n04 zaSRJSdD2cgBE8}$lHYl7&06>8-*)PXaKOJzG)IQn6JHRC`^vUlYxBW0`+PaNsq4vg zXb;}r{bHK=aX-&$9wxHj-|HdxUo)1I$?C-0Hj78sW~sMs0+V%iTRLMbGg{W-o92J> z{6^wZ(S+wwJ@K#}#)+Xt7&W0OXMe53@m@hVlocDXhz*afPb05`xFL0XF_yN%y!CvY z|NIGe9LH0WVDft`pt&*uGxR>SdSb8rN*v?80`Qf0{_a&VX>14JR%|?<{nZh?Uiqix zy}+?2^}Sm1n|!Dt?w0JSZ^pXaL)iAg0kc5OLRbRV*2YF0YgLcR_eWz@J)4c2l2|rIUa#L*act2vit7wN{hIvvzESiz7lOk^ozXMB z)W0*8@_|;=9eu?#;5YS-`LCy-<0pFe>dxFZcC@w~&cnj;QEyzx*ys*aCWsNAr}9zf z`P)5QSo*D-I*(@%FJD*xUlSOn-9+ttWo>^8#cOUP1E+_veQGpSBQ(RWG+n)LWBD=P zlU+}gy;{WcJNr=yw~DqDZOJLM`lGQNW&g)~d_uA|N%V;G_G zLj2GBe?_x~GVKEBtc=tLcV9YP_MyJ79~KtA+>uuG5MyD{7(ce_d+J)%jnOA3v3z7C zFP7!on*eXiW3Vz3tOvfRy9;+se1r5+~aAoEsS-V9o91VQ@E9wsp=m(@nsGs zJEt(Ljvo()>;HGtezU-zqg@se>pq*;ZpuZ>pF_AsAn&B@?@sh3VL}$0hGg;ipm+}_=nr<>31`TQC~t?;hMtOYw9^Klq$b~4SxhV zbMRRZ-#7TMVnZOFdz6DK9fAGmFy*w=2{tZ_#SW7g)y|27woaVh>mxQq6h#{a@MQZm z-cDFdhP}=Q8OrXo31R=yP>kA%myj2;W=5hsayg`Jh@)riB@DUjOHPXVGcwf+TPFsG z(kWEQE1>C@EH-+_adK}Q!ym>{cD6Es-RJRK41?IO9@;Vck)`>Fvxgt2jxOMmypDsz zLn!?BVqQEBa|QGY)l5Gi5XbBXK}z<9)QR4Yy{@;t9%24k88fYJ&((!@-X(# zXRdbfrxq(uH$4x>XE`LhOTQ|+^-A7^hGTN@Q@_EK4m!g)=I}*1u}J;>tBfi1>SAEk zBm<-TQ>g8nLhlMj?p8N&N#~xD?Zp|mW}s|8qxxJ^X;dg(uir=`@vaQYaovg&>ua5n z_6?16ZEK`@ku54_ zv4KDKOWXPznIRU#_m>7nKR4j5yqKLlI(&9s|4gsl1$?N*~Rr z=PpmdZlFBsb}962s6S(pOqP0br?gGs!;NG%%b#=bhmkp5k{NYBfq#xAa&vDo2MzMk z_DjUHeKesjb*^k3#YewbD(=(I{ijg&xn^NgcPf9i7)YvJZ>~2R!+B*B9eOX+_nF8< zw{Z4VnL?MEsT@d4qNe;MW>I1ss6(WiynylM;gngvkj(+3C^@bxo5!25&b2%7E1Pnv zm>Fr#@`P4)!1nj{w3^nK2_Yl#uo=zvzU`?yYd*p6-Q*KrLZ`*UXfnW`qNc%YS9fjo z;h#;rKC8!uUE?U(sJe1{EvOxQgv-AlA?EGBU%$TH)}JPw`s3c;p1#djaacbmA8t;g z`hl)G8w|n3tUWo?hADSx#*w*gl!@=5JxCS4%x=uh>WvuRydPy6m=gS85JywTV4A%I zEA7-PWr&qpR(|&;?lc`VjGpV~5_vfsoUL)_KVCgCHu6=?=gJ~)DtiZUy0|<{ZThin zjTznB59FhLJ1h@&qC$FSsw=}kR{Vfbn}@Ne%wPr=F=OFjOUibLkXLAgzOJ-h@xM)L z#o4J3xfN!?E!h9E0W;cl#;5%N)*b1^UCl19+l6yr-FkBB#A3TrGvJ9)oC*%2<|Y@) ziwm8ex{P8coUoAp;HqVSbp0sodR66vI?D!jS> zMYoYm&b4LOm=UafE*|TL2K2G)$y2dWu7`NCf094e;>x`kq0gWAc#5r(@2#~uBTI`n zDLvmfIfU-HF3ee2kpuUfSpIGn!^}Ipe% zZ4$@M7ZK#hyZEe40yFDIk~}$vdGa9bm;QSGB$SHFBbcXu57-*bZ|ftO-c0_aa?$jt zF2BLKC>B{oa_~z8xnjchmM`+l^a#p|q1n1f6xo$x8Sy$s-HtK*{vwjSiLqpFj>q)x zNG$$}|BoK)+&7VXr{lSQBc8f{#PLtdIJ}RGukUz-r4u3;?i0h<8p#wHBaW!WLTuWM z=Wws3O#J4h9wg8I=-7pt+ohW-i!?ic{;@t(FkeFZO5SXpp9RhZh-~GA z$}Oh*k1z_BCGq-%3(?ZvBR(f{?|B5BHw7_J+4%#l#NgZ)tsT7=>&AF9E=>FT5h1+y z@nY)VuEf`KqvX(~R2!-}L8I9`Pj_d_@DyG6e4|1)-xupKFX9@l+$n&M~uge)L zo>`iUw2Zh8i{B*BZGIM$PDXGsEe{)uRC3?MaIeiA_1H|Kk5?Y67lv_eML3D4d1+%wi>SkDLpV+|)q~YOkR_TaOkEkLOp-dy`UVgXpc!z)A`TyR=dUOJ z6q_R+?*>miJNr}rf}6B~KXI`MdhQ2swQUeZ7l+YA9_WSPv)L2sM)w8kZG7v>wl=vr-MKWa@4?5#UR>T2!Ul66${dNp)-swjb-z}A6U$%LQ8cS60Y> zlRw?Biq|+lne`!=1ba@^(?&i~|AeX#r(y=)?EUA@E6Xmkjdn$*eU4VIq zWS&|ZHG5V+fw%IBAJZ_GccP#C%I9_N$d-m2a8bWEUbEE8>0EkYB)=eyxeqlPRu0U% zj5=y3q?0)-oxHDUOj@16lbdOH{7B=K{@Y(m(x`Vx=a=P1Ld=wVte2)tQ<~UX>S~Bc zW01bqiX`QQrNv#{)* z%57dl7t>Tu4M=9z#OhtM|u}@?;vD)%{@dw*{st zV`*+Sh5H*u5v4Ahp6NF9St%BCjcI5ZF7}@-=YlLquGj_Bc71WopT@dPBd{%Ef#(fz z@WxuxO(Hvi6RQ^iC5e&u5c zI~75|tXS;DYF!>Amd>yk8ZV6_dX2mVdiFdY9LXyGaE#TX*ttj?*EQnCMnu!nDvFvb zqL`BwNn>aE4StK{jj~#2a-x|xMl;;`k=&Z&B7Nh{r%5pk7wdJ|j3_3B#Bg78+r#qR zT_k~YF-7av6<0knk;lq=HO)3K=V21f<%g}^ERnAzPOwY-s3)ajxISYv?~YAnXs|yA ze1a+2PG{6o7@G%A<$-*fJ^vBQ-6M_$9b-7xDums~LrDALkHtrKI(7@?hWZV1sxBmF zf3RkT{w!G)z^k5fsMj`7d;Vy4o|R6sR9D&3Kqf3%h?CgujRvIfV39v{+ym%Ze=76l z#L&iO8M|^5c{(vdyEh}{QZqTXKZ2G4G1SO+W4W|SnU0>MUr6F>$xPCvJEQ;5H98zb zwb$~ArisI#+2$B&*AJilu^Q?xuW$^F%Egc(?LIqCeuH0?=g!Nf;`uN#n|o0!e=gVG z`*XjA50MFBn24!0tG*8|O@rxH+>h{8`a2VR@e^~PxaMU6LxMReZ^Z& z_}c-zt-X{rI?LSd>rUwh$=DqZA^U>*Z3nFt9W*l5J_Bd}t7g^Jblu z>I9J);=;xN8)`0}$Y`GkO!OXiJLk!CUHkR6@$8%BAvR9{-=w>rR1d~nx_7d*?uUkA zt>q@O@|2Ny<&YvOrtpcKm&FD5K2PtHSxpQsvUx zDT`L;a>TsM<<_!X77WT^o@TTchUQ^bA(!M#abe@tbC8xzgmWg=-Lj}E-8j`Hi%-YJ zR(+>yxJu`?=JFDV_jbLwL3+zTxnI&4a6~)*BbtqF(2P_p-Luz{FcCxR=5{0R?2MfM zW@OY5BY)_1HWyEB=&&G;>dIQKQkK&uCYiQ9#V-i+VEO(Oo_ZzG`HyKN`A71x zZm>Er#U8uw%-n0@;A)mtVNnwEYiS-|Esnj{;>5L$p>D4THl9}BamP?n--gg|jePi< zHRm-AWcv$ozcR3~pXdS8l=*JPJBwa4lLz*CBO6wa zbHRMWYVv8B^H3xAr zMBLcZ7MLwI!>fxeyGQn+n6#A3fH~Zj)~lH^h06&Oxzf&z8{3AHX>Q58W;QfgV9i=} zw4Kntzlw1(R_jLK6Cxhoa9h5}6MrXSDmFK!U{zp4=P$kljd3R6Tz?MfOcJuAJ%NWC z(Ro!zCVlP5{pU6DJlcui-+PmuWzL2z=JK=5!e2dX)7LDd&q8(G9=2ePb0f}uY|qpd zMVWu|z3He04OsbGIcmL~LFS(N-0Szj^wi!`tgqCH{U*)%ezG+sQtX&DeH0yTSm6`l z!_mpnY@rv)zbv5TuetnEXC5Ukbw<%I7G4b98J96_WKic10cjC7X=wr!O3O)NVa z$KrM)mV&Rb444xIL!@nrL}PO_oS36xS2>2$`amSxUq>=mI=4vSFt+AvhIuWV_HQE9 z&k{-VhY@`Js+q1^6s<%b;K+PIv&g0Jy9%+iQ?|4IIh{pGTkkKq|@4;lgRf@ zNo;DL$mXiaT$!239nVCztvkt-#y-5PZcnXM7UVQg--@*_HHSHJPV>j}o77pVd13Lw z$}jB*;<>n{bFX=lvOH9sQDKZ(7RjH)#JMmQZdD#0PyV(MOS9-C z)|xr6Wosf{6A~#No=BSwA^6YqV_IJuUKJA)DJzMQLB7<|F1|oLz4b?jP|j4G_k;i% z%EP(RQaVqw%r%p|I8Z;9kK4RyTwxCV7kYDKOaiTAJbAmohX;?BvP<))M>oA`^s5(F zlGV{VJDh0KSZcR*rMj;RmwHZBZZ(#=J>4)}l}v-#(VQ$U&iq_|_Vrh9ZfF?cHG&8% zFK?ITpQa1c;kwM9Tf5V^6c)iSef{q_VRX=5Y+B$M z0P8oQO!zYxpA_}g`igI(Idf%sBd(wF=9EJaZXMi7xgvi?g!sJjX?%Yz%`9GHsAjrL zt=u_o?xoJ%c&?pZ#HLdIl&cob6u(sb=c$8q@=`kX@WR*AhsSMg7_+t=O{L>{h9uxD zuW?aZA2uFx6**#F)&yjf`>)}$L`1{kZ9oUJ89R_2KGjZ!Qq@nY@1}F#v5r^E{)Sm)A`ZR zz{W=g&a5}mD_)%BS7|)FE0$IlBdu>6xUCuNxn)NDmZwrfy7ZZJd&Y!Rn(DPwwKtHf zjMW@z=0f@E*L6-+eo1=1oERJ8(oSEW#20JjVOmM!o{`TXEroCL=Wed2T;eJ9f0a-d z$=g)o0+Lw0R2^V%li9CQtm*o>oARgj{KJw-Pe^6UKgw}QH@7Sjf_uP9Y^Brp-jLU! zd=lB?^Xb=4uTQ@C8Xoafek|X__e{2tM))=(&6~$C6Cjt3OB1+l&Uw4g14ER*l({anm65BH>TnJGyMJF z)PI$JcrSlt;d2d$E7pnoIbTdGxmMvrW*w4`H^z7UIKDPA=Rw*K8n_OpU_%R{zfGV~ z{ehgiW5u%(q3R$RNxwOoJ3NyI>XR*cW-zCpSkS-OKzwTU#JWufra$P2 zxqdZuw!&_6AMz^0%J=H4nqkji|K1$BV$SgjP3bhG3yb!(qjA>?bd^_kT^YTO_ts4Q zR*Ns4%5eJh3|iHz!CxzClDzSysb?oA4*WKrNwy9gjd7)_&ghdz`t!?aR}MTJuUxS@ z$0v;@#OD<``>vVhijUSmxGzmV^`_-S@y7KWs@Qupvj$m-138v4F~j-Oa}@n=jul&E zF2$TTQ}$3NCU;ms3wf^Mx5kO>9LbXd0XV(!V)rj2Dc9DTQzu&DSUZ5kx^5VAn$ueT z?J2kV(Y)Jey!wuyck5v|k2IrV)Ck^J9jJWgU`oCTW^}U={FOh6fytiiP(S0j7JL4y z?!TWp>HpM8Kd;HZ_nI6Xs+nJwAGM@qNAyu&Y|&UMe~93>_mMcLTl(sf80Av6&%YNy zgQ1!|$`e`ZSOnE4M{rP?EZ6l>v@IJ=KkfS$--@Q5lh~whqWL0ULAAhGuJlvxbCq}m zzee+8M>L-;#OqqF=iH1)ybH&&KRcemp~`US8CJJ+B6bIp_$6sTm@Q{~No<}ZMvi>O50#nf6u|zv z23pSy<)&uq$6f}|dSQU(6u#`2m-N~!S8i*cIJJs6J+A^-s4PrFKlP6tn9W?xl3m*9 zwYHZxK^d_Zy=Jptp12NKKAfqe*WWUn2_1sjDu&XPV@vq>b_|8&X`Fo1jqo0Q`F)Eo z%iSlc-&Q$_!(QaI3Bpz9153x*jD5C{e!4%*y17W_Y4%)3xjN@XJXq|G^C%D8#7?+< zB8q{9yK={n$h&v)=xz*?m(`0G0rq@Tw!Z#9$~-B9G1onVu4|1LFN#&Aez-1Iaxe?e z;a=lhoHS?M{c8@VlXB^vC5<{FhgCtjSjOg1eqE7--E@l z$W3GC@A9)crQxeA-&)OPJs;@|urQr}wx%;jTDORY_yMid33k#zgJ0w=eUi$)83qzB z$V1?tie)_m0kzYpFu_3fY6DGgi+Q&_m2mkks_am&S41j3ywn}GE|K4*!&iJxVRY$a z-qcMZ^3OzKJ0`R2Sc*8R(w)k2m04h9zI1DIF>bGjMX*PERBNl5l;;a9b5c3=2>FlPMz}C$%3ex~X>$F7dg?s; zbI^PgC1MA#Z;U$F{B3x$%bnHTv9?3!26aB>H<>{)iug$Ja3o+^>FvQ)4+_BSd@k$wVlp z+jn3*{c9{>M$izQ^LtU^NhEW``M47uhL1A2y^O)s3=O1caSy5tR9Cg@M1DVPPe4d4 z&nrxmCtxN6+gf389!!ZTX4Ky?p5ti~7*%QrU5@l;_>yjn88m`0yMY9WpK5xs0|9>z z&wdEfL#g`>=~ z`a}2VVm{i^0@R3SFUS{mu1N>#CiRzIA5QSDDa@QZ zoi{O)Nq*o>)OxYEZ0zvpWX_x)K{VdAh^4F3{_F0+pL*@ztJi+MH~;5*W7R!`*RI;3 zyojJhh<1X?wU?U}&C6Gj{BcA%uEt^fs@%`@m}q*v2xrdWDAwMLU{F#d%k#qd(>sQ< zpOxj(?6zY&c?II5iPC;Nu(5IaA==StZ=ARs~pX}AYni0m7JK$&jEmAazi9wtD$0wRrS33!c`bbwU>oU8rZiv3{UBwZ!+Cg0bIERz zG(8_mqi##ca#I&(r9cYQF;@IT5L?H3)8?}$2^0O;R@;q&V-6JB;lT;{JfHsV%V~=M z&S@_B+GTp%SDL~`S02v)Z0bS)lFyEDNIXqCXDvg%lEznFPn{P=T}E6X3G z^L>pcfn$~1zwCj@UO%de8U8ZNl~r8=IrT>K(O*I-f5V+$rN!$jw^brk-;d@phcp*| zS~ZkkOad7#Zp4b(;nI!aG&&W+r6GR&qMXi|7LioGqx_c7JbJ%$~?u9C9Z~%F)Ey9b;7Bk`Q!*2C%*bG7Ly_b zQ|-aSgJO6j9lKE)_UnZ-%FoFnOZsa4g)F)^%VxysY+6>!!Lm~he=1X!d^L|M_Bq_I zmq(Wix%Am0Pi%N5FM4Kj)?6K4bv3&c*UL;^Wb@6^kIA5$52SbbSR%3T=@l$HnK@f+z|wBt9V zsSDmn$B*I!B*+shA3~^RmcNxTV$h%evdF-6&2D#2Na5n`G@cxirrnUvxz_R#^fhuw zo`Tp?Mx1u1QsJ6r!0(LmiDdGrj%Ko&bzdkj(7UXGylLv{T9U$^EakNpq)>N)cB5kZ z{_|@xRkh=vDX(km_3CD@OD61LGRc>dd4D#ALaoILOVK%Vh~lev6Ld|7!{68j}l z*Hu34=P6j9Nn!irWIiYt|8`g+v!=##W~|s5n)?PQ@3nQGf#^}WJd(DZKTiF9b5aP_ zH7Te3+16oMgqq}WFg%^V?@7Z4Cdo^v&l$01n;eX%bVwqdhb6G_WgK72#Bynr{PLsY z2o*P@ZM|5gW`)bsqCJVSHrGqp^H+LTx*hMJuG|SUspd?_D`vcloy@1*;|Sh6Ti3!1 zX8-;l-SBGeng1&N(BgS-W`CT^Y^$b>Dk8qLRM(1R%# zCiJ4)lOD{xV=dP2Ak7=4Q+E%bUye0H28j*T%$F*5LEPRo6A$gUI&DqkIf)2g1_sW5`= zyE^Li_2TTQLHrZZ3E!RFNKs}fYPv1v->v00wc`GO&Y1S@!UC&)96r{E0_C2{7Olt5 z<$B$n$I>~rFAgQ()w$*@in74sN${UR z>6*$(iLH8eniV^@i36KvgX0-jT)(_FHFVxjaKDG#j4naE$sL9t^q|}_Z}ncxW8&x; zjBV*enDnga-=_4rY)!A*H@G&>k+-I^S^UdF4*oKWv+alTZtEmI_MX8;>v0_1V!`Ce zW9YQ98!w0Vrinvue47p6&t1c@@EAkVoPp$xABkJ(37mDGMZIO_nk!G_p9+2HTxK3S zBIdFrZz@iq1^-p|;7^V8e`=(k*W}-QO}t)o{tpYsY(*$Znq8bP62YQWS7vNkB2Rrd zYhCJ7WT7i(iurNl!dyP~^1ybdl^lY!rI{sjb?{f`^_(i5#SWV zu|si`J{(Q_>KIBZ7v_F3mU7AjJ^d#J)05J|?qVQV#ZaqXEITa{csnSbMga-ju9?XA zY_XY^C-L}xGH2$C%kF=U2zTXV6YXgCi+1@~c)GXM>b`kZ& zaT-*^|39A{8#{`N6&cD$%^U_~1Y+7EK-~aK)f42$;hZ2M{?uOlQ7B{fyYc0vCw6aq zShO{Qq%tv#+btibQv~M@N&_BqqkgKmPSR*me~OPQ9oqa`5);MbvRm%UVJ8=EjE&-2 zRpqL-hT}IrgsaQ716v+Q$M@m|1vulI?Zy6NZ;FUnw%tTIrh4%#dcTw#mxAbhdodRB zQTCR;GQZY=JGbqby$z3WpDPg|3>YWA z&fIXG2LUN#sAx%3S-`;_=o1s}viaYy2LB^EmW zB)OB+XdW5zEQj?9r+Ib?{qF{gOD-?&aDUvACvfz<8=;rgL#tV5(uq{^<%unSRC7LQ z)vuGXvC}U5XvrL2R}wpGraS?ca(R6(m$$)rq|eRa#^D@lNgGag$Yjd9EcLKwP*5yO zKHzK$g=Wy~b2<|>S2cu5XDW{sx{2G1=DBZ zQawn;SH6MDZ^Y6PkHJt?b5S!fu_|eH86pO2F#|20rcvv)X0_%9x+uffHQG`H$mM zc=0NcU&MapH%8$P?<$ zsFuWD&0OP0suS>#_Sfl&bnFsO&C=4a4HEd)C;^Z6^5Nc9xApBf=532n-`yC>U2&w; zfi62G&w|@2P*`7rWCh+Ib z&h&iQo5E*3xvahUzwOynJbH-yMy6D&-GsXbT9RgT=FF2;yeb$+ljNR6Ihyc!S8pDS zAHb5?CWLv4p+BlOqqgL@m6}F#^r$;N>VEF^ zc@#4SOrgUrarin-VBXVy6nX_%4H+v zN9u@uk#@YE)&XbNUM&97mo7KVnAJlJgkVRm7VAsf6P#|e0GQ%R%kEY zCxPy@lX1~(Xr@CVMXn@>p>>{}dd>w}c#~DenFWoPP%KJ(Q#XGGFYu>-#Sm_sl8#U> zVY`KH+;Rxz_BT%|%=6+yV^_ky%l9=ejFPQGc&uIqn}QG?Xpd!Hav>Y#747%8=CGQ# z+FbIY@(uNAOB+r&r~KKMAV%JZWUY5FBmF(e|3eX}BlGR@WeoUGT)Yh4@#af+=M5p}b2NW#j|1DW1q}cW*)n zq|;ZievMJmlVRLyug<03QS1*3WB+6AbYF_0Ffo)RE=jx+tKyhu!@Fy^bIuru&u@z; zS;QZk99OnD1km`M{2e0~$v*8zfcU&a%7*j3=2$k*2^V)N01rcmIxeTPa(aM1_w{{? zMYHeITso;ga>EMoF)pYx%srCV^Zgh;*b}#A`q~yDj4Y-7^0{Q{{-Vw(FU^v_MzHX+ zGE^;6Xf-!e99sDxq@&yo@~0Gyz&T5E&2GvmsTbW%e$ts{%2&4tqO{Ih`=sNWRSv>j z`s>DdKf3A~Bs<45p|Fuu@v=Tok%!bNmAzt9-JYzhmgbCgYHNqT-M}4b(c+#dtkul2 zOH%{!l?@!UOyGQvG|aZ9@lyG%CYj>NiUIq1k979PG%S?Ma@m=#xluaDC#PZAG!4g_ zny+3Hhpd4S%aCNYDrfa}{(O1rG~>2j%+5nP`_!;!`6SJ--2-{n(}DTBLnx_zYqfkw zGL*NkVC~AtoF$yhn56CpKTJ1h7Pj7z-gW2DUfvmZyP2HbGF{L0x$N+rMj5|p4A?l1 z0{KQ4zL`n&t&3=4Ylm}zEvxmul$7_xPJ5EPN294&S9l6(xvmwlNjUzHM_$_1aYZtHDoDS&%Kt9DSNZ>sz4wf&`VO~sjj_hw zdr9oQH*61B06U-{DAEK`P(Vec_uk8b1&CC;F~;6YH1-lTw!|1~VoU5bQSZz?AI`@! z?ihFMeeT}*;Bds?lC{=<@qd5wo%5MG_Zrq`v9vss?e~l5t}~fq*D0(y>&u7c<~(jO z2iL39i7y|+fxKa)IhoNjcOWmey7BJK1^QHNCC_s=T8v%5hFc9WeL0xRExS>>djK;( zwWmn4RFGo=)pcFwujs(nTaI#f=JEfM+4k8_>SXRUji`j$>}q3$zik!1P6=j)<8)>= z(|g$ix(%L1b@z6Bo;Hf=g?60U(T|qb`%_(W>bSErNQ~`(>8x=y9I9FC>1aG|Ok-AU zaZ=@9ALEq3MCtc|l|r!fx8T5JH`bV&b1ZWL`_8x${#?Ae?*=jC4;R)vwdG>C6^Uo; zSs~9t@@{#LK2Bz{$y9Q-4x!N>Ls<2)Cxvsm@qL})eDZXl)5EEFY_%7!YX~(Kb!T$Y zC|ad=W;TQ`@cLzEG| zEMMAgXU4Cyq~%xBxcK5 zN&D!#%EDH+nMk_{8+n|umM%w)Ts!W_)%DU`b5rPlCXGrvGN|L5&OUit-Rv{49+*xw z?TkY;bGp`6Pfu_<8@=Tj5C?Qi8;5@*pZh`J83t^n`q|klgV;*vFvW2 zP3zKZoR#O_|Gn}w5$VjocAnl{-I;J=25l`O@e5xn=G9Vp93puWtsbb={c(I1M~Rm|b9bp5w~A(8%Mdce zCHziW>&~k2v{@WOdpmvK(o^3YDB@&FDbF_-5hs6Xl@QH-@|Kw&PG(D~vPfyk@(twj zLH^6!vjO<3EAy@PuusK)nwOfupB}L+mRD`Wk77=}7tb{?4y#@f3|XmO&R@Ohc_W1a z&2f{ZeUCq@E{H~9)Ros3$0fAVoY>4fp2mY>SWqg>RJvhB?ROU(PsjY3So{BI)m;-9 zvLlMUv7xMN9gRWr>xX;Yj}#@I*>b_wCnfKZ};2_w}lR6K-e zf;<8_6BNPDk?OjUw;--r6bBU=PLOuyqW$iNY2gfz$6|!M$CmC9OtOn->F{iwV>Bn% ziQ{E#4snNbx%f1mqdk+Tpgx4B)nd3A6i@y7nWFj1uPHCe4rTK%YJdNvwRQ%|>RZJo zlP3>#-THc8eU!2PQLp2m0-Q<1_slYq_5HRpHxSh?li`;PJinXF{m*0RsZM3{w&|Mj zvM~IfLj!qMzx*WrsyM;D_Nwz$&-uj}c?D`olhn)^k}uw>uGe674AimCXSIB@>ov3f zFgcyu(mu29=F!Tp0BaBRz+RJY*DRl34f4P)QLl1J0lxkPEKkjsXFCsIq^EyitE`ls6#(UhEqb&S#rKcu^is zmRM{BIgBygxNJ8I71?>>I)dZPQXvMr{eV*8w!igyPWqIcTS>+l@R z@6F{KF&}h0{?~c*j{Ze-mT|xxzPeP zxh&#MA8`w2crf9uA3nNvuH++-p{=FXw3i8F0> zHI&z94B@9ba(q=+PQ{8Xhc z&P~-_x=>vHPUES6YofS)BdIjWhQNm-d0fYnzjrO5-yU}Y{?_@l(L824x=`)X4CUhF z=b12r^UuW6%2igWk65ptrm~@`17*{#$kxx*gBFwc`A1*e_Uiq<-<_w|M{)ICe_AG+ z(tGekj@=l`CabZGG?=dhc+e+r^5|Ub7e$Ig^E#=ThzI6dcW@#acPAW{EZ3pNzpy ze1@}A9Jsg2mIG}9_4CMqr$6hb&F3z3Dg63B{o47TJiGk+-2a`!|G5SN_eBzZdK$lN zT*|1%@if{J$0B9*n=TFGK!Dico%`cCYcgS$;ycY-hj$HEP7fM}tM*g&4^#O%T5MQ( z03LiyWuoS#&o-y??Su?+rO7VctGwrtG=5Rv`sI3Qw0@S(!jtk897tozuyo26YZsZ3 z$zj(Byb_~v6F2hx8qFG+8GO;gpc&LaTuXWI#%D2l{sqoPMp7fpp9A8ariIVI<>Fk1 ze3(zY$}`3GkLPlBD8|zP1T~N2??&>G9`fO6z(V@ISjeglK@`ncirvXj#*B&LtY*0f zS@Ixk3S`~T7+TfWeR5X{wR;D0U(aFw@GyQH=|;z~(X@$4=9WnueWeY~y%Ru;yoSsB zh2r{A%+|sP`Y+9<+k*&Jj?rv7*`Julq1+vvN@_wrug7X;9~8<3&luuOV`y7Bg_eiZ z-z(qj#+nKIrJk@p2U5j6$Y!A!y1OpK(y(e0;mY=J-x$g_1A-X#M*5|^YL~{RQ^742 zcX<()yp-qShcr4!=S&NVW|(?jogCG(m65=bO%YUUmcaL76ohywdp2ABk6)<+;jDba zzeciZy*DrH{dlh4o)(c|IKK>{(eYsFN`u`nD2?~ZQeFBe-FRz)vSqQ-B<1mKp3JfN z3DmMqr^}vv>>H->@_sB8m08=fAb`Ybah#2^W437k6~2t7RZJ*#T*V1(mX4>DC+lM4 z#XC}mS0BwB`(xPNKZed%Vz~20UvnawBPABtPRdl*g07Y3%LzH2N@hLr7Nqe%O^_z1 zEPca}STc3qD0eNuK3$xtxdytlPo}nqx&r#7F=}Qu9+SmY{bL2YE~)=uTO6gz&c}$= z_MNVYgK2S?98jL<+Y}b<&g82tVv)M$uyS-REtcdk@QS*&3Y4GH4q(sFT=JHv4?YxB_nrcv6;+ z*P|#lZn9+0sw66>h4HxUGS06EB+faQ_fHm3Yua>viHPBzhcu^rS=kqQs*{nVC-#%2;8EpGs^1!^wlBZf7%$K}qZ=6fd z^RpQ2>WaTIh*s@%jog~Wu{JD*Fr{Pq`>-5cRw&b)#QhBq}bq&ydc&K};rMw-`%ra@v? zdFz+*YQP{ipHn};j%Zw0Ov5B{0(+CYQ!B=kvD@3=^1#TbVM}#hbjkWpnManI&ZK;>B}D~uh?p^%nA<+|clW0DmuoqsJU?^<%$=xH?$jJUoiBatIXO91UptwkwBEFQ-;*grM$ov$Sj@FA zaae1`oNHro{Y#z!`LZ?|W>V7ClAPbCvSZs|>|cv7dvhRj8jRp+C0nkqG3EMV7`AUb zr+sJe*YP>rX=lxi3bQ!-FpS$|>zxlPQ7t~`YsySnm&c{@BkI}&C!l(N73(KGxj{5;I)-LnZ-CvKx}<|pNS ze;&DO_f$M{r_wZk8k?rf#`_O%+A2G+|51?mH1lZig=Y0hdue;KBV&KJC2xcq^LIJX zcajw+HP0S8<3I~$ux=t&ui2){Y$I z7ja;Ndov!L$tG33^Y6axORZirNV}QJGI`dl>~x=bktSwUnmFmHIIWgWwKQ>@LjVE z`d=4gOT9ti^2secd4bZOytwz&hZ>v24^4GuX2nGe@)h?~ysIj&2C!VZU>lv;XKB{C zaV&-#y~Vc@6X2isdwXCqALX-L(kLGDfG{T3b7oO*u?lW3BLC3>X>|b@w0mk6wv3wV zLY3i-t)ps%MN{Hj|nk1TtrL}odA_?~kDE}D8iL*hBzm&vA z@gjy97Bf-WRMolruF+!pOLq+!9jW(2 zJq?>9*?c#Q*<}eVxF)^wMk1-x)YzB~DG!6s0|VC%WpF_H_=1J;>^~^R+t5s=6pJDHMxM@(%Nc&H5YOqU zoNZFXw5#H&wlAdXPs=eiFXBzGJPB6n&upy@I*)8BiyddM$lxonG8$D#Wu-+nx3}uL zdXHil3&MEhlCoNZggryseOdf2c z|Ch=<{hGswkTjx-)V2Ihe5%J8yqPF&n6&DC+!nLQ~M&kyq$H`tYZ0n_N%Kz$t1ess8|9>9Tt zSgZT^+o_BBdX+ml6N1?BCS2V3#r)YihKgnj=yNKPjXT9wzL&z|UD5L9W^?D&3N|{I z(oPJA8zXg%&R9W859QPvWzuIv1{Vubxqc^_CdJ-td_94WmP66 zo#Boh5YP4$M?0S*^zNDe&*qdj(hELZnazdbiA>2F&&5wc*jJy5jdl|gY8gmtI-9TK zqp6k|O#H(ru8bW>?L%Fd?K29KTvPQCgWJAQG7{ZwZB;z0|i1yqfdo@#DGdfpVO|7y*|)zcX8a4hkmIz#nVA8W;7 zL~XIBhSv-lSDQ{iy-9o&n{VrUXRLo)!n(uKP~+V=U1HARd3OBztt}RBX7Ql+6q*kl z%)v_IaI~Jll&X&WHqM$_1MIn8O`Z?w31<#XV8OOgWOuhDVACW{W=v*vFDvEM#t@e_ zk$s^PaP4i2_cKS5PE8`?&|tnT?#_IZ0rYA)fU*60iPnELU z(q_+&T>Vfz+kOwo4qUwDKuVkgJHGQ{!yN~@u5)AUcb4KlDyytn zx5kipG<-LMwdLYG$Y*lePJN8Z@_tj|gIh;8TBJcpE_l~nyL;;KlMV1r=BV{f%UX>_UFoPpq=j=*F4;}=F+)K z9#zOCtAartr0Rc7yoj@y>s3~+VDPy(q6(&Ale?5L+Wm*=?_M%wQulf$YmM#%jt$1; zSrmOqAjvZ7Kkhk6otEL{GDrSi2RxLg>a{eSF>{qK>KTE} z!Kx)(?-0tS>+Y;>@6K~)by!|d=1FsJ>^OBiIc2cWOiUon#22o~dnN9?)5Qepr^ZvT zP9A`p>Q)WQ#j8QGG~oaSw$e;kSsgHYHQ@@s} z_;4BGu4-Pl|4crGD{1_&xjOyZDr?m!h=m?GTJ>yj+m1Y|PG-;;p66+}%9;45jb z-%s_X!Jp!s=~|lcE{}eV^Vn>br+mM7wG;E`EN_NK)f^tBh{Y>C-2XQNc84+v(D(aD zIkJsEsY4_`o9d>yeBQuF@80Uo4b0~1H08(KaxiwxrsqgMUSCxg-9mRUh21fgwwr9> z%bxe1oR9V*`KU9A4sL9k9!I%2(QAK9#r$j%Vd^Vzdg#NQS=0F;*P9$qUrsjj);)g# zuJ2ul-#(X5AAD%4PK}>;E@XqQ@4)Clp1Fs!u$nwN&Z*=c$>hiL88BIAm1$+H%qryd z?jm0QqRzmISu|1~V3*dZbowO5ai36vp19%gM4y?XR=nCVgU98ID2yM=9cAR}T2Exb zvKf?C9?CZ5RpXWAx%HJL9+j7|xULw)>R4#IawwZm_T$<{OJ>a(!-m<@aW~2rbUmDz z>LPSpB~N)$G!~}ij12T=R*d!v*~7W`?ehQl8M8L41@22P{vT)D%4Z#U@m(zTem;EL zaVEJT;oNaq&)4bV;=a`Ws!lYk`KPlag{FJN(Ces9zV;Kbo#M}??GrGh`Z3_zV2&0H zqkh-n?9x0tsLYA3gIySV-xjO(7QEkJM{=Vm{J*oI<(NnsoQxyF+J($BHhj1hNXAVk zCLMO>iK83Q^KBVgU`n4cgSfQORDk}>-lsRt;|rjX*R#SRjw;BgR-9uEdDBs?wWx=tCmU3 zwR8eeZl*^r?tL{Ad=ei>8j_uDHpT$yQ9Ukl^z(F@ry0oh7wc-%d~v@+usTq8{$1caj++KjDui z%Jt6(Vxabzk-r3RDM4OY`Tqv(2w-@vFi`$y{6y)ej~4TzyoV+RF_3;N;_mcN2KEo; z;EWiCTcwaHkHW4a;xet)<8+AP>k82v3Jb#2FMuB}Br-=V)0uT*c&&bjn@$EQslTe- zh8UhzT*mE-%0)d>HtwHnntY|1Z8W1^jAmXx?Z4|PR~(;2C5veK{~gCXhXgV=ETe9< z7;-yD(8(zrk4g*ay}_3w57mpNoPX1_aO^t7vFcVl_3V6!Gg*LVO?P&@jHSUcPdwTe z)85laSYi>IrT=!6Z}aPX?Uj{*pE@v$mW$OB@Qs*NzpJbDP98n-(sXZ7N9cuY`AW6> z_D!UnGUIKwgwQz8z~MVtVr)-}I!hC|xKrH`LE=Ky zPQvnK4DO3Uu_#RBZs$1e`NiXKMf!dhGlP42t@0LMFCnL4Rrs@!9q+>lJ z8+zqo6TF-g!&0%+^>gEg0zUk%?`^b^=@If0=uA=iGMmYZq-)wMm(?U2_n<8Nij(-= zHJfP_*O1Bc}h^Kb5IXY$BKCeq|P3OhEKf5yR-DqBQnM_t)^&R{@l`UD;^81fv z#CmxzX%a5I1t1_|+p2%SiDwl-)eLJ&Qr7Z0Hkg%LO}YMjRc@^#%i( zzGg5L%=@u%N`GRy4d-Lk9I|olX68WVC&yvh&>N<~b?NCg+jTh%{47Ius5`)-87_@Hk@^_`e zgaN#@p2xbpkm@@7eHq?6Gnd>Jl=zVE6`My3lT^-57 z{^~Ki;61WZgVO}neyPXYH`2ItA>O7|wA*7xi!*i{J{-!}nTyGPCEkuQzkNf(D4G_C zTNOVNPS}#sKpn+TtO)riP1m#|O~>wG;)KrJ_)HAip~J~NJd3V+4UZokNWIaYn>KHD zUuSb?7PMZ#u95$X<@W!F`~AP)aJmF*k>sFES&a59A8KwCW9o`4112hiFXn5BGFL~$qH6j!0>|Z{ zIDQjJ#v|pieq8f{5pz9 z#bKm}%#mjxfE^YIT<}T8SvjQX38^IQU7$RDCL7NOFQy9ae#y*6Pm+y0SEG>3K5?v*U?$xriA6BoKver)Oc)aGM zGeL9`pG>8v&%5j%R1rOpdQh=I+`gy*IHOH;-X)e!N%$NnA~gC+eUdYn?(E zQa6mA9YUCCl*jMOWc)qE2ivI3PqP57cTb@0U#Z-!l+0Tz&5mLkT%MfBr-4cA4>5A& zcBa^9xqR8Ngv+hc*cg*b=%PXtD~}+ueoxWR}npQ zHgJ8HPRZ&lW<{nbhgK}ERsmys%OmPlsjViVn+T z&7EwTOW$w*TMDZ`WRm%J60!0XzY#NPmVB?Vud?V=sPCyo4x0yvW40xi8XK~yQ&ZQS zQ!anX^EG7TB(V_AYbj#z9 zM)};BmrsCv34Y_$ovXb5#f`eQZ|k!)#=xyLnz8SxZ&teZ5HSl9+Z&j?QJmUem(ztj z27Ft_a{pXD6!u)uvA*EWw=zKRK}Y+7zxIwbR~bC*#+< zap-mzo;~tn!}dtx6L{Ohl7bJOoEYvzLaurP(gv{Fr#B|kMqoC^g>Adc z)Q@dS>=p4?GyC)H!(s9_?i%@G_9 zw4+|?G9GFVlyxAJq;tunrUY_Uns}uCtq&WfuyN5m43nU{a&T9w^yVAa9#on*6wB}~ zbXzbAkDc9^bkFS<~usphy z&nkrQeNG@FPA+EbqM1@Atf)ME6up`{VW;lby%TNuF2$4^`6KzE$t+s07>;qJDZl!iSgP?~I#g3{f9)-gR7ZS4S zVY;V)h5nzLE{!!GIq0DSFQ-o;A<30h73XlVuAh1r)qgm~lUveZFM0cNt!V(Y+C}32 zTOhr9FJZBAkxlP9(Cdr`W+!J+uj5$i#9UA zFNg8Xyxspt?ft*o-0<)7`F9rnzvUVTv0RSRA|tna3Mewfb6-2%{Sz62kSl3z_N|Mk{f==RKA-@+gu|`y*)S6HkSRg(SBM zVL}DXclV^v{^rb@tdRfs8FTvgaGoEIkd*Gl=z$VWIjOrk)jl_K6rhh3ctV zSV*K{Irhmh_*RMJ<(vp?>WhcFNOSH*u>!;|c)2D<%-UeFU!}F|jA3(d6wAf0aom+a z15ahYlusEM6^)B@nC@w*^iNU8s<;I;q@$gfo{U|saORzhVVJl;>HFd_d>zAv@zSGe zi}y7njLwD_dEruN|5Y-r)Zw*>3Jf*XUe+di1irMQe zcG282x->1s>~a|&c9%%cE}_ZD5{{2oKe=Bi>G`F6W?s(UM+!+asGF&YG`Zcy5U_&Z zw&ao6A%@jaMLgV5f?aws#oCvzG%4UB+JDRYyst+oX_n<2wJ+xPngv8l=S=@AkG(r% zF_iJS3_O*EsXPrgZWhpF;&SR~Ul4eGITP;Zm0Ug*4?`^j}6M3bx0_pwX)SQ{zfL;%g249m=p`tF=m#? zy<-J*J1y?ll{|uf)#Gi-XUD}X@uhO8^f8S!>(#$-LX2gv43=dT6QG{g_GV%bi*M`E zH-ka##lF&9|L$lGC5hs<%J=Y-d<;w742;+LVPsEf&6?qNc<1m%xaNNO5`r}A*3k25 zdn=nx6>~Tms@F#hvp=L`AC@kCyrqH9nrHDYUtM3R*;oXp@@7K_>)y)q-Xw!oix;xV zCYHMglW0DE8IjlL$OrCB*ztV&d?63h%~+m2P9Wo4BF;L?d{l?=67l9{w@D>1MR`cu z6uNw+9)t@i*lv@r`i~@99<(Mo)t52R>LqRDz_EkDtQ4<))Y6eG8a0J8W|xTG+YsOL zO&E1*D7$~0OV^eC2(LSUZw}k@^wtuwm0gLLYDLMR@thqxhJ$;C^ZonAG`46*#D>1u zKIkG2#{l*Z9zSB@lA5u?r&q$8P#>tB{nVGvCaet-^<{&3FT%E(#%-MX1vcbIa zSni*-WTxLBZeD|e6Jz;we+uh@CK6c&DPwJLeql-6NN;NPjHaHMHTSOBixDTTviz{i zYm8;s;YCzya-$$^&z6n2E8qJ%ajub^Y^IY%O%Eu#Vm_LD_n!~Ue z)dh#3rwlZGJ91I!d`3QUrrw%pY`3aeZrbg?@_L#|!cLA&XdLJ7&ZuGq5P1{8o9aKA6Qr?KC$_ z)B1xPHvKBD*8T#%G|9x|`zV43idVifo6EYdS?$f{U8hVAx+qH{58{QB**p?Qy`fQi z+Paxk6c4G-Nb%IoqYkh<5JZ={EuoiBF424%<2$8%zP90@}`D3qsgxbjTd36Z4Q#86fHrY{FauzO87 zZHw}}JMO-=(Ls7Brn-_|xFBVhNU7C%&%dnKry5oKsKYU(7uZKmnwJycvmtxlM zDPe}C`mF3$@Yh#m?7UqKI8A$G(1H9wvw6 zUEP{a&qXT;pHPU$K_fw8(7sz|?L* z>2{9H6&E*)8k&VhD?jM6SADB>4OGyXYse%0{zSU%UVW{0`VFk}X}n%}_FN-_4~REV zGoQKY9(a2@k5bLBW9A$A*}{n7rja#fx%5*WtFq>{Uww1gEhfT!F}BA0=>PvHZS%2a zxucqozmgZVm3XoxIs7?Q9j}^8hyJWy+F3?Y59sw-rnA~HbtF8NUv`M{c&){e)y%zO zl@b4n(p{xFdmYp-d2gp&(67I9*mp$CVQH@=U&h-zB)@QE93jng z&YWn(S^Jd=@*G>~{dlli{ICTEN>hy-EHjcjL^JGZ@p7-`;;PrGxisFAK4OqvRu^wu z1INwNYtndMZ&54_{7Vx)6oN_YiBAzM#t93F( z&D{8X{9>Jtlv_%bf75&^4dg3o7LX|RgFM2&W-wJgmiE44`CZgCtsR3wkN3Wh=HTk_ zJTN5F;)FkUXNbXYd>S6gWbJI~#op~R*;Uw${Qj;~&MM)wcSlBSu*WaB57WjkBz(Cz z)`ebNYdMrtwFc69(`c%`oR49l1=T$KX?f3^k;x;7IMtRPCye4}+UTs?mK7bkvNWJO zxt1 zX4r7*ek-1tuIm{MmeMNLlH1B!t@&&m=j1Q`FnBm`#*QQUHyfNRhm!iyhKQLK)RuR3 z(ca!Tx(uUX_bG(l8Z8ZADi6QW{{8Ai-j8s^?XeBU-m^I8?!cYRE>vBzh|y1{ay!|9 z@Xvf19`D7&b+*`zGviYg6ZXyMNAFR62()ibnqPO~k_Pj|xBWPh+O3b$D_^&Lw@z76-1h7lh#iWfDSjoj_`lbGNsxOmSX ztFk*ke-=Os_aONk77=yAo9TK*L@#FjgAN`2tJFJjmq3n_TLkT&usFKyV9N^>(OVk(&9a41GR?l>O4x`k!-|LQdOXKwhlq2s^v ztX_xzNi)>H&-K6d{T}3&N!frjh8frK)OHO+$1LYzjDdS!7ckmE8jEHKGwG!t+zT<; zFP6ZiWC~ow810rVtwJpFeC-cQb)VGF@$t^ejenNT)u#s9?KLn|8k*-#1D#*!{x(SW ze|ZPbOSkE~D3|;4&2>!vC*z&Xa_vw*N&ESHgOLM^G(&umN26Wx556*TNUYDF8st;I z*KImHS5K^6B9pqz=2`YKQgxSO?{JW>nc2zuiWzjq{if1q)PQEO81*b*OI9Hul1~FhdYu_Ip#}{8F zF!jfDO#TR@(uPb@>n8HDmO8Zjlh|@iSv1W9TUJF==Y9-nZxSf^TeH@V0>V0Hl6^Om z`+bv?1uA6P7b`g4rjROK%jk7FU-`Nc3N?eak1VIct#baHREookQtfV6(r<7Xmk*Z^ z7G6r;`%=dADregIB7PlJLdMBre43ZBE~J#mtWruN3u$YmjE!v>)}NO$N6Z8Jt}C$H zZe;b<0y-=xWO(Z`0#7W*{g>s$MC)shmC!=G)A}!qcz?S<-(&krR{j-(uqGOpOj{xJCy%H>79AJL%LyZAbdH-lIgc)S?D4y$ z<$j}_nf^O4Ng8x)E~(OCKm3);8_nG-uNWxQOuM>NJr2QQ<&My2=7WKwCI$w1<#4)l z4$-$FaLY(!KzRxC{^$Gw%vO?FRhCMnuO@P9ViesPi@_G= zM#i&ver@SX=mBd6wD+RvVD($;?_HhwPdA+xiw}+EY9B9#UbbXkXM60scgHJi0Xxm( zsNW-*MZ28HyFZ<0E}BQ*+7fpWp3b%>a~L+1A)d4DGc#bU!HjRc$5CEBk+^+RSgKB~7wGkOS2x9;0o3_<6qmLPB(=H)k!E9gJyJTW ziTZ4V`%z)s7_nmq@Zk9vPPMQi&3P2V=UUJs+=Q^Bwj@vZYh;JPd->w%aRwVlkIZxO zrB%WL{*3YA?$bq#*c(Cm1~FZqhcQ~$!1s}JdDJPG&bNH|O*};ZQA>%Nwun&=J&Et@ zOLXUGdK+dix8Xe2#Ow1jY%c5mvSq;bo&0g_B{6rF;XiE?d%DdbWNix1D<-r1b=-Nh^b3zvx1lHH-b>Xd6i$%*uCL~KV|p)%ZKj&T zPtD_T_X4Jx1h8sF3a1k_%PK<__IC*3e}<`F+z;~~yx3XWfvRpxXd3Q^zw%k{T1N9* zqB;xoZ`b`Sipsm9IM_U$Yw9kVvPHQpWxHm{18CkMoP95Y`8zR`m+gY_J{>{Z&H6q% z#W8Vo63^bJvgdRvDMbl<(Jqb-m$Wb#5(An z%pfOet|tpwkycEpD)W6tJhXDXx&X2^f)GMw^|f+hsi(uO(}PNEL2Cua!y~? zY+I0vLqIAGM(0sHJ&TMQ*_`d2!yIXu&nM*&ru^ALgK}Q-(|-Ok7w2`AhBY7b*wYERTHg1+Hk8 z-Fsa=1BYBXXg}|;OI)jJ+K=DOAy$9SUCh{G>AL%*&p!L8vs=Y{iqv!P#zidIe$rJn zW2Z<*y>m8~HS#mG9FnhE1f={;qy67tPE= z8s&&{rO)0#^|$^R%c{s^S`JAip(L7t8HG4kNM=f$_V4PTAF;!MAx&brsCn;2g#a?& z&Lz5=KSfKUSu`n<2jc>GXOyp4`K#|u1L-}@l?nS7(S73#JjK}jX81g&I?TaxYXlzG z#d&=m$n_PGJlh`5*lxl29iC5%pAxwr7Qmp8Fs4k6W!|_z%BsmXFGfZEo4k|LH7B#D9x7jiTi&X=3u*OpceoG9ejH|7DcNhtM$76T7a9IQ2n0 zho6eDwQ}WU=zPA=oZRAL3TD5gQ?X7F-(>~!E-r#TtH0PqWwvKQ}4l zzIGb7EbdXrPcSG`Qv9t^+iqNX826H^;^QY&hnZ!@#dyx$17vx*<1iy zKDXoGdn+1Wb>gzl-*YR^;6ST^Txs2ht+z(7<`CS}*L5GIey~x)nS6T!9`7yj?dDAG z@;1EMFqk^yJ?LG*mTx_xcwTP-@6;R8?1c#{F9k9saXRaxCNuP<_#IP6@_qMlc;}9w ze9I)-DMy;nX(>mmkLJnkChCqJ&D`J_^cZMMi|-w1JHuQpRHTXcD964d>VK*6jGgf^F+3G2)gZE8fkdtJe@3l!h~TnI%yJ7mCy8#f8uQ z;j>MqpjcnGE{M}!^XVup{_z@jZf>_?hMyVL4b$=OGlOo+`tjn(Bx1Y=(xREVbs4~z zd&9*EAH(rR6Y+aAm=gtq+0ev>9#8t>*Bmh+2GFy~czX04BfrlidDVw7rQ$q}Ubsb~ zBg1EHbLZJNODNWvp!;ht4o(i|yK_E_7_*F*7d=TD8^Exi!kMz$6W8EKWxnKx-4e`z z-3y5SJ%~3I=VK|Y_CWVV7^-HCxV4|@8t-Zv0W zdA|PD<^F4Rxqn~(|5>kp_jQHbF3qHwv7Glmm#gEvh}zD&HyqTw&>(~Og_(p!Nz3{p zACsw>xcrlSX^_J-YjvC}AM=Z{Eq9dbSXEoxqiI=e)y(JHG?R|&()c*uz|0VN+z#f^ zdZ&D^ud=8l9ja;t<;utBv2dd@FzQ%eCRXOu#|4}#QLcU2aw|PonK6oTw$WQ4rTG~&*Ofhqk7fXG{DlKK%V`&{eQaqYX83da@IoAF1<>V-SeCV(&ybPwK_5rc~K`^L2|@);piT%_+=@QeWybd2wrbYL?I7$Y#x}^S$tiUXHI_5r*dx zns4IxZJ~74#=19ei)6t51Zr+e<=y>wR_Da?DOBAM9V3}jIf_=5moUf1i(AQ&oSCg$ zZu3~0^>^oF@|3M^oxlHHf$v!eafibc_okCOQesLQe1l_pRSZMg_9I#4Pz_mzPprv5>h3OK2Ea zLcf+P_(GcQi8CuX>{Z5!&x`pmwM<;55=Q5h(o){q@3h~o5>rl_`Ng=bEoaP`Vov;0 zM!nW0bZlHkOYO&-c}25d`+)chsq~fh86aQBmaSrX2I!hm7VDyR>w9i1o1}9Ws;EOWUd|G-Uk<(`$l^Z79SSwJ55e-~4#Za&-F70_MY zS{Kc^gXM8Jy;HmO%lT}WDURz`Mr9InNR7&+W7Rw?H_DGYP8?WM?fNx~y6AOzs?OUh znmr$Ur(9fQE(!f~U1+}Tti5|Hc?%r(h_Nv#k99lp2-jIK+BJ_I@>xXQlNVK-g#>wB z@66Ra+c=L1OCtsMbNS`BTzSItDA|<5;sNUOx{<@s58@4LHvUrc?5lb5DJVy_r@B}T znqyB6l%IUJQ91k|3PLqg1qHKvb1K%AwbL)lz$ZMM29;9z-LRCmbrLE5X$d<=1hQex zbaep-b6gs;F)@WdD<|t?;0Bqc0^D?0TGqn1Q8HK5ETSPY=}tjthE4Z?A@rb$KEye5~D_qy+yrq z@BQoCGsgLI&fR0&as1&(L|Bb)t#5wsJLfa8IS_!~yjl1^3u25ifOS%4F}En1h1$1N zy^}y(ma>!WmeK3`Q0gZxqI`p;)U2_DN$$(YiJeLArv+HcPvg*R8C&+uAvSv+n_U*O z=hzI|MlQv<{ZiWQk7smw%{X7i6EE+;>&eQCKABIiVqb1Q4j_HeeF1o*(cPW^2S8Hi}SFl^9aX3LpzdLf%s;RWxC&F?so6U z-}0oa>N}7r`^WQLaSv{W_a^-AIEGELr}=jyd3SFR4@>sq>hUftx!9Ei>jCULU`fW! z9z;lU{o8pana-N^Dz9{ZZBJTh*7&xZCC+z;P*QvKqd#{iXIfY89dV_6kR_HoEE&{P zOxB3;44c}8rA>QMx{@WCorjaY(U18Zf-rmM!ji6jeDtyARFONj+r>w1CC=1`QCR*p zfw}>`33xb=Yr{LRp?h2YrV*Qajv?##AO>FSL%A*^nDAvFC$b#a-_{1NeG}RFhpruh zMyp@eiW`r+snccv^}kwD_Lwcb4yg~<6e(85c!nGr&%>_0SuV!m7rjOm6NS;Lhj4F@o?$^^13deC?B1bS3$N6VHL6c+a5wV17Ko%`UO z<<6_Fqv@}&m+N4K-|K-~{nUjUcZSf|bvPGGjAM-3C=%msSYGFfSxA}RF!L+P@#e#I z9p^2taiF*s!3=4uo`>*oj%*5}?768_m9D=0$cIX4URW;;X0@3oqw9t7u%{Tzt(++Q z+fJX+GiY2eiGP!v`959OWCwrdTI>#Pt$EAOl|1NT(z&j+^zkbXF`(tK=sTZ7J6yi$ z*#E{k+&9hof0t(cfB(KywUb<`e0g8TT%5E!Ih&TtEa{kY->31|Ka(>h)0C%BU#j+% zFFU3vqq+i5_a(fDO=Xqx$vxxKc+ym?_f9LRS6%%38!NdTF3v!5GOxZ%<*+<-FYBd{ zcylEKx}@Uikj(Cu@)Jk{9FpI4)s_@qr)eH0A7s;pSu8G_&Ywp!(RPeBUD7FTm%)R- z)K?ULg9z;i7h5i+*V!ec-;So2OBm&iyMq)k3eq{5%d-il=09Hg(Ts5|X6* zahC^SxpMwi(q2d7*`B-8DKNXW__*@dgX0zAi%ILo8LnymMUFA!7SG0_t7xSoN zX<(xESJ#r}b5;J-^+RGvsJw(9E6peOd@O(bp?PeSI^a92TXVu9D!*Aqtj{9+OT;oL zERGFX@_R7sbAg|Re#Jdc83vuP)ty3ckcc|OssR_{SZ&Qjh= z-}&t?;QXOH4sMq>;Hr^Njf!|XOiY0@g`{mT5MW+_(@cXnxkjP}$T!fukmVop+4)N$ z$@WIxT`=+RfD!j02KqNGAoq4Yv+Ed`em0*GPxI7gkV~}=`FwtnL*WVoewwRZuAEQs z1tVeF?{_LGZMtqXP5#Ko@~URCOY*t-Hjj$BR;pdT089B9?mHHUp_51JQQ{%w7IImS z)#YIxtLx>9ha`@D|4eebrm0^-+An!Nw%by;-8qTpu1UCBs@PAz#@9xV}z_Cqq4^}W}BPvwDA3Z}=(%^#INAWr`6Lz;mmD%*c3iNZC>G?O>C zROuA*rGbab|IxaC3O&RuIJ+kmYxzrePnWM-o*Z}O#_m0l{;icvlxE~#^zRn(*{%G|6rSg%@Vj*Q(z5aZ z&l1n$NBMrbXqLN5@2_C>4!@13+NGuHkyy^n_6wDDj3nkvG#lDa=U>wj@&;419v>8+&us;nsR^{K?9ZF6VqjEQLWfqNgxagm zV|yI!3lnjzkwE36iB#{d_u*xAfAn0;56bgzbd6>63C&;+FQLDB5Kf9adtdpSiUDDS zg~njL>_4sxBZ!R+W0?0W#&^;@^RgGco#&IY!HM|FW-L9b&e8FHJX@;W$@0BCx+=eU zxVQLh0XX&$r}nD&(MgNN+}C`vZSaXtv#XE4*Wdb zo8xKTcLXhg912vSiVtbb56E`SHJYY!8(@crNilCY{v6Y1(jCYace*T zzNzzQBnGcv#Tj(E-iLh0ju?yka;AG9#(o+?(~Tpj-q4ZeRf8Dy#-4uG;_I!O#vOdr zRWO;dFJ|KC?#bjiR=E8*h{((_SQYmnqd`BK{MC;h;p&^}K8RKWr3J&a-+%5(o3n1D zv~^<4a9>RQNo3Z}vOd8#osJ;L(x2R0_+pYQq()Lw$Ph`jAk<_g-oCS>r>R7X)Po)NX z_J7#Q@>A)ouQ7(rKRdH?W-$Fr%)r@U8uM3$^U*SZwW~u|_uh@CHoglod#w=TXlsgT0HJ3;5Yd+6%^Z)a+<(Y2*^|xqFIVPX^(z8#8WwUl~ z9$x2jn6J#ulgoL8X---6hw^UPnP2afO`N~7N{ggX#NRLXNGt+*QU4jbh*Eo%+o_n3 zw-}zM)yEKVVgXmD=JG}J#2EQa|EQP2=(UMdSQ5+5K1;cpyO{2)63J?qz}d@-D4e-~ zGe0ln-_!-Pa>(K%nf!J!oqit{(W;}7wbKmrc_(j2GXp{Sc{E*~MzJ32Z?U=b>T6W~ z%D^SR1*EqZ`(GN`s+qbCg5_&&oy&x^Ib<9#(RAH^_y!7?`^w1m{U(MzFcBin*rA?@ zg8nAFJqpA>GjTn_z>lX*yw5d|IoO2VLnEz97H~A)K$=rNjk2WWFBPz~fqvGafMNZO z>|dSD(&&6;tqRzr`EJ9J`P3A{V90F~3&IPz9$rMFpaKlTOzg|Zr}RGsq@Ol&a+HaT zHwFCF$UyxB1FaY3Q?8zo#*6du4AJg247mGD6kq(-D zt{%(sQhBDm z|H9kybxT)|B8}?H)yuIqg{k_v#LLo@e`>ZWZ}&p&5X$utH!D9?eXkjmkC(>omBO&Q zsbZ9-((GsX7|hbS{wxItUC(8R;gzFKB@6j&_eg_pZ6U_k9rY<3SBHj4euq}6;(^M` ztNXbnE!+F1m?E0>Zn2RkLfNpgn%ABgrd^48o&Q*?OqK0I7XLAuYVwdy>LJhRk|Zt+ ziKSyDWgg2$a!l7$Yd-{2EhCBD4)Yly-|h0w>Rq!6qHvLz9O62kI4|aVpFnPjE&EEH zMorJml|MX`Hg4gJAGeeyV!?)76Hg;?1uMlbp3_0T+||o)y&*4$@{frt6Y$s`!z9Zj z^+~HguiI?gUdvx#mMD*m=KP1^7_U8VLf6@NlvKaPCgmN^$1~A!G4tz+Ip;T@+ou+C zqH_XWI)<^VN+J!^kK1?8GHx|h-hbi(rZPXo)leQy+l^LDH zkPe>oG>%qRVGvGJ!uWHS@=<5S>AKvQsVx^1W?7yq|2lIoU^E$%#Di)*f^qeR5jDOC zPrSxZcdrXqPR^xQ!bl#y?#E+qGk#w<7_T%N&Pqe}4I9dvN0UgJ<;Q>*mK@$Wh+B=j z({G3)!{)hhr`UmOeQep>T-~c(hEitaNPVsi=g!%lns0Wc=M&wJcwFJ*d-8VS5Uk$V z@P7J8Dtg;eu-%r2N8EI*I%50Io2V>13RVmtM(nY_`j6n+0{H_{dMQf_(+2hC{q~_e zUuVslNO@Z0Y>74>%jMqkd-{9PHQtl7PrjVG;=`6mYdl?TiSP=gN1XV5Q(c&FRytVM z24%;GQhQl2>)wRQgFl_o76IbkjVH-Hj1R{Hs9_#}#b4t%@8rvZ1)kKlSI5G>F=Un( z7ePAuUV29Yj@nZvQ#~=RW4ZsJH`XuB_;lQyv{G%Da@m@%@(etA>%#*3F&wFFgHy@D zoc}b45{v4Y)&Fw~p9k;2{^}kkmX&8gy>iR9%wy`swghJRLHYik%;^Vs8*v?Sr*rIye62b^7s*FpCl6lk7xfB-OVb`nVa|(W z9Hm(YZ%83(MlzP0G)r?818IW13GxHxX&#n%MmyX5Gy+zo%ZHXuqso~i9Z92qD{;Q$ z#oepF51Nw2cI|hYme$`tW>fgnZRKCYiTY&*v4>*_6cgacdUeAOT0+lpaXcU3Mr(Ec zCH42`?TA21Y>i}5Xo0$j@>%07y_J&3={E9ViXj!0teN7-0=7KP=RxHHewkgswF~(q zw$In@GmrT#j1=4Db7rKGtu+g%e4>Ewlx3={UHZE(Vo_x*q|?;dlq#6V3^7`&Npsy= zn@MMRPah94^4+UE?%5Qu+tt9LXZfU8P*3?v10k!7{L#q74%R{c!;g3c82+RBJkzdYXQwZ9M{@5TOXdf4Z4{IhyKD-=qrn{d``CY{bA<9#|)R~zx% zXyj#zfx*p<6zMg5EssF&zjE-ushMLf17B+wadoY@Q2EK+*(6@6UhBrcWspWFIukYT{36}owJ43A?-ST1uBl1K zTFOvse#=awnz!`dz%<&IN~g#_jrG~my8md$Ag{o@pE6lfPpnsExprz6Q?)pqrP}>_ z&QIf(bmP1wW3X){{{hOexyZL#Ub9pE-N8X!207B7OVgOD+ukD&tua;_`D8lf^&a}( zP8`}}=_LP@&W?v-Z8@bePFgrk&-KF7RPOiH?LSImfIJ0#{Zfe0?QN6CVVUN=iMl>4 z7m>!JQ}RbVOC@xo-itHDhP{@;)=BCBJE_hDPj%S3tLJ&AI8|12=poM4YjI$kh_CuK zHJ0)Nv;z^lwXyhke*4q)+O6cNb|+PPCQ{CAAsJ_v^Vg>Nq-f6CKzse{zv6i*Km0Cn zu^itd@$v8qY)h$QO|0To*XC2|&|F@%REMSav3$N7gnKRFfcj8=xV)It?UHdW zjG*Gvxti(6(WJC|2ixY*G+vp`m^kXUk>0*8PVL_1d{M7(R*d+td5N5#vWSZ;$0j?0 zYH3TUWj3G9rIvHnDV%`yF~oZ;!OtRwYt!d4aM>c7GWNcvqo@hc5g2KxQN5@Gn{P}&Er?GOz0C%!n=5W`8`rbUiSba8En7NZaoXohM$cGH34`=>M-jk5l`pSJ000TfnrVGn=z-<-8OEja8xge|QGVpU-=r}qJPi6hN^kWz*{bOuxYx*A^j=AMH+`0^8?Kpcz+;YIdR$h;>Q@9!H zMVBt)2%hag_Lvb^+;iY+fCaN|PhfZnT}$ZSjl1lqH_Cz0OYL!;JenHUx^cU>A8i^s z&`zG#S3^$i?U1yMCBggI@BEk8ij_Grdj`j%rm^$07!{Uo)IQ{+?AR1y2RLx4MkoOf zrt-&Faee3eP_C;LTl3vn6nKKS>dNpj>3YmQkWvqA*{KZfq#o+%{U?+$+PmHC>CC11 zzKj{Xn0aDHILRBlsDmpN?}cOPxb)i`_S+o#+Z_78;TU){BZIrr8@BQ_R{X59Hcx+BMvXLOI?HG9=h+kvmsEB{{z7x<)gBF%>sFS!d*@_|YOY{-avFC! zC9^^Pyt&&>=He$3GBTzlH2G;a3Dpw5rVd1q;^mZcfkTkTAnWH9JpCe=%1 za;}f^Jb@YX6wm3XDN~=>nVix&w(jja*msW5XJb4)eG~8&ugY4i$aXcN`SnaVUF6|w zur!flow6A@I-lBOa|yK3^B9-Q&Qp1$&CVsMQa)u*IGCP z&SgQz0;2xR<7LxaeU9g|I4O@6(qx0ea;cS?Cmp7*x6S23uKdE;xilE2z53yNa;nNd zdSANL*TCL?(uusBkIkq8cEn}!(cHiwWuvxDF!HggG_m&a-8UJuU(e;5bX>0>25rwkI$#f zu>_V5mmYFgPR$@)!yGCVsn1jyrq(s%sHmBGYcu^W%(7^nu#g=-+QBPVRA2n7U&}AS zcfkspWXG`6E{;m#fhP1`LU0o?Y#aDuJ}i(wKB{~6q&Q&~ViKssX?|QXyXM8vNXM1; zuj&=BlxKB-W|hs;DRnfJ5j#@Zp!wu>>9fRt)9Kqy{SAFnx%O8wKgq+oMtl5HyToyA z-ks{=(hjg*hS^SOPWfGD>srj@n8IddwoXQAc5kWd)yWhxN9s1E34gkmB7dNIHw?O; zRC!_NYW{jo9S33rl<%5CnbpbU|DM7vb#zRN)_Y*Qyb9Vo1V0zMK;QTIiM%y)<(nNN ze?nL7Ih#vkOOIZAFaLl|3ND(nc37*vgZ-MVI;ZhK_e+p?S`WmolIQj9K3x-j)cyIT z(Rpi<=1;m$Juj=^6k@BT@|~SJz?3O_s+>~3V><2R<7w!g!Si2&iMu+NEzRaIto9uF z5kk55>vV4YK8Jt0doeyk{Ex6uo?VW?U46H%hCKc4{hwTNcL zv)KfT0~aKYUF)xI{9%~F(cKn-_8E+9J#ciw*o|40RtZ=IAwFHY5!t@u5HACH$$D z;EZ=0Hv<2jh_5nOZ`<`G>3op%&|vmwTai;r92I-yt#hOoZz3LNM5MNcx?ntjyO_UJ9As_o=iC2gaeDm zkiOM}#`A(TJNK4fVKfu`r_+9fE9pZf)2aVh?YC^X6J^J{iQ@>(Xv3{$cH*{JvbS$v zD*tKE$453SeK0~k-!TkMup=Q+-GP>48MDcPv8|QI-!qU}rXgH)hFztsSl?$9js6@+ znfy_7JTsCLL#+6`V;IMdh`nWDOYGSZl$zF)v$nQu`Nft^@8uOfFqDMrqv;Vjin^we zRQ0nbSWGInO*Zt|+7FXk7&k0E2$4VGXszjZJo0ARvEh`v>B7ir?i3`AprX$-65cCY z(A^C8Wh00;sTX0NdSWNLFy2|bgt^v4bsx$4fgK2)I*iUICQ|#Y2aWEyFnh-+?vESG zZypO7_nWgi?BW^fX-`TAJ8tY4PP1N<@A(o1tSrz#*96UK6R_)rXW1Qz`SuH2Umv z!(&Ade=eJ%{l^R%Rgd7Ddyp6h;*^!|#OFPu7_-2NE9xz7xZI!0Kg`rQFhm|1XGV1F zBvxQ68og;qJb^LO_Dgdp zeLI`CU9+$V%w?=aHqPQPg-h4|;gUtM_Ny6z_c)ZW7@Jpf`Qx+vufr0^I+H+*$2>xl z)HB&5nVJ={ShreSsJJ|JS?1GJb5jdt>`P0#dbi7`!WBKYf_z4M8Mv}HmyycE|Hpg4 zJ+^?BKAHm#%fnx~^7jS#gvc8kQ8tej>+-4fI+rxfaz};9V{tSOi?=z9idN^8{@%&H zfV^Y_r`+>tKYSgf_T{TDLAtW6a#M|s)G--oJGg+!6AM}MT(i?41J{-DucCQweog@c zBl0;HCyzr3Bj??em-;go-{S@JzNH!NIdu*whZS|yD1L*1#cPc`uB6AhwLp7q1AneB zpxH+Q#hY_!CDzrNaRzQ{|3A>q$j*{^T$B&tU0Vabx)%9mb37jPb&h|l?-6&Y+WG_r zC@T*sth_F#b!&Bw(Bbm>nP1S zcVH^P4Ww5lDmQlDSB%SKs&8ISb$Pu1Dz7d%@d`Tk)-{+s4E}mgoSc`&P~FC@{ww*X zg7~tVw8z(N6c|(4bZsR~#X|TGPj_|sW&1Cach*%LjaMtVs%%l!Rhp5?OHgaDH0y*E zPHhoyRXHHbWAfN&j%p!q?U<%1;!LCx)n9vxHew@pR-c!AG?_6gS#@9~fyWcMD=mC; zZvxGAJDqb=sPM-^l3vKS@+g&x^6Z=(r+MtXWc8V*Vd|4gl?&>q^;L(5Cr^)S58uh1A>$`AcbYrTiduGpHu^N9GoJa97Xbcrg#C#I(k=W{b_PO7WnXw%Vr_6%mRXzg566;5x<}#@r}Fj zh*2lCsP(X5@!UUkNg80G%Vo$t3M;N<|y&rz4d<>5F+_o3pA>z56FGcd z+_6c6xOUKiKBvc0v#UQzORcFHFnd6gI+vIm`GRegN}Df>{LQSgjSEH1eED57eCHwd zjJ@qIHlLULOyVYF1o3r47#G#`HS~x&kKJN9v&55f{{30pNdFcSPuoH_UMJWyEp|E| z`i|h;==lFUZ?t%$eNf{}fht-PIV%|`rH-Y_-Q^(aqJ|k%f0Mz>QQ~U; zk}XY=&E374ol0i~h?Vohh-`NMrvLAs&E}U`OfQm`pjQSb{<_Za1_@lA5J%YFc-DE% zXRkE$LFLi+D+9G{VirC2`tBtxTtADwGamq)nbJR??Z9a$Y zh-vDX$6@JN&rb%L#uQLTv(maB<*R+Fne8!szx(ZYFAvzEmBw*))4>!e;+ET!Kv4 z|86AlyL4T<6ykc($fWfqE-J@0uWu2y$tH>>%a;&q2JzK>L`zYk0Gw%LhLl#t)<@0{VQgYR&s?hC@Y9ij(A&ZWt?V+D|Ru9 z64RCU8?Ngh-Bz8$+TE8^UzT)c``^=9pzPmilQf`tI?el}<1}BaI30KS5%LmDNu%WQ zRN{7~vPPY?Py43eq<)2p12UMKByWt^`I*|+my@R;d`L7`!cuWun2LY9R4&R(yDc`2 zk5$Chk|vIM#A6>>M3`=8Wv=axppecF3$)V!J$ z0(GAwSE}3YV+bcEgs@&d#l5BHvN|z_blV(mo(?DTy?VbEFQTJ<2i|4pQN}Td`A*IA7YPsu%p(r>59C;)j%LTap>!1M?n{Il z6_sm>)U5HD$&J2OtT@%uiuNgk)desU|JuH6_aDVTr(qn{Yv1IU_UH3lsg@VOisj?z zpbWcL)KGdXx8jGN2hs1=NOh4-CZx12mh#HZGq>aZ2sf5SI!XV)xXlBw+vP&rA#NPm z6^N7AUc2{>C*bZ-EQ;Oa6S2VWus~78!`M;5k3kc4JL<>1w%3DGd&XjIK8P-w)q2k# zL6UN22|o_xUQa8A8b)(9Ybp~<^rXpJH=0My!OOy$qEK`78xQ8#j-f0r973I;6Pb9$ z9^=a)>eLd;D{m4jSE~nXhWZjZO=JI}PCO3rr|X)zoNE%y+3Mq2c*8=SEYqo87{<<9 zb*SIv29N9CrlUO7Bg;=@X`loD+_mBR?cF%GvnLmt45n(sems9=ONBChX~9f@5ziBnxeDY?dxA@hS+ ze#@7||IXphq3$Hd&EwNK5Bx30^Q`nPGeceFSkL~=uaTw9JN_JE=DpUPygnhsMUJCv zUJv7NG3Y1yQG$>v_ATwZ;j&6JQ^tZ>(SMBacSR?4-v zPsjdV9&vxDsO@<@a1@purI% zON;b%2P2)8HQF}3KG^D}2ioI&Ty0?xiO$TL--9GQVIdu5#3i+{ zn%~W5^_+ZC#gGbIZlbSdt%+3&aq=>8Zn3nUZu`Xv6Uzr_cA92XkC};WV+v{0tB~3c zOe9HLw%BH(|9W`?E*q#Q7C?-@K{I0mIhx;A`XF||hyo(Ii3=b$K-)eAg!C*RdbYH< zJPGb8Mp`P56<@QE1Se@#e-lfN8km1EpUKMmFCSr&FH}1ELJnhM3}j6x!dm@Vr@qgk zcUy6^K4()~n$0>ohd)0V$uz3B%O#hg`!l$#KC8HDh1kAY%fX!W3@c~Cs%8;Ef13F5 zqGrzKg^cfPqU;9c!wL&|s{7AQHSvdA5kvBeIbEla`-Vc!_gByBbKQ5lRm|KfpT!*$ z4>lTcOU-hfeY47nVOLl=A2zn-Gb(Riw#p3I*^qKI3PO4Dwc)Ty4q z)W_-_a7iabxvRs6GpMme`KuRcY{7hAw-hcZ|TGN>dU$_eKzY)51;W@IMs zmSo^qJA;jb(kbaB9V`y)>{FT<-%Dq6uXIwSZ)2q?%R6V_^&o?VuPgQ?H z3K2f39O@u#`9=N#`2>3Brm>@I8jHe}Q>&Fmif-@2!gP*$q|ixo+xB|@cpp@*>}4wL zmPuRxA}(y1GZej`W2>%wUEXq&3^N4rqF!2x`4ZB zuHHO_%Bxr4UM-7)5;1HZ7mLf`Sxl4XpT@n@Q~7zYypG!GPB}i6)zT0@b_$^2lNU8^IkRt&CzbbT#$G8@ ze9-AER*t4kvvBgC1#`OJY=$+RrR-z?2lq~4O5Fe&yba`hsR&+d)Bb){BtH#|mWGSQ zaq2AG+{4KZ4dild?Ty>`^X#d3VEY2pu{D*eYrLraata5eW5Z6y>v_-NW9j}pXktUj z95GNAEW@Vn6fX4}M%F@W_Ffr9a-bU*G?V+egB!k==g_RG^yE-4%^__m>OTdqxqj3b zY)R9%jp|+`(iXabnIKd%RmmV6quclS{VLbh4vXRac6) zP2_Y5aeJ>>%ggCaD{n6<*n1Iv(w@7TyB>`mPxr|qnRsmqO$$aay0cQDnqgYiSop@<5=YAQ^wcDd;QQw}8*W0sq zp_pA!lNg#T{;8iQZcXedzVA+CD@SVGkDx;1SqwG#lk*~sepS3RYn@7|&!H@<7*5#g zsszt1_3OZe&zbk?JM(38#AbWcj7hy*c=W)Vd~s#>l()dl-kt!XGe60j;9E_(w2l3k zU3CBh>S%8N<0Qtkb|X)|g3P?hbPVvK;ZtkUUc1sA&dP9x|7KUmf2mK)dMr~9wY%m(-*oIZ&Gvs*vweF#|Hs$!QmY)2o+xuaIhT|M zd5qOu$>Vi4t`(&LVzT+eHIou6bMSCcuj~x*+s7)ipSTjoEg9-}%)olT_>{r&teR(% z9FoC=_E~Ik%b_9J*tE;$_vTsrz9);aZt84O*H_nR*&I8N$$fQ484|Ox4ap+3Q1d{| zIVY6PVTZV?gPp|CFPVea(oBqT`kAI#yvw~yfmoBaJ2jJ&uEai%TAF(v+hV|I(rmPr zk->@D%`eidwTb~7%~+4UH8EA%>CQWKN|h}jrIbkwA)|DTfoVC)^Gn-4Xr*~=SM^sZ zhd;#2NYgGRX0Q1#Et`^W;6QT&U2YZ7+SR~}hyqUDQzpsQz)@xJbF^DOy4HYuOCu%S zOdKjQ;kL)b{u6~9zGoulxRG_)g=`&C$lscaZkkhwnKbOqMMk_lj8u7|dF4E1x6FzN zZ7NoPr-Am$SM^qo>d8nGuiojgNb~)3z=Wf`3BP8UI2mtXbmQv5l0IcdE3Sl5L8Zv%HuUm5Mc2FJjvABG%}BCdC$FDJ|Y{vr$}8BX#?k z==Z=#r&G$kT{Us{z4BbUjbi8+u^d^*3>8WKHn0f89p$?^7f~kD!1!f)%?B9h)h3GD zPsCpDu^96kQ*kuR=T3Qf%G{>X<%0U)G%wyP?p4()8S1ghV9)9dIxNnlQlNMl%1CvP zXJOa!EM?8a6_&?()-Uo4wAS|;l65_%%$Y%&^=>+in`f{}yy3Nr)eB}yWBcfIMwvU!*0ePy=Jq)2awSKyLL{zvsuN^3q)?(n4au76wod_oM9A|Sge5GwVw!(PvQ4#%1PZ$k-tybGilap4^zmkv5e3zX_Q%>Otv&-TDerFw@snZ zoHVY7sqgDz3Ze4!K9VnWt8{HivAk+Xt2${e9IrX5{oiRI_QK}6=?v8Eq(0NXN6G`M z=U}c}SD!&?L@4XlwBp@|4I6{k*@R3%WvZ_gMoeK z(%pU~bI(Lk+jTD8dib*F_%wD;oI%CKvv~eBls|KP=rU^t^Zb_L6Sn|E#8k{S_~LUS zh?Tuv_M7;n@S7o2$mjl$1~EE7oC0CWv^`0IyXXI`_e=?_5D?X zS??D{MXR~&mkt@@9!yO7O!iNW;*DW8>kiE$&pMi}dm_1~S?t+5fqdv7{_E2aN=^== z*$@64TpqytA3}ILFpy4xA@t}iPsPj0Wc_BLxo#hVT8xo5)18LBtgtT}#l{<>DC#;` zJt=`qJnYGieeR4tZpOrQ>INyZiHecVL_W1;oQpgZCH;8+D4bi}BjxiAWZq?09-j(i z`sWDzKlNfre_^ztDOGfqM)2L8+JVKajX{|hx3u|7x^WA<=!k&6@ zquhVw)*T298AgeF(-_gxi)yER*gZ9zCGQP>7(Rna zb$;fVcoNgk_a!mHgSHpJ%yJ>WOll@h!8AraNn~1^IZUhX$#?QMFTbk3z z=q0mNf%na7yL6;W+XOlnEmWt^-v6bx{iZ+uNB!~b_4xLB{O=wEzALk-7mzKzlCGZ9 z9L_$;!csf3k^#B&v(F@GqPRoqRBus~#oWQ#<+>=>qVsce&9eH<6TfwYx=T-HQE_S} zZk5$XJ0O>jd0CW^mK`R4!1~Y(-nnH{Ssc;SU$R(RDVx|kS!9`{OUGpqGbWdJskvCS z%H{H>Ji3&~VZ}PJTQ6kurDQ(av;+5-&i?18d$h_=XKejEnk7gV{+Lg<*9K;uFA&$n zsB@^in%fOLK2}Kk(k3iA8Fjs`eE%3Dn+KYd>sS82uSvWlX+n8YEhCKVI%6bnpXQ+h zjBJpH^uXQ%UYC^qiq_8>3_P!Hs`phFtMy!7SUvMA*a9UK0-{S78q$$XrzPq zQ;#DH>9IjtPug_k3Uy!|6Z0ygkk}3;HlH=HP+nN`>|%ABnm8z}U9ql-rS%HcnOlTu zMHZVi&wX{pM458Ml+eyULo?5t^NVPAPc!J3g`#yCvD>$bqv~F3^g5T)o>{c`DW2x) zK5LhwPWopnh>1<0>R-it`dUnD>s6fhSVf2HMe6chP4Vj@{2CPTB)5qDnm2FVp?PX~ z6aRJ_9aARh>LNOAGBSK!k^9L_WmAYB{pX2j*Tfy6=LEa>-OQ<%>}-#k7p z)eJM%lTog2v^+7IvsOv8nV-P6&`@R>m_2wZdcArKHbRGsSMWawwe62KI)0<`9K=gTf6vuDI`1*H$d-=CE{jSCW|BRK1JOD zD_Kw~jX-J0xAo;Sa7?AUbmp)nDQui8k8G~GU5_N=FTc&+*c1vEB(q<$(k^#WD1IS^ zt3mq-@d4iCsbfL&*BxKen6+K~w$h-DbJ8eiBi3EC_yiZkgjJsG#x(WaO8<`7mC6FK z7orp7anSx_NV+(61C`&>9^~`YR0Vs|`9Zf)NgCKHU++;nWiU0XU7-7YwjqUf`uU)D zNt`$o$>NQn6naK;Ylr$&_s^tYn7R+t!P(7h9+y&QvD`PBoMTa>U5}x6jyhtuP2qXv z05Y;iL!h*PX--C)??l_)xrq|^Vq86zOdWO5YLOmEb+zYQGQ+Xqu zci+OFNe7~E_%NNHm(Rs`Qk}L-=diexdJ}>)_Y#X@L#vt8s2fA6j2Rd%&ZX+9S#%gI zZ$P6+ehmo2Zi*K{SHfvBESOzx3pwtju7fT<^xbbEwrnV6PI80+r)HpGM7t)+v zKMkR)c^J>SxnmW%U96<$1n(Rqy=uva{9Q!tb?2+u7vW<4178+?}*bP7Lb>>+Hp+{wsur7yI+)99Whx6wlHv zDc8u4jq-cmpD+nvRSJt*5bh}>SzTq*6s-^E@;l=k9oUT3Da=!)c>4vxYly$#W>R zZ;rsD+A!WtbLF?h>Wo$Y`PdH6FnxE_EXZpVCmQ=P??WPvbDde;atSRDhH>riSe~4< zVcg3QCVY^GI(;lLGuM;c)`Rj@+~iHS=9(Vw_T6#3c|Dy|m!{+V+DpfKFiE|G>DJMX zc7f_7E*3wm%WxjccRYTres5bE@!7f-Ifnjp_uBbQ&;B>~A^&$Z(6^ue|F@1VS|v?* zO|wxkt=d)0;_#&$di2cVymUd0YC8Y^pbVDgU^@e|NYuGJP;=CX$PE6`xiQ}=gX@~p zZcr|(ex7#IVlf%5+V zx6kHXwEP1djLg`eeE+h1metE+p+mkt*K?`bHit*b`MZ|-Q{CAs87mDmFi{%Q*~s3R zMmp9|=D)X*(tjvFm1bgu^lLx)IuB}A7}c$iyyhlm?$p=v3%RpPTJ^FK-@!&AGQ@4& zBM#OwBk9s&^;R3{oo3*wG%l|T_}E^a0O{7Puf$~Sp&Zq`|I)JmalE_b#!$ zmHMTCbMl4y>9N$?RY1L!2K@KtGe};7W^I+z(%wJ5w)z7!BQ0*Aoxk?+iS^|tkj~o> zYhr%9_V8&%44404)BZxX9Vz7QT@$0{6w~HbAr~}Du3e&-4}TUZ2O-bGP!o-BXznV# z81l%(cLl5PDPf|k_V+HWiy3!cdeU64bwUyCt+dmxSB!=H63sv7)8pDI{>d+5sDBZ0 zy4|J+R^eTGE%rI-MD$PO-{aZTdbCR1h9bu8ET(z))ojdLO|vaU*xxSXOI$I>`m3+( zyaC5wbPX_8eFoQzIO_H6)XT&yy$+*ln^-YUJ_u=C7ncJ3I~Z6QqxrP12}Z>mNj+RZ z>JVksR*CIUOC3_r6WFaj35%38WuP+f>7J$6Hiz%yv$(c0leJGXsro^z+vAyRIh4iF zEm<_Q%4BMPeV^w3H_|iJGnT>c71YO3KMO}O80IEqQe~{zZ2dBsRY%um4>L&{oXNh5 z;%{|JXPT?-OaI-ZJ%Xuk8aw5)?I*9oTN5SQ*mN{iPX8eo%*Or*wWvm;RK8cDv@T_rw?Y=XnaRJ|@#rb5K)LG0KLe5HL)h zn@M6`l}u%QW(qYm!?jqSOc`Hs2K4?4o|uN&oOCSoSUk&!iTq3*2+C1*ZY(aBGGN;( ztGD*2bh`eY!8-B4j%`#nZFf31^*HV1fwh>H!VvioO6Y#d%l~Wlhi1d_NA%mK+Y#Gq zLIZh$e^u9+_AK3%cdHi_!j75#?AaTsKI558*cQpm_8~Nr2e+nSDv43EbiL?Dsblh} zdd%SVs&HymoJ#umQ0~T0qvyvNB$b=V?NZZ;*b=~~U;KGLKY*EaJ+T}f!SkNno zEORfyQhliZ!!#_^El_#!Yzi;M(BSoKI_EFs)UOe&oII1_wUK1b660uBG+Tnh#nzo6 zA9Xn9gM!s35z3d2(Nww}!1tMYj5lI9p zoq)&sek2>LU|S!o%PL>hwzv2a;w&VJ)s;IM7CZ9SmMBV<@4?79@wBYt%?Yc~x?Xdp zQ)_uf)n6Ov<3ezxEjI5a)82U^RUdlLJHwZH2Q{Z&GM*c&?P(P~iM307X`bnX`!C9M zwH$+kG*rnoqltYc&HGLrfS=XCI$!JD&bElKR6ZvEh4nEUMU3=72rX!}@U5e1C^t-AZDE>)u&A0a0eewbZgC;qgCk8 zYm7U7F z%)z)j=s7kYkITr>g!J=biBCI99bCzy-uEeepd+&$E@H<}9UE6d82XR8z2hT!xnl~a z3&$!mI0nDbvk2`s8eh#Njy&|@+G97oDox{Kqi}w7a3?8c3jMvpXgqc*ji&_C<7%M# zyyR~=6vCl{&XiOC*W2p8%1PKWN5{l>PNzvtz0bL3SEyoslD9ckULT~F zwisz!v54(&S7BDFh;{L+I2ll+UeI4~>9C$Pqt;^@ZDL&WA}UxFacFcA@o%IZM;Z9C zU31Jzg$(~BuBnTWElHYbt}T%EF;Z=bfvNg4V4$*5(tW?KC}5_20SB(ji>l78IC&gm zHA`%%8RCCv*}vs!aK0)2m0J;e537eDCZ8WVYS%v5$e)4Q@y8ah;kmS(W~o0cP;Y?r zUj=F9oXhGCXsX9uu8;zG43Zxjxhf4A+CtN4kmFC z*5UDF4Y@;$SyE*^b+cD<_q>Uml||gyX{75$^%Kl2lFzS*mAh84(6ow;!K*kIzKSKT zMPzT&ocD+I9Pe9*|E3Lu*4<3MGwZceTSe!U>$q@i4JTYT;=XSkgTAa)xA0nZPp!oy z-JGgiSB7;VJNBu!K-ziFD*0`twIk($i1#RD+8Pr+o5ZU1G>P$GWMO;hcX>5dRWWhO zTAq!+jqI~2;Jz|vi+W_U=R+3ve$1ib$Xsrx{XguzbyyX6-|lPY*qx(ecX#l?LPf{OXvfChh)1B3Ja^0M{f^52x@VBbjRQme~E2ALVQkYqOInCDz5z z&?J7%PtwenNIQ8As>dYq@n8}$Iy3d?l*DkKBnH<^;4fqOT(My z+9K{oC-ue3t9tA}G)tB1dRj-i?SLrxCd8V%6wSUQWw@F~@k`xk))TGYC;43ETj*o0 zEaVOK6x2{(!A*HxkH^X<63g7y%5{0hQ>A+>_ml~{Dlf3SV6*s9I7igl^H?ln0?!uyU3~b)6gZ zxtYpkx~eZ>wg+`Gv}ZjV#*s!rj2gLsi(6NSZ4}78KCWCCrVh>*?hG3+kFUYrbPW!t zC+aAetB(0%%0nf2aJQU4jpPaFJH&&{+vnrD-X8yQ&QvHeN4(uRxL7$+!(t|}FWflr z)|nFl0UZ3zm$)S%`1c9cJm^8OZgXkh$dRK{y&2!kmsZlfB8tu@-b&n~=bpS85kO;$ z1$d`9K__>9%+(xG*PUM$IB;Th5Urnxrxg)IkH{dl?=@yXuYpv0HHh8Xm-h}B$>R9_ zn#Z~k@cVgbs4W;Q9kR4>TeiqQ`dj;MR2^)|iO2bT?BAQMx2*X*Vh%Z5q|bFTrEinw z;xSv|B28|si9a#Rp~^0JFf#(bQ9fc_E6;YwMm9VzUk z8Fsh>{tLySo^8+Xk3v~^+>B!-2dVGXQvOjBt{%3eMz(TIZkBxSV8-cTLoiumOy%`P z{FOb1;@gLEpxSi#y)7s;ZW7+*Yv^=^6o8|l9c{XqQ|0MsrneE#xnd6v_*v8DggN~lnqxR}410Euqx=IG z9^AEHROV2A>GC@U%bxI{d{c39<&!n`rL>hZb?hQ|wZ@kAh7RohZ6fWS*wG@zid}Jm zBv&wF#wc}S)S8Q>r7O8QzqJ^spZnW5I^K3rR!;o5IWBx^AZA>S@^?m-9D6XAr5Vaz z&VI=2b+1|M_!gtLx2ZeuJa4WaqQBR6_2Hey-g*zswZr>c@B9C@-uL(O_rK@!mpLtk zI16#+m78iTJ?oB`R@r|g;A|UD#LWZ@G{e5TpUb(WNmLk~NW)J__-&Dfm7GXj`35@{ zB=KQUGUv26-qI+Ab>C7jUa*$3xtcHaef{3%in+Rm#_iWI;ZZKb6LRU)U=887*3jye zW|Mi!cePBR+O|}AHP=#Ivs&IMaa3!GnXmnNJNq?!7?i?wyI1;qyq;;b^9a%2dQfaW z7PfihJjf$>R~`;aHW70q597~yd_T5HOzJ!a@5twsv2scBZJu=B#0~A$w_eU+=cP4F zk>(a9u3>1Gd?Kv#@tms1_{VBChHNCJc`EbU;GZ&Ph>^dIBr8J1B7?kxp|GNgR;M;AYw@Jc!3#EaI8Jq_9lvw>b4?8EJk! zAfNYF|77-Bimf$CeB*!wJ|~H>k(tb)D{*{3oWQZu(QF=_!25QI6t-JN16_95K5>_g zG#6`+@m9VXzc=#g_LIgbe?g@u>KAJuw%1&BvdvFrslT#ZkJK&pLbscy9tO`i+@wpN z&55VfHl6wWQ>oT7h58-SNV%EJj>H7A;*zL-K=b_S1X{~8UR!#t`Pew>A4WcJC-~>jKz@3KF+9+l7N+Wc z6}xMIK`_R5y=Z%S9t&={(Y(Noo35Tz4GtitZ4i!Wf%GdI#`|Ystk!Kf)DPii%^)hJ zd8(t#nO{l;lDpHN^46hX96)HKH(!r?&?Z##biVwWL4I_t6i7!?H`;}H$q(+t$h}UC zZfi<%&`gSn6T3Uui7pd@_%dd)x|womxOfQb6XY!#ZbEe&*Vc`Te^OW;CYBUlTH{@X7nuV zKe_O&(3V|+Q#p3gjz88;!|t&!R?+s{E@#61FY{SD-Ck$W*|bS_AiS74zNbe^Cm&DV z@7lXJv0%~fV*T%&K0(5w@nhj~L6n zWa+!^|Hz6>p|||I(e2FXa9|34&nL3O)`C`lO`ua<@lIcj!^wX#SK{XLDO_2)-{&#E z%zTQB=ugqfCLAeaMr9utMoLRRzewkRuhJCvTi~_FRIfz~YK^p{xj{e1CiJ3gjeZzy zo5`ZIx%^g6oCAxOT?25 zx_yV6STSwLOj?S0U=(4^S9wHwmY>0B&pCXZ=gr4!u3X#X!n2@J9PTojkGIA#?#f_w z8??r|?GR?)8cA@lbnPl;6rDSs%@yn@b=!)OGi!)#@`IPLw^s@2B?LMx0Z4;+?3@z^dFql== zklx3;v;M3x!EfEz-rf_xdh(Lz*#AA#{+o2Uzh}+=J!j2-*Yk3qdm8l|5;>wy*X_S6 z<6@G?U-A(i5Jw=-KaR2$q-WhoVc&)%#^$F|-Y1m@%0l~Sk2};bfrBrl9c9K-^>_kX z+Gw8}p3L1fskF{WAy4`E@eeX6)jb&x&m`KFNWtMkqBxMryy}|5f{Dqz8=OQ9^#a81 z)eI|5_p|o&(O=W3UTg#FEwU)mA&2g_)pMKvoCY^Cunf;9qg??dTNGeabu+IT70`TW z0ehnI8P_zA6X){zc08ZYKQ^&ED-X=_S$b3RV6Ot&yvrl%=34HK%VMK+(-L>G2&86>y>z~H{$TXTJrE0gAPC&7Ag3qV&NONml&7p4cHw4cRZ>&(fudc~-IV4`z;54Go zq!994U1yq;|M49C?2*BQFB#a0(>nN3ChKm<`*|sourrz5f2p0nw8_pt)X&;~EyZ4C z(M7xerMJ=lpQH6F0Z! zVOOt!0fqS-T~Q$a!r)f5}zpml?r+l6+)#K74m#!=G zX`Y!+_bCPRh$_H0BAZFx{ex}`}atH?WftU zP`-|M`8)c&N@V=WILdv^=F~5%l{wc;Ix>rc%Dg$X$l>Y2Y|Z%D6#16L&(=BW6_ejN zKwgBrEDGvo^I&!kcXTExc~-uKKlFJAodcBL8=-Etb-}q9Hp-%6@zoStvzow0xv_VSHiIGxIwOUYEZqudJbqLd#| zxxUoe6M{*%ApUwEOs%{?zWouz!!w#4PlwXzvp+!|A?#_ffC+2G1gpD{nbOtwHk^rh z4Rc&3drHqAghh!t@^O#lz>fi(j_8AFv)S0cyGhxIX?Qsqsq5E-lWvBbnlcnOw?V9m zY{NQxL&p0!)BSp1oV1re+s2Hu=S>NFWXk6C;bcE9k8Am8&bj*GW@d~-=5$6V7iBhb z7PICwx0Qj{Cc9#g}ryT%Oj^ljd-*-%O6qv1Z@` zH)?F3&XrqJXk29yML#*=mS@4sGajtg{i#$;46KpE@oPGoy=J2sdew>(>-$qg{e)TH zY#E7s7F8_xKEi^(v{%1+PQ0$wW7W+uk=EB|kXzT1>hG;M=%K9KsNM`I;zlp~d6;dp zRBm#f{suVF;kT&_jvGxzv?JHEs=;REM<{AJ0u>Z?!RepEwAEX(Ms&U@xD6 zJuc;k$W!rJtg=b$e>9Wb9lNu#&TtOokEg(E1oK~xSD(W)zGSO6Y?TpJa%U0x(ujfe zXM&%)19aYaBQJ#4`RU|{A8@zIT&fOVMEp}v_Uy4|oo4lZJ0^0;T-~%gN3+v-2FuEi zCFA^XnhhL7+6XgJikgw?V8^JTj*KtYmPSYZ;K-WGG(2B}qF#2|6U`^~<{T!-OWU`n z4L4`aqW%DXO7^p6XPcQES#QNd*C{;cEB0^XG-~#k#*&7^DP!7=ZlyyE-WHGC>+)&` zv!`63z4ZgWI=|&hqgRagzRS<57kR6_Ot)9<4JMkLG5F$KAM02n3Uj(+*Q^^2-FskI z*p}AMX3)wp6u-hy>c19Kc#Q-3D_s7|=h(n7om>8%9sl0z|NrPUFmzG`O~-g~y|^cb z9ZjiXIFDl;X0Y=5Ozc*=^ZJ_lOGepamt(_JmpODhHpvUZXdpuu;%-@k@Q_Rn)|bj>0DzX znd7YKdw3+x^Jeg+s`xhzhtXu+2zK=ELuiv;7#%9d!+x*md8#Y1K9(#$GyzxjX}@Ua z&h{VUxwCRG_I-zNeau8$V*~{MQUNny3?}r-gDU zuf@E=AkqaNc<}D|~aY-mLtUcJhvnYdPdD&#z{(agI6co4gvYD!Cl+ z%uzS6{H(UC8GAUF>n7@vecX z<>K@@hb{8(ex94dV6SZM2g$23ER&kjvkfX|lM|iA?~AkWovVJ`2AP!Un9bW5>7@PA zl#`a$UOkx;n(Mx{NXCC;Hs|`RRsUHg4>d2|B9oF%;=5JP;6{eLEaTGoygZe?HmMZI zyU<1XzR+3fH8WN}nR%A_+*0{2M#ODDY3DkJoN1Fxe{s|5luDuM1o^A|lBnt+-mG{h7v_nMr(|p+1eisq|TqLQ{EJ*2~8-{bUNZCDpa@B!zzZ+WC6AKkA|#mX@Gg zjrhdUM~lnP@Jn_QkC*5?XP!)Tn?!csvyfQ}BiNkbE5^wJuIBoX zx=($q^8?h!yAW&RU`m(;bFp&>;b#NcHzkxhCxYlzMH%x1b$^9uF6gq5Vg8})&`$i1 zNDKA{Org~zQw**AnL5vnI==S2T|AaAkB9N#^BA5Mv7^M!tK8eymN)%7vE{UlvN;o# zm-Ha?@kH*gbEm)ZYu}$5a^ZXzie8z($lGhqMQ*R1~vn&ZraisM|e`fb|tb~n;CO+rT%udEo1m>oo4@&Q^_|P!NR(usC{iTNw-H(M%@X$y3SCq+Za~m4dd7C z@K^XaqH`y6Oc|~nZS82_J(#3n(>QNq#f@{5x#4Puou4`NvE$DdeJGV;NE1`#r-H{4 zTWHMW!m-rcXsI)<1+zkj@{|6QbhqcQm}V9Ier3?!1Dxq|g(`jP;djcLD=BU~nkwH( zd37#d6$ft73_QEe!_Ys3g@u;1Xkp8hK_hv$a|QvWd$M5JV}rL#o9qdlzL~bE4~VS# zCm!BEDYxU3y2OhZ_Om+9+RwfBcFQko@cL{WeirY@bcZ>t4fAKjOGj+XCvk0zE#o{V zus*i~S4#KiY@)l^j{2S0w~${ZhI8hf3)k~zvO-LZ|EihNvYi{fLl)Ar`;7mx+x)Nk z+5Wzr|Fg8$|NMLhnieyxyy7+69Y6E9&TS_2c}MZiFDW~uq+$5Bl7{_zmNxvnyo_Py zr80(&bAK|e^JfMGS2MKhU(~SdhEj&vwO`P|>Ka!jeZpY&Lmpkf#s;S+d~WuPMZXj? z4B7vdbdNvTo_|PL`uF6YILA`kTU5XNjE@E9IJoEvm4?6N=+|3RTXTl_m(H?t?qSXh zI7~m!d~B==w4XhT?ct})Jz7Xe$rEfF{EVa_g^XKK2G{uCvj^t(>S{zgH5fnX{LSnw1yc>%+2PN_TyetGU;1B zooCXlBZ_D7Wv_Bi>(hxc73+3jhWyCl7i^U$wPq$)+|qd$l0}lVU01SneHqMDuC2dj z!0>I_!LQDuWy37G6=qTWp*}vL{FO3k5yLfqT4YkVTOJC{)FbLCb9Gs4TX|iJ7Zb;! z{%WR_kWM^4hw;Z&Gfdg9a!$Eq43yV(n>YlWRx?vOd?R^!D=9mc?7>hYCk zO>O1yI;V5%sdVREX^gogZTeEG_N0ll`kA2lRQan{@dPwi|L!tz6y!@?`c59~h-Btj zB~k0B7y_CxD~=SaVuI$q*hH>PPr_drz>;;7ajl`b)FcVJ{qnjTOlIh2&5`CwjL1qN zXlxSE?UNYfCEv@qB&z89r}Rl8ylJXBk`wVCE$?h)?emRv);OQQR+o6*xT@#)i?UAg zxgOaV&uabG{(C%MPRFyoxOxqg?f)=G>{c;4)-H{wx109*7nSLXjHAqD^&E7LD1uG<|iUe{Z31u90fXSH}Br=p25jK+QT>GwB+ zt;bziGC>^#H-or;C5UDnomn;1l{LL)<8Wg(Rn^V8@05?`-9W03@MXytS1##%{IssG z_9=nf&>nu(Tz_?!>N;bkr+IcbmfhWapxe(ddmwT&%C^K*&(N^x%m=Hj`hZpwF znyEJ|t_E11~(j_hk4NK_9CD%ecLeq1PqKc;g?oUdg~L(~UiN2h5$ za5Ni9d6!}GJ5Qo|ZXg?zdvSGdSK9aY=TNZ#)n|KcM?;zV{Ws00E-PKlfBi81C8A%s6TNgOZg&h+!M2omG%+#&T8WEjz*^+=B2pUS#ZX5_pQ zyZ3WL8s9s~p7blk&g@HBmyt|*>B0`_^H&bfU|_Z*^QV}zu#|)HX>kU1ckO17@fTbT zzB0E>QA5LVU)W#aHPPp{(xBQ~gZcBn7zDpvD+B#kd#oK!WlZRESZAVQ@1bN_IsHztit zSW#yv)xw7|IBz2BqSRsCeHd@Q4CUtU>h3n{jcb1sqE?xcd0+zXorm$Ju%$ZBOR2x0 zgM6R8acI&Wvqi0$Zr29${C-q#K9E!Td%pJGWWL|=;73A#Zh23lU(KEzF=$GcSM_;S z*oMU=o3O{LvpT*T$j@ZT_hti;B@WlS1E_SeCzs>eQ`5OOB}Qc7^!q5L%d<4Er#Uqq z87tc%Zpz#7OjaJs_{mTvIy9nK)3*nIG%!S4&(u=Ubw zgJx~3Vti1X(z8Vjo0}CQ^-dDEFD3B&b{d`;>d!&#aiE)wAeTay2^xl_k^dca|q~c9AUnb@}w= zX_PLi+*+pk%gSc5t4oG*Y3fOsC#G0>F4I4W-;gYgcz~F;opTx6DF?^SIoK#)W_~xD zuOH?A{X>4%yJ9*RXHj4OPWP1;!Yzw3=f#kylCAf>OiJnJpA@Qnea8&qQq$=r#zmI+ z70H?ve}5fEXU+J|DV&hw)~F;d<*KtlbJt+gM1mfOTku+%>tpTZ1LR9Nr~Q2&ecmIH zh^k520V|g{A(iBfDTD>Y^LBkallI23=cHI$`q<=2EZs?T7<;CLR& zFVlX#x|ijXnXms}S~QNDsbXJ=4eJpi7T4=o4m}nxw!HFL_N$n;A(kd2o;|ej1t|f1+*jjO~m+(MSlc9t95Ppm0rhgn4Hir}PBao6N zf#Mwbb8$qV`nf{bv^5A%-yj}*b;F>DkGgGxXm9Sx@|#}Dp8F8lJB+W=QWv%s>$J2y zt0fn4_WdkYRt}W^#EF;RTp8%>hkdCT{G8^@o<2bw_w(Y_aDUcxbtl)xkJqKd&N2+= zT*ukCs;8^R=y00U4t_d1*UXPI%Y!&LZwM3a&tSVey4Bp2TdO{sfd#Jg7&M1E zxBYPGF(3O!mbA+AAhwkwnL++oo|{CgO3t*&Gv}1?2c}fxybG>F z1MsaOojzj%txH;B>g5j=`@?W)6waaB{)|tXu)-0Mkn|_0aa%}IRYmosNqsKNcb-|+J5 z&BX9N{N`MSjEn;Yk7MWXSi85E_gk{&<2;sJ^J8S+x%Anj+kZNh0O{yo&ByV&uqWNz zeK}vonb;rZ{F-VG12wN6hQb$y>Zmqi*kv2CT=cnxk%a0zVXmLgpj{~QBS!tdHdp@A zaSXjTkNwy6Ikie9|K(78M%b`vxiJ;HR>{dc?uMzxo( z^Ia;_o2GGJ8S(5vX-plwl(q?r2)Pj^Hi-HhQy1~*Y8WScmN5Q%2F_NYtp66q8vX72 zpuc+$&HebLh%?pqx-j#`0w$%0vZAYW$>J$|8IVBHH%Y8+tX|p1ahNqvRToMs2aHqc zr+H_mcmxvS5eDv`W0gT&ny?qENhqI?Ae_`6HgB zrs`VilZ@L2c@JNx5A~?BVOQ1F;G4wUxFp^>*a|t~Uvy-;!dK zvH!rs>v0Bihon&NMG99*qt7`#ZaI1!#WU!6GMzorI!}maRa=k47IiVaIhy*}QrJ+yB(%%F$nRFiX>Pp^wJrpshs(R^E8-rC(6yq0deeMT0; zq<^v@gOg{oFtyGkFe8&G$r;pIo6V#8StP$pXYd{M$yUzfYp--#-O8kr7zsm1rIU3c zjb4W``SfQRq1vx^_)GrTO1XUU%8*9Ajv{ZfIMF2=vsB#|&DT}N>RV`>MAo zW+q>?RRX;_OJkLe>7OJ$^@?VzqUu~&pUBac@)>J(^&FxuV)qnI-chgHZgHeWs%Jpn z*;?xosq=?2SK6tE{+h`3@zP=C6*an=!l8l5V&Nz8>U$DCdLEZf)b$iF}-%msb6+ZNXH_nq%V*-KE>6~y4{^*$iszg3)>gH3-LY{r)O~FIC63%y z@>tG`qxj1>9%qS<>?B^RsdxY#<9T&SJ$0wWk!=u<%a&+N)-A;$B8m*Rr8IlJN;}e3 zEL*&i8tN0cGJF+PPp;(Wh$u=fjbcqmG&xOUiCVToSr_%BO4n^~q)sx^7*>sr!J^%A z7M5PD%)2^ke~)Hivsg|>Y99R*L%lm<8*GjyYkL&C->#tE5cPw(>3(T$olz`~NX@?c z?BZDTE|wMdVi>O3{F+w`1(l*Xv3wbqrM>pcTTbXNv7GN8gKJgIt(OA`8WAdPSCDdh zf$CEY<=jB&po!uZgsLBJdkFDfUc4PDpXy>yM#?h~sLLC63{qEpI2XPJXrCRx9aCRc ztaD-G&_K!?2H}gde9;_j^uSMN7B@QA52xDpK(-o$Qr9P#W!=MBm#Etq5X`<$ z!JPXRLhsVy*q2|-mhKUpJQ_}Tmb#_W7U1A2Z-I2!!M}tPvsBlg8Onl@Zd8)4)nrVF z*m^#E{_aPX<49%Dt$BZ@Kfg_#Pe*GHdZ??_e6#_M(o)aq`-WRvP%(D~Z!$E0zH*Qz z9zmBOo`jW~NBM#Pp6{}z*;Y4JZ!u%$S24iGTCm``6%K1mxLrhfd0R)8e{*5i`~YGf zsgr3(hN=CRFbGoB{3HFkN4NtG#@6!-e?9E~l%!TE;cT;FLarN#)zqY@GDSBy*~oj%CrY zftZw=$)?xFyl-nmr3t>2y1W1%A75Jfy3u#IE&e0K?M-RQqq}`EC|#WMch(w=Yg1_8 zHMlY#7u9A{>O6i8n}fqPd-XZYWtmLlw5byTX`^VHvw&*d)rqXf*m~9iI^GOmL7)xS zd-XSHvhEtz<1bRr-D)UKM--|Y}^O#{hojdb& zz7tcfbKj2GRWhd2mtjO-9LvH2brQ<^JlT0T*2A4x`aFp0i(D9fXWsv#neytJNOkv3 z<=ssSHte(@_w{I+dJbayM-z6oGvQ+O9sjz%xA`M^W34P^{y4p-4##8fC`x~```6e1 z9rMNC*ZKF{`tN=XG>|q|vv@i|*HftSGo3oq)7W?~g!`ITceyTR;lW@E8$@ak6v_D` zQIvYTLjAC-@S7CH=NCa->bgjsH=6A}MUdmaiftc4c=|YmDGicHQQyJLFujki*3NfI zGF8Kq`8+Iz{i`)=nxqnFq@2{#G|mhWbKg6a2FH@+V@sq;bOKF|F5#oYGR>GvwPTNG ztNAkC$E08rp&ZTrB!06Lul9+2eM=L$F-N@qKNA^SB9Y@^@w9lBfSY!uA(mouO3!=Y zFRiYha@_V}FR4HGnvpW;J)`MAJdTYOl~0R_#q(qmH=8D~{9+<^hpCsL$zsNJi00vp zbShktW>zGI-AhyWV|q~ZeD9jct!Daud1*&ErE$+HgC&pD zU3)%*t$Q_t-p-_jbZE!r>2y7zjDASAwCz|uhFMgWN7nYFa{1w6≫yd$;CKN3jl{ zWl~HZzx$9u-}WgClb_S1RvJH)1DbE3&-cxwtZ5c*hsAiEnoY$_^)!f`JMef8*V^T9 zR{dh#3bMGNoK;XS@pli42~awhz2dvxEt*Y>tr--J&m>;niD@U(Xfa=W)H7mD^-SV; zK^z?_B=X^g^7(7x+0jbpm_&Il+!IMTk-+*=iM(2#K(sg*t2Ad?iuwArP_L29M0)Bn zM{6eWNZI;`+DUXfrJmsw`3M%u8xWaH+9mP0#MwIcIFap^$_-viVwSuF#>yUg6p;>F zGnv(=)fam*k*)e%V(BEx^i}>)&(#R&ysabS#g~f5CtdUE2K8}mjN|q>&89chXSGD# zvlG<))i;hRNA&nQD|4pDIaGW7q553Gele;_tIO6@90AR)6{Tao8ZPeDhA4if#!yB7 z6(6s@FnIx7e~Tu5$P%t^Sj8(BZyf)OqKrHRTSu)T>`*kNyNTg-CyIOW0pvZ2VX5ZX zj{TzXn-k49$0$CHizeZZRYV+%Qyx5?j+0_&aY2k(*I3r;wcTiaEVgOl&7O;<_W=1G zOyqsl>$Q?P7(ydr`1&OVm#6BOeG$Wwozh&bV%eOqgq1~Cuwc&$f~u^f$^~&|H^uT? zm-lg5L55d;GCp(&0l`vPUzNkw0PGz4%@{ga*Zf z8G9=Tqm91Y=@`t&M++J6T?tvzJ5Z-^-ux;XX{a_2=A`FuFK}YX9Ly zNKhd4R|heuRWQ-R0vXjMnBP}L=-d&`)vaM<$$x63v#gC~+}*_k@M#sn&pkfW{T!}y z#6kk1R#3zzk^wU!d2J9##X&)sU-KaMp!C>{3rMaeX2MDfPP`gK-Rq;(VceH7+k3L% zVhl}gn6o8(G6#~wDb`wSR0nZXL)HIPb^*^PJJ6=u6y}whMBk91TxdCpjZf6!wyqCp z4`x%m;|yX#>`Br7Kdp_UvV1d1Ne*Dh8b@`V%w^lj2&OEH;FyO4UANdXJJW_WHnx;( zK9$|cQwZEVgYPSBso!M|))8iye6{29EIZCkG-KG(Bs<<$r2a_TCpW9`gDQ*R>L zM36daC8Y+WGU`(l$?_*0nIkXjw>H!}){qLve(rj-xGypLEvZ|_lwHyF3E4A+alxb5 zdVex2FAe2NIqmo>ijQkDoR@cIvOaA9NzcSlm}7!r>Lg0kcj4WtcDzvDtMn;f^<}$I ze9BxBourw%dSfSkV6Pxwc75pFs#B?huV_pxx%1V*`Z;OEN@eA(j3uN#B#{wtl=Vo&s` zJ)H{D55`pfB+tS(LeI#n z_0TK)Tiv7A@JkdNzR3NgoA~5jq)y~1Za^_I2cAjwfT)Gcn53LTrk@)Hb@rq2l*h`g5+q6KTwajR&fC*%;$eqY3?Wr=tg0_Rj#4Tq3ui5jdbn$)aY8z^AM*nJ~ zr0I`VPO&e0mTV=!PG^(2?wsJ6K#TGK|wuo!e z)vAn4q_|BAX@gR!TP~Fvds3)yBZXfVDa(?rj@w_VDKRQ2xeQ`d*DVM&v}(u%UL?Pmg*aYsGI(-Gv#go=SKnu_ zwsAVKlQTK8Nq&Mu>V?(rdEnekEEi>Pc3wIiTV@gvlZ~B?GE^lpDR`g8W1lPvt0^bd zS==t|{|`uSttrmgq?(CT6+3_Q5P40di#|Q8JUhu^r>7{-l|c!YOg>)D2IbF6tj+r8 zTzkwpM<1)_tGYUFe`Zlb{M))Sa;UZ`3nlp|*&~zheKcd2PN(`3^;sNAV_kNV7_#x; zB)*er61x!ZNj}!<(m+3z(RpS@5{A!{`C2iVAro|7IG4->eJy5OqW0v;bkz)-E z@nm}Xq$;ptCPFKM!8lXx!1@#0oG_bd@3VN*Qmb>b;96RsXzxjt=VHijQNLO#(wU$3cZS+PKSq@G@HOh0<;H zaaU=^ojZ?Ju8$ul&)0JUJi2_|pOW5wM6} z9b9N*7D%71;q+e{z{&;woJv~6hBWQVO+$E4TJO&@y;!_&0behMa^sjd216H9OK!>)k!9(R6ok-i>f$Y;RXhvfXx|9x})Y1?d*9qmzO?hk6 ze3h}YrO(rOVt>rVro2CIO8fFn+FO+i?ig&d;;(Ox@`;D=%F~3|2fQ%bH;ue(2ZpCR zlNKPADX}pP?&i!0_%CvCcq){N1@6PA6xC+N&d>An%h>Pul zxDYZ7XU8`@-(TGD!SWJ@DWi)R*4^`&rZ;XAw$@?Kx{Tg?Pj-D|5M!r(zKaPrubPw5 zqaW6q!zNogt^|k9ql_94hKbz2#ms@LWbn zu~h_4-i2viBD?R|5ZZfza*s)r9ub0>T`C#g7n$j;>_H6+((X*6$0jGnxO;OUQ@v^? zo?I(3m+E@#G8WsY`=&3Ce(#K#JPy6mov?|TPK|<5JTudosD39Zm>BWPssNhm@8#`B zfuuSGlik{duwTBAwdXG^1Ku-c*kAg4`V50};@zIfGpJm(s;Zdla4a{9r3B10u5ZA|H=CrTNu=<0|Qq%Q+(Yt+PVzF zt)T^52aIFTTr>3;_Mo;{2>xAy==AG6dd?m|<#z)Kde@)8H{*D&?g_7RR(!53X4w|? zZ+x|)ky8|*KP)l)ReiQK?5JHnp6pw{Q)n>epYIbJtgShq{le9YHcXbEV|Fk6kGc4N%ygFmUDO9IuZ)Wrfu=Jk zWh(vH((GTC{~wq8@BX*=E_sMQ45aE&XNF(d{J-7(`|o~y{=WVHn9)DJN~iq$RE~d8 zPnDsvIrq|N*DRHY1Tp1zFXO?YrJN|bha!(GdYb!>5)4(rDFXyjh4&ONEn;S z+j;U9d=_uD|35O?$zpXS>pdx%8yB=Q?JgE&$HjauKOXxh+UtfTQY=7vs=Sh}Z zRvPVi`By*xNA~Mk$qb^ZWzxzhgULVA$$6vB?`6t!>ErwQ_j~^g*6-E+KR1I;>y#Ng zn@)H6RgZ{G)$M@#88qWw)z?2v%b@;xb&$!UQ8`#FD64d8ZW4pw_f+P+NydJPW=eHr zIZsLAa*$^BMd_3{nal-!f44kk{%2*7I5M3#4YTNfOWhN0*}PBAAZ=d;6@4@KQ$AL= z#VPpwo=AM(m6UmyNRf?+ly9h>VFP9RAIcLTFTjYk+Wj|6WOe@(E{~ADT`__B%3IYs zt$dYur~^+YvP?XHhov;5mQKX9AenEU)FW$`NE4l5&W=gMCO3g;Gc|AO9PsNqU1qeH zY-JMID-HI-F!8GTs>4mb+a-09v8$SlyKeK~%VZku(S1|LR}bm>b^a9FUpjP}r_L}L ziT})Wy&sau;abX;StW96L>%W=#1R*&*VTLV&`BR%_A`OH&tvhfqBE0e95p=TK{eFt zLb`IcX3TPTVkqe=59;AnY;CILRcSC+JKR0lTB9Uv#-R{ZVAO zM$2z7k?(tAs97P3Bh}R<^mG-QLSxh=A4LPP1NM)K;lkT!Dr(lOH9s1MzR_f8Znl>n zHga(+qen(FD>H@#J>sZTR{Ck1Xgsr&6Wbn7P$hL67{$>-b8K(X{qWT4`5PZ4rrLX+_F6J2f(roIQ~=tEJmIwwRjh7t-ea5?bC3<#_dQEGLEH z9<_iyMI*3}2v9yNgpymtqW=<#@%adb8ALGndl>b7LOA<*A>XGgr(S2xsnTyJJ_uk| zS};#N{KRyS$J8NI{m*_(-93x;4QBDN)L<%R1>@J?E_v05lAsx8Lc(}f_nW}-^f7er z9Z7>K(u<>f8Mku*jm`$s?x}R(cEO~4bQTxIfg?#?eA;e~YbOtC=o}v;Ezd@sSbN0g z_mU6c{eam_m^B(j`?>bhhN{ixk-WhT*NGlvowcU0P|TJh_5?n1qWX$aEIMzEt-rOn z0B)RA_vyzz(qq4<-*uINc4NWH$j;|U8EfX*hqK5SNyYXBjF}n2a_O%v^2_kXZ>K@AKUx|XZU{8^ zTDZ?(U$y#_t5KZ&xh7O=u1;aIF_bMkAFJ-R1b3Lg%KFpwm`%fQU66XxEGYM_4~?p6 z4&Qc(Nnv-%@2VcKt}}?PwSWaLCNik!O0HT)achhfTN+LyuC2VHB_~qKeFpBuhjOE+ zBU?s}ApeL7G5#~OKMUaHj@~@4Yr|hdl)ZSli$6TB(cWM%Of zr2OT(eClI!Pnp!xc%JG`X#-PIm94usWD+*5x-ulxNL?l#41OC(%TPbc4VcgO z2gB+3qd$v!8FRpWJnQ$*V#=uTv^?CORb`E-XKaf3x=GA!JAsf3=Jbm8kL%%)W%G2AjHQ?-lUyRXdV;iUysIlS#(-}~P+ zC;eP)fKiwkHv6>KZL{@%x<8Bh_vNCU;s5lx|E~M__wD}oYrV_HDQmP(9a;0zY5y*n z`c^5-5Jx@UUAmUe+~MYnv8cXWY)1Lf+AIJ4dQa9U|{>!|Sg$kkJ zgK$c^tfK#)V(>^O8+urMOe2+T%2(G?d;+^P^BF1I6Yh~l_7Y{*8*2A`D48j{besE9 z8IYDrxmhWA$SYg#XCjU2t>m?L9Q!-PFrrOo{BAF1>cbeiXDYw3QGJ{Nnn`10VCYi1 zZqOX1-EfOG+8ImhDlUIO(bCeC)jj{tTpgmCq4rFVrd~vx-n+H4RvxHsnRtF|jbqTf z1a2S>(nRf;b-TB_Yqr&Fa4RQ)`Qmn3r6e-3Uji4`DbK#NB99+GrqZ8h4QfqGWYVxi zPR1qhKw5KQ>oi(b5r1@L8Uy8DD6Espohq5kib~^m19iRrsot-KY1ESLJZ!%_u79L4 z$Vluc-!z_9`45l5nDtp~KbXPgzUo|9BreyQEE<={z_CpxubyU*T}qw<&B4d_r-4x> z^II#UH9Lc19kRHqT-TeZOdhn7KcIaU#w(=lR!%1-APuL`RK3@v@Jusvzp1HsCWvjT z%vn9n{%BTAxtv1(Uv%H<=^Rr@_o-S60rI*&-kFNe!Bm>*vNvudGU!JlwlDO!NZZ}f zYl(EcIF5~x@Az;U{ufQqp7;Pu;waT2k^S%Nc!h%Vc~4C zq1ww^>!h`hIQ36me8w4RgeT{WkM zB&lyJ8B=*}&F?31qj)0on#cz-Jc(ROv08tMn_5vmT50u0CB-J#7SI31-dl#XweQ=) z73#X`?yf*fm6Cx&p}4y{6nA$C8bgD&rCoJ*cXwB6)Tj&9J9gKz*R!vjbHCj4p7+E4 z&Pt)am2$2s!|oNOxJRya_LCB*HcJuVBf;g~MYzs6_La`WKGoUG z7!tuVM1q3O5)2t4gSn>!3#e0F98By={M+S*7=k|}%zBcb<-L^M@XXqJD#qXo5=5;l z#ZU69-(sZLnIuEfTp0pymtyH7J{P-Ut(ki;Zh9%s=Sd-mlR<7HLrFp@tiW@YuX*|a z;!$QKg!Yp`ow{4)M>353K)nFx&)(#B!$dMP5a+JaD8(wC=eq*w|B~>hVt zeAL zW!6D9Dt~5?gUi9(wwb6SkLoBBqEjnztVJ4gmU6I_c()-V8>f$_p(j}mlz!ElieMLhx%?I&$iL;pVy&w(ml4 z_=_7vb*W!tEZ{1UcJz-7h`)YUnv2SGWBEg$uHw3TBBXRxfDf&jQ;>M(V&KO+S85X1vsWfWf4X%tPp)uGDmz9p3LzxA!IQ-;W6q>;lX-;M%J# z1}^M|NwF4ql{W%41uAzz;0*5eg=jNwdS(Q{a-GMhEv9r`ztd!BI<`agC+oyiC#y04;F%F$= zL-2+f4jZ>IgKdvLhF|nVRrLcHNInUsn5Lk`H5RW;)F73)V-LI0Hoo?ucP;=GPa+}Z z+AL(EHm3B9h28VTsF|`DNB#Vuxo9+8&le(DiThA+S4uVxye#?XOXfOc5y z=7?*YcNCtB#{2MHC}US~H|F&kb<)Ez8y9rhWU>1zxWDBea)c=k1+Fqj$;x_#b+&4K(s8{J@gS{)vv2>LMeg+0()LDB3 zF7U^MUF_xfz8oixy8pM~!}XiBFzDD~^y=%3ljjOBDsIc)ujP!{9BjFvha#mJ82;28 zm`X34W5(b2_l;x+hT5XPZ~q%#{`cd{|1XX~-N{~u0hF2;wL9L z2I$ptwjDi&X46~XdnmmmRM7r{`fEC3a54>P90GOX-zin6UW}%QHo@Gi^hHuWA=IW zk4AHb98Zqx1n0wAoU!VZ!;f=YJ8jOJ)jJ{o-Z|{=^FXkww4Axxe2*?Q?5>jGy*ayZ zJ5{5Exa$+KY~Ao07;s+yf?D55zW3?Gs$<60;jmK;!gGmV8_1I~&-2t6c9YGi$B_fe z(QEs%-=9H+H2SPg)!{UKTzQT4)ZsSZc?9`f)#XT?)_@^$Y5)eTKzC>6!P3{ISXzf` zf(8i88&I~o;WtKhtExxiG4^6PHb6(p9InP1ME`7{2ZUU^W& zti_cW#Lg{{3%%nl$MQww(aBr?xFUzXp&W`jax@ToikZV7wWJD{U90eDdo}hbP^-I` zyzTmG%u2*>&5fY;u_Z+%+Bh2t{ln1RWO<+M{bK8Rryso zMK1UFTOPlU#Hx<;bWs<(g2%o;IeAr{6W8~N(RKzkqtRkmbQdA`W-;@EWa!9@t!gKB z&eFqon>^QJ@(;&sBeNqf0Hr+Xw9IQYF)9LK;S|GzRcHSQLk)anc+K4aYef^|ZzN!>Gq|}*@ zmSX1VQpou^8JbV+wkF>Pxz^3p&W3Xhr*@LuF7-77cy2arm$9cvjKZJfT$hsj9nQR1 zV&b6p?8luZ!+B~QG^fg-6kI}0ZYBn;%g2Mm+2}t(h>$fx)cl~XU~d|7hGx;bl!CR? zzz;UdLsl)bwe&Ke9F~i77UXL82r<^YfLi5Z*j}O@bgK+)3#ex;q(-1oh@riSTU|xC zY#_#uiY#oC6e2=PhA2D!%JtJxAv zan?rE3U*=1(_zs_Z(DbJD6G-LWJhz%R7gPmN9Kclvti~(I$G8Sq0BG^{sU66{AdzN zdst(e$b%`kVTfB9k9Xy1hz?4Dxpy+I|4PRx(_nn>6p!J>;b?v6i55RYJl9)-i?&V( z;7qy8I_7?zi9(RZQtbH=i1)hw7*^{6OVcF8ZAyZ%M>1w4Mk1SYX+7&e>bFhMIK&tB z17cuuFaRCfEyeWv>^ivSigvj{X!qC`uQTjW+@gt?yXM$D$q)AAZ$)AoYQEiJ+i5zi zI=Lbs#t)ya9u!Q@a23RU2^BaF+bigNV6VWa>46|mZw!7gLtqAVHwGtn;85?|xLx!B zB{6r{E%q2|mb`+G;s?xi{762d6&CBCW9*jaXs`1fH-eO?R!)slXc7KWU?NuMPfS4#ujtQRtHB%x-T1?#@v}&o5bm zPiLCZUG)ai1JVS0f(+R?=!kk1OYClPMv<#8M$V5%wrMivk2ga93eNYH?chy5`B0QP zOgkE5reF?EX3xU-cgoaP2_UF9#IF1LxVF*^hnrn+e1;VglntFvXvrO`ydr2lIBeI6TK0*QsyznfDhT9CgwR z7kh)>oy-q8y#$J@4X}F>JE7SH6xaOMV`;SGq&s4#c%$2& z_K4OF#0DLA#PK@$zrL1#-~Rs>))n6U>%92Sj?4KA(SIMuWJ7k`zp23pYB*0nt45dE z)DTQ!RzXuGCcVnRN#$%A z%t1DFbn4_=)V7i*Bffh<9Fw=0Sb|#2u_u|Uw28Q*oH$ld&bf&kMw~By-BX3-bE{!V zEaTI;8s+oo@1k#K_EmPz>q^i+h264CMX-t74#~QD1nV~-`g0|whF4(u3K4woQJWab znJaYwPrmQ#F3z#(@p2tT4FkE^M9#pw5Mx~?H}_61#7QR!-p@$E%lX;ZHYE$! zEu`qTiQ8FG246#Fb#@VB26?yFoUzKu%WaxahPTxA#vf}IY}CGm83!KVF@jPy=G%?)BK8!~9q3Wv%R}%hj*PAU9?TI4#F) z`{j7`fw)vgjy9_vHYb_a)p0qlF#mPp*m^vh(7;~#dgvLD2PXe2E2v|>Rvm{%od}*wA)5zKCGlpHHRHoyDAWNk{s^1DjfY@0T0`1)XyX@DrFCGMJ3iuW>&!y z=0}(?N8lIrAl&Y_cI6RqqHZMhFWf0PJys^=Q+y=e!_qV6Q z_G31)-RXH8laE$!AtYJZ@OLW2+JF?)bt*v}&(#6MuxTrVSpHm$Cm!s2t(T(CN&?Nt z)WSXyp@6tEll<=0{!(fUn0s|b1_d)2qKIQ#Ol9<|%W(R>6tm|@aU@d;l?W-cu8Fa; zMFL?AH2_P!ip!!(4<9QYem+VhwrL>84V=VJ??mlNe^?dV7&izL`zW z*L~^?l*^#xMQx3^6qmM?5*wExutdyGR55iKLhQSe4OQw~75uW1lwW`o9!0oF&b@>_ z%LHV?V`dy?9LmFOvrJ54enEF+Va|KL|5a=lo>PQ2S;bheJcl~YVg$}Cg#COG9Qa(R zLrbu$Dj#LkO&pKPfhlzYeOC&h*Qp4%S_-lId=8A}X25Pi4rX!NmDJ64^2oyQZK=3E zF$)=rS=fCk9n*@kpf^1Sfu%wi?<~eG-5gZ@$j4L15)6#a#jNf*^cdx#S7Hi;Ji|Ng zPls@DG+x_UqGyc(bta}5Lhs>?&~P;5L_@~!vH8?JG%kyVgQ5Y(?{~t@-Vspv8ROCO~K_@oc|bwXUjcs`-CsrM^Z--kck145)gVX5zP^C2s|1OwfJxpFR(|i*P+mv zVU4>{7T7+W8Csvh=vj0@Z^Zy~U$~Tfnl&1gbeV4&33K?s$VeXI6JeJm@}u?558MMu;{ik+VA&)pjQ-*(w{cgfI3RoU?g^Q z#dC6s=k=_xImU^d&z^YDz?>xu2Q((Sp#53qX*s##v9TL<6~WMq_JFxzEV6shzq=zC zR?94L#=#f$q%D@7QN-4nGjV2;CPr3_#o3H@7#MU+VD{!61Y6px$Mks%i*e1c9n*|S zXK$m)^$uoCe1cVx&4?TO3%z~6;L7>8(AwV$_nc=KAM*yU_q;>Ly^q+pyAv{-D~RR{ z$+Sx{wJ!aj9MwU6cP9mP{bTQtz4r+;!>(cO-8=X+X&>a~uhmTQfr=I#b`;oh-M18X zqU~WiM-O##tn^E33~l$2DOLgn7@M=TV3a~<97)j(+ZKd=E>g3 zLAS82_j_E5n<4PFQbfr)cl4f@hM~tyF?N#^6kKD_k>|rc&Dm&MYKpQ-D{P$Uf}T6(Y!aO*BRl}OjmYA-?bzFlrdR&jE|Lef-@BY()p6DFljs0U>VZ*;u z%yP$aH#an>ha!ktltGV!Fy*il=6m|!@KGzY4YWeR32PkaY69iD<&ed!`MsUFla-J$ zN*iN6wQzNr73MctA@!F&J}gSbhK`1COEqP;48NZ{Sizu-oxGc|W^Sggv0XKG&~L80mEIf^;#i3UZC^>C^1~F3>9sH?9=iUi0+W_!A+ouGx#66H z>y+YIs0j5}nP-qz4p;iOYRk%Sc>^=vjmsdvTfyu{<|z#=$A-iTs12^f8C80rZ3}_t z*%;tfj;5&UOo$BeKnnf%-z6Q;$)liZ#BS1ti z6mj6)*lJ{+V8`yqIuw7Y!8)x5yh^Rd_a8NI=wA;D>%Xw9Cw)$zkJh1#7&T>41OB8J zZvh{-mKuGen?t}nb=k2k%UQE-eIv#;uKA*}(fLmO~WlQ{{V%$y+C`<^~DS#u3m zG}a(#HGO=Gs4;j^jZew7=*Vrw*l>;?TZIkGzKU@pKR%V6Sq|0sIEo%Rda;tu%i&0U zKpW#KH1R!97>LEMs!*j|&VHUMn2VWv_EU~YJITu)m$T2U63eLR*hPM|E%mqm=wb~! zNRGU|649LdcTK5+|KUog)mP(D8##{9%QdvH3bxcN_-(F$(T#G1J6B@I>Pm$AR^X$o z5?|VuV`E=p=zGkc;5oIuAGIR%<*P}^JC-EEi#Y02ix92JiFkgT{XG@_Q0`=pjT5q= zz91dfeNqr{R>ZFNa`-=#LcL!p^uyBuZ*rv}VzlWh!FgdZrnqx`L|)SVXEAP`DnUU9 z5gICs;di?PB45rFmla|0TM=~mc^cc>04ti}aUiM)n@^TNVJI;n?=RgY!5Kvfbgxo7 z;4FdfAu&9tk2Sx=ZUk>BHhyKM!4@eNw$k&(-`(d^H@jAf)zQq9rKWax2Pqnu%{Aeh z1TM@48Qmg9whA=_d-*vVLv8FF89aI0lDD0iN1IhI!2xD>z1%9n{5KM)_K~7=wiKr1 zkE0Kg+ogu!%qwaeqNNyeOoBlxsJmrG#|t$H?nTh6DUzVFgAkL4<{;*C5ql8Wp*2;6 zu+Al@SIt8zIp%7=6dv|eOtekJ8R`x^h~+yxDne8YwLjB}5Hzb8x$O$E@rw{MUgSVI zsR$1)vfFEUArwrRi%`PHDi-4P)jS+?q(6%qhQ4Qn2s)gHYwdFJy)F->&AE7+NUVA` z2f3y>7}lJH`OnjkxsCY)g#}PKQotUHd}8H1yp1cw)4CjLh;lJ|E13s37AtNan z0gm=Ca?8Mx)scvIWRKaRKG+GWm*to&iG>0;Ye5)g~MU7FEga0uwaoZD%Y?t;af0t{-D0$oF}fE1t9lxGCnaA zcK-t#ObYVHw?}TsiS=N4)gtyb*e*BTZWrpRVh(8~&W1)@uz0PZ( zp89a#1?wn5$g6CD&;9j+n#q#|NhaQcqn{lFmKtXTvx9rVwbLkg?W@LR*%i!mR8W7u zvI%B;pW&(dV|>$WMu+P!P#5qPt6n~Z`*-5s8Rt;{q8(0(O4SCby9?}_+hN_cg;<~) zg)~QIx*g>AKmA`zG`yg3$rqgx%(>pQLhF5d#4NHva_D?)TceE>17BRpEW`aW7fk8% z0fN+v5O6K_`biR$UTZLOz!!ywsSj-vgcB!{p*<~t86V!rt+Pe$0wc(VF2b!m=GAWY z!j>T&kviwozI^RFco*;lk8Q>v;QIkVUu^+8Q7^4&Ye-*$3tYaWz@cR}9y(~D|DRgu z@xlfXdySFz&;~J+l<|CtG17}Ia3r1@;&TQlnP!WS+h&NJUxZeb1nPF3u~#`CzLR~S z5bh7@LS{D%TY^GrdQ2uVn{9y``hFnp3~|R2XB+6evciTQ7C6vkipQ~97;t0(j@(`R z8v_h+Q-;b19c)O|#&Bb2Je$j0-!K;pUg^wiGiGE&SmW6*c67e5!nY~<7)U*fRf-n| z-M2%5lN%bx1w-*s2Aal(;j)nvhFl!)ipiE%@X^-8fmxbJ+P)BN_j_aZW)~bzazKZb zYFN@?IQA*)V8R*;6x8PZhp+G7SoXgj%gQUlQ1jjj!i-?J_4Go_RQ4v0(!i%9npn|C z6FWBRqqedJomQ6qhsR0dY%DG_Cr3{djKx85=<=F*qSR;3?^umLvzhgIqZ%Vph_|RS zTtmM}%2)b9Mi%0IPZ4hZNgdG*5q^#YA=(|-Q`ep@`JjyY03+KG#VOL&Z zZYRAhAI!WPc3vHOV>kqds!Twq!gC$i`OkW;X{AQ;;vbNl(qI z1QMJ=9ahm)1;Hzqk=X2W8 zhxg{C99@Y?!;7l1in{3A4$Knh%KNC3{>p5DCHE`faJmY9#F$&ZRiSSp=l%)ILi<<_ z@f~ViyE5Y}m3Y*x3X1)im&N)1$%qQf^=7`=cXk+zse-~0=2XxFc08^eANyB8K+Wv& zDfDu&clC~S1r(@H-n3qVsV5}Zx3?H~sEf2&7>|?RT;U(+jm6Zh)c+$>DY^*Di8aqE zl%Zm3IeSb?;gBH14rbl23M<9|pCYI(5<|RHjI`b*$ZgHQ@&FNzJrE=AfE4?EB`8Ya zZ2gr8JAFjN;GCg5ije=Y2wO#Byj9F&pCs{UVlmvW6=5&W^~r}sSY;(fi9muS5Gd z=tX^MIyqErDZV61(5x=SAZEjEAXdGwPJ(D#V%ug3<|IjQ<&gw3^0-U#CD5+s?R!#8 z(UYJ%F>kNsQs`dc`}x7gc3`#^q!=)eJS}l>1$7BixQ(I2tUWu)P(4rzeF=37#J@4z z#(F&|raN=}_of7{ZH0)lEJTO9#aJ5M%$y$JKYa zIN@J_Yni#|#_Z{JUkeZ&#Z28>Y4Ge;fXFH#Hb{wOC+1)P^#uZQu10eU;1ZLISoSnD zm*nC4-9n@qGeftT+nY}Acuf(a2jpN-XTBzC5E`E_+qygxx&!0UjofeVida0q=>+-p z06Yn?#;P1!JRD+sF)4O(* zJZpNBH%@j)#_V3HaMMgp%l$bBqJOirLQw00^+@sd}75n*aGVgly z-Vqy>(c97xPqyizVu3f3R;0qpA`Kg_dgG>pH!hItUh#|9+;*w>l0ONZv=-qRXWSQe zn_}%-D|Uht-4+JZ9nsW145dSN;a1UBJRh%*u4jtTJlqHw zT}-K!wZrg%{-|hnU_YWcnx0W-^-O?c?$*fgF~!PeO$>PpSgy4}=o%~dkJE(4@VMCqyFBb*krRqOH!?6Oc+dZYKk%Xmi7%b8Y)J)PzS2d& zVGrzzEZ_{q5bHj=;vkQqud+4r&)MM8VKv;3ScL=?qu<*o9>89=FdJ02x}b>1Lgn&e z)J@ChcYz^n2U;Rm>V$98=)=qLf$btkJbt7LW9F6J8RQHl#d-7zDB)M6FG}0aK-zRO z%srFwKfShpA#daYzp<>=q09P1{Q zAz)fLrZe-X{AnrXNn|+7UZ(d!%qdE#Kp$=9(UWIgzpxA~!;3MJnz+rwOK_`QJ_eo3 zg)=n+O>y+kxDn3~kN4fhYrS(Bc3h>W=Zy@i^O^)(vTnd+)?I<4Z3TY*$xMIdS519K zjqa{0Sdn9WPj30E6LU$QS0S`k4v!jk4!n{7&JMd#Mn2Vv-nqI;1eeHBQAR9J+}m?S zHGbq*W7`F0n!V+U{bOnw66hr> zs)LtNEzVHa;Ne>j;ka5{_hrsN_d4Vf)23gn!G&=8<%os%jiy$BIC@-K4ekY2LxnT` z90`4V%(05wLkvwFYX48v4g8>Pnfo+;Y$fiiu%jYMj=e+KDd1d%eGloCI$Dk>>O|(J zl;iWpQrx6xZ^^_;)O}@URZAs;8kj$D!wyZog%J5O+ z|Lt7;=Q%%z9azihM=HKT&(lNxPEX$I#bW4W7sJw+{Q+mhI7jZUEIimO2h5t8vLB@oD@(A0YpP3H5{Q`#*Ke(upAT}$DpI^9 zhdQZ*U15BU;l#P6?W9Qdr?$67ipV_@+{}={fSI&!yU4Jfuj#-b8M@ULBO|;3v7K`8 zF(4dXe@0T{BgF9``H)R1M%%Xqh&ft_>C^$}=H?@2XaT0L$wyj*5XZt(kU`JB(TYM8 z%}T;E^4lSex!AuTkKAS++?Hp;P$YzRPwFnl6<|S)5bYlnqjy;aF?6WhT}_ z19DDB^WglHTBK3TK%q|k40Qux=G+!F3&(rrAKQ_eWBp+E)Dp5|8Mx6u4dI6};a;B2F4!0hTOET@x#7sU5QWz#6Jhp%IsLwt z*w`l-$EPM>ic>n28`ZIbnX1nDQTV(f40WG<(8E0v6~XL=y-hE^aUh~ieK6eK4iOds z$Vf2572ldHQXCrb1d*-eF$2A#9{fmFw~z8$D~eS z2qh~T0I>QRGfgMvEj(PYX}{B)UIizvRg!m zjgN_A{ZwF6+zto7zQg^>x3IdNjOC}tAYv=K$@J3T9PWi#`R;gHVTgd|Mkwqt58Y1a z)8Ax=S5clguw(%aWs0zw%`knZ7m7CaxnPKe z3x2d+$nHEfc1zyIOY1J`z1H%l(eEEHuY zasA;I%MC@L<&~B-+1(*|%$myQm}Rb#xE}oT;DP90d0> z;Yh1Y$3&eJSif?|h{s`wC)Ym7I|bJVrO*qjiWx3*$$490xT-y7Dj8waSTnqPz}~cK z@`_bv(2X!gz#$iScom|isQ@E-*x}@75lS8y!it>aO?e95jnIbPd*&Y3II+vZ2!0(L zpfK7Or#3sn#@iml6OB<`>`Kq6fLe7^BsFWmvy%m)l)dod4`u~N>cVk@DcXsNO|#ta zW0DINbTCH;eH;4s?2-A}oL%J>Fq+~HH#Jk_fah0!08|@2(XKHT5d)JU4)lk}MlEIh+m>Szh14Q1G4P>QB+<(U0ihFkon^{NzG1Iti;hF$R| z={xUMj+s{~u;o`76!unN+%9Hm-ed-RFA02XLZO^lj#KPeQcm~B-Bnq*{E1v_U-lcx z%DIkbUM!z`?0qp@cXq*AqkSZML$Qk(x z;(zLlY6o-wP$%(hLN!L;t77ka6$TX1C)HGiVFTp|U>?-xN!+K*aIhnOy)uw|?WbD$ zq3YPPShWuA-QUOgCUXIrnIpTzkG!g0CE~U-Kfk2_ zYAVbu-ARvBDK)3tnW4q|9aE}sX&5yOLf)oUxSL`n79W+P3)e2rYV1i95tHAp!1Yja z@vSmsn-J@B-uq-p6jYwLV#6zAoakzU9UT&J@@5f^N{caGs|2s2nYH>adD_4Jq$Z=8 z>+?ZEbY%Y8Amd<+VGd?=zf^4W&%judBE$|ZKyM2f`X6F`Ki3yWR?6VxMjhxK=BD=f zYo1U+kNw9xBDjo~qWYo;P$5q%7Nd3zdjnPyzv)W29+%+5P!Xcir1+pC#;u=XeCjWS zyE3ugBN3J!m0;W?35=YjSj_pk{0X1aje1fGF-`|DTap;}r$QlKWf1>fEyTQJAv$v% zGmtu&=_5t#OfEtBE%LcNi?C>`2yyiyj2Kgb6FDM$-bEg>h;xcQV%QKLU)x`T#+zb1 z7%YamvIzbeB{=LYhVESvh7tE_O)5rXj|?b16CsHCS({%;u!wkbhzs=w`=|jYrd_i^ zg28tr?1>Yj|6MWs2lDmvb(S3#<0|oIJTYq48Zn0UlA?I92(p{>?%&VFFzR1bI#3tj zBE@H7-;87_oH#=`Az(g%i3B_O{yWT|_P~LBEawazCEP~`s3|BGB6CC%-ceU-@I9Yg zc>%Jg=b`FmK9rsc@j@#bKUIa$3Mm4fW+N*-A3Lq`@S}4f?$M8BBg}{8Mt=<8-;Yzx zhvd5uxyG+!>jeqzu5_0-sY%fj3+=67-a|0!39d109-znO=Y zH2Sr)$+>pU!qaQn(2EjcDf!iTVTCyQA`fFrg(%d`#^<;BNQx7(U#tkDoAPmgd>%7R z@?fo$%j~!aP-WG~8$oYN?$H0rx81gF$bFyNX7e-E0%04i!Flr~FIMyinGP^hk9Tfac;_(gj<+VzDwI2~Wg4e#SzC#|lyVMH}Bov{i58 z^%*8|P5j&+iRchdOr(CoN-Y-mTP(1(vk82E+Cl50C7ez=Kz&LY3@%;4*|6_QYX$Pm{y`5|V35T1eb3g7d@S=AtBjszm^ zr~|!^;kZW)-LOy#v_3GxlL!|Sukxa|!ID}}Z}^(CA8x279*qseK#zk0X;UVi{CbC| zWq+vOa@ix;a8VnL34zF5?So^xbug~iY)p6>gElv(qsR6TSPgW=X}=J->#5_*ncBCU0CbLv9eA|Kj! z7rk9YYIyrx7x5E<;Ivs4v0KQa_twS!1WjDX*21}yni%S}1XI}ox3>EdRP+6p+E}7T zq!nzw2f@C@3S(DTl2dSJ9`t-j9cE+QTTLWyH9(J62h`qo#mQQFnh&sB?yw;S5dXDR zC*~{DgNLa(^n*<>-q{3SkfLL{g42}ienM`Ap|)meW1J66?@hgV|!5=K2J7A!BA%Ddg#)l ztor*puuMH1-@QyRZCe1g*Vy3~wU2(x5%!*U#Um?c9O+~P*ZHgQIM*4PmEO?zwME;fc9=7Xda)PY z#1C4Cc|Q}5Hsop5t+D8}I&PZGXO1y-$2uwqw#)s!&40a4{rmU-S`4eA?~VdnU)WV@ zU~_;u0!IkoF~tQ17rd~C+WhtJ*@^w9I%W%X@YHz`{DrzGyBm$F8@9+Zw!oAp(aa`I z!`I6RzmMHaQ6g>!M#E$-vjcuaq2^c}daolF7eJn_e+@d1t-+j5wKzYl4yU%&!+1z7 z+{88To>`0UKEyw2au^s@;k$b^7EUGxqTl=DIAS&G2cD5n)IBLj;3WcVKHyX zg?Mu?^WP6X%7xx{dal-%L7O=PcR2T7yP+JaBShG(Aw`RJDV|Cz&|+K;D{pcw>g)?0 zD@JefSeacUI2O&mrHSO2)yt8@*>hpXGVC8NCO?{oBC8B$cd}oFvsu^YVbFXk#qdym zR+0-b=ZFk1x8x(EK#147=t2K{SM{USZNw<%37+XOV~kk!OnEiFttRhU%kEm@!I-h+ zDe2Eowx@@mnv7vXwzayaf;h7H1cd})zG>un9zUZ_DC`PX2hI$Zp~d@|iS*i_RecD|O}K|Km1 zs{j6sK6V{WUvm#c74*bb>mugO7Qp`r=X?vS5w+I=Pn+G@d!CBhZ-lr`EZWAl81D_3 z1JR$lVS3sA^|Nj3Q;04eQS97wMVs~}7&yuXQ~M_(t*HnR@?u;tC_z~=H65FaFkgXq zW26|$oWFH&PeHFE)O%`iUyO$nY*YtZN@Mz4)x?D#;<0JQ>d7RnG-Lmk3oF(zJ=V4e>#cdiII^x}t0 z#5hqb!S^%?Ca)-AHXJpscK^@}uvaOHTG)fcy1N%*rvq_tM+sJTXZ8lOU_*(=544J* z&9%pPdY=CHOy2l~lxqs=UWw=Dev{&s8u`>VQtXH!AI<-NLvB`)+-uJe`tTlz;705| zVHP#C<0P;Nl|XAMvtxV6FpGNF`C8mB8^>R2Je5Jylxk((s*ge(#Dx^k5EFzOabgQwbb0^5M{>0IR4! z-p1U4aXzU?RL?@WZzjHMWTzIdS0?mn?dV#BQH#yh7 z)XS*F=v#=A(0q2A<)XGA2g}!HqJK^v9v;lWlP%dedp`$V?_|K$Jr}Q!Wy0mB5ZAuY zpZS_tyN)_p)ok<{NbG$#9f?~bv2S-Wu9;> zk8nH~?T5732+aD!6&vR!A%~BPO9_CQFoqZqnAL^-sYTw|J~s+Y67sn!zwB6%E%MQ8m{E*$S>$&=`V@efrS2Pwsi$M3lFf zVCCZpv>)8U`<#3D;NXmCqj_AD&@W^dh{~)u2(Qvd`8*lV5Q$!TF^G9&h84#>(Df`k z&Q?-K(ZZb6iP7Lr!HxCdC>rMqrCDn9%7x(R2W`Y76qlbZMPNZXf=W&CGoAZ;Y6z6t z&!*>o99-Jm!jWs=krn?^5VjL|8SRbx<(5b;(1m|{0hW4B!PU>&*mjH8%}jr07>1)} zcMPt~nhqCx1FQ?S$JFh~Xi4}a*fHe<1P2e%)5*-;@md&hSq0s1r(*24Oe_o2z{fUr z`0$GS=qyvDzt%&{(}mPF*}-0*27CXx&<=3IK6bM8IB!HQKpSN%r{HJ70%#1^!Q_cR zK&=i&tTRSq-eQE`F~UI~I|yIQM|f`mW|4Q@Khpx%6LhF2)xpQ;U}Q3%ZB1((zS^2_ z_GFDuo1C#g$$*&{`s}69$Gb%8zAf~jNMF}Gfe94L4A6YX4u{BJ-^sT?yL272%{HXA zm^|=CGbA;d;6gL`;QP9Gy4D3Li9YF`u zvB}vM7k*eF`Kcqb+AN^sap3ng=w7KIEW8~NS7w8Hb4QqE*JD69eRtl}!|Zp(6l%Lu ztL$-oGC5kQ71j(?fn}GGxb{&UU5qqvQ*{Zpnw!G5zbo!t{g3s!|9ZXq_wWC2aBbsb zeHf15Eaa6k7HQ6-Cvh>ROjN{YTO|~qpNWg@^sv6v0m{CnD7c}GH;1&)bG#jTQ7`gg zT?%p&{V;1{0N$5pLL;K$Z%neh=&$w7KaSJrHT3jw#=MrispLI*R|&KI-%=CXSclL1 z>fjw;Pt9jN+*NB)wx|@zG`a@;G;466TMevlR3Nai9Jd-P@S0rTZhC$uZmL3Wa+sdv0#{a5LGV=$ z>47S2ep$&mDsgW-GhEG!IddR4#hlC?L+R7fWS7w$=5^*#f7_qkL@%jnEh~poQ8_%R z6^P!(%+}59(jPA8D>z`VX>S{)hl0<$4&l5=9s4V;3$|Fyh0g#jT;n`) zmc#{jcLw56OEC7_h{Ei>{>Y)WKB&7LOcbfddZ3L(RnyR%tdA2NobaYe5At?)NK0^q z`{HoS4H}Dq2b} zHd50U_)Q4k$3^t(6{Co_Xy)j0IPNS(r=(I$i;#k%P6(Li|Hm9+z+ap}+ei`6BEc)2 zQY<5m+&)^0F3_kZ45l&f2Q5H%5bD-j=^1|H4>}66^_LX2P&%Z|_xvzL`UncG>o-4!DL1L_8?vO#X6s>G% z39oTJ$UK5!*2Q?meAaDM`N+=8$Hq&k_+wW(q8#%fI!>+XiEQ*)k%Od8nV8DYTL-asQ0 zTe=Bx>QWB+YZC(}Ge5R1k|10bd13q_Jt*sS#W3&wJoZhPr1yXsxE4rHo`=jn@hGZ}MV)#gmeoYy)0Hqh zWp==?*knAt8-`o{)=*NV1~%Ons+^ODc-gWWB>=@6!eII>8GR3WGRw-4_}UJ-Ee;U0 zO+onCbTp;-A!np5_Dl_@cQ*%13-1X!>}^8NZO;+ez6kwXH$W%f7mtsJqWqjIcAg4E z!{9XNk8(xQOMN`@F~IxVhV+V!#;>y~$oOi2qR+{kRi?q=Y6;rvCSqr_5j>^z9E}p- z>@#ijEuMkGyGAH0wS-i6^__WLzttRHo8q|TnUmsDS=CB!Rgc?;Ns7j2GKTI9N?;7I1vpFJu znd3UIE9>vlGbS{~x-Zt)oU0GpU`wpK$oZL~DKtGS5IxrnU9MVjz374EgB9IwiF$| zvdeB3GZpT~LR&W$=F_}TG29Qwd;{>^$R21tiN?2FZw_9JXXdHor!1J`t4|%QH45U5 zV7E>O=N}ql;X7medTWYHk%73{o_h5CZg^(q0_9B>P*Ju=`ydSzY}7>?oq3p3V}X{Z zCV0UaL_-OWNunF)3vPd7qJLx7|2LTRU-x4U&wEFyBaUdWm;4s9(K;{2*aH^On5Tzr z%ToA#$~nd1+1Ptbn^{nc5!|Z7nI~=HdzN5Wz5tUaFQ(T%34R{oIK)it#9qPh-4Fux zt<0>s>WxYJ(%6+8hq1%zv9hrN)3urV^r;RhzSK*4vG25$bM61Z-dhGowf1H?%+yTXx_9oa_dOp{ zQ0Y$h?!9;Ky`J@3a-|#Bj3Y-1F*%mqS0&^|Ey*#m z58>(TV%(?h)`Z;U+wwy8Q_^?-t`Oejrlg*ek5DJ~I$4Z$I%4eBW)405Sq6Q?=s%b9 zVa}7?Pm0k@d^*`zgf!}UqgwNEjox#GAR)?sv!kd}ME|W2E0*)`ZFv7?c0tJ|3ATkY zgNe97gE__!3=4zd*pV4m8BKL-pztoSyq0zBjunTr~=W z!TAWBctl@L3UQV#b)CO*(A|hR{8st!(JR1GYi2x67SRX8{n{jieJk^xRtwSlA+yD( zt#J8T0Lgn|PGj=g#Flb*#0VuvIC30uVwDKOr_9}_RwRuYjeCY76jcfEp;`zDJ@Mbi z3h{L$yDD--xK$y9%`pMY?~|LfAXmuWe>p%e(m@eqG6dvJn88{tKzkiEt7Dn1TE@OB z`l<3#>BW*4!8)2f&A4e0n-5>^Dewf@NvFzCo z1*jm8`DF=lG@?-pSH_5wtZZ@p_Ngl#ANi{k~oDqyUS;@^Hl^50S*uK~ni} z(BaJ8u>k#eeV@T>Ezv&mfwJ@_HWy$hv8^j{lrPr{z55AaLY)5OhX5CNjJk2%=2u7! zfFHX(1`6gp&Fd1-p2}=h>dx+EPy@jE zb5TVm&($n6Yci)`LNYTr(y)*->FIM*u=RW*!2a33o$(DW_=WA>-f(~|}Fo#{B^?@7HW{rv*s;UjVAIyaJ8?XgHK zkH*N^%x@*GO&;h8)jRAHJi{KbI8SCl2V=KM9Aw$E@H9RJSut_woEMGb#9|}nMB}7( z0_H`=V(6v_Ts^_u`Sc*H*%=J|RwwNK4dpecDSGC4~MQg*!;^2&;Qut zwU-6zUIpOhNjq%aOzo(Y1$=utVL_lDy27QV zJAU)g?RySJezSx%wHY6;MKITznKLp57&a#yfzvASmvlVFtYmhCb|Mn{+u`NG99SQ9 z$N3Cm{J%7D)p#{EOmsrNPJm~20xVwJ;j?4|27gw@^Xj#@@KXUoe>HeZA~E+_9K4iF zaWICQbGRw{dsXo0wHhLSDM6n4yuMl%*b=OQK6}+LHBuM%)~M6VtBRrYvApxwgmHr^ zW)G9YIq?d1XRG7+Z%sU$ssQUh#Ej8O7%|=iyExNd0Kg@c{OxExs2x$o+cD&Dos_Zt z*cz;mRmK2$HS{~P9zk3m%wjI=>9?l%Q6GmLM1kar*35GBv0(fa6{%PXIx??+S)7&l<6wsWsNMe z8Ra1?X8+wZMOe$~LwMf@&@zS+eQSTUaTeL%^B)}hKk5JeXAJsp{eS4_qqt6P)x4@2 zI`32}SXaeXvj<99R~a{}058p-v_MwIs3h?1%bY`jv*>nr^| z+7lRpwuOCY>sVpl?M7y|{@G0bx+;6GYKzfWOK%i)2&bfq zkwpz`R}|_zW3(>{F}{Yli+-)ndF1WB ziBZ0@5C^T9lMo?+6SJ|lYKUM){lIW&M;YSpBLZdSM-uXXU}2K`_u;)ybNJ4W-noCKjZ|DMf{EKush!$UazNN_0lDnzI+ml z{3qkVjX|hl-{G|r{ZMv&9A-S|iaOo?IP^vqi`Gs;N9h|}bN`6h!@pvk%ulR3?S<|` znMJ0!34&_+^WAf?D26_x5BYdNT)Kyv<1P^bWRwVz{!)lV_c`BRDZ-e?49WHW{oN{hBSgPWA^x(XzQjiaZ)ygv5wC956Jd~+7{=cOSkW%PpKQ+K2eRkF zn7ykDnG;K_J>fO6@MR&E@%-7u?X;~DVkNg@_jn-;g6M&2<2r}lfpDjR5 zWjlUih5h( zVzvn*%8(p$G0$WE-swBBBzfUewF1nO5cd-2Uy^6m0k^qifC#MuF&1_R(5IHK$$d6j zUWhYXJ9u(?(i7P`8=H@L)D&DK7M9*j-SQT0Co$_cYJE5Dq<(vZ2=;bjvoa64FV`yaUAZQBmkg`;B<9j2qLs6K_l4v)3*(SHD*;a4(FkLI z*0;&=P-Pd^f;*Y;EJ((=t;zWCF_SarZ1UvP6ntP7ggo`FGgAO-;lm z`j7^(TRwdYJ8Qot;3@S$Bflm>-!d4{2|>8{EDYLu@o-xZgGEc?@v=DqDG%6D`-ZuK z!KK5(!I8&*`qbIwMn25yCH zayjy>s2SeIb=->t;>%bJZ;3~plP(s^Y{2|4%&R;ZhAUbzkRfjyEfv-dP@GBJO&j0!3=$T5^-5G0>39GP>bTj`%Dz%`naQHND2Z~iD8B5SWPbfh-DrY_s&N3 zk34K#-~gJ8aB55n5*30FWl2nAu7i*lj#wbaoV}%mSayT@^I48ql(i9hb@Ax1cf}Y* z6`u1t&}QEGhC>O=+K9x>FaCHHf$UWpSUSfHe{8j>uhqxldB)IwZq80iH7N44 zOunIxLPJedG^?PQGx~fe9iO+o%V0f1~z`f--OZ0)wLUycOc4L-_9`BdB82(lrvsbC1pvf1% z78v85sU|zRwa_FVh$x90CR$SqujPPev)!S-%jX{)`|pfn#}2B+u0K2R!Z8KiuBhXZ z0cXbRTu~lsiH$qdFoElv9S!P;UakU*z)*OZ&{5SSA(#w?hn7vLV>~qqnLdNVWw8d9q?Ba5EhE(8d z6*HQoD==>`F|Aw$4mww2J-tTXsVfVozdmq#8Mad+JMDG}3}!RK-~}^JhtQL>wj7!H z6)5&3-hEz%tzPU<7+lU-Nhvep0RJ@c@O_vW@mK`?kiUe1B{>$RLu(`O~s!X8e}zRwfC4qm}d`}1OamM!G0 zM1ryJB`{cBh*3HcG<~BlYg!SuZKGeB*#a9bF`IOR7*p&Efp-!#2eI2}HuDJ#CAdcX zv;3wAx8uajBPEV0vc!R_kMQR37#x1>i)ALp(AiD@&8s|oG8N+5(QMc{ixKrh2xVfv zbmFQ7efZff=c3^tG0iLqdXUGGAtt)DP6V4(%o8OZx~RlX(Z2bpKb((3-Aq(0A@+8! zMBhE+%{DWG-ktMbe%?!i@^JDZao#>5bU7FAxs?5(io}Tt#EzFmNZrM3sH0*`my+Ns zKl9av)P?cQNLq3?ra(knL`s%qFsYvYC$4?h!LNZ1=(D3bD_*|iYUMq@_3F) zLRg*^LFp~$=&Izj6F9r?D#j(^)aTblSb340;SF-F`kXy`vmaogfPAA64b%Y04WY-* zScGn|0>rqoS4y7Sf0umcClRbR^52GhjG7`w<1`+h6C#{46QPV=v(uxv#>k@{v>Wjr zUsraZ5Iwoiy@;L$lwWmf&+|DCHEcq<_*L7!w7WE5!?MJJ` zFy*ZLI=S@F5HVWGJI>^`J9S7fsGZy?n3>T^8W>0p@U35~phMwTPkRed+1)WX=J#wa2-Q z1>N)5gXaTQdCZGU>6Qud5^uCRQm3n8CaN(<}_; zYptAhqiZkFKOD*n?6wDbw-`@b{zUrr<(?1JE3CuhgorbYi)YA_8 zyF)etwn-LP*EJe0QcFlOr5Ja1KlA;0jW}NgMgIakUL1|P$L$fIt%zsj0cTDR zV<#xH)Jk;NQQ?UGlbA!-zX(?5KP42_xz=b3J9O2X7joS!Q-Qcl?;E?@GQm68^!SD4HFC z_yo@Cc^wSA#r@3ugh0-BzALf+?5!`}&alS<*B}HnS)t^NHyTSlvALZ&{gt{Xmu81m z_vJkIW#CvV2kS;V*kn55^<;OH?{Y<8sW~*suO-oI^xGs7cX*ukdAOpgfteFaqfxgs z3Obg|#&}B&{g+Ir*e5}bnHG(Yve1tmcB6(EL(0ty?Yh*A?cgjRJppzuhIn$!1@X*n z`v!Uw-Mn!`%@XG#T;ayN^Qq)_dmM;`inS?@OJ~6NeKNCWb+M5?_}*9a(0e93Sd|Q5 z^@Y7z7n~8_Vg#w;^|)h|00kQrj5S|@&K>$NTWE)f6UGoOv_-FtD!4YDeC16|^z3kl zyp|r`8|pww+MXSE+UV6)7cY_(INMkXFXLqh%QQlx2Q{bUE!I0(B8A(W(pL%6MaCFT zt-`U%awzJmkF?FYcynBV9zR3eU$2k00ft!CM-5K`)uHBYPERnOQ(}m%9fnX<)y6bU z4Maas$5u@pT=LgP(>^UYKhZ)*Ju!F|`JfvcPb7x!5L3h+aNvL9MXH)rJ-7l>WfBbvNeK@A~kHv$8d(;)xY@# zmk-8x{M#Lu%I)x>&>jm<8=$M&S}Zp*hg_gNL`fzPyf=g7h$n8CIAE56H(t|Y=`FCw z?+SJNUQf-^EDwCT?FRGRftYhH49(p**SMySlr(b4&2qRtObdI@tV6~NTey}6Ak>ce zwnGdtV3Hb+{!)d?M`p!dF+kH8WmwK7uWYgi2KH-Uanc^$hB>j%VFJ7@%pkYK4;{ts zcs0iU9~}GdjAQ=?k30Iwdd}`N@r`pGC$TJAUQ1*19u*u-UxnVa>g))V#?T(okUF=P z*@r9f?V1u~9%`V!k~~Ha%Y^GU4ZOAs$JB-KxE_>Dm1 z)Z~;Q&zu^BIn>f7l%n_^v$VFA-<7oA6tmd5xE${ z41zfcMUbYi$#*z&?3vqin7;S{@`cPq=ZvT$0p`@a`lR}BCdn+V1N2fi5yRLppWuB8 z`%ama)n5XQyX-00T8IVAe3E8{Y#;WFR&^^xpd~Y8>E*JRQ;7V)LWH@qN48fH48qx4 zluvKifI^&Qc2u9fVrG)%pwW@O{AgxHT`fQlUN4N!YvaJ`@A$-dV<^|E3#d)#F_<%W zNA`i1NSNJ1?lDOKA7UU686kbPc_<_POd{6aQ7XdI-{k8uB#@U7vk?EBze3FSnwaTw z0o0G=VYRsc2VQcI=xNHH%?lEJk;IX03XVbLRG)_v7yx3X#5!_>Eb0g%wsMB@nMQA z^OvfH(6!Q6oh{{9Zt!FgrtA=7M7;>5|;-iwTn3cLUOjml!Nz5u!)#>)Es6HcnTrl z3?}cHvO|CgF3j_{B<7@k zL~vD%F0KEalTErP!CoT~qUwlC|B|4E`$L9&de;VGd}8bs)R-h|3Nem6uYefu(-RS< zaoy8cK@AEqp7NP|j4>rk8`{b zLS->xGKilwMdXQu*h5TMPAux#BNv@d$=#9{4j)OKZ$<$ETZmPOn@ioPDUB09nRN{%R_1d zwFU$E*_6oHGQVM<4%c?=NtpVFIaxhYG5l&0hTcqpng#v;2hwoZo*4lH6EV6njXCV; z=rm#vEj?1fvbp#qPKLS*G3J>J9AySpNo*?mGT#c!8yKyhfsLW;H%KJ5J(vf7m25Oj z$-=&0#NFf5pmHq@=G$|S-aP{~g*Ff{GwaQ{R49yO7QjAdcn62!@EH2h*E_-|-4Ca( zhGE|8G@PCmk5|m0yyi~54`(`G-)_Xdew*MHvkOZ`CBv+^90$7AA#2!Slt<=5Cd&*v zoei-oli0b99S1@+^jN`+xaf1(e>@Y1H|)d2UH&+9cso3I?8ir)U0AgHE~11FVAJsc zc0cZ5qfn38OUCHom4^fAw-}9ahka#j=+lR50Ga#TpAXP6`~Ls(J~+Sj4qTFNqiI+R z+Fmu|#m;7~*IMW`ynu9reUKO(p$B~*6nVXqyB&L+1Lkwo+#iF1v0vEcIuTu1b{4rZ>Px8gP zRaS7iW)0nO#6ri24IINUWf?n6OQ@$*iNUqMY|upA!s8xc*v?sR`~6@n<9yh)$Ou=- z;r=}Cha9tT%>U_&6aAd9YnBUIEv)g;!2r{0Eij?Nll#jO7pRM@ctqYc<%Y-j(3qOCqwp7umavNImv*22Z{&iJs- z0n;bBz>}F#*A-kLVBW<(_R^@$&4b1DY|Nd>tb-|ma9Tu7$FF!S-)D%~eVhzc2#xv#oWIOjxmhCaR{LW5ZzGtG3q{gEUue8>z*&_fOkWy-(F?e)36jR*rOFuY z%&dURs!)5Og)zt7QQ)NkD`RC;MHu5H^{?0c?NRNp2vd^P&~4{xIL}wW`BYP!DbvR2 zetNJyW`vSp6XaKIz@#3Qc%7t)yi*F;Xd+8(wmjY!EP^aGfYCa#s;w$KmKi&+Roo*4Jp6O)RVPd~;SXBKS0So&5@ zxAT9BK!buJ(kpCH>+ORF zuk}zDW)JUDe;Av1Ly{bf&$n~_m*3z2fyMs$_ur#wmI^9>fr|h z@ioo}KCd*eb+r*hPYuwvR{^oq?04(KKDPwU42;%c{^J0|FvGDyJpfM+BtWSk2_u5( zA?irMkC6dLm7=DEy-ya}RXDS7BVHP9gi3HF`VXLfAioj=>`P&(SAj!j71&=_f#`Y6 zZVIV_PVz<^Sz3XC{VI_;lpRqymDu>Q65;#G&{M#_b1BEhH5Hh~9InIu6&R3S4gs<5 zndWkIo@a(=T{)I!N)Wn}TnRJrg>vk=pI(Gp{_LIgX9kp9E`Ie$z}g?lxD`x)aAziS zK?0bOEP>zxXV}Cz2gorEVeZvt@`?dp$a_AfPYc8{b`ls3l^{n+f>nJBF==QK-bLiV zCP)HnW|qe6XV&X!34Y5_k4s+UKt>_Tz7#@yq7c#J3Nev+ptZWxe;&)lNBt!HwqQ=4 zVK0SnThX}i{UGB5Wvq^ zR3gHkQZeczciFd;|-LKf2~J6QKYy!%QNUKhiBEp@TvBqtEJzP!vlea@+uUlT&=u?Pb`3*p|#&p_R&4D)%T z(y24}DSJtia%18q9*YqpVueX-?9>mw* zPjUT2?~+EO1dbQ!Z+b}`bsBwVJE^zbC&E4ALXY+WVoheZCJJ%n6@6qP5vFpxEC&{#dNfqrlQE4+e zY4C5E=lX0T#ty4SJu^6d7_ncDyxF3Htyr$kylPKo%6&P8efMJ7lOV>|T|3}?WiNJm z9E6_1CL9{WUbhVP{H@uHm*$7bg;n9!YzMflv1P8-W+;wgC&%1$th?I`SG!iEJ#2w| z*&WQge-A!U57FTF06)jw!yTJ8_GY%xM|21Kn_F?uwiUO7@4(H!1|F7>`@q!)- z^YywZ{72l&j!$So%C=@0ZfM5E&^qMEwPKS`3$_vSN_THz2iI*x_HV);r{mDPQ^%~i z?a+(}#CjX9cMW4PmOA4Q=7A+^dqLYM46Ed=F?*jWR&95Jx0E?t^Bu8$Gxd*;*s=6P z8zU@35!E#azaM%cK;Vb&d;IWWp(9jVh*hQpq5GsL$V}kRYEO)vYm1(KRwz}CMU*%S z7cYA-`zQd@N@9^z?~LPLqcG-r6mx6Y;dIZMetT1PKs&*tk2=1LbYoYW3(&u9TJ=x*S-IB`YmZ!Wnr8Jy&z? zm_U`=CYcROq+hWgN< zi!ySh7A1<%tG9w#&|VE7mCz6Z`L$~dLMl(8R?7(Vf2SR(#6DhN9=Sk z$HmVokeZ~6MVBnG;}7+_G1@@C_3W799zQP18efkeH~C*YJ|t#n1S@m1Qu1+ zICt3#_Xprw3S1o!JC2klJX;d6_*%JT}Ec8*?1=H^8Db%*7lP z0(I&RwC%0nwM_>fL(I`S$^ZpdjPZ81J-rVuILEx?l@D!U{M{F6#kP3;(G0_nyTBwx zlepp#h6-h&FhUioTpwwII`AIU)_nKJBU@MWx$Vl?r3uPw%<%PMFjg{0W8A?IY)!O8 z*bZyRFI|VHpVSa+p^e2~s2`YW#yoLF-t!G$q|Nud;)pvZR1hAaOmC(xelN9y$>1d3 zKl5S58S#I_cl)2$j9OJ5XOQc^mQ#_r)&|L ztf}RF#%`($h0t%{>`}-Jc52%Ozs|(wD$Y8~reWu&2Ig7WVdL`xls)AP*NC}Yf9nA} zIOFB}A0!sY{FsXDeeA2+OYUnPXXWIDS3V$bHeHB8XC)A+h>=KK)!tJ=zoZ!V?ARAZ zY&eQI#h=`wC;7p%&p3meNFR?fz5bkY3**VF4yWHtL4-V0YAd#rPfijeme~sG_nA%R zEWr!%qR+^iCXdsu?&41&4xA$2JEI8cd)S}F{4ba1)CeDCe}rct3_XfaOk7wqK?E`9 z^+OA&*(fZ;MRMv3iT}p$7Gpo>sP@ztcO(B=`;}e2@2D%3;(T09fYYf$1br#M2+sdM zeGwyT68%|wL~tNqJit+cSRTJ-;@yrlh1l{yLhXVCqsg8Bv6Mh%bRp(?u*Wu(xY~p{ zzt1JiS7BEyJ$#pTQj;=@ocd5|b|oTIJQqOeGI47ybqnNTPu*a@+GH_G=L>OgzXZqD zQY%{~#93lcRq7vf+Xc*(EPyHb(E65q3|k|?%UL1>@R*H?U^m87u3csoz^A(y(oyt? zRdD-mvundv1h-~p19%E>b-4)Jsk`pRIsL(jxfpqlxm_LXlIzDT17-+3AQxJ|$M*c~ zpSv!?`_1|2%WQ%PU-B^6BoAYmcYKc={L+zG$e_klD4z#h%*SQ=xn8zK;q!Mp)T-;^ zp_Kt5CoG4??PvrXN`v&IZFn-h8gn-9Kur90=Fx3|=9@yS9jFHl=OkvUi)>^qbB}$DvG*gpj!p+{WBBMvoirZJS_0QDVggwX0}dCN93_o99fc% zdDFMi8^0Zm%l9H=M-8fZ4tqFn!~B7T(2^Iy<8~Y-jHy8wbMw|E)u3p9HO#|zV$!Sg zcu~5a1+LqW`(YD(WEq&TuNp2b)cZfLgx~RdIN9Y6x`Z}infg}xhA*J)RtsL8xd=&a zHZHc_L5yM>#C`AL&=_&{0qZ5 zi7T#8Rl}LAcntjE1h*~BCH={6uqy$G_!Nq%N#WSi8IAEG`e;^!;o9~P6cmL(XLJxg zn6g**dl-zE)9`(4H13@ag|!E}8=iZkp;rv%MMvVNn#uM)5F z^$#x&K*a+ujMx}}Od0kRQ~zW%c@aK^s$;--VsBMFj4w39&n5QwwbK{3ulVCYwKo*i z;;^4Oqal^ZJ%IwP1Maf%TD5<;RbblkvN%q2a zdvjcyZ^GU#6RaFy4flgCkYfItLmholRc?rHu)3@0oD6l7N6gzL3$0L>_&C`xe$>hn?ELzK2U>6>+)N7%Rru!rfa9r*d@g zegZoS2AZJii#M!|Z7|Hu5;K2j{}o2C z;{4&btQ!XTIACxi^Vb{#(Xhh<()!e}tg}bsPj{qs_`sC>d>0MB|KDCm{$E|^Y!qsk zpHYJr-X{XGy>aH}dZ<#{(tqMgs5~)8RIve^b{gQTybS{Q9hvE;0$FBZtazS*XMVA0 zT;_w|@<@E|orpQE%h8nf0A)W_akrri7jKp#M3>wvG3;UL0!m^l@jRmvuP>Fe>!SjL zr~x>tS%EQOl@J}H?p2%T8*%lu8_X!B&&z`vg5OihP^3%U!Sqrr)i1&fr4odEVCU1y z66)_uu(VGphR!d+P1#bcRb?LRxnev!OOB7fzop9g(4J^4A=l}qmV-&e-sk95{?yDF zm?Q_=$hC-95gTk1BJEZIVodUJfHUz0<@_D}K({W@+Y?Bv)kI&HK)_i_A)1Ks%Ey#o z{NX~>s~6#~N@`P`#F#~{Q0<`v4diRX;tO#ljPvlP%qpG3Y^^TjBDd!v_bcbR{>jj~ znTF)5g|I!)hEDpmhvXDs%8(qqxWZij`h55vrN4$a)t~&?=XN1dFA30#9PCNz>QtBK zVl?rpFpXRtxyXA1ndwQ+@~J&_m%D`s_hJ7hdE8~x_f4Xva#A5PoI3K+^9uEq%^OONcb5=>ule4CiBs>3uq}*zQ=G-es0-1U%#3~^ zb*#IX@pQC+{pieuBFDT0`FMAh9Oy*m?DI1Zr^2j40;;AzUAr5`a zdHS$N)S>cy#`^QQ?aZi}Lr;_x&lzSE{7%Tn{q58XY~}2o^Wni;@-gva0VZ(2RdXHD zi}?cXFY-BqWS_!!@~Q`^iy()2B~!>QAu-PMqV9oui||nDFThL$4R$VYKTf;Ob%==B z4c~I{{QZ+bTT7%`=cOrSOH@+}Wq`cD)4#Hhf)jN%|j}Kyc$SJ5aQ&;(N2R6QL z!rX+N=3$Q5(zx?;&&b zgMaQF{|*>Da#0x8FZY7|6BT@wj6l-G419U$58ol7xFr{eQ3Y`rqZ;YpXA{$_j&Io(-9qNS6OT=ycRIu}; z31p}1U?x5G-Ilmv?*bQG?eB#ylMOLlhI(9qHB?mSpRduxNAk4`$=%g&_l1Bn=XYfR zXqoMgnfuM~Es;H4%$w*E%p8b!wm79_k2VEAWEGm=)RkCBna9HKYdnVDj=&Q)(vRsI z(Dy$1XW#X(XRd6bcPK7XuWL0b1%ffmQJbNPly}|;-;{>E^3-JRGQx}_%uzi+?}FKDA;Eqh?8C&*uEiqd*b{GeaxB1}9g4uUg_|D#<)fY_QyW1Q}s&3HvVuz+WBX)~8FbmHS z@7%+2YJC81`#YdVg(<48c;M_N6Vx9G!rElMKF~X#*aEqN|9ZH4}Z8gWakzP=s9wkzj{b9t&zFU})uyG@Lw`t;>o(Aue z`bc=7K|PrU&Km2Z)|VQFD?C2kbzt_#3gd%ZF{!r|%wyI}V zg(U-0F{H)~$1I|-{Dm{-nt9-xV-pTN)qxl1C(qO>(YvD({=}@J`bsE{tU$Ng3e1{S ziDx4!kkGXf*4xXtCM-n{Y6VU|EJsf73VeQEj)7e&knyt|HkYY^JyeQ@mt|OFRfv8s ziqIpZ1mZmB$Kl>~Y##dz#U-Q+hhGt-HGx6w~ONQ{FmVr;R? zLU$X^;rAtDMrkhUf2LuW#}fAVHBuLrit%;XIFyl%(VUa7NMJ74T6*DEq~kHU*tO;K z*XRnc>m$8M2F#!5JoPd4t5yz2%BWv$As)R# z4l}|{jGzNzc2?zK;Cdli3Yn!JLhlW6;?RX+MDw}6;p_}sA;f*+Sh+nyY_^~tfmlza zl$@?x0lqDw7e9hHo_b!xvAGzKoQFQIa&UzjO#df2Sdf^HLql?Lc2EJ@cjx1D&s;o~ zFQDd*n$G|MHkET*>IHbUl=FDv#HGah%CcNL6bNBVo_uE_v#^flV^$co0<$@rt|UiE zPICr%W8cHfn=;FT3%yvKWyHkP8*f#mufBo3u=K|N_;s>q)idqFo*q?_GPvY0D1z510{{OM$e{0BV3YnQzCO~!&@oHiLqMO(| zph6CI9Q6tV>GkKD#yf-AYMa=Z=*e}D2WS5D%}K%qxR;fWofYI|~ zeb{_&!=SaT_*vP4I^x7NV_ML(fwL5?OIX`+5Xbgp!61~~7OBkF9B+k1W{yZ18q2KI zDtvu#3psHu)X&|Ai^_fa8=32t)s73lpWyq5hs+0kz`o5#jLv_I(D6^OX2#QhuKoXy zuKoX~`@@olH=&)7isja)P`sb($w_@M&`$=^?=`W(jDDiy(fCOoaI;q|W($(pvzVXDd{>o@IvcmjqXULDTf&S?*gi~9aO}*rgMgz3A zuY`}A911zdpIGmM+zJPJg**^7ob&R|V4OS8+5B01Y^!&{>aOnaz3%|Snann5w};|6 zAEfpO#$N@o%-Zon%pZSDy-y6czzYk>vr2l$qC4|t&xXXol=r;~dJ~^^nT%vl1&mlS z`(Ii5({=1oV;YGm@yxnVVIDX07uxgf@pF103TicR{IU-8jg(Q~>48{(UlOeqa|l@p%`#H7AEvu zj<1WLRxBE8wd|0l7l2*;*>kbq8Uah~@oXh^1eNTCQ!&KdQe)_?H%EGhEzVF65>L;c z!7+Di&$PuM|0v{2`{I6lAU4iU#7*W~)DMWIm&^mIq55cjN3EiX2~3E&d!@Oc-!4mJ zQ(qihOMGo)hW*3YP1kM=1X*6W=ez!C-|p`hPcJtd}j0_2T?L z-w68~*5boq3p^WXiEnBKxMOL63rAB>m|+b4Qf1UE(?G#V}asY}t#+J}+Z?EMay>C-J@^HEg~ar!W(h7+rD-llH&(=Nk5(a1C4S zRD-^biHO{#fU-b2_U)|4j|MfoxoLvQ+f~pl$P!~FXhDN|oJ3bE#6OIO*Cv1L>h6pm zhOQXxu8NPnwJ?1`IZAJqep`Vp{J*_)1=<}eux4;M&L)Lmtz0!Qs^uz z!QMw@n18ekH>*qG?of;^jr3Cy_nwZ4M3R76keqK$rKkCxbpjMu2ji7OA$*&6k@xH&!H^MR_65-!ugdJu-pm;IPLI(i zdW`w|L3V|h`IWQmi2tr1T~8deTtItoDWDt+Y~jF&$)>= zzuXaSosY@nA;r`Zp2#B~_$e2jOUYS!5kICfyPw?LX>zp#mkTgcmRSV~#AMdQdE{ZI zY-8`!T4qU6`}vCeW!WRn(f<NVs65=k$D)>$xM9@<~+!Y&~R7?*K_1Zi7RW*)0=->gt}YQ z4a6}!;=2e#-w+oYq(XRrS-Zr1Go9(jH>cL&IrRuTnK?BkA6NU5o0ZAOlq>;E$a^j< z<_w*BiSsqwMslc88wJSZbAH?@fam~yZE^HT5wlvl3F+^n&&!m(2p@?FpNSx=N=`UW zgom8HpC=wJRutj)RO%~qi8JppGwThryLc={EhPubA2IipFq+v~+;_Ts@7&4xxWN78 zCuW8k@#)O(%&j7>ooA7c(Jut38^t+&9lL4^@-bhYc?GW2_$nl$LXEj&L54oVow=CNpS*G&v2JS;ewdkK##U?k{Qb~(0eeLMY(mG*Y7DT> zMeHp%oX||fPv5OrFwh-Aul&)

!6Ouvut4gx9`4}E3>6mV{K1k zjLX);_Adc=|HKD13C8rGx}jT3Fh<-9M?*&-y3Ny~H!}qO3mh?WYcRGCXOEb#8@yFR z(W(~<&4;0QKPH+zkAdvfSd793eT=*thb0ZpxL^>5KC9!9zdI7SnlUIfQbof`MI0>A zN6266kSA>h>1%%2wk!s#9&!GE#TCEFqkdcOj)j}e@vTS~zLWG3%I)vb%@GyHywSH> z70I2-XmK(}Sr7JR=UU-e9P?%!4e*wpvj@Aaus_inIz3IW%F+f!=X8*J-x~dbEun4A ztkj7cF!Ktv+=I+8p875UwV9?p*l%O)!M}IF7>6+A>BQqfmoRt?j={%~%z+!~0_(@j z3ZsAjr+^r{pC{^FjS(|K1J6ep;prG}cu+TcW}zW82YyE!<=mpPlLw^T*?3dwn?W8+g9DMM@f_V*Qy7abgKz-XXH1FJiWxth> ze%J`{86Hshsg0u|W`agLU{|&o)`a=u!doX?-(=2AP-AqdiNzy!eq1^kglnEQC|>Uh z88>EVbW_J}DQjdI=%JWhUwf2eq3me|(Jt=icV^5lH^K?M4BQwY$L>9Ae6f&WO6@i(bh9DB4FcVCwx zhuH-ebIVX}UWmy3MQDx_LEAeI4XvU0P?v-kbE6PApB+1K`IuIgg?i&;RQiZ>thZo=y`P?jx0`@B~8)>TmFF6li@t9bUn%&JU^dh|{&UK)Ew>LdH zzXUi+-2E44@g6YsUv^Sn2CR@$fxFu(f2p~E%WI6-^st9E&A7E$LP;L7DK+% zli6Eagv>stw_hMcDS5$E0ri#hh44}2^R0*-H_{Vzoc&W%3fNthhmV^1cy^EZq{Oe! zx-o0Cm^`mNImamKASM)Gdo=YKTd6T#$=4umK5~Mb_&I7L;spp*pa#@~etSzHPW&vu zFz!ob1gfg17qbO}y# zKMHy5qHEY&6;B+0l{r&G`MA0m{mzT9fIRpsa;}~{rUR)pxjurO7{dx+IflC5NBMY~ z%=hHlq%k%DvpBb(KP?|eiS763<{^Q8{3L^D^p^O;hB~{ov(`ZM#x|^fwgYwBTw%`R z8oNV;l-Jo@7qIV@JpTye9ptw+!KKv;Q8v^YZ?3?RmO|wHuE993i;$hx0)Mww#H8MX z#p8Q8)%3sTPyef7p?|g~YTf@A_QAS-%u0~C$1IDxSQyfZsbAWlJK`?#X57QC$uH4= z>Lu)0v>jHC>_Ze3!@l<^q%PQoh_Q)SaN7`ftfO$Wj@;PQNOU^7!G1e?&xeHJq^80V>eRWV=YrbvV^~BwUxGSMo+!Y7}0wh3?U_nA~cc;Cf9fuH4h`R^k z21$t9iMuCn%~aiaHFfX2s;N6O@6J8_2bBQb&Fl&-$qYAkXE1BajmOqK2$Q9=a0^q>XVX;F zj}L?MeH-*~GKCR+P>=UI>Jz^xsS3bxF!;jiv^>KfA-iw5B&(%2R&CE8f z2bO%WLui*3)C8cJ`%rCyu=Yx6HAr*HnC} zXNsy|4=Bo+r;)lGV}FvL9cBwl2llFYnPI-0JF2S9(P*Lt&Q`3z&0sT#zPKV|r7>!k zGQ*AeWP_$rU){|ack3+2#=&m*bbS;Sg=U~CGz=!!3W=!$(V;j2b${Q9maA20_&6E* zbt-aaDs-8=4>S9mVSZ&fXNkw)Zc}N%u>WKX+s<?aoTvY=j@4hC^RIT# zvAm@Nnv_oC%*P5HZ6~77AnHR(mtq(5ieJ23N^KiGpTq26Mh#@?k7|5=;(!tCuz6o_ z7;Dexz`9E=vXAR=$S;T2q`63Vq{nn+4(zk^>^#yVd54zz@EqK9)WQ3N9z9#@F(5*Z z;EB12zof%1a*3m$csNpv8|O7J?ZmziC#$6{DcRvxG52d2SEfnu~9WLt>Mg6`PyQVlpr}s7OMLb@SvCd11~F54?masgYQChWg3} z)Q%1#pVyn&M7M~c!kA}D9`(Ru37V#J#?N`U-*C>iE!cBPj&jFZ8T*FlE4oWAuWuGo z$xHq?${r?aL^l&N+bQYkCqG!Diaa3om-TAVM^DcA3h{R9=5jbuFWM&iPZ|0AJ2Tm- z#OExfCew^~F=mnkjlJmwbEbBI`r7OUf8uwU`AIH#Ryn!iEGZnDiZH^An3LycX%6)Q z`Skw}5@FF3DH5~Hvg{bbbj_U%lqKqDDUuM$^RGtZWD_TZnyjMOu~g#PEj|un9f{ z2etP{}Tf~{ojE3{;1EPIECE<-6}D3Y!#dr z-oRj&8+ejYiK8A>*lk*htWbXb?^%V!$;+|BgEPH%LOcs&Px$Q!bRte#)Y%upB5&A! zAnuG=fifctw9oX#vA#j5O|1H%kU2}`Ywh~vkiXc*x>L+PrRFEMxU%H&VDwBxY8NBm=$Jp z*aItetc7Yq6vRE;arBWFj$<|UUt(u1J1S|!><^)puREcd`s`k!_tGc*4CYMv8nm|Iz3QvDz_du)nD6|2$wHTA~c zvDok;0h5-HBio*Y)o)$UworrR4hNV8uYjL7wGYcu5I7|k4=l<5CnVyQSrneH_ku(3 zP`EcBPPdK3u}Mo%Vr2%aW*)F~wIEJ*gnPj%Sf&Nx&J;5=ra%4QfwfRn*<*A9vmVOX zePI!Ud`$>?q?uBqz@B5{X!dm3z$1StdM3u>gLpd3PP0pH3HwS~AEoc+Fh)E&irf2- zV#2AT$n8{)@0-g13P1f(-|zp*=N%Blj>MJIP}S4{Ke@(REMAGa+$UzMm!Ol}^DnQ5 z?h$9p^bp(5^@F|~C^<12N5)OXHIM1Y>ywN&=KB!PvWotwi}1Rorw-~4GhhV}{m5aT zaxNqrb5S-T2MeejnChO#{%bwPP#-JVl!NaAJ&dG!Wd5$lPzOD%$*D&6(o;{Thj~3c zma)g+_sPu9qQ>Ai-aqoZ7A}LR7r3Z}&qf^-7nMl3kqzBt_89C@V*xv7Z~fAs*L)pz z-qRqZjuy9)=#{mOK-!H!TvsLIY(x}Hdxo$VG6G-U%kbh+GHO4Tq2*h0ubgdn-pzUP zV&be{^#0SovSFAE8E-kiCpP`<9rdx)4KyT|SI>z!vVInBnq;B-8!@8k{ZSD^wYkjB zDC%!tvtwx9>2z347ojIJ)+dcjW1d1BdNbGk@zYd9FZV{;`D<7~eY{;Nv*HI3KM^Y* z{we2qV+YkI9viXd2nTx9*AYjP{~S%MckG7{ubL4H&S$pid>QP>6OOJ$?Q3mfa5L&f z^>S>pBmX&(_gg?+XCGo-@}1s2r7)up{q7Y_Q zQQ!Gtj2IRR$?;Y&;}guDr6za)Z#UPA9cHhkm~Sh^_)B8gd=sN(FLp`^B{0vR26iK{ zII*#7fCMua5~msyb4Jk%Mt<{|fY$}R6i7Tr9jXcYvgr5kZ^Y-2Kx}?U4(TIyoasa; zdnv+|P2`Ygv!l0W7OKdLHcynI4|AjJd}X+Qp66t=994PLBy6C^X$HFwJeX%?&3>vi z%smZdZq__GT3w;Om$?16iR=hokcE12%mFCNf@U(g=^M-`D^S388_$V3dDa1Pd?N`_AXE>`ykjCjw9BQqg{+C^Sybk>&@OQ zZ`4*T$0$K0GV|P_*%Zlq=SW<7>xsGRqOpG@Gr$)6;q=7C$euBWb2BH*oo$SPeH`i6 z_eT9>_OPD{WzVc1s*`4+OOQ7%`uj5@VJez1r)tv>b|-sB!+A7w?U$Nh+>m9MM?X~d zXMen?=40Moj?m1dxFlSG$X524*xVCsoZ0hGi@fd3<*>eMgV&KZP~LZfJshCD7Jx}M zu?YPbhU-O+qn2ckc;<1VOE7nWXup~%`_BE2xrArdN zTE?P`oW>*a8+qyR>=V>tcH8~vV|^IAHeW*b-q-Q=fd(6>01oH=F#Q z_oT>iSMjRkBINhk%lUByh97o9?9vEa?-7Kr9rzg#>4(iWet7vV3jMbx@tWNQn~IY# zJ)QYH=iJC$t!5S$d(pmmA$0swv>Uh_A14IDi`ci+J&^oP3{1o^X#S2~u&3d8Ro52} z7yCe1O-;le;*=JiSaQIVx;ig*EqkJatt)mEurq;Lg+qOppzPWzdOV#VcXGhgVn_UL z8;Yy(mgx9u8D6*WWj^sL{4S4X{~GOI@=mLH#_W9Si%W{GdqzlUvM zmRtu{w4BJ<#)4&tcxe0Q*Q@HO2YhPIMdsrjc(w2&?#?}jsn2#|X2&CFw(!b-`I-)H zc?UrOxi~&J5ATR!KlI6i_xU_Tv%BluCmlvyVfR5k-M>X>Kz;WK-FF@I;3SeoaZ$Vemp7=FQjQdWssaM(E(^tA%&48ku1lgqiZ^Lp12d z@3-(V&)90%DWt@kcbs#R6U}pCucTWLHjGcji&9^FpD5$?7IRUF`EJ=}W4RskkC@w} z;kD@{&e6YJ&O+lXF?Qc#PSOGeZcWL;d(Pm8j%CKwQ)cy3CmVf%9{w}Lf+{g4yGW_M z%tVMf6Fr#)`@VZ7cBNG~MYlg}(c{(!?$dw0gP(V_pz}@|FG?~R7fqQba{GFWo zcJ>MIdpq*byY8{yVFL4BiH-mCetN9)#IP6RvG7Y5+#j2YjV}vOyR{k{IvnG5S~X`< z_wc^qUEHEqslBcmmk!;=z6SSDwBycy`QG?@-lK-w8nEUcWevRib{%;$E77O+O>_^e zf~e6AOxjR|IbW*Kya6*QQf}ZCyK>@(v)jXE2KsYvp6eY9U$>QrE}w~0txWKBoe%bx z1R-vF6b@c=#bx$s_^gdY@>_CfmO*H36OE_aLh;Qgf_|zf2m_f}^FA8yZm+}8PtI60 ziCGHqE;!=ifwDQvab~+cQivOS(Zf88Tu-Ace~d|VN7qB1FxnA`ZV!C0{DB8b_Os`8 zjw4Pin1wTA9O0C`6q98Oar%%K20ZdXMMfn1Bf_!atpzq!&BK*oTXZU4ftIJ3e?KlB zTY|k|W*UJnGlS73Ac7jNP{bXfKdv|s>5G zBc7h%jIZa>ywe5rm>Ggs%;hUT=7(>4H^6vI4$kiKMLlNq6xCgW??G$udzLNU%%kqW zb2%P*yTYDbLm@HDxasMRqILEd($EzN1Lo9K;pf0i zG+iS^Xz0;@*m?Y;ytn^Z&(pGME2dX$#OGP-F~n^#?wHQPE9OEpTVslQP1!xM(FS36 z>~Pf57YCa;{>|5Iq}Mu#`mMrea_z4(!*Dt|{Li|Nv6*`Eu_HBj5vawHC^bU%kfU9!LX8V*Jb$8s<(zEv3DRQ5WqREO*?8>Fe#zW4 zG$*InXLc%z-v|+snTq^U4K`O~!zh3}+DRE6f5?ItH32RIh}&*ZAIn+zpsSowGfUvz zZUuJJm}JBbhf*mHtWaQ7A9A0Zrzc*K!l8=_uzNb{rCh4&C|6i@qEbpqn+6ND(Tt%y07yt4z(QoHrek~hL^yz&W z9m3gvH12Bbs2ybg?|CPvsY{qRDiCHB&al7hh`o^>aO|`imaUvn^THZ-7`mZIx(0P; z(+kEt+;zNN7wYd?83!Twf;q}AF=Okc8#WzrLZNC2JrPc5_M16U{TyJ^)&^DyEAiui z9fH!Gu|#7=9+)|05tcAXUxKzpt1zy4B+TYpp<(0IaHcQzFtsR0p2wrvXzEHh>6L; z#~HaWQs>~tJss|R*W>zYJxa?9Q1UYeZNv3=F_2o@3_be((&EYxHNwVfINw&IV_^BtrTs`U2uo(DZX62Hj*gICDI&3w7AgQH~ciRd65A4A>mK;-*YGRu*cY^NuE&BIvcMhN^vMH6Ed4LJcfci$g>cGzu6m*xO{!wB$Y91Edq_^xLGo=LNk`rVIqTVy~yA0*jl@7Wu z#&OQTmpx&RX#zb%X$r*Tb8b)Ex@shONG-j??9bAF&BFN<^2*2A?L`jqG4bLRKIb2P z%-)(rd`yp_YNgS-9S$ov8j14Ic6_oU)Vk=j6xMy9jt)S zL*@*`va^EMFm*%zg41ROeK4DD)GUB+VYy0kv{7JRy@o@J3l)tQhQ***kl}k?u31#B-rHc$Ly6j z>Vjeru#}l~GuPqnj!-;v2*k@T)Z?DBMWK5bCRaNn_ntd4W|7yK5`fTw5fKSG z2Nil8PD1@&5olLu9v+Xk!saCj81Tsjam(kxvBCjiDp&Y-U&GJ!Fbo?_F4(3J$<-&( zxbqo!x7vXdJx^jy)<2HN{-eD|{}s=-rRgR_&e{smFg0Q;9bq|sAkOZYg5;XhAu?G^ z>^B7&A&YRD8o){2t+Cb82CW|?;ta2Wc5RQqnl}mXXdDaQo38xqPedzKEbNY!Vq?Ej z=Dx4T829yv+E9w8*EhhadOhqtO7Z0IdN{kRNB*SsI9#a1^wv({lz6_yy?w*(J5pDy)MqbQb<$ej9%tCoeGW(Hf7Z45Ywco5hYE!Go}!m+8+KtE20TBC z$_uA4!uu4)J~{=T^M~*y=qUEx-UWs4W;EN(Tro38+?O6e)5ao1?utO}V@K>5v=ui` z+2ZOxU))`A1ZkW8np@7@|LlL|Yw_>=KK@(Bp1(5=TSO{sjxxvUlg#HhH5GP|laO&h zfVfO6;41rP7xKNn%!+;>2lkbQ(`WCDfu|DDGBE-}8l)gUAs*KntiUFd0+d=8qF_KN z62sS{d)P*dEZTtBm=YvTEQN=8DMm|*F{V}tHrHB@BU{$vj)0j%2Xb+tVGjBjm*CgD zVw}8P#J^vJ$}vTVdt89JBa1MvZV^gjiqQRd5i^O3(640y%IlOMdq^QVDTramYalyG z3~QB-ryDdV-WrV!-%{Ag7sgxzcHNzhLQUecpqzc^s?WoA<{Bh6r~m9K^9;V}(S$fg zav~eM$kz?toQ-84*oDe$)V^KVje0|ZA13tt&ro25krImz({t}jP5mQ!@!5B4MlD0J zuM#%yN(>KVkCR4)nH$-M&_<2a5lXb3CBfNg894FG6AMRN#cLDte`~dvx=e#rt#xp? zp<#BZ7TZ>+;aou+W~V~0wJMbG{-+nSL-e@@H9|GGqhcScN`r>4vXMW7d9R5Ybf2w8 z9%pJb`25W~vUAsyISySl_|%f~{!BFv{*q%lyK@y;*@(HQ!;DK>OqVmmwu=hwq}l8= zSEDO=%MS}xcsHB4?@$(66HEWP$820;-jB`bbxNjhZmKu!i%ucx3M2IxUB;0n0Vs6hEbgk713!kLm zSbiq?dX*bXc+ymA%|hc8r~4>?O2_NWIoiJpgp=_>fo z%7v_dEcV|KGgsjP!kSz_wM!XZlw5{)!;5I-a|NXjt1vk2KJLGM_lMeh)($Ag=!v25 zYM+eHu>LW8>Y^|q))5<{2E>zm5k9pk}!k4&ayxta>hb-TF=KP zdH~m~vqG{5^FN0BAyMFlN#Q|IeT%{Iw$WId%3NSxTMcg=3u9_q``c(C4=l#j6-Bsm zG7pWEx#-lO5JzU0LYrHPIwOh^|GgM5Wkqld&q4EGc6*)H!NxHk%Vy+Z=YnFq8j_EB zlZ&zGKn`T1^mwW*Lfe5wI1*Wm_NR;RDLW4XFBZXNng;EuTX;J|iClJh^-*Y%wmk=) zUGouap+o{42Y$tZ7Vy;Mym0! zwvJiZ8c6DD(UE$AjS*^893~F_tc2hxpWh=j2DqxQtC;xjhz2K;b@=r~4W9rF5<+zB zK+s_AHgdjo)i_z5&3+O!`B^RUFH?)$KNo4tulW(F#oBsWSXnSr*NA;;sX6#s!VZe9 zYFIa9Ztq$>re5REMyN5?J{!|NY0!vSkEe*66{E-z7i#f!w+5rvDRF_ktIuR5PVqU{ zo~y*3`_#uW8^x)X3JN9rg7q3$4AG*|EG2H|tFTa_L2yqkUho(M?77%kLx+~c?!sbb zQWUFL zQi6+SB6@%`5%nz<1$|SfiS@^M(R9qoY>P=(*b&HFv)gI;hW*NbS*IF46aMyRg5lhR zPwhRZ5~G`3#n66NU{-PkzDxcu7ntUH5fehrBlcYd1hTC-y}KAwTPDHu$~ES>>_)u* zIk^39m_h$n>*$K*S&Z+O3;!YKQB~)bVJ|l9#s96nc)&_$9A&;<9~b6Y9J2oNdJ1RO zMB%t_ZH995_7H;rXguG>y+;pKLA;4=cjhSvst_Uw{Vj`MB0F55rBlj^{DcwTT}4`MVY5 zP0d>|gP?T|+EnErm0I?cBYF&Lm4meAIe522hxjWwXx~MLrnQ(oOAhsbvlimJ8n{$y z@TE$J-1fW<-mHQ-^JhUg|~Q@w_(af~?c2eH?k%SzO2&pw;}>`?eZ>}I9J;!c@3Udas7i=oh6x`dx`?5U}* z#_NBW=D}bXBPT`Lgomxl_Tq}0%Z?JDVdksdiTR|hn81kzv z_i-L%F2tq@sVHL3TdNkaC@r$V*QG6xu59C*)v}s~(%&vWM(aTHZNTnyqc846Vxu+Y>Q~>`F^`qq41?A)BcFKz;YZT(W9MA_`cXx#fgQR&&Vp?_ zYEh{HwX7tkOMg@FTm{0Y**w-tfo=3F3F^_C&s^9`<;+k$Mos4xdc8_HBWLD-c`FGv zUS+S<7WR>KmBWI%*+S}f^-q|k&@Kzh!l^5rrGSSK=k%SkaCkENbg2y(K!4YJKK{Z; z1v&-EvG#!iGj#m>am<~fcC_19W_BgB+iDoIXBG5(@p(EiC#!6|0^_NBowknp0%~#N z!euCZ!hBd$DXi)F|8bsK3Vk^5r$1}0BY9bBb&ZEga56)L4|~}i+g3)OoCGcED3Iw( zpIL_`}HCq%#R%$3MWN9MLj)QAg% z|BrG(Nx*u+IHwfBmbFg>WnEh0g8w?KC;qpHJ!|+Z`4{aY25j^H#x{oY^T#+pMa?c4 z_8h~WW5BQf!Zpz8-3){|hoihY0H?1w!@7nuHVj;hnaoxjH988CE)np)JQK-lhT-!e zV^~yMLo&n+=GCU?*L?-H!WwxcrdY9lK5X`fq5s)<=4%q8GS@^lG#~Zn*;Eo(-%jck`V=kOl<|381J1Hjj=&wVKy*l`5aR4ybKZ`D3;>jte!_uEVuV+c0qJxl+Wl@z58%(hy_99m}?jwiCu z;h+NRM$)sz$C*N1>%^tZCWy_#CiazFKpEt9#imT~k`^g>wV>#~g z@f?`vI(P_uQ|BePv768Pxdd0{h|!kWv-!mNGWII;`^Nl$S7MBAEy0Nx3EFQJV)o)p zq`nZMX-8%j>`13BKLOJl`Qw?;8$S162?8633J%UO5=4t)1dl_u3l>x~fXA2^IBwG6 z#+1L-;u~~dTN{Y^7y&4Mx3mi@8^h(*|gJfJupCbsLCSK^3|iyV=7)B^h7EMT?P7S25_@ZcJ= zoNL)(e?~4Aoo5eMSq|Ks_1MY$s@`LCFq@-CjpyW4Lvj%nOTB7E4&tWe;BA~N<*1`HF^`WlR98f>Gjatz2GxUh_(IQByWlx}v z8MM@uF6HdGgubP>S?I^!fMe~IsQy5I=$lmfykgLbeOjUH5}19s5`}%4ExI`YvElSY zHqAtb!RaWUoPEgbsXE_i%sgpvhvX>&~uozvKr#qS*v@>7R`}Rx%Gb=Gp9?3wr zQ<<1{CKGctX|QdSijGsG(4=!mTxnp08ZGAuZdI%i^!+I@`SBxIaBle}!9mq^!NA!r zXg(khide(U&aiL)@%C-QYi@YW4Qs%#1`KN;eCkGj;>w#dP_I!OGneOMXv{jC3U^1S z+6#MBAt>w+iQ0aisP%FkbBdzztBm>a?%s&o?}|@jm*aWsMF`f+MIEc92!7-NW6?6m zjLfjf^#)ph(j#`L4!)&2lo{vX`Gf)_9LU4NM=7YT)Z^Pr4F;~s!8GV$)g}j3HFL02 zqJ#MWJq9<^BiKWWEE8%9W^1uxAN@Xkh)H>&Y=AaU<%4Q3Rp5Zp_N1F;UuF)#LR7dbxG zVdsEKh%1g_gqvg`;s|-hZ8F$5RiN2m@{;6yP4a~Z%ag!lXC^kXPfD3)gN046qQfw6 zteqgjHs%yMxJj9zD#hZ)GBgO2P**%=^ z-{$|vjbm0<8wvCCm|3-7h+5}F=(9tLibGPA)sy3U17=ojrjC_5+l^IX+$s|xLP_2? zR)ko8_8|CVV)$?DMCi|cga&flA*ZbAz-t6Q5mK&*@Y;fXw!4KeHWs0?ec)TMiQM{$D?Z z;r(ma!wqY|um%ikz_11kYv7N&2HN&?WY=B<_N`upmq+tab8HIi8#trJB4@07>yD)L zQ;@2%KH{_m&cPTx`P3eIOzNb?xZGS!JD|ap zZhAP#wOAt6VBRV{PK+XsEzl!jx)#s;wAg-4i)FQRSXo!cegQ4Y%$O5Jzq$>5`^n^Q z8?Xx@`mh$44=|&jKGC7nX<|hNKC|!2Wuq9M@|3vIT8mpNs}XoB3BJQqVAUc9#UD~( zw4PZE{ZirkApt+GrJ`?D96|(%nDI6hA7e8yxGD>$R%OBewFDhF?=RetiF36SxZQ#I zs|_VsT0aX3M>%^BkYgmXqf9x+FFnV8Scw?t=VZXmJri5j36W7_05WG>!tdb$aO5%N zk`LZ%F2k0sQgoz#pyg&h#&#*5t&*U}6lToYuunBqgze0U+Mgsvi`HUzZj_?BuLSSL zOW?&GuOfE7j-N~pmXG!GD)SY1JZ0~tNUANySI+t!&rtu$-`DIaL8mJU{6^hu+I&8b zbuw&NBSC-bn*`N*B)N4JeQ#N9W`)0KE3`Ka`(dh3w0RB(rKtnud?QMmj&tmYnZVb-c z_Q$UqOWMudF<2JY*;Dq5tPH>g#FmV#`=ki<(tR}8J znu9~k+j|_W!9{8Tma)SiK%WDf6FJy1o&WaH!)=5fsk3sh-#8bOPw9~TSdFR&DokL$ z)VGgXW)x`QcV36_%)?Tj)MC6beOrCWx7N+U@6^wZTEsj9X7D%6)!^Ds-k0<46@$`n zZJG$i{IXTji!@M-CPtZ9%52fmUGKrNc^p1JjYNmXzOcU@1d~jEIOyUq;&lcZk4r_# z?g#`&B|-8%4gGH>qpNEoMi2{jzD%v@pRnpIA%yhmkNm-G{5e?=KI8n|NeVL;c1AUm zqmg3<&da43dm#f0IHT{eMTo`66ESvIAOE+pp614eZ<%$7h(E033_%VhW)@!Sh)oIEvaE8=emG>uF33FnD<_S#q5pUe2<-C z-zDg`SpvWPawwP~Fm=8h7nZWiWV;;Joc*`lM4c`%=~f=wfYszlskvzQN{AnKBoLNL z@JJ{@yoB8ELjInbfa%o0mJv&PB}>tCuM8J#rSP37VkaYc?N}j>yi12Yx$0R$A^QBD ziVxosv21P}3LknSBHIbKPsIwv#|llFv|6~oQIqBV z*6T2_qa(iD@p8wRrXsr%y-Et6GNKY2^ z1FsWxSe&DQ{}DBw&rxDi2Mt2y8VuQ!gMH04s2Hh5n*tsD*XuChrv~1oDm-MK)jsBO zb(yIm|CxD8C#}-Up*O zxy)+zSG}aZp|YtQBYH@&r$#1vwh$rcH)>ADi_w!@Z7ey{bDs2r1xWC=Gd*JT^Pe`6 zpk6Wk{{hs^@;1FciBU?Q*%MzO_FL0)HIZ6fX4;OdC&d)@acPUB2&<4Gcpo*lb~4;p zDh7yaJ6P~>Jw#|A%S0J(=bJ)3?Nkx!d=q2&7BL3%Tskjf&RBoye(5nQAqM_@A`>q< zrJ;v^3fBCV#2&yD)OJrqrglCSd2A4LH)=1qInv4GV5pzqddqEsu%*`o`V#^SV{gLk z?HBQ)y#cfSJM9^UV>Nun8P(QraF1mR$BQ`P_dxdIPwNJpvWO}f=ieM+R#?13-2y@jK$-JyH z5n7Dguff>DY;+&2hG(`4w?->5;2!&^CaaM7OO3r})Cha1!eATb;J4D?>^C(!GQ)rG zXcZ3M)*zg>_n*g%*B10hnJ1%WFnP>{={Vq)g|;GgMU4>SUQq_F8{fuwBN3Vp3c;KU zDd^WZ9+%!a;jthHXA?6qNfU+T*0b@<+#TCZq7dUk9Gs#+HvRL)D^g)0rM>_n9A`ga zPi7w6PD?|LSs55YovO=M_OsC2)cdLskBE1_Uy@+d8R}H~reb&<5sI??aBSciTr>AX z=}Zw8o)=+Mk{D%P?C+*`KZ-v7j1U=Os6%MVJlUK!GEDA53_eGW(b4pTF)Q_OrWn_l z?>{zHjAdFeI`tEx4m%oRRMf8;OEE)F3{0KuN9O;JyG}eV6ysw{a<9}HY>yIR$65*W z%cSf(5aHQ&F@8!!n4e1TUT-P6BeZ5{rgNbQKlhfA@8#) z3F6fe7}UZQ8$AmI`(MNe9LjH*yuQ>^;2(5IFw}CZ;A6KXs7%wr{?av^I&l5JTzCJm z{tW*b_C~`RFsuQ?8ZfK@!x}KGfxl-BxTdWB3%1x}QUbTQRJ`#n#Q<|>>~HIgyYD;@ zC|tG#Q*NTHW%$)zmRu9b!M#Fz)FCFqsOoT>6^ESVjO1E-=9Qk8_sk{Bd;c;iIdSXB3+ zhSNuc#Dr*E{hEN|3lgw^*#W%+GZDQ=gmKi@p4dT77h=5sl8)NbGI9Ts5N2yLu&7#u zCU-M1W0Mq@l4Y26S%~D(BD{Jm!o#EK5X?*(JFVpj9$h!J_-iLxiwIz`tPGKb^y!qfQ{?Q!r94dtvNgOQ@KMb&Q#@$9F~G^*d8ISwunG&JLzc7QpA7 zBi`mu!rVJEQC-6pKX0k=?5GwB`m&BsQ{&K46*4|((RZN^F6aFBe1D;WakUchCsjxrszHn6LhQb%!TfwRmXTleZqB|Z2PM|zX)$maJEq9LzSyV6 zo=jreG9_M-r@j4&J*VrlaGKxC6y$e%W?^X)DYB=DQSSzIq3UELF^_aObE0MpzlG83 z<+xPFPATSP#n#Gz4Y}6~d(tpimWa~c$*|hSZfxfF_j(nNjs?lsSw9xPU3bR2^HK2l z9*w&_GoVkFpf_`&K0HiE?06xZj|y>MD={!L1$>-DnCwU`>*Ea6ypw^zJL%{)Divd% znc&6i*LXcJ1=FSzckU76euWr)nuw8jiy5!;#2CSR*gea{STsS3S>$n-Pa!s@PfJ4I z)zTsnoJR{$aZiFA{;bg==2tNb;dMtTjBO;Cd4t*k=F*;}AL}eNv&9-AD*eS+CC$Vd z`n?`^XYara_OhOc#iy;Ac*5@8nAA+PnUI0ovUI4bDA+kQzP z*pnn!d9kbDoxM~r_v}_dc+vojIU*$2eHLe>2A87ndXMnGKvrPK8bXRnXV8!j_zQa1YPH+S6J{H2msFO>D9n>rGTxQN`@netHDN zu!q1)ja>G_ibkqYlfA6weN|}hsK%EGO62xZquvD-M*Lt;!5uXwwNT=dwF=MN)i}VP zt-7Rw=^7QfM3BcFtHQ$N{OUs9_OlXm%9Xg}$bW}qqjISdFWD*8(3yUJduE<88$iJs zdI!A{;?vjh^G7j8FA|b}W$&qb5>g(7LOwJDCdZl6dOICW%Tr<7S_sRm2%Hl5;9FWW zmaKBZ$frISFfj}v+cS_pR*b_tli|NG6BSc9lkXrw#26t4Wv~m3`K`D4vr`+>@J*8r zYqNATub&F1CgWgc@(azA-Ld#Gj|)=z#+aXKD#D^kVs_OsAK;4=w_l4fC|C-WzZ`8| z3vq$^R;QN|c2UvyMQr`VN`?Y*!76g93jVC)QZbs{6=MmpYwiW+a`9L;QEz)SI1`tv zgow5f<82QiI(!u&+C>bDpmg+AgyMKqGWsG3ZtI63*(n6_1;87tW;o+>Q}AHv6~X)C zN!Mz(Xmr1L06(*@{na(ke`gIE?rYe?3~Ru!1`KP!um%ikz_14X-Zc>E zxC4o2cf;sp9{R6~g3x3Uo~~Sm=|8Ogj8W!vH$%$P1!&PY1&aGF$hDk@*+D|sES`=} zi<7Z0ja+Q}D$EKctxr^FTU!b3K^2aUQ6in)2rXKu;oUhKMO(74o?PpSwko`L zSK^zg29J8Eu{cDHVehhW`c^hlTC13|pu+z13Jl+-0*C8(L@xBRkp%0vDA0968XTB6 zb$3`cR%)(86T!Lt^;E1}#XQvB-WZ$jhn>ums$M9>ms9EJ(NKsz)S2F6w$_N+LT1&* zLUcDC8~04d2YDPe2eU)rh6uvoB;0PEfF|9=$mx&*opC0HtdOE}NCqmdB*P*k86O5n zP{drSSM5Sk5$cI)$ro|zwhWC5g(zPo!bEE^YCR|a$}HFg^oY4JTkGyu@~>~%F*`{L zag-R*3uS2DlRDy_^oiZ4&Uc%bdH+(xri+o3EJoZc2?8GyyCw=TZ81Gw#%Zug&&1Z6 z)Hx9UzH6C*5Z*tE8iW1M*vU|mjz@9qD7#Ywp9lFO{HGQ2>~{a4EWK zY!Gm2F~YXen-#0YkyssGztO^Rgc`r^)WP9i7Ood+aeT5CD*n47CkOE>w5amZz=$0N zU+$`~gBsGOP1Fcv#z2~@8VTfM)eV$ra953!YssH3SL4>IY?RkgWBhX^))$j^bygzc zSvK5Ot6)KI*N(YL%p9eJ$BS$%93;cAJm$2T3L)Ogj#+yNJPy&j?{yXTEIhGgQveQ) zN<^o+$ry1t1Lsah!apJ%M(IM7xwDgDLJDRkC1cgYc=YI#ghee=AQ_c_z$tMUN)2le z^91^&rJ#WeH3Q7Kvgw_UpM?RqWRe2Ez;K-FmxRV6WAg_Q;tsMqVYvun`in8H5q)9IpzYjAjFrq27|h=to=QAEM}}tX zaqY8#9;~?{Y#1ZKF0ByjA5s7MMvQLVM@n%RCd9>}V{{Y_&+;PYc^Fqu`5R_K{V{E5vyzHySB9m;i{*{eo1DHwBj+$C(3cdv?F|dvj zDUFou22i2scs34oQNpNQ68;Z+Zy8qCx@GG|S6o)y-Q5F8V7|Cpa3>H*a3?{7ySqyu z?oQm@Js}WxcbEI^y>IPv>fEQ!sXBK*wbrg0KX?e4${6qXXtRI4xAw!dge0+#?);>X zuR7QGayL%YJ!425o6J$sN3pu)0JkzbkVEINq zC~oJr_A_i7POv1|3Y|TfG^!RF^QWl8cFW_5sK;KIokM|90jKU}b7f8rBm0R=gM?f< z+vjk~I-h8fBd}vh4!e(LQ}Rj7lU>c`Yh4y=M89k4Q=zMSirKFLS){kl=FYNArtHnY z?s6)2-G!zen#kEF3o*-b<#@5XEMI+_tmE4=vU@j6D1R)~TBWt*Kfabo$4okA5(5$g z5(5$g|CtQT6#o9oeHT&lEtI}jgIFXV%_7@q4$g|_l2R-gqYkn2z#>$$1KC!e%-|Pl zTz=+5i<|Z=30ufMQA@nN(Vh;aI^?v{XQNDwenD=une5KhonrP%^bk1AsbR%{YP?o0 zW=LfX_Lr(Kv8m>X`1&!aisS{tgWygjF4-k0>?)<9RVKyn`V8XBne(tv^c|Ek zqJ23R+m}GAGPd0->)pe>|cq)i`@9brwHy}rN2<*(}Sat@AVlL~usIh*w5S|5| znY3S(P3M_ed}*J?Ceqodn8=DL^SJuhl0(lA%R;W0$z}vTl`XOPBzvIk$BNH&e4f=H z)m^2G0hRyEHAs3b>2IFIfW&~rfW*N64Fi#SA~ULGH1`{Y(LOMONngcGe!F1y9Tt8A zFQb|ICZ4XUK6DIo}el_vMb-*0j+l4VU!kDQR7VHRhrrWzsybd-ZzEcG4Z^y7~ zuA7((s$!9tyV7q|gKySi#=NVhLB594X*GDPswDDjHO+^7jBC)cY;NiXMf{|ffx z7t>u^VYs!xNP51TBV*d&*ZTWSL3 z8JX-jl|}DXdR#I{p-XKRcZ%%kc-f85b8~U@C}8Qi5*|8C7spZ&Z@a0q6*bfKX_*`o zHP$y;*cQ_KPwY(i zMhr(TV10ll2bHf2kVh)1rE0PShcJq^J@hko|NOR zQpTO%#jMx1GNzZ6^CPW<+aiy4hw$VYS6j)G*QNaKD730=Ik){v&{rs8LQ*l0MhG7R zp=l?JdT$fc3OwY>X(Re)%^sFd z&7&q}4vG<$$nT41_ai-quQ6gr%Tz8O&A=gbq3FdhWQ2SYal3+P(m90hzh}|WA|L(3 zK|B~H`f?S7SL?AX$~y`@x+4#ZFCy!8kMNHbz5*{cXY)zW-w=YI>{o>Ytqw94*I9#n4OBs+BhCGi^lz!4bSAg*`V5;_3d8B z`gBufUeF9K7GB}!tUAX1yw1>)YYbW_^1w{XS+roMRD+djuu=_HVnAX*VnAX*V&I>K zf!jBBGER3r=>ww}u_S~g9??v0?Z9s_UYx%jj<(1gwXX|DWt{~z0g()DZAWgAC2^j! zd1$4L;rS!{shsd*BhuK7jD0$`WsiXGcBR78w3K`GrId<%gOSI|nIdl2FDVssS;B|wy72N!F5}E!G_YS0(*p}hj4R>O z#u8i&3R&SJJj42JXMIpM@?kN|%!{Ky=*cYIOxA2krvLjSe5#ZA{41XBxIpG=D(5iD(A zK#s^RD4Uc??};L}^=b}Hr{`c^ltuN~>*)9E4CTjnu>90@TzlW3>9iZ{$l4?6R%xyJr&+6{I>&!*okKd_((#rUkQn%9 zU?9M4E0OC%@vV#ExoQHBUoK#FoGnZN|)}TI}4UkEXH# z%b#gcb5WC|rE+AHMseA39^Lf3h`dvUmFOqf9a6=}3zZC-QHkF8GHR}rqBpRT36_)c?+Ii9Qw_P17AMNJ~iz^uX~?lI;Y!k#^VZa`rV)~=mz`m z*YT$HRYr;4gR|q7NV-+ht&(n)7?2o{7?2o{82HmNuz!LVRwrW_+tcIUrCDyc`q48b zf+_yKT>s#T@%u##bqeM2+aUJ6bYtWMBW!=#(KXDG^4Wo8y4myYr8YXp4Y(L>fz3f9 z9_|tQ?5pC4-5bMm(ZgBLwvs(hD^Ss?Ah+vcTFkHH=8bZ!Mpsg?w^;c67jm;>4p+qt z)-aJR>!DZ9zOF*gb|@raa0MHd7ZT)Cg3gNqtX>pTd9{qtgT?F+wcL|;%NTgAn9aRP ziO4IXeoQ%x_hfQ%=VjeDw`wMdE=%~b%r`h-kuh&G8KilMbmdNr-r;~mvtLoE{cTC}P z(@12Y*|P9w@iO%}A7%GlS7J7yo=wg-+4fsKb5$?1=c?!xFs{QzsSYwFuYrGt&yv!6 zlxiLl0}=xg0}=xg1B+Br8VN5~4?A`)5wlGvlCd{UWyQ!C9$5$eD@|)OI1-mh(b)LM za`Rgp1D1O;e`F$WD%@zR=uN+NX~JVFm8siP=({wLO5xdmNx_|&ZjoF%;L6Mhds@XR zu*OgikJbT9S?9;TC*zJl~&Vsx!C`YtRSeW6kXxv zI$dbpj-pU{E2jU<5;kO%Fk?U|3c{aj`>$fue-^QJPATchqThCS8LCm` zB#3%u;`;5xJCw6DNo3Gk#xOX+g37PnB;*u}!uO5nY0z+{bx$AM z@{I6Iab|~+CxwHfIo(ruTZ#JXw3iuplxN`bA`P211uUFZg89gFb}6SaO_ocjUoIG+bwbo>#qA0Av-$Ze75!V8jFeAj?aFkDX9n|1WeQI9 zO}O=9G)KF{bGwxS=?jW^Gw24jGwbO%qJhHhb)=p=PrqF`|LQzT*Mzh#N(@L0NDN2} zNDN2}{IfBzBf5+$uWC>n5JbdYe-?*Di7ctKziFIV$9dL&KI5K+(^brM{Tz_My{#$S zTkTI~BVQ~^J=s?q&6r;qMDB{9XsRdgo0u}KQzT1I`s2LQ0QrkrREvG~Oidk1mIW~6 zb`&iN3mG*qg)#GEi7LsWlfTH-`jN$$OUWD)d;a4^owc+~?Ab@<3oUt&sne?1@}`7) zqDE?4Q_7HMLYr+8KC8P*h^Z}Nck@z|TNSgmN_b6~#&E|h4h6kDmdwwmrfD8JEk!1* z@L6avEmQc~rlFCL#le%g^H^py{|JZ@?ua(6}b;0W1x-L+b_J6h-|eN@>A7O-lRpHnX2%( zwWZC-Y%XPGQsOSMT$8iV7c*SCsUmCOW(FBAvItKTy{`rN*v%832u}-`yEjR@CFvr&w-#gphvzxJ=!1x2$={df9e;omUec}7-q4?RZ|I+G-IU(1^tWDOKw>~*;LpRr@9LJE5OeX0 zb&(Xl_W!%yS#|t4@twW-{7~dm)yIfEXpu*%oJhMtt_*J*MEf8kg7b~>3CSS-QYz;! z1P~P)%0KgrA*$kh-~^4a=_M+2|3g;+}9W^b&TbZqv*87WY2g!TiNl0$w-p zS???+`VaVi_$CI8zmWU%HK$g8M}BQnrI%hW2;6;}S1u1YI^h&~XSWhO?Hubb)DhhA zyqNQUg88c(T2Z1K4ui}8)K_-%M5=3mmt5}vM?r-{DUYG-<_FyeBK z90zxdWrv>dj>z1}XFE4WH@VD@i4A;XOL!L_?xqn2=i<%GJppnDvqI{GuU~rg`E$)rRs{8o1v!q-?7{dnY)vxKTQ<+Y}KY zX7c9f z1S(|{Q=Nl+2u}*ju1#@%m-+E-< zczUC=YY9I@##FfLPOg5?<(u((7U~;Pc+r^GgLK(!KaZj<&fJ*kkKVI+ESzAA&N^+b znK=;f!jscG{OLC{i34MnVv{0rr#{4x|9i2>14v?aU>bLS#u0ubi|c_ETpYWUN$0DW zbu*8ub_J;TyVs2{P#p~NoBBByRVR-OHLZXe3!mjS#L`3))hNie*C zO~t~eKr<9hiyqWK6%=;c6Dew}{;GxSuP)$PMj^xJ7SqH&Uu0nA(#18Gt}P20azB$Y z6)lpdbVB8l4IM;H)#G~>R({ziyJXWxIR~?%9Q0~3DTq(TYe+f|#ryi%A&Wi<@wD2I z!jMK$G%3C*d;Crri+$7Bw|O@w19nppUqSQXAMm(U&t;u@y1CpSsqtmZ8%s6UKhyOk zy%%Y{ml%*3kQk5{kQn&KF);jMJdtaCu(eOdXniExqe7^Q3C7%i(_eM0>;62xj|ykk zn*f~W#o^dCk=tYAcz89I;@1f{2E|c7*_=?VM3NUd5o=+_u+Fn6sa0e8M`glHw0Jv5 zkH)c9$cB2dw}~rj)>xsQX^P=bJ&*5 z#-kOC@~LKW$Wog2&SLe5C0x5%L-yA^CWw63O2Z<0?5`&Lg_uW6F5rE7Atpb|=@2Pq zoNOv+C-(nG8&>dZZxKxoe<2fA6|gTpiCIIPv9b%LNnIjweyJ>oPe*xrI%AwOh|x+F8DpvJ*qF)@ z;n5X-Gl}&L3GBKSO1Zro11;kCc+sBGq1}YH*J0KTX&^Va0hOM0WSqW^m)tcRT^opV zmg=q2`tXliAEaX`9ZQJ;i2;cLiGhD%z@?oBM&0M|W}MdF_vQcPwm;(gqwec@;<1*= z_xuTJ@IuKq3~f1QuC1K^*Y{_B+LsZNV)^Fn%>*|q{K}kB2$;u)WH;XV`-80yZ^pWD z@thfJMjCK=mNltC8oc=GC1#J7^L5u`&e+bt`-(P^BKM&3%N#tN{5fYE!m|cb5+2%d z(QP4hg-ghJTgZ=1SvWmT;^guI8oeyw>5DwNd6bb+QG(%ur7Znf!PRq>Xo$M3mR=cS zDnv$C>!;QPtRoB&Ls@<&Ew*uV%)|Ta>qZB9o^Eg=p|~U zRw9$DgQ$b{$>;0dR8n5YQXA}v&Ua^V~*&j*b&dx z{Yi}2Urf**dxl)jC1YVO^SleO*A+8YR|{F%P{Ldl;frvoK=k=mV09-B|I-1Cv=SPB zodQNaj6g4NY~~*0C?$#AgAeTj^v*yP;+4 ziFsZf6Pn#)xxp$Fs=DOXQ_rC?1iaY%B`Is{U{N1bz0dKrOD8>xx2S`9%}CEr!x}(R{D8 z;<3IdJ?Ypyf-x%$DCi+HnTsw#bLX=0fGg9TWK6A`$7MGMY8$)aet0g| zEIrt6?ZRvy;j4PZpVpCUFmX*}V*h+Hg|F(Px7m!lnaS|;B`jE2hPv<)_$qt_-ihpk zUN8T$KVOEDbs4|Mlv1WxMro79926c~lgzS(uT&ZL!gDCxBKlItWmB*zk(%{IJXlvr z`o28QtV`kQMv>Jjm%uVn^VD3L$#{`{Wwk4viF;x&bob}N_b3`Gr*Q3VDs2w9u=ZRi zDu(9N&Y3}^Vi;L>M)6zgAfdP8S@B)y?d3&mJy*!g3xzxhFJY8PIrb}xsFxKGd!mfR zo_TDKoWY1L+VpDSN_Bs4_6Nk!Zbl4q`$RJ|Fq|PZZrqdKEE~V!yv(rISi0;t+5gxMFcZQ-~slc*?g(#JW5gr%Iev<^g zWoA;@FM-3aM7F>keVQeXmF76U42jO;GQ&kXuI^kluLgtwJL6(254eez|2#CEx_e1p} z7vd%_FEwE9Qjf8M=yhFk=?`b+kG_7S*O%6Ci2;cLi2;cLiGe?cf&L{Kf7Ky|uauEp zlVhN#3VHXeP+jHphwGD~EEmi=_;BL98O37GzC36bs*ce(O%A4obrg+O*z&AL9F?K- z7}I+_= z*ydh>cb81MzZ01VYb(i16g|5|MO199z`J7+Uj8M_yjQ?Cw;Wb1&S9mP>t9io#{dyj`O*Z8hI^o;kVLI-3QL^gDfi2uaMygkSVf^G=DHS&9@zP_VyWyFPSl1Nn$^dX z_9Grg;fK53!jJ9)=JHGUU=3MZ$(MW8thrIerW+N=@2keqdnp~Jm2)(!lv`&iuzp)5 zdTMhR(jy!1{_c$H<;I7M&h&LZE&DVjO&0t7k?h&VWhCA?L;E?`@SS**wig>XQ(Mo1 zUpJU@g@somPK&E*OM1_&HqE1rN@-N^{@WR@A%*LE(b6#Fqk2j|;=N)QX+mEjhF=ikR^k3{_gf@PukC zBC7cIvYOo)<;3q5@BfjQ=ZY!BTg;%f6M48Hw{i)|h@pGE5>rykWu=-0GQB3g3|W}N z(az_18hw)vN)2>gE%FB%*E4oo14?%!-TE&)OW&pSTVg~*Kw{v}!N87_M!er> zf%V-0evF&KfXN2zS>nnePj$2xm=ic=w(yIZP1CV~WUbu!ztyAjpUx%NCycA+i|9Sf zorBpL)ZTRX>tlMI)B86cTX1L#FFX{29mN_5qrluj1Bi8w2K`FlQq$8XU7&ZC$2o0 zN7Tl7e3<9K;GNEVxfD<3#uOH0`;&e=m~E{Su}n?ilyM%VOP15{ekHY{cKPaD7FWWP zXsS_4VnRB1?-q+pRWXNETEzJ3T%z*xdH<{ek6l$nr!Ao%Zyf`s7T~`spRGliIQ7dX zpm`ZLkK~}5oJ75-6&E>IkaJt~#6Bv)>UkBdZY{ufv^NK~=rJHGfyA}W)O6C}@!4W7 z|0v?M{UG5H;6mW%AoMp?uxCRA?ycN;sPDzJLrGZbC9tk<0okgHQ5jpr;Ik=AJe1F; zkX)*5Q(0S@%-PN9bRCk+smBf!j6Nirv7~*;J+&aD`HhhA2#s4XZ#jh&}^SG%3bG**`z@1enj%?V-zE1En-NQV9Z7= z|2LoGLq^r#Z&PV(gX-(Kv=w@9WK$mw&2>e+uQRQLH~;YQQM4cJN$qPjF1OR=0Wmxg zHQTS2(I`KcCq`t(<_k}Q{W^IVPg=@ks}zh!ma#Ig zn*H~^d9)yqV|SEsG8S0`#X+Q%rZA#;JVP8ZX(m@f(=B;Kd3zBRB*!U-c$(TSVB4@% z_Fnd<_+l`&1Fdj962RTTSsXu_L)#7Mg!N28;dTV7W1^`%7R#ud+05D>E33GSosMS5S=>9|z=&X5?slHXypvu;JPIY? zU?RG6<4HXoO>kH=da02pK8)qnN-LbN%|q`)Fl&}4vfg|#9xaNH-6=s+WED(oT|~_O z0tUXyX8kUa5AZsTrfDT?7PlW4*_6+S*LBB&KDD*63olYtvKic6?lY*<5_qv!7 zLTpS5vnD5TYlS~!PsXrfT_l}~qS4>!%dSg7^e!=H;MBQ{JTQ+DLfe`t2BSJKmY#tz zGX^g)XUHZ!PKmjr zzdUA{u`VMT7Sg#|=v49ZzkIzHb4(}WtWkXx!PrOUT*#b*Z}l8D&NSh7x1hh@H>vml z%1eX~)c^a~LX8-Fj4F}$TZCnx3pS17m{{#iB^kz}q5;GEoi_6{|miI@eeIqplNpRW8+x4~qK3&$obBzBeXs&e)x zyqCxgh$x`PUJHhWg%Z&znga24uXEAC`Ha1(mE;7JaJj ziy0|=xIWIQVQQNt+}~Kq#t)@jh|MDQtF7<^%jU^yC9ERiP?_Y-BF`Y2{GLqdcpZ_4 zU_h8pAbaE8QEN!&mGBX>%?RhtWRWYo-isR-=F;6kc;HeZ%lW7-8~^j6;!UsoJ&6Y% z%f|NKLhsTWd^m6ela&n&Yjcw?{TjHxM5?*|3xm@4|8X5l$3i+55(5$g5(5$ge|83r zpG@M$MLXWM_vUS4Fr5!sWBG6qo?WM7I#v~NJ627U{n z{Wx`==i1TJ_J7Q6MXgYyW~>Hv3YIv!h4bi94BvK%+^q?*XzdUAyKeonEeY~>FVH*%3>$> zUht$>$3!OWNu#sB9W%#R($pfF-N#BO{FOtWlvFwuWV2~-JmFNZLZz6U$ICFjTENbq zmAq+G#yrvYI&@$vr&4p-{G@`ii$$DjnM}Ve38)MI)=0B5uGSQxBKlez)>Kfpsgh-< zs*qb%Df&06=p0$Xkzd7_H6)`vNDXDPBn)4h(66}~!=FYnw>q8MD?|>LWh6~5>d;#B z1{;gMhYw5UGHzuctBuqdd$2~fwdnv^;nAkT6KjjC?wJSO-mk$d+7s3u=FF0M=D%p5 zr|yu9pRor6C+qtg46)=`N8i2;cLi2;cLiGlx_fk8!Eu~46ZOQJG`U1B*q(1|w> zt@-_l1HHOB(LuqC#WA*I-_<6{%a#6*(Tn?{K5N^>0mI{?XgX9MkB*9* z{c6U?(;C!t)#urI3#vqZm+u94EV6uY7;C}H7*CRQys_Of7aNx}>ZhtObb~Gp!{b?V zzL-Oz{<=NQnNPiQQFAOrV^J~Rf3HT#JBy!didlOzpC=;Ypl$y`Jn{+|I3klPE7DOb zET$r}f{tSDOV+8JyC#d7k}G^39Lk71P)_HMWtdu5@L+0<$O|i@!_;DQ-HZ8PkVn6$ zS=0n4GIxOG^SLX>VXk9Ozn0PHL0-&NA$J{e8GE^iqe~K~I8{uii4S*$raF!?TiR{h#_;{@JcY>HSK7KO_bu1|$X~1|$al z{S18dZ=saFZX_SVl-M^qnvIP-@Ec;!A!~0AJH{~fyBiBbgn#L@c#=|W(2VutT%{X6 zZhz}3Xg?%`Gv?-W+F(hpx(Thm8vj*CHGgEorRMoqpLeC>8Fz|a8Kbx_k$FKHMpAXP2O_RKk$AC?gyviFyEi--XW}b z>%!v~X5<$tF!j3+`!nWIE&68fzO%*2PJ`Y-#vIf$N29AYO_ioFu2h}hZfSFPkOfCx zOushw7km%z~%eEeVS^M7O;;_hl(qHBRQsiClKPjN`6cHcfBmK~4@! zIxazO!&2VA6@3Nm%ZMA5P4@aqo}VqFoya-Rwyff(T_qb#tI*J?AYY@5>1zI5ESp13 zt^>=4`Vup+lIqz-JdV!g?0|B76HAD(EX3X>m;0TZaXO}fEZvI@PaU|mMaCH?C7JtS zW7&<=feQPtFO?l%`$g6w{HE;a?xqY0DwK4qq+9>qk1nl!|Nga4I#$xLk{FN}kQn&q zXTWPmE2S}UDrhLHGb+sk*;`9GXj^e?su_c>`jKql%l0~Vy3|InqjwsLZEQK(-jrJ9 zAa)dZay?6zq9jYsXIrsG(U9J^0%@OM#P-J8yc}f5=y7u}=p$UlYClK}@I_NA_n8l0wv}x0CT`cn@w>4`%vMdDd#qKwU-D zQ$y#7UIk6Mm8oNO)0oe1%}Gri#o>_OaemxPcmWKeaj_XaHtCY|SeM#xecXl`)6>xo z*>PR&-Jiwt-YOV3(Gh+Hdc>6L(;-Wd$@lfRsh7jAZ;N@8P|lQQ#kh6JC#SL$Bk?`t z$TG_AE#@VQxvx;puUa*}c8+JVW(93SE7&q!d>K}X%!DdbQ)@W#d@(1Tg(vITaONjC zGQ3FuS^?H%uPLQEu9%fkA}hhY2>Fev%ov%;-t1s9k^^}6OT6#rV-@B5Rw~Y~ER~(= z+!!6(T-nKm$_zfYLej00Zk2Sa#DK(r#DK(r#K3=h21YLWU8&F47D`To6lof)#3H}R zbeu4ot_K{&EWaODQvC=CU4WLN4VzX5&`QslhR0TXoNmI;MIn@Sn!{PedAM1Ia%=cP z)T*868DNJ`niXBn3P1hd)p)--hFz0F=`hKT){SP-(QrQT@6B1iHj@0bajX^j3Xw8b ziZ)DUP3uYIE?30dwJWjBJM(saUwpSs7Ps~0@kB#x#~9FR$2>|Z9mq+V$=hlh?v2x8 zzmf)8=X!Bz$zaYtXn}T@+1&bJgnzUhagHjCD4)sl6UyA1uSopo*?7$C&U{hJ-L~3< zUKvW9G80({UF9iSvx?Z)%cz`C!%|rdO%kg)_@$V>$4mL3l0((mrN}QA`K@OwxcMQI zjhaQMi9D}1qbj*Lvyxvq)wIg5puf>l60a>`pvXq(+cujyrk2Ea4QIKQ59|ATus*zu zZ^sLnEj((A6%$dfP^GV$t!(qyQ;G}YVq`BKoR`gP*Ph6mS(x>|OzQDFl6IBWtN-@v zl~gzR=dYVc=TJI_5(5$g|40VzUvIB8O0~Jtsnx24YO1s9jXnF%STd@)A1B)RqTAPp z%&1Uy9`o=5Vh9{ueEUzJpt+VH$x!{;kM70_m_3|~O1d+t zYvehZHG$eTGVI4sXKQ7yl;Xj=&Uu`H?n@g`4bt=tfvOQ)jnZrjgx~~JH=k&+2 zyByD=jk#o}O1E7i+skPx4}_+U4bVq9R*QtvVLS*|M7~&`Xmu@-jb+2Pg-ck|vYhi+%stm>O;kte}2)A=E_E@wU+MtIN1&A+l%1_dPk4{Qk0v zM@`Gwk~tXL4rT0KV!_n&{tQ^U2t|!?wD%s($mxl!yyeNO$XwYc)vt~*Kw>~*;D5tFZqGJK36~b}%~TEiteHPt z%<-E9@y0s>o0WbH8tTt&WiPxBEaJ*zlf!AvvDo&=b$~Kge>%q)i;mS3UrB!Ph z$>yzL81B=Wco`;XKRl zfbu2K*Bs7>?lbXjG>zd)l{gY$!1L**Tp#GlTuU|51{+e*S)1=IjQQa?gO|sL5a-(y z^Pb{))x_&`>c!1e69TVK#r2pe3iCDCdQOWKaSFVRR%2+MI*(qB=Hde-j?GY^(GNAO zcN_C@O%iWruf}-mauhZe6E`A@c;|HXwMyZ!=yP>0%OdS^B`xdYXzQLy?fVdBH7muz zp`1?NvuLH9gSyCkof}uh$Co)+oXqF(1yR2>$>*~0_j>Z%6nt!bWUntf%6c8il!cC| zmwA0@MZ(K3vd3$a7-=kYYZJ*+;2-%JO?ocrGrz=u#DK(r#DK)We{BXjZD^)cZM1>w z(|a@Zu^mg6&&Ram0y0j9lHlpZ(AY>CEsSJ`QvefAMkDt&jLX(qZ2vHWZlZ5?k%lfe z0}|1CXUVTm)49G*j}84MGxwYcrQP*$PBOx-$4pc+r=i+O5ewDn915PnxS85){x%$w zpFJ4tI+(txeP~uE_Wxg*pmSS=rNK_@lQTf0i5emACQ$5Q$cycwrYrA&?Ir{EmRit# zn-2E_thhWZu#jyiM;pThv*n{cWI9M_qN*VjSgjOc&uJd|;3WxShW zK>Bto!W^v8EpVW{$c()?B@Kl()zmjxjPmV7%)1p5oLEG!uw|TmSH&cUINWn%7<@XN z*SF$`7X7lPW5Yy^If`S4iaFnSG5I}nM7~2PCpx;3(nJrlTV*m%yV6gyPUg6~H!U8% zl)Y^?gS4t5-cPzI)m;BKpRuI1=fC#aBb{IA{7MW+3`h(}4E+CPpyh|RG^!s&Wjm4A zrK5xVsD&(uSiqg|819SwE3O8z=HMJY1kR_6OpD)p>G7tw8WlaYN%PcV-1jtof1`)Z zhuM@Il4t+LVVs(yi{oBJTstVEv&WQ+2@Y&_?ty8KuDIKG;l1`qrfBq})$BnWw;Ruz z!Wq21HJOp?hcJ7|Fv9xCaYJ8@KKBh-IY^0SQ?=M^s=(?oO89*?Wx1vat!+mTU}1!t z$YwYgF&d-Tsa#z!od=HEsAp-Rl%>qNJ&HIRm=dM0PPenFl&sKaNR16gM%&Y+&0LZ}J+IMpB7<)(3 zu99|@_J||~BnBh~BnBh~BnJKg3|O@`=4{8&-1IUcwVf-`d0t#^9K&vvNaTBjvFCUs zcBkf2ec1^8edY|mGl!v{T!jCY1|zr4z;gLaR{KmQV%}IxBUEYJUs2@2%5k8#7K0mk z;d5&q84DEH-em+$j}Ih6u^k>UW7riu3cJLi%+4Rn;!CaBZ#<0gVb&DpDWkbaRwXZMA z(|)Tmy$9>ip}hh>HXAW)jUKoAjpyR1nf%fgZW%2bf(+zz>BzvE-~@$h)zNxZEz3Go^NXI$%YKt`W)|92gcqn_kWIxw~GKLj{(! zvFXc{2^w5iSH$a@=og3{&#zr7tjjUOW3MfRBORHcXUI>v-po#taVuKXQ8&Q&v7^u! zF`mS_zH|?q&2LX9Fg$-K*2823+|lOsDtUf%l_SdCfVs~d*z(hyXCEBcz08s(ZPn>G zLyzW7Rk*r)Hr~@UDa)Ti#a^LHV|9>Qs=^g7eR>H0*i{pZ2|6xg|7croHMe2UBojvc zoXMlv!PqMgXYOPRw70pkGa`jO+bkKNAHk8oWI^O75Y#)ER;`0r5$MLx`_`Ou@)TaT za*W@CY;BJ`Sx``Cmj65@yOI*f#~=Gx`lg;OK9X+zUpbS0mewAL0f_;L0f_;L0f~Ws zGy~r)j&XTfDZLN4ap^%MwFd)O5#)zORVa54&SmsDN8X+>#&m%VgObcJ+hD`8?K4qY zJe>>a4j7Czrm=w{TP~ThezZK9N~&CcI-7A`GAec%QKhPYgP9zYyk?W7K8;~(#}XAc z81pV8dFt1P+d+favuiNl97m#hL--5K)F&uOlbb&3qW8d+4PWh9ZQ#L`Tu0P4*>iCD zY|5(b*p}`}VK)tqY!d#oJBD&b{QvUF%2=;+=GrGsoHPxH376+#!&EANL*x*c(%spS zGw0`UYKs}q4`@>}$pUpt7uuT7X2uy;PK=G<<`VJyf6c^8Wbob}YQ{1pH_DBs;`1z0 z)^^-7nTp3{Sw`_%S+cq|ho-C|&$OPydN)yTd`s#T_y_C_{G<7no=;jcB?cr0BnBh~ zBnJNLGVo$}cMLwN@$9*`*qiqvp=}74%YqnkaUNd6>$KU|dGu&xOn!eOPWI5E@v$j% z?>3WBBTZPUJ&7Sl1My#?iR^+VO++v3h7mK!{xpFrcX~1M>qhiSYKBVU`bsd5stJcO^oVMV4blgBtrkz9)@yj*Y0 zlyS4!|3j4pcj44VC(h(KVe@hrCN>(x#?R%qUEaK^jl^enEG0Ej{OG(-7TJEEtn}(C z*~_kTh%C9Mnpb=L*y+)C$GVnAX*VnAZx&(1)EzZ_R&8X@<~1sOU1~tz+R=PFr;SItGKE*PnI5XZN#RqlaY!I? ziZ5hV?Z$F?n=j$p)v;b?v^%))rebD$E!op1$7FS8*JNWHoGCeXo~q&-40_zam07o? znyXZEm3s0e1|$X~1|$X~1|$alUHudxZ9Uog|NW^hAb7hI(BO5dAzor8t#-d61%_t)e5=B+yzZ#An@IKgF??>Xw>Mrje)quJ6J>pVe38wm z_$2Gwt21>jd&u;zL-RpB4jxjU>!1CznDqXndV$1%#DK(r#DK)We?JB~G=ER#U>jb~ zjAGhFM^=AzLHlw5iJl(lcXZ{s(6GHz<(aZXM#OnlDs|>^@~JEnGG*rPvuy;DW`9%v2TMJO25sdi>^I2>+HyNd$VUwm)O0h^M~%W zXtGlA`Iwush^FbXDPw~e{o*zs+tu@9c^wve>!h0NAN(0hT95wwtw+*1m(IDwfW&~r zfW*LmgaJq2Z7hD?7}pmQ806-|tdDLKj}N5F!a%Ao__2Qce9n8@^TaoZd_P-a8?0#A z)r8gerXpvr#^+I1G%6Qa2#1vzFjW)%owLx2n!`y$PbL(*&~u_01L}-O-(<+a@>%pT zb3)P3nie5;L@GHj{)0XPp4(DgYsbVJA`ezgk1@}6I8rB9;R-4+BW&|!b z;-|Y6?l<)CZ)8W?R%TR-{M%J|qEGgvGDcNKH0z^|?PCL~jSY!dVo6^E2i|>CWl={Z zPTn}FxUO}HY{sm{j8K`*mdz)*>ve;*-EL9zL(0$kk8mU1S6XKz1|$X~1|$X~1|$al zXa-Jr&cwfI8-^E+AXw&xc7n(M)82hYMR~1j0DqaG4t?kt4MB~HC4w3im3cq}r3phH z`V74@^r~XRax`{DqY+zdQAw197&X`sqehIzpvID@2o@w746)oV=O$;JKW@&w>z0$; z!@FFI*}^dT?fK0&&%0-Tdt-ifG|InCM_F_fEY61FS!*Vizbl7(%_PJR6|U1t9glZx z9nf_p5ws)`1z-AOfH3DEPR9+qiURTd<|xcA3PQu6HhyZxv-PMQG3h-S;oS8uhE{k(-Mk?eF`)-hr;SRIi95jLce{F z>}&A?tUh}Mhj9%t!}$8FKiVGu`+WXm18jf|umLu}2L2}o?wo7H;fQ%~c#@Cei;{cilGqJ-WvTN9+Fm-ur_NJl$WMr*YSxcmpWqhn;!6rejD3F&bXlVfZHL!vcv_^ z+Y(XO<%z)Uk#KzMgG=86+kc3}r}7}ko(Ox>9!W=Uqdc6OoQVf((^0%O7vEOp;A(II z`Y%ewo0*}wUYd@^@Kl&?n2Hn6W6>Ta#|Re{j`>I7qcOg)dm{#y^1WgEz9(*XMGB7< zfNq;`cw6|RC`(xLpfw8Pj{!v@#@8(;%$ zfDQcF44lcnflZgUL8~JY7Y@fG%C`Vj(n4ta<->Dm91I)F&@d(f+RyFacf%jD2Z3-h z_Jv>F8}KU{f=$&5ggbg;i9-k$tq(x!{zxpb4nphZad?zD0Xu6)z-Y*DJdW_i-qrrd z$?(GZdVloQRbro07G@pI#b>*+pzW%{$i_%me3OZtGr|xk35VD{0uAQD$S@DWnpJL? zCtNG`Fe4asAwHPAFaTX=d~vN^iSa+h;)$@%)||Q+tez8tepdrAuRIAa>Z5s%E6;J| zYf0Gv8(;%$fDN#Le_;bpW@RBJeF*|WqhP61fV)BIsCk%;*C`Q=)fvdpoQUD^-te3` z0z=i-7+5+9^>c?{@q=+_k!ItYau+mpPDa(~p}6>lum@L05X`#+(C6%MG=CF~`$1!H z)X)V6j>9l)nHP2&3fEo*0G_AEW6(Muv?m2%YLyz9Ul-t*MlxLAQ$oEa9{s1pKx0o7 z8fGe>unC0Ag2|Y7ArQrHgd%Ku2+lRWiPtN`VXIcbEH(xQ^TaumLu}2G{@_=;;Q0`rO3qnp!NksYa-i3jY2T$bPQ?Ib|tmf9ZiwyQ8qe zI}%>KV&QKbh^1u{Q7QAnN4Fwy=7?~el{f^aM)<(+kUxgLF%cn7a%fHi60FAJEn!cD z4NpAq{H!Y+SGvIBxeUvbrb3Y{N1sP7&{Zh$wV5kk+o{6Um>?uQ&OrV8Vx%`tLvKk5 zj^?Dpa!v|1xhEs-g%acbk_hWVVYuuX591Ogtd7Sc_`3|)#>603CkAg#NW#YciCB}! z8Mddp=HuscI~!mFY=8~0fq#7i*BcIC%b^NH_#0r`Pf7UPaW;lTPRD?nB&2>d>1KD)+-QpvxIfF zZulU+Xd*QF`5>um5_V7X5%%0lfW{#=GzPh0=)yRZk4?fwWh%yuOoGe#sqh|<2D6vh zu)3QI@7F6}(v^+E50Y_Q8joGVK4WF4GVyX((!#yY(Hzs7j{*DTHZ^vQzmr-zg zmCNI>JPysDAF%;8zy{a=8(;%Hz`&yZny&o zejbQtWxm+Dd6KZVt+1C@wGRT+6X31ogJMq=KHnOTK+R;>eG!iP{StBeZ3S+pr6P25 zAXZzeU=^H#fV_ANIGl|-n_P6XB*Q5`9_lBlc-)zZ)1RlnenAfUA`Ks3Ny2B(cpR2% z&wu^elb>ULj@bYkU;}J`4g9+SRhowDY`qFxwp@mcH+CXq!4a9qopJcfTT>9ZBLho< zg?XpDLNHVKT>s|>O2o)w@%6EI400Ftian;nTw#p#?j~ROw&o+MCKN{AA@H7;3+Eew zc%T`FjXB{sUpEyKbv-fS?qqzhJsGWslVG0|4>R**+Y zh(-PCL~OQB$LcY;n0Yn@x*ud?Q%4@qnvIFVI=AmF$-#21EL=3r!Ua<`UdCtgIBXB7 zyZCj>=WaH@2G{@_U;}L6Hv^(hW7qdbJV$rNb#&VwMdpQd7`FDBtm2Uu@*XCjf36Y} zEE3_`l7x{PB4F@+Atn~*VuWD??CdL`8Wn@R!oFW(tpwOqreV>&7&uZko;Js#XoV}5 z|2z@%UYmlh{l2hnP@sQFB)aY;<8xtsgqPpNznTlNzsYtC# zfV?sr{Z=I52mK6$t;mN$FB94ua`2@?E}DF^ksvR?it%c+R%dgDQFw~h54uFmu5n%B_8)rmLPvnI__qLL-%wX zK3%86^Z|M3V;2nViz+<2?gKCBRLmOShpv-hm~}>hz^|v`^BbOcXTJ|j^QOSvGz@*~ zRrqFUGQy-e2&_p*vM@)WZALoIXbbZQ?k6F(Dgz&zrr@*rSvdJ^A!5XNIN3{$kpuFv z;dv=uoyfy>Yc(Q2OydmOgU$X{kMS+n=4^lsumLu}2G~FYk?V1j^Eh9AU6$u;gvaBD zp}aK6UDU0#GGr_|UzJR9eH(@-)i6PxxFV_0(*Uc8r&rdR2lVL8Kc?ac<*02^QfY=8~0 zfxj7uZh8vGm)l^zX5&~YgptxYrVwQV_yu9QQj&d1R^DYz(7 zW2I$2bU%zmpE^CJI%Xz2VUT6gGHaXwn$$y5@^B$%Po~5)Q?#7`z&k3HPuR z?47N~PZx!Cvrc6pDmfF2opX@1G7A&N#$x91bof6hMCYC&q_n1B#jrfgoLs~imd*an zEZ5*%gR=oPzy{a=8(;&!7^H3VX@|f?8ajkv>$cFosTn+_AnYDk^X33 zl?8=m39e4a#fkfQh^U%{#GPsAdnFX5i$f8;J_bYk1tYE`2$OD1z!w#+n6^9^i+_&C zdpWU4HHn4lcp5I1M8K#m8FN?X&os7b=Vik4@*MU9yAsfD5s-WSR zgA5_d24BhN49gjoGb|fm18jf|umLu}2L3|>p|5GUwzhqRrpTMJNnd^?yRu^>s+zoz zS~37vI=vvK7*sz^#7DARv~`rBvpOB-2^FZCQHrDIl5p%oGGz|&&f`XUWmr>0~7hGe|ul84I{2_AWiK6l7 ztr_Tdyb?k8rXpgKAB@VQ;Igm;a}sm#c~u22g(l#^xqPI|OvCA2xtRB327Wv}9Y*)F z5caqb&x$HAGLqNU`t7;lTYjCg0XDz}*Z><~18m^;4OCneySfj%jr}EC@Zq#!GLs)Q zac11lvWNReV$EGI6t0?#u3?$zFRX*LcI+HzCCtP5fE<+Or{mxkld(P|5`#7b!)cQj zuCK{~+09_oeHDY6vkB;ZI3C};QX+my3iRJC$60$dwks1cC@>#$^h@B{D<2Q8mtgUs zG8lIk;O&bMJPym_usjaS2G{@_U;}J`4X}a#vVj#_enPA0CN?Lm#+x5z$trhTl7&0n zm1Q`4;OdES7`#Q;+rTgfBd)9Qw0J%&I-(FFtR1^DArV^>gf$E9ML=h$98r=4Jh`gI zxK%=atxUqfeVI76BNAD{nzX93(TEE!fs2<4#o`=nn30C%A4OoBF!$iSRb}Y^P9A4i zHv3;T%eCq6*QVSz+&6514X^<=(9;a)Z-0UV`>)~Ru|+6X1<1aUJ(sOZkl?53eu#S_ z$Lp^G;H;xYd%sfTJr?%Y`ZxxMg*CbQ&7TVCvJe5|i0dVB$h1}BgWF1Mn^%nXq3L*39LO1#Gc0FVHoykh02^QfY=8~? zw+*z!Jc8HjSCKS$CQfum$^yq}VC_v~oN+A1r@2`e`yv>Li;J=ThzbkM12DtKA2o_p z462HSlTjiP17Z*;>?vDxMull^^D(kH4<0EqFyvwk79WU(ZbBs1CYNJEbQTt`EW>M7 z`6yjh%o&!={5YC^dp8-I49ZYBqZkA2a#`w3a7Vvj8JY5>+A18zHJVcuO~y{wz*xHAqotxkgO zfm{r^9EXcT)i5@#!~xGznCy$kiJTlrCKN(asmA8%X&9fGiKllmFsLkrGc0FV&aiBN z4X^<=zy{a=8~8sluyDjnEL-^yOKi5GcyG7Mo2x{qb_WhDO~yREWE^>!2KO^*2s$Lk z)d&9AGf<5aW=gD77a`(V7WR!-p-3+V+fF6p)S_VMIECSCuCTvXU?OK&Hv4~KwkOq^ ze5^dS!Uos?8(;%$;2#^v%y|K|!Ci=tM8bSv55v34F|i{8!zV|fqcj(vZ;eA+QvkN?%Y(M7iZd){SkAC)fDNz#Hoykh z02}zH7}#>=M-;ZzL;5UGHa^J-bAArN@i&WbWkCiG-VaCXBsmWC4@Kj}czk(74$GYp zSSyM{(Wj}{u9t!SgT|ucK^Q(hsNf9CX8$Q>xjy~J^(prc_YWIj18jf|^b`YsStD{q z|HnvnG=Y=25BBG{;fLZ#G-?!JaCjK*=Lci{%Shf9R5Fr;HgeB4k{IpHzvS# zbPUE8$D?fhR1DY|jf4fh=yS;%CR@Uhc{l~PU+_5WpXs^e{|ld6*Z><~18jf|uz{Xr zpuKlH(vm9h&9{?qYIr=}g$LfLo`gl`T=8DqWX$`(8_xy{d)Qu`BUL2 zJmJH033x66&m~|3Y=8~00XDz}*uWoVpz-BxOkHtUcKy2u=-LM$)Oj-eeB3eThlwa! zI}UXvLl8D=5|Yi`aXwK2%>)_hK62*_%Vz&DvpuQK<~1HW&edG~cJ z*j^y}Fft0O?L%=lG#Gt{PQ=FO5%3pHMsMvw7_ewG9_Ww7%)~bkU@zkg%Ndq4EE`}0 zY=8~00XDz}{%`}kdVdR@u$i*ETbgC-MH^%*dk3K_YckAiWQZLoM%M}-1nNw}>yrm! zbp2?~ux$1ZH_LVD@7JZ=H{3UDfDNz#Hqes{_$|AKx$6?}uDDS4<8!eryZOqY#~UkL z#(y{tY01_|tQiPHM+0Pa*>i^F49gjo4X^<=zy{a=8(;%}8Uri!?_iI!E5_Z%0|vCl_lK&R5n)rv5fogKkq;8Bkm(Mzy{a=8(;%$fDQa{2CPqX zK<~18jf|umLu}2G{@_U;}J`4X^<=zy{a=8(;%$fDNz#Hoykh02^QfY=8~0 z0XDz}*Z><~18jf|umLu}2G{@_U;}J`4X^<=zy{a=8(;%$fDNz#Hoykh02^QfY=8~0 z0XDz}*Z><~18jf|umLu}2G{@_U;}J`4X^<=zy{a=8(;%$fDNz#Hoykh02^QfY=8~0 z0XDz}*Z><~18jf|umLu}2G{@_U;}J`4X^<=zy{a=8(;%$fDNz#Hoykh02^QfY=8~0 z0XDz}*Z><~18jf|umLu}2G{@_U;}J`4X^<=zy{a=8(;%$fDNz#Hoykh02^QfY=8~0 z0XDz}*Z><~18jf|umLu}2G{@_U;}J`4X^<=zy{a=8(;%$fDNz#Hoykh02^QfY=8~0 z0XDz}*Z><~18jf|umLvE6AYLVX^2UKi1vwu=CAEsp)LBgZ72Lp{A>G{`)U7O+f+l7 zoP}?`mTF5DfA@XMU)#dNkd@H>JJ*1IdAx-}d*56U=?d+2LVLz$5oro-r%|JXuS8WA{D*tspVO7+Ec|?^Ph$Q=omNpUD-XN-ZO5~ugLA7=oAki}onr|o~XI?FYwWSJ(3wrkS-Lz*Q0N|UPZX_EabP1<3u zMNSS{R4>yaw_q)5O4TCybS-LGp+(A_TGVz#i`192sJmT@DmAo8Vx>(>hiH?nn>N*i zYLi2THq};Ylk;kAYS^t!UPra5`LZ@C9%|Dqu@0r$=uqb{9V&6xA(29d=4a`UbhZvv zSL=}dULD$TT!);l=umx!4!LRTQd2Kok~`{Bi-#^LBXy}QN0-!db*X!uE>+g*lB7|W zmR{2(+aGkPMpus<`sh*Z2t9J1qDKwUdgPU-N6qu}NU=eWZhfRjsZDy+d0mf6p6ZcE zUqbWkBqV)XLe<_9vX7I{jsgieEtF9GMhUsqNvP=y3CV9ssHICnN<)2Wv)3o}7=7yY z)u&38K1qu8Y3U+;vfZptHJ|8{!#RDb{a&A(yY;ET*nqtH8&I>e0V(_q=vIOOrIs2{ z=Q{>evQ;?e9W@8<4%!kai3(B&P|6R4+Fqw`4l^Kz3uo2ay8j-_vBdT3tM9w>nsNskad0jH1=5`}e zXc*HiOJhnMVoaT`##9n&Ori{9nqO&5($&UPz1x`Vj~dgC%f{sN(3tAQCgf&gLQTU= zNbYVzE#W4l%rc?2Stg{eHlgl4CRBOcgd|r?XlaKD*=n0oO)pb&a5SY_4^wiEG^K_d zQ}UW?O3mv`Nl|M`w@#W;>NQj9>@=kkT`7tBNNN5EDM_bDsXAIp_IXm;F;7ZP8>CeK zk(At;q||g>O7f>tYLS?c($0+9MwyY?+l;zn&8V`#j3f)qXz4~XvaK_tnlH@A;g%WI zcA1g0p*c0!o0HcVb87ZACxyzKZWWnR>LPRM++qeS!tKm0D2KI~FA0YC$cZT9ER*1-0F=AoX(#>Nd5c$^n)nnP5pv<(6cd zY)LicmgKO^l4{?#BL`f znj{acX{p$TY;A0)W|$2*xZ6-|xD7dH*-*nQ8}h2Qq2@g{q&RLvw_0o{wZn!wwQQ-R zmo14LZE3!TElDG73Cr`J#T{^zMQ(Z3^~>#F-*ErImys`{oKiCE=wl{C!bhJ>9)?fBCuoUvGu? b_>8=jy*I0Wc|2?l3Udwh473|FvW)%>vocKZ literal 0 HcmV?d00001 From 5c8c069b60464fab6ad5bbbe599f9b71bded638f Mon Sep 17 00:00:00 2001 From: Gregory Petrochenkov Date: Tue, 15 Aug 2023 14:18:14 -0400 Subject: [PATCH 2/3] Revise notebook for documentation --- docs/sphinx/SphinxMulticatTutorial.ipynb | 1206 ++++++++--------- docs/sphinx/index.rst | 4 +- .../Multi-Class Categorical Statistics.ipynb | 1206 ++++++++--------- 3 files changed, 1169 insertions(+), 1247 deletions(-) diff --git a/docs/sphinx/SphinxMulticatTutorial.ipynb b/docs/sphinx/SphinxMulticatTutorial.ipynb index 5258b1a9..c1d47cc8 100644 --- a/docs/sphinx/SphinxMulticatTutorial.ipynb +++ b/docs/sphinx/SphinxMulticatTutorial.ipynb @@ -32,7 +32,7 @@ "import numpy as np\n", "import pandas as pd\n", "import xarray as xr\n", - "from xrspatial.zonal import stats\n", + "from itertools import product\n", "\n", "pd.set_option('display.max_columns', None)" ] @@ -52,11 +52,11 @@ "metadata": {}, "outputs": [], "source": [ - "candidate = rxr.open_rasterio(f'./candidate_map_multi_categorical.tif', \n", + "candidate = rxr.open_rasterio('./candidate_map_multi_categorical.tif', \n", " mask_and_scale=True)\n", - "benchmark = rxr.open_rasterio(f'./benchmark_map_multi_categorical.tif',\n", + "benchmark = rxr.open_rasterio('./benchmark_map_multi_categorical.tif',\n", " mask_and_scale=True)\n", - "depth_raster = rxr.open_rasterio(f'./candidate_raw_elevation_multi_categorical.tif',\n", + "depth_raster = rxr.open_rasterio('./candidate_raw_elevation_multi_categorical.tif',\n", " mask_and_scale=True)" ] }, @@ -91,8 +91,8 @@ "metadata": {}, "outputs": [], "source": [ - "candidate_r, benchmark_r = candidate.sel(band=1).gval.homogenize(benchmark.sel(band=1))\n", - "depth_raster_r, arb = depth_raster.sel(band=1).gval.homogenize(benchmark_r)\n", + "candidate_r, benchmark_r = candidate.gval.homogenize(benchmark)\n", + "depth_raster_r, arb = depth_raster.gval.homogenize(benchmark_r)\n", "del arb" ] }, @@ -109,7 +109,7 @@ "id": "e2851c9b", "metadata": {}, "source": [ - "The following makes a pairing dictionary that represents the candidate class and benchmark class respectively. e.g. 12 represents a class 1 for the candidate and a class 2 for the benchmark." + "The following makes a pairing dictionary which maps combinations of values in the candidate and benchmark maps to unique values in the agreement map. In this case we will encode each value as concatenation of what the values are. Instead of making a pairing dictionary one can use the `szudzik` or `cantor` pairing functions to make unique values for each combination of candidate and benchmark map values. e.g. 12 represents a class 1 for the candidate and a class 2 for the benchmark." ] }, { @@ -117,18 +117,6 @@ "execution_count": 4, "id": "de894568", "metadata": {}, - "outputs": [], - "source": [ - "classes = np.array([1, 2, 3, 4, 5])\n", - "class_mesh = np.array(np.meshgrid(classes, classes)).T.reshape(-1, 2)\n", - "pairing_dictionary = {(k, v): int(f'{k}{v}') for k, v in class_mesh}" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "e248d2cc", - "metadata": {}, "outputs": [ { "name": "stdout", @@ -144,6 +132,10 @@ } ], "source": [ + "classes = [1, 2, 3, 4, 5]\n", + "pairing_dictionary = {(x, y): int(f'{x}{y}') for x, y in \n", + " product(classes, classes)}\n", + "\n", "# Showing the first 6 entries\n", "print('\\n'.join([f'{k}: {v}' for k,v in pairing_dictionary.items()][:6]))" ] @@ -158,38 +150,47 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "id": "1dc16dd7", "metadata": {}, "outputs": [], "source": [ - "agreement_map, crosstab = (candidate_r.gval.compute_agreement_map(benchmark_r, \n", - " nodata=255,\n", - " encode_nodata=True,\n", - " comparison_function='pairing_dict',\n", - " pairing_dict=pairing_dictionary,\n", - " allow_candidate_values=classes,\n", - " allow_benchmark_values=classes),\n", - " candidate_r.gval.compute_crosstab(benchmark_r,\n", - " comparison_function='pairing_dict',\n", - " pairing_dict=pairing_dictionary,\n", - " allow_candidate_values=classes,\n", - " allow_benchmark_values=classes))" + "agreement_map = candidate_r.gval.compute_agreement_map(benchmark_r, \n", + " nodata=255,\n", + " encode_nodata=True,\n", + " comparison_function='pairing_dict',\n", + " pairing_dict=pairing_dictionary,\n", + " allow_candidate_values=classes,\n", + " allow_benchmark_values=classes)\n", + "\n", + "crosstab = candidate_r.gval.compute_crosstab(benchmark_r,\n", + " comparison_function='pairing_dict',\n", + " pairing_dict=pairing_dictionary,\n", + " allow_candidate_values=classes,\n", + " allow_benchmark_values=classes)" + ] + }, + { + "cell_type": "markdown", + "id": "93fe86df", + "metadata": {}, + "source": [ + "The following only shows a small subset of the map for memory purposes:" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 6, "id": "55606165", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 7, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, @@ -223,11 +224,12 @@ "id": "4a1f3ecc", "metadata": {}, "source": [ - "For multi-categorical statistics GVAL offers 3 methods of weighting:\n", + "For multi-categorical statistics GVAL offers 4 methods of averaging:\n", "\n", + "1. No Averaging which provides one vs. all metrics on a class basis\n", "1. Micro Averaging which sums up the contingencies of each class defined as either positive or negative\n", - "2. Macro Averaging which sums up the contingencies of one class vs all and then averages them\n", - "3. Weighted Averaging which does macro averaging with the inclusion of weights to be applied to each positive category." + "3. Macro Averaging which sums up the contingencies of one class vs all and then averages them\n", + "4. Weighted Averaging which does macro averaging with the inclusion of weights to be applied to each positive category." ] }, { @@ -235,7 +237,7 @@ "id": "66235a0a", "metadata": {}, "source": [ - "### Micro Averaging" + "### No Averaging" ] }, { @@ -243,12 +245,12 @@ "id": "4f258087", "metadata": {}, "source": [ - "In this example we will consider classes 1 and 2 as positive and 3, 4, 5 as negative classes. " + "Using `None` for the averaging argument runs a one class vs. all methodology for each class and reports their metrics on a class basis:" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 7, "id": "936f2dea", "metadata": {}, "outputs": [ @@ -273,135 +275,316 @@ " \n", " \n", " \n", + " 0\n", + " 1\n", + " 2\n", + " 3\n", + " 4\n", + " \n", + " \n", + " \n", + " \n", " band\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " \n", + " \n", + " positive_categories\n", + " 1\n", + " 2\n", + " 3\n", + " 4\n", + " 5\n", + " \n", + " \n", " fn\n", + " 6.0\n", + " 1043.0\n", + " 318274.0\n", + " 516572.0\n", + " 364147.0\n", + " \n", + " \n", " fp\n", + " 172762.0\n", + " 561004.0\n", + " 462496.0\n", + " 3775.0\n", + " 5.0\n", + " \n", + " \n", " tn\n", + " 1043592.0\n", + " 653360.0\n", + " 422623.0\n", + " 693617.0\n", + " 852206.0\n", + " \n", + " \n", " tp\n", + " 0.0\n", + " 953.0\n", + " 12967.0\n", + " 2396.0\n", + " 2.0\n", + " \n", + " \n", " accuracy\n", + " 0.857963\n", + " 0.537927\n", + " 0.358109\n", + " 0.57221\n", + " 0.700622\n", + " \n", + " \n", " balanced_accuracy\n", + " 0.428984\n", + " 0.507741\n", + " 0.258311\n", + " 0.499602\n", + " 0.5\n", + " \n", + " \n", " critical_success_index\n", + " 0.0\n", + " 0.001693\n", + " 0.016337\n", + " 0.004584\n", + " 0.000005\n", + " \n", + " \n", " equitable_threat_score\n", + " -0.000005\n", + " 0.000055\n", + " -0.175401\n", + " -0.000455\n", + " -0.0\n", + " \n", + " \n", " f_score\n", + " 0.0\n", + " 0.00338\n", + " 0.032148\n", + " 0.009125\n", + " 0.000011\n", + " \n", + " \n", " false_discovery_rate\n", + " 1.0\n", + " 0.998304\n", + " 0.972728\n", + " 0.611732\n", + " 0.714286\n", + " \n", + " \n", " false_negative_rate\n", + " 1.0\n", + " 0.522545\n", + " 0.960853\n", + " 0.995383\n", + " 0.999995\n", + " \n", + " \n", " false_omission_rate\n", + " 0.000006\n", + " 0.001594\n", + " 0.429579\n", + " 0.426852\n", + " 0.299376\n", + " \n", + " \n", " false_positive_rate\n", + " 0.142033\n", + " 0.461974\n", + " 0.522524\n", + " 0.005413\n", + " 0.000006\n", + " \n", + " \n", " fowlkes_mallows_index\n", + " 0.0\n", + " 0.028455\n", + " 0.032675\n", + " 0.042339\n", + " 0.001253\n", + " \n", + " \n", " matthews_correlation_coefficient\n", + " -0.000904\n", + " 0.001257\n", + " -0.440983\n", + " -0.005543\n", + " -0.000072\n", + " \n", + " \n", " negative_likelihood_ratio\n", + " 1.165546\n", + " 0.971226\n", + " 2.01236\n", + " 1.000801\n", + " 1.0\n", + " \n", + " \n", " negative_predictive_value\n", + " 0.999994\n", + " 0.998406\n", + " 0.570421\n", + " 0.573148\n", + " 0.700624\n", + " \n", + " \n", " overall_bias\n", + " 28793.666667\n", + " 281.541583\n", + " 1.435399\n", + " 0.011891\n", + " 0.000019\n", + " \n", + " \n", " positive_likelihood_ratio\n", + " 0.0\n", + " 1.033511\n", + " 0.074919\n", + " 0.852916\n", + " 0.936112\n", + " \n", + " \n", " positive_predictive_value\n", + " 0.0\n", + " 0.001696\n", + " 0.027272\n", + " 0.388268\n", + " 0.285714\n", + " \n", + " \n", " prevalence\n", + " 0.000005\n", + " 0.001641\n", + " 0.272322\n", + " 0.426657\n", + " 0.299376\n", + " \n", + " \n", " prevalence_threshold\n", + " 1.0\n", + " 0.49588\n", + " 0.785107\n", + " 0.519876\n", + " 0.508252\n", + " \n", + " \n", " true_negative_rate\n", - " true_positive_rate\n", + " 0.857967\n", + " 0.538026\n", + " 0.477476\n", + " 0.994587\n", + " 0.999994\n", " \n", - " \n", - " \n", " \n", - " 0\n", - " 1\n", - " 382.0\n", - " 733099.0\n", - " 481259.0\n", - " 1620.0\n", - " 0.396987\n", - " 0.602749\n", - " 0.002204\n", - " 0.00056\n", - " 0.004398\n", - " 0.997795\n", - " 0.190809\n", - " 0.000793\n", - " 0.603693\n", - " 0.04224\n", - " 0.017033\n", - " 0.481468\n", - " 0.999207\n", - " 366.992507\n", - " 1.340402\n", - " 0.002205\n", - " 0.001646\n", - " 0.463444\n", - " 0.396307\n", - " 0.809191\n", + " true_positive_rate\n", + " 0.0\n", + " 0.477455\n", + " 0.039147\n", + " 0.004617\n", + " 0.000005\n", " \n", " \n", "\n", "" ], "text/plain": [ - " band fn fp tn tp accuracy balanced_accuracy \\\n", - "0 1 382.0 733099.0 481259.0 1620.0 0.396987 0.602749 \n", - "\n", - " critical_success_index equitable_threat_score f_score \\\n", - "0 0.002204 0.00056 0.004398 \n", + " 0 1 2 \\\n", + "band 1 1 1 \n", + "positive_categories 1 2 3 \n", + "fn 6.0 1043.0 318274.0 \n", + "fp 172762.0 561004.0 462496.0 \n", + "tn 1043592.0 653360.0 422623.0 \n", + "tp 0.0 953.0 12967.0 \n", + "accuracy 0.857963 0.537927 0.358109 \n", + "balanced_accuracy 0.428984 0.507741 0.258311 \n", + "critical_success_index 0.0 0.001693 0.016337 \n", + "equitable_threat_score -0.000005 0.000055 -0.175401 \n", + "f_score 0.0 0.00338 0.032148 \n", + "false_discovery_rate 1.0 0.998304 0.972728 \n", + "false_negative_rate 1.0 0.522545 0.960853 \n", + "false_omission_rate 0.000006 0.001594 0.429579 \n", + "false_positive_rate 0.142033 0.461974 0.522524 \n", + "fowlkes_mallows_index 0.0 0.028455 0.032675 \n", + "matthews_correlation_coefficient -0.000904 0.001257 -0.440983 \n", + "negative_likelihood_ratio 1.165546 0.971226 2.01236 \n", + "negative_predictive_value 0.999994 0.998406 0.570421 \n", + "overall_bias 28793.666667 281.541583 1.435399 \n", + "positive_likelihood_ratio 0.0 1.033511 0.074919 \n", + "positive_predictive_value 0.0 0.001696 0.027272 \n", + "prevalence 0.000005 0.001641 0.272322 \n", + "prevalence_threshold 1.0 0.49588 0.785107 \n", + "true_negative_rate 0.857967 0.538026 0.477476 \n", + "true_positive_rate 0.0 0.477455 0.039147 \n", "\n", - " false_discovery_rate false_negative_rate false_omission_rate \\\n", - "0 0.997795 0.190809 0.000793 \n", - "\n", - " false_positive_rate fowlkes_mallows_index \\\n", - "0 0.603693 0.04224 \n", - "\n", - " matthews_correlation_coefficient negative_likelihood_ratio \\\n", - "0 0.017033 0.481468 \n", - "\n", - " negative_predictive_value overall_bias positive_likelihood_ratio \\\n", - "0 0.999207 366.992507 1.340402 \n", - "\n", - " positive_predictive_value prevalence prevalence_threshold \\\n", - "0 0.002205 0.001646 0.463444 \n", - "\n", - " true_negative_rate true_positive_rate \n", - "0 0.396307 0.809191 " + " 3 4 \n", + "band 1 1 \n", + "positive_categories 4 5 \n", + "fn 516572.0 364147.0 \n", + "fp 3775.0 5.0 \n", + "tn 693617.0 852206.0 \n", + "tp 2396.0 2.0 \n", + "accuracy 0.57221 0.700622 \n", + "balanced_accuracy 0.499602 0.5 \n", + "critical_success_index 0.004584 0.000005 \n", + "equitable_threat_score -0.000455 -0.0 \n", + "f_score 0.009125 0.000011 \n", + "false_discovery_rate 0.611732 0.714286 \n", + "false_negative_rate 0.995383 0.999995 \n", + "false_omission_rate 0.426852 0.299376 \n", + "false_positive_rate 0.005413 0.000006 \n", + "fowlkes_mallows_index 0.042339 0.001253 \n", + "matthews_correlation_coefficient -0.005543 -0.000072 \n", + "negative_likelihood_ratio 1.000801 1.0 \n", + "negative_predictive_value 0.573148 0.700624 \n", + "overall_bias 0.011891 0.000019 \n", + "positive_likelihood_ratio 0.852916 0.936112 \n", + "positive_predictive_value 0.388268 0.285714 \n", + "prevalence 0.426657 0.299376 \n", + "prevalence_threshold 0.519876 0.508252 \n", + "true_negative_rate 0.994587 0.999994 \n", + "true_positive_rate 0.004617 0.000005 " ] }, - "execution_count": 8, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "micro_averaged_metrics = crosstab.gval.compute_categorical_metrics(positive_categories=[1, 2],\n", - " negative_categories=[3, 4, 5],\n", - " average=\"micro\")\n", - "micro_averaged_metrics" + "no_averaged_metrics = crosstab.gval.compute_categorical_metrics(positive_categories=[1, 2, 3, 4, 5],\n", + " negative_categories=None,\n", + " average=None)\n", + "no_averaged_metrics.transpose()" ] }, { "cell_type": "markdown", - "id": "895d3e57", + "id": "d722dc68", "metadata": {}, "source": [ - "Although more neatly summarized with macro-averaging, one can do one vs. all comparisons with micro averaging, showing the detail of each class version. (Macro averaging is essentially the mean of this data.)" + "### Micro Averaging" ] }, { - "cell_type": "code", - "execution_count": 9, - "id": "0da150e7", + "cell_type": "markdown", + "id": "3bbb83cf", "metadata": {}, - "outputs": [], "source": [ - "comparisons = [] # List with all comparisons \n", - "\n", - "for idx, positive_class in enumerate(classes):\n", - " negative_classes = classes[classes != positive_class]\n", - " df = crosstab.gval.compute_categorical_metrics(positive_categories=[positive_class],\n", - " negative_categories=negative_classes,\n", - " average=\"micro\")\n", - " df.insert(1, 'negative classes', [negative_classes])\n", - " df.insert(1, 'positive classes', [positive_class])\n", - " comparisons.append(df)" + "The following is an example of a using micro averaging to combine classes to process two-class categorical statistics. In this example we will use classes 1 and 2 as positive classes and classes 3, 4, and 5 as negative classes:" ] }, { "cell_type": "code", - "execution_count": 10, - "id": "d016aa30", + "execution_count": 8, + "id": "538dfc49", "metadata": {}, "outputs": [ { @@ -425,256 +608,153 @@ " \n", " \n", " \n", + " 0\n", + " \n", + " \n", + " \n", + " \n", " band\n", - " positive classes\n", - " negative classes\n", + " 1\n", + " \n", + " \n", " fn\n", + " 382.0\n", + " \n", + " \n", " fp\n", + " 733099.0\n", + " \n", + " \n", " tn\n", + " 481259.0\n", + " \n", + " \n", " tp\n", + " 1620.0\n", + " \n", + " \n", " accuracy\n", + " 0.396987\n", + " \n", + " \n", " balanced_accuracy\n", + " 0.602749\n", + " \n", + " \n", " critical_success_index\n", + " 0.002204\n", + " \n", + " \n", " equitable_threat_score\n", + " 0.00056\n", + " \n", + " \n", " f_score\n", + " 0.004398\n", + " \n", + " \n", " false_discovery_rate\n", + " 0.997795\n", + " \n", + " \n", " false_negative_rate\n", + " 0.190809\n", + " \n", + " \n", " false_omission_rate\n", + " 0.000793\n", + " \n", + " \n", " false_positive_rate\n", + " 0.603693\n", + " \n", + " \n", " fowlkes_mallows_index\n", + " 0.04224\n", + " \n", + " \n", " matthews_correlation_coefficient\n", + " 0.017033\n", + " \n", + " \n", " negative_likelihood_ratio\n", + " 0.481468\n", + " \n", + " \n", " negative_predictive_value\n", + " 0.999207\n", + " \n", + " \n", " overall_bias\n", + " 366.992507\n", + " \n", + " \n", " positive_likelihood_ratio\n", - " positive_predictive_value\n", - " prevalence\n", - " prevalence_threshold\n", - " true_negative_rate\n", - " true_positive_rate\n", + " 1.340402\n", " \n", - " \n", - " \n", " \n", - " 0\n", - " 1\n", - " 1\n", - " [2, 3, 4, 5]\n", - " 6.0\n", - " 172762.0\n", - " 1043592.0\n", - " 0.0\n", - " 0.857963\n", - " 0.428984\n", - " 0.000000\n", - " -4.932603e-06\n", - " 0.000000\n", - " 1.000000\n", - " 1.000000\n", - " 0.000006\n", - " 0.142033\n", - " 0.000000\n", - " -0.000904\n", - " 1.165546\n", - " 0.999994\n", - " 28793.666667\n", - " 0.000000\n", - " 0.000000\n", - " 0.000005\n", - " 1.000000\n", - " 0.857967\n", - " 0.000000\n", + " positive_predictive_value\n", + " 0.002205\n", " \n", " \n", - " 0\n", - " 1\n", - " 2\n", - " [1, 3, 4, 5]\n", - " 1043.0\n", - " 561004.0\n", - " 653360.0\n", - " 953.0\n", - " 0.537927\n", - " 0.507741\n", - " 0.001693\n", - " 5.488593e-05\n", - " 0.003380\n", - " 0.998304\n", - " 0.522545\n", - " 0.001594\n", - " 0.461974\n", - " 0.028455\n", - " 0.001257\n", - " 0.971226\n", - " 0.998406\n", - " 281.541583\n", - " 1.033511\n", - " 0.001696\n", - " 0.001641\n", - " 0.495880\n", - " 0.538026\n", - " 0.477455\n", + " prevalence\n", + " 0.001646\n", " \n", " \n", - " 0\n", - " 1\n", - " 3\n", - " [1, 2, 4, 5]\n", - " 318274.0\n", - " 462496.0\n", - " 422623.0\n", - " 12967.0\n", - " 0.358109\n", - " 0.258311\n", - " 0.016337\n", - " -1.754014e-01\n", - " 0.032148\n", - " 0.972728\n", - " 0.960853\n", - " 0.429579\n", - " 0.522524\n", - " 0.032675\n", - " -0.440983\n", - " 2.012360\n", - " 0.570421\n", - " 1.435399\n", - " 0.074919\n", - " 0.027272\n", - " 0.272322\n", - " 0.785107\n", - " 0.477476\n", - " 0.039147\n", + " prevalence_threshold\n", + " 0.463444\n", " \n", " \n", - " 0\n", - " 1\n", - " 4\n", - " [1, 2, 3, 5]\n", - " 516572.0\n", - " 3775.0\n", - " 693617.0\n", - " 2396.0\n", - " 0.572210\n", - " 0.499602\n", - " 0.004584\n", - " -4.554762e-04\n", - " 0.009125\n", - " 0.611732\n", - " 0.995383\n", - " 0.426852\n", - " 0.005413\n", - " 0.042339\n", - " -0.005543\n", - " 1.000801\n", - " 0.573148\n", - " 0.011891\n", - " 0.852916\n", - " 0.388268\n", - " 0.426657\n", - " 0.519876\n", - " 0.994587\n", - " 0.004617\n", + " true_negative_rate\n", + " 0.396307\n", " \n", " \n", - " 0\n", - " 1\n", - " 5\n", - " [1, 2, 3, 4]\n", - " 364147.0\n", - " 5.0\n", - " 852206.0\n", - " 2.0\n", - " 0.700622\n", - " 0.500000\n", - " 0.000005\n", - " -2.626158e-07\n", - " 0.000011\n", - " 0.714286\n", - " 0.999995\n", - " 0.299376\n", - " 0.000006\n", - " 0.001253\n", - " -0.000072\n", - " 1.000000\n", - " 0.700624\n", - " 0.000019\n", - " 0.936112\n", - " 0.285714\n", - " 0.299376\n", - " 0.508252\n", - " 0.999994\n", - " 0.000005\n", + " true_positive_rate\n", + " 0.809191\n", " \n", " \n", "\n", "" ], "text/plain": [ - " band positive classes negative classes fn fp tn \\\n", - "0 1 1 [2, 3, 4, 5] 6.0 172762.0 1043592.0 \n", - "0 1 2 [1, 3, 4, 5] 1043.0 561004.0 653360.0 \n", - "0 1 3 [1, 2, 4, 5] 318274.0 462496.0 422623.0 \n", - "0 1 4 [1, 2, 3, 5] 516572.0 3775.0 693617.0 \n", - "0 1 5 [1, 2, 3, 4] 364147.0 5.0 852206.0 \n", - "\n", - " tp accuracy balanced_accuracy critical_success_index \\\n", - "0 0.0 0.857963 0.428984 0.000000 \n", - "0 953.0 0.537927 0.507741 0.001693 \n", - "0 12967.0 0.358109 0.258311 0.016337 \n", - "0 2396.0 0.572210 0.499602 0.004584 \n", - "0 2.0 0.700622 0.500000 0.000005 \n", - "\n", - " equitable_threat_score f_score false_discovery_rate \\\n", - "0 -4.932603e-06 0.000000 1.000000 \n", - "0 5.488593e-05 0.003380 0.998304 \n", - "0 -1.754014e-01 0.032148 0.972728 \n", - "0 -4.554762e-04 0.009125 0.611732 \n", - "0 -2.626158e-07 0.000011 0.714286 \n", - "\n", - " false_negative_rate false_omission_rate false_positive_rate \\\n", - "0 1.000000 0.000006 0.142033 \n", - "0 0.522545 0.001594 0.461974 \n", - "0 0.960853 0.429579 0.522524 \n", - "0 0.995383 0.426852 0.005413 \n", - "0 0.999995 0.299376 0.000006 \n", - "\n", - " fowlkes_mallows_index matthews_correlation_coefficient \\\n", - "0 0.000000 -0.000904 \n", - "0 0.028455 0.001257 \n", - "0 0.032675 -0.440983 \n", - "0 0.042339 -0.005543 \n", - "0 0.001253 -0.000072 \n", - "\n", - " negative_likelihood_ratio negative_predictive_value overall_bias \\\n", - "0 1.165546 0.999994 28793.666667 \n", - "0 0.971226 0.998406 281.541583 \n", - "0 2.012360 0.570421 1.435399 \n", - "0 1.000801 0.573148 0.011891 \n", - "0 1.000000 0.700624 0.000019 \n", - "\n", - " positive_likelihood_ratio positive_predictive_value prevalence \\\n", - "0 0.000000 0.000000 0.000005 \n", - "0 1.033511 0.001696 0.001641 \n", - "0 0.074919 0.027272 0.272322 \n", - "0 0.852916 0.388268 0.426657 \n", - "0 0.936112 0.285714 0.299376 \n", - "\n", - " prevalence_threshold true_negative_rate true_positive_rate \n", - "0 1.000000 0.857967 0.000000 \n", - "0 0.495880 0.538026 0.477455 \n", - "0 0.785107 0.477476 0.039147 \n", - "0 0.519876 0.994587 0.004617 \n", - "0 0.508252 0.999994 0.000005 " + " 0\n", + "band 1\n", + "fn 382.0\n", + "fp 733099.0\n", + "tn 481259.0\n", + "tp 1620.0\n", + "accuracy 0.396987\n", + "balanced_accuracy 0.602749\n", + "critical_success_index 0.002204\n", + "equitable_threat_score 0.00056\n", + "f_score 0.004398\n", + "false_discovery_rate 0.997795\n", + "false_negative_rate 0.190809\n", + "false_omission_rate 0.000793\n", + "false_positive_rate 0.603693\n", + "fowlkes_mallows_index 0.04224\n", + "matthews_correlation_coefficient 0.017033\n", + "negative_likelihood_ratio 0.481468\n", + "negative_predictive_value 0.999207\n", + "overall_bias 366.992507\n", + "positive_likelihood_ratio 1.340402\n", + "positive_predictive_value 0.002205\n", + "prevalence 0.001646\n", + "prevalence_threshold 0.463444\n", + "true_negative_rate 0.396307\n", + "true_positive_rate 0.809191" ] }, - "execution_count": 10, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "all_micro_averaged_comps = pd.concat(comparisons)\n", - "all_micro_averaged_comps" + "micro_averaged_metrics = crosstab.gval.compute_categorical_metrics(positive_categories=[1, 2],\n", + " negative_categories=[3, 4, 5],\n", + " average=\"micro\")\n", + "micro_averaged_metrics.transpose()" ] }, { @@ -690,26 +770,14 @@ "id": "790c56df", "metadata": {}, "source": [ - "The following shows macro averaging and is equivalent to the values of shared columns in `all_micro_averaged_comps.mean()`:" + "The following shows macro averaging and is equivalent to the values of shared columns in `no_averaged_comps.mean()`:" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 9, "id": "7e64eb9b", "metadata": {}, - "outputs": [], - "source": [ - "macro_averaged_metrics = crosstab.gval.compute_categorical_metrics(positive_categories=classes,\n", - " negative_categories=None,\n", - " average=\"macro\")" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "70537719", - "metadata": {}, "outputs": [ { "data": { @@ -732,52 +800,92 @@ " \n", " \n", " \n", - " band\n", - " accuracy\n", - " balanced_accuracy\n", - " critical_success_index\n", - " equitable_threat_score\n", - " f_score\n", - " false_discovery_rate\n", - " false_negative_rate\n", - " false_omission_rate\n", - " false_positive_rate\n", - " fowlkes_mallows_index\n", - " matthews_correlation_coefficient\n", - " negative_likelihood_ratio\n", - " negative_predictive_value\n", - " overall_bias\n", - " positive_likelihood_ratio\n", - " positive_predictive_value\n", - " prevalence\n", - " prevalence_threshold\n", - " true_negative_rate\n", - " true_positive_rate\n", + " 0\n", " \n", " \n", " \n", " \n", - " 0\n", + " band\n", " 1\n", + " \n", + " \n", + " accuracy\n", " 0.605366\n", + " \n", + " \n", + " balanced_accuracy\n", " 0.438927\n", + " \n", + " \n", + " critical_success_index\n", " 0.004524\n", + " \n", + " \n", + " equitable_threat_score\n", " -0.035161\n", + " \n", + " \n", + " f_score\n", " 0.008933\n", + " \n", + " \n", + " false_discovery_rate\n", " 0.85941\n", + " \n", + " \n", + " false_negative_rate\n", " 0.895755\n", + " \n", + " \n", + " false_omission_rate\n", " 0.231481\n", + " \n", + " \n", + " false_positive_rate\n", " 0.22639\n", + " \n", + " \n", + " fowlkes_mallows_index\n", " 0.020944\n", + " \n", + " \n", + " matthews_correlation_coefficient\n", " -0.089249\n", + " \n", + " \n", + " negative_likelihood_ratio\n", " 1.229986\n", + " \n", + " \n", + " negative_predictive_value\n", " 0.768519\n", + " \n", + " \n", + " overall_bias\n", " 5815.331112\n", + " \n", + " \n", + " positive_likelihood_ratio\n", " 0.579492\n", + " \n", + " \n", + " positive_predictive_value\n", " 0.14059\n", + " \n", + " \n", + " prevalence\n", " 0.2\n", + " \n", + " \n", + " prevalence_threshold\n", " 0.661823\n", + " \n", + " \n", + " true_negative_rate\n", " 0.77361\n", + " \n", + " \n", + " true_positive_rate\n", " 0.104245\n", " \n", " \n", @@ -785,35 +893,40 @@ "" ], "text/plain": [ - " band accuracy balanced_accuracy critical_success_index \\\n", - "0 1 0.605366 0.438927 0.004524 \n", - "\n", - " equitable_threat_score f_score false_discovery_rate \\\n", - "0 -0.035161 0.008933 0.85941 \n", - "\n", - " false_negative_rate false_omission_rate false_positive_rate \\\n", - "0 0.895755 0.231481 0.22639 \n", - "\n", - " fowlkes_mallows_index matthews_correlation_coefficient \\\n", - "0 0.020944 -0.089249 \n", - "\n", - " negative_likelihood_ratio negative_predictive_value overall_bias \\\n", - "0 1.229986 0.768519 5815.331112 \n", - "\n", - " positive_likelihood_ratio positive_predictive_value prevalence \\\n", - "0 0.579492 0.14059 0.2 \n", - "\n", - " prevalence_threshold true_negative_rate true_positive_rate \n", - "0 0.661823 0.77361 0.104245 " + " 0\n", + "band 1\n", + "accuracy 0.605366\n", + "balanced_accuracy 0.438927\n", + "critical_success_index 0.004524\n", + "equitable_threat_score -0.035161\n", + "f_score 0.008933\n", + "false_discovery_rate 0.85941\n", + "false_negative_rate 0.895755\n", + "false_omission_rate 0.231481\n", + "false_positive_rate 0.22639\n", + "fowlkes_mallows_index 0.020944\n", + "matthews_correlation_coefficient -0.089249\n", + "negative_likelihood_ratio 1.229986\n", + "negative_predictive_value 0.768519\n", + "overall_bias 5815.331112\n", + "positive_likelihood_ratio 0.579492\n", + "positive_predictive_value 0.14059\n", + "prevalence 0.2\n", + "prevalence_threshold 0.661823\n", + "true_negative_rate 0.77361\n", + "true_positive_rate 0.104245" ] }, - "execution_count": 12, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "macro_averaged_metrics" + "macro_averaged_metrics = crosstab.gval.compute_categorical_metrics(positive_categories=classes,\n", + " negative_categories=None,\n", + " average=\"macro\")\n", + "macro_averaged_metrics.transpose()" ] }, { @@ -829,62 +942,12 @@ "id": "e182a6f7", "metadata": {}, "source": [ - "To further enhance `macro-averaging`, we can apply weights to the classes of interest. Let's engage in a quick arbitrary exercise to establish weights. Our first step is to calculate the mean candidate raw elevation for each class in the candidate and benchmark maps, and then the pixel count of the presence of each class in both maps." + "To further enhance `macro-averaging`, we can apply weights to the classes of interest in order to appropriately change the strength of evaluations for each class. For instance, if we applied the following vector the classes uses in this notebook, `[1, 4, 1, 5, 1]`, classes 2 and 4 would have greater influence on the final averaging of the scores for all classes. (All weight values are in reference to the other weight values respectively. e.g. the vector `[5, 5, 5, 5, 5]` would cause no change in the averaging because each weight value is equivalent to a ll other weight values.) Let's use the first weight vector mentioned in weighted averaging:" ] }, { "cell_type": "code", - "execution_count": 13, - "id": "248f0bad", - "metadata": {}, - "outputs": [], - "source": [ - "# candidate zonal statistics\n", - "candidate_stats = stats(xr.where(benchmark_r.isnull() == 0, candidate_r, np.nan), \n", - " depth_raster_r, \n", - " stats_funcs=[\"mean\", \"count\"])\n", - "# benchmark zonal statistics\n", - "benchmark_stats = stats(xr.where(candidate_r.isnull() == 0, benchmark_r, np.nan), \n", - " depth_raster_r, \n", - " stats_funcs=[\"mean\", \"count\"])\n", - "\n", - "mean_difference = np.abs(candidate_stats[\"mean\"].values - benchmark_stats[\"mean\"].values)\n", - "count_difference = np.abs(candidate_stats[\"count\"].values - benchmark_stats[\"count\"].values)" - ] - }, - { - "cell_type": "markdown", - "id": "1d7e954a", - "metadata": {}, - "source": [ - "First we will calculate weights based on rudimentary normalization of the difference of means, giving greater weight to the classes that have less of a difference. (Similarly it can be done to do the opposite.)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "id": "67684e18", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 1., 35., 1., 1., 1.])" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "weights = 1 // (mean_difference / (1 * np.max(mean_difference)))\n", - "weights" - ] - }, - { - "cell_type": "code", - "execution_count": 15, + "execution_count": 10, "id": "0eae1cbc", "metadata": {}, "outputs": [ @@ -909,245 +972,142 @@ " \n", " \n", " \n", - " band\n", - " accuracy\n", - " balanced_accuracy\n", - " critical_success_index\n", - " equitable_threat_score\n", - " f_score\n", - " false_discovery_rate\n", - " false_negative_rate\n", - " false_omission_rate\n", - " false_positive_rate\n", - " fowlkes_mallows_index\n", - " matthews_correlation_coefficient\n", - " negative_likelihood_ratio\n", - " negative_predictive_value\n", - " overall_bias\n", - " positive_likelihood_ratio\n", - " positive_predictive_value\n", - " prevalence\n", - " prevalence_threshold\n", - " true_negative_rate\n", - " true_positive_rate\n", + " 0\n", " \n", " \n", " \n", " \n", - " 0\n", + " band\n", " 1\n", - " 0.546573\n", - " 0.498918\n", - " 0.002056\n", - " -0.00446\n", - " 0.004092\n", - " 0.980497\n", - " 0.570393\n", - " 0.031067\n", - " 0.43177\n", - " 0.027492\n", - " -0.010346\n", - " 1.0044\n", - " 0.968933\n", - " 991.001779\n", - " 0.975304\n", - " 0.019503\n", - " 0.027072\n", - " 0.517155\n", - " 0.56823\n", - " 0.429607\n", " \n", - " \n", - "\n", - "" - ], - "text/plain": [ - " band accuracy balanced_accuracy critical_success_index \\\n", - "0 1 0.546573 0.498918 0.002056 \n", - "\n", - " equitable_threat_score f_score false_discovery_rate \\\n", - "0 -0.00446 0.004092 0.980497 \n", - "\n", - " false_negative_rate false_omission_rate false_positive_rate \\\n", - "0 0.570393 0.031067 0.43177 \n", - "\n", - " fowlkes_mallows_index matthews_correlation_coefficient \\\n", - "0 0.027492 -0.010346 \n", - "\n", - " negative_likelihood_ratio negative_predictive_value overall_bias \\\n", - "0 1.0044 0.968933 991.001779 \n", - "\n", - " positive_likelihood_ratio positive_predictive_value prevalence \\\n", - "0 0.975304 0.019503 0.027072 \n", - "\n", - " prevalence_threshold true_negative_rate true_positive_rate \n", - "0 0.517155 0.56823 0.429607 " - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "weight_averaged_metrics = crosstab.gval.compute_categorical_metrics(positive_categories=classes,\n", - " weights=weights,\n", - " negative_categories=None,\n", - " average=\"weighted\")\n", - "weight_averaged_metrics" - ] - }, - { - "cell_type": "markdown", - "id": "4cffc0fa", - "metadata": {}, - "source": [ - "Secondly, weights will be calculated based of a rudimentary normalization of counts. In this case the attempt will be to give greater weights to the larger differences to balance the impact of each class." - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "id": "02fa92f9", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([1., 3., 1., 3., 2.])" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "weights = count_difference // np.min(count_difference)\n", - "weights" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "id": "9a815076", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "

\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", "
band
accuracy0.577454
balanced_accuracy0.476356
critical_success_index0.003836
equitable_threat_score-0.014789
f_score0.007609
false_discovery_rate0.811574
false_negative_rate0.835662
false_omission_rate0.239133
false_positive_rate0.211627
fowlkes_mallows_index0.029953
matthews_correlation_coefficient-0.03872
negative_likelihood_ratio1.088901
negative_predictive_value0.760867
overall_bias2493.443989
positive_likelihood_ratio0.784138
positive_predictive_value0.188426
prevalence0.225962
prevalence_threshold0.573022
true_negative_ratetrue_positive_rate0.788373
010.5947730.4709320.003518-0.0176610.0069680.8231410.8514630.2313680.2066730.024756-0.0454891.1093980.7686322963.9762530.7606430.1768590.2155970.5848880.7933270.148537true_positive_rate0.164338
\n", "
" ], "text/plain": [ - " band accuracy balanced_accuracy critical_success_index \\\n", - "0 1 0.594773 0.470932 0.003518 \n", - "\n", - " equitable_threat_score f_score false_discovery_rate \\\n", - "0 -0.017661 0.006968 0.823141 \n", - "\n", - " false_negative_rate false_omission_rate false_positive_rate \\\n", - "0 0.851463 0.231368 0.206673 \n", - "\n", - " fowlkes_mallows_index matthews_correlation_coefficient \\\n", - "0 0.024756 -0.045489 \n", - "\n", - " negative_likelihood_ratio negative_predictive_value overall_bias \\\n", - "0 1.109398 0.768632 2963.976253 \n", - "\n", - " positive_likelihood_ratio positive_predictive_value prevalence \\\n", - "0 0.760643 0.176859 0.215597 \n", - "\n", - " prevalence_threshold true_negative_rate true_positive_rate \n", - "0 0.584888 0.793327 0.148537 " + " 0\n", + "band 1\n", + "accuracy 0.577454\n", + "balanced_accuracy 0.476356\n", + "critical_success_index 0.003836\n", + "equitable_threat_score -0.014789\n", + "f_score 0.007609\n", + "false_discovery_rate 0.811574\n", + "false_negative_rate 0.835662\n", + "false_omission_rate 0.239133\n", + "false_positive_rate 0.211627\n", + "fowlkes_mallows_index 0.029953\n", + "matthews_correlation_coefficient -0.03872\n", + "negative_likelihood_ratio 1.088901\n", + "negative_predictive_value 0.760867\n", + "overall_bias 2493.443989\n", + "positive_likelihood_ratio 0.784138\n", + "positive_predictive_value 0.188426\n", + "prevalence 0.225962\n", + "prevalence_threshold 0.573022\n", + "true_negative_rate 0.788373\n", + "true_positive_rate 0.164338" ] }, - "execution_count": 17, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "weight_averaged_metrics = crosstab.gval.compute_categorical_metrics(positive_categories=classes,\n", - " weights=weights,\n", + " weights=[1, 4, 1, 5, 1],\n", " negative_categories=None,\n", " average=\"weighted\")\n", - "weight_averaged_metrics" + "weight_averaged_metrics.transpose()" ] }, { "cell_type": "markdown", - "id": "c4546ca7", + "id": "8c567b77", "metadata": {}, "source": [ - "Regardless of the evaluation methodology, it is clear the the candidate map does not perform well in reference to the benchmark. Finally, we can save the output. " + "Regardless of the averaging methodology it seems as though the candidate does not agree with the benchmark. We can now save the output." ] }, { @@ -1160,7 +1120,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 11, "id": "dff8f8a0", "metadata": {}, "outputs": [], diff --git a/docs/sphinx/index.rst b/docs/sphinx/index.rst index 07a7d1c2..01e883ba 100644 --- a/docs/sphinx/index.rst +++ b/docs/sphinx/index.rst @@ -16,7 +16,9 @@ ___________________________________ :maxdepth: 3 :caption: Table of Contents - tutorials + SphinxTutorial + SphinxMulticatTutorial + SphinxContinuousTutorial api contributing diff --git a/notebooks/Multi-Class Categorical Statistics.ipynb b/notebooks/Multi-Class Categorical Statistics.ipynb index 5258b1a9..c1d47cc8 100644 --- a/notebooks/Multi-Class Categorical Statistics.ipynb +++ b/notebooks/Multi-Class Categorical Statistics.ipynb @@ -32,7 +32,7 @@ "import numpy as np\n", "import pandas as pd\n", "import xarray as xr\n", - "from xrspatial.zonal import stats\n", + "from itertools import product\n", "\n", "pd.set_option('display.max_columns', None)" ] @@ -52,11 +52,11 @@ "metadata": {}, "outputs": [], "source": [ - "candidate = rxr.open_rasterio(f'./candidate_map_multi_categorical.tif', \n", + "candidate = rxr.open_rasterio('./candidate_map_multi_categorical.tif', \n", " mask_and_scale=True)\n", - "benchmark = rxr.open_rasterio(f'./benchmark_map_multi_categorical.tif',\n", + "benchmark = rxr.open_rasterio('./benchmark_map_multi_categorical.tif',\n", " mask_and_scale=True)\n", - "depth_raster = rxr.open_rasterio(f'./candidate_raw_elevation_multi_categorical.tif',\n", + "depth_raster = rxr.open_rasterio('./candidate_raw_elevation_multi_categorical.tif',\n", " mask_and_scale=True)" ] }, @@ -91,8 +91,8 @@ "metadata": {}, "outputs": [], "source": [ - "candidate_r, benchmark_r = candidate.sel(band=1).gval.homogenize(benchmark.sel(band=1))\n", - "depth_raster_r, arb = depth_raster.sel(band=1).gval.homogenize(benchmark_r)\n", + "candidate_r, benchmark_r = candidate.gval.homogenize(benchmark)\n", + "depth_raster_r, arb = depth_raster.gval.homogenize(benchmark_r)\n", "del arb" ] }, @@ -109,7 +109,7 @@ "id": "e2851c9b", "metadata": {}, "source": [ - "The following makes a pairing dictionary that represents the candidate class and benchmark class respectively. e.g. 12 represents a class 1 for the candidate and a class 2 for the benchmark." + "The following makes a pairing dictionary which maps combinations of values in the candidate and benchmark maps to unique values in the agreement map. In this case we will encode each value as concatenation of what the values are. Instead of making a pairing dictionary one can use the `szudzik` or `cantor` pairing functions to make unique values for each combination of candidate and benchmark map values. e.g. 12 represents a class 1 for the candidate and a class 2 for the benchmark." ] }, { @@ -117,18 +117,6 @@ "execution_count": 4, "id": "de894568", "metadata": {}, - "outputs": [], - "source": [ - "classes = np.array([1, 2, 3, 4, 5])\n", - "class_mesh = np.array(np.meshgrid(classes, classes)).T.reshape(-1, 2)\n", - "pairing_dictionary = {(k, v): int(f'{k}{v}') for k, v in class_mesh}" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "e248d2cc", - "metadata": {}, "outputs": [ { "name": "stdout", @@ -144,6 +132,10 @@ } ], "source": [ + "classes = [1, 2, 3, 4, 5]\n", + "pairing_dictionary = {(x, y): int(f'{x}{y}') for x, y in \n", + " product(classes, classes)}\n", + "\n", "# Showing the first 6 entries\n", "print('\\n'.join([f'{k}: {v}' for k,v in pairing_dictionary.items()][:6]))" ] @@ -158,38 +150,47 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "id": "1dc16dd7", "metadata": {}, "outputs": [], "source": [ - "agreement_map, crosstab = (candidate_r.gval.compute_agreement_map(benchmark_r, \n", - " nodata=255,\n", - " encode_nodata=True,\n", - " comparison_function='pairing_dict',\n", - " pairing_dict=pairing_dictionary,\n", - " allow_candidate_values=classes,\n", - " allow_benchmark_values=classes),\n", - " candidate_r.gval.compute_crosstab(benchmark_r,\n", - " comparison_function='pairing_dict',\n", - " pairing_dict=pairing_dictionary,\n", - " allow_candidate_values=classes,\n", - " allow_benchmark_values=classes))" + "agreement_map = candidate_r.gval.compute_agreement_map(benchmark_r, \n", + " nodata=255,\n", + " encode_nodata=True,\n", + " comparison_function='pairing_dict',\n", + " pairing_dict=pairing_dictionary,\n", + " allow_candidate_values=classes,\n", + " allow_benchmark_values=classes)\n", + "\n", + "crosstab = candidate_r.gval.compute_crosstab(benchmark_r,\n", + " comparison_function='pairing_dict',\n", + " pairing_dict=pairing_dictionary,\n", + " allow_candidate_values=classes,\n", + " allow_benchmark_values=classes)" + ] + }, + { + "cell_type": "markdown", + "id": "93fe86df", + "metadata": {}, + "source": [ + "The following only shows a small subset of the map for memory purposes:" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 6, "id": "55606165", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 7, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, @@ -223,11 +224,12 @@ "id": "4a1f3ecc", "metadata": {}, "source": [ - "For multi-categorical statistics GVAL offers 3 methods of weighting:\n", + "For multi-categorical statistics GVAL offers 4 methods of averaging:\n", "\n", + "1. No Averaging which provides one vs. all metrics on a class basis\n", "1. Micro Averaging which sums up the contingencies of each class defined as either positive or negative\n", - "2. Macro Averaging which sums up the contingencies of one class vs all and then averages them\n", - "3. Weighted Averaging which does macro averaging with the inclusion of weights to be applied to each positive category." + "3. Macro Averaging which sums up the contingencies of one class vs all and then averages them\n", + "4. Weighted Averaging which does macro averaging with the inclusion of weights to be applied to each positive category." ] }, { @@ -235,7 +237,7 @@ "id": "66235a0a", "metadata": {}, "source": [ - "### Micro Averaging" + "### No Averaging" ] }, { @@ -243,12 +245,12 @@ "id": "4f258087", "metadata": {}, "source": [ - "In this example we will consider classes 1 and 2 as positive and 3, 4, 5 as negative classes. " + "Using `None` for the averaging argument runs a one class vs. all methodology for each class and reports their metrics on a class basis:" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 7, "id": "936f2dea", "metadata": {}, "outputs": [ @@ -273,135 +275,316 @@ " \n", " \n", " \n", + " 0\n", + " 1\n", + " 2\n", + " 3\n", + " 4\n", + " \n", + " \n", + " \n", + " \n", " band\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " \n", + " \n", + " positive_categories\n", + " 1\n", + " 2\n", + " 3\n", + " 4\n", + " 5\n", + " \n", + " \n", " fn\n", + " 6.0\n", + " 1043.0\n", + " 318274.0\n", + " 516572.0\n", + " 364147.0\n", + " \n", + " \n", " fp\n", + " 172762.0\n", + " 561004.0\n", + " 462496.0\n", + " 3775.0\n", + " 5.0\n", + " \n", + " \n", " tn\n", + " 1043592.0\n", + " 653360.0\n", + " 422623.0\n", + " 693617.0\n", + " 852206.0\n", + " \n", + " \n", " tp\n", + " 0.0\n", + " 953.0\n", + " 12967.0\n", + " 2396.0\n", + " 2.0\n", + " \n", + " \n", " accuracy\n", + " 0.857963\n", + " 0.537927\n", + " 0.358109\n", + " 0.57221\n", + " 0.700622\n", + " \n", + " \n", " balanced_accuracy\n", + " 0.428984\n", + " 0.507741\n", + " 0.258311\n", + " 0.499602\n", + " 0.5\n", + " \n", + " \n", " critical_success_index\n", + " 0.0\n", + " 0.001693\n", + " 0.016337\n", + " 0.004584\n", + " 0.000005\n", + " \n", + " \n", " equitable_threat_score\n", + " -0.000005\n", + " 0.000055\n", + " -0.175401\n", + " -0.000455\n", + " -0.0\n", + " \n", + " \n", " f_score\n", + " 0.0\n", + " 0.00338\n", + " 0.032148\n", + " 0.009125\n", + " 0.000011\n", + " \n", + " \n", " false_discovery_rate\n", + " 1.0\n", + " 0.998304\n", + " 0.972728\n", + " 0.611732\n", + " 0.714286\n", + " \n", + " \n", " false_negative_rate\n", + " 1.0\n", + " 0.522545\n", + " 0.960853\n", + " 0.995383\n", + " 0.999995\n", + " \n", + " \n", " false_omission_rate\n", + " 0.000006\n", + " 0.001594\n", + " 0.429579\n", + " 0.426852\n", + " 0.299376\n", + " \n", + " \n", " false_positive_rate\n", + " 0.142033\n", + " 0.461974\n", + " 0.522524\n", + " 0.005413\n", + " 0.000006\n", + " \n", + " \n", " fowlkes_mallows_index\n", + " 0.0\n", + " 0.028455\n", + " 0.032675\n", + " 0.042339\n", + " 0.001253\n", + " \n", + " \n", " matthews_correlation_coefficient\n", + " -0.000904\n", + " 0.001257\n", + " -0.440983\n", + " -0.005543\n", + " -0.000072\n", + " \n", + " \n", " negative_likelihood_ratio\n", + " 1.165546\n", + " 0.971226\n", + " 2.01236\n", + " 1.000801\n", + " 1.0\n", + " \n", + " \n", " negative_predictive_value\n", + " 0.999994\n", + " 0.998406\n", + " 0.570421\n", + " 0.573148\n", + " 0.700624\n", + " \n", + " \n", " overall_bias\n", + " 28793.666667\n", + " 281.541583\n", + " 1.435399\n", + " 0.011891\n", + " 0.000019\n", + " \n", + " \n", " positive_likelihood_ratio\n", + " 0.0\n", + " 1.033511\n", + " 0.074919\n", + " 0.852916\n", + " 0.936112\n", + " \n", + " \n", " positive_predictive_value\n", + " 0.0\n", + " 0.001696\n", + " 0.027272\n", + " 0.388268\n", + " 0.285714\n", + " \n", + " \n", " prevalence\n", + " 0.000005\n", + " 0.001641\n", + " 0.272322\n", + " 0.426657\n", + " 0.299376\n", + " \n", + " \n", " prevalence_threshold\n", + " 1.0\n", + " 0.49588\n", + " 0.785107\n", + " 0.519876\n", + " 0.508252\n", + " \n", + " \n", " true_negative_rate\n", - " true_positive_rate\n", + " 0.857967\n", + " 0.538026\n", + " 0.477476\n", + " 0.994587\n", + " 0.999994\n", " \n", - " \n", - " \n", " \n", - " 0\n", - " 1\n", - " 382.0\n", - " 733099.0\n", - " 481259.0\n", - " 1620.0\n", - " 0.396987\n", - " 0.602749\n", - " 0.002204\n", - " 0.00056\n", - " 0.004398\n", - " 0.997795\n", - " 0.190809\n", - " 0.000793\n", - " 0.603693\n", - " 0.04224\n", - " 0.017033\n", - " 0.481468\n", - " 0.999207\n", - " 366.992507\n", - " 1.340402\n", - " 0.002205\n", - " 0.001646\n", - " 0.463444\n", - " 0.396307\n", - " 0.809191\n", + " true_positive_rate\n", + " 0.0\n", + " 0.477455\n", + " 0.039147\n", + " 0.004617\n", + " 0.000005\n", " \n", " \n", "\n", "" ], "text/plain": [ - " band fn fp tn tp accuracy balanced_accuracy \\\n", - "0 1 382.0 733099.0 481259.0 1620.0 0.396987 0.602749 \n", - "\n", - " critical_success_index equitable_threat_score f_score \\\n", - "0 0.002204 0.00056 0.004398 \n", + " 0 1 2 \\\n", + "band 1 1 1 \n", + "positive_categories 1 2 3 \n", + "fn 6.0 1043.0 318274.0 \n", + "fp 172762.0 561004.0 462496.0 \n", + "tn 1043592.0 653360.0 422623.0 \n", + "tp 0.0 953.0 12967.0 \n", + "accuracy 0.857963 0.537927 0.358109 \n", + "balanced_accuracy 0.428984 0.507741 0.258311 \n", + "critical_success_index 0.0 0.001693 0.016337 \n", + "equitable_threat_score -0.000005 0.000055 -0.175401 \n", + "f_score 0.0 0.00338 0.032148 \n", + "false_discovery_rate 1.0 0.998304 0.972728 \n", + "false_negative_rate 1.0 0.522545 0.960853 \n", + "false_omission_rate 0.000006 0.001594 0.429579 \n", + "false_positive_rate 0.142033 0.461974 0.522524 \n", + "fowlkes_mallows_index 0.0 0.028455 0.032675 \n", + "matthews_correlation_coefficient -0.000904 0.001257 -0.440983 \n", + "negative_likelihood_ratio 1.165546 0.971226 2.01236 \n", + "negative_predictive_value 0.999994 0.998406 0.570421 \n", + "overall_bias 28793.666667 281.541583 1.435399 \n", + "positive_likelihood_ratio 0.0 1.033511 0.074919 \n", + "positive_predictive_value 0.0 0.001696 0.027272 \n", + "prevalence 0.000005 0.001641 0.272322 \n", + "prevalence_threshold 1.0 0.49588 0.785107 \n", + "true_negative_rate 0.857967 0.538026 0.477476 \n", + "true_positive_rate 0.0 0.477455 0.039147 \n", "\n", - " false_discovery_rate false_negative_rate false_omission_rate \\\n", - "0 0.997795 0.190809 0.000793 \n", - "\n", - " false_positive_rate fowlkes_mallows_index \\\n", - "0 0.603693 0.04224 \n", - "\n", - " matthews_correlation_coefficient negative_likelihood_ratio \\\n", - "0 0.017033 0.481468 \n", - "\n", - " negative_predictive_value overall_bias positive_likelihood_ratio \\\n", - "0 0.999207 366.992507 1.340402 \n", - "\n", - " positive_predictive_value prevalence prevalence_threshold \\\n", - "0 0.002205 0.001646 0.463444 \n", - "\n", - " true_negative_rate true_positive_rate \n", - "0 0.396307 0.809191 " + " 3 4 \n", + "band 1 1 \n", + "positive_categories 4 5 \n", + "fn 516572.0 364147.0 \n", + "fp 3775.0 5.0 \n", + "tn 693617.0 852206.0 \n", + "tp 2396.0 2.0 \n", + "accuracy 0.57221 0.700622 \n", + "balanced_accuracy 0.499602 0.5 \n", + "critical_success_index 0.004584 0.000005 \n", + "equitable_threat_score -0.000455 -0.0 \n", + "f_score 0.009125 0.000011 \n", + "false_discovery_rate 0.611732 0.714286 \n", + "false_negative_rate 0.995383 0.999995 \n", + "false_omission_rate 0.426852 0.299376 \n", + "false_positive_rate 0.005413 0.000006 \n", + "fowlkes_mallows_index 0.042339 0.001253 \n", + "matthews_correlation_coefficient -0.005543 -0.000072 \n", + "negative_likelihood_ratio 1.000801 1.0 \n", + "negative_predictive_value 0.573148 0.700624 \n", + "overall_bias 0.011891 0.000019 \n", + "positive_likelihood_ratio 0.852916 0.936112 \n", + "positive_predictive_value 0.388268 0.285714 \n", + "prevalence 0.426657 0.299376 \n", + "prevalence_threshold 0.519876 0.508252 \n", + "true_negative_rate 0.994587 0.999994 \n", + "true_positive_rate 0.004617 0.000005 " ] }, - "execution_count": 8, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "micro_averaged_metrics = crosstab.gval.compute_categorical_metrics(positive_categories=[1, 2],\n", - " negative_categories=[3, 4, 5],\n", - " average=\"micro\")\n", - "micro_averaged_metrics" + "no_averaged_metrics = crosstab.gval.compute_categorical_metrics(positive_categories=[1, 2, 3, 4, 5],\n", + " negative_categories=None,\n", + " average=None)\n", + "no_averaged_metrics.transpose()" ] }, { "cell_type": "markdown", - "id": "895d3e57", + "id": "d722dc68", "metadata": {}, "source": [ - "Although more neatly summarized with macro-averaging, one can do one vs. all comparisons with micro averaging, showing the detail of each class version. (Macro averaging is essentially the mean of this data.)" + "### Micro Averaging" ] }, { - "cell_type": "code", - "execution_count": 9, - "id": "0da150e7", + "cell_type": "markdown", + "id": "3bbb83cf", "metadata": {}, - "outputs": [], "source": [ - "comparisons = [] # List with all comparisons \n", - "\n", - "for idx, positive_class in enumerate(classes):\n", - " negative_classes = classes[classes != positive_class]\n", - " df = crosstab.gval.compute_categorical_metrics(positive_categories=[positive_class],\n", - " negative_categories=negative_classes,\n", - " average=\"micro\")\n", - " df.insert(1, 'negative classes', [negative_classes])\n", - " df.insert(1, 'positive classes', [positive_class])\n", - " comparisons.append(df)" + "The following is an example of a using micro averaging to combine classes to process two-class categorical statistics. In this example we will use classes 1 and 2 as positive classes and classes 3, 4, and 5 as negative classes:" ] }, { "cell_type": "code", - "execution_count": 10, - "id": "d016aa30", + "execution_count": 8, + "id": "538dfc49", "metadata": {}, "outputs": [ { @@ -425,256 +608,153 @@ " \n", " \n", " \n", + " 0\n", + " \n", + " \n", + " \n", + " \n", " band\n", - " positive classes\n", - " negative classes\n", + " 1\n", + " \n", + " \n", " fn\n", + " 382.0\n", + " \n", + " \n", " fp\n", + " 733099.0\n", + " \n", + " \n", " tn\n", + " 481259.0\n", + " \n", + " \n", " tp\n", + " 1620.0\n", + " \n", + " \n", " accuracy\n", + " 0.396987\n", + " \n", + " \n", " balanced_accuracy\n", + " 0.602749\n", + " \n", + " \n", " critical_success_index\n", + " 0.002204\n", + " \n", + " \n", " equitable_threat_score\n", + " 0.00056\n", + " \n", + " \n", " f_score\n", + " 0.004398\n", + " \n", + " \n", " false_discovery_rate\n", + " 0.997795\n", + " \n", + " \n", " false_negative_rate\n", + " 0.190809\n", + " \n", + " \n", " false_omission_rate\n", + " 0.000793\n", + " \n", + " \n", " false_positive_rate\n", + " 0.603693\n", + " \n", + " \n", " fowlkes_mallows_index\n", + " 0.04224\n", + " \n", + " \n", " matthews_correlation_coefficient\n", + " 0.017033\n", + " \n", + " \n", " negative_likelihood_ratio\n", + " 0.481468\n", + " \n", + " \n", " negative_predictive_value\n", + " 0.999207\n", + " \n", + " \n", " overall_bias\n", + " 366.992507\n", + " \n", + " \n", " positive_likelihood_ratio\n", - " positive_predictive_value\n", - " prevalence\n", - " prevalence_threshold\n", - " true_negative_rate\n", - " true_positive_rate\n", + " 1.340402\n", " \n", - " \n", - " \n", " \n", - " 0\n", - " 1\n", - " 1\n", - " [2, 3, 4, 5]\n", - " 6.0\n", - " 172762.0\n", - " 1043592.0\n", - " 0.0\n", - " 0.857963\n", - " 0.428984\n", - " 0.000000\n", - " -4.932603e-06\n", - " 0.000000\n", - " 1.000000\n", - " 1.000000\n", - " 0.000006\n", - " 0.142033\n", - " 0.000000\n", - " -0.000904\n", - " 1.165546\n", - " 0.999994\n", - " 28793.666667\n", - " 0.000000\n", - " 0.000000\n", - " 0.000005\n", - " 1.000000\n", - " 0.857967\n", - " 0.000000\n", + " positive_predictive_value\n", + " 0.002205\n", " \n", " \n", - " 0\n", - " 1\n", - " 2\n", - " [1, 3, 4, 5]\n", - " 1043.0\n", - " 561004.0\n", - " 653360.0\n", - " 953.0\n", - " 0.537927\n", - " 0.507741\n", - " 0.001693\n", - " 5.488593e-05\n", - " 0.003380\n", - " 0.998304\n", - " 0.522545\n", - " 0.001594\n", - " 0.461974\n", - " 0.028455\n", - " 0.001257\n", - " 0.971226\n", - " 0.998406\n", - " 281.541583\n", - " 1.033511\n", - " 0.001696\n", - " 0.001641\n", - " 0.495880\n", - " 0.538026\n", - " 0.477455\n", + " prevalence\n", + " 0.001646\n", " \n", " \n", - " 0\n", - " 1\n", - " 3\n", - " [1, 2, 4, 5]\n", - " 318274.0\n", - " 462496.0\n", - " 422623.0\n", - " 12967.0\n", - " 0.358109\n", - " 0.258311\n", - " 0.016337\n", - " -1.754014e-01\n", - " 0.032148\n", - " 0.972728\n", - " 0.960853\n", - " 0.429579\n", - " 0.522524\n", - " 0.032675\n", - " -0.440983\n", - " 2.012360\n", - " 0.570421\n", - " 1.435399\n", - " 0.074919\n", - " 0.027272\n", - " 0.272322\n", - " 0.785107\n", - " 0.477476\n", - " 0.039147\n", + " prevalence_threshold\n", + " 0.463444\n", " \n", " \n", - " 0\n", - " 1\n", - " 4\n", - " [1, 2, 3, 5]\n", - " 516572.0\n", - " 3775.0\n", - " 693617.0\n", - " 2396.0\n", - " 0.572210\n", - " 0.499602\n", - " 0.004584\n", - " -4.554762e-04\n", - " 0.009125\n", - " 0.611732\n", - " 0.995383\n", - " 0.426852\n", - " 0.005413\n", - " 0.042339\n", - " -0.005543\n", - " 1.000801\n", - " 0.573148\n", - " 0.011891\n", - " 0.852916\n", - " 0.388268\n", - " 0.426657\n", - " 0.519876\n", - " 0.994587\n", - " 0.004617\n", + " true_negative_rate\n", + " 0.396307\n", " \n", " \n", - " 0\n", - " 1\n", - " 5\n", - " [1, 2, 3, 4]\n", - " 364147.0\n", - " 5.0\n", - " 852206.0\n", - " 2.0\n", - " 0.700622\n", - " 0.500000\n", - " 0.000005\n", - " -2.626158e-07\n", - " 0.000011\n", - " 0.714286\n", - " 0.999995\n", - " 0.299376\n", - " 0.000006\n", - " 0.001253\n", - " -0.000072\n", - " 1.000000\n", - " 0.700624\n", - " 0.000019\n", - " 0.936112\n", - " 0.285714\n", - " 0.299376\n", - " 0.508252\n", - " 0.999994\n", - " 0.000005\n", + " true_positive_rate\n", + " 0.809191\n", " \n", " \n", "\n", "" ], "text/plain": [ - " band positive classes negative classes fn fp tn \\\n", - "0 1 1 [2, 3, 4, 5] 6.0 172762.0 1043592.0 \n", - "0 1 2 [1, 3, 4, 5] 1043.0 561004.0 653360.0 \n", - "0 1 3 [1, 2, 4, 5] 318274.0 462496.0 422623.0 \n", - "0 1 4 [1, 2, 3, 5] 516572.0 3775.0 693617.0 \n", - "0 1 5 [1, 2, 3, 4] 364147.0 5.0 852206.0 \n", - "\n", - " tp accuracy balanced_accuracy critical_success_index \\\n", - "0 0.0 0.857963 0.428984 0.000000 \n", - "0 953.0 0.537927 0.507741 0.001693 \n", - "0 12967.0 0.358109 0.258311 0.016337 \n", - "0 2396.0 0.572210 0.499602 0.004584 \n", - "0 2.0 0.700622 0.500000 0.000005 \n", - "\n", - " equitable_threat_score f_score false_discovery_rate \\\n", - "0 -4.932603e-06 0.000000 1.000000 \n", - "0 5.488593e-05 0.003380 0.998304 \n", - "0 -1.754014e-01 0.032148 0.972728 \n", - "0 -4.554762e-04 0.009125 0.611732 \n", - "0 -2.626158e-07 0.000011 0.714286 \n", - "\n", - " false_negative_rate false_omission_rate false_positive_rate \\\n", - "0 1.000000 0.000006 0.142033 \n", - "0 0.522545 0.001594 0.461974 \n", - "0 0.960853 0.429579 0.522524 \n", - "0 0.995383 0.426852 0.005413 \n", - "0 0.999995 0.299376 0.000006 \n", - "\n", - " fowlkes_mallows_index matthews_correlation_coefficient \\\n", - "0 0.000000 -0.000904 \n", - "0 0.028455 0.001257 \n", - "0 0.032675 -0.440983 \n", - "0 0.042339 -0.005543 \n", - "0 0.001253 -0.000072 \n", - "\n", - " negative_likelihood_ratio negative_predictive_value overall_bias \\\n", - "0 1.165546 0.999994 28793.666667 \n", - "0 0.971226 0.998406 281.541583 \n", - "0 2.012360 0.570421 1.435399 \n", - "0 1.000801 0.573148 0.011891 \n", - "0 1.000000 0.700624 0.000019 \n", - "\n", - " positive_likelihood_ratio positive_predictive_value prevalence \\\n", - "0 0.000000 0.000000 0.000005 \n", - "0 1.033511 0.001696 0.001641 \n", - "0 0.074919 0.027272 0.272322 \n", - "0 0.852916 0.388268 0.426657 \n", - "0 0.936112 0.285714 0.299376 \n", - "\n", - " prevalence_threshold true_negative_rate true_positive_rate \n", - "0 1.000000 0.857967 0.000000 \n", - "0 0.495880 0.538026 0.477455 \n", - "0 0.785107 0.477476 0.039147 \n", - "0 0.519876 0.994587 0.004617 \n", - "0 0.508252 0.999994 0.000005 " + " 0\n", + "band 1\n", + "fn 382.0\n", + "fp 733099.0\n", + "tn 481259.0\n", + "tp 1620.0\n", + "accuracy 0.396987\n", + "balanced_accuracy 0.602749\n", + "critical_success_index 0.002204\n", + "equitable_threat_score 0.00056\n", + "f_score 0.004398\n", + "false_discovery_rate 0.997795\n", + "false_negative_rate 0.190809\n", + "false_omission_rate 0.000793\n", + "false_positive_rate 0.603693\n", + "fowlkes_mallows_index 0.04224\n", + "matthews_correlation_coefficient 0.017033\n", + "negative_likelihood_ratio 0.481468\n", + "negative_predictive_value 0.999207\n", + "overall_bias 366.992507\n", + "positive_likelihood_ratio 1.340402\n", + "positive_predictive_value 0.002205\n", + "prevalence 0.001646\n", + "prevalence_threshold 0.463444\n", + "true_negative_rate 0.396307\n", + "true_positive_rate 0.809191" ] }, - "execution_count": 10, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "all_micro_averaged_comps = pd.concat(comparisons)\n", - "all_micro_averaged_comps" + "micro_averaged_metrics = crosstab.gval.compute_categorical_metrics(positive_categories=[1, 2],\n", + " negative_categories=[3, 4, 5],\n", + " average=\"micro\")\n", + "micro_averaged_metrics.transpose()" ] }, { @@ -690,26 +770,14 @@ "id": "790c56df", "metadata": {}, "source": [ - "The following shows macro averaging and is equivalent to the values of shared columns in `all_micro_averaged_comps.mean()`:" + "The following shows macro averaging and is equivalent to the values of shared columns in `no_averaged_comps.mean()`:" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 9, "id": "7e64eb9b", "metadata": {}, - "outputs": [], - "source": [ - "macro_averaged_metrics = crosstab.gval.compute_categorical_metrics(positive_categories=classes,\n", - " negative_categories=None,\n", - " average=\"macro\")" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "70537719", - "metadata": {}, "outputs": [ { "data": { @@ -732,52 +800,92 @@ " \n", " \n", " \n", - " band\n", - " accuracy\n", - " balanced_accuracy\n", - " critical_success_index\n", - " equitable_threat_score\n", - " f_score\n", - " false_discovery_rate\n", - " false_negative_rate\n", - " false_omission_rate\n", - " false_positive_rate\n", - " fowlkes_mallows_index\n", - " matthews_correlation_coefficient\n", - " negative_likelihood_ratio\n", - " negative_predictive_value\n", - " overall_bias\n", - " positive_likelihood_ratio\n", - " positive_predictive_value\n", - " prevalence\n", - " prevalence_threshold\n", - " true_negative_rate\n", - " true_positive_rate\n", + " 0\n", " \n", " \n", " \n", " \n", - " 0\n", + " band\n", " 1\n", + " \n", + " \n", + " accuracy\n", " 0.605366\n", + " \n", + " \n", + " balanced_accuracy\n", " 0.438927\n", + " \n", + " \n", + " critical_success_index\n", " 0.004524\n", + " \n", + " \n", + " equitable_threat_score\n", " -0.035161\n", + " \n", + " \n", + " f_score\n", " 0.008933\n", + " \n", + " \n", + " false_discovery_rate\n", " 0.85941\n", + " \n", + " \n", + " false_negative_rate\n", " 0.895755\n", + " \n", + " \n", + " false_omission_rate\n", " 0.231481\n", + " \n", + " \n", + " false_positive_rate\n", " 0.22639\n", + " \n", + " \n", + " fowlkes_mallows_index\n", " 0.020944\n", + " \n", + " \n", + " matthews_correlation_coefficient\n", " -0.089249\n", + " \n", + " \n", + " negative_likelihood_ratio\n", " 1.229986\n", + " \n", + " \n", + " negative_predictive_value\n", " 0.768519\n", + " \n", + " \n", + " overall_bias\n", " 5815.331112\n", + " \n", + " \n", + " positive_likelihood_ratio\n", " 0.579492\n", + " \n", + " \n", + " positive_predictive_value\n", " 0.14059\n", + " \n", + " \n", + " prevalence\n", " 0.2\n", + " \n", + " \n", + " prevalence_threshold\n", " 0.661823\n", + " \n", + " \n", + " true_negative_rate\n", " 0.77361\n", + " \n", + " \n", + " true_positive_rate\n", " 0.104245\n", " \n", " \n", @@ -785,35 +893,40 @@ "" ], "text/plain": [ - " band accuracy balanced_accuracy critical_success_index \\\n", - "0 1 0.605366 0.438927 0.004524 \n", - "\n", - " equitable_threat_score f_score false_discovery_rate \\\n", - "0 -0.035161 0.008933 0.85941 \n", - "\n", - " false_negative_rate false_omission_rate false_positive_rate \\\n", - "0 0.895755 0.231481 0.22639 \n", - "\n", - " fowlkes_mallows_index matthews_correlation_coefficient \\\n", - "0 0.020944 -0.089249 \n", - "\n", - " negative_likelihood_ratio negative_predictive_value overall_bias \\\n", - "0 1.229986 0.768519 5815.331112 \n", - "\n", - " positive_likelihood_ratio positive_predictive_value prevalence \\\n", - "0 0.579492 0.14059 0.2 \n", - "\n", - " prevalence_threshold true_negative_rate true_positive_rate \n", - "0 0.661823 0.77361 0.104245 " + " 0\n", + "band 1\n", + "accuracy 0.605366\n", + "balanced_accuracy 0.438927\n", + "critical_success_index 0.004524\n", + "equitable_threat_score -0.035161\n", + "f_score 0.008933\n", + "false_discovery_rate 0.85941\n", + "false_negative_rate 0.895755\n", + "false_omission_rate 0.231481\n", + "false_positive_rate 0.22639\n", + "fowlkes_mallows_index 0.020944\n", + "matthews_correlation_coefficient -0.089249\n", + "negative_likelihood_ratio 1.229986\n", + "negative_predictive_value 0.768519\n", + "overall_bias 5815.331112\n", + "positive_likelihood_ratio 0.579492\n", + "positive_predictive_value 0.14059\n", + "prevalence 0.2\n", + "prevalence_threshold 0.661823\n", + "true_negative_rate 0.77361\n", + "true_positive_rate 0.104245" ] }, - "execution_count": 12, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "macro_averaged_metrics" + "macro_averaged_metrics = crosstab.gval.compute_categorical_metrics(positive_categories=classes,\n", + " negative_categories=None,\n", + " average=\"macro\")\n", + "macro_averaged_metrics.transpose()" ] }, { @@ -829,62 +942,12 @@ "id": "e182a6f7", "metadata": {}, "source": [ - "To further enhance `macro-averaging`, we can apply weights to the classes of interest. Let's engage in a quick arbitrary exercise to establish weights. Our first step is to calculate the mean candidate raw elevation for each class in the candidate and benchmark maps, and then the pixel count of the presence of each class in both maps." + "To further enhance `macro-averaging`, we can apply weights to the classes of interest in order to appropriately change the strength of evaluations for each class. For instance, if we applied the following vector the classes uses in this notebook, `[1, 4, 1, 5, 1]`, classes 2 and 4 would have greater influence on the final averaging of the scores for all classes. (All weight values are in reference to the other weight values respectively. e.g. the vector `[5, 5, 5, 5, 5]` would cause no change in the averaging because each weight value is equivalent to a ll other weight values.) Let's use the first weight vector mentioned in weighted averaging:" ] }, { "cell_type": "code", - "execution_count": 13, - "id": "248f0bad", - "metadata": {}, - "outputs": [], - "source": [ - "# candidate zonal statistics\n", - "candidate_stats = stats(xr.where(benchmark_r.isnull() == 0, candidate_r, np.nan), \n", - " depth_raster_r, \n", - " stats_funcs=[\"mean\", \"count\"])\n", - "# benchmark zonal statistics\n", - "benchmark_stats = stats(xr.where(candidate_r.isnull() == 0, benchmark_r, np.nan), \n", - " depth_raster_r, \n", - " stats_funcs=[\"mean\", \"count\"])\n", - "\n", - "mean_difference = np.abs(candidate_stats[\"mean\"].values - benchmark_stats[\"mean\"].values)\n", - "count_difference = np.abs(candidate_stats[\"count\"].values - benchmark_stats[\"count\"].values)" - ] - }, - { - "cell_type": "markdown", - "id": "1d7e954a", - "metadata": {}, - "source": [ - "First we will calculate weights based on rudimentary normalization of the difference of means, giving greater weight to the classes that have less of a difference. (Similarly it can be done to do the opposite.)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "id": "67684e18", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 1., 35., 1., 1., 1.])" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "weights = 1 // (mean_difference / (1 * np.max(mean_difference)))\n", - "weights" - ] - }, - { - "cell_type": "code", - "execution_count": 15, + "execution_count": 10, "id": "0eae1cbc", "metadata": {}, "outputs": [ @@ -909,245 +972,142 @@ " \n", " \n", " \n", - " band\n", - " accuracy\n", - " balanced_accuracy\n", - " critical_success_index\n", - " equitable_threat_score\n", - " f_score\n", - " false_discovery_rate\n", - " false_negative_rate\n", - " false_omission_rate\n", - " false_positive_rate\n", - " fowlkes_mallows_index\n", - " matthews_correlation_coefficient\n", - " negative_likelihood_ratio\n", - " negative_predictive_value\n", - " overall_bias\n", - " positive_likelihood_ratio\n", - " positive_predictive_value\n", - " prevalence\n", - " prevalence_threshold\n", - " true_negative_rate\n", - " true_positive_rate\n", + " 0\n", " \n", " \n", " \n", " \n", - " 0\n", + " band\n", " 1\n", - " 0.546573\n", - " 0.498918\n", - " 0.002056\n", - " -0.00446\n", - " 0.004092\n", - " 0.980497\n", - " 0.570393\n", - " 0.031067\n", - " 0.43177\n", - " 0.027492\n", - " -0.010346\n", - " 1.0044\n", - " 0.968933\n", - " 991.001779\n", - " 0.975304\n", - " 0.019503\n", - " 0.027072\n", - " 0.517155\n", - " 0.56823\n", - " 0.429607\n", " \n", - " \n", - "\n", - "" - ], - "text/plain": [ - " band accuracy balanced_accuracy critical_success_index \\\n", - "0 1 0.546573 0.498918 0.002056 \n", - "\n", - " equitable_threat_score f_score false_discovery_rate \\\n", - "0 -0.00446 0.004092 0.980497 \n", - "\n", - " false_negative_rate false_omission_rate false_positive_rate \\\n", - "0 0.570393 0.031067 0.43177 \n", - "\n", - " fowlkes_mallows_index matthews_correlation_coefficient \\\n", - "0 0.027492 -0.010346 \n", - "\n", - " negative_likelihood_ratio negative_predictive_value overall_bias \\\n", - "0 1.0044 0.968933 991.001779 \n", - "\n", - " positive_likelihood_ratio positive_predictive_value prevalence \\\n", - "0 0.975304 0.019503 0.027072 \n", - "\n", - " prevalence_threshold true_negative_rate true_positive_rate \n", - "0 0.517155 0.56823 0.429607 " - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "weight_averaged_metrics = crosstab.gval.compute_categorical_metrics(positive_categories=classes,\n", - " weights=weights,\n", - " negative_categories=None,\n", - " average=\"weighted\")\n", - "weight_averaged_metrics" - ] - }, - { - "cell_type": "markdown", - "id": "4cffc0fa", - "metadata": {}, - "source": [ - "Secondly, weights will be calculated based of a rudimentary normalization of counts. In this case the attempt will be to give greater weights to the larger differences to balance the impact of each class." - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "id": "02fa92f9", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([1., 3., 1., 3., 2.])" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "weights = count_difference // np.min(count_difference)\n", - "weights" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "id": "9a815076", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", "
band
accuracy0.577454
balanced_accuracy0.476356
critical_success_index0.003836
equitable_threat_score-0.014789
f_score0.007609
false_discovery_rate0.811574
false_negative_rate0.835662
false_omission_rate0.239133
false_positive_rate0.211627
fowlkes_mallows_index0.029953
matthews_correlation_coefficient-0.03872
negative_likelihood_ratio1.088901
negative_predictive_value0.760867
overall_bias2493.443989
positive_likelihood_ratio0.784138
positive_predictive_value0.188426
prevalence0.225962
prevalence_threshold0.573022
true_negative_ratetrue_positive_rate0.788373
010.5947730.4709320.003518-0.0176610.0069680.8231410.8514630.2313680.2066730.024756-0.0454891.1093980.7686322963.9762530.7606430.1768590.2155970.5848880.7933270.148537true_positive_rate0.164338
\n", "
" ], "text/plain": [ - " band accuracy balanced_accuracy critical_success_index \\\n", - "0 1 0.594773 0.470932 0.003518 \n", - "\n", - " equitable_threat_score f_score false_discovery_rate \\\n", - "0 -0.017661 0.006968 0.823141 \n", - "\n", - " false_negative_rate false_omission_rate false_positive_rate \\\n", - "0 0.851463 0.231368 0.206673 \n", - "\n", - " fowlkes_mallows_index matthews_correlation_coefficient \\\n", - "0 0.024756 -0.045489 \n", - "\n", - " negative_likelihood_ratio negative_predictive_value overall_bias \\\n", - "0 1.109398 0.768632 2963.976253 \n", - "\n", - " positive_likelihood_ratio positive_predictive_value prevalence \\\n", - "0 0.760643 0.176859 0.215597 \n", - "\n", - " prevalence_threshold true_negative_rate true_positive_rate \n", - "0 0.584888 0.793327 0.148537 " + " 0\n", + "band 1\n", + "accuracy 0.577454\n", + "balanced_accuracy 0.476356\n", + "critical_success_index 0.003836\n", + "equitable_threat_score -0.014789\n", + "f_score 0.007609\n", + "false_discovery_rate 0.811574\n", + "false_negative_rate 0.835662\n", + "false_omission_rate 0.239133\n", + "false_positive_rate 0.211627\n", + "fowlkes_mallows_index 0.029953\n", + "matthews_correlation_coefficient -0.03872\n", + "negative_likelihood_ratio 1.088901\n", + "negative_predictive_value 0.760867\n", + "overall_bias 2493.443989\n", + "positive_likelihood_ratio 0.784138\n", + "positive_predictive_value 0.188426\n", + "prevalence 0.225962\n", + "prevalence_threshold 0.573022\n", + "true_negative_rate 0.788373\n", + "true_positive_rate 0.164338" ] }, - "execution_count": 17, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "weight_averaged_metrics = crosstab.gval.compute_categorical_metrics(positive_categories=classes,\n", - " weights=weights,\n", + " weights=[1, 4, 1, 5, 1],\n", " negative_categories=None,\n", " average=\"weighted\")\n", - "weight_averaged_metrics" + "weight_averaged_metrics.transpose()" ] }, { "cell_type": "markdown", - "id": "c4546ca7", + "id": "8c567b77", "metadata": {}, "source": [ - "Regardless of the evaluation methodology, it is clear the the candidate map does not perform well in reference to the benchmark. Finally, we can save the output. " + "Regardless of the averaging methodology it seems as though the candidate does not agree with the benchmark. We can now save the output." ] }, { @@ -1160,7 +1120,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 11, "id": "dff8f8a0", "metadata": {}, "outputs": [], From 53a3ac5190bf8891139f9b3d21ae11487002b21c Mon Sep 17 00:00:00 2001 From: Gregory Petrochenkov Date: Wed, 16 Aug 2023 12:57:27 -0400 Subject: [PATCH 3/3] Reformat tutorial notebooks --- docs/sphinx/SphinxContinuousTutorial.ipynb | 147 ++++---- docs/sphinx/SphinxMulticatTutorial.ipynb | 122 ++++--- docs/sphinx/SphinxTutorial.ipynb | 314 +++++++++++------- .../Continuous Comparison Tutorial.ipynb | 147 ++++---- .../Multi-Class Categorical Statistics.ipynb | 122 ++++--- notebooks/Tutorial.ipynb | 314 +++++++++++------- 6 files changed, 710 insertions(+), 456 deletions(-) diff --git a/docs/sphinx/SphinxContinuousTutorial.ipynb b/docs/sphinx/SphinxContinuousTutorial.ipynb index 6d6873a6..6a31f722 100644 --- a/docs/sphinx/SphinxContinuousTutorial.ipynb +++ b/docs/sphinx/SphinxContinuousTutorial.ipynb @@ -55,8 +55,12 @@ "metadata": {}, "outputs": [], "source": [ - "candidate = rxr.open_rasterio('./livneh_2011_precip.tif', mask_and_scale=True) # VIC\n", - "benchmark = rxr.open_rasterio('./prism_2011_precip.tif', mask_and_scale=True) # PRISM" + "candidate = rxr.open_rasterio(\n", + " './livneh_2011_precip.tif', mask_and_scale=True\n", + ") # VIC\n", + "benchmark = rxr.open_rasterio(\n", + " './prism_2011_precip.tif', mask_and_scale=True\n", + ") # PRISM" ] }, { @@ -110,7 +114,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 4, @@ -149,7 +153,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 5, @@ -168,10 +172,12 @@ } ], "source": [ - "agreement.data = xr.where((agreement < np.nanquantile(agreement.values, \n", - " 0.0001)) | \n", - " (agreement > np.nanquantile(agreement.values, 0.9999)), \n", - " np.nan, agreement)\n", + "agreement.data = xr.where(\n", + " (agreement < np.nanquantile(agreement.values, 0.0001)) | \n", + " (agreement > np.nanquantile(agreement.values, 0.9999)), \n", + " np.nan, \n", + " agreement\n", + ")\n", "agreement.gval.cont_plot(title=\"Agreement Map\", figsize=(6, 3))" ] }, @@ -218,36 +224,60 @@ " \n", " \n", " \n", - " band\n", - " coefficient_of_determination\n", - " mean_absolute_error\n", - " mean_absolute_percentage_error\n", - " mean_normalized_mean_absolute_error\n", - " mean_normalized_root_mean_squared_error\n", - " mean_percentage_error\n", - " mean_signed_error\n", - " mean_squared_error\n", - " range_normalized_mean_absolute_error\n", - " range_normalized_root_mean_squared_error\n", - " root_mean_squared_error\n", - " symmetric_mean_absolute_percentage_error\n", + " 0\n", " \n", " \n", " \n", " \n", - " 0\n", + " band\n", " 1\n", + " \n", + " \n", + " coefficient_of_determination\n", " 0.685261\n", + " \n", + " \n", + " mean_absolute_error\n", " 216.089706\n", + " \n", + " \n", + " mean_absolute_percentage_error\n", " 0.319234\n", + " \n", + " \n", + " mean_normalized_mean_absolute_error\n", " 0.267845\n", + " \n", + " \n", + " mean_normalized_root_mean_squared_error\n", " 0.372578\n", + " \n", + " \n", + " mean_percentage_error\n", " 0.010022\n", + " \n", + " \n", + " mean_signed_error\n", " 8.085411\n", + " \n", + " \n", + " mean_squared_error\n", " 90351.664062\n", + " \n", + " \n", + " range_normalized_mean_absolute_error\n", " 0.033065\n", + " \n", + " \n", + " range_normalized_root_mean_squared_error\n", " 0.045995\n", + " \n", + " \n", + " root_mean_squared_error\n", " 300.585541\n", + " \n", + " \n", + " symmetric_mean_absolute_percentage_error\n", " 0.269394\n", " \n", " \n", @@ -255,26 +285,20 @@ "" ], "text/plain": [ - " band coefficient_of_determination mean_absolute_error \\\n", - "0 1 0.685261 216.089706 \n", - "\n", - " mean_absolute_percentage_error mean_normalized_mean_absolute_error \\\n", - "0 0.319234 0.267845 \n", - "\n", - " mean_normalized_root_mean_squared_error mean_percentage_error \\\n", - "0 0.372578 0.010022 \n", - "\n", - " mean_signed_error mean_squared_error \\\n", - "0 8.085411 90351.664062 \n", - "\n", - " range_normalized_mean_absolute_error \\\n", - "0 0.033065 \n", - "\n", - " range_normalized_root_mean_squared_error root_mean_squared_error \\\n", - "0 0.045995 300.585541 \n", - "\n", - " symmetric_mean_absolute_percentage_error \n", - "0 0.269394 " + " 0\n", + "band 1\n", + "coefficient_of_determination 0.685261\n", + "mean_absolute_error 216.089706\n", + "mean_absolute_percentage_error 0.319234\n", + "mean_normalized_mean_absolute_error 0.267845\n", + "mean_normalized_root_mean_squared_error 0.372578\n", + "mean_percentage_error 0.010022\n", + "mean_signed_error 8.085411\n", + "mean_squared_error 90351.664062\n", + "range_normalized_mean_absolute_error 0.033065\n", + "range_normalized_root_mean_squared_error 0.045995\n", + "root_mean_squared_error 300.585541\n", + "symmetric_mean_absolute_percentage_error 0.269394" ] }, "execution_count": 6, @@ -283,7 +307,7 @@ } ], "source": [ - "metric_table" + "metric_table.transpose()" ] }, { @@ -325,8 +349,10 @@ "metadata": {}, "outputs": [], "source": [ - "candidate, benchmark = candidate.gval.homogenize(benchmark_map=benchmark,\n", - " target_map = \"candidate\")" + "candidate, benchmark = candidate.gval.homogenize(\n", + " benchmark_map=benchmark,\n", + " target_map = \"candidate\"\n", + ")" ] }, { @@ -362,7 +388,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 8, @@ -381,8 +407,10 @@ } ], "source": [ - "agreement_map = candidate.gval.compute_agreement_map(benchmark_map=benchmark, \n", - " comparison_function=\"difference\")\n", + "agreement_map = candidate.gval.compute_agreement_map(\n", + " benchmark_map=benchmark, \n", + " comparison_function=\"difference\"\n", + ")\n", "\n", "agreement_map.gval.cont_plot(title=\"Agreement Map\", figsize=(6, 3))" ] @@ -404,7 +432,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 9, @@ -430,8 +458,10 @@ "def multiply(c: Number, b: Number) -> Number:\n", " return c / b\n", "\n", - "agreement_map = candidate.gval.compute_agreement_map(benchmark_map=benchmark, \n", - " comparison_function=\"divide\")\n", + "agreement_map = candidate.gval.compute_agreement_map(\n", + " benchmark_map=benchmark, \n", + " comparison_function=\"divide\"\n", + ")\n", "\n", "agreement_map.gval.cont_plot(title=\"Agreement Map\", figsize=(6, 3))" ] @@ -506,9 +536,10 @@ } ], "source": [ - "_, metric_table = candidate.gval.continuous_compare(benchmark,\n", - " metrics=['mean_absolute_error', \n", - " 'mean_squared_error'])\n", + "_, metric_table = candidate.gval.continuous_compare(\n", + " benchmark,\n", + " metrics=['mean_absolute_error', 'mean_squared_error']\n", + ")\n", "\n", "metric_table" ] @@ -621,10 +652,10 @@ } ], "source": [ - "_, metric_table = candidate.gval.continuous_compare(benchmark,\n", - " metrics=['min_error', \n", - " 'median_error', \n", - " 'max_error'])\n", + "_, metric_table = candidate.gval.continuous_compare(\n", + " benchmark,\n", + " metrics=['min_error', 'median_error', 'max_error']\n", + ")\n", "\n", "metric_table" ] diff --git a/docs/sphinx/SphinxMulticatTutorial.ipynb b/docs/sphinx/SphinxMulticatTutorial.ipynb index c1d47cc8..1f035af2 100644 --- a/docs/sphinx/SphinxMulticatTutorial.ipynb +++ b/docs/sphinx/SphinxMulticatTutorial.ipynb @@ -18,7 +18,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 6, "id": "275a7087", "metadata": { "tags": [ @@ -47,17 +47,20 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 7, "id": "38473c06", "metadata": {}, "outputs": [], "source": [ - "candidate = rxr.open_rasterio('./candidate_map_multi_categorical.tif', \n", - " mask_and_scale=True)\n", - "benchmark = rxr.open_rasterio('./benchmark_map_multi_categorical.tif',\n", - " mask_and_scale=True)\n", - "depth_raster = rxr.open_rasterio('./candidate_raw_elevation_multi_categorical.tif',\n", - " mask_and_scale=True)" + "candidate = rxr.open_rasterio(\n", + " \"./candidate_map_multi_categorical.tif\", mask_and_scale=True\n", + ")\n", + "benchmark = rxr.open_rasterio(\n", + " \"./benchmark_map_multi_categorical.tif\", mask_and_scale=True\n", + ")\n", + "depth_raster = rxr.open_rasterio(\n", + " \"./candidate_raw_elevation_multi_categorical.tif\", mask_and_scale=True\n", + ")" ] }, { @@ -86,7 +89,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 8, "id": "29375e17", "metadata": {}, "outputs": [], @@ -114,7 +117,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 9, "id": "de894568", "metadata": {}, "outputs": [ @@ -133,8 +136,7 @@ ], "source": [ "classes = [1, 2, 3, 4, 5]\n", - "pairing_dictionary = {(x, y): int(f'{x}{y}') for x, y in \n", - " product(classes, classes)}\n", + "pairing_dictionary = {(x, y): int(f'{x}{y}') for x, y in product(*([classes]*2))}\n", "\n", "# Showing the first 6 entries\n", "print('\\n'.join([f'{k}: {v}' for k,v in pairing_dictionary.items()][:6]))" @@ -150,24 +152,28 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 10, "id": "1dc16dd7", "metadata": {}, "outputs": [], "source": [ - "agreement_map = candidate_r.gval.compute_agreement_map(benchmark_r, \n", - " nodata=255,\n", - " encode_nodata=True,\n", - " comparison_function='pairing_dict',\n", - " pairing_dict=pairing_dictionary,\n", - " allow_candidate_values=classes,\n", - " allow_benchmark_values=classes)\n", + "agreement_map = candidate_r.gval.compute_agreement_map(\n", + " benchmark_r,\n", + " nodata=255,\n", + " encode_nodata=True,\n", + " comparison_function=\"pairing_dict\",\n", + " pairing_dict=pairing_dictionary,\n", + " allow_candidate_values=classes,\n", + " allow_benchmark_values=classes,\n", + ")\n", "\n", - "crosstab = candidate_r.gval.compute_crosstab(benchmark_r,\n", - " comparison_function='pairing_dict',\n", - " pairing_dict=pairing_dictionary,\n", - " allow_candidate_values=classes,\n", - " allow_benchmark_values=classes)" + "crosstab = candidate_r.gval.compute_crosstab(\n", + " benchmark_r,\n", + " comparison_function=\"pairing_dict\",\n", + " pairing_dict=pairing_dictionary,\n", + " allow_candidate_values=classes,\n", + " allow_benchmark_values=classes,\n", + ")" ] }, { @@ -180,17 +186,17 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 11, "id": "55606165", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 6, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, @@ -206,9 +212,11 @@ } ], "source": [ - "agreement_map.gval.cat_plot(title='Agreement Map', \n", - " figsize=(8, 6),\n", - " colormap='tab20b')" + "agreement_map.gval.cat_plot(\n", + " title='Agreement Map', \n", + " figsize=(8, 6),\n", + " colormap='tab20b'\n", + ")" ] }, { @@ -250,7 +258,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 12, "id": "936f2dea", "metadata": {}, "outputs": [ @@ -553,15 +561,17 @@ "true_positive_rate 0.004617 0.000005 " ] }, - "execution_count": 7, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "no_averaged_metrics = crosstab.gval.compute_categorical_metrics(positive_categories=[1, 2, 3, 4, 5],\n", - " negative_categories=None,\n", - " average=None)\n", + "no_averaged_metrics = crosstab.gval.compute_categorical_metrics(\n", + " positive_categories=[1, 2, 3, 4, 5],\n", + " negative_categories=None,\n", + " average=None\n", + ")\n", "no_averaged_metrics.transpose()" ] }, @@ -583,7 +593,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 13, "id": "538dfc49", "metadata": {}, "outputs": [ @@ -745,15 +755,17 @@ "true_positive_rate 0.809191" ] }, - "execution_count": 8, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "micro_averaged_metrics = crosstab.gval.compute_categorical_metrics(positive_categories=[1, 2],\n", - " negative_categories=[3, 4, 5],\n", - " average=\"micro\")\n", + "micro_averaged_metrics = crosstab.gval.compute_categorical_metrics(\n", + " positive_categories=[1, 2],\n", + " negative_categories=[3, 4, 5],\n", + " average=\"micro\"\n", + ")\n", "micro_averaged_metrics.transpose()" ] }, @@ -775,7 +787,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 14, "id": "7e64eb9b", "metadata": {}, "outputs": [ @@ -917,15 +929,17 @@ "true_positive_rate 0.104245" ] }, - "execution_count": 9, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "macro_averaged_metrics = crosstab.gval.compute_categorical_metrics(positive_categories=classes,\n", - " negative_categories=None,\n", - " average=\"macro\")\n", + "macro_averaged_metrics = crosstab.gval.compute_categorical_metrics(\n", + " positive_categories=classes,\n", + " negative_categories=None,\n", + " average=\"macro\"\n", + ")\n", "macro_averaged_metrics.transpose()" ] }, @@ -947,7 +961,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 15, "id": "0eae1cbc", "metadata": {}, "outputs": [ @@ -1089,16 +1103,18 @@ "true_positive_rate 0.164338" ] }, - "execution_count": 10, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "weight_averaged_metrics = crosstab.gval.compute_categorical_metrics(positive_categories=classes,\n", - " weights=[1, 4, 1, 5, 1],\n", - " negative_categories=None,\n", - " average=\"weighted\")\n", + "weight_averaged_metrics = crosstab.gval.compute_categorical_metrics(\n", + " positive_categories=classes,\n", + " weights=[1, 4, 1, 5, 1],\n", + " negative_categories=None,\n", + " average=\"weighted\"\n", + ")\n", "weight_averaged_metrics.transpose()" ] }, @@ -1120,7 +1136,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 16, "id": "dff8f8a0", "metadata": {}, "outputs": [], diff --git a/docs/sphinx/SphinxTutorial.ipynb b/docs/sphinx/SphinxTutorial.ipynb index 4f8cee52..9a9d5b53 100644 --- a/docs/sphinx/SphinxTutorial.ipynb +++ b/docs/sphinx/SphinxTutorial.ipynb @@ -18,7 +18,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "id": "a9fa8470", "metadata": {}, "outputs": [], @@ -45,13 +45,17 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "id": "f91c0b8c", "metadata": {}, "outputs": [], "source": [ - "candidate = rxr.open_rasterio('candidate_map_two_class_categorical.tif', mask_and_scale=True)\n", - "benchmark = rxr.open_rasterio('benchmark_map_two_class_categorical.tif', mask_and_scale=True)" + "candidate = rxr.open_rasterio(\n", + " 'candidate_map_two_class_categorical.tif', mask_and_scale=True\n", + ")\n", + "benchmark = rxr.open_rasterio(\n", + " 'benchmark_map_two_class_categorical.tif', mask_and_scale=True\n", + ")" ] }, { @@ -72,14 +76,16 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 4, "id": "541857a7", "metadata": {}, "outputs": [], "source": [ - "agreement_map, crosstab_table, metric_table = candidate.gval.categorical_compare(benchmark,\n", - " positive_categories=[2],\n", - " negative_categories=[0, 1])" + "agreement_map, crosstab_table, metric_table = candidate.gval.categorical_compare(\n", + " benchmark,\n", + " positive_categories=[2],\n", + " negative_categories=[0, 1]\n", + ")" ] }, { @@ -156,17 +162,17 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "id": "b1ef13a0", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 4, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, @@ -203,7 +209,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "id": "fdc9df2b", "metadata": {}, "outputs": [ @@ -280,7 +286,7 @@ "3 1 2.0 2.0 24.0 2473405.0" ] }, - "execution_count": 5, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -307,7 +313,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "id": "16cb3626", "metadata": {}, "outputs": [ @@ -332,91 +338,150 @@ " \n", " \n", " \n", - " band\n", - " fn\n", - " fp\n", - " tn\n", - " tp\n", - " accuracy\n", - " critical_success_index\n", - " f_score\n", - " false_discovery_rate\n", - " false_negative_rate\n", - " ...\n", - " fowlkes_mallows_index\n", - " matthews_correlation_coefficient\n", - " negative_likelihood_ratio\n", - " negative_predictive_value\n", - " positive_likelihood_ratio\n", - " positive_predictive_value\n", - " prevalence\n", - " prevalence_threshold\n", - " true_negative_rate\n", - " true_positive_rate\n", + " 0\n", " \n", " \n", " \n", " \n", - " 0\n", + " band\n", " 1\n", + " \n", + " \n", + " fn\n", " 639227.0\n", + " \n", + " \n", + " fp\n", " 512277.0\n", + " \n", + " \n", + " tn\n", " 10345720.0\n", + " \n", + " \n", + " tp\n", " 2473405.0\n", + " \n", + " \n", + " accuracy\n", " 0.917577\n", + " \n", + " \n", + " balanced_accuracy\n", + " 0.873727\n", + " \n", + " \n", + " critical_success_index\n", " 0.682336\n", + " \n", + " \n", + " equitable_threat_score\n", + " 0.610939\n", + " \n", + " \n", + " f_score\n", " 0.811177\n", + " \n", + " \n", + " false_discovery_rate\n", " 0.171578\n", + " \n", + " \n", + " false_negative_rate\n", " 0.205365\n", - " ...\n", + " \n", + " \n", + " false_omission_rate\n", + " 0.058191\n", + " \n", + " \n", + " false_positive_rate\n", + " 0.04718\n", + " \n", + " \n", + " fowlkes_mallows_index\n", " 0.811352\n", + " \n", + " \n", + " matthews_correlation_coefficient\n", " 0.758757\n", + " \n", + " \n", + " negative_likelihood_ratio\n", " 0.215534\n", + " \n", + " \n", + " negative_predictive_value\n", " 0.941809\n", + " \n", + " \n", + " overall_bias\n", + " 0.959215\n", + " \n", + " \n", + " positive_likelihood_ratio\n", " 16.842723\n", + " \n", + " \n", + " positive_predictive_value\n", " 0.828422\n", - " 0.213711\n", + " \n", + " \n", + " prevalence\n", + " 0.222798\n", + " \n", + " \n", + " prevalence_threshold\n", " 0.195925\n", + " \n", + " \n", + " true_negative_rate\n", " 0.95282\n", + " \n", + " \n", + " true_positive_rate\n", " 0.794635\n", " \n", " \n", "\n", - "

1 rows × 22 columns

\n", "" ], "text/plain": [ - " band fn fp tn tp accuracy \\\n", - "0 1 639227.0 512277.0 10345720.0 2473405.0 0.917577 \n", - "\n", - " critical_success_index f_score false_discovery_rate \\\n", - "0 0.682336 0.811177 0.171578 \n", - "\n", - " false_negative_rate ... fowlkes_mallows_index \\\n", - "0 0.205365 ... 0.811352 \n", - "\n", - " matthews_correlation_coefficient negative_likelihood_ratio \\\n", - "0 0.758757 0.215534 \n", - "\n", - " negative_predictive_value positive_likelihood_ratio \\\n", - "0 0.941809 16.842723 \n", - "\n", - " positive_predictive_value prevalence prevalence_threshold \\\n", - "0 0.828422 0.213711 0.195925 \n", - "\n", - " true_negative_rate true_positive_rate \n", - "0 0.95282 0.794635 \n", - "\n", - "[1 rows x 22 columns]" + " 0\n", + "band 1\n", + "fn 639227.0\n", + "fp 512277.0\n", + "tn 10345720.0\n", + "tp 2473405.0\n", + "accuracy 0.917577\n", + "balanced_accuracy 0.873727\n", + "critical_success_index 0.682336\n", + "equitable_threat_score 0.610939\n", + "f_score 0.811177\n", + "false_discovery_rate 0.171578\n", + "false_negative_rate 0.205365\n", + "false_omission_rate 0.058191\n", + "false_positive_rate 0.04718\n", + "fowlkes_mallows_index 0.811352\n", + "matthews_correlation_coefficient 0.758757\n", + "negative_likelihood_ratio 0.215534\n", + "negative_predictive_value 0.941809\n", + "overall_bias 0.959215\n", + "positive_likelihood_ratio 16.842723\n", + "positive_predictive_value 0.828422\n", + "prevalence 0.222798\n", + "prevalence_threshold 0.195925\n", + "true_negative_rate 0.95282\n", + "true_positive_rate 0.794635" ] }, - "execution_count": 6, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "metric_table" + "metric_table.transpose()" ] }, { @@ -457,13 +522,15 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "id": "7264ffc9", "metadata": {}, "outputs": [], "source": [ - "candidate, benchmark = candidate.gval.homogenize(benchmark_map=benchmark,\n", - " target_map = \"candidate\")" + "candidate, benchmark = candidate.gval.homogenize(\n", + " benchmark_map=benchmark,\n", + " target_map = \"candidate\"\n", + ")" ] }, { @@ -476,14 +543,16 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "id": "e3917e34", "metadata": {}, "outputs": [], "source": [ "target_map = rxr.open_rasterio('target_map_two_class_categorical.tif')\n", - "candidate, benchmark = candidate.gval.homogenize(benchmark_map=benchmark,\n", - " target_map = target_map)" + "candidate, benchmark = candidate.gval.homogenize(\n", + " benchmark_map=benchmark,\n", + " target_map = target_map\n", + ")" ] }, { @@ -512,17 +581,17 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "id": "c6e3c35c", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 9, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, @@ -538,8 +607,10 @@ } ], "source": [ - "agreement_map = candidate.gval.compute_agreement_map(benchmark_map=benchmark, \n", - " comparison_function='cantor')\n", + "agreement_map = candidate.gval.compute_agreement_map(\n", + " benchmark_map=benchmark, \n", + " comparison_function='cantor'\n", + ")\n", "\n", "agreement_map.gval.cat_plot(title=\"Agreement Map\")" ] @@ -558,17 +629,17 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "id": "a2310a98", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 10, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, @@ -598,9 +669,11 @@ " (2, 2): 8\n", "}\n", "\n", - "agreement_map = candidate.gval.compute_agreement_map(benchmark_map=benchmark,\n", - " comparison_function='pairing_dict',\n", - " pairing_dict=pairing_dict)\n", + "agreement_map = candidate.gval.compute_agreement_map(\n", + " benchmark_map=benchmark,\n", + " comparison_function='pairing_dict',\n", + " pairing_dict=pairing_dict\n", + ")\n", "\n", "agreement_map.gval.cat_plot(title=\"Agreement Map\", basemap=None)" ] @@ -615,17 +688,17 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "id": "f6567376", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 11, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, @@ -641,10 +714,12 @@ } ], "source": [ - "agreement_map = candidate.gval.compute_agreement_map(benchmark_map=benchmark, \n", - " comparison_function='pairing_dict',\n", - " allow_candidate_values=[1, 2],\n", - " allow_benchmark_values=[0, 2])\n", + "agreement_map = candidate.gval.compute_agreement_map(\n", + " benchmark_map=benchmark, \n", + " comparison_function='pairing_dict',\n", + " allow_candidate_values=[1, 2],\n", + " allow_benchmark_values=[0, 2]\n", + ")\n", "\n", "agreement_map.gval.cat_plot(title=\"Agreement Map\")" ] @@ -667,17 +742,17 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "id": "972f07aa", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 12, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" }, @@ -700,8 +775,10 @@ "def multiply(c: Number, b: Number) -> Number:\n", " return c * b\n", "\n", - "agreement_map = candidate.gval.compute_agreement_map(benchmark_map=benchmark, \n", - " comparison_function=\"multi\")\n", + "agreement_map = candidate.gval.compute_agreement_map(\n", + " benchmark_map=benchmark, \n", + " comparison_function=\"multi\"\n", + ")\n", "\n", "agreement_map.gval.cat_plot(title=\"Agreement Map\")" ] @@ -732,7 +809,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "id": "18b9c315", "metadata": {}, "outputs": [ @@ -791,17 +868,18 @@ "1 1 2.0 2.0 4.0 2624301.0" ] }, - "execution_count": 13, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "crosstab_table_allow = candidate.gval.compute_crosstab(benchmark,\n", - " allow_benchmark_values=[0, 2],\n", - " allow_candidate_values=[2],\n", - " comparison_function=\"multi\"\n", - " )\n", + "crosstab_table_allow = candidate.gval.compute_crosstab(\n", + " benchmark,\n", + " allow_benchmark_values=[0, 2],\n", + " allow_candidate_values=[2],\n", + " comparison_function=\"multi\"\n", + ")\n", "crosstab_table_allow" ] }, @@ -823,7 +901,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 15, "id": "2ba3fc06", "metadata": {}, "outputs": [ @@ -866,7 +944,7 @@ " 10345720.0\n", " 2473405.0\n", " 0.794635\n", - " 0.213711\n", + " 0.222798\n", " \n", " \n", "\n", @@ -877,18 +955,20 @@ "0 1 639227.0 512277.0 10345720.0 2473405.0 0.794635 \n", "\n", " prevalence \n", - "0 0.213711 " + "0 0.222798 " ] }, - "execution_count": 14, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "metric_table_select = crosstab_table.gval.compute_categorical_metrics(negative_categories= [0, 1],\n", - " positive_categories = [2],\n", - " metrics=['true_positive_rate', 'prevalence'])\n", + "metric_table_select = crosstab_table.gval.compute_categorical_metrics(\n", + " negative_categories= [0, 1],\n", + " positive_categories = [2],\n", + " metrics=['true_positive_rate', 'prevalence']\n", + ")\n", "metric_table_select" ] }, @@ -902,7 +982,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 16, "id": "67938408", "metadata": {}, "outputs": [], @@ -924,7 +1004,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 17, "id": "1e8eeb59", "metadata": {}, "outputs": [], @@ -951,21 +1031,21 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 18, "id": "6a41eee3", "metadata": {}, "outputs": [], "source": [ - "metric_table_register = crosstab_table.gval.compute_categorical_metrics(negative_categories= None,\n", - " positive_categories = [2],\n", - " metrics=['error_balance', \n", - " 'arbitrary1', \n", - " 'arbitrary2'])" + "metric_table_register = crosstab_table.gval.compute_categorical_metrics(\n", + " negative_categories= None,\n", + " positive_categories = [2],\n", + " metrics=['error_balance', 'arbitrary1', 'arbitrary2']\n", + ")" ] }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 19, "id": "6ab884b7", "metadata": {}, "outputs": [ @@ -1017,7 +1097,7 @@ "0 1 639227.0 512277.0 NaN 2473405.0 0.801401" ] }, - "execution_count": 18, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } @@ -1044,7 +1124,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 20, "id": "899a1da9", "metadata": {}, "outputs": [], diff --git a/notebooks/Continuous Comparison Tutorial.ipynb b/notebooks/Continuous Comparison Tutorial.ipynb index 6d6873a6..6a31f722 100644 --- a/notebooks/Continuous Comparison Tutorial.ipynb +++ b/notebooks/Continuous Comparison Tutorial.ipynb @@ -55,8 +55,12 @@ "metadata": {}, "outputs": [], "source": [ - "candidate = rxr.open_rasterio('./livneh_2011_precip.tif', mask_and_scale=True) # VIC\n", - "benchmark = rxr.open_rasterio('./prism_2011_precip.tif', mask_and_scale=True) # PRISM" + "candidate = rxr.open_rasterio(\n", + " './livneh_2011_precip.tif', mask_and_scale=True\n", + ") # VIC\n", + "benchmark = rxr.open_rasterio(\n", + " './prism_2011_precip.tif', mask_and_scale=True\n", + ") # PRISM" ] }, { @@ -110,7 +114,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 4, @@ -149,7 +153,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 5, @@ -168,10 +172,12 @@ } ], "source": [ - "agreement.data = xr.where((agreement < np.nanquantile(agreement.values, \n", - " 0.0001)) | \n", - " (agreement > np.nanquantile(agreement.values, 0.9999)), \n", - " np.nan, agreement)\n", + "agreement.data = xr.where(\n", + " (agreement < np.nanquantile(agreement.values, 0.0001)) | \n", + " (agreement > np.nanquantile(agreement.values, 0.9999)), \n", + " np.nan, \n", + " agreement\n", + ")\n", "agreement.gval.cont_plot(title=\"Agreement Map\", figsize=(6, 3))" ] }, @@ -218,36 +224,60 @@ " \n", " \n", " \n", - " band\n", - " coefficient_of_determination\n", - " mean_absolute_error\n", - " mean_absolute_percentage_error\n", - " mean_normalized_mean_absolute_error\n", - " mean_normalized_root_mean_squared_error\n", - " mean_percentage_error\n", - " mean_signed_error\n", - " mean_squared_error\n", - " range_normalized_mean_absolute_error\n", - " range_normalized_root_mean_squared_error\n", - " root_mean_squared_error\n", - " symmetric_mean_absolute_percentage_error\n", + " 0\n", " \n", " \n", " \n", " \n", - " 0\n", + " band\n", " 1\n", + " \n", + " \n", + " coefficient_of_determination\n", " 0.685261\n", + " \n", + " \n", + " mean_absolute_error\n", " 216.089706\n", + " \n", + " \n", + " mean_absolute_percentage_error\n", " 0.319234\n", + " \n", + " \n", + " mean_normalized_mean_absolute_error\n", " 0.267845\n", + " \n", + " \n", + " mean_normalized_root_mean_squared_error\n", " 0.372578\n", + " \n", + " \n", + " mean_percentage_error\n", " 0.010022\n", + " \n", + " \n", + " mean_signed_error\n", " 8.085411\n", + " \n", + " \n", + " mean_squared_error\n", " 90351.664062\n", + " \n", + " \n", + " range_normalized_mean_absolute_error\n", " 0.033065\n", + " \n", + " \n", + " range_normalized_root_mean_squared_error\n", " 0.045995\n", + " \n", + " \n", + " root_mean_squared_error\n", " 300.585541\n", + " \n", + " \n", + " symmetric_mean_absolute_percentage_error\n", " 0.269394\n", " \n", " \n", @@ -255,26 +285,20 @@ "" ], "text/plain": [ - " band coefficient_of_determination mean_absolute_error \\\n", - "0 1 0.685261 216.089706 \n", - "\n", - " mean_absolute_percentage_error mean_normalized_mean_absolute_error \\\n", - "0 0.319234 0.267845 \n", - "\n", - " mean_normalized_root_mean_squared_error mean_percentage_error \\\n", - "0 0.372578 0.010022 \n", - "\n", - " mean_signed_error mean_squared_error \\\n", - "0 8.085411 90351.664062 \n", - "\n", - " range_normalized_mean_absolute_error \\\n", - "0 0.033065 \n", - "\n", - " range_normalized_root_mean_squared_error root_mean_squared_error \\\n", - "0 0.045995 300.585541 \n", - "\n", - " symmetric_mean_absolute_percentage_error \n", - "0 0.269394 " + " 0\n", + "band 1\n", + "coefficient_of_determination 0.685261\n", + "mean_absolute_error 216.089706\n", + "mean_absolute_percentage_error 0.319234\n", + "mean_normalized_mean_absolute_error 0.267845\n", + "mean_normalized_root_mean_squared_error 0.372578\n", + "mean_percentage_error 0.010022\n", + "mean_signed_error 8.085411\n", + "mean_squared_error 90351.664062\n", + "range_normalized_mean_absolute_error 0.033065\n", + "range_normalized_root_mean_squared_error 0.045995\n", + "root_mean_squared_error 300.585541\n", + "symmetric_mean_absolute_percentage_error 0.269394" ] }, "execution_count": 6, @@ -283,7 +307,7 @@ } ], "source": [ - "metric_table" + "metric_table.transpose()" ] }, { @@ -325,8 +349,10 @@ "metadata": {}, "outputs": [], "source": [ - "candidate, benchmark = candidate.gval.homogenize(benchmark_map=benchmark,\n", - " target_map = \"candidate\")" + "candidate, benchmark = candidate.gval.homogenize(\n", + " benchmark_map=benchmark,\n", + " target_map = \"candidate\"\n", + ")" ] }, { @@ -362,7 +388,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 8, @@ -381,8 +407,10 @@ } ], "source": [ - "agreement_map = candidate.gval.compute_agreement_map(benchmark_map=benchmark, \n", - " comparison_function=\"difference\")\n", + "agreement_map = candidate.gval.compute_agreement_map(\n", + " benchmark_map=benchmark, \n", + " comparison_function=\"difference\"\n", + ")\n", "\n", "agreement_map.gval.cont_plot(title=\"Agreement Map\", figsize=(6, 3))" ] @@ -404,7 +432,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 9, @@ -430,8 +458,10 @@ "def multiply(c: Number, b: Number) -> Number:\n", " return c / b\n", "\n", - "agreement_map = candidate.gval.compute_agreement_map(benchmark_map=benchmark, \n", - " comparison_function=\"divide\")\n", + "agreement_map = candidate.gval.compute_agreement_map(\n", + " benchmark_map=benchmark, \n", + " comparison_function=\"divide\"\n", + ")\n", "\n", "agreement_map.gval.cont_plot(title=\"Agreement Map\", figsize=(6, 3))" ] @@ -506,9 +536,10 @@ } ], "source": [ - "_, metric_table = candidate.gval.continuous_compare(benchmark,\n", - " metrics=['mean_absolute_error', \n", - " 'mean_squared_error'])\n", + "_, metric_table = candidate.gval.continuous_compare(\n", + " benchmark,\n", + " metrics=['mean_absolute_error', 'mean_squared_error']\n", + ")\n", "\n", "metric_table" ] @@ -621,10 +652,10 @@ } ], "source": [ - "_, metric_table = candidate.gval.continuous_compare(benchmark,\n", - " metrics=['min_error', \n", - " 'median_error', \n", - " 'max_error'])\n", + "_, metric_table = candidate.gval.continuous_compare(\n", + " benchmark,\n", + " metrics=['min_error', 'median_error', 'max_error']\n", + ")\n", "\n", "metric_table" ] diff --git a/notebooks/Multi-Class Categorical Statistics.ipynb b/notebooks/Multi-Class Categorical Statistics.ipynb index c1d47cc8..1f035af2 100644 --- a/notebooks/Multi-Class Categorical Statistics.ipynb +++ b/notebooks/Multi-Class Categorical Statistics.ipynb @@ -18,7 +18,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 6, "id": "275a7087", "metadata": { "tags": [ @@ -47,17 +47,20 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 7, "id": "38473c06", "metadata": {}, "outputs": [], "source": [ - "candidate = rxr.open_rasterio('./candidate_map_multi_categorical.tif', \n", - " mask_and_scale=True)\n", - "benchmark = rxr.open_rasterio('./benchmark_map_multi_categorical.tif',\n", - " mask_and_scale=True)\n", - "depth_raster = rxr.open_rasterio('./candidate_raw_elevation_multi_categorical.tif',\n", - " mask_and_scale=True)" + "candidate = rxr.open_rasterio(\n", + " \"./candidate_map_multi_categorical.tif\", mask_and_scale=True\n", + ")\n", + "benchmark = rxr.open_rasterio(\n", + " \"./benchmark_map_multi_categorical.tif\", mask_and_scale=True\n", + ")\n", + "depth_raster = rxr.open_rasterio(\n", + " \"./candidate_raw_elevation_multi_categorical.tif\", mask_and_scale=True\n", + ")" ] }, { @@ -86,7 +89,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 8, "id": "29375e17", "metadata": {}, "outputs": [], @@ -114,7 +117,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 9, "id": "de894568", "metadata": {}, "outputs": [ @@ -133,8 +136,7 @@ ], "source": [ "classes = [1, 2, 3, 4, 5]\n", - "pairing_dictionary = {(x, y): int(f'{x}{y}') for x, y in \n", - " product(classes, classes)}\n", + "pairing_dictionary = {(x, y): int(f'{x}{y}') for x, y in product(*([classes]*2))}\n", "\n", "# Showing the first 6 entries\n", "print('\\n'.join([f'{k}: {v}' for k,v in pairing_dictionary.items()][:6]))" @@ -150,24 +152,28 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 10, "id": "1dc16dd7", "metadata": {}, "outputs": [], "source": [ - "agreement_map = candidate_r.gval.compute_agreement_map(benchmark_r, \n", - " nodata=255,\n", - " encode_nodata=True,\n", - " comparison_function='pairing_dict',\n", - " pairing_dict=pairing_dictionary,\n", - " allow_candidate_values=classes,\n", - " allow_benchmark_values=classes)\n", + "agreement_map = candidate_r.gval.compute_agreement_map(\n", + " benchmark_r,\n", + " nodata=255,\n", + " encode_nodata=True,\n", + " comparison_function=\"pairing_dict\",\n", + " pairing_dict=pairing_dictionary,\n", + " allow_candidate_values=classes,\n", + " allow_benchmark_values=classes,\n", + ")\n", "\n", - "crosstab = candidate_r.gval.compute_crosstab(benchmark_r,\n", - " comparison_function='pairing_dict',\n", - " pairing_dict=pairing_dictionary,\n", - " allow_candidate_values=classes,\n", - " allow_benchmark_values=classes)" + "crosstab = candidate_r.gval.compute_crosstab(\n", + " benchmark_r,\n", + " comparison_function=\"pairing_dict\",\n", + " pairing_dict=pairing_dictionary,\n", + " allow_candidate_values=classes,\n", + " allow_benchmark_values=classes,\n", + ")" ] }, { @@ -180,17 +186,17 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 11, "id": "55606165", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 6, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, @@ -206,9 +212,11 @@ } ], "source": [ - "agreement_map.gval.cat_plot(title='Agreement Map', \n", - " figsize=(8, 6),\n", - " colormap='tab20b')" + "agreement_map.gval.cat_plot(\n", + " title='Agreement Map', \n", + " figsize=(8, 6),\n", + " colormap='tab20b'\n", + ")" ] }, { @@ -250,7 +258,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 12, "id": "936f2dea", "metadata": {}, "outputs": [ @@ -553,15 +561,17 @@ "true_positive_rate 0.004617 0.000005 " ] }, - "execution_count": 7, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "no_averaged_metrics = crosstab.gval.compute_categorical_metrics(positive_categories=[1, 2, 3, 4, 5],\n", - " negative_categories=None,\n", - " average=None)\n", + "no_averaged_metrics = crosstab.gval.compute_categorical_metrics(\n", + " positive_categories=[1, 2, 3, 4, 5],\n", + " negative_categories=None,\n", + " average=None\n", + ")\n", "no_averaged_metrics.transpose()" ] }, @@ -583,7 +593,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 13, "id": "538dfc49", "metadata": {}, "outputs": [ @@ -745,15 +755,17 @@ "true_positive_rate 0.809191" ] }, - "execution_count": 8, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "micro_averaged_metrics = crosstab.gval.compute_categorical_metrics(positive_categories=[1, 2],\n", - " negative_categories=[3, 4, 5],\n", - " average=\"micro\")\n", + "micro_averaged_metrics = crosstab.gval.compute_categorical_metrics(\n", + " positive_categories=[1, 2],\n", + " negative_categories=[3, 4, 5],\n", + " average=\"micro\"\n", + ")\n", "micro_averaged_metrics.transpose()" ] }, @@ -775,7 +787,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 14, "id": "7e64eb9b", "metadata": {}, "outputs": [ @@ -917,15 +929,17 @@ "true_positive_rate 0.104245" ] }, - "execution_count": 9, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "macro_averaged_metrics = crosstab.gval.compute_categorical_metrics(positive_categories=classes,\n", - " negative_categories=None,\n", - " average=\"macro\")\n", + "macro_averaged_metrics = crosstab.gval.compute_categorical_metrics(\n", + " positive_categories=classes,\n", + " negative_categories=None,\n", + " average=\"macro\"\n", + ")\n", "macro_averaged_metrics.transpose()" ] }, @@ -947,7 +961,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 15, "id": "0eae1cbc", "metadata": {}, "outputs": [ @@ -1089,16 +1103,18 @@ "true_positive_rate 0.164338" ] }, - "execution_count": 10, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "weight_averaged_metrics = crosstab.gval.compute_categorical_metrics(positive_categories=classes,\n", - " weights=[1, 4, 1, 5, 1],\n", - " negative_categories=None,\n", - " average=\"weighted\")\n", + "weight_averaged_metrics = crosstab.gval.compute_categorical_metrics(\n", + " positive_categories=classes,\n", + " weights=[1, 4, 1, 5, 1],\n", + " negative_categories=None,\n", + " average=\"weighted\"\n", + ")\n", "weight_averaged_metrics.transpose()" ] }, @@ -1120,7 +1136,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 16, "id": "dff8f8a0", "metadata": {}, "outputs": [], diff --git a/notebooks/Tutorial.ipynb b/notebooks/Tutorial.ipynb index 4f8cee52..9a9d5b53 100644 --- a/notebooks/Tutorial.ipynb +++ b/notebooks/Tutorial.ipynb @@ -18,7 +18,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "id": "a9fa8470", "metadata": {}, "outputs": [], @@ -45,13 +45,17 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "id": "f91c0b8c", "metadata": {}, "outputs": [], "source": [ - "candidate = rxr.open_rasterio('candidate_map_two_class_categorical.tif', mask_and_scale=True)\n", - "benchmark = rxr.open_rasterio('benchmark_map_two_class_categorical.tif', mask_and_scale=True)" + "candidate = rxr.open_rasterio(\n", + " 'candidate_map_two_class_categorical.tif', mask_and_scale=True\n", + ")\n", + "benchmark = rxr.open_rasterio(\n", + " 'benchmark_map_two_class_categorical.tif', mask_and_scale=True\n", + ")" ] }, { @@ -72,14 +76,16 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 4, "id": "541857a7", "metadata": {}, "outputs": [], "source": [ - "agreement_map, crosstab_table, metric_table = candidate.gval.categorical_compare(benchmark,\n", - " positive_categories=[2],\n", - " negative_categories=[0, 1])" + "agreement_map, crosstab_table, metric_table = candidate.gval.categorical_compare(\n", + " benchmark,\n", + " positive_categories=[2],\n", + " negative_categories=[0, 1]\n", + ")" ] }, { @@ -156,17 +162,17 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "id": "b1ef13a0", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 4, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, @@ -203,7 +209,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "id": "fdc9df2b", "metadata": {}, "outputs": [ @@ -280,7 +286,7 @@ "3 1 2.0 2.0 24.0 2473405.0" ] }, - "execution_count": 5, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -307,7 +313,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "id": "16cb3626", "metadata": {}, "outputs": [ @@ -332,91 +338,150 @@ " \n", " \n", " \n", - " band\n", - " fn\n", - " fp\n", - " tn\n", - " tp\n", - " accuracy\n", - " critical_success_index\n", - " f_score\n", - " false_discovery_rate\n", - " false_negative_rate\n", - " ...\n", - " fowlkes_mallows_index\n", - " matthews_correlation_coefficient\n", - " negative_likelihood_ratio\n", - " negative_predictive_value\n", - " positive_likelihood_ratio\n", - " positive_predictive_value\n", - " prevalence\n", - " prevalence_threshold\n", - " true_negative_rate\n", - " true_positive_rate\n", + " 0\n", " \n", " \n", " \n", " \n", - " 0\n", + " band\n", " 1\n", + " \n", + " \n", + " fn\n", " 639227.0\n", + " \n", + " \n", + " fp\n", " 512277.0\n", + " \n", + " \n", + " tn\n", " 10345720.0\n", + " \n", + " \n", + " tp\n", " 2473405.0\n", + " \n", + " \n", + " accuracy\n", " 0.917577\n", + " \n", + " \n", + " balanced_accuracy\n", + " 0.873727\n", + " \n", + " \n", + " critical_success_index\n", " 0.682336\n", + " \n", + " \n", + " equitable_threat_score\n", + " 0.610939\n", + " \n", + " \n", + " f_score\n", " 0.811177\n", + " \n", + " \n", + " false_discovery_rate\n", " 0.171578\n", + " \n", + " \n", + " false_negative_rate\n", " 0.205365\n", - " ...\n", + " \n", + " \n", + " false_omission_rate\n", + " 0.058191\n", + " \n", + " \n", + " false_positive_rate\n", + " 0.04718\n", + " \n", + " \n", + " fowlkes_mallows_index\n", " 0.811352\n", + " \n", + " \n", + " matthews_correlation_coefficient\n", " 0.758757\n", + " \n", + " \n", + " negative_likelihood_ratio\n", " 0.215534\n", + " \n", + " \n", + " negative_predictive_value\n", " 0.941809\n", + " \n", + " \n", + " overall_bias\n", + " 0.959215\n", + " \n", + " \n", + " positive_likelihood_ratio\n", " 16.842723\n", + " \n", + " \n", + " positive_predictive_value\n", " 0.828422\n", - " 0.213711\n", + " \n", + " \n", + " prevalence\n", + " 0.222798\n", + " \n", + " \n", + " prevalence_threshold\n", " 0.195925\n", + " \n", + " \n", + " true_negative_rate\n", " 0.95282\n", + " \n", + " \n", + " true_positive_rate\n", " 0.794635\n", " \n", " \n", "\n", - "

1 rows × 22 columns

\n", "" ], "text/plain": [ - " band fn fp tn tp accuracy \\\n", - "0 1 639227.0 512277.0 10345720.0 2473405.0 0.917577 \n", - "\n", - " critical_success_index f_score false_discovery_rate \\\n", - "0 0.682336 0.811177 0.171578 \n", - "\n", - " false_negative_rate ... fowlkes_mallows_index \\\n", - "0 0.205365 ... 0.811352 \n", - "\n", - " matthews_correlation_coefficient negative_likelihood_ratio \\\n", - "0 0.758757 0.215534 \n", - "\n", - " negative_predictive_value positive_likelihood_ratio \\\n", - "0 0.941809 16.842723 \n", - "\n", - " positive_predictive_value prevalence prevalence_threshold \\\n", - "0 0.828422 0.213711 0.195925 \n", - "\n", - " true_negative_rate true_positive_rate \n", - "0 0.95282 0.794635 \n", - "\n", - "[1 rows x 22 columns]" + " 0\n", + "band 1\n", + "fn 639227.0\n", + "fp 512277.0\n", + "tn 10345720.0\n", + "tp 2473405.0\n", + "accuracy 0.917577\n", + "balanced_accuracy 0.873727\n", + "critical_success_index 0.682336\n", + "equitable_threat_score 0.610939\n", + "f_score 0.811177\n", + "false_discovery_rate 0.171578\n", + "false_negative_rate 0.205365\n", + "false_omission_rate 0.058191\n", + "false_positive_rate 0.04718\n", + "fowlkes_mallows_index 0.811352\n", + "matthews_correlation_coefficient 0.758757\n", + "negative_likelihood_ratio 0.215534\n", + "negative_predictive_value 0.941809\n", + "overall_bias 0.959215\n", + "positive_likelihood_ratio 16.842723\n", + "positive_predictive_value 0.828422\n", + "prevalence 0.222798\n", + "prevalence_threshold 0.195925\n", + "true_negative_rate 0.95282\n", + "true_positive_rate 0.794635" ] }, - "execution_count": 6, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "metric_table" + "metric_table.transpose()" ] }, { @@ -457,13 +522,15 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "id": "7264ffc9", "metadata": {}, "outputs": [], "source": [ - "candidate, benchmark = candidate.gval.homogenize(benchmark_map=benchmark,\n", - " target_map = \"candidate\")" + "candidate, benchmark = candidate.gval.homogenize(\n", + " benchmark_map=benchmark,\n", + " target_map = \"candidate\"\n", + ")" ] }, { @@ -476,14 +543,16 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "id": "e3917e34", "metadata": {}, "outputs": [], "source": [ "target_map = rxr.open_rasterio('target_map_two_class_categorical.tif')\n", - "candidate, benchmark = candidate.gval.homogenize(benchmark_map=benchmark,\n", - " target_map = target_map)" + "candidate, benchmark = candidate.gval.homogenize(\n", + " benchmark_map=benchmark,\n", + " target_map = target_map\n", + ")" ] }, { @@ -512,17 +581,17 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "id": "c6e3c35c", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 9, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, @@ -538,8 +607,10 @@ } ], "source": [ - "agreement_map = candidate.gval.compute_agreement_map(benchmark_map=benchmark, \n", - " comparison_function='cantor')\n", + "agreement_map = candidate.gval.compute_agreement_map(\n", + " benchmark_map=benchmark, \n", + " comparison_function='cantor'\n", + ")\n", "\n", "agreement_map.gval.cat_plot(title=\"Agreement Map\")" ] @@ -558,17 +629,17 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "id": "a2310a98", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 10, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, @@ -598,9 +669,11 @@ " (2, 2): 8\n", "}\n", "\n", - "agreement_map = candidate.gval.compute_agreement_map(benchmark_map=benchmark,\n", - " comparison_function='pairing_dict',\n", - " pairing_dict=pairing_dict)\n", + "agreement_map = candidate.gval.compute_agreement_map(\n", + " benchmark_map=benchmark,\n", + " comparison_function='pairing_dict',\n", + " pairing_dict=pairing_dict\n", + ")\n", "\n", "agreement_map.gval.cat_plot(title=\"Agreement Map\", basemap=None)" ] @@ -615,17 +688,17 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "id": "f6567376", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 11, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, @@ -641,10 +714,12 @@ } ], "source": [ - "agreement_map = candidate.gval.compute_agreement_map(benchmark_map=benchmark, \n", - " comparison_function='pairing_dict',\n", - " allow_candidate_values=[1, 2],\n", - " allow_benchmark_values=[0, 2])\n", + "agreement_map = candidate.gval.compute_agreement_map(\n", + " benchmark_map=benchmark, \n", + " comparison_function='pairing_dict',\n", + " allow_candidate_values=[1, 2],\n", + " allow_benchmark_values=[0, 2]\n", + ")\n", "\n", "agreement_map.gval.cat_plot(title=\"Agreement Map\")" ] @@ -667,17 +742,17 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "id": "972f07aa", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 12, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" }, @@ -700,8 +775,10 @@ "def multiply(c: Number, b: Number) -> Number:\n", " return c * b\n", "\n", - "agreement_map = candidate.gval.compute_agreement_map(benchmark_map=benchmark, \n", - " comparison_function=\"multi\")\n", + "agreement_map = candidate.gval.compute_agreement_map(\n", + " benchmark_map=benchmark, \n", + " comparison_function=\"multi\"\n", + ")\n", "\n", "agreement_map.gval.cat_plot(title=\"Agreement Map\")" ] @@ -732,7 +809,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "id": "18b9c315", "metadata": {}, "outputs": [ @@ -791,17 +868,18 @@ "1 1 2.0 2.0 4.0 2624301.0" ] }, - "execution_count": 13, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "crosstab_table_allow = candidate.gval.compute_crosstab(benchmark,\n", - " allow_benchmark_values=[0, 2],\n", - " allow_candidate_values=[2],\n", - " comparison_function=\"multi\"\n", - " )\n", + "crosstab_table_allow = candidate.gval.compute_crosstab(\n", + " benchmark,\n", + " allow_benchmark_values=[0, 2],\n", + " allow_candidate_values=[2],\n", + " comparison_function=\"multi\"\n", + ")\n", "crosstab_table_allow" ] }, @@ -823,7 +901,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 15, "id": "2ba3fc06", "metadata": {}, "outputs": [ @@ -866,7 +944,7 @@ " 10345720.0\n", " 2473405.0\n", " 0.794635\n", - " 0.213711\n", + " 0.222798\n", " \n", " \n", "\n", @@ -877,18 +955,20 @@ "0 1 639227.0 512277.0 10345720.0 2473405.0 0.794635 \n", "\n", " prevalence \n", - "0 0.213711 " + "0 0.222798 " ] }, - "execution_count": 14, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "metric_table_select = crosstab_table.gval.compute_categorical_metrics(negative_categories= [0, 1],\n", - " positive_categories = [2],\n", - " metrics=['true_positive_rate', 'prevalence'])\n", + "metric_table_select = crosstab_table.gval.compute_categorical_metrics(\n", + " negative_categories= [0, 1],\n", + " positive_categories = [2],\n", + " metrics=['true_positive_rate', 'prevalence']\n", + ")\n", "metric_table_select" ] }, @@ -902,7 +982,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 16, "id": "67938408", "metadata": {}, "outputs": [], @@ -924,7 +1004,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 17, "id": "1e8eeb59", "metadata": {}, "outputs": [], @@ -951,21 +1031,21 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 18, "id": "6a41eee3", "metadata": {}, "outputs": [], "source": [ - "metric_table_register = crosstab_table.gval.compute_categorical_metrics(negative_categories= None,\n", - " positive_categories = [2],\n", - " metrics=['error_balance', \n", - " 'arbitrary1', \n", - " 'arbitrary2'])" + "metric_table_register = crosstab_table.gval.compute_categorical_metrics(\n", + " negative_categories= None,\n", + " positive_categories = [2],\n", + " metrics=['error_balance', 'arbitrary1', 'arbitrary2']\n", + ")" ] }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 19, "id": "6ab884b7", "metadata": {}, "outputs": [ @@ -1017,7 +1097,7 @@ "0 1 639227.0 512277.0 NaN 2473405.0 0.801401" ] }, - "execution_count": 18, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } @@ -1044,7 +1124,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 20, "id": "899a1da9", "metadata": {}, "outputs": [],