-
Notifications
You must be signed in to change notification settings - Fork 379
/
RFM69.cpp
1275 lines (1124 loc) · 48.4 KB
/
RFM69.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// **********************************************************************************
// Driver definition for HopeRF RFM69W/RFM69HW/RFM69CW/RFM69HCW, Semtech SX1231/1231H
// **********************************************************************************
// Copyright LowPowerLab LLC 2018, https://www.LowPowerLab.com/contact
// **********************************************************************************
// License
// **********************************************************************************
// This program is free software; you can redistribute it
// and/or modify it under the terms of the GNU General
// Public License as published by the Free Software
// Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will
// be useful, but WITHOUT ANY WARRANTY; without even the
// implied warranty of MERCHANTABILITY or FITNESS FOR A
// PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// Licence can be viewed at
// http://www.gnu.org/licenses/gpl-3.0.txt
//
// Please maintain this license information along with authorship
// and copyright notices in any redistribution of this code
// **********************************************************************************
#include "RFM69.h"
#include "RFM69registers.h"
#include <SPI.h>
uint8_t RFM69::DATA[RF69_MAX_DATA_LEN+1];
uint8_t RFM69::_mode; // current transceiver state
uint8_t RFM69::DATALEN;
uint16_t RFM69::SENDERID;
uint16_t RFM69::TARGETID; // should match _address
uint8_t RFM69::PAYLOADLEN;
uint8_t RFM69::ACK_REQUESTED;
uint8_t RFM69::ACK_RECEIVED; // should be polled immediately after sending a packet with ACK request
int16_t RFM69::RSSI; // most accurate RSSI during reception (closest to the reception)
volatile bool RFM69::_haveData;
RFM69 *RFM69::_instance = nullptr;
RFM69::RFM69(uint8_t slaveSelectPin, uint8_t interruptPin, bool isRFM69HW_HCW, SPIClass *spi) {
_instance = this;
_slaveSelectPin = slaveSelectPin;
_interruptPin = interruptPin;
_mode = RF69_MODE_STANDBY;
_spyMode = false;
_powerLevel = 31;
_isRFM69HW = isRFM69HW_HCW;
_spi = spi;
#if defined(RF69_LISTENMODE_ENABLE)
_isHighSpeed = true;
_haveEncryptKey = false;
uint32_t rxDuration = DEFAULT_LISTEN_RX_US;
uint32_t idleDuration = DEFAULT_LISTEN_IDLE_US;
listenModeSetDurations(rxDuration, idleDuration);
#endif
}
bool RFM69::initialize(uint8_t freqBand, uint16_t nodeID, uint8_t networkID) {
_interruptNum = digitalPinToInterrupt(_interruptPin);
if (_interruptNum == (uint8_t)NOT_AN_INTERRUPT) return false;
#ifdef RF69_ATTACHINTERRUPT_TAKES_PIN_NUMBER
_interruptNum = _interruptPin;
#endif
const uint8_t CONFIG[][2] = {
/* 0x01 */ { REG_OPMODE, RF_OPMODE_SEQUENCER_ON | RF_OPMODE_LISTEN_OFF | RF_OPMODE_STANDBY },
/* 0x02 */ { REG_DATAMODUL, RF_DATAMODUL_DATAMODE_PACKET | RF_DATAMODUL_MODULATIONTYPE_FSK | RF_DATAMODUL_MODULATIONSHAPING_00 }, // no shaping
/* 0x03 */ { REG_BITRATEMSB, RF_BITRATEMSB_55555}, // default: 4.8 KBPS
/* 0x04 */ { REG_BITRATELSB, RF_BITRATELSB_55555},
/* 0x05 */ { REG_FDEVMSB, RF_FDEVMSB_50000}, // default: 5KHz, (FDEV + BitRate / 2 <= 500KHz)
/* 0x06 */ { REG_FDEVLSB, RF_FDEVLSB_50000},
/* 0x07 */ { REG_FRFMSB, (uint8_t) (freqBand==RF69_315MHZ ? RF_FRFMSB_315 : (freqBand==RF69_433MHZ ? RF_FRFMSB_433 : (freqBand==RF69_868MHZ ? RF_FRFMSB_868 : RF_FRFMSB_915))) },
/* 0x08 */ { REG_FRFMID, (uint8_t) (freqBand==RF69_315MHZ ? RF_FRFMID_315 : (freqBand==RF69_433MHZ ? RF_FRFMID_433 : (freqBand==RF69_868MHZ ? RF_FRFMID_868 : RF_FRFMID_915))) },
/* 0x09 */ { REG_FRFLSB, (uint8_t) (freqBand==RF69_315MHZ ? RF_FRFLSB_315 : (freqBand==RF69_433MHZ ? RF_FRFLSB_433 : (freqBand==RF69_868MHZ ? RF_FRFLSB_868 : RF_FRFLSB_915))) },
// looks like PA1 and PA2 are not implemented on RFM69W/CW, hence the max output power is 13dBm
// +17dBm and +20dBm are possible on RFM69HW
// +13dBm formula: Pout = -18 + OutputPower (with PA0 or PA1**)
// +17dBm formula: Pout = -14 + OutputPower (with PA1 and PA2)**
// +20dBm formula: Pout = -11 + OutputPower (with PA1 and PA2)** and high power PA settings (section 3.3.7 in datasheet)
///* 0x11 */ { REG_PALEVEL, RF_PALEVEL_PA0_ON | RF_PALEVEL_PA1_OFF | RF_PALEVEL_PA2_OFF | RF_PALEVEL_OUTPUTPOWER_11111},
///* 0x13 */ { REG_OCP, RF_OCP_ON | RF_OCP_TRIM_95 }, // over current protection (default is 95mA)
// RXBW defaults are { REG_RXBW, RF_RXBW_DCCFREQ_010 | RF_RXBW_MANT_24 | RF_RXBW_EXP_5} (RxBw: 10.4KHz)
/* 0x19 */ { REG_RXBW, RF_RXBW_DCCFREQ_010 | RF_RXBW_MANT_16 | RF_RXBW_EXP_2 }, // (BitRate < 2 * RxBw)
//for BR-19200: /* 0x19 */ { REG_RXBW, RF_RXBW_DCCFREQ_010 | RF_RXBW_MANT_24 | RF_RXBW_EXP_3 },
/* 0x25 */ { REG_DIOMAPPING1, RF_DIOMAPPING1_DIO0_01 }, // DIO0 is the only IRQ we're using
/* 0x26 */ { REG_DIOMAPPING2, RF_DIOMAPPING2_CLKOUT_OFF }, // DIO5 ClkOut disable for power saving
/* 0x28 */ { REG_IRQFLAGS2, RF_IRQFLAGS2_FIFOOVERRUN }, // writing to this bit ensures that the FIFO & status flags are reset
/* 0x29 */ { REG_RSSITHRESH, 220 }, // must be set to dBm = (-Sensitivity / 2), default is 0xE4 = 228 so -114dBm
///* 0x2D */ { REG_PREAMBLELSB, RF_PREAMBLESIZE_LSB_VALUE } // default 3 preamble bytes 0xAAAAAA
/* 0x2E */ { REG_SYNCCONFIG, RF_SYNC_ON | RF_SYNC_FIFOFILL_AUTO | RF_SYNC_SIZE_2 | RF_SYNC_TOL_0 },
/* 0x2F */ { REG_SYNCVALUE1, 0x2D }, // attempt to make this compatible with sync1 byte of RFM12B lib
/* 0x30 */ { REG_SYNCVALUE2, networkID }, // NETWORK ID
//* 0x31 */ { REG_SYNCVALUE3, 0xAA },
//* 0x31 */ { REG_SYNCVALUE4, 0xBB },
/* 0x37 */ { REG_PACKETCONFIG1, RF_PACKET1_FORMAT_VARIABLE | RF_PACKET1_DCFREE_OFF | RF_PACKET1_CRC_ON | RF_PACKET1_CRCAUTOCLEAR_ON | RF_PACKET1_ADRSFILTERING_OFF },
/* 0x38 */ { REG_PAYLOADLENGTH, 66 }, // in variable length mode: the max frame size, not used in TX
///* 0x39 */ { REG_NODEADRS, nodeID }, // turned off because we're not using address filtering
/* 0x3C */ { REG_FIFOTHRESH, RF_FIFOTHRESH_TXSTART_FIFONOTEMPTY | RF_FIFOTHRESH_VALUE }, // TX on FIFO not empty
/* 0x3D */ { REG_PACKETCONFIG2, RF_PACKET2_RXRESTARTDELAY_2BITS | RF_PACKET2_AUTORXRESTART_OFF | RF_PACKET2_AES_OFF }, // RXRESTARTDELAY must match transmitter PA ramp-down time (bitrate dependent)
//for BR-19200: /* 0x3D */ { REG_PACKETCONFIG2, RF_PACKET2_RXRESTARTDELAY_NONE | RF_PACKET2_AUTORXRESTART_ON | RF_PACKET2_AES_OFF }, // RXRESTARTDELAY must match transmitter PA ramp-down time (bitrate dependent)
/* 0x6F */ { REG_TESTDAGC, RF_DAGC_IMPROVED_LOWBETA0 }, // run DAGC continuously in RX mode for Fading Margin Improvement, recommended default for AfcLowBetaOn=0
{255, 0}
};
digitalWrite(_slaveSelectPin, HIGH);
pinMode(_slaveSelectPin, OUTPUT);
if(_spi == nullptr){
_spi = &SPI;
}
_spi->begin();
#ifdef SPI_HAS_TRANSACTION
_settings = SPISettings(8000000, MSBFIRST, SPI_MODE0);
#endif
uint32_t start = millis();
uint8_t timeout = 50;
do writeReg(REG_SYNCVALUE1, 0xAA); while (readReg(REG_SYNCVALUE1) != 0xaa && millis()-start < timeout);
if (millis()-start >= timeout) return false;
start = millis();
do writeReg(REG_SYNCVALUE1, 0x55); while (readReg(REG_SYNCVALUE1) != 0x55 && millis()-start < timeout);
if (millis()-start >= timeout) return false;
for (uint8_t i = 0; CONFIG[i][0] != 255; i++)
writeReg(CONFIG[i][0], CONFIG[i][1]);
// Encryption is persistent between resets and can trip you up during debugging.
// Disable it during initialization so we always start from a known state.
encrypt(0);
setHighPower(_isRFM69HW); // called regardless if it's a RFM69W or RFM69HW (at this point _isRFM69HW may not be explicitly set by constructor and setHighPower() may not have been called yet (ie called after initialize() call)
setMode(RF69_MODE_STANDBY);
start = millis();
while (((readReg(REG_IRQFLAGS1) & RF_IRQFLAGS1_MODEREADY) == 0x00) && millis()-start < timeout); // wait for ModeReady
if (millis()-start >= timeout) return false;
attachInterrupt(_interruptNum, RFM69::isr0, RISING);
_address = nodeID;
#if defined(RF69_LISTENMODE_ENABLE)
selfPointer = this;
_freqBand = freqBand;
_networkID = networkID;
#endif
return true;
}
// return the frequency (in Hz)
uint32_t RFM69::getFrequency() {
return RF69_FSTEP * (((uint32_t) readReg(REG_FRFMSB) << 16) + ((uint16_t) readReg(REG_FRFMID) << 8) + readReg(REG_FRFLSB));
}
// set the frequency (in Hz)
void RFM69::setFrequency(uint32_t freqHz) {
uint8_t oldMode = _mode;
if (oldMode == RF69_MODE_TX) {
setMode(RF69_MODE_RX);
}
freqHz /= RF69_FSTEP; // divide down by FSTEP to get FRF
writeReg(REG_FRFMSB, freqHz >> 16);
writeReg(REG_FRFMID, freqHz >> 8);
writeReg(REG_FRFLSB, freqHz);
if (oldMode == RF69_MODE_RX) {
setMode(RF69_MODE_SYNTH);
}
setMode(oldMode);
}
void RFM69::setMode(uint8_t newMode) {
if (newMode == _mode)
return;
switch (newMode) {
case RF69_MODE_TX:
writeReg(REG_OPMODE, (readReg(REG_OPMODE) & 0xE3) | RF_OPMODE_TRANSMITTER);
if (_isRFM69HW) setHighPowerRegs(true);
break;
case RF69_MODE_RX:
writeReg(REG_OPMODE, (readReg(REG_OPMODE) & 0xE3) | RF_OPMODE_RECEIVER);
if (_isRFM69HW) setHighPowerRegs(false);
break;
case RF69_MODE_SYNTH:
writeReg(REG_OPMODE, (readReg(REG_OPMODE) & 0xE3) | RF_OPMODE_SYNTHESIZER);
break;
case RF69_MODE_STANDBY:
writeReg(REG_OPMODE, (readReg(REG_OPMODE) & 0xE3) | RF_OPMODE_STANDBY);
break;
case RF69_MODE_SLEEP:
writeReg(REG_OPMODE, (readReg(REG_OPMODE) & 0xE3) | RF_OPMODE_SLEEP);
break;
default:
return;
}
// we are using packet mode, so this check is not really needed
// but waiting for mode ready is necessary when going from sleep because the FIFO may not be immediately available from previous mode
while (_mode == RF69_MODE_SLEEP && (readReg(REG_IRQFLAGS1) & RF_IRQFLAGS1_MODEREADY) == 0x00); // wait for ModeReady
_mode = newMode;
}
//put transceiver in sleep mode to save battery - to wake or resume receiving just call receiveDone()
void RFM69::sleep() {
setMode(RF69_MODE_SLEEP);
}
//set this node's address
void RFM69::setAddress(uint16_t addr) {
_address = addr;
writeReg(REG_NODEADRS, _address); //unused in packet mode
}
//set this node's network id
void RFM69::setNetwork(uint8_t networkID) {
writeReg(REG_SYNCVALUE2, networkID);
}
//set user's ISR callback
void RFM69::setIsrCallback(void (*callback)()) {
_isrCallback = callback;
}
// Control transmitter output power (this is NOT a dBm value!)
// the power configurations are explained in the SX1231H datasheet (Table 10 on p21; RegPaLevel p66): http://www.semtech.com/images/datasheet/sx1231h.pdf
// valid powerLevel parameter values are 0-31 and result in a directly proportional effect on the output/transmission power
// this function implements 2 modes as follows:
// - for RFM69 W/CW the range is from 0-31 [-18dBm to 13dBm] (PA0 only on RFIO pin)
// - for RFM69 HW/HCW the range is from 0-22 [-2dBm to 20dBm] (PA1 & PA2 on PA_BOOST pin & high Power PA settings - see section 3.3.7 in datasheet, p22)
// - the HW/HCW 0-24 range is split into 3 REG_PALEVEL parts:
// - 0-15 = REG_PALEVEL 16-31, ie [-2 to 13dBm] & PA1 only
// - 16-19 = REG_PALEVEL 26-29, ie [12 to 15dBm] & PA1+PA2
// - 20-23 = REG_PALEVEL 28-31, ie [17 to 20dBm] & PA1+PA2+HiPower (HiPower is only enabled before going in TX mode, ie by setMode(RF69_MODE_TX)
// The HW/HCW range overlaps are to smooth out transitions between the 3 PA domains, based on actual current/RSSI measurements
// Any changes to this function also demand changes in dependent function setPowerDBm()
void RFM69::setPowerLevel(uint8_t powerLevel) {
uint8_t PA_SETTING;
if (_isRFM69HW) {
if (powerLevel>23) powerLevel = 23;
_powerLevel = powerLevel;
//now set Pout value & active PAs based on _powerLevel range as outlined in summary above
if (_powerLevel < 16) {
powerLevel += 16;
PA_SETTING = RF_PALEVEL_PA1_ON; // enable PA1 only
} else {
if (_powerLevel < 20)
powerLevel += 10;
else
powerLevel += 8;
PA_SETTING = RF_PALEVEL_PA1_ON | RF_PALEVEL_PA2_ON; // enable PA1+PA2
}
setHighPowerRegs(true); //always call this in case we're crossing power boundaries in TX mode
} else { //this is a W/CW, register value is the same as _powerLevel
if (powerLevel>31) powerLevel = 31;
_powerLevel = powerLevel;
PA_SETTING = RF_PALEVEL_PA0_ON; // enable PA0 only
}
//write value to REG_PALEVEL
writeReg(REG_PALEVEL, PA_SETTING | powerLevel);
}
// return stored _powerLevel
uint8_t RFM69::getPowerLevel() { return _powerLevel; }
//Set TX Output power in dBm:
// [-18..+13]dBm in RFM69 W/CW
// [ -2..+20]dBm in RFM69 HW/HCW
int8_t RFM69::setPowerDBm(int8_t dBm) {
if (_isRFM69HW) {
//fix any out of bounds
if (dBm<-2) dBm=-2;
else if (dBm>20) dBm=20;
//map dBm to _powerLevel according to implementation in setPowerLevel()
if (dBm<12) setPowerLevel(2+dBm);
else if (dBm<16) setPowerLevel(4+dBm);
else setPowerLevel(3+dBm);
} else { //W/CW
if (dBm<-18) dBm=-18;
else if (dBm>13) dBm=13;
setPowerLevel(18+dBm);
}
return dBm;
}
bool RFM69::canSend() {
if (_mode == RF69_MODE_RX && PAYLOADLEN == 0 && readRSSI() < CSMA_LIMIT) { // if signal stronger than -100dBm is detected assume channel activity
setMode(RF69_MODE_STANDBY);
return true;
}
return false;
}
void RFM69::send(uint16_t toAddress, const void* buffer, uint8_t bufferSize, bool requestACK) {
writeReg(REG_PACKETCONFIG2, (readReg(REG_PACKETCONFIG2) & 0xFB) | RF_PACKET2_RXRESTART); // avoid RX deadlocks
uint32_t now = millis();
while (!canSend() && millis() - now < RF69_CSMA_LIMIT_MS){
receiveDone();
#ifdef ESP8266
delay(1); // Give esp8266-based boards to handle background tasks. Seems to work better than yield();
#endif
}
sendFrame(toAddress, buffer, bufferSize, requestACK, false);
}
// to increase the chance of getting a packet across, call this function instead of send
// and it handles all the ACK requesting/retrying for you :)
// The only twist is that you have to manually listen to ACK requests on the other side and send back the ACKs
// The reason for the semi-automaton is that the lib is interrupt driven and
// requires user action to read the received data and decide what to do with it
// replies usually take only 5..8ms at 50kbps@915MHz
bool RFM69::sendWithRetry(uint16_t toAddress, const void* buffer, uint8_t bufferSize, uint8_t retries, uint8_t retryWaitTime) {
uint32_t sentTime;
for (uint8_t i = 0; i <= retries; i++) {
send(toAddress, buffer, bufferSize, true);
sentTime = millis();
while (millis() - sentTime < retryWaitTime) {
if (ACKReceived(toAddress)) return true;
}
}
return false;
}
// should be polled immediately after sending a packet with ACK request
bool RFM69::ACKReceived(uint16_t fromNodeID) {
if (receiveDone())
return (SENDERID == fromNodeID || fromNodeID == RF69_BROADCAST_ADDR) && ACK_RECEIVED;
return false;
}
// check whether an ACK was requested in the last received packet (non-broadcasted packet)
bool RFM69::ACKRequested() {
return ACK_REQUESTED && (TARGETID == _address);
}
// should be called immediately after reception in case sender wants ACK
void RFM69::sendACK(const void* buffer, uint8_t bufferSize) {
ACK_REQUESTED = 0; // TWS added to make sure we don't end up in a timing race and infinite loop sending Acks
uint16_t sender = SENDERID;
int16_t _RSSI = RSSI; // save payload received RSSI value
writeReg(REG_PACKETCONFIG2, (readReg(REG_PACKETCONFIG2) & 0xFB) | RF_PACKET2_RXRESTART); // avoid RX deadlocks
uint32_t now = millis();
while (!canSend() && millis() - now < RF69_CSMA_LIMIT_MS){
receiveDone();
#ifdef ESP8266
delay(1); // Give esp8266-based boards to handle background tasks. Seems to work better than yield().
#endif
}
SENDERID = sender; // TWS: Restore SenderID after it gets wiped out by receiveDone()
sendFrame(sender, buffer, bufferSize, false, true);
RSSI = _RSSI; // restore payload RSSI
}
// internal function
void RFM69::sendFrame(uint16_t toAddress, const void* buffer, uint8_t bufferSize, bool requestACK, bool sendACK) {
//NOTE: overridden in RFM69_ATC!
setMode(RF69_MODE_STANDBY); // turn off receiver to prevent reception while filling fifo
while ((readReg(REG_IRQFLAGS1) & RF_IRQFLAGS1_MODEREADY) == 0x00); // wait for ModeReady
//writeReg(REG_DIOMAPPING1, RF_DIOMAPPING1_DIO0_00); // DIO0 is "Packet Sent"
if (bufferSize > RF69_MAX_DATA_LEN) bufferSize = RF69_MAX_DATA_LEN;
// control byte
uint8_t CTLbyte = 0x00;
if (sendACK)
CTLbyte = RFM69_CTL_SENDACK;
else if (requestACK)
CTLbyte = RFM69_CTL_REQACK;
if (toAddress > 0xFF) CTLbyte |= (toAddress & 0x300) >> 6; //assign last 2 bits of address if > 255
if (_address > 0xFF) CTLbyte |= (_address & 0x300) >> 8; //assign last 2 bits of address if > 255
// write to FIFO
select();
_spi->transfer(REG_FIFO | 0x80);
_spi->transfer(bufferSize + 3);
_spi->transfer((uint8_t)toAddress);
_spi->transfer((uint8_t)_address);
_spi->transfer(CTLbyte);
for (uint8_t i = 0; i < bufferSize; i++)
_spi->transfer(((uint8_t*) buffer)[i]);
unselect();
// no need to wait for transmit mode to be ready since its handled by the radio
setMode(RF69_MODE_TX);
//uint32_t txStart = millis();
//while (digitalRead(_interruptPin) == 0 && millis() - txStart < RF69_TX_LIMIT_MS); // wait for DIO0 to turn HIGH signalling transmission finish
while ((readReg(REG_IRQFLAGS2) & RF_IRQFLAGS2_PACKETSENT) == 0x00); // wait for PacketSent
setMode(RF69_MODE_STANDBY);
}
// internal function - interrupt gets called when a packet is received
void RFM69::interruptHandler() {
if (_mode == RF69_MODE_RX && (readReg(REG_IRQFLAGS2) & RF_IRQFLAGS2_PAYLOADREADY)) {
setMode(RF69_MODE_STANDBY);
select();
_spi->transfer(REG_FIFO & 0x7F);
PAYLOADLEN = _spi->transfer(0);
PAYLOADLEN = PAYLOADLEN > 66 ? 66 : PAYLOADLEN; // precaution
TARGETID = _spi->transfer(0);
SENDERID = _spi->transfer(0);
uint8_t CTLbyte = _spi->transfer(0);
TARGETID |= (uint16_t(CTLbyte) & 0x0C) << 6; //10 bit address (most significant 2 bits stored in bits(2,3) of CTL byte
SENDERID |= (uint16_t(CTLbyte) & 0x03) << 8; //10 bit address (most sifnigicant 2 bits stored in bits(0,1) of CTL byte
if(!(_spyMode || TARGETID == _address || TARGETID == RF69_BROADCAST_ADDR) // match this node's address, or broadcast address or anything in spy mode
|| PAYLOADLEN < 3) // address situation could receive packets that are malformed and don't fit this libraries extra fields
{
PAYLOADLEN = 0;
unselect();
receiveBegin();
return;
}
DATALEN = PAYLOADLEN - 3;
ACK_RECEIVED = CTLbyte & RFM69_CTL_SENDACK; // extract ACK-received flag
ACK_REQUESTED = CTLbyte & RFM69_CTL_REQACK; // extract ACK-requested flag
uint8_t _pl = _powerLevel; //interruptHook() can change _powerLevel so remember it
interruptHook(CTLbyte); // TWS: hook to derived class interrupt function
for (uint8_t i = 0; i < DATALEN; i++) DATA[i] = _spi->transfer(0);
DATA[DATALEN] = 0; // add null at end of string // add null at end of string
unselect();
setMode(RF69_MODE_RX);
if (_pl != _powerLevel) setPowerLevel(_powerLevel); //set new _powerLevel if changed
}
RSSI = readRSSI();
}
// internal function
ISR_PREFIX void RFM69::isr0() {
_haveData = true;
if (_instance->_isrCallback)
_instance->_isrCallback();
}
// internal function
void RFM69::receiveBegin() {
DATALEN = 0;
SENDERID = 0;
TARGETID = 0;
PAYLOADLEN = 0;
ACK_REQUESTED = 0;
ACK_RECEIVED = 0;
#if defined(RF69_LISTENMODE_ENABLE)
RF69_LISTEN_BURST_REMAINING_MS = 0;
#endif
RSSI = 0;
if (readReg(REG_IRQFLAGS2) & RF_IRQFLAGS2_PAYLOADREADY)
writeReg(REG_PACKETCONFIG2, (readReg(REG_PACKETCONFIG2) & 0xFB) | RF_PACKET2_RXRESTART); // avoid RX deadlocks
writeReg(REG_DIOMAPPING1, RF_DIOMAPPING1_DIO0_01); // set DIO0 to "PAYLOADREADY" in receive mode
setMode(RF69_MODE_RX);
}
// checks if a packet was received and/or puts transceiver in receive (ie RX or listen) mode
bool RFM69::receiveDone() {
if (_haveData) {
_haveData = false;
interruptHandler();
}
if (_mode == RF69_MODE_RX && PAYLOADLEN > 0) {
setMode(RF69_MODE_STANDBY); // enables interrupts
return true;
} else if (_mode == RF69_MODE_RX) { // already in RX no payload yet
return false;
}
receiveBegin();
return false;
}
// To enable encryption: radio.encrypt("ABCDEFGHIJKLMNOP");
// To disable encryption: radio.encrypt(null) or radio.encrypt(0)
// KEY HAS TO BE 16 bytes !!!
void RFM69::encrypt(const char* key) {
#if defined(RF69_LISTENMODE_ENABLE)
_haveEncryptKey = key;
#endif
setMode(RF69_MODE_STANDBY);
uint8_t validKey = key != 0 && strlen(key)!=0;
if (validKey) {
#if defined(RF69_LISTENMODE_ENABLE)
memcpy(_encryptKey, key, 16);
#endif
select();
_spi->transfer(REG_AESKEY1 | 0x80);
for (uint8_t i = 0; i < 16; i++)
_spi->transfer(key[i]);
unselect();
}
writeReg(REG_PACKETCONFIG2, (readReg(REG_PACKETCONFIG2) & 0xFE) | (validKey ? 1 : 0));
}
// get the received signal strength indicator (RSSI)
int16_t RFM69::readRSSI(bool forceTrigger) {
int16_t rssi = 0;
if (forceTrigger) {
// RSSI trigger not needed if DAGC is in continuous mode
writeReg(REG_RSSICONFIG, RF_RSSI_START);
while ((readReg(REG_RSSICONFIG) & RF_RSSI_DONE) == 0x00); // wait for RSSI_Ready
}
rssi = -readReg(REG_RSSIVALUE);
rssi >>= 1;
return rssi;
}
uint8_t RFM69::readReg(uint8_t addr) {
select();
_spi->transfer(addr & 0x7F);
uint8_t regval = _spi->transfer(0);
unselect();
return regval;
}
void RFM69::writeReg(uint8_t addr, uint8_t value) {
select();
_spi->transfer(addr | 0x80);
_spi->transfer(value);
unselect();
}
// select the RFM69 transceiver (save SPI settings, set CS low)
void RFM69::select() {
#if defined (SPCR) && defined (SPSR)
// save current SPI settings
_SPCR = SPCR;
_SPSR = SPSR;
#endif
#ifdef SPI_HAS_TRANSACTION
_spi->beginTransaction(_settings);
#else
// set RFM69 SPI settings explicitly
_spi->setDataMode(SPI_MODE0);
_spi->setBitOrder(MSBFIRST);
#if defined(__STM32F1__)
_spi->setClockDivider(SPI_CLOCK_DIV8);
#elif defined(__arm__)
_spi->setClockDivider(SPI_CLOCK_DIV16);
#else
_spi->setClockDivider(SPI_CLOCK_DIV2);
#endif
#endif
digitalWrite(_slaveSelectPin, LOW);
}
// unselect the RFM69 transceiver (set CS high, restore SPI settings)
void RFM69::unselect() {
digitalWrite(_slaveSelectPin, HIGH);
#ifdef SPI_HAS_TRANSACTION
_spi->endTransaction();
#endif
// restore SPI settings to what they were before talking to RFM69
#if defined (SPCR) && defined (SPSR)
SPCR = _SPCR;
SPSR = _SPSR;
#endif
}
// true = disable ID filtering to capture all packets on network, regardless of TARGETID
// false (default) = enable node/broadcast ID filtering to capture only frames sent to this/broadcast address
void RFM69::spyMode(bool onOff) {
_spyMode = onOff;
//writeReg(REG_PACKETCONFIG1, (readReg(REG_PACKETCONFIG1) & 0xF9) | (onOff ? RF_PACKET1_ADRSFILTERING_OFF : RF_PACKET1_ADRSFILTERING_NODEBROADCAST));
}
// for RFM69 HW/HCW only: you must call setHighPower(true) after initialize() or else transmission won't work
void RFM69::setHighPower(bool _isRFM69HW_HCW) {
_isRFM69HW = _isRFM69HW_HCW;
writeReg(REG_OCP, _isRFM69HW ? RF_OCP_OFF : RF_OCP_ON); //disable OverCurrentProtection for HW/HCW
setPowerLevel(_powerLevel);
}
// internal function - for HW/HCW only:
// enables HiPower for 18-20dBm output
// should only be used with PA1+PA2
void RFM69::setHighPowerRegs(bool enable) {
if (!_isRFM69HW || _powerLevel<20) enable=false;
writeReg(REG_TESTPA1, enable ? 0x5D : 0x55);
writeReg(REG_TESTPA2, enable ? 0x7C : 0x70);
}
// set the slave select (CS) pin
void RFM69::setCS(uint8_t newSPISlaveSelect) {
_slaveSelectPin = newSPISlaveSelect;
digitalWrite(_slaveSelectPin, HIGH);
pinMode(_slaveSelectPin, OUTPUT);
}
// set the IRQ pin
bool RFM69::setIrq(uint8_t newIRQPin) {
uint8_t _newInterruptNum = digitalPinToInterrupt(newIRQPin);
if (_newInterruptNum == (uint8_t)NOT_AN_INTERRUPT) return false;
#ifdef RF69_ATTACHINTERRUPT_TAKES_PIN_NUMBER
_newInterruptNum = newIRQPin;
#endif
// disconnect from existing IRQ pin
detachInterrupt( _interruptNum );
_interruptNum = _newInterruptNum;
attachInterrupt(_interruptNum, RFM69::isr0, RISING);
return true;
}
//for debugging
#define REGISTER_DETAIL 0
#if REGISTER_DETAIL
// SERIAL PRINT
// replace Serial.print("string") with SerialPrint("string")
#define SerialPrint(x) SerialPrint_P(PSTR(x))
void SerialWrite ( uint8_t c ) {
Serial.write ( c );
}
void SerialPrint_P(PGM_P str, void (*f)(uint8_t) = SerialWrite ) {
for (uint8_t c; (c = pgm_read_byte(str)); str++) (*f)(c);
}
#endif
void RFM69::readAllRegs() {
uint8_t regVal;
#if REGISTER_DETAIL
int capVal;
//... State Variables for intelligent decoding
uint8_t modeFSK = 0;
int bitRate = 0;
int freqDev = 0;
long freqCenter = 0;
#endif
Serial.println("Address - HEX - BIN");
for (uint8_t regAddr = 1; regAddr <= 0x4F; regAddr++) {
select();
_spi->transfer(regAddr & 0x7F); // send address + r/w bit
regVal = _spi->transfer(0);
unselect();
Serial.print(regAddr, HEX);
Serial.print(" - ");
Serial.print(regVal,HEX);
Serial.print(" - ");
Serial.println(regVal,BIN);
#if REGISTER_DETAIL
switch ( regAddr ){
case 0x1 : {
SerialPrint("Controls the automatic Sequencer ( see section 4.2 )\nSequencerOff : ");
if (0x80 & regVal) {
SerialPrint("1 -> Mode is forced by the user\n");
} else {
SerialPrint("0 -> Operating mode as selected with Mode bits in RegOpMode is automatically reached with the Sequencer\n");
}
SerialPrint("\nEnables Listen mode, should be enabled whilst in Standby mode:\nListenOn : ");
if (0x40 & regVal) {
SerialPrint("1 -> On\n");
} else {
SerialPrint("0 -> Off ( see section 4.3)\n");
}
SerialPrint("\nAborts Listen mode when set together with ListenOn=0 See section 4.3.4 for details (Always reads 0.)\n");
if (0x20 & regVal) {
SerialPrint("ERROR - ListenAbort should NEVER return 1 this is a write only register\n");
}
SerialPrint("\nTransceiver's operating modes:\nMode : ");
capVal = (regVal >> 2) & 0x7;
if (capVal == 0b000) {
SerialPrint("000 -> Sleep mode (SLEEP)\n");
} else if ( capVal == 0b001 ) {
SerialPrint("001 -> Standby mode (STDBY)\n");
} else if ( capVal == 0b010 ) {
SerialPrint("010 -> Frequency Synthesizer mode (FS)\n");
} else if ( capVal == 0b011 ) {
SerialPrint("011 -> Transmitter mode (TX)\n");
} else if ( capVal == 0b100 ) {
SerialPrint("100 -> Receiver Mode (RX)\n");
} else {
Serial.print( capVal, BIN );
SerialPrint(" -> RESERVED\n");
}
SerialPrint("\n");
break;
}
case 0x2 : {
SerialPrint("Data Processing mode:\nDataMode : ");
capVal = (regVal >> 5) & 0x3;
if (capVal == 0b00) {
SerialPrint("00 -> Packet mode\n");
} else if (capVal == 0b01) {
SerialPrint("01 -> reserved\n");
} else if (capVal == 0b10) {
SerialPrint("10 -> Continuous mode with bit synchronizer\n");
} else if (capVal == 0b11) {
SerialPrint("11 -> Continuous mode without bit synchronizer\n");
}
SerialPrint("\nModulation scheme:\nModulation Type : ");
capVal = (regVal >> 3) & 0x3;
if (capVal == 0b00) {
SerialPrint("00 -> FSK\n");
modeFSK = 1;
} else if (capVal == 0b01) {
SerialPrint("01 -> OOK\n");
} else if (capVal == 0b10) {
SerialPrint("10 -> reserved\n");
} else if (capVal == 0b11) {
SerialPrint("11 -> reserved\n");
}
SerialPrint("\nData shaping: ");
if ( modeFSK ) {
SerialPrint("in FSK:\n");
} else {
SerialPrint("in OOK:\n");
}
SerialPrint("ModulationShaping : ");
capVal = regVal & 0x3;
if (modeFSK) {
if (capVal == 0b00) {
SerialPrint("00 -> no shaping\n");
} else if ( capVal == 0b01 ) {
SerialPrint("01 -> Gaussian filter, BT = 1.0\n");
} else if ( capVal == 0b10 ) {
SerialPrint("10 -> Gaussian filter, BT = 0.5\n");
} else if ( capVal == 0b11 ) {
SerialPrint("11 -> Gaussian filter, BT = 0.3\n");
}
} else {
if (capVal == 0b00) {
SerialPrint("00 -> no shaping\n");
} else if (capVal == 0b01) {
SerialPrint("01 -> filtering with f(cutoff) = BR\n");
} else if (capVal == 0b10) {
SerialPrint("10 -> filtering with f(cutoff) = 2*BR\n");
} else if (capVal == 0b11) {
SerialPrint("ERROR - 11 is reserved\n");
}
}
SerialPrint("\n");
break;
}
case 0x3 : {
bitRate = (regVal << 8);
break;
}
case 0x4 : {
bitRate |= regVal;
SerialPrint("Bit Rate (Chip Rate when Manchester encoding is enabled)\nBitRate : ");
unsigned long val = 32UL * 1000UL * 1000UL / bitRate;
Serial.println( val );
SerialPrint("\n");
break;
}
case 0x5 : {
freqDev = ( (regVal & 0x3f) << 8 );
break;
}
case 0x6 : {
freqDev |= regVal;
SerialPrint("Frequency deviation\nFdev : ");
unsigned long val = RF69_FSTEP * freqDev;
Serial.println( val );
SerialPrint("\n");
break;
}
case 0x7 : {
unsigned long tempVal = regVal;
freqCenter = ( tempVal << 16 );
break;
}
case 0x8 : {
unsigned long tempVal = regVal;
freqCenter = freqCenter | ( tempVal << 8 );
break;
}
case 0x9 : {
freqCenter = freqCenter | regVal;
SerialPrint("RF Carrier frequency\nFRF : ");
unsigned long val = RF69_FSTEP * freqCenter;
Serial.println( val );
SerialPrint("\n");
break;
}
case 0xa : {
SerialPrint("RC calibration control & status\nRcCalDone : ");
if ( 0x40 & regVal ) {
SerialPrint("1 -> RC calibration is over\n");
} else {
SerialPrint("0 -> RC calibration is in progress\n");
}
SerialPrint("\n");
break;
}
case 0xb : {
SerialPrint("Improved AFC routine for signals with modulation index lower than 2. Refer to section 3.4.16 for details\nAfcLowBetaOn : ");
if ( 0x20 & regVal ) {
SerialPrint("1 -> Improved AFC routine\n");
} else {
SerialPrint("0 -> Standard AFC routine\n");
}
SerialPrint("\n");
break;
}
case 0xc : {
SerialPrint("Reserved\n\n");
break;
}
case 0xd : {
byte val;
SerialPrint("Resolution of Listen mode Idle time (calibrated RC osc):\nListenResolIdle : ");
val = regVal >> 6;
if (val == 0b00) {
SerialPrint("00 -> reserved\n");
} else if (val == 0b01) {
SerialPrint("01 -> 64 us\n");
} else if (val == 0b10) {
SerialPrint("10 -> 4.1 ms\n");
} else if (val == 0b11) {
SerialPrint("11 -> 262 ms\n");
}
SerialPrint("\nResolution of Listen mode Rx time (calibrated RC osc):\nListenResolRx : ");
val = (regVal >> 4) & 0x3;
if (val == 0b00 ) {
SerialPrint("00 -> reserved\n");
} else if (val == 0b01) {
SerialPrint("01 -> 64 us\n");
} else if (val == 0b10) {
SerialPrint("10 -> 4.1 ms\n");
} else if (val == 0b11) {
SerialPrint("11 -> 262 ms\n");
}
SerialPrint("\nCriteria for packet acceptance in Listen mode:\nListenCriteria : ");
if (0x8 & regVal) {
SerialPrint("1 -> signal strength is above RssiThreshold and SyncAddress matched\n");
} else {
SerialPrint("0 -> signal strength is above RssiThreshold\n");
}
SerialPrint("\nAction taken after acceptance of a packet in Listen mode:\nListenEnd : ");
val = (regVal >> 1) & 0x3;
if (val == 0b00) {
SerialPrint("00 -> chip stays in Rx mode. Listen mode stops and must be disabled (see section 4.3)\n");
} else if (val == 0b01) {
SerialPrint("01 -> chip stays in Rx mode until PayloadReady or Timeout interrupt occurs. It then goes to the mode defined by Mode. Listen mode stops and must be disabled (see section 4.3)\n");
} else if (val == 0b10) {
SerialPrint("10 -> chip stays in Rx mode until PayloadReady or Timeout occurs. Listen mode then resumes in Idle state. FIFO content is lost at next Rx wakeup.\n");
} else if (val == 0b11) {
SerialPrint("11 -> Reserved\n");
}
SerialPrint("\n");
break;
}
default : {
}
}
#endif
}
unselect();
}
void RFM69::readAllRegsCompact() {
// Print the header row and first register entry
Serial.println();Serial.print(" ");
for ( uint8_t reg = 0x00; reg<0x10; reg++ ) {
Serial.print(reg, HEX);
Serial.print(" ");
}
Serial.println();
Serial.print("00: -- ");
// Loop over the registers from 0x01 to 0x7F and print their values
for ( uint8_t reg = 0x01; reg<0x80; reg++ ) {
if ( reg % 16 == 0 ) { // Print the header column entries
Serial.println();
Serial.print( reg, HEX );
Serial.print(": ");
}
// Print the actual register values
uint8_t ret = readReg( reg );
if ( ret < 0x10 ) Serial.print("0"); // Handle values less than 10
Serial.print( ret, HEX);
Serial.print(" ");
}
}
uint8_t RFM69::readTemperature(uint8_t calFactor) { // returns centigrade
setMode(RF69_MODE_STANDBY);
writeReg(REG_TEMP1, RF_TEMP1_MEAS_START);
while ((readReg(REG_TEMP1) & RF_TEMP1_MEAS_RUNNING));
return ~readReg(REG_TEMP2) + COURSE_TEMP_COEF + calFactor; // 'complement' corrects the slope, rising temp = rising val
} // COURSE_TEMP_COEF puts reading in the ballpark, user can add additional correction
void RFM69::rcCalibration() {
writeReg(REG_OSC1, RF_OSC1_RCCAL_START);
while ((readReg(REG_OSC1) & RF_OSC1_RCCAL_DONE) == 0x00);
}
//===================================================================================================================
// radio300KBPS() - switch radio to max bitrate
//===================================================================================================================
void RFM69::set300KBPS() {
writeReg(0x03, 0x00); //REG_BITRATEMSB: 300kbps (0x006B, see DS p20)
writeReg(0x04, 0x6B); //REG_BITRATELSB: 300kbps (0x006B, see DS p20)
writeReg(0x19, 0x40); //REG_RXBW: 500kHz
writeReg(0x1A, 0x80); //REG_AFCBW: 500kHz
writeReg(0x05, 0x13); //REG_FDEVMSB: 300khz (0x1333)
writeReg(0x06, 0x33); //REG_FDEVLSB: 300khz (0x1333)
writeReg(0x29, 240); //set REG_RSSITHRESH to -120dBm
writeReg(0x37, 0b10010000); //DC=WHITENING, CRCAUTOOFF=0
// ^^->DC: 00=none, 01=manchester, 10=whitening
}
//=============================================================================
// setLNA() - disable the AGC and set a manual gain to attenuate input signal
// Makes receiver hear a "weaker" signal.
// Use this function to simulate a receiver "distance" from a transmitter
// newReg should be: (see table 26 RegLna 0x18 values)
// 000 - gain set by the internal AGC loop (when bits
// 001 - G1 = highest gain
// 010 - G2 = highest gain 6 dB
// 011 - G3 = highest gain 12 dB
// 100 - G4 = highest gain 24 dB
// 101 - G5 = highest gain 36 dB
// 110 - G6 = highest gain 48 dB
// 111 - reserved
//=============================================================================
uint8_t RFM69::setLNA(uint8_t newReg) {
byte oldReg;
oldReg = readReg(REG_LNA);
writeReg(REG_LNA, ((newReg & 7) | (oldReg & ~7))); // just control the LNA Gain bits for now
return oldReg; // return the original value in case we need to restore it
}
// ListenMode sleep/timer - see ListenModeSleep example for proper usage!
void RFM69::listenModeSleep(uint16_t millisInterval) {
setMode( RF69_MODE_STANDBY );
while ((readReg(REG_IRQFLAGS1) & RF_IRQFLAGS1_MODEREADY) == 0x00); // wait for ModeReady
detachInterrupt( _interruptNum );
//attachInterrupt( _interruptNum, delayIrq, RISING);
writeReg( REG_DIOMAPPING1, RF_DIOMAPPING1_DIO0_11 );
writeReg( REG_BITRATEMSB, RF_BITRATEMSB_200000);
writeReg( REG_BITRATELSB, RF_BITRATELSB_200000);
writeReg( REG_FDEVMSB, RF_FDEVMSB_100000 );
writeReg( REG_FDEVLSB, RF_FDEVLSB_100000 );
writeReg( REG_RXBW, RF_RXBW_DCCFREQ_000 | RF_RXBW_MANT_16 | RF_RXBW_EXP_0 );
uint8_t idleResol;
uint32_t divisor;
uint32_t microInterval = millisInterval * 1000L;
if( microInterval > 255 * 4100L ) {
idleResol = RF_LISTEN1_RESOL_IDLE_262000;
divisor = 262000;
} else if( microInterval > 255 * 64L ) {
idleResol = RF_LISTEN1_RESOL_IDLE_4100;
divisor = 4100;
} else {
idleResol = RF_LISTEN1_RESOL_IDLE_64;
divisor = 64;
}
writeReg( REG_LISTEN1, RF_LISTEN1_RESOL_RX_64 | idleResol | RF_LISTEN1_CRITERIA_RSSI | RF_LISTEN1_END_10 );
writeReg( REG_LISTEN2, (microInterval + (divisor >> 1 ) ) / divisor );
writeReg( REG_LISTEN3, 4 );
writeReg( REG_RSSITHRESH, 255 );
writeReg( REG_RXTIMEOUT2, 1 );
writeReg( REG_OPMODE, RF_OPMODE_SEQUENCER_ON | RF_OPMODE_STANDBY );
writeReg( REG_OPMODE, RF_OPMODE_SEQUENCER_ON | RF_OPMODE_STANDBY | RF_OPMODE_LISTEN_ON );
attachInterrupt( _interruptNum, delayIrq, RISING);
//must call sleep + interrupt handler 3 times here, then endListenModeSleep() - see ListenModeSleep example!
}
//=============================================================================