-
Notifications
You must be signed in to change notification settings - Fork 42
/
CurrentRanger_R2.ino
858 lines (775 loc) · 29.1 KB
/
CurrentRanger_R2.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
// *************************************************************************************************************
// CurrentRanger(TM) stock firmware
// https://lowpowerlab.com/CurrentRanger
// CurrentRanger is a high-side precision current meter featuring:
// - autoranging
// - uni/bi-directional modes (ie. DC/AC measurements)
// - ultra low burden voltage
// - 1mV per nA/uA/mA measurements with DMM/scope
// - OLED standalone readings
// - bluetooth data logging option via 3.3v/RX/TX header
// - full digital control for power/switching
// - LiPo powered with auto power-off feature (0.6uA quiescent current)
// *************************************************************************************************************
#ifndef CURRENT_RANGER
#error You need to choose CurrentRanger board as target, see guide for details how to add it to the IDE.
#endif
//***********************************************************************************************************
#include <SAMD_AnalogCorrection.h> //for analogReadCorrection, comes with ArduinoIDE
#include <FlashStorage.h> //for emulated EEPROM - https://github.com/cmaglie/FlashStorage
#include <Adafruit_FreeTouch.h> //https://github.com/adafruit/Adafruit_FreeTouch
#include <U8g2lib.h> //https://github.com/olikraus/u8g2/wiki/u8g2reference fonts:https://github.com/olikraus/u8g2/wiki/fntlistall
//***********************************************************************************************************
#define OFFSET_LED 11
#define LPFPIN 4
#define LPFLED LED_BUILTIN
#define MA 38
#define UA 2
#define NA 5
#define AUTOFF PIN_AUTO_OFF
char rangeUnit = 'm';
uint32_t lastRangeChange=0;
//***********************************************************************************************************
#define SENSE_OUTPUT A3
#define SENSE_GNDISO A2
#define SENSE_VIN A5
#define ADCREADINGS 1 //do averaging in hardware rather than software
#define ADC_PRESCALER ADC_CTRLB_PRESCALER_DIV16
#define ADC_AVGCTRL ADC_AVGCTRL_SAMPLENUM_256 | ADC_AVGCTRL_ADJRES(0x4ul)
#define ADCFULLRANGE 4095.0
#define VBATREADLOOPS 100 //read vbat every this many OLED_REFRESH_INTERVAL loops
#define LOBAT_THRESHOLD 3.40 //volts
#define DAC_GND_ISO_OFFSET 10
#define DAC_HALF_SUPPLY_OFFSET 512
#define OUTPUT_CALIB_FACTOR 1.00 //calibrate final VOUT value
#define ADC_OVERLOAD 3900 //assuming GNDISO DAC output is very close to 0, this is max value less ground offset (varies from unit to unit, 3900 is a safe value)
//***********************************************************************************************************
#define ADC_CALIBRATE_EN
#define ADC_CALIBRATE_FORCED //uncomment to set manual offset/gain values below
#define ADC_CALIBRATE_FORCED_OFFSET 0
#define ADC_CALIBRATE_FORCED_GAIN 2048
#define LDO_OUTPUT 3.300 //volts, change to actual LDO output (measure GND-3V on OLED header)
#define ANALOG_REFERENCE AR_DEFAULT //AR_EXTERNAL
//***********************************************************************************************************
#define BUZZER 1 // BUZZER pin
#define NOTE_C5 523
#define NOTE_D5 587
#define NOTE_E5 659
#define NOTE_F5 698
#define NOTE_G5 784
#define NOTE_B5 988
#define NOTE_C6 1047
#define TONE_BEEP 4200
//***********************************************************************************************************
#define MODE_MANUAL 0
#define MODE_AUTORANGE 1
#define STARTUP_MODE MODE_MANUAL //MODE_AUTORANGE
#define SWITCHDELAY_UP 8 //ms
#define SWITCHDELAY_DOWN 8 //ms
#define RANGE_SWITCH_THRESHOLD_HIGH ADC_OVERLOAD //ADC's 12bit value
#define RANGE_SWITCH_THRESHOLD_LOW 0
//***********************************************************************************************************
#include <Wire.h>
//i2c scanner: https://playground.arduino.cc/Main/I2cScanner
#define OLED_ADDRESS 0x3C //i2c address on most small OLEDs
#define OLED_REFRESH_INTERVAL 200 //ms
U8G2_SSD1306_128X64_NONAME_F_HW_I2C u8g2(U8G2_R0, /* reset=*/ U8X8_PIN_NONE);
byte OLED_found=false;
//***********************************************************************************************************
#define TOUCH_N 8
#define TOUCH_U 9
#define TOUCH_M A4
Adafruit_FreeTouch qt[3] = {
Adafruit_FreeTouch( TOUCH_N, OVERSAMPLE_8, RESISTOR_20K, FREQ_MODE_HOP ),
Adafruit_FreeTouch( TOUCH_U, OVERSAMPLE_8, RESISTOR_20K, FREQ_MODE_HOP ),
Adafruit_FreeTouch( TOUCH_M, OVERSAMPLE_8, RESISTOR_20K, FREQ_MODE_HOP ),
};
#define TOUCH_HIGH_THRESHOLD 600 //range is 0..1023
#define MA_PRESSED qt[2].measure()>TOUCH_HIGH_THRESHOLD
#define MA_NOT_PRESSED !(MA_PRESSED)
#define UA_PRESSED qt[1].measure()>TOUCH_HIGH_THRESHOLD
#define UA_NOT_PRESSED !(UA_PRESSED)
#define NA_PRESSED qt[0].measure()>TOUCH_HIGH_THRESHOLD
#define NA_NOT_PRESSED !(NA_PRESSED)
//***********************************************************************************************************
#define SERIAL_UART_BAUD 230400 //Serial baud for HC-06/bluetooth output
#define BT_EN
#define LOGGER_FORMAT_EXPONENT //ex: 123E-3 = 123mA
//#define LOGGER_FORMAT_NANOS //ex: 123456 = 123456nA = 123.456uA
//#define LOGGER_FORMAT_ADC //raw ADC output
#define BT_REFRESH_INTERVAL 200 //ms
#define AUTOFF_DEFAULT 600 //seconds, turn unit off after 10min of inactivity
//***********************************************************************************************************
int offsetCorrectionValue = 0;
uint16_t gainCorrectionValue = 0;
float ldoValue = 0;
uint16_t AUTOFF_INTERVAL = 0;
uint8_t USB_LOGGING_ENABLED = false;
uint8_t BT_LOGGING_ENABLED = true;
byte calibrationPerformed=false;
#ifdef BT_EN
byte BT_found=false;
#endif
FlashStorage(eeprom_ADCoffset, int);
FlashStorage(eeprom_ADCgain, uint16_t);
FlashStorage(eeprom_LDO, float);
FlashStorage(eeprom_AUTOFF, uint16_t);
//***********************************************************************************************************
#define AUTOFFBUZZDELAY 500
byte AUTOOFFBUZZ=0;
uint32_t autoOffBuzzInterval=0;
byte autoffWarning=false;
//***********************************************************************************************************
void setup() {
Serial.begin(1); //USB speed
/*
//some buzz
tone(BUZZER, NOTE_C5); delay(100);
tone(BUZZER, NOTE_E5); delay(100);
tone(BUZZER, NOTE_G5); delay(100);
tone(BUZZER, NOTE_C6); delay(200);
noTone(BUZZER); delay(50);
tone(BUZZER, NOTE_G5); delay(100);
tone(BUZZER, NOTE_C6); delay(400);
noTone(BUZZER);
*/
delay(50); //Wire apparently needs this
Wire.begin();
Wire.beginTransmission(OLED_ADDRESS);
byte error = Wire.endTransmission();
if (error == 0)
{
Serial.print("OLED FOUND at 0x"); Serial.println(OLED_ADDRESS);
u8g2.begin();
//u8g2.setDisplayRotation(U8G2_R2); //if required (inside/custom mount?)
u8g2.setBusClock(1000000); //1Mhz i2C clock
OLED_found = true;
}
else Serial.println("NO OLED found...");
pinMode(A0, OUTPUT); //DAC/GNDISO
//DAC->CTRLB.bit.EOEN = 0x00; //enable high drive strength - already done in wiring.c
pinMode(SENSE_OUTPUT, INPUT);
pinMode(SENSE_GNDISO, INPUT); //GND-ISO
pinMode(SENSE_VIN, INPUT); //VIN > 1MEG > SENSE_VIN > 2MEG > GND
pinMode(AUTOFF, INPUT_PULLUP);
pinMode(OFFSET_LED, OUTPUT);
pinMode(LPFLED, OUTPUT); //STATUS/LPF-LED
pinMode(LPFPIN, OUTPUT); //LPF control pin
pinMode(BUZZER, OUTPUT);
pinMode(MA,OUTPUT);
pinMode(UA,OUTPUT);
pinMode(NA,OUTPUT);
qt[0].begin(); qt[1].begin(); qt[2].begin(); //touch pads
analogReadResolution(12);
analogWriteResolution(10); //DAC resolution
analogReference(ANALOG_REFERENCE);
//DAC->CTRLA.bit.RUNSTDBY = 0x01;delay(1);
//DAC->CTRLB.bit.REFSEL=0;//pick internal reference, skip SYNCDAC (done by analogWrite)
analogWrite(A0, DAC_GND_ISO_OFFSET); // Initialize Dac to OFFSET
AUTOFF_INTERVAL = eeprom_AUTOFF.read();
if (AUTOFF_INTERVAL==0) {
AUTOFF_INTERVAL = AUTOFF_DEFAULT;
eeprom_AUTOFF.write(AUTOFF_INTERVAL);
}
#ifdef ADC_CALIBRATE_EN
#ifndef ADC_CALIBRATE_FORCED
adcCorrectionCheck();
#else
offsetCorrectionValue = eeprom_ADCoffset.read();
gainCorrectionValue = eeprom_ADCgain.read();
ldoValue = eeprom_LDO.read();
if (gainCorrectionValue!=0) //check if anything saved in EEPROM (gain changed via SerialUSB +/-)
analogReadCorrectionForced(offsetCorrectionValue, gainCorrectionValue);
else
//hardcoded:
analogReadCorrectionForced(ADC_CALIBRATE_FORCED_OFFSET, ADC_CALIBRATE_FORCED_GAIN);
//(offset, gain) - gain is 12 bit number (1 bit integer + 11bit fractional, see DS p895)
// - offset is 12bit 2s complement format (p896)
if (ldoValue == 0)
{
ldoValue = LDO_OUTPUT; //set default forced value
eeprom_LDO.write(ldoValue);
}
#endif
if (OLED_found /*&& !calibrationPerformed && MA_PRESSED*/)
{
u8g2.clearBuffer();
Serial.println("ADC calib. values:");
Serial.print("Offset="); Serial.println(offsetCorrectionValue);
Serial.print("Gain="); Serial.println(gainCorrectionValue);
Serial.print("LDO="); Serial.println(ldoValue);
u8g2.setFont(u8g2_font_8x13B_tf);
u8g2.setCursor(0,24); u8g2.print("CurrentRanger");
u8g2.setFont(u8g2_font_6x12_tf);
u8g2.setCursor(0,28); u8g2.print("Offset:");
u8g2.setCursor(64,28); u8g2.print(offsetCorrectionValue);
u8g2.setCursor(0,42); u8g2.print("Gain :");
u8g2.setCursor(64,42); u8g2.print(gainCorrectionValue);
u8g2.setCursor(0,56); u8g2.print("LDO :");
u8g2.setCursor(64,56); u8g2.print(ldoValue,3);
u8g2.sendBuffer();
delay(2000);
}
#endif
#ifdef BT_EN
//BT check
Serial.print("Bluetooth AT check @");Serial.print(SERIAL_UART_BAUD);Serial.print("baud...");
SerialBT.begin(SERIAL_UART_BAUD);
SerialBT.print("AT"); //assuming HC-06, no line ending required
uint32_t timer=millis();
while(millis()-timer<1000) //about 1s to respond
{
if (SerialBT.available()==2 && SerialBT.read()=='O' && SerialBT.read()=='K')
{
BT_found=true;
break;
}
}
Serial.print(BT_found?"OK!":"No response.\r\nChecking for version 3.0...");
if (!BT_found)
{
SerialBT.print("\r\n"); //assuming HC-06 version 3.0 that requires line ending
uint32_t timer=millis();
while(millis()-timer<50) //about 50ms to respond
{
if (SerialBT.available()==4 && SerialBT.read()=='O' && SerialBT.read()=='K' && SerialBT.read()=='\r' && SerialBT.read() == '\n')
{
BT_found=true;
break;
}
}
Serial.println(BT_found?"OK!":"No response.");
}
#endif
printSerialMenu();
//rangeMA(); //done in bootloader
WDTset();
/*
// ADC Linearity/Bias Calibration from NVM (should already be done done in core)
uint32_t bias = (*((uint32_t *) ADC_FUSES_BIASCAL_ADDR) & ADC_FUSES_BIASCAL_Msk) >> ADC_FUSES_BIASCAL_Pos;
uint32_t linearity = (*((uint32_t *) ADC_FUSES_LINEARITY_0_ADDR) & ADC_FUSES_LINEARITY_0_Msk) >> ADC_FUSES_LINEARITY_0_Pos;
linearity |= ((*((uint32_t *) ADC_FUSES_LINEARITY_1_ADDR) & ADC_FUSES_LINEARITY_1_Msk) >> ADC_FUSES_LINEARITY_1_Pos) << 5;
ADC->CALIB.reg = ADC_CALIB_BIAS_CAL(bias) | ADC_CALIB_LINEARITY_CAL(linearity);
*/
if (STARTUP_MODE == MODE_AUTORANGE)
toggleAutoranging();
}
uint32_t oledInterval=0, lpfInterval=0, offsetInterval=0, autorangeInterval=0, btInterval=0;
byte LPF=0, OFFSET=0, AUTORANGE=0;
byte readVbatLoop=0;
float vbat=0;
float read1=0,read2=0,readDiff=0;
bool rangeSwitched=false;
#define RANGE_MA rangeUnit=='m'
#define RANGE_UA rangeUnit=='u'
#define RANGE_NA rangeUnit=='n'
void rangeBeep(uint16_t switch_delay=0)
{
uint16_t freq = NOTE_C5;
if (RANGE_UA) freq = NOTE_D5;
if (RANGE_MA) freq = NOTE_E5;
if (switch_delay==0)
tone(BUZZER, freq, 20);
else {
tone(BUZZER, freq);
delay(switch_delay);
noTone(BUZZER);
}
}
uint32_t timestamp=0;
void loop()
{
timestamp = millis();
if (Serial.available()>0)
{
char inByte = Serial.read();
switch (inByte)
{
case '+':
eeprom_ADCgain.write(++gainCorrectionValue);
analogReadCorrection(offsetCorrectionValue,gainCorrectionValue);
Serial.print("new gainCorrectionValue = ");
Serial.println(gainCorrectionValue);
break;
case '-':
eeprom_ADCgain.write(--gainCorrectionValue);
analogReadCorrection(offsetCorrectionValue,gainCorrectionValue);
Serial.print("new gainCorrectionValue = ");
Serial.println(gainCorrectionValue);
break;
case '<':
ldoValue -= 0.001;
eeprom_LDO.write(ldoValue);
Serial.print("new LDO_Value = ");
Serial.println(ldoValue, 3);
break;
case '>':
ldoValue += 0.001;
eeprom_LDO.write(ldoValue);
Serial.print("new LDO_Value = ");
Serial.println(ldoValue, 3);
break;
case 'u': //toggle USB logging
USB_LOGGING_ENABLED =! USB_LOGGING_ENABLED;
Serial.println(USB_LOGGING_ENABLED ? "USB_LOGGING_ENABLED" : "USB_LOGGING_DISABLED");
break;
case 'b': //toggle BT/serial logging
BT_LOGGING_ENABLED =! BT_LOGGING_ENABLED;
Serial.println(BT_LOGGING_ENABLED ? "BT_LOGGING_ENABLED" : "BT_LOGGING_DISABLED");
break;
case 'a': //toggle autoOff function
if (AUTOFF_INTERVAL == AUTOFF_DEFAULT)
{
Serial.println("AUTO_OFF_DISABLED");
AUTOFF_INTERVAL = 0xFFFF;
}
else
{
Serial.println("AUTO_OFF_ENABLED");
AUTOFF_INTERVAL = AUTOFF_DEFAULT;
}
eeprom_AUTOFF.write(AUTOFF_INTERVAL);
break;
default: break;
}
}
WDTclear(); //keep the dog happy
handleTouchPads();
handleAutoOff();
if (AUTORANGE)
{
readVOUT();
//assumes we only auto-range in DC mode (no bias)
if (readDiff <= RANGE_SWITCH_THRESHOLD_LOW)
{
if (RANGE_MA) { rangeUA(); rangeSwitched=true; rangeBeep(SWITCHDELAY_DOWN); }
else if (RANGE_UA) { rangeNA(); rangeSwitched=true; rangeBeep(SWITCHDELAY_DOWN); }
}
else if (readDiff >= RANGE_SWITCH_THRESHOLD_HIGH)
{
if (RANGE_NA) { rangeUA(); rangeSwitched=true; rangeBeep(SWITCHDELAY_UP); }
else if (RANGE_UA) { rangeMA(); rangeSwitched=true; rangeBeep(SWITCHDELAY_UP); }
}
if (rangeSwitched) {
lastRangeChange=millis();
rangeSwitched=false;
return; //!!!
}
}
float VOUT;
if (USB_LOGGING_ENABLED)
{//TODO: refactor
if (!AUTORANGE) readVOUT();
VOUT = ((readDiff)/ADCFULLRANGE)*ldoValue*1000*(OFFSET?1:OUTPUT_CALIB_FACTOR);
#if defined LOGGER_FORMAT_ADC
Serial.println(readDiff,0);
#elif defined LOGGER_FORMAT_EXPONENT
Serial.print(VOUT); Serial.print("e"); Serial.println(RANGE_NA ? -9 : RANGE_UA ? -6 : -3);
#elif defined LOGGER_FORMAT_NANOS
Serial.println(VOUT * (RANGE_NA ? 1 : RANGE_UA ? 1000 : 1000000));
#endif
}
#ifdef BT_EN
if (BT_found && BT_LOGGING_ENABLED && millis() - btInterval > BT_REFRESH_INTERVAL) //refresh rate (ms)
{
btInterval = millis();
if (!AUTORANGE) readVOUT();
VOUT = ((readDiff)/ADCFULLRANGE)*ldoValue*1000*(OFFSET?1:OUTPUT_CALIB_FACTOR);
#if defined LOGGER_FORMAT_ADC
SerialBT.println(readDiff,0);
#elif defined LOGGER_FORMAT_EXPONENT
SerialBT.print(VOUT); SerialBT.print("e"); SerialBT.println(RANGE_NA ? -9 : RANGE_UA ? -6 : -3);
#elif defined LOGGER_FORMAT_NANOS
SerialBT.println(VOUT * (RANGE_NA ? 1 : RANGE_UA ? 1000 : 1000000));
#endif
}
#endif
if (OLED_found && millis() - oledInterval > OLED_REFRESH_INTERVAL) //refresh rate (ms)
{
oledInterval = millis();
readVOUT();
float VOUT = ((readDiff)/ADCFULLRANGE)*ldoValue*1000*(OFFSET?1:OUTPUT_CALIB_FACTOR);
u8g2.clearBuffer();
u8g2.setFont(u8g2_font_6x10_tf);
//limit how often we read the battery since it's not expected to change a lot
if (readVbatLoop==0) {
vbat=adcRead(SENSE_VIN);
vbat=((vbat/ADCFULLRANGE) * ldoValue) * 1.5; //1.5 given by vbat->A5 resistor ratio
}
if (readVbatLoop == 100) readVbatLoop=0;
else readVbatLoop++;
if (vbat < LOBAT_THRESHOLD) u8g2.drawStr(88,12,"LoBat!");
else {
u8g2.drawStr(106,12,"vBat");
u8g2.setCursor(80,12); u8g2.print(vbat); //VIN
}
if (AUTOOFFBUZZ) //autoffWarning
u8g2.drawStr(5,26,"* AUTO OFF! *");
//float VOUTDIFF = (readDiff/ADCFULLRANGE)*ldoValue*1000; //*(OFFSET?1:OUTPUT_CALIB_FACTOR)
if (AUTORANGE)
{
//u8g2.setFontMode(0);
//u8g2.setDrawColor(0);
u8g2.drawStr(0,12, "AUTO");
u8g2.setCursor(0,24);
u8g2.print(readDiff,0);
}
else
{
u8g2.setCursor(0,12);
u8g2.print(readDiff,0);
}
u8g2.setFont(u8g2_font_helvB24_te);
u8g2.setCursor(106,64); u8g2.print('A');
u8g2.setCursor(rangeUnit=='m'?102:106,38); u8g2.print(rangeUnit=='u'?char('µ'):rangeUnit);
u8g2.setFont(u8g2_font_logisoso32_tr);
u8g2.setCursor(0,64); u8g2.print((OFFSET&&abs(VOUT)>=1||!OFFSET&&VOUT>=1)?VOUT:0, abs(VOUT)>=1000?0:1); //diff
if (!OFFSET && readDiff>ADC_OVERLOAD || OFFSET && abs(readDiff)>ADC_OVERLOAD/2)
{
u8g2.setFont(u8g2_font_9x15B_tf);
u8g2.drawStr(0,28, "OVERLOAD!");
}
u8g2.sendBuffer();
//Serial.print(adcRead(A1));
//Serial.print(" - ");
//Serial.println(adcRead(A6));
}
//Serial.println(uint32_t(AUTOFF_INTERVAL)*1000);
//Serial.println(millis()-timestamp);
} //loop()
uint32_t buttonLastChange_range;
uint16_t valM=0, valU=0, valN=0;
void handleTouchPads() {
if (millis() - buttonLastChange_range < 200) return;
if (MA_PRESSED || UA_PRESSED || NA_PRESSED) lastRangeChange=millis();
//range switching
if (!AUTORANGE)
{
if (MA_PRESSED && UA_NOT_PRESSED && NA_NOT_PRESSED && rangeUnit!='m') { rangeMA(); rangeBeep(); }
if (UA_PRESSED && MA_NOT_PRESSED && NA_NOT_PRESSED && rangeUnit!='u') { rangeUA(); rangeBeep(); }
if (NA_PRESSED && UA_NOT_PRESSED && MA_NOT_PRESSED && rangeUnit!='n') { rangeNA(); rangeBeep(); }
}
//LPF activation --- [NA+UA]
if (UA_PRESSED && NA_PRESSED && MA_NOT_PRESSED && millis()-lpfInterval>1000) { toggleLPF(); Beep(3, false); }
//offset toggling (GNDISO to half supply) --- [MA+UA]
if (MA_PRESSED && UA_PRESSED && NA_NOT_PRESSED && millis()-offsetInterval>1000) { toggleOffset(); Beep(3, false); }
//AUTORANGE toggling
if (MA_PRESSED && NA_PRESSED && UA_NOT_PRESSED && millis()-autorangeInterval>1000) { toggleAutoranging(); Beep(20, false); delay(50); (20, false); }
}
void rangeMA() {
rangeUnit='m';
digitalWrite(MA,HIGH);
digitalWrite(UA,LOW);
digitalWrite(NA,LOW);
#ifdef BT_OUTPUT_ADC
if (BT_found) SerialBT.println("RANGE: MA");
#endif
}
void rangeUA() {
rangeUnit='u';
digitalWrite(UA,HIGH);
digitalWrite(MA,LOW);
digitalWrite(NA,LOW);
#ifdef BT_OUTPUT_ADC
if (BT_found) SerialBT.println("RANGE: UA");
#endif
}
void rangeNA() {
rangeUnit='n';
digitalWrite(NA,HIGH);
digitalWrite(MA,LOW);
digitalWrite(UA,LOW);
#ifdef BT_OUTPUT_ADC
if (BT_found) SerialBT.println("RANGE: NA");
#endif
}
void handleAutoOff() {
if (millis() - lastRangeChange > uint32_t(AUTOFF_INTERVAL)*1000-5000)
{
autoffWarning = true;
if (millis()-autoOffBuzzInterval> AUTOFFBUZZDELAY)
{
autoOffBuzzInterval = millis();
AUTOOFFBUZZ=!AUTOOFFBUZZ;
if (AUTOOFFBUZZ)
tone(BUZZER, NOTE_B5);
else
noTone(BUZZER);
}
if (millis() - lastRangeChange > uint32_t(AUTOFF_INTERVAL)*1000)
{
pinMode(AUTOFF, OUTPUT);
digitalWrite(AUTOFF, LOW);
}
}
else if (autoffWarning) { autoffWarning=false; digitalWrite(AUTOFF, HIGH); noTone(BUZZER); }
}
void toggleLPF() {
LPF=!LPF;
lpfInterval = millis();
digitalWrite(LPFPIN, LPF);
digitalWrite(LPFLED, LPF);
if (AUTORANGE && !LPF) toggleAutoranging(); //turn off AUTORANGE
}
void toggleOffset() {
OFFSET=!OFFSET;
offsetInterval = millis();
analogWrite(A0, (OFFSET ? DAC_HALF_SUPPLY_OFFSET : DAC_GND_ISO_OFFSET));
digitalWrite(OFFSET_LED, OFFSET);
if (AUTORANGE && OFFSET) toggleAutoranging(); //turn off AUTORANGE
}
void toggleAutoranging() {
autorangeInterval = millis();
AUTORANGE=!AUTORANGE;
if (AUTORANGE && OFFSET) toggleOffset(); //turn off OFFSET
if (AUTORANGE && !LPF) toggleLPF(); //turn on OFFSET
}
void Beep(byte theDelay, boolean twoSounds) {
//if (theDelay > 20) theDelay = 20;
tone(BUZZER, TONE_BEEP, theDelay);
if (twoSounds)
{
delay(10);
tone(BUZZER, 4500, theDelay);
}
}
#define ADCSYNC while (ADC->STATUS.bit.SYNCBUSY)
int adcRead(byte ADCpin)
{
ADC->CTRLA.bit.ENABLE = 0; // disable ADC
ADCSYNC;
int CTRLBoriginal = ADC->CTRLB.reg;
int AVGCTRLoriginal = ADC->AVGCTRL.reg;
int SAMPCTRLoriginal = ADC->SAMPCTRL.reg;
ADC->CTRLB.reg &= 0b1111100011111111; // mask PRESCALER bits
ADC->CTRLB.reg |= ADC_PRESCALER; // divide Clock by PRESCALER
//ADC->AVGCTRL.reg = ADC_AVGCTRL_SAMPLENUM_1 | ADC_AVGCTRL_ADJRES(0x00ul); // take 1 sample, adjusting result by 0
//ADC->AVGCTRL.reg = ADC_AVGCTRL_SAMPLENUM_16 | ADC_AVGCTRL_ADJRES(0x4ul); //take 16 samples adjust by 4
//ADC->AVGCTRL.reg = ADC_AVGCTRL_SAMPLENUM_256 | ADC_AVGCTRL_ADJRES(0x4ul); //take 256 samples adjust by 4
//ADC->AVGCTRL.reg = ADC_AVGCTRL_SAMPLENUM_512 | ADC_AVGCTRL_ADJRES(0x4ul); //take 512 samples adjust by 4
//ADC->AVGCTRL.reg = ADC_AVGCTRL_SAMPLENUM_1024 | ADC_AVGCTRL_ADJRES(0x4ul); //take 1024 samples adjust by 4
ADC->AVGCTRL.reg = ADC_AVGCTRL;
//sample timing (0 .. 0b111);
ADC->SAMPCTRL.reg = 0b100; //0x00 fastest
ADC->CTRLA.bit.ENABLE = 1; // enable ADC
ADCSYNC;
int adc = analogRead(ADCpin);
ADC->CTRLB.reg = CTRLBoriginal;
ADC->AVGCTRL.reg = AVGCTRLoriginal;
ADC->SAMPCTRL.reg = SAMPCTRLoriginal;
return adc;
}
void readVOUT() {
read1=0,read2=0;
for (byte i=0;i<ADCREADINGS;i++)
{
read1+=adcRead(SENSE_GNDISO);
read2+=adcRead(SENSE_OUTPUT);
//readDiff+=analogDifferentialRaw(0x1C, 0x04); //DAC-AIN4 (mux_pos,uint8_t mux_neg)
//readDiff+=analogDifferentialRaw(0x04, 0x03); //AIN4-AIN3
//readDiff+=analogDifferential(SENSE_OUTPUT,SENSE_GNDISO);
}
read1/=ADCREADINGS;
read2/=ADCREADINGS;
readDiff=read2-read1;
}
//***********************************************************************************************************
//ADC OFFSET/GAIN CALIBRATION - adapted from SAMD_AnalogCorrection>CorrectADCResponse Example
// calibration runs automatically ONCE after unit is (re)programmed, and stores calib values in EEPROM
// (EEPROM is emulated and gets erased when reflashing SAMD21)
//***********************************************************************************************************
#define ADC_GND_PIN A6
#define ADC_3V3_PIN A1
#define ADC_READS_SHIFT 8
#define ADC_READS_COUNT (1 << ADC_READS_SHIFT)
#define ADC_MIN_GAIN 0x0400
#define ADC_UNITY_GAIN 0x0800
#define ADC_MAX_GAIN (0x1000 - 1)
#define ADC_RESOLUTION_BITS 12
#define ADC_RANGE (1 << ADC_RESOLUTION_BITS)
#define ADC_TOP_VALUE (ADC_RANGE - 1)
#define MAX_TOP_VALUE_READS 10
void adcCorrectionCheck() {
offsetCorrectionValue = eeprom_ADCoffset.read();
gainCorrectionValue = eeprom_ADCgain.read();
if (offsetCorrectionValue==0 && gainCorrectionValue==0)
{
if (OLED_found)
{
u8g2.clearBuffer();
u8g2.setFont(u8g2_font_9x15B_tf);
u8g2.setCursor(0,12); u8g2.print("ADC CALIB...");
u8g2.sendBuffer();
}
delay(1000);
Serial.println("Starting ADC Calibration...");
gainCorrectionValue = ADC_UNITY_GAIN;
calibrateADC();
}
else
{
analogReadCorrection(offsetCorrectionValue, gainCorrectionValue);
}
}
void analogReadCorrectionForced(int offset, uint16_t gain) {
offsetCorrectionValue=offset;
gainCorrectionValue=gain;
analogReadCorrection(offset,gain);
}
void calibrateADC() {
calibrationPerformed=true;
Serial.println("\r\nCalibrating ADC with factory values");
analogReadResolution(ADC_RESOLUTION_BITS);
Serial.println("\r\nReading GND and 3.3V ADC levels");
Serial.print(" ");
readGndLevel();
Serial.print(" ");
read3V3Level();
Serial.print("\r\nOffset correction (@gain = ");
Serial.print(gainCorrectionValue);
Serial.println(" (unity gain))");
// Set default correction values and enable correction
analogReadCorrection(offsetCorrectionValue, gainCorrectionValue);
for (int offset = 0; offset < (int)(ADC_OFFSETCORR_MASK >> 1); ++offset)
{
analogReadCorrection(offset, gainCorrectionValue);
Serial.print(" Offset = ");
Serial.print(offset);
Serial.print(", ");
if (readGndLevel() == 0)
{
offsetCorrectionValue = offset;
break;
}
}
Serial.println("\r\nGain correction");
uint8_t topValueReadsCount = 0U;
uint16_t minGain = 0U, maxGain = 0U;
analogReadCorrection(offsetCorrectionValue, gainCorrectionValue);
Serial.print(" Gain = ");
Serial.print(gainCorrectionValue);
Serial.print(", ");
uint16_t highLevelRead = read3V3Level();
if (highLevelRead < ADC_TOP_VALUE)
{
for (uint16_t gain = ADC_UNITY_GAIN + 1; gain <= ADC_MAX_GAIN; ++gain)
{
analogReadCorrection(offsetCorrectionValue, gain);
Serial.print(" Gain = ");
Serial.print(gain);
Serial.print(", ");
highLevelRead = read3V3Level();
if (highLevelRead == ADC_TOP_VALUE)
{
if (minGain == 0U) minGain = gain;
if (++topValueReadsCount >= MAX_TOP_VALUE_READS)
{
maxGain = minGain;
break;
}
maxGain = gain;
}
if (highLevelRead > ADC_TOP_VALUE) break;
}
}
else if (highLevelRead >= ADC_TOP_VALUE)
{
if (highLevelRead == ADC_TOP_VALUE) maxGain = ADC_UNITY_GAIN;
for (uint16_t gain = ADC_UNITY_GAIN - 1; gain >= ADC_MIN_GAIN; --gain)
{
analogReadCorrection(offsetCorrectionValue, gain);
Serial.print(" Gain = ");
Serial.print(gain);
Serial.print(", ");
highLevelRead = read3V3Level();
if (highLevelRead == ADC_TOP_VALUE)
{
if (maxGain == 0U) maxGain = gain;
minGain = gain;
}
Serial.print("* LOOP : minGain="); Serial.print( minGain ); Serial.print(" maxGain="); Serial.println( maxGain );
if (highLevelRead < ADC_TOP_VALUE)
{
if (minGain == 0U) minGain = maxGain;
break;
}
}
}
gainCorrectionValue = (minGain + maxGain) >> 1;
analogReadCorrection(offsetCorrectionValue, gainCorrectionValue);
//save values to EEPROM
eeprom_ADCoffset.write(offsetCorrectionValue);
eeprom_ADCgain.write(gainCorrectionValue);
if (OLED_found)
{
u8g2.clearBuffer();
Serial.println("ADC Calib done. Values:");
Serial.print("Offset="); Serial.println(offsetCorrectionValue);
Serial.print("Gain="); Serial.println(gainCorrectionValue);
u8g2.setFont(u8g2_font_9x15B_tf);
u8g2.setCursor(0,12); u8g2.print("ADC CALIB...");
u8g2.setCursor(0,28); u8g2.print("DONE:");
u8g2.setCursor(0,40); u8g2.print("offset:");
u8g2.setCursor(64,40); u8g2.print(offsetCorrectionValue);
u8g2.setCursor(0,54); u8g2.print("gain :");
u8g2.setCursor(64,54); u8g2.print(gainCorrectionValue);
u8g2.sendBuffer();
delay(3000);
}
}
uint16_t readGndLevel() {
uint32_t readAccumulator = 0;
for (int i = 0; i < ADC_READS_COUNT; ++i)
readAccumulator += analogRead(ADC_GND_PIN);
uint16_t readValue = readAccumulator >> ADC_READS_SHIFT;
Serial.print("ADC(GND) = ");
Serial.println(readValue);
return readValue;
}
uint16_t read3V3Level()
{
uint32_t readAccumulator = 0;
for (int i = 0; i < ADC_READS_COUNT; ++i)
readAccumulator += analogRead(ADC_3V3_PIN);
uint16_t readValue = readAccumulator >> ADC_READS_SHIFT;
if (readValue < (ADC_RANGE >> 1)) readValue += ADC_RANGE;
Serial.print("ADC(3.3V) = ");
Serial.println(readValue);
return readValue;
}
void WDTset() {
// Generic clock generator 2, divisor = 32 (2^(DIV+1))
GCLK->GENDIV.reg = GCLK_GENDIV_ID(2) | GCLK_GENDIV_DIV(4);
// Enable clock generator 2 using low-power 32KHz oscillator. With /32 divisor above, this yields 1024Hz(ish) clock.
GCLK->GENCTRL.reg = GCLK_GENCTRL_ID(2) | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_OSCULP32K | GCLK_GENCTRL_DIVSEL;
while(GCLK->STATUS.bit.SYNCBUSY);
// WDT clock = clock gen 2
GCLK->CLKCTRL.reg = GCLK_CLKCTRL_ID_WDT | GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK2;
WDT->CTRL.reg = 0; //disable WDT
while(WDT->STATUS.bit.SYNCBUSY);
WDT->INTENCLR.bit.EW = 1; //disable early warning
WDT->CONFIG.bit.PER = 0x7; //period ~1s
WDT->CTRL.bit.WEN = 0; //disable window mode
while(WDT->STATUS.bit.SYNCBUSY);
WDTclear();
WDT->CTRL.bit.ENABLE = 1; //enable WDT
while(WDT->STATUS.bit.SYNCBUSY);
}
void WDTclear(){
WDT->CLEAR.reg = WDT_CLEAR_CLEAR_KEY;
while(WDT->STATUS.bit.SYNCBUSY);
}
void printSerialMenu() {
if (OLED_found /*&& !calibrationPerformed && MA_PRESSED*/)
{
Serial.println("\r\nUSB serial commands:");
Serial.println("a = toggle Auto-Off function");
Serial.print ("b = toggle BT/serial logging (");Serial.print(SERIAL_UART_BAUD);Serial.println("baud)");
Serial.println("u = toggle USB/serial logging");
Serial.println("< = Calibrate LDO value (-1mV)");
Serial.println("> = Calibrate LDO value (+1mV)");
Serial.println("- = Calibrate GAIN value (-1)");
Serial.println("+ = Calibrate GAIN value (+1)");
Serial.println();
}
}