forked from wpf535236337/M2U-Net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
driu.py
executable file
·115 lines (95 loc) · 4.01 KB
/
driu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# PyTorch implementation of DRIU:
# http://www.vision.ee.ethz.ch/~cvlsegmentation/driu/data/paper/DRIU_MICCAI2016.pdf
# MIT License
# Copyright (c) September 2018 Tim Laibacher
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import torch
from torch import nn
from torch.nn import functional as F
from torch.autograd import Variable
import numpy as np
import torchvision.models as models
class UpsampleBlock(nn.Module):
def __init__(self,x_in_c,up_kernel_size,up_stride,up_padding):
'''
Args:
img_h: input image height
img_w: input image width
x_in_c : number of channels of intermediate layer
up_kernel_size: kernel size for transposed convolution
up_stride: stride for transposed convolution
up_padding: padding for transposed convolution
'''
super().__init__()
self.conv = nn.Conv2d(x_in_c,16,3,1,1)
self.upconv = nn.ConvTranspose2d(16, 16, up_kernel_size, up_stride,up_padding)
def forward(self,x_in,input_res):
img_h = input_res[0]
img_w = input_res[1]
x = self.conv(x_in)
x = self.upconv(x)
# determine center crop
# height
up_h = x.shape[2]
h_crop = up_h - img_h
h_s = h_crop//2
h_e = up_h - (h_crop - h_s)
# width
up_w = x.shape[3]
w_crop = up_w-img_w
w_s = w_crop//2
w_e = up_w - (w_crop - w_s)
# perform crop
# needs explicit ranges for onnx export
x = x[0:1,0:16,h_s:h_e,w_s:w_e] # crop to input size
return x
class ConcatFuseBlock(nn.Module):
def __init__(self):
super().__init__()
self.conv = nn.Conv2d(4*16,1,1,1,0)
def forward(self,x1,x2,x3,x4):
x_cat = torch.cat([x1,x2,x3,x4],dim=1)
x = self.conv(x_cat)
return x
class DRIU(nn.Module):
def __init__(self):
super().__init__()
# VGG
encoder = list(models.vgg16().children())[0][:23]
self.conv1 = encoder[0:4]
self.conv2 = encoder[4:9]
self.conv3 = encoder[9:16]
self.conv4 = encoder[16:23]
# Upsample
self.conv1_2_16 = nn.Conv2d(64,16,3,1,1)
self.upsample2 = UpsampleBlock(128,4,2,0)
self.upsample4 = UpsampleBlock(256,8,4,0)
self.upsample8 = UpsampleBlock(512,16,8,0)
# Concat and Fuse
self.concatfuse = ConcatFuseBlock()
def forward(self,x):
hw = x.shape[2:4]
conv1 = self.conv1(x) # conv1_2
conv2 = self.conv2(conv1) # conv2_2
conv3 = self.conv3(conv2) # conv3_3
conv4 = self.conv4(conv3) # conv4_3
conv1_2_16 = self.conv1_2_16(conv1) # conv1_2_16
upsample2 = self.upsample2(conv2,hw) # side-multi2-up
upsample4 = self.upsample4(conv3,hw) # side-multi3-up
upsample8 = self.upsample8(conv4,hw) # side-multi4-up
out = self.concatfuse(conv1_2_16,upsample2,upsample4,upsample8)
return out