diff --git a/behavior_metrics/.gitignore b/behavior_metrics/.gitignore index d6c9882c..af96b108 100644 --- a/behavior_metrics/.gitignore +++ b/behavior_metrics/.gitignore @@ -9,6 +9,7 @@ bag_analysis/ core tmp_* +carla_birdeye_view/ ### Python ### diff --git a/behavior_metrics/brains/CARLA/brain_carla_segmentation_based_imitation_learning.py b/behavior_metrics/brains/CARLA/brain_carla_segmentation_based_imitation_learning.py index 2f9e2b61..d45c06d5 100644 --- a/behavior_metrics/brains/CARLA/brain_carla_segmentation_based_imitation_learning.py +++ b/behavior_metrics/brains/CARLA/brain_carla_segmentation_based_imitation_learning.py @@ -1,17 +1,13 @@ -from torchvision import transforms -from PIL import Image from brains.CARLA.utils.pilotnet_onehot import PilotNetOneHot -from brains.CARLA.utils.test_utils import traffic_light_to_int, model_control +from brains.CARLA.utils.test_utils import traffic_light_to_int, model_control, calculate_delta_yaw from utils.constants import PRETRAINED_MODELS_DIR, ROOT_PATH +from brains.CARLA.utils.high_level_command import HighLevelCommandLoader from os import path import numpy as np import torch -import torchvision -import cv2 import time -import os import math import carla @@ -27,12 +23,14 @@ def __init__(self, sensors, actuators, model=None, handler=None, config=None): self.inference_times = [] self.gpu_inference = config['GPU'] self.device = torch.device('cuda' if (torch.cuda.is_available() and self.gpu_inference) else 'cpu') - + self.red_light_counter = 0 + self.running_light = False + client = carla.Client('localhost', 2000) - client.set_timeout(10.0) + client.set_timeout(100.0) world = client.get_world() self.map = world.get_map() - + weather = carla.WeatherParameters.ClearNoon world.set_weather(weather) @@ -57,8 +55,19 @@ def __init__(self, sensors, actuators, model=None, handler=None, config=None): self.net.load_state_dict(torch.load(PRETRAINED_MODELS + model,map_location=self.device)) self.net.eval() - self.prev_hlc = 0 + if 'Route' in config: + route = config['Route'] + print('route: ', route) + else: + route = None + self.hlc_loader = HighLevelCommandLoader(self.vehicle, self.map, route=route) + self.prev_hlc = 0 + self.prev_yaw = None + self.delta_yaw = 0 + + self.target_point = None + self.termination_code = 0 # 0: not terminated; 1: arrived at target; 2: wrong turn def update_frame(self, frame_id, data): """Update the information to be shown in one of the GUI's frames. @@ -91,47 +100,58 @@ def execute(self): self.update_frame('frame_0', rgb_image) self.update_frame('frame_1', seg_image) + start_time = time.time() try: # calculate speed - speed_m_s = self.vehicle.get_velocity() - speed = 3.6 * math.sqrt(speed_m_s.x**2 + speed_m_s.y**2 + speed_m_s.z**2) + velocity = self.vehicle.get_velocity() + speed_m_s = np.sqrt(velocity.x**2 + velocity.y**2 + velocity.z**2) + speed = 3.6 * speed_m_s #m/s to km/h - # randomly choose high-level command if at junction - vehicle_location = self.vehicle.get_transform().location - vehicle_waypoint = self.map.get_waypoint(vehicle_location) - next_to_junction = False - for j in range(1, 11): - next_waypoint = vehicle_waypoint.next(j * 1.0)[0] - if next_waypoint.is_junction: - next_to_junction = True - next_waypoints = vehicle_waypoint.next(j * 1.0) - break - if vehicle_waypoint.is_junction or next_to_junction: + # read next high-level command or choose a random direction + hlc = self.hlc_loader.get_next_hlc() + if hlc != 0: if self.prev_hlc == 0: - valid_turns = [] - for next_wp in next_waypoints: - yaw_diff = next_wp.transform.rotation.yaw - vehicle_waypoint.transform.rotation.yaw - yaw_diff = (yaw_diff + 180) % 360 - 180 - if -15 < yaw_diff < 15: - valid_turns.append(3) # Go Straight - elif 15 < yaw_diff < 165: - valid_turns.append(1) # Turn Left - elif -165 < yaw_diff < -15: - valid_turns.append(2) # Turn Right - hlc = np.random.choice(valid_turns) + self.prev_yaw = self.vehicle.get_transform().rotation.yaw else: - hlc = self.prev_hlc - else: - hlc = 0 + cur_yaw = self.vehicle.get_transform().rotation.yaw + self.delta_yaw += calculate_delta_yaw(self.prev_yaw, cur_yaw) + self.prev_yaw = cur_yaw + + # detect whether the vehicle made the correct turn + turning_infraction = False + if self.prev_hlc != 0 and hlc == 0: + print(f'turned {self.delta_yaw} degrees') + if 45 < np.abs(self.delta_yaw) < 180: + if self.delta_yaw < 0 and self.prev_hlc != 1: + turning_infraction = True + elif self.delta_yaw > 0 and self.prev_hlc != 2: + turning_infraction = True + elif self.prev_hlc != 3: + turning_infraction = True + if turning_infraction: + print('Wrong Turn!!!') + self.termination_code = 2 + self.delta_yaw = 0 + + self.prev_hlc = hlc # get traffic light status light_status = -1 + vehicle_location = self.vehicle.get_transform().location if self.vehicle.is_at_traffic_light(): traffic_light = self.vehicle.get_traffic_light() light_status = traffic_light.get_state() + traffic_light_location = traffic_light.get_transform().location + distance_to_traffic_light = np.sqrt((vehicle_location.x - traffic_light_location.x)**2 + (vehicle_location.y - traffic_light_location.y)**2) + if light_status == carla.libcarla.TrafficLightState.Red and distance_to_traffic_light < 6 and speed_m_s > 5: + if not self.running_light: + self.running_light = True + self.red_light_counter += 1 + else: + self.running_light = False - print(f'hlc: {hlc}') - print(f'light: {light_status}') + print(f'high-level command: {hlc}') + #print(f'light: {light_status}') frame_data = { 'hlc': hlc, 'measurements': speed, @@ -145,8 +165,22 @@ def execute(self): ignore_traffic_light=False, device=self.device, combined_control=False) + + self.inference_times.append(time.time() - start_time) + self.motors.sendThrottle(throttle) self.motors.sendSteer(steer) self.motors.sendBrake(brake) + + # calculate distance to target point + # print(f'vehicle location: ({vehicle_location.x}, {-vehicle_location.y})') + # print(f'target point: ({self.target_point[0]}, {self.target_point[1]})') + if self.target_point != None: + distance_to_target = np.sqrt((self.target_point[0] - vehicle_location.x)**2 + (self.target_point[1] - (-vehicle_location.y))**2) + print(f'Euclidean distance to target: {distance_to_target}') + if distance_to_target < 1.5: + self.termination_code = 1 + + except Exception as err: print(err) \ No newline at end of file diff --git a/behavior_metrics/brains/CARLA/utils/high_level_command.py b/behavior_metrics/brains/CARLA/utils/high_level_command.py new file mode 100644 index 00000000..e27fb0c0 --- /dev/null +++ b/behavior_metrics/brains/CARLA/utils/high_level_command.py @@ -0,0 +1,91 @@ +import numpy as np +import carla + +class HighLevelCommandLoader: + def __init__(self, vehicle, map, route=None): + self.vehicle = vehicle + self.map = map + self.prev_hlc = 0 + self.route = route + + def _get_junction(self): + """determine whether vehicle is at junction""" + junction = None + vehicle_location = self.vehicle.get_transform().location + vehicle_waypoint = self.map.get_waypoint(vehicle_location) + + # check whether vehicle is at junction + for j in range(1, 11): + next_waypoint = vehicle_waypoint.next(j * 1.0)[0] + if next_waypoint.is_junction: + junction = next_waypoint.get_junction() + break + if vehicle_waypoint.is_junction: + junction = vehicle_waypoint.get_junction() + return junction + + def _command_to_int(self, command): + commands = { + 'Left': 1, + 'Right': 2, + 'Straight': 3 + } + return commands[command] + + def get_random_hlc(self): + """select a random turn at junction""" + junction = self._get_junction() + vehicle_location = self.vehicle.get_transform().location + vehicle_waypoint = self.map.get_waypoint(vehicle_location) + + # randomly select a turning direction + if junction is not None: + if self.prev_hlc == 0: + valid_turns = [] + waypoints = junction.get_waypoints(carla.LaneType.Driving) + for next_wp, _ in waypoints: + yaw_diff = next_wp.transform.rotation.yaw - vehicle_waypoint.transform.rotation.yaw + yaw_diff = (yaw_diff + 180) % 360 - 180 # convert to [-180, 180] + if -15 < yaw_diff < 15: + valid_turns.append(3) # Go Straight + elif 15 < yaw_diff < 165: + valid_turns.append(1) # Turn Left + elif -165 < yaw_diff < -15: + valid_turns.append(2) # Turn Right + hlc = np.random.choice(valid_turns) + else: + hlc = self.prev_hlc + else: + hlc = 0 + + self.prev_hlc = hlc + + return hlc + + + def get_next_hlc(self): + if self.route is not None and len(self.route) > 0: + return self.load_next_hlc() + return self.get_random_hlc() + + def load_next_hlc(self): + """load the next high level command from pre-defined route""" + if self.prev_hlc is None: + return None + + junction = self._get_junction() + + if junction is not None: + if self.prev_hlc == 0: + if len(self.route) == 0: + hlc = None + hlc = self._command_to_int(self.route.pop(0)) + else: + hlc = self.prev_hlc + else: + hlc = 0 + + self.prev_hlc = hlc + + return hlc + \ No newline at end of file diff --git a/behavior_metrics/brains/CARLA/utils/test_utils.py b/behavior_metrics/brains/CARLA/utils/test_utils.py index 1c096138..f67f1af7 100644 --- a/behavior_metrics/brains/CARLA/utils/test_utils.py +++ b/behavior_metrics/brains/CARLA/utils/test_utils.py @@ -128,4 +128,12 @@ def traffic_light_to_int(light_status): carla.libcarla.TrafficLightState.Green: 2, carla.libcarla.TrafficLightState.Yellow: 3 } - return light_dict[light_status] \ No newline at end of file + return light_dict[light_status] + +def calculate_delta_yaw(prev_yaw, cur_yaw): + delta_yaw = cur_yaw - prev_yaw + if delta_yaw > 180: + delta_yaw -= 360 + elif delta_yaw < -180: + delta_yaw += 360 + return delta_yaw \ No newline at end of file diff --git a/behavior_metrics/configs/CARLA/CARLA_launch_files/test_suite_template.launch b/behavior_metrics/configs/CARLA/CARLA_launch_files/test_suite_template.launch new file mode 100644 index 00000000..8e1996cb --- /dev/null +++ b/behavior_metrics/configs/CARLA/CARLA_launch_files/test_suite_template.launch @@ -0,0 +1,56 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/behavior_metrics/configs/CARLA/CARLA_launch_files/town_02_anticlockwise_imitation_learning.launch b/behavior_metrics/configs/CARLA/CARLA_launch_files/town_02_anticlockwise_imitation_learning.launch index bbdac71d..f3d9ce7c 100644 --- a/behavior_metrics/configs/CARLA/CARLA_launch_files/town_02_anticlockwise_imitation_learning.launch +++ b/behavior_metrics/configs/CARLA/CARLA_launch_files/town_02_anticlockwise_imitation_learning.launch @@ -35,15 +35,16 @@ + - + - + diff --git a/behavior_metrics/configs/CARLA/default_carla_subjective_vision.yml b/behavior_metrics/configs/CARLA/default_carla_subjective_vision.yml index e9df8537..5f239fa6 100644 --- a/behavior_metrics/configs/CARLA/default_carla_subjective_vision.yml +++ b/behavior_metrics/configs/CARLA/default_carla_subjective_vision.yml @@ -49,7 +49,7 @@ Behaviors: Simulation: World: configs/CARLA/CARLA_launch_files/town_02_anticlockwise_single_ad_low.launch RandomSpawnPoint: False - MultiCar: True + Task: "follow_lane_traffic" NumberOfVehicle: 0 Dataset: In: '/tmp/my_bag.bag' diff --git a/behavior_metrics/configs/CARLA/default_carla_test_suite.yml b/behavior_metrics/configs/CARLA/default_carla_test_suite.yml new file mode 100644 index 00000000..897b0f45 --- /dev/null +++ b/behavior_metrics/configs/CARLA/default_carla_test_suite.yml @@ -0,0 +1,79 @@ +Behaviors: + Robot: + Sensors: + Cameras: + Camera_0: + Name: 'camera_0' + Topic: '/carla/ego_vehicle/rgb_front/image' + Camera_1: + Name: 'camera_1' + Topic: '/carla/ego_vehicle/rgb_view/image' + Camera_2: + Name: 'camera_2' + Topic: '/carla/ego_vehicle/semantic_segmentation_front/image' + Camera_3: + Name: 'camera_3' + Topic: '/carla/ego_vehicle/dvs_front/image' + Pose3D: + Pose3D_0: + Name: 'pose3d_0' + Topic: '/carla/ego_vehicle/odometry' + BirdEyeView: + BirdEyeView_0: + Name: 'bird_eye_view_0' + Topic: '' + Speedometer: + Speedometer_0: + Name: 'speedometer_0' + Topic: '/carla/ego_vehicle/speedometer' + Actuators: + CARLA_Motors: + Motors_0: + Name: 'motors_0' + Topic: '/carla/ego_vehicle/vehicle_control_cmd' + MaxV: 3 + MaxW: 0.3 + BrainPath: ['brains/CARLA/brain_carla_segmentation_based_imitation_learning.py'] + PilotTimeCycle: 50 + AsyncMode: False + Parameters: + Model: ['pilotnet_v8.0.pth'] + ImageCropped: False + ImageSize: [ 100,50 ] + ImageNormalized: True + PredictionsNormalized: True + GPU: True + UseOptimized: False + ImageTranform: '' + Type: 'CARLA' + Experiment: + Name: "Carla Town02 Test Suite" + Description: "Testing model in Town02 with each route consisting of two turns." + UseWorldTimeouts: False + Timeout: [500] # for each world! + Simulation: + Task: "follow_route" + World: [configs/CARLA/CARLA_launch_files/test_suite_template.launch] + TestSuite: 'Town02_two_turns' + RandomizeRoutes: False + NumRoutes: 2 + RandomSpawnPoint: False + NumberOfVehicle: 50 + NumberOfWalker: 0 + PercentagePedestriansRunning: 0.5 + PercentagePedestriansCrossing: 0.5 + Dataset: + In: '/tmp/my_bag.bag' + Out: '' + Stats: + Out: './' + PerfectLap: './perfect_bags/lap-simple-circuit.bag' + Layout: + Frame_0: + Name: frame_0 + Geometry: [0, 1, 1, 2] + Data: rgbimage + Frame_1: + Name: frame_1 + Geometry: [1, 1, 1, 2] + Data: rgbimage \ No newline at end of file diff --git a/behavior_metrics/configs/CARLA/default_carla_torch.yml b/behavior_metrics/configs/CARLA/default_carla_torch.yml index 6f9865d2..1cc1148e 100644 --- a/behavior_metrics/configs/CARLA/default_carla_torch.yml +++ b/behavior_metrics/configs/CARLA/default_carla_torch.yml @@ -33,11 +33,11 @@ Behaviors: Topic: '/carla/ego_vehicle/vehicle_control_cmd' MaxV: 3 MaxW: 0.3 - BrainPath: 'brains/CARLA/pytorch/brain_carla_bird_eye_deep_learning_torch.py' + BrainPath: 'brains/CARLA/brain_carla_segmentation_based_imitation_learning.py' PilotTimeCycle: 50 AsyncMode: True Parameters: - Model: 'pilotnet_model.pth' + Model: 'pilotnet_v8.0.pth' ImageCropped: True ImageSize: [ 100,50 ] ImageNormalized: True @@ -47,7 +47,7 @@ Behaviors: ImageTranform: '' Type: 'CARLA' Simulation: - World: configs/CARLA/CARLA_launch_files/town_02_anticlockwise.launch + World: configs/CARLA/CARLA_launch_files/town_02_anticlockwise_imitation_learning.launch RandomSpawnPoint: False Dataset: In: '/tmp/my_bag.bag' diff --git a/behavior_metrics/configs/CARLA/default_carla_torch_segmentation_based_IM.yml b/behavior_metrics/configs/CARLA/default_carla_torch_segmentation_based_IM.yml new file mode 100644 index 00000000..1cc1148e --- /dev/null +++ b/behavior_metrics/configs/CARLA/default_carla_torch_segmentation_based_IM.yml @@ -0,0 +1,74 @@ +Behaviors: + Robot: + Sensors: + Cameras: + Camera_0: + Name: 'camera_0' + Topic: '/carla/ego_vehicle/rgb_front/image' + Camera_1: + Name: 'camera_1' + Topic: '/carla/ego_vehicle/rgb_view/image' + Camera_2: + Name: 'camera_2' + Topic: '/carla/ego_vehicle/semantic_segmentation_front/image' + Camera_3: + Name: 'camera_3' + Topic: '/carla/ego_vehicle/dvs_front/image' + Pose3D: + Pose3D_0: + Name: 'pose3d_0' + Topic: '/carla/ego_vehicle/odometry' + BirdEyeView: + BirdEyeView_0: + Name: 'bird_eye_view_0' + Topic: '' + Speedometer: + Speedometer_0: + Name: 'speedometer_0' + Topic: '/carla/ego_vehicle/speedometer' + Actuators: + CARLA_Motors: + Motors_0: + Name: 'motors_0' + Topic: '/carla/ego_vehicle/vehicle_control_cmd' + MaxV: 3 + MaxW: 0.3 + BrainPath: 'brains/CARLA/brain_carla_segmentation_based_imitation_learning.py' + PilotTimeCycle: 50 + AsyncMode: True + Parameters: + Model: 'pilotnet_v8.0.pth' + ImageCropped: True + ImageSize: [ 100,50 ] + ImageNormalized: True + PredictionsNormalized: True + GPU: True + UseOptimized: False + ImageTranform: '' + Type: 'CARLA' + Simulation: + World: configs/CARLA/CARLA_launch_files/town_02_anticlockwise_imitation_learning.launch + RandomSpawnPoint: False + Dataset: + In: '/tmp/my_bag.bag' + Out: '' + Stats: + Out: './' + PerfectLap: './perfect_bags/lap-simple-circuit.bag' + Layout: + Frame_0: + Name: frame_0 + Geometry: [1, 1, 1, 1] + Data: rgbimage + Frame_1: + Name: frame_1 + Geometry: [0, 1, 1, 1] + Data: rgbimage + Frame_2: + Name: frame_2 + Geometry: [0, 2, 1, 1] + Data: rgbimage + Frame_3: + Name: frame_3 + Geometry: [1, 2, 1, 1] + Data: rgbimage diff --git a/behavior_metrics/configs/CARLA/test_suites/Town02_two_turns.py b/behavior_metrics/configs/CARLA/test_suites/Town02_two_turns.py new file mode 100644 index 00000000..8ce91401 --- /dev/null +++ b/behavior_metrics/configs/CARLA/test_suites/Town02_two_turns.py @@ -0,0 +1,91 @@ +TEST_ROUTES = [ + { + "map": "Town02", + "start": "-3.68, -288.22, 0.5, 0.0, 0.0, 90.0", + "end": "41.39, -212.98, 0.5, 0.0, 0.0, -90.0", + "distance": 158, + "commands": ["Right", "Right"] + }, + { + "map": "Town02", + "start":"136.11, -302.57, 0.5, 0.0, 0.0, 180.0", + "end":"45.89, -216.26, 0.5, 0.0, 0.0, 90.0", + "distance": 174, + "commands": ["Right", "Straight"] + }, + { + "map": "Town02", + "start": "45.24, -225.59, 0.5, 0.0, 0.0, 90", + "end": "-7.53, -270.73, 0.5, 0.0, 0.0, -90.0", + "distance": 166, + "commands": ["Left", "Left"] + }, + { + "map": "Town02", + "start": "41.39, -203.90, 0.5, 0.0, 0.0, -90.0", + "end": "136.11, -306.42, 0.5, 0.0, 0.0, 0.0", + "distance": 193, + "commands": ["Straight", "Left"] + }, + { + "map": "Town02", + "start": "59.71, -241.28, 0.5, 0.0, 0.0, 0.0", + "end": "166.91, -191.77, 0.5, 0.0, 0.0, 0.0", + "distance": 148, + "commands": ["Left", "Right"] + }, + { + "map": "Town02", + "start": "165.09, -187.12, 0.5, 0.0, 0.0, 180.0", + "end": "71.04, -237.43, 0.5, 0.0, 0.0, 180.0", + "distance": 136, + "commands": ["Left", "Right"] + }, + { + "map": "Town02", + "start": "59.60, -306.42, 0.5, 0.0, 0.0, 0.0", + "end": "165.09, -187.12, 0.5, 0.0, 0.0, 180.0", + "distance": 272, + "commands": ["Straight", "Left"] + }, + { + "map": "Town02", + "start": "166.91, -191.77, 0.5, 0.0, 0.0, 0.0", + "end": "71.53, -302.57, 0.5, 0.0, 0.0, 180.0", + "distance": 245, + "commands": ["Right", "Straight"] + }, + { + "map": "Town02", + "start": "92.34, -187.92, 0.5, 0.0, 0.0, 180.0", + "end": "84.41, -109.30, 0.5, 0.0, 0.0, 0.0", + "distance": 255, + "commands": ["Straight", "Right"] + }, + { + "map": "Town02", + "start": "84.41, -105.55, 0.5, 0.0, 0.0, 180.0", + "end": "92.34, -191.77, 0.5, 0.0, 0.0, 0.0", + "distance": 269, + "commands": ["Left", "Straight"] + }, + { + "map": "Town02", + "start": "135.88, -226.05, 0.5, 0.0, 0.0, 90.0", + "end": "193.78, -121.21, 0.5, 0.0, 0.0, 90.0", + "distance": 155, + "commands": ["Right", "Left"] + }, + { + "map": "Town02", + "start": "189.93, -121.21, 0.5, 0.0, 0.0, -90.0", + "end": "132.03, -211.0, 0.5, 0.0, 0.0, -90.0", + "distance": 140, + "commands": ["Right", "Left"] + } +] + +if __name__ == "__main__": + # Quick test to see if the routes are loaded correctly + for route in TEST_ROUTES: + print(route) \ No newline at end of file diff --git a/behavior_metrics/driver_carla.py b/behavior_metrics/driver_carla.py index 94a721d3..0f9c2ed7 100644 --- a/behavior_metrics/driver_carla.py +++ b/behavior_metrics/driver_carla.py @@ -296,6 +296,9 @@ def main(): config_data = check_args(sys.argv) app_configuration = Config(config_data['config'][0]) if not config_data['script']: + if app_configuration.task not in ['follow_lane', 'follow_lane_traffic']: + logger.info('Selected task does not support --gui. Try use --script instead. Killing program...') + sys.exit(-1) environment.launch_env(app_configuration.current_world, random_spawn_point=app_configuration.experiment_random_spawn_point, carla_simulator=True) controller = ControllerCarla() traffic_manager = TrafficManager(app_configuration.number_of_vehicle, @@ -321,53 +324,97 @@ def main(): environment.close_ros_and_simulators() else: if is_config_correct(app_configuration): - experiments_starting_time = time.time() - experiment_counter = 0 - experiments_elapsed_times = {'experiment_counter': [], 'elapsed_time': []} - experiments_information = {'world_counter': {}} - for world_counter, world in enumerate(app_configuration.current_world): - experiments_information['world_counter'][world_counter] = {'brain_counter': {}} - for brain_counter, brain in enumerate(app_configuration.brain_path): - experiments_information['world_counter'][world_counter]['brain_counter'][brain_counter] = {'repetition_counter': {}} - for repetition_counter in range(app_configuration.experiment_repetitions): - success = -1 - experiment_attempts = 0 - while success != 0: - experiments_information['world_counter'][world_counter]['brain_counter'][brain_counter]['repetition_counter'][repetition_counter] = experiment_attempts - logger.info("Launching: python3 script_manager_carla.py -c " + config_data['config'][0] + " -s -world_counter " + str(world_counter) + " -brain_counter " + str(brain_counter) + " -repetition_counter " + str(repetition_counter)) - logger.info("Experiment attempt: " + str(experiment_attempts+1)) - current_experiment_starting_time = time.time() - success = os.system("python3 script_manager_carla.py -c " + config_data['config'][0] + " -s -world_counter " + str(world_counter) + " -brain_counter " + str(brain_counter) + " -repetition_counter " + str(repetition_counter)) - if success != 0: - root = './' - folders = list(os.walk(root))[1:] - for folder in folders: - if len(folder[0].split('/')) == 2 and not folder[1] and not folder[2]: - logger.info("Removing empty folder: " + folder[0]) - os.rmdir(folder[0]) - if success == 2: - logger.info('KeyboardInterrupt called! Killing program...') - sys.exit(-1) - elif success != 0 and experiment_attempts < 5: - experiment_attempts += 1 - logger.info("Python process finished with error! Repeating experiment") - elif success != 0 and experiment_attempts >= 5: - success = 0 - logger.info("Too many failed attempts for this experiment.") - else: - experiments_elapsed_times['experiment_counter'].append(experiment_counter) - experiments_elapsed_times['elapsed_time'].append(time.time() - current_experiment_starting_time) - experiment_counter += 1 - logger.info("Python process finished.") - - logger.info('Experiments information: ') - logger.info(experiments_information) - logger.info('Last experiment folder: ') - logger.info(max(glob.glob(os.path.join('./', '*/')), key=os.path.getmtime)) - + if app_configuration.task == 'follow_lane': + experiments_starting_time = time.time() + experiment_counter = 0 + experiments_elapsed_times = {'experiment_counter': [], 'elapsed_time': []} + experiments_information = {'world_counter': {}} + for world_counter, world in enumerate(app_configuration.current_world): + experiments_information['world_counter'][world_counter] = {'brain_counter': {}} + for brain_counter, brain in enumerate(app_configuration.brain_path): + experiments_information['world_counter'][world_counter]['brain_counter'][brain_counter] = {'repetition_counter': {}} + for repetition_counter in range(app_configuration.experiment_repetitions): + success = -1 + experiment_attempts = 0 + while success != 0: + experiments_information['world_counter'][world_counter]['brain_counter'][brain_counter]['repetition_counter'][repetition_counter] = experiment_attempts + logger.info("Launching: python3 script_manager_carla.py -c " + config_data['config'][0] + " -s -world_counter " + str(world_counter) + " -brain_counter " + str(brain_counter) + " -repetition_counter " + str(repetition_counter)) + logger.info("Experiment attempt: " + str(experiment_attempts+1)) + current_experiment_starting_time = time.time() + success = os.system("python3 script_manager_carla.py -c " + config_data['config'][0] + " -s -world_counter " + str(world_counter) + " -brain_counter " + str(brain_counter) + " -repetition_counter " + str(repetition_counter)) + if success != 0: + root = './' + folders = list(os.walk(root))[1:] + for folder in folders: + if len(folder[0].split('/')) == 2 and not folder[1] and not folder[2]: + logger.info("Removing empty folder: " + folder[0]) + os.rmdir(folder[0]) + if success == 2: + logger.info('KeyboardInterrupt called! Killing program...') + sys.exit(-1) + elif success != 0 and experiment_attempts < 5: + experiment_attempts += 1 + logger.info("Python process finished with error! Repeating experiment") + elif success != 0 and experiment_attempts >= 5: + success = 0 + logger.info("Too many failed attempts for this experiment.") + else: + experiments_elapsed_times['experiment_counter'].append(experiment_counter) + experiments_elapsed_times['elapsed_time'].append(time.time() - current_experiment_starting_time) + experiment_counter += 1 + logger.info("Python process finished.") + + logger.info('Experiments information: ') + logger.info(experiments_information) + logger.info('Last experiment folder: ') + logger.info(max(glob.glob(os.path.join('./', '*/')), key=os.path.getmtime)) + elif app_configuration.task == 'follow_route': + + experiments_starting_time = time.time() + experiment_counter = 0 + experiments_elapsed_times = {'experiment_counter': [], 'elapsed_time': []} + + for world_counter, world in enumerate(app_configuration.current_world): + for brain_counter, brain in enumerate(app_configuration.brain_path): + for route_counter in range(app_configuration.num_routes): + success = -1 + experiment_attempts = 0 + while success != 0: + logger.info("Launching: python3 test_suite_manager_carla.py -c " + config_data['config'][0]) + logger.info("Experiment attempt: " + str(experiment_attempts+1)) + current_experiment_starting_time = time.time() + success = os.system("python3 test_suite_manager_carla.py -c " + config_data['config'][0] + " -s -world_counter " + str(world_counter) + " -brain_counter " + str(brain_counter) + " -route_counter " + str(route_counter)) + print('success: ', success) + if success != 0: + root = './' + folders = list(os.walk(root))[1:] + for folder in folders: + if len(folder[0].split('/')) == 2 and not folder[1] and not folder[2]: + logger.info("Removing empty folder: " + folder[0]) + os.rmdir(folder[0]) + if success == 2: + logger.info('KeyboardInterrupt called! Killing program...') + sys.exit(-1) + elif success != 0 and experiment_attempts < 5: + experiment_attempts += 1 + logger.info("Python process finished with error! Repeating experiment") + elif success != 0 and experiment_attempts >= 5: + success = 0 + logger.info("Too many failed attempts for this experiment.") + else: + experiments_elapsed_times['experiment_counter'].append(experiment_counter) + experiments_elapsed_times['elapsed_time'].append(time.time() - current_experiment_starting_time) + experiment_counter += 1 + logger.info("Python process finished.") + + logger.info('Last experiment folder: ') + logger.info(max(glob.glob(os.path.join('./', '*/')), key=os.path.getmtime)) + else: + logger.info('Invalid task type. Try "follow_route", "follow_lane" or "follow_lane_traffic". Killing program...') + sys.exit(-1) experiments_elapsed_times['total_experiments_elapsed_time'] = time.time() - experiments_starting_time generate_agregated_experiments_metrics(experiments_starting_time, experiments_elapsed_times) - if app_configuration.experiment_random_spawn_point == True: + if app_configuration.experiment_random_spawn_point == True or app_configuration.task == 'follow_route': if os.path.isfile('tmp_circuit.launch'): os.remove('tmp_circuit.launch') logger.info('DONE! Bye, bye :)') diff --git a/behavior_metrics/test_suite_manager_carla.py b/behavior_metrics/test_suite_manager_carla.py new file mode 100644 index 00000000..972c8f8f --- /dev/null +++ b/behavior_metrics/test_suite_manager_carla.py @@ -0,0 +1,194 @@ +import argparse +import os +import sys +import threading +import time +import rospy +import importlib +import random + +from pilot_carla import PilotCarla +from utils import environment +from utils.colors import Colors +from utils.configuration import Config +from utils.controller_carla import ControllerCarla +from utils.logger import logger +from utils.constants import CARLA_TOWNS_TIMEOUTS +from utils.traffic import TrafficManager +from utils.constants import CARLA_TEST_SUITE_DIR, ROOT_PATH + +TESTSUITES = ROOT_PATH + '/' + CARLA_TEST_SUITE_DIR + +def check_args(argv): + parser = argparse.ArgumentParser(description='Testing suite runner.') + + parser.add_argument('-c', + '--config', + type=str, + action='append', + required=True, + help='{}Path to the configuration file in YML format.{}'.format( + Colors.OKBLUE, Colors.ENDC)) + + group = parser.add_mutually_exclusive_group(required=True) + group.add_argument('-g', + '--gui', + action='store_true', + help='{}Load the GUI (Graphic User Interface). Requires PyQt5 installed{}'.format( + Colors.OKBLUE, Colors.ENDC)) + + group.add_argument('-t', + '--tui', + action='store_true', + help='{}Load the TUI (Terminal User Interface). Requires npyscreen installed{}'.format( + Colors.OKBLUE, Colors.ENDC)) + + group.add_argument('-s', + '--script', + action='store_true', + help='{}Run Behavior Metrics as script{}'.format( + Colors.OKBLUE, Colors.ENDC)) + + parser.add_argument('-r', + '--random', + action='store_true', + help='{}Run Behavior Metrics F1 with random spawning{}'.format( + Colors.OKBLUE, Colors.ENDC)) + + parser.add_argument('-world_counter', + type=str, + action='append', + help='{}World counter{}'.format( + Colors.OKBLUE, Colors.ENDC)) + + parser.add_argument('-brain_counter', + type=str, + action='append', + help='{}Brain counter{}'.format( + Colors.OKBLUE, Colors.ENDC)) + + parser.add_argument('-route_counter', + type=str, + action='append', + help='{}Route counter{}'.format( + Colors.OKBLUE, Colors.ENDC)) + + args = parser.parse_args() + + config_data = {'config': None, 'gui': None, 'tui': None, 'script': None, 'random': False, 'world_counter': 0, 'brain_counter': 0, 'route_counter': 0} + if args.config: + config_data['config'] = [] + for config_file in args.config: + if not os.path.isfile(config_file): + parser.error('{}No such file {} {}'.format(Colors.FAIL, config_file, Colors.ENDC)) + + config_data['config'] = args.config + + if args.gui: + config_data['gui'] = args.gui + + if args.tui: + config_data['tui'] = args.tui + + if args.script: + config_data['script'] = args.script + + if args.world_counter: + config_data['world_counter'] = args.world_counter + + if args.brain_counter: + config_data['brain_counter'] = args.brain_counter + + if args.route_counter: + config_data['route_counter'] = args.route_counter + + return config_data + +def main(): + config_data = check_args(sys.argv) + app_configuration = Config(config_data['config'][0]) + world_counter = int(config_data['world_counter'][0]) + brain_counter = int(config_data['brain_counter'][0]) + route_counter = int(config_data['route_counter'][0]) + + logger.info(str(world_counter) + ' ' + str(brain_counter) + ' ' + str(route_counter)) + + world = app_configuration.current_world[world_counter] + brain = app_configuration.brain_path[brain_counter] + experiment_model = app_configuration.experiment_model[brain_counter] + + + test_suite_fname = TESTSUITES + app_configuration.test_suite + '.py' + + if not os.path.exists(test_suite_fname): + logger.info('Test suite file does not exist! Killing program...') + sys.exit(-1) + + if TESTSUITES not in sys.path: + sys.path.append(TESTSUITES) + test_routes_module = importlib.import_module(app_configuration.test_suite) + TEST_ROUTES = getattr(test_routes_module, 'TEST_ROUTES') + spawn_point = TEST_ROUTES[route_counter]['start'] + target_point = TEST_ROUTES[route_counter]['end'].split(', ') + target_point = (float(target_point[0]), float(target_point[1])) + start_point = spawn_point.split(', ') + start_point = (float(start_point[0]), float(start_point[1])) + logger.info(f'-------from {start_point} to {target_point}-------') + town = TEST_ROUTES[route_counter]['map'] + route = TEST_ROUTES[route_counter]['commands'] + app_configuration.brain_kwargs['Route'] = route + route_length = TEST_ROUTES[route_counter]['distance'] + environment.launch_env(world, + random_spawn_point=False, + carla_simulator=True, + config_spawn_point=spawn_point, + config_town=town) + + controller = ControllerCarla() + + # generate traffic + traffic_manager = TrafficManager(app_configuration.number_of_vehicle, + app_configuration.number_of_walker, + app_configuration.percentage_walker_running, + app_configuration.percentage_walker_crossing, + app_configuration.async_mode, + port=random.randint(8000, 9000)) # to avoid bind error + traffic_manager.generate_traffic() + + # Launch control + pilot = PilotCarla(app_configuration, controller, brain, experiment_model=experiment_model) + pilot.brains.active_brain.target_point = target_point + pilot.daemon = True + pilot.start() + logger.info('Executing app') + controller.resume_pilot() + controller.unpause_carla_simulation() + controller.record_metrics(app_configuration.stats_out, world_counter=world_counter, brain_counter=brain_counter, repetition_counter=route_counter) + if app_configuration.use_world_timeouts: + experiment_timeout = CARLA_TOWNS_TIMEOUTS[controller.carla_map.name] + else: + experiment_timeout = app_configuration.experiment_timeouts[world_counter] + + start_time = time.time() + termination_code = 3 # timeout + while (time.time() - start_time) < experiment_timeout: + rospy.sleep(0.1) + if pilot.brains.active_brain.termination_code != 0: + break + + # rospy.sleep(experiment_timeout) + controller.stop_recording_metrics(termination_code=termination_code, route_length=route_length) + controller.pilot.stop() + controller.stop_pilot() + controller.pause_carla_simulation() + + logger.info('closing all processes...') + controller.pilot.kill() + environment.close_ros_and_simulators() + while not controller.pilot.execution_completed: + time.sleep(1) + + +if __name__ == '__main__': + main() + sys.exit(0) \ No newline at end of file diff --git a/behavior_metrics/utils/configuration.py b/behavior_metrics/utils/configuration.py index 156d2376..96ab6fa2 100644 --- a/behavior_metrics/utils/configuration.py +++ b/behavior_metrics/utils/configuration.py @@ -84,6 +84,11 @@ def initialize_empty_configuration(self): self.experiment_timeouts = None + self.task = None + self.test_suite = None + self.num_routes = None + self.randomize_routes = None + def initialize_configuration(self, config_data): """Initialize the configuration of the application based on a YAML profile file @@ -95,6 +100,25 @@ def initialize_configuration(self, config_data): self.robot_type = robot['Type'] self.pilot_time_cycle = robot['PilotTimeCycle'] self.current_world = config_data['Behaviors']['Simulation']['World'] + + if 'Task' in config_data['Behaviors']['Simulation']: + self.task = config_data['Behaviors']['Simulation']['Task'] + else: + self.task = 'follow_lane' + + if self.task == 'follow_route' and 'TestSuite' in config_data['Behaviors']['Simulation']: + self.test_suite = config_data['Behaviors']['Simulation']['TestSuite'] + + if self.task == 'follow_route' and 'NumRoutes' in config_data['Behaviors']['Simulation']: + self.num_routes = config_data['Behaviors']['Simulation']['NumRoutes'] + else: + self.num_routes = 0 + + if self.task == 'follow_route' and 'RandomizeRoutes' in config_data['Behaviors']['Simulation']: + self.randomize_routes = config_data['Behaviors']['Simulation']['RandomizeRoutes'] + else: + self.randomize_routes = True + if 'WaypointPublisher' in config_data['Behaviors']['Simulation']: self.waypoint_publisher_path = config_data['Behaviors']['Simulation']['WaypointPublisher'] else: @@ -132,7 +156,8 @@ def initialize_configuration(self, config_data): if 'Timeout' in config_data['Behaviors']['Experiment']: self.experiment_timeouts = config_data['Behaviors']['Experiment']['Timeout'] self.use_world_timeouts = config_data['Behaviors']['Experiment']['UseWorldTimeouts'] - self.experiment_repetitions = config_data['Behaviors']['Experiment']['Repetitions'] + if 'Repetitions' in config_data['Behaviors']['Experiment']: + self.experiment_repetitions = config_data['Behaviors']['Experiment']['Repetitions'] if 'RandomSpawnPoint' in config_data['Behaviors']['Simulation']: self.experiment_random_spawn_point = config_data['Behaviors']['Simulation']['RandomSpawnPoint'] @@ -141,10 +166,6 @@ def initialize_configuration(self, config_data): else: self.spawn_points = [] - if 'MultiCar' in config_data['Behaviors']['Simulation']: - self.multicar = config_data['Behaviors']['Simulation']['MultiCar'] - else: - self.multicar = False if 'NumberOfVehicle' in config_data['Behaviors']['Simulation']: self.number_of_vehicle = config_data['Behaviors']['Simulation']['NumberOfVehicle'] diff --git a/behavior_metrics/utils/constants.py b/behavior_metrics/utils/constants.py index 25bf8fe6..3fe5af6c 100644 --- a/behavior_metrics/utils/constants.py +++ b/behavior_metrics/utils/constants.py @@ -2,6 +2,7 @@ PRETRAINED_MODELS_DIR = 'models/' DATASETS_DIR = 'datasets_opencv/' +CARLA_TEST_SUITE_DIR = 'configs/CARLA/test_suites/' ROOT_PATH = str(Path(__file__).parent.parent) MIN_EXPERIMENT_PERCENTAGE_COMPLETED = 3 # General timeout reference for each circuit extracted using explicit_brain @@ -140,3 +141,12 @@ "Carla/Maps/Town06": 210, "Carla/Maps/Town07": 120, } + +CARLA_INFRACTION_PENALTIES = { + 'collision_walker': 0.5, + 'collision_vehicle': 0.6, + 'collision_static': 0.65, + 'wrong_turn': 0.7, + 'time_out': 0.7, + 'red_light': 0.7 +} \ No newline at end of file diff --git a/behavior_metrics/utils/controller_carla.py b/behavior_metrics/utils/controller_carla.py index 408033e6..f9643d44 100644 --- a/behavior_metrics/utils/controller_carla.py +++ b/behavior_metrics/utils/controller_carla.py @@ -37,6 +37,7 @@ from datetime import datetime from std_msgs.msg import String from utils import metrics_carla +from utils.constants import CARLA_INFRACTION_PENALTIES try: from carla_msgs.msg import CarlaLaneInvasionEvent from carla_msgs.msg import CarlaCollisionEvent @@ -72,7 +73,7 @@ def __init__(self): client = carla.Client('localhost', 2000) client.set_timeout(100.0) # seconds self.world = client.get_world() - # time.sleep(5) + time.sleep(5) # takes a few second for the correct map to finish loading self.carla_map = self.world.get_map() while len(self.world.get_actors().filter('vehicle.*')) == 0: logger.info("Waiting for vehicles!") @@ -296,7 +297,7 @@ def record_metrics(self, metrics_record_dir_path, world_counter=None, brain_coun with open("logs/.roslaunch_stdout.log", "w") as out, open("logs/.roslaunch_stderr.log", "w") as err: self.proc = subprocess.Popen(command, stdout=out, stderr=err) - def stop_recording_metrics(self): + def stop_recording_metrics(self, termination_code=None, route_length=None): logger.info("Stopping metrics bag recording") end_time = time.time() @@ -353,6 +354,51 @@ def stop_recording_metrics(self): experiment_metrics_filename = self.metrics_record_dir_path + self.time_str + '/' + self.time_str self.experiment_metrics = metrics_carla.get_metrics(self.experiment_metrics, self.experiment_metrics_bag_filename, self.map_waypoints, experiment_metrics_filename, self.pilot.configuration) + self.experiment_metrics['collisions_vehicle'] = 0 + self.experiment_metrics['collisions_walker'] = 0 + self.experiment_metrics['collisions_static'] = 0 + + collision_actor_ids = self.experiment_metrics['collision_actor_ids'] + for actor_id in collision_actor_ids: + actor = self.world.get_actor(actor_id) + if actor: + actor_type = actor.type_id.split('.')[0] + if actor_type == 'vehicle': + self.experiment_metrics['collisions_vehicle'] += 1 + elif actor_type == 'walker': + self.experiment_metrics['collisions_walker'] += 1 + else: + self.experiment_metrics['collisions_static'] += 1 + else: + print(f"No actor found with ID {actor_id}") + + if hasattr(self.pilot.brains.active_brain, 'red_light_counter'): + self.experiment_metrics['traffic_light_infractions'] = self.pilot.brains.active_brain.red_light_counter + self.experiment_metrics['traffic_light_infractions_per_km'] = self.experiment_metrics['traffic_light_infractions'] / (self.experiment_metrics['effective_completed_distance']/1000) + + if route_length is not None: + self.experiment_metrics['route_completion'] = self.experiment_metrics['effective_completed_distance'] / route_length + + wrong_turn_counter = 0 + time_out_counter = 0 + if termination_code is not None: + if termination_code == 1: + self.experiment_metrics['termination cause'] = 'success' + elif termination_code == 2: + wrong_turn_counter += 1 + self.experiment_metrics['termination cause'] = 'wrong turn' + elif termination_code == 3: + time_out_counter += 1 + self.experiment_metrics['termination cause'] = 'time out' + + if 'route_completion' in self.experiment_metrics.keys() and 'traffic_light_infractions' in self.experiment_metrics.keys() and termination_code is not None: + self.experiment_metrics['driving score'] = self.experiment_metrics['route_completion'] * \ + CARLA_INFRACTION_PENALTIES['collision_vehicle']**self.experiment_metrics['collisions_vehicle'] * \ + CARLA_INFRACTION_PENALTIES['collision_static']**self.experiment_metrics['collisions_static'] * \ + CARLA_INFRACTION_PENALTIES['collision_walker']**self.experiment_metrics['collisions_walker'] * \ + CARLA_INFRACTION_PENALTIES['red_light']**self.experiment_metrics['traffic_light_infractions'] * \ + CARLA_INFRACTION_PENALTIES['wrong_turn']**wrong_turn_counter * \ + CARLA_INFRACTION_PENALTIES['time_out']**time_out_counter self.save_metrics(first_images, last_images) for key, value in self.experiment_metrics.items(): diff --git a/behavior_metrics/utils/environment.py b/behavior_metrics/utils/environment.py index 02bf0a71..8225c697 100644 --- a/behavior_metrics/utils/environment.py +++ b/behavior_metrics/utils/environment.py @@ -31,7 +31,7 @@ __license__ = 'GPLv3' -def launch_env(launch_file, random_spawn_point=False, carla_simulator=False, config_spawn_point=None): +def launch_env(launch_file, random_spawn_point=False, carla_simulator=False, config_spawn_point=None, config_town=None): """Launch the environmet specified by the launch_file given in command line at launch time. Arguments: launch_file {str} -- path of the launch file to be executed @@ -55,6 +55,20 @@ def launch_env(launch_file, random_spawn_point=False, carla_simulator=False, con else: spawn_point.attrib['default'] = random.choice(CARLA_TOWNS_SPAWN_POINTS[town.attrib['default']]) tree.write('tmp_circuit.launch') + elif config_spawn_point is not None and config_town is not None: + tree = ET.parse(ROOT_PATH + '/' + launch_file) + root = tree.getroot() + town = root.find(".//*[@name=\"town\"]") + if town is None: + town=root.find(".//*[@name='town']") + town.attrib['default'] = config_town + spawn_point = root.find(".//*[@name=\"spawn_point\"]") + if spawn_point is None: + spawn_point=root.find(".//*[@name='spawn_point']") + spawn_point.attrib['default'] = config_spawn_point + tree.write('tmp_circuit.launch') + else: + spawn_point = None with open("/tmp/.carlalaunch_stdout.log", "w") as out, open("/tmp/.carlalaunch_stderr.log", "w") as err: tree = ET.parse(ROOT_PATH + '/' + launch_file) root = tree.getroot() @@ -67,7 +81,7 @@ def launch_env(launch_file, random_spawn_point=False, carla_simulator=False, con logger.info("SimulatorEnv: launching simulator server.") time.sleep(5) with open("/tmp/.roslaunch_stdout.log", "w") as out, open("/tmp/.roslaunch_stderr.log", "w") as err: - if random_spawn_point: + if random_spawn_point or (spawn_point is not None and town is not None): child = subprocess.Popen(["roslaunch", ROOT_PATH + '/tmp_circuit.launch'], stdout=out, stderr=err) else: child = subprocess.Popen(["roslaunch", ROOT_PATH + '/' + launch_file], stdout=out, stderr=err) diff --git a/behavior_metrics/utils/metrics_carla.py b/behavior_metrics/utils/metrics_carla.py index 3fa87434..9ce3ad6d 100644 --- a/behavior_metrics/utils/metrics_carla.py +++ b/behavior_metrics/utils/metrics_carla.py @@ -72,7 +72,7 @@ def get_metrics(experiment_metrics, experiment_metrics_bag_filename, map_waypoin for index, row in dataframe_pose.iterrows(): checkpoints.append(row) - if config.multicar: + if config.task == 'follow_lane_traffic': data_file = experiment_metrics_bag_filename.split('.bag')[0] + '/carla-npc_vehicle_1-odometry.csv' dataframe_pose = pd.read_csv(data_file) checkpoints_2 = [] @@ -124,7 +124,7 @@ def get_metrics(experiment_metrics, experiment_metrics_bag_filename, map_waypoin experiment_metrics, collisions_checkpoints = get_collisions(experiment_metrics, collision_points, dataframe_pose) experiment_metrics, lane_invasion_checkpoints = get_lane_invasions(experiment_metrics, lane_invasion_points, dataframe_pose) experiment_metrics['experiment_total_simulated_time'] = seconds_end - seconds_start - if config.multicar: + if config.task == 'follow_lane_traffic': experiment_metrics = get_distance_other_vehicle(experiment_metrics, checkpoints, checkpoints_2) if 'bird_eye_view_images' in experiment_metrics: @@ -233,20 +233,24 @@ def get_suddenness_control_commands(experiment_metrics, vehicle_status_points): def get_collisions(experiment_metrics, collision_points, df_checkpoints): collisions_checkpoints = [] collisions_checkpoints_different = [] + collisions_actors_different = [] previous_collisions_checkpoints_x, previous_collisions_checkpoints_y = 0, 0 for point in collision_points: - collision_point = df_checkpoints.loc[df_checkpoints['Time'] == point['Time']] + idx = (df_checkpoints['Time'] - point['Time']).abs().idxmin() + collision_point = df_checkpoints.iloc[idx] collisions_checkpoints.append(collision_point) - point_1 = np.array([collision_point.iloc[0]['pose.pose.position.x'], collision_point.iloc[0]['pose.pose.position.y']]) + point_1 = np.array([collision_point['pose.pose.position.x'], collision_point['pose.pose.position.y']]) point_2 = np.array([previous_collisions_checkpoints_x, previous_collisions_checkpoints_y]) dist = (point_2 - point_1) ** 2 dist = np.sum(dist, axis=0) dist = np.sqrt(dist) if dist > 1: collisions_checkpoints_different.append(collision_point) - previous_collisions_checkpoints_x, previous_collisions_checkpoints_y = collision_point.iloc[0]['pose.pose.position.x'], collision_point.iloc[0]['pose.pose.position.y'] + collisions_actors_different.append(point['other_actor_id']) + previous_collisions_checkpoints_x, previous_collisions_checkpoints_y = collision_point['pose.pose.position.x'], collision_point['pose.pose.position.y'] experiment_metrics['collisions'] = len(collisions_checkpoints_different) + experiment_metrics['collision_actor_ids'] = collisions_actors_different return experiment_metrics, collisions_checkpoints def get_lane_invasions(experiment_metrics, lane_invasion_points, df_checkpoints): @@ -255,9 +259,11 @@ def get_lane_invasions(experiment_metrics, lane_invasion_points, df_checkpoints) previous_lane_invasion_checkpoints_x, previous_lane_invasion_checkpoints_y = 0, 0 previous_time = 0 for point in lane_invasion_points: - lane_invasion_point = df_checkpoints.loc[df_checkpoints['Time'] == point['Time']] + idx = (df_checkpoints['Time'] - point['Time']).abs().idxmin() + lane_invasion_point = df_checkpoints.iloc[idx] + lane_invasion_checkpoints.append(lane_invasion_point) - point_1 = np.array([lane_invasion_point.iloc[0]['pose.pose.position.x'], lane_invasion_point.iloc[0]['pose.pose.position.y']]) + point_1 = np.array([lane_invasion_point['pose.pose.position.x'], lane_invasion_point['pose.pose.position.y']]) point_2 = np.array([previous_lane_invasion_checkpoints_x, previous_lane_invasion_checkpoints_y]) dist = (point_2 - point_1) ** 2 dist = np.sum(dist, axis=0) @@ -265,7 +271,7 @@ def get_lane_invasions(experiment_metrics, lane_invasion_points, df_checkpoints) if dist > 1 and point['Time'] - previous_time > 0.5: lane_invasion_checkpoints_different.append(lane_invasion_point) previous_time = point['Time'] - previous_lane_invasion_checkpoints_x, previous_lane_invasion_checkpoints_y = lane_invasion_point.iloc[0]['pose.pose.position.x'], lane_invasion_point.iloc[0]['pose.pose.position.y'] + previous_lane_invasion_checkpoints_x, previous_lane_invasion_checkpoints_y = lane_invasion_point['pose.pose.position.x'], lane_invasion_point['pose.pose.position.y'] experiment_metrics['lane_invasions'] = len(lane_invasion_checkpoints_different) return experiment_metrics, lane_invasion_checkpoints @@ -312,7 +318,6 @@ def get_position_deviation_and_effective_completed_distance(experiment_metrics, checkpoints_tuples_y.append(checkpoint_y) checkpoints_speeds.append(current_checkpoint[2]) checkpoints_tuples.append((checkpoint_x, checkpoint_y, current_checkpoint[2])) - min_dists = [] best_checkpoint_points_x = [] best_checkpoint_points_y = []