forked from openai/glow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
289 lines (226 loc) · 12.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
#!/usr/bin/env python
# Modified Horovod MNIST example
import os
import sys
import time
import horovod.tensorflow as hvd
import numpy as np
import tensorflow as tf
import zeus
learn = tf.contrib.learn
# Surpress verbose warnings
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
def init_visualizations(hps, model, logdirs):
def decode_batch(y, eps):
n_batch = hps.local_batch_train
xs = []
for i in range(int(np.ceil(len(eps) / n_batch))):
xs.append(model.decode(y[i*n_batch:i*n_batch + n_batch], eps[i*n_batch:i*n_batch + n_batch]))
return np.concatenate(xs)
def draw_samples(epoch):
if hvd.rank() != 0:
return
rows = 10 if hps.image_size <=64 else 4
cols = rows
n_batch = rows*cols
y = np.asarray([_y % hps.n_y for _y in (list(range(cols)) * rows)], dtype='int32')
#temperatures = [0., .25, .5, .626, .75, .875, 1.] #previously
temperatures = [0., .25, .5, .6, .7, .8, .9, 1.]
x_samples = []
x_samples.append(decode_batch(y, [.0]*n_batch))
x_samples.append(decode_batch(y, [.25]*n_batch))
x_samples.append(decode_batch(y, [.5]*n_batch))
x_samples.append(decode_batch(y, [.6]*n_batch))
x_samples.append(decode_batch(y, [.7]*n_batch))
x_samples.append(decode_batch(y, [.8]*n_batch))
x_samples.append(decode_batch(y, [.9] * n_batch))
x_samples.append(decode_batch(y, [1.]*n_batch))
#previously: 0, .25, .5, .625, .75, .875, 1.
for i in range(len(x_samples)):
x_sample = np.reshape(x_samples[i], (n_batch, hps.image_size, hps.image_size, 3))
zeus.graphics.save_raster(x_sample, logdirs[0] + 'epoch_{}_sample_{}.png'.format(epoch, i))
#zeus.graphics.save_raster(x_sample, logdirs[0] + 'sample{}.png'.format(i), width=np.sqrt(n_samples))
return draw_samples
# ===
# Code for getting data
# ===
def get_data(hps, sess):
if hps.image_size == -1:
hps.image_size = {'mnist':32,'cifar10':32,'imagenet-oord':64,'imagenet':256,'celeba':256,'lsun_realnvp':64,'lsun':256}[hps.problem]
if hps.n_test == -1:
hps.n_test = {'mnist':10000,'cifar10':10000,'imagenet-oord':50000,'imagenet':50000,'celeba':3000, 'lsun_realnvp':300*hvd.size(), 'lsun':300*hvd.size()}[hps.problem]
hps.n_y = {'mnist':10, 'cifar10': 10, 'imagenet-oord':1000, 'imagenet':1000, 'celeba':1, 'lsun_realnvp':1, 'lsun':1}[hps.problem]
if hps.data_dir == "":
hps.data_dir = {'mnist':None,'cifar10':None,'imagenet-oord':'/mnt/host/imagenet-oord-tfr', 'imagenet':'/mnt/host/imagenet-tfr', 'celeba':'/mnt/host/celeba-reshard-tfr', 'lsun_realnvp':'/mnt/host/lsun_realnvp', 'lsun':'/mnt/host/lsun'}[hps.problem]
if hps.problem == 'lsun_realnvp':
hps.rnd_crop = True
else:
hps.rnd_crop = False
if hps.category:
hps.data_dir += ('/%s' % hps.category)
s = hps.anchor_size
hps.local_batch_train = hps.n_batch_train * s * s // (hps.image_size * hps.image_size)
hps.local_batch_test = {64:50, 32:25, 16:10, 8:5, 4:2, 2:2, 1:1}[hps.local_batch_train] # round down to closest divisor of 50
hps.local_batch_init = hps.n_batch_init * s * s // (hps.image_size * hps.image_size)
print("Rank {} Batch sizes Train {} Test {} Init {}".format(hvd.rank(), hps.local_batch_train, hps.local_batch_test, hps.local_batch_init))
if hps.problem in ['imagenet-oord', 'imagenet', 'celeba', 'lsun_realnvp', 'lsun']:
hps.direct_iterator = True
import data_loaders.get_data as v
train_iterator, test_iterator, data_init = \
v.get_data(sess, hps.data_dir, hvd.size(), hvd.rank(), hps.pmap, hps.fmap, hps.local_batch_train, hps.local_batch_test, hps.local_batch_init, hps.image_size, hps.rnd_crop)
elif hps.problem in ['mnist','cifar10']:
hps.direct_iterator = False
import data_loaders.get_mnist_cifar as v
train_iterator, test_iterator, data_init = \
v.get_data(hps.problem, hvd.size(), hvd.rank(), hps.dal, hps.local_batch_train, hps.local_batch_test, hps.local_batch_init, hps.image_size)
else:
raise Exception()
return train_iterator, test_iterator, data_init
def main(hps):
# Initialize Horovod.
hvd.init()
# Create tensorflow session
sess = tensorflow_session()
# Download and load dataset.
tf.set_random_seed(hvd.rank() + hvd.size() * hps.seed)
np.random.seed(hvd.rank() + hvd.size() * hps.seed)
# Get data and set train_its and valid_its
train_iterator, test_iterator, data_init = get_data(hps, sess)
hps.train_its, hps.test_its, hps.full_test_its = get_its(hps)
# Create log dir
logdirs, _print = zeus.get_logdirs(['', '_ckpt'])
# Create model
import model
model = model.model(sess, hps, train_iterator, test_iterator, data_init)
# Initialize visualization functions
draw_samples = init_visualizations(hps, model, logdirs)
if hvd.rank() == 0:
_print(hps)
_print('Starting training. Logging to', logdirs[0])
_print('epoch n_processed n_images pps dtrain dtest dsample dtot train_results test_results msg')
# Train
sess.graph.finalize()
n_processed = 0
n_images = 0
train_time = 0.0
test_loss_best = 999999
tcurr = time.time()
for epoch in range(1,hps.epochs):
t0 = time.time()
train_results = []
for it in range(hps.train_its):
# Set learning rate, linearly annealed from 0 in the first hps.epochs_warmup epochs.
lr = hps.lr * min(1., n_processed / (hps.n_train * hps.epochs_warmup))
# Run a training step synchronously.
_t0 = time.time()
train_results += [model.train(lr)]
if hps.verbose and hvd.rank() == 0:
_print(n_processed, time.time()-_t0, train_results[-1])
sys.stdout.flush()
n_processed += hvd.size() * hps.n_batch_train # Images seen wrt anchor resolution
n_images += hvd.size() * hps.local_batch_train # Actual images seen at current resolution
train_results = np.mean(np.asarray(train_results), axis=0)
dt = time.time() - t0
train_time += dt
if epoch < 10 or (epoch < 50 and epoch % 10 == 0) or epoch % hps.epochs_full_valid == 0:
test_results = []
msg = ''
t0 = time.time()
#model.polyak_swap()
if epoch % hps.epochs_full_valid == 0:
# Full validation run
for it in range(hps.full_test_its):
test_results += [model.test()]
test_results = np.mean(np.asarray(test_results), axis=0)
if hvd.rank() == 0:
if test_results[0] < test_loss_best:
test_loss_best = test_results[0]
model.save(logdirs[1]+"model_best_loss.ckpt")
msg += ' *'
dtest = time.time() - t0
# Full sample uses all machines, 1 sample per machine
t0 = time.time()
if epoch == 1 or epoch == 10 or epoch % hps.epochs_full_sample == 0:
draw_samples(epoch)
dfullsample = time.time() - t0
if hvd.rank() == 0:
dcurr = time.time() - tcurr
tcurr = time.time()
_print(epoch, n_processed, n_images, "{:.1f} {:.1f} {:.1f} {:.1f}".format(dt, dtest, dfullsample, dcurr), train_results, test_results, msg, np_precision=4)
#model.polyak_swap()
if hvd.rank() == 0:
_print("Finished!")
# Get number of training and validation iterations
def get_its(hps):
# These run for a fixed amount of time. As anchored batch is smaller, we've actually seen fewer examples
train_its = int(np.ceil(hps.n_train / (hps.n_batch_train * hvd.size())))
test_its = int(np.ceil(hps.n_test / (hps.n_batch_train * hvd.size())))
train_epoch = train_its * hps.n_batch_train * hvd.size()
# Do a full validation run
if hvd.rank() == 0:
print(hps.n_test, hps.local_batch_test, hvd.size())
assert hps.n_test % (hps.local_batch_test * hvd.size()) == 0
full_test_its = hps.n_test // (hps.local_batch_test * hvd.size())
if hvd.rank() == 0:
print("Train epoch size: " + str(train_epoch))
return train_its, test_its, full_test_its
'''
Create tensorflow session with horovod
'''
def tensorflow_session():
# Init session and params
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.gpu_options.visible_device_list = str(hvd.local_rank()) # Pin GPU to local rank (one GPU per process)
sess = tf.Session(config=config)
return sess
if __name__ == "__main__":
# This enables a ctr-C without triggering errors
import signal
signal.signal(signal.SIGINT, lambda x, y: sys.exit(0))
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--verbose", action='store_true', help="Verbose mode")
parser.add_argument('--restore_path', type=str, default='', help="Location of checkpoint to restore")
# Dataset hyperparams:
parser.add_argument("--problem", type=str, default='imagenet', help="Problem (mnist/cifar10/imagenet")
parser.add_argument("--category", type=str, default='', help="LSUN category")
parser.add_argument("--data_dir", type=str, default="", help="Location of data")
parser.add_argument("--dal", type=int, default=1, help="Data augmentation level: 0=None, 1=Standard, 2=Extra")
# New dataloader params
parser.add_argument("--fmap", type=int, default=1, help="# Threads for parallel file reading")
parser.add_argument("--pmap", type=int, default=16, help="# Threads for parallel map")
# Optimization hyperparams:
parser.add_argument("--n_train", type=int, default=50000, help="Train epoch size")
parser.add_argument("--n_test", type=int, default=-1, help="Valid epoch size")
parser.add_argument("--n_batch_train", type=int, default=64, help="Minibatch size")
parser.add_argument("--n_batch_test", type=int, default=50, help="Minibatch size")
parser.add_argument("--n_batch_init", type=int, default=256, help="Minibatch size for data-dependent init")
parser.add_argument("--optimizer", type=str, default="adamax", help="adam or adamax")
parser.add_argument("--lr", type=float, default=0.001, help="Base learning rate")
parser.add_argument("--beta1", type=float, default=.9, help="Adam beta1")
parser.add_argument("--polyak_epochs", type=float, default=1, help="Nr of averaging epochs for Polyak and beta2")
parser.add_argument("--weight_decay", type=float, default=1., help="Weight decay. Switched off by default.")
parser.add_argument("--epochs", type=int, default=1000000, help="Total number of training epochs")
parser.add_argument("--epochs_warmup", type=int, default=10, help="Warmup epochs")
parser.add_argument("--epochs_full_valid", type=int, default=50, help="Epochs between valid")
parser.add_argument("--gradient_checkpointing", type=int, default=1, help="Use memory saving gradients")
# Model hyperparams:
parser.add_argument("--image_size", type=int, default=-1, help="Image size")
parser.add_argument("--anchor_size", type=int, default=32, help = "Anchor size for deciding batch size")
parser.add_argument("--width", type=int, default=512, help="Width of hidden layers")
parser.add_argument("--depth", type=int, default=48, help="Depth of network")
parser.add_argument("--weight_y", type=float, default=0.00, help="Weight of log p(y|x) in weighted loss")
parser.add_argument("--n_bits_x", type=int, default=8, help="Number of bits of x")
parser.add_argument("--n_levels", type=int, default=3, help="Number of levels")
# Synthesis/Sampling hyperparameters:
parser.add_argument("--n_sample", type=int, default=1, help="minibatch size for sample")
parser.add_argument("--epochs_full_sample", type=int, default=50, help="Epochs between full scale sample")
# Ablation
parser.add_argument("--learntop", action="store_true", help="Learn spatial prior")
parser.add_argument("--ycond", action="store_true", help="Use y conditioning")
parser.add_argument("--seed", type=int, default=0, help="Random seed")
parser.add_argument("--flow_permutation", type=int, default=2, help="Type of flow. 0=reverse (realnvp), 1=shuffle, 2=invconv (ours)")
parser.add_argument("--flow_coupling", type=int, default=0, help="Coupling type: 0=additive, 1=affine")
hps = parser.parse_args() # So error if typo
main(hps)