Doing Graph->Table conversions With graph2tab

		E-BUGS-87tCy5 Lactic acid t=180 (H1)_labeledextractnar	ame	E DIVIS Silvers				
	E-BUGS-87tproc	MN_E-BUGS-87tCy5 Lactic acid t=180 (H1)_labeledextracts	tname	P-MTAB-20234 E-BUC	35-87tbugs.agul.ac.uk:BuG@Sbase/PhysicalBioAssay:34571_hybridizationname		E-BUGS-87mcq DN_E-BUGS-87 BuG@S ImaGene upload	
~	P-MTAB-20231			MN_E-BI	UGS-87thugs.sgul.ac.uk:BuG@Sbase/PhysicalBioAssay:34571_hybridizationname		E-BUCS-870	
ic acid t=180 (H)_extractname		E-BUGS-874Cy3 Lactic acid t=180 (H2)_labeledextractuar	ame		_		E-BUGS-87mag DN_E-BUGS-87	
actic acid t=180 (H)_extractname	E-BUGS-87tproc P-MTAB-20231	MN_E-BUGS-87tCy3 Lactic acid t=180 (H2)_labeledextracts	tname				8.01/72.07A	
		E-BUGS-87tCy3 Lactic acid t=0 (H1)_labeledextractnam	ne	P-M1AB-0224				
		MN E-BUGS-870Cv3 Lactic acid t=0 (H1) labeledestractor	Dame	E-BUG	iS-87(bugs.sgul.ac.uk:BuG@Sbase/PhysicalBioAssay:34572_hybridizationname		E-BUGS-87tacq DN_E-BUGS-87	
tic acid t=0 (H)_extractname	E-BUGS-87tproc			E-BUGS-\$7/prec MN_E-BU	UGS-87tbugs.sgul.ac.uk:BuG@SbaserPhysicalBioAssay:34572_hybridizationname		E-BUGS-870	
actic acid t=0 (H)_extractname	E DIVIS STreets	E-BUGS-87tCy5 Lactic acid t=0 (H2)_labeledextractnam	ne	B-BUGS-87tproc			B-BUG%S/Imagene upload DN_E-BUGS-87	
	P-MTAB-20232	MN_E-BUGS-87tCy5 Lactic acid t=0 (H2)_labeledextractno	name					
		E-BUGS-87tCy5 Lactic acid t=10 (C1)_labeledextractnam	me				E-BUGS-870	
_	E-BUGS-87tproc	MN_E-BUGS-87tCy5 Lactic acid t=10 (C1)_labeledextracts	iname	E-BUCS-87reec BuG@S hybridization BuG@S hybridization	38-87tbugs.sgal.ac.uk:BuG@Sbase/PhysicalBioAssay:12473_hybridizationname		E-BUGS-87tacq DN_E-BUGS-87	
tic acid t=10 (C)_extractname		E-BUGS-87tCy3 Lactic acid t=10 (C2)_labeledextractnam	me	MN_E-B	UGS-87tbugs.sgul.ac.uk:BuG@Sbase/PhysicalBioAssay:12473_hybridizationname		E-BUGS-870v	
actic acid t=10 (C)_extractname	E-BUGS-87tproc P-MTAB-20231	MN_E-BUGS-871Cy3 Lactic acid t=10 (C2)_labeledextractn	trame	E.BLX35-\$7treec			E-BUGS-87moq BuG#S ImdGree upload	
	E DIVIE Sheers	E-BUGS-878Cy3 Lactic acid t=0 (C1)_labeledextractnam	TIC	E-BLXGS-#77proc	3S-87bugs.sgal.ac.uk:BaG@Sbase/PhysicalBioAssay:32385_hybridizationname		E-BUGS-870	
tic acid t=0 (C)_extractname	P-MTAB-20232	MN_E-BUGS-87tCy3 Lactic acid t=0 (C1)_labeledextracted	name	MN,B-B	UGS-87tbugs.sgul.ac.uk:BuG@Sbase/PhysicalBioAssay:32385_hybridizationname		E-BUGS-87tacq DN_E-BUGS-87 BuG@S Ins/Gene upload DN_E-BUGS-87	
actic acid t=0 (C)_extractname		E-BUGS-87tCy5 Lactic acid t=0 (C2)_labelodextractname	ne	E-BL/GS-67/ppcc P-MTAB-20224 P-MTAB-20224			E-BUGS-870v	
•	E-BUGS-87tproc P-MTAB-20231	MN_E-BUGS-87tCy5 Lactic acid t=0 (C2)_labeledeatracted	name				E-BUGS-87acq DN_E-BUGS-87	
		E-BUGS-87tCy3 Lactic acid t=0 (G1)_labeledextractnam	ne				E-BUGS-870	
		MN E-BUGS-870Cv3 Lactic acid tri0 (G1) labeledextractu	name	E-BUGS-87tprec			E.BUGS.87	
	E-BUGS-87tproc P-MTAB-20232			P-MTAB-30234	S-57thugs.sgul.ac.uk:BuG@SbasePhysicalBioAssay:34569_hybridizationname			
tic acid t=0 (G)_extractname		E-BUGS-87tCy5 Lactic acid t=0 (G2)_labeledextractnam	ne	MN_E-BL	UGS-87tbugs sgul ac uk:BuG@Sbase/PhysicalBioAssay:34569_hybridizationname		E-BUQS-8700	
actic acid t=0 (G)_extractname	E-BUGS-87tproc	MN_E-BUGS-87tCy5 Lactic acid t=0 (G2)_labeledextractna	name	E.BUGEETmar	-		BuG #S ImaGene upload - DN_E-BUGS-87	
		E-BUGS-87tCy5 Lactic acid t=10 (G1)_labeledextractnam	me	P-MTAB-20234 P-MTAB-20234			E-BUCS-870	
tic acid t=10 (G)_extractname	E-BUGS-87tproc P-MTAB-20231	MN_E-BUGS-871Cy5 Lactic acid t=10 (G1)_labeledextractn	triame	E-BUG	85-87@ugs.sgul.ac.uk:BuG@Sbuse/PhysicalBioAssay:34570_hybridizationname		E-BUGS-87macq DN_E-BUGS-87	
actic acid t=10 (G)_extractrame		E-BUGS-87tCy3 Lactic acid t=10 (G2)_labeledextractnam	me	E-BUGS-67tpree MN_E-BI	UGS-87tbrugs.sgul.ac.uk:BuG@Sbase/PhysicalBioAssay:34570_hybridizationname		E-BUGS-870	
	E-BUGS-87tproc	MN_E-BUGS-87tCy3 Lactic acid t=10 (G2)_labeledext		AJ	AK	AL	AM AN	AO
		P BIAN PROVIDEND AND AND AND AND AND AND AND AND AND A	1 F	Parameter Value [RNA quantity]	abeled Extract Name	Label	Material Type Protocol REF	Parameter Value [hybridization temperature]
	E.BIMS.87mm	+	2 X	xx	Cv5 Lactic acid t=180 (H1)	Cv5	synthetic DNA P-MTAB-20234	65
~	P-MTAB-20231	MN_E-BOOS-870Cy3 Lactic acid t=180 (D2)_abbreden	3 X	xx (Cv3 Lactic acid t=180 (H2)	Cv3	synthetic DNA P-MTAB-20234	65
ic acid t=180 (D)_extractname		E-BUGS-87tCyS Lactic acid t=180 (D1)_labeledextra	4		Cv3 actic acid t=0 (H1)	Cv3	synthetic DNA	
actic acid t=180 (D)_extractname	E-BUGS-87tproc P-MTAB-20231	MN_E-BUGS-87tCy5 Lactic acid t=180 (D1)_labeledex	- v	vv ($2\sqrt{5}$ Lactic acid t=0 (H2)	Cv5	synthetic DNA	
		E-BUGS-87tCy5 Lactic acid t=0 (D2)_labeledextract	· ·	209(2 + 2 + 2 = 10 (A2)	Cy3		
		MN E-RUGS-876Cv5 Lastic acid ta0 (D2) labeledente	0	2000		Cys		CE.
			/	2250		Cy5		00
			8 X	xx (Cy5	synthetic_DNAP-MTAB-20234	60
			9 X	xx (Cy3 HCI t=0 (A1)	Суз	synthetic_DNA	
			10	(Cy5 Lactic acid t=10 (C1)	Cy5	synthetic_DNA BuG@S hybridization	65
			11 X	xx (Cy3 Lactic acid t=10 (C2)	Cy3	synthetic_DNA	
			12	50	Cy5 Lactic acid t=0 (C2)	Cy5	synthetic_DNA P-MTAB-20234	65
			13 X	xx (Cy3 Lactic acid t=0 (C1)	Cy3	synthetic_DNA	
			14	(Cy3 Lactic acid t=10 (G2)	Cy3	synthetic DNA	
			15 X	xx (Cv5 Lactic acid t=10 (G1)	Cy5	synthetic DNA	
			16		Cv5 Lactic acid t=0 (G2)	Cv5	synthetic DNA P-MTAB-20234	65
			17 ¥	xx	Cv3 Lactic acid t=0 (G1)	Cv3	synthetic DNA P-MTAB-20234	65
			18	225.0	$C_{V5} HCl t=10 (E1)$	Cv5	total RNA	
			10	2201		Uy U		

Marco Brandizi, EBI, 17 Feb 2012

Sources: www.dilbert.com, http://www.flickr.com/photos/joao_trindade/4362414729/in/photostream/, http://www.boringmeetingssuck.com/, http://jflashman.wordpress.com/2011/06/17/venerdi-17-con-rispetto/

STOP PLEASE! I was joking!

- Mainly interesting to developers dealing with databases like AE and formats like MAGETAB
- Others may be interested things around you
 And affected by the software presented here

- Details are rather technical (graph theory and operative research)
- But obviously I'll keep them at a minimum here
 - I'm finalising a document for those keen on Maths

Come on! We do science here!

What graph2tab is for

Generic, you can adapt it to any model(*)/format combination

Source Name	Organism	Term ID	Term Source	Age	Unit	Sample Name	Sample Name	Protocol REF	Labeled Extract Name	Data File
Source 1	R. norvegicus			1	yr	Sample 1		Protocol 1	Lbl Extract 1	data1.xml
Source 2	Mus-mus	123	NCBI Tax	8	wks	Sample 1	Sample 2			data1.xml

e.g., MAGETAB, ISA-Tab, SampleTAB

(*) as long as it's Java-encoded

Three sub-problems

- To find a suitable/optimal set of paths and rows
- To layer the graph, so that homogeneous node will go under the same set of columns when possible
- To arrange node attributes in a way that allows one to build the table from them

Pb 1, Basic rule: Paths = Rows

Source Name	Organism	Term ID	Term Source	Age	Unit	Sample Name	Sample Name	Protocol REF	Labeled Extract Name	Data File
Source 1	R. norvegicus			1	yr	Sample 1		Protocol 1	Lbl Extract 1	data1.xml
Source 2	Mus-mus	123	NCBI Tax	8	wks	Sample 1	Sample 2			data1.xml

Requirement #1: A covering path set

Wrong!

Requirement #2: A minimum covering path set

Optimisation is not so simple

Source 1	Sample 1	Gel 1	Data 1		
Source 1	Sample 2	Gel 1	Data 2		
Source 1	Sample 2	Gel 2	Data 2		
Source 2	Sample 2	Gel 2	Data 3		
Source 2	Sample 3	Gel 3	Data 3		
Source 2	Sample 3	Gel 3	Data 4		
Source 3	Sample 4	Gel 4	Data 4		

7 rows are enough. But try to prove it and to find them!

Flow Networks

$$f(N,i) - f(i,N) = \begin{cases} -v & i = s \\ 0 & i \neq s, t \\ v & i = t \end{cases}$$

Flow

Flow Networks

$$f(N,i) - f(i,N) = \begin{cases} -v & i=s \\ 0 & i\neq s, t \\ v & i=t \end{cases}$$

Constrained flow and admissible flow

 $l(i, j) \leq f(i, j) \leq c(i, j), \forall (i, j) \in A$

Flow Networks

$$f(N,i) - f(i,N) = \begin{cases} -v & i=s \\ 0 & i\neq s, t \\ v & i=t \end{cases}$$

 $l(i, j) \leq f(i, j) \leq c(i, j), \forall (i, j) \in A$

Minimum flow

f is minimal

From Minimum Flow to Minimum Covering Path Set

A fictitious source and sink $l(virtual \ arcs) = 0$ $l(real \ arcs) = 1$ No upper bound

From Minimum Flow to Minimum Covering Path Set

i.e., the f(i,j) = no of times we pass through (i,j) Or no of repetitions for (i,j)

Source 1	Sample 1	Gel 1	Data 1
Source 1	Sample 2	Gel 1	Data 2
Source 1	Sample 2	Gel 2	Data 2
Source 2	Sample 2	Gel 2	Data 3
Source 2	Sample 3	Gel 3	Data 3
Source 2	Sample 3	Gel 3	Data 4
Source 3	Sample 4	Gel 4	Data 4

Minimum Flow: Ford-Fulkerson Algorithm

Three sub-problems

- To find a suitable/optimal set of paths and rows
- To layer the graph, so that homogeneous node will go under the same set of columns when possible
- To arrange node attributes in a way that allows one to build the table from them

Layering

Conceptually simple

- You start by marking every node with its topological distance from the farthest connected left node
- Then for layer = 0..max
 - For each pair of nodes in the layer
 - Shift one of the two if they haven't the same type

Conceptually simple, but...

Computers understand biology even less than me! 'Source', 'Sample', 'Labeled Extract' are just symbols Either solution is acceptable without further information

Conceptually simple, but...

SRC1

0

```
+interface Node
extends Comparable<Node>
{
  getInputs (): SortedSet<Node>
  getOutputs (): SortedSet<Node>
  getTabValues (): TabValueGroup[]
  getType (): String
  getOrder (): int
}
```


Ah-Ah! Now I know what to choose!

More cases, same trick

Three sub-problems

- To find a suitable/optimal set of paths and rows
- To layer the graph, so that homogeneous node will go under the same set of columns when possible
- To arrange node attributes in a way that allows one to build the table from them

Basic Algorithm

Source Name	Organism	Term ID	Term Source	Age	Unit	Sample Name	Sample Name	Protocol REF	Labeled Extract Name	Data File
Source 1	R. norvegicus			1	yr	Sample 1		Protocol 1	Lbl Extract 1	data1.xml
Source 2	Mus-mus	123	NCBI Tax	8	wks	Sample 1	Sample 2			data1.xml

- For every path in the minimum covering path set:
 - For every *node* in the path:
 - Cover with empty cells any layer between previous node and layer(*node*)
 - Merge attributes(*node*) into the columns/rows built so far for layer(*node*)

Representing Node Attributes

StructuredTable (TabValueGroup (header = "Organism" header = "Organism" rows = "R. Norvegicus", "Mus-mus" value = "Mus-mus" tail = (Structured Table (StructuredTable (tail = (TabValueGroup (header = "Term Source REF" header = "Organism" header = "Term Source REF" rows = "", "", "NCBI-Tax" ÷ rows = "R. Norvegicus" value = "NCBI-Tax" tail = (StructuredTable (tail = []tail = (TabValueGroup (header = "Term Accession" header = "Term Accession" rows = "", "", "123" value = "123"

Merging Node Attributes

graph2tab on the Road

```
public interface Node extends Comparable<Node>
{
    public SortedSet<Node> getInputs ();
    public SortedSet<Node> getOutputs ();
    public List<TabValueGroup> getTabValues ();
    public String getType ();
    public int getOrder ();
}
```

```
public interface TabValueGroup
{
    public String getHeader();
    public String getValue();
    public List<TabValueGroup> getTail ();
}
```

public abstract class DefaultAbstractNode implements Node

Two ways to extend from basic interfaces

- Simpler approach: just let the classes of your model to implement the Node interface
 - Or, much simpler, to extend the DefaultAbstractNode
 - Simpler, but unrealistic
 - In fact, sorry, but I realised I don't have any significant example about...
- More realistic approach: wrappers, ie, a 1-1 mapping from your nodes to graph2tab nodes

Extending through wrappers

```
public abstract class ExpNodeWrapper extends DefaultAbstractNode
 ExpNodeWrapper ( ExperimentNode base, NodeFactory nodeFactory )
   this.base = base:
   this.nodeFactory = nodeFactory;
 public List<TabValueGroup> getTabValues ()
   List<TabValueGroup> result = new ArrayList<TabValueGroup> ();
   result.add ( new DefaultTabValueGroup ( nameHeader, base.getName () ) );
   for (Annotation annotation: base.getAnnotations ())
    {
     DefaultTabValueGroup tbg = new DefaultTabValueGroup (
       annotation.getType (), annotation.getValue () );
     OntoTerm ot = annotation.getOntoTerm ();
     if ( ot != null ) tbg.append (
       new DefaultTabValueGroup ( "Term Accession Number", ot.getAcc (),
       new DefaultTabValueGroup ("Term Source REF", ot.getSource () ));
     result.add ( tba );
   return result;
 }
 public int getOrder ()
   String header = getType();
   Integer order = TYPE_ORDER.get ( header );
   return order == null ? -1 : order;
  }
```

Extending through wrappers

}

```
public abstract class ExpNodeWrapper extends DefaultAbstractNode
    public SortedSet<Node> getInputs ()
        if ( inputs != null )
             return super.getInputs ();
        inputs = new TreeSet<Node> ();
        for ( ExperimentNode in: base.getInputs () )
             inputs.add ( nodeFactory.getNode ( in ) );
        return super.getInputs ();
    }
}
public class NodeFactory extends
  org.isatools.tablib.export.graph2tab.simple_biomodel_tests.node_wrappers.NodeFactory
{
  private NodeFactory () {}
  private static final NodeFactory instance = new NodeFactory ();
  public static NodeFactory getInstance () { return instance; }
  protected ExpNodeWrapper createNewNode ( ExperimentNode base ) {
    if ( base instance of BioSource ) return new BioSourceWrapper ( (BioSource) base, this );
    if ( base instanceof BioSample ) return new BioSampleWrapper ( (BioSample) base, this );
    if ( base instanceof BioExtract ) return
      new BioExtractWrapper ( (BioExtract) base, this );
    if ( base instance of BioLabeledExtract )
```

Real Use Cases so Far

- Was born while I was working on the BII project, it's now part of the ISA tools (exports studies from BII database to ISA-Tab format, works out the sample and assay file)
- ArrayExpress2 to MAGETAB exporter
 - Being integrated in the production environment, will allow to re-generate SDRF files from (possibly re-annotated) database records (ie, uses the AE2 object model)
- MAGE-ML to MAGETAB converter
 - Thanks to Natalja Kurbatova
- Re-Exporter in the Limpopo Library
 - Thanks to Natalja, Tony Burdett
- Adam Faulconbridge, working with graph2tab for the SampleDB project (???)

Possibly in Future

- Maybe a better extension mechanism
 - Java Annotations or XML mapping files
- Translation to other languages
 - If someone is interested...
- More biomedical use cases
 - Eg, several efforts in progress to represent experimental metadata in RDF/OWL (such as OBI)
 - One may need to convert such models back to tabular formats
 - Or to visualise them as tables
- Non biomedical applications?
 - Maybe, workflows occur in many fields
 - Not so sure about tabular formats

Acknowledgements

- Philippe Rocca-Serra, Susanna Sansone (Team leaders for BII), Eamonn Maguire
 - For their support and their patience while I had struggled to come up to an acceptable solution
- Ugis Sarkans (team leader for AE) and AE team
 - Support and help for the AE exporter
- Tony Burdett
 - Support for the Limpopo use case
- Natalja Kurbatova
 - Worked out the MAGE-ML converter and on the Limpopo too
- Adam Falcounbridge
 - Help in spotting and fixing a few bugs
- Alvis Brazma, Natalja
 - Discussions on the ambiguities with the layering
- Funders (CarcinoGENOMICS and EMBL)

