forked from fudan-zvg/4d-gaussian-splatting
-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
406 lines (343 loc) · 20.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import os
import random
import torch
from torch import nn
from utils.loss_utils import l1_loss, ssim, msssim
from gaussian_renderer import render
import sys
from scene import Scene, GaussianModel
from utils.general_utils import safe_state, knn
import uuid
from tqdm import tqdm
from utils.image_utils import psnr, easy_cmap
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams
from torchvision.utils import make_grid
import numpy as np
from omegaconf import OmegaConf
from omegaconf.dictconfig import DictConfig
from torch.utils.data import DataLoader
try:
from torch.utils.tensorboard import SummaryWriter
TENSORBOARD_FOUND = True
except ImportError:
TENSORBOARD_FOUND = False
def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoint, debug_from,
gaussian_dim, time_duration, num_pts, num_pts_ratio, rot_4d, force_sh_3d, batch_size):
if dataset.frame_ratio > 1:
time_duration = [time_duration[0] / dataset.frame_ratio, time_duration[1] / dataset.frame_ratio]
first_iter = 0
tb_writer = prepare_output_and_logger(dataset)
gaussians = GaussianModel(dataset.sh_degree, gaussian_dim=gaussian_dim, time_duration=time_duration, rot_4d=rot_4d, force_sh_3d=force_sh_3d, sh_degree_t=2 if pipe.eval_shfs_4d else 0)
scene = Scene(dataset, gaussians, num_pts=num_pts, num_pts_ratio=num_pts_ratio, time_duration=time_duration)
gaussians.training_setup(opt)
if checkpoint:
(model_params, first_iter) = torch.load(checkpoint)
gaussians.restore(model_params, opt)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
best_psnr = 0.0
ema_loss_for_log = 0.0
ema_l1loss_for_log = 0.0
ema_ssimloss_for_log = 0.0
lambda_all = [key for key in opt.__dict__.keys() if key.startswith('lambda') and key!='lambda_dssim']
for lambda_name in lambda_all:
vars()[f"ema_{lambda_name.replace('lambda_','')}_for_log"] = 0.0
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress")
first_iter += 1
if pipe.env_map_res:
env_map = nn.Parameter(torch.zeros((3,pipe.env_map_res, pipe.env_map_res),dtype=torch.float, device="cuda").requires_grad_(True))
env_map_optimizer = torch.optim.Adam([env_map], lr=opt.feature_lr, eps=1e-15)
else:
env_map = None
gaussians.env_map = env_map
training_dataset = scene.getTrainCameras()
training_dataloader = DataLoader(training_dataset, batch_size=batch_size, shuffle=True, num_workers=12 if dataset.dataloader else 0, collate_fn=lambda x: x, drop_last=True)
iteration = first_iter
while iteration < opt.iterations + 1:
for batch_data in training_dataloader:
iteration += 1
if iteration > opt.iterations:
break
iter_start.record()
gaussians.update_learning_rate(iteration)
# Every 1000 its we increase the levels of SH up to a maximum degree
if iteration % opt.sh_increase_interval == 0:
gaussians.oneupSHdegree()
# Render
if (iteration - 1) == debug_from:
pipe.debug = True
batch_point_grad = []
batch_visibility_filter = []
batch_radii = []
for batch_idx in range(batch_size):
gt_image, viewpoint_cam = batch_data[batch_idx]
gt_image = gt_image.cuda()
viewpoint_cam = viewpoint_cam.cuda()
render_pkg = render(viewpoint_cam, gaussians, pipe, background)
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
depth = render_pkg["depth"]
alpha = render_pkg["alpha"]
# Loss
Ll1 = l1_loss(image, gt_image)
Lssim = 1.0 - ssim(image, gt_image)
loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * Lssim
###### opa mask Loss ######
if opt.lambda_opa_mask > 0:
o = alpha.clamp(1e-6, 1-1e-6)
sky = 1 - viewpoint_cam.gt_alpha_mask
Lopa_mask = (- sky * torch.log(1 - o)).mean()
# lambda_opa_mask = opt.lambda_opa_mask * (1 - 0.99 * min(1, iteration/opt.iterations))
lambda_opa_mask = opt.lambda_opa_mask
loss = loss + lambda_opa_mask * Lopa_mask
###### opa mask Loss ######
###### rigid loss ######
if opt.lambda_rigid > 0:
k = 20
# cur_time = viewpoint_cam.timestamp
# _, delta_mean = gaussians.get_current_covariance_and_mean_offset(1.0, cur_time)
xyz_mean = gaussians.get_xyz
xyz_cur = xyz_mean # + delta_mean
idx, dist = knn(xyz_cur[None].contiguous().detach(),
xyz_cur[None].contiguous().detach(),
k)
_, velocity = gaussians.get_current_covariance_and_mean_offset(1.0, gaussians.get_t + 0.1)
weight = torch.exp(-100 * dist)
# cur_marginal_t = gaussians.get_marginal_t(cur_time).detach().squeeze(-1)
# marginal_weights = cur_marginal_t[idx] * cur_marginal_t[None,:,None]
# weight *= marginal_weights
# mean_t, cov_t = gaussians.get_t, gaussians.get_cov_t(scaling_modifier=1)
# mean_t_nn, cov_t_nn = mean_t[idx], cov_t[idx]
# weight *= torch.exp(-0.5*(mean_t[None, :, None]-mean_t_nn)**2/cov_t[None, :, None]/cov_t_nn*(cov_t[None, :, None]+cov_t_nn)).squeeze(-1).detach()
vel_dist = torch.norm(velocity[idx] - velocity[None, :, None], p=2, dim=-1)
Lrigid = (weight * vel_dist).sum() / k / xyz_cur.shape[0]
loss = loss + opt.lambda_rigid * Lrigid
########################
###### motion loss ######
if opt.lambda_motion > 0:
_, velocity = gaussians.get_current_covariance_and_mean_offset(1.0, gaussians.get_t + 0.1)
Lmotion = velocity.norm(p=2, dim=1).mean()
loss = loss + opt.lambda_motion * Lmotion
########################
loss = loss / batch_size
loss.backward()
batch_point_grad.append(torch.norm(viewspace_point_tensor.grad[:,:2], dim=-1))
batch_radii.append(radii)
batch_visibility_filter.append(visibility_filter)
if batch_size > 1:
visibility_count = torch.stack(batch_visibility_filter,1).sum(1)
visibility_filter = visibility_count > 0
radii = torch.stack(batch_radii,1).max(1)[0]
batch_viewspace_point_grad = torch.stack(batch_point_grad,1).sum(1)
batch_viewspace_point_grad[visibility_filter] = batch_viewspace_point_grad[visibility_filter] * batch_size / visibility_count[visibility_filter]
batch_viewspace_point_grad = batch_viewspace_point_grad.unsqueeze(1)
if gaussians.gaussian_dim == 4:
batch_t_grad = gaussians._t.grad.clone()[:,0].detach()
batch_t_grad[visibility_filter] = batch_t_grad[visibility_filter] * batch_size / visibility_count[visibility_filter]
batch_t_grad = batch_t_grad.unsqueeze(1)
else:
if gaussians.gaussian_dim == 4:
batch_t_grad = gaussians._t.grad.clone().detach()
iter_end.record()
loss_dict = {"Ll1": Ll1,
"Lssim": Lssim}
with torch.no_grad():
psnr_for_log = psnr(image, gt_image).mean().double()
# Progress bar
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
ema_l1loss_for_log = 0.4 * Ll1.item() + 0.6 * ema_l1loss_for_log
ema_ssimloss_for_log = 0.4 * Lssim.item() + 0.6 * ema_ssimloss_for_log
for lambda_name in lambda_all:
if opt.__dict__[lambda_name] > 0:
ema = vars()[f"ema_{lambda_name.replace('lambda_', '')}_for_log"]
vars()[f"ema_{lambda_name.replace('lambda_', '')}_for_log"] = 0.4 * vars()[f"L{lambda_name.replace('lambda_', '')}"].item() + 0.6*ema
loss_dict[lambda_name.replace("lambda_", "L")] = vars()[lambda_name.replace("lambda_", "L")]
if iteration % 10 == 0:
postfix = {"Loss": f"{ema_loss_for_log:.{7}f}",
"PSNR": f"{psnr_for_log:.{2}f}",
"Ll1": f"{ema_l1loss_for_log:.{4}f}",
"Lssim": f"{ema_ssimloss_for_log:.{4}f}",}
for lambda_name in lambda_all:
if opt.__dict__[lambda_name] > 0:
ema_loss = vars()[f"ema_{lambda_name.replace('lambda_', '')}_for_log"]
postfix[lambda_name.replace("lambda_", "L")] = f"{ema_loss:.{4}f}"
progress_bar.set_postfix(postfix)
progress_bar.update(10)
if iteration == opt.iterations:
progress_bar.close()
# Log and save
test_psnr = training_report(tb_writer, iteration, Ll1, loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, render, (pipe, background), loss_dict)
if (iteration in testing_iterations):
if test_psnr >= best_psnr:
best_psnr = test_psnr
print("\n[ITER {}] Saving best checkpoint".format(iteration))
torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt_best.pth")
if (iteration in saving_iterations):
print("\n[ITER {}] Saving Gaussians".format(iteration))
scene.save(iteration)
# Densification
if iteration < opt.densify_until_iter and (opt.densify_until_num_points < 0 or gaussians.get_xyz.shape[0] < opt.densify_until_num_points):
# Keep track of max radii in image-space for pruning
gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
if batch_size == 1:
gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter, batch_t_grad if gaussians.gaussian_dim == 4 else None)
else:
gaussians.add_densification_stats_grad(batch_viewspace_point_grad, visibility_filter, batch_t_grad if gaussians.gaussian_dim == 4 else None)
if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0:
size_threshold = 20 if iteration > opt.opacity_reset_interval else None
gaussians.densify_and_prune(opt.densify_grad_threshold, opt.thresh_opa_prune, scene.cameras_extent, size_threshold, opt.densify_grad_t_threshold)
if iteration % opt.opacity_reset_interval == 0 or (dataset.white_background and iteration == opt.densify_from_iter):
gaussians.reset_opacity()
# Optimizer step
if iteration < opt.iterations:
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none = True)
if pipe.env_map_res and iteration < pipe.env_optimize_until:
env_map_optimizer.step()
env_map_optimizer.zero_grad(set_to_none = True)
def prepare_output_and_logger(args):
if not args.model_path:
if os.getenv('OAR_JOB_ID'):
unique_str=os.getenv('OAR_JOB_ID')
else:
unique_str = str(uuid.uuid4())
args.model_path = os.path.join("./output/", unique_str[0:10])
# Set up output folder
print("Output folder: {}".format(args.model_path))
os.makedirs(args.model_path, exist_ok = True)
with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f:
cfg_log_f.write(str(Namespace(**vars(args))))
# Create Tensorboard writer
tb_writer = None
if TENSORBOARD_FOUND:
tb_writer = SummaryWriter(args.model_path)
else:
print("Tensorboard not available: not logging progress")
return tb_writer
def training_report(tb_writer, iteration, Ll1, loss, l1_loss, elapsed, testing_iterations, scene : Scene, renderFunc, renderArgs, loss_dict=None):
if tb_writer:
tb_writer.add_scalar('train_loss_patches/l1_loss', Ll1.item(), iteration)
tb_writer.add_scalar('train_loss_patches/ssim_loss', Ll1.item(), iteration)
tb_writer.add_scalar('train_loss_patches/total_loss', loss.item(), iteration)
tb_writer.add_scalar('iter_time', elapsed, iteration)
tb_writer.add_scalar('total_points', scene.gaussians.get_xyz.shape[0], iteration)
tb_writer.add_histogram("scene/opacity_histogram", scene.gaussians.get_opacity, iteration)
if loss_dict is not None:
if "Lrigid" in loss_dict:
tb_writer.add_scalar('train_loss_patches/rigid_loss', loss_dict['Lrigid'].item(), iteration)
if "Ldepth" in loss_dict:
tb_writer.add_scalar('train_loss_patches/depth_loss', loss_dict['Ldepth'].item(), iteration)
if "Ltv" in loss_dict:
tb_writer.add_scalar('train_loss_patches/tv_loss', loss_dict['Ltv'].item(), iteration)
if "Lopa" in loss_dict:
tb_writer.add_scalar('train_loss_patches/opa_loss', loss_dict['Lopa'].item(), iteration)
if "Lptsopa" in loss_dict:
tb_writer.add_scalar('train_loss_patches/pts_opa_loss', loss_dict['Lptsopa'].item(), iteration)
if "Lsmooth" in loss_dict:
tb_writer.add_scalar('train_loss_patches/smooth_loss', loss_dict['Lsmooth'].item(), iteration)
if "Llaplacian" in loss_dict:
tb_writer.add_scalar('train_loss_patches/laplacian_loss', loss_dict['Llaplacian'].item(), iteration)
psnr_test_iter = 0.0
# Report test and samples of training set
if iteration in testing_iterations:
validation_configs = ({'name': 'train', 'cameras' : [scene.getTrainCameras()[idx % len(scene.getTrainCameras())] for idx in range(5, 30, 5)]},
{'name': 'test', 'cameras' : [scene.getTestCameras()[idx] for idx in range(len(scene.getTestCameras()))]})
for config in validation_configs:
if config['cameras'] and len(config['cameras']) > 0:
l1_test = 0.0
psnr_test = 0.0
ssim_test = 0.0
msssim_test = 0.0
for idx, batch_data in enumerate(tqdm(config['cameras'])):
gt_image, viewpoint = batch_data
gt_image = gt_image.cuda()
viewpoint = viewpoint.cuda()
render_pkg = renderFunc(viewpoint, scene.gaussians, *renderArgs)
image = torch.clamp(render_pkg["render"], 0.0, 1.0)
depth = easy_cmap(render_pkg['depth'][0])
alpha = torch.clamp(render_pkg['alpha'], 0.0, 1.0).repeat(3,1,1)
if tb_writer and (idx < 5):
grid = [gt_image, image, alpha, depth]
grid = make_grid(grid, nrow=2)
tb_writer.add_images(config['name'] + "_view_{}/gt_vs_render".format(viewpoint.image_name), grid[None], global_step=iteration)
l1_test += l1_loss(image, gt_image).mean().double()
psnr_test += psnr(image, gt_image).mean().double()
ssim_test += ssim(image, gt_image).mean().double()
msssim_test += msssim(image[None].cpu(), gt_image[None].cpu())
psnr_test /= len(config['cameras'])
l1_test /= len(config['cameras'])
ssim_test /= len(config['cameras'])
msssim_test /= len(config['cameras'])
print("\n[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test))
if tb_writer:
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - l1_loss', l1_test, iteration)
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - psnr', psnr_test, iteration)
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - ssim', ssim_test, iteration)
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - msssim', msssim_test, iteration)
if config['name'] == 'test':
psnr_test_iter = psnr_test.item()
torch.cuda.empty_cache()
return psnr_test_iter
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
parser.add_argument("--config", type=str)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--test_iterations", nargs="+", type=int, default=[7_000, 30_000])
parser.add_argument("--save_iterations", nargs="+", type=int, default=[7_000, 30_000])
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--start_checkpoint", type=str, default = None)
parser.add_argument("--gaussian_dim", type=int, default=3)
parser.add_argument("--time_duration", nargs=2, type=float, default=[-0.5, 0.5])
parser.add_argument('--num_pts', type=int, default=100_000)
parser.add_argument('--num_pts_ratio', type=float, default=1.0)
parser.add_argument("--rot_4d", action="store_true")
parser.add_argument("--force_sh_3d", action="store_true")
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--seed", type=int, default=6666)
parser.add_argument("--exhaust_test", action="store_true")
args = parser.parse_args(sys.argv[1:])
args.save_iterations.append(args.iterations)
cfg = OmegaConf.load(args.config)
def recursive_merge(key, host):
if isinstance(host[key], DictConfig):
for key1 in host[key].keys():
recursive_merge(key1, host[key])
else:
assert hasattr(args, key), key
setattr(args, key, host[key])
for k in cfg.keys():
recursive_merge(k, cfg)
if args.exhaust_test:
args.test_iterations = args.test_iterations + [i for i in range(0,op.iterations,500)]
setup_seed(args.seed)
print("Optimizing " + args.model_path)
# Initialize system state (RNG)
safe_state(args.quiet)
torch.autograd.set_detect_anomaly(args.detect_anomaly)
training(lp.extract(args), op.extract(args), pp.extract(args), args.test_iterations, args.save_iterations, args.start_checkpoint, args.debug_from,
args.gaussian_dim, args.time_duration, args.num_pts, args.num_pts_ratio, args.rot_4d, args.force_sh_3d, args.batch_size)
# All done
print("\nTraining complete.")