forked from bilge-ince/aidb-rag-app
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rag.py
98 lines (88 loc) · 3.62 KB
/
rag.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import json
import ast
import boto3
import os
from db import get_connection
import openai
import backoff
from botocore.handlers import disable_signing
template = """<s>[INST]
You are a friendly documentation search bot.
Use following piece of context to answer the question.
If the context is empty, try your best to answer without it.
Never mention the context.
Try to keep your answers concise unless asked to provide details.
Context: {context}
Question: {question}
[/INST]</s>
Answer:
"""
def connect_to_s3():
s3 = boto3.resource(
service_name="s3",
endpoint_url='http://s3.eu-central-1.amazonaws.com',
)
s3.meta.client.meta.events.register("choose-signer.s3.*", disable_signing)
return s3
def retrieve_s3_data(file_names):
s3 = connect_to_s3()
bucket = s3.Bucket('aidb-rag-app')
return [f for name in file_names for f in bucket.objects.filter(Prefix=name)]
def retrieve_augmentation(query, topk, retriever_name):
# clean punctuations and extra spaces
query_str = ''.join(e for e in query if e.isalnum() or e.isspace())
rag_query = ""
with get_connection() as conn:
with conn.cursor() as cursor:
cursor.execute(
f"SELECT data_sources FROM aidb.retrievers WHERE name=%s;", (retriever_name,)
)
results = cursor.fetchone()
if results is None:
raise ValueError("Retriever not found")
elif results[0] == "pg":
cursor.execute(
f"SELECT data FROM aidb.retrieve(%s, %s, %s);", (query_str, topk, retriever_name)
)
rag_query = ' '.join(row[0] for row in cursor.fetchall())
else:
cursor.execute(
f"SELECT data FROM aidb.retrieve(%s, %s, %s);", (query_str, topk, retriever_name)
)
topk_filename = []
for result in cursor.fetchall():
try:
data = json.loads(result[0])
except json.JSONDecodeError:
data = ast.literal_eval(result[0])
topk_filename.append(data['text_id'])
file_list = retrieve_s3_data(topk_filename)
for file in file_list:
file_context = file.get()["Body"].read()
text_content = file_context.decode(encoding="utf-8", errors="ignore")
rag_query += text_content
conn.commit()
return rag_query
@backoff.on_exception(backoff.expo, openai.RateLimitError)
def _api_call(openai_class, model, messages):
return openai_class.chat.completions.create(
model=model, messages=messages
)
def rag_query(tokenizer, model_provider, model, device, query, topk, retriever_name):
rag_query = retrieve_augmentation(query, topk, retriever_name)
query_template = template.format(context=rag_query, question=query)
if model_provider == "openai":
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{
"role": "user",
"content": query_template,
}
]
completion = _api_call(openai_class=tokenizer, model=model, messages=messages)
return completion.choices[0].message.content
else:
input_ids = tokenizer.encode(query_template, return_tensors="pt")
model.generation_config.pad_token_id = tokenizer.pad_token_id
generated_response = model.generate(input_ids.to(device), max_new_tokens=100)
return tokenizer.decode(generated_response[0][input_ids.shape[-1]:], skip_special_tokens=True)